Science.gov

Sample records for optical activity laser

  1. Laser and optics activities at CREOL

    SciTech Connect

    Stickley, C.M.

    1995-06-01

    CREOL is an interdisciplinary institute with a mission to foster and support research and education in the optical and laser sciences and engineering. CREOL`s principal members are its 21-strong faculty. The faculty are encouraged and supported in developing, maintaining, and expanding innovative and sponsored research programs, especially ones that are coupled to industry`s needs. The CREOL Director and Assistant Director, through empowerment by the CREOL faculty, coordinate and oversee the interactive, interdisciplinary projects of the faculty, the 85 graduate students and the 39 research staff. CREOL integrates these research efforts with the general educational mission and goals of the university, develops comprehensive course work in the optical and laser sciences and engineering, provides guidance and instruction to graduate students, administers MS and PhD programs, and provides facilities, funds, and administrative support to assist the faculty in carrying out CREOL`s mission and obtaining financial support for the research projects. CREOL`s specific areas of research activity include the following: IR systems; nonlinear optics; crystal growth; nonlinear integrated optics; new solid-state lasers; tunable far-infrared lasers; thin-film optics; theory; semiconductor lasers; x-ray/optical scattering; laser-induced damage; free-electron lasers; solid-state spectroscopy; x-ray sources and applications; laser propagation; laser processing of materials; optical design; optical limiting/sensor protection; diffractive optics; quantum well optoelectronics; dense plasmas/high-field physics; laser radar and remote sensing; diode-based lasers; and glass science.

  2. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  3. Active optics, adaptive optics, and laser guide stars.

    PubMed

    Hubin, N; Noethe, L

    1993-11-26

    Optical astronomy is crucial to our understanding of the universe, but the capabilities of ground-based telescopes are severely limited by the effects of telescope errors and of the atmosphere on the passage of light. Recently, it has become possible to construct inbuilt corrective devices that can compensate for both types of degradations as observations are conducted. For full use of the newly emerged class of 8-meter telescopes, such active corrective capabilities, known as active and adaptive optics, are essential. Some physical limitations in the adaptive optics field can be overcome by artificially created reference stars, called laser guide stars. These new technologies have lately been applied with success to some medium and very large telescopes. PMID:17736819

  4. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques.

  5. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  6. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  7. Backward reflection analysis of transmitting channel of active laser ranging optics

    NASA Astrophysics Data System (ADS)

    Hong, Jinsuk; Koh, Hae Seog

    2013-09-01

    The designed Active LDR(Laser Detection and Ranging) System contains high-power Laser and its diameter is approximately 24mm. Although the laser transmitting channel and receiving optic channel are completely separated from each other and doesn't share any of the optical components in design, each channel shares 4 wedge scanners, which are to overcome the narrow FOV(Field of View) of the optical system. Any backward reflection back to the fiber laser end must be carefully studied since it can damage the LD(Laser Diodes), the inner components of the laser unit because of the high amplification factor of the laser unit. In this study, the stray light caused by the transmitting channel's laser and inner reflection by optical components were analyzed by ASAP(Advanced System Analysis Program) software. We also can confirm the operability and stability of the system by more than 6 months of operation of the system.

  8. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  9. Fiber optic illumination by laser activated remote phosphor

    NASA Astrophysics Data System (ADS)

    Hartwig, Ulrich

    2012-10-01

    For some fiber optic applications, like high-end endoscopy, light sources with high luminance are necessary. Currently, short arc discharge lamps are being used. However, more and more LED solutions are trying to compete, but they can not yet reach the performance obtainable by 300 W Xenon short arc discharge lamps. To make this field of application accessible for solid state light sources, a new approach is necessary. Diode lasers have rapidly advanced in the past years. This is particularly true for multimode laser diodes emitting at around 445 nm wavelength. Single diodes emitting more than 1 W of optical power are already available. These laser sources exhibit extremely high radiance, thus they can be focused onto very small areas. Phosphors placed near the focus can result in high luminance sources. On the basis of this idea, a device has been developed to match the performance of a state of the art 300 W Xenon lamp system. An array of laser diodes is used to illuminate a phosphor plate which converts the blue pump light into yellow light. The converted light is collected and adapted to the application by a tapered TIR rod. To achieve a color point on the Planckian locus at 6000 K, the light of an LED emitting at around 460 nm is superimposed to the converted light.

  10. Laser optical disk position encoder with active heads

    NASA Technical Reports Server (NTRS)

    Osborne, Eric P.

    1991-01-01

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  11. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  12. Active-medium inhomogeneities and optical quality of radiation of supersonic chemical oxygen-iodine lasers

    SciTech Connect

    Boreysho, A S; Druzhinin, S L; Lobachev, V V; Savin, A V; Strakhov, S Yu; Trilis, A V

    2007-09-30

    Optical inhomogeneities of the active medium of a supersonic chemical oxygen-iodine laser (COIL) and their effect on the radiation parameters are studied in the case when an unstable resonator is used. Classification of optical inhomogeneities and the main factors affecting the quality of COIL radiation are considered. The results of numerical simulation of a three-dimensional gas-dynamic active medium and an unstable optical resonator in the diffraction approximation are presented. The constraints in the fabrication of large-scale COILs associated with a deterioration of the optical quality of radiation are determined. (lasers)

  13. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    1992-04-01

    An angular position encoder is provided that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads which incorporate beam steering optics with the ability to actively track the disk in directions along the disk radius and normal to its surface. The device adapts features prevalent in optical disk technology toward the application of angular position sensing. A reflective disk and the principles of interferometry are employed. The servo-controlled steering optics move so as to acquire a track on the disk lying at a predetermined radius and distance below the head, and then adjust position and orientation in order to maintain the view of the disk track as required. Thus, the device is actively self-aligning.

  14. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    1990-03-01

    An angular position encoder is provided that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads which incorporate beam steering optics with the ability to actively track the disk in directions along the disk radius and normal to its surface. The device adapts features prevalent in optical disk technology toward the application of angular position sensing. A reflective disk and the principles of interferometry are employed. The servo-controlled steering optics move so as to acquire a track on the disk lying at a predetermined radius and distance below the head, and then adjust position and orientation in order to maintain the view of the disk track as required. Thus, the device is actively self-aligning.

  15. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal.

    PubMed

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  16. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    PubMed Central

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  17. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    NASA Astrophysics Data System (ADS)

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-07-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  18. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal.

    PubMed

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  19. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  20. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.

    PubMed

    Sheehy, Christy K; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-07-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone.

  1. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  2. Actively mode-locked fiber ring laser by intermodal acousto-optic modulation.

    PubMed

    Bello-Jiménez, M; Cuadrado-Laborde, C; Sáez-Rodríguez, D; Diez, A; Cruz, J L; Andrés, M V

    2010-11-15

    We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power.

  3. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  4. Optical characterization of femtosecond laser induced active channel waveguides in lithium fluoride crystals

    SciTech Connect

    Chiamenti, I.; Kalinowski, H. J.; Bonfigli, F.; Montereali, R. M.; Gomes, A. S. L.; Michelotti, F.

    2014-01-14

    We successfully realized broad-band light-emitting color center waveguides buried in LiF crystals by using femtosecond laser pulses. The characterization of the waveguides was performed by optical microscopy, photoluminescence spectra, loss measurements and near-field profiling. The experimental results show that the direct-writing fabrication process induces low-index contrast active channel waveguides: their wavelength-dependent refractive index changes, estimated from 10{sup −3} to 10{sup −4} depending on the writing conditions, allow supporting few modes at visible and near-infrared wavelengths.

  5. Gigashot Optical Laser Demonstrator

    SciTech Connect

    Deri, R. J.

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  6. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  7. Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator.

    PubMed

    Malmström, Mikael; Margulis, Walter; Tarasenko, Oleksandr; Pasiskevicius, Valdas; Laurell, Fredrik

    2012-01-30

    This work demonstrates an actively mode-locked fiber laser operating in soliton regime and employing an all-fiber electro-optic modulator. Nonlinear polarization rotation is utilized for femtosecond pulse generation. Stable operation of the all-fiber ring laser is readily achieved at a fundamental repetition rate of 2.6 MHz and produces 460 fs pulses with a spectral bandwidth of 5.3 nm.

  8. Active optical system for advanced 3D surface structuring by laser remelting

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  9. Optical and infrared lasers

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1978-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  10. Informal Activities with Lasers, Lights, and Lenses: The Hands-On Optics Project

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Sparks, C. E.; Sparks, R. T.

    2005-12-01

    The Hands-On Optics project began as a follow-up to the 2001 NSF planning grant "Optics Education -- A Blueprint for the 21st Century", which described the value of informal science programs in addressing the disconnect between the ubiquity of optics in everyday life and the noticeable absence of optics education in K-12 curricula and in informal science education programs. Key partners in the project are NOAO, SPIE-The International Society for Optical Engineering, and the Optical Society of America (OSA). The informal instructional materials created by the project are distributed through science centers nationwide and through the Mathematics, Engineering, Science Achievement Program (MESA) in a number of states, including Arizona, California, Washington, and Maryland. A key part of the project is the involvement, modeled after Project ASTRO, of optics professionals currently engaged in outreach activities and programs. Optics professionals (termed optics resource volunteers) are teamed with MESA and science center educators in implementing the program. These hands-on, high-interest, standards-connected activities and materials provide 6, three-hour-long optics activity modules that can be used in a variety of informal settings. We will describe the techniques used at NOAO to train educators, parents, and optics professionals who will work with the HOO activities as well as the different approaches needed for different informal education programs, ranging from Saturday programs, after-school programs, and science center programs. NOAO is developing the six modules and associated kits as well as competitions that have broad appeal to 12-year olds. Hands-On Optics: Making an Impact with Light (HOO) is a collaborative NSF-funded four-year informal science education program to excite students about science by actively engaging them in optics activities. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative

  11. A novel active optical approach for acceleration measurement based on a Y-shaped cavity dual-frequency laser

    NASA Astrophysics Data System (ADS)

    Xiao, Guangzong; Long, Xingwu; Zhang, Bin; Jin, Shilong

    2012-03-01

    A novel active optical approach for acceleration measurement based on a Y-shaped cavity dual-frequency laser is presented and demonstrated. Applied acceleration causes a change in the refractivity of sensing gas in one of the two cavities, resulting in a beat frequency variation between two orthogonal polarized lights. As a result, this approach produces a modulation of beat frequency strictly proportional to the input acceleration. Preliminary experiments with a 632.8 nm Y-shaped cavity He-Ne dual-frequency laser confirm the validity of the laser sensor. The experimental results show that the laser sensor in this approach characterizes a nearly linear response to the input acceleration, which is a projection of gravitational acceleration. The experimental values of the scale factors are mostly in good agreement with theoretical ones. By optimizing the optical and geometrical parameters of the laser sensor, an acceleration measurement resolution of 10 -5-10 -6 gravitational acceleration (within ±5 g measurement range) could be expected. Furthermore, we investigate the principle about the sign of the scale factor in detail, and propose a simple but efficient method to distinguish the direction of the acceleration acted on the laser sensor.

  12. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  13. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.

    PubMed

    Tombez, L; Schilt, S; Hofstetter, D; Südmeyer, T

    2013-12-01

    We report on a technique for frequency noise reduction and linewidth-narrowing of a distributed-feedback mid-IR quantum cascade laser (QCL) that does not involve any optical frequency reference. The voltage fluctuations across the QCL are sensed, amplified and fed back to the temperature of the QCL at a fast rate using a near-IR laser illuminating the top of the QCL chip. A locking bandwidth of 300 kHz and a reduction of the frequency noise power spectral density by a factor of 10 with respect to the free-running laser are achieved. From 2 MHz for the free-running QCL, the linewidth is narrowed below 700 kHz (10 ms observation time).

  14. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  15. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1995-01-01

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.

  16. Optics and lasers: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A number of innovative devices and techniques in optics and related fields were presented. The following areas were covered: advances in laser and holography technology, articles on spectroscopy and general optics, new information in the area of photography.

  17. Optically active silica and polymeric materials for microcavity lasers and sensors

    NASA Astrophysics Data System (ADS)

    Armani, A. M.; Deka, N.; Mehrabani, S.; Shi, C.; Maker, A.; Lee, M.; Kovach, A.; Gungor, E.; Kuo, K.; Diep, V.

    2015-03-01

    Silica and silica-doped high quality factor (Q) optical resonators have demonstrated ultra-low threshold lasers based on numerous mechanisms (eg rare earth dopants, Raman). To date, the key focus has been on maintaining a high Q, as that determines the lasing threshold and linewidth. However, equally important criteria are lasing efficiency and wavelength. These parameters are governed by the material, not the cavity Q. Therefore, to fully address this challenge, it is necessary to develop new materials. We have synthesized a suite of silica and polymeric materials with nanoparticle and rare-earth dopants to enable the development of microcavity lasers with emission from the near-IR to the UV. Additionally, the efficiencies and thresholds of many of these devices surpass the previous work. Specifically, the silica sol-gel lasers are co- and tri-doped with metal nanoparticles (eg Ti, Al) and rare-earth materials (eg Yb, Nb, Tm) and are fabricated using conventional micro/nanofabrication methods. The intercalation of the metal in the silica matrix reduces the clustering of the rare-earth ions and reduces the phonon energy of the glass, improving efficiency and overall device performance. Additionally, the silica Raman gain coefficient is enhanced due to the inclusion of the metal nanoparticles, which results in a lower threshold and a higher efficiency silica Raman laser. Finally, we have synthesized several polymer films doped with metal (eg Au, Ag) nanoparticles and deposited them on the surface of our microcavity devices. By pumping on the plasmonic resonant wavelength of the particle, we are able to achieve plasmonic-enhanced upconversion lasing.

  18. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  19. Optically biased laser gyro

    SciTech Connect

    Anderson, D.Z.; Chow, W.W.; Scully, M.O.; Sanders, V.E.

    1980-10-01

    We describe a four-mode ring laser that exhibits none of the mode-locking characteristics that plague laser gyros. This laser is characterized by a bias that changes sign with a change in the direction of rotation and prevents the counterpropagating modes from locking. A theoretical analysis explaining the experimental results is outlined.

  20. Laser-based optical activity detection of amino acids and proteins

    SciTech Connect

    Reitsma, B.H.

    1987-08-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. Four free amino acids were resolved using cation-exchange chromatography followed by detection with refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (uv) for tyrosine and phenylalanine. Amino acid detection by refractive index is not sensitive and uv absorbance detects only three amino acids. Derivatization of amino acids to make them detectable by uv absorbance enhances the applicability of OA/uv for the determination of enantiomeric ratios. The separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/uv is illustrated. Calculation of the specific rotation of 22 dansyl-L-amino acids shows that derivatization enhances the OA detectability of some amino acids but degrades that of others. RP-HPLC of proteins is a rapidly developing technique. Several researchers have reported the detection of multiple peaks when a pure protein is subjected to HPLC under certain conditions. These multiple peaks have been determined to be different conformations of the same protein. Since proteins are optically active, OA is a suitable detector. The RP-HPLC separation of conformers of soybean trypsin inhibitor is illustrated. Detection by OA/uv provides insights from the chromatogram unavailable from uv absorbance detection alone. In addition, identification of impurities is simplified with OA/uv. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation. 163 refs., 13 figs., 9 tabs.

  1. Laser-based optical activity detection of amino acids and proteins

    SciTech Connect

    Reitsma, B.H.

    1987-01-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. This study illustrates the use of the OAD in three related areas. Section I illustrates the separation of four free amino acids using cation-exchange chromatography. Detection by coupling the OAD to a refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (UV) for tyrosine and phenylalanine allows the calculation of enantiomeric (D/L) ratios of these amino acids without physical separation. Specific rotations of these four amino acids are also reported. Section II illustrates the separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/UV. Section III illustrates the RP-HPLC separation of conformers of soybean trypsin inhibitor. Detection by OA/UV provides insights from the chromatogram unavailable for UV absorbance detection alone. In addition, identification of impurities is simplified with OA/UV. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation.

  2. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  3. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  4. Effect of helium-neon laser on activity and optical properties of catalase.

    PubMed

    Artyukhov, V G; Basharina, O V; Pantak, A A; Sveklo, L S

    2000-06-01

    The effects of laser (632.8 nm) on functional and spectral properties of catalase at pH 6.0-7.4 were studied. Laser irradiation led to photoactivation of the enzyme at pH 7.1-7.4. Changes in the spectral properties of photomodified hemoprotein were found in the absorption spectrum of the protein component: apoenzyme displayed protective effects in relation to ferroporphyrin. Structural modifications of catalase induced by helium-neon laser irradiation correlated with its functional properties. These results can be used in clinical practice to design the individual management program. PMID:11022242

  5. Effect of helium-neon laser on activity and optical properties of catalase.

    PubMed

    Artyukhov, V G; Basharina, O V; Pantak, A A; Sveklo, L S

    2000-06-01

    The effects of laser (632.8 nm) on functional and spectral properties of catalase at pH 6.0-7.4 were studied. Laser irradiation led to photoactivation of the enzyme at pH 7.1-7.4. Changes in the spectral properties of photomodified hemoprotein were found in the absorption spectrum of the protein component: apoenzyme displayed protective effects in relation to ferroporphyrin. Structural modifications of catalase induced by helium-neon laser irradiation correlated with its functional properties. These results can be used in clinical practice to design the individual management program.

  6. Long-cavity all-fiber ring laser actively mode locked with an in-fiber bandpass acousto-optic modulator.

    PubMed

    Cuadrado-Laborde, C; Bello-Jiménez, M; Díez, A; Cruz, J L; Andrés, M V

    2014-01-01

    We demonstrate low-frequency active mode locking of an erbium-doped all-fiber ring laser. As the mode locker, we used a new in-fiber bandpass acousto-optic modulator showing 74% modulation depth, 3.7 dB power insertion losses, 4.5 nm of optical bandwidth, and 20 dB of nonresonant light suppression. The laser generates 330 ps mode-locked pulses over a 10 ns pedestal, at a 1.538 MHz frequency, with 130 mW of pump power.

  7. Stabilizing a gaseous optical laser

    NASA Technical Reports Server (NTRS)

    Jauan, A.; Shimoda, K.

    1974-01-01

    Frequency of gaseous optical laser can be stabilized by sinusoidally modulating the geometry of the cavity. Fabry-Perot dielectric mirrors are mounted in two Invar blocks that are connected by four magnetorestrictive bars. Each bar has three coils to sinusoidally modulate system. Ac establishes frequency, and dc the average value; both are supplied to coil from control system.

  8. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  9. Continuous optical discharge in a laser cavity

    NASA Astrophysics Data System (ADS)

    Chivel', Yu. A.

    2016-08-01

    Optical discharge in a laser cavity is experimentally studied. A significant increase in the absorption of laser radiation (up to total absorption) is revealed. Optical schemes for initiation and maintaining of optical discharge in the cavity are proposed for technological applications of the optical discharge.

  10. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  11. Output optics for laser velocimeters

    NASA Technical Reports Server (NTRS)

    Lynch, Dana H. (Inventor); Gunter, William D. (Inventor); Mcalister, Kenneth W. (Inventor)

    1993-01-01

    Space savings are effected in the optical output system of a laser velocimeter. The output system is comprised of pairs of optical fibers having output ends from which a beam of laser light emerges, a transfer lens for each light beam, and at least one final (LV) lens for receiving the light passing through the transfer lenses and for focussing that light at a common crossing point or area. In order to closely couple the transfer lenses to the final lens, each transfer lens is positioned relative to the final lens receiving light therefrom such that the output waist of the corresponding beam received by the final lens from the transfer lens is a virtual waist located before the transfer lens.

  12. Optical materials for space based laser systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Armagan, G.; Byvik, C. E.; Albin, S.

    1989-01-01

    The design features and performance characteristics of a sensitized holmium laser applicable to differential lidar and Doppler windshear measurements are presented, giving attention to the optimal choice of sensitizing/activating dopant ions. This development of a 2-micron region eye-safe laser, where holmium is sensitized by either hulium or erbium, has called for interionic energy transfer processes whose rate will not result in gain-switched pulses that are excessively long for atmospheric lidar and Doppler windshear detection. The application of diamond films for optical component hardening is noted.

  13. Frequency modulated lasers for interferometric optical gyroscopes.

    PubMed

    Komljenovic, Tin; Tran, Minh A; Belt, Michael; Gundavarapu, Sarat; Blumenthal, Daniel J; Bowers, John E

    2016-04-15

    We study the use of frequency modulated lasers in interferometric optical gyroscopes and show that by exploiting various frequency modulation signals, the laser coherence can be controlled. We show that both angle random walk and bias stability of an interferometric optical gyroscope based on laser sources can be improved with this technique. PMID:27082342

  14. Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly

    NASA Astrophysics Data System (ADS)

    Siddique, Radwanul H.; Faisal, Abrar; Hünig, Ruben; Bartels, Carolin; Wacker, Irene; Lemmer, Uli; Hoelscher, Hendrik

    2014-09-01

    The famous non-iridescent blue of the Morpho butter by is caused by a `Christmas tree' like nanostructure which is a challenge for common fabrication techniques. Here, we introduce a method to fabricate this complex morphology utilizing dual beam interference lithography. We add a reflective coating below the photoresist to create a second interference pattern in vertical direction by exploiting the back reflection from the substrate. This vertical pattern exposes the lamella structure into the photosensitive polymer while the horizontal interference pattern determines the distance of the ridges. The photosensitive polymer is chosen accordingly to create the Christmas tree' like tapered shape. The resulting artificial Morpho replica shows brilliant non-iridescent blue up to an incident angle of 40. Its optical properties are close to the original Morpho structure because the refractive index of the polymer is close to chitin. Moreover, the biomimetic surface is water repellent with a contact angle of 110.

  15. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  16. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  17. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  18. Acousto-optic mode-locked soliton laser

    SciTech Connect

    Pinto, J.F.; Yakymyshyn, C.P.; Pollock, C.R.

    1988-05-01

    An acousto-optic modulator has been used to actively mode lock a KCl:Tl/sup 0/ (1) color-center laser at 1.5 ..mu..m. The color-center laser is capable of generating transform-limited pulses as short as 6 psec with 2-W cw pump power. Based on this actively mode-locked KCl:Tl/sup 0/ (1) laser a stable soliton laser has been operated, with performance similar to that of the synchronously pumped soliton laser.

  19. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  20. Fiber optic applications for laser polarized targets

    SciTech Connect

    Cummings, W.J.; Kowalczyk, R.S.

    1997-10-01

    For the past two years, the laser polarized target group at Argonne has been used multi-mode fiber optic patch cords for a variety of applications. In this paper, the authors describe the design for transporting high power laser beams with optical fibers currently in use at IUCF.

  1. Self-referencing Mach-Zehnder interferometer as a laser system diagnostic: Active and adaptive optical systems

    SciTech Connect

    Feldman, M.; Mockler, D.J.; English, R.E. Jr.; Byrd, J.L.; Salmon, J.T.

    1991-02-01

    We are incorporating a novel self-referencing Mach-Zehnder interferometer into a large scale laser system as a real time, interactive diagnostic tool for wavefront measurement. The instrument is capable of absolute wavefront measurements accurate to better than {lambda}/10 pv over a wavelength range > 300 nm without readjustment of the optical components. This performance is achieved through the design of both refractive optics and catadioptric collimator to achromatize the Mach-Zehnder reference arm. Other features include polarization insensitivity through the use of low angles of incidence on all beamsplitters as well as an equal path length configuration that allows measurement of either broad-band or closely spaced laser-line sources. Instrument accuracy is periodically monitored in place by means of a thermally and mechanically stable wavefront reference source that is calibrated off-line with a phase conjugate interferometer. Video interferograms are analyzed using Fourier transform techniques on a computer that includes dedicated array processor. Computer and video networks maintain distributed interferometers under the control of a single analysis computer with multiple user access. 7 refs., 11 figs.

  2. Applications of lasers and electro-optics

    NASA Astrophysics Data System (ADS)

    Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.

  3. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  4. Optically pumped microplasma rare gas laser.

    PubMed

    Rawlins, W T; Galbally-Kinney, K L; Davis, S J; Hoskinson, A R; Hopwood, J A; Heaven, M C

    2015-02-23

    The optically pumped rare-gas metastable laser is a chemically inert analogue to three-state optically pumped alkali laser systems. The concept requires efficient generation of electronically excited metastable atoms in a continuous-wave (CW) electric discharge in flowing gas mixtures near atmospheric pressure. We have observed CW optical gain and laser oscillation at 912.3 nm using a linear micro-discharge array to generate metastable Ar(4s, 1s(5)) atoms at atmospheric pressure. We observed the optical excitation of the 1s(5) → 2p(9) transition at 811.5 nm and the corresponding fluorescence, optical gain and laser oscillation on the 2p(10) ↔ 1s(5) transition at 912.3 nm, following 2p(9)→2p(10) collisional energy transfer. A steady-state kinetics model indicates efficient collisional coupling within the Ar(4s) manifold. PMID:25836515

  5. An LD-pumped Q-switched Nd:YAG laser using La 3 Ga 5 SiO 14 for the electro-optic modulator and optical activity compensation

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Huang, J. H.; Zhao, X.; Wang, J. Y.; Shi, F.; Li, J. H.; Deng, J.; Liu, H. G.; Weng, W.; Ge, Y.; Dai, S. T.; Ruan, K. M.; Wu, H. C.; Lin, W. X.

    2014-04-01

    La3Ga5SiO14 (LGS) has been designed and used successfully not only as an electro-optical (EO) Q-switch but also as the optically active crystal in an Nd:YAG (yttrium aluminum garnet) pulse-off laser cavity with two-rod birefringence compensation in this paper. A maximum average output power of 15.8 W with a pulse width of 21 ns was obtained at the maximum repetition rate of 1 kHz, and the dynamic-static ratio was 75%. Experimental results revealed that the spatial distribution of the laser intensity with the two LGS crystals inserted between two identical Nd:YAG rods was significantly better than the spatial distribution with no birefringence compensation or a KD ∗ P EO Q-switcher.

  6. COMPONENTS AND PARAMETERS OF LASER SYSTEMS: Thermal depolarization of optical radiation in a laser active element made of GSGG:Cr3+:Nd3+ crystal

    NASA Astrophysics Data System (ADS)

    Danilov, A. A.; Nikol'skiĭ, M. Yu; Shcherbakov, Ivan A.

    1987-08-01

    Investigations were made of the thermal depolarization in a gadolinium scandium gallium garnet (GSGG) crystal doped with neodymium and chromium. It was found that at average optical pump powers higher than 250-300 W, inhomogeneities of the active medium make a substantial contribution to the thermal depolarization. A method is proposed for the control of the thermal depolarization by additional heating of the active element.

  7. Plasma optical modulators for intense lasers.

    PubMed

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 10(16) W cm(-2) to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  8. Plasma optical modulators for intense lasers

    NASA Astrophysics Data System (ADS)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-06-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  9. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  10. 14th International Conference 'Laser Optics 2010'

    SciTech Connect

    Mak, Artur A

    2010-10-15

    The 14th International Conference 'Laser Optics 2010' in which more than 800 scientists and experts from 35 countries took part, was held from June 28 to July 2, 2010, in St. Petersburg. (information)

  11. Optical Frequency Comb Generation based on Erbium Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Ycas, Gabriel; Washburn, Brian R.; Coddington, Ian; Newbury, Nathan R.

    2016-06-01

    Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

  12. Semiconductor laser gyro with optical frequency dithering

    SciTech Connect

    Prokof'eva, L P; Sakharov, V K; Shcherbakov, V V

    2014-04-28

    The semiconductor laser gyro is described, in which the optical frequency dithering implemented by intracavity phase modulation suppresses the frequency lock-in and provides the interference of multimode radiation. The sensitivity of the device amounted to 10–20 deg h{sup -1}. (laser gyroscopes)

  13. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  14. Optical-fiber-coupled optical bistable semiconductor lasers

    SciTech Connect

    Zhing Lichen; Tang Yunxin; Qin Ying; Guo Yili

    1986-12-01

    A compact, low input power optical bistable device, consisting of a photodetector, an optical fiber directional coupler, and a semiconductor laser diode, was presented. The principle is described graphically to explain the observed effects such as hysteresis, differential operational gain and memory functions.

  15. Mobile fiber-optic laser Doppler anemometer.

    PubMed

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  16. Optical wavelength modulation in free electron lasers

    SciTech Connect

    Mabe, R.M.; Wong, R.K.; Colson, W.B.

    1995-12-31

    An attribute of the free electron laser (FEL) is the continuous tunability of the optical wavelength by modulation of the electron beam energy. The variation of the wavelength and power of the optical beam is studied as a function of FEL operating parameters. These results will be applied to the Stanford SCA FEL and Boeing FEL.

  17. Optical communication with laser diode arrays

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1984-01-01

    The performance of a direct-detection optical communication system in which the laser transmitter sends short optical pulses of selected nonoverlapping center frequencies is analysed. This modulation format, in which a single light pulse is sent in one of M time slots at one of N optical center frequencies, is referred to as color coded optical pulse position modulation (CCPPM). The optimum energy-efficiency of this system, as measured by the channel capacity in nats per photon, exceeds that of ordinary optical pulse position modulation which uses a pulsed laser of fixed optical frequency. Reliable communication at optimal energy efficiency is easily achieved through the use of modest block length Reed-Solomon codes with the code words represented as CCPPM symbols.

  18. Fluorescence quantum efficiency and optical heating efficiency in laser crystals and glasses by laser calorimetry

    SciTech Connect

    Ramponi, A.J.; Caird, J.A.

    1988-06-01

    A photocaloric technique is described for determining the fluorescence quantum efficiencies and optical heating efficiencies of optically active ions in laser materials. Optical absorption within the sample results in a temperature increase until the heat produced by the absorbed power is balanced by heat leakage to the surroundings. The fluorescence quantum efficiency and optical heating efficiency are determined from a measure of the absorbed power, the steady-state temperature, and the time constant associated with sample cooling following laser excitation. An alternative analysis utilizing only the absorbed power and the steady-state temperature as a function of excitation frequency is also shown to yield quantum efficiencies consistent with the first method. Theory and experiment are demonstrated by measuring the fluorescence quantum efficiency and optical heating efficiency for trivalent chromium in gadolinium scandium gallium garnet. Measurements are also reported for several neodymium-doped phosphate laser glasses.

  19. Evaluation of laser diode based optical switches for optical processors

    NASA Astrophysics Data System (ADS)

    Swanson, Paul D.; Parker, Michael A.; Libby, Stuart I.

    1993-07-01

    Three optical switching elements have been designed, fabricated, and tested for use in an integrated, optical signal processor. The first, an optical NOR logic gate, uses gain quenching as a means of allowing one (or more) light beam(s) to control the output light. This technique, along with the use of a two pad bistable output laser, is used in demonstrating the feasibility of the second device, an all optical RS flip flop. The third device consists of a broad area orthogonal model switching laser, whose corollary outputs correspond to the sign of the voltage difference between its two high impedance electrical inputs. This device also has possible memory applications if bistable mode switching within the broad area laser can be achieved.

  20. Modeling the Laser Interferometer Space Antenna Optics

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Trace R.; McNamara, Paul

    2005-01-01

    Creating an optical model of the Laser Interferometer Space antenna which can be used to predict optical sensitivities and set tolerances sufficiently well such that picometer level displacements can be reliably seen poses certain challenges. In part, because the distances between key optical elements, the proof masses, are constantly changing, at speeds of meters/second, the separation between them is about 5 million kilometers and a contributing factor to optical jitter is the self-gravity of the spacecraft. A discussion of the current state and future approach(s) to the creation of such an optical model will be presented.

  1. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  2. Beam shaping for laser initiated optical primers

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2008-08-01

    Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.

  3. Optical microsystems with microchip lasers and micro-optics

    NASA Astrophysics Data System (ADS)

    Fulbert, Laurent R.; Molva, Engin; Marty, Jeannine; Thony, Philippe; Rabarot, Marc; Ferrand, Bernard

    1999-03-01

    The microchip laser is the most compact and the simplest diode pumped solid state laser, with a typical dimension of 0.5 mm3. In spite of the extreme simplicity of this concept which was described in sixties, the first devices have been realized much later in eighties, in different laboratories in the world. The main advantage of the microchip laser is its ability to be fabricated with collective fabrication processes, using techniques such as currently used in microelectronics, allowing a low cost mass production with a good reproducibility and reliability. The microchip lasers are very simple to use without any optical alignment and any maintenance. They foretell a true technical revolution in the domain of solid state lasers which should be opened to high volume and low cost markets. They have many different industrial applications in large markets such as: automotive, laser marking and material processing, environmental and medical applications, public works, telecommunications, etc.

  4. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  5. Stochastic optical active rheology

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsuk; Shin, Yongdae; Kim, Sun Taek; Reinherz, Ellis L.; Lang, Matthew J.

    2012-07-01

    We demonstrate a stochastic based method for performing active rheology using optical tweezers. By monitoring the displacement of an embedded particle in response to stochastic optical forces, a rapid estimate of the frequency dependent shear moduli of a sample is achieved in the range of 10-1-103 Hz. We utilize the method to probe linear viscoelastic properties of hydrogels at varied cross-linker concentrations. Combined with fluorescence imaging, our method demonstrates non-linear changes of bond strength between T cell receptors and an antigenic peptide due to force-induced cell activation.

  6. Optical activity and evolution.

    PubMed

    Khasanov, M M; Gladyshev, G P

    1980-09-01

    It is noted that the chemical reactions occurring in rarefied cosmic clouds (molecular concentration less than or approximately to 10(2) cm-3) differ from similar laboratory reactions by the much greater effect on the outcome of external force fields. In this light it is hypothesized that the synthesis of optically active substances may occur in the outer space under the conjoint stereospecific effect of a magnetic and other molecule-orienting field. It is further conjectured that the optically active substances of the Solar System had been produced in the course of its formation out of the primal rarefield cloud.

  7. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  8. Aspects of laser optics qualification for space applications

    NASA Astrophysics Data System (ADS)

    Riede, Wolfgang; Allenspacher, Paul; Schröder, Helmut; Mahnke, Peter; Paunescu, Gabriela; Wernham, Denny

    2009-10-01

    As a consequence of the ongoing interest for deployment of laser systems into space, suitable optical components have to be developed and must be extensively space qualified to ensure reliable, continuous, and autonomous operation. The exposure to space environment can adversely affect the longevity of optics, mainly coatings, and lead to system degradation. An increased operational risk is due to the air-vacuum effect, which can strongly reduce the laser damage resistance of optical coatings. For this purpose, a vacuum laser damage test bench has been developed and is operated at DLR. In extensive test campaigns, all damage-prone optics of the ALADIN laser system (being the laser source of the upcoming ESA ADM Aeolus mission) were tested under operative conditions at the fundamental and at the harmonic wavelengths of Nd:YAG. Further operational risks are due directly to operation under high vacuum. In the past, several space-based laser missions have suffered from anomalous performance loss or even failure after short operation times. This degradation is due to selective contamination of laser-exposed optical surfaces fed by outgassing constituents. These volatile components are omnipresent in vacuum vessels. Various organic and inorganic species were tested at our facilities for their criticality on deposit built-up. Finally, active optical components like Q-switch crystals or frequency converter crystals can also suffer from bulk absorption induced by high-energy radiation (gray tracking) and dehydration. To analyze these effects, an ultrahigh vacuum phase matching unit was set up to test various combinations of SHG and THG frequency converters.

  9. Optical scanning system for laser velocimeter

    NASA Technical Reports Server (NTRS)

    Rhodes, D. B.

    1977-01-01

    An optical system was developed to provide fast incremental scanning of a backscattered laser velocimeter focus point over a 36-cm distance. The system is used to measure flow velocities at 16 positions along its optical axis and to scan these 16 positions up to 30 times a second. Dwell time at each location is approximately 2 milliseconds. Sample volumes typically are 0.2 mm in diameter by 1.4 cm in length. The optical scanning system consists of a wheel containing plane parallel quartz windows of various thicknesses. The laser velocimeter beams are imaged to a primary focus within the dead airspace of an optical cell. The beams emerging from the cell pass through the windows of the scanning wheel. The refraction of the beams passing through the windows causes an apparent shift of the focus within the optical cell and hence in the test zone. Light scattered from the secondary focus within the test zone is concurrently collected and reimaged through the same optical path which originally projected the primary focus. The reimaged backscattered light containing the velocity information is then collected and focused onto a photomultiplier detector system to complete the scanned laser velocimeter optical system.

  10. Laser Electro-Optic Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary considerations in the organization, operation, and evaluation of a laser electro-optic technology program. An occupational description and program content are presented. A curriculum framework specifies the exact course title, course number, levels of instruction, major course content, laboratory activities,…

  11. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. PMID:27548458

  12. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.].

  13. Metal Optics For Laser Profile Scanners

    NASA Astrophysics Data System (ADS)

    Klauke, T.; Hock, F.

    1987-01-01

    Laser scanners are a valuable tool for qualitiy control in hostile hot and vibrating environments. Their high measuring speed allows time minimisation of disturbing influences. The loss of accuracy of systems due to thermal distortion could be minimised by designing mechanical-optical systems with low temperature gradients and small differences between thermal expansions of the components. For application in the forging production a laser scanner measuring in situ a series of profile lines describing the hot forging tools has been designed using aluminium for all distortion sensitive mechanical and optical components.

  14. Laser and Optical Fiber Metrology in Romania

    SciTech Connect

    Sporea, Dan; Sporea, Adelina

    2008-04-15

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  15. Optical communication with semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic; Sun, X.

    1989-01-01

    This interim report describes the progress in the construction of a 220 Mbps Q=4 PPM optical communication system that uses a semiconductor laser as the optical transmitter and an avalanche photodiode (APD) as the photodetector. The transmitter electronics have been completed and contain both GaAs and ECL III IC's. The circuit was able to operate at a source binary data rate from 75 Mbps to 290 Mbps with pulse rise and fall times of 400 ps. The pulse shapes of the laser diode and the response from the APD/preamplifier module were also measured.

  16. Nonlinear optical protection against frequency agile lasers

    SciTech Connect

    McDowell, V.P.

    1988-08-04

    An eye-protection or equipment-filter device for protection from laser energy is disclosed. The device may be in the form of a telescope, binoculars, goggles, constructed as part of equipment such as image intensifiers or range designators. Optical elements focus the waist of the beam within a nonlinear frequency-doubling crystal or nonlinear optical element or fiber. The nonlinear elements produce a harmonic outside the visible spectrum in the case of crystals, or absorb the laser energy in the case of nonlinear fibers. Embodiments include protectors for the human eye as well as filters for sensitive machinery such as TV cameras, FLIR systems or other imaging equipment.

  17. Laser and Optical Fiber Metrology in Romania

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Sporea, Adelina

    2008-04-01

    The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical and optoelectronic parts, tests run under the EU's Fusion Program.

  18. Design for an optical cw atom laser

    PubMed Central

    Ashkin, Arthur

    2004-01-01

    A new type of optical cw atom laser design is proposed that should operate at high intensity and high coherence and possibly record low temperatures. It is based on an “optical-shepherd” technique, in which far-off-resonance blue-detuned swept sheet laser beams are used to make new types of high-density traps, atom waveguides, and other components for achieving very efficient Bose–Einstein condensation and cw atom laser operation. A shepherd-enhanced trap is proposed that should be superior to conventional magneto-optic traps for the initial collection of molasses-cooled atoms. A type of dark-spot optical trap is devised that can cool large numbers of atoms to polarization-gradient temperatures at densities limited only by three-body collisional loss. A scheme is designed to use shepherd beams to capture and recycle essentially all of the escaped atoms in evaporative cooling, thereby increasing the condensate output by several orders of magnitude. Condensate atoms are stored in a shepherd trap, protected from absorbing light, under effectively zero-gravity conditions, and coupled out directly into an optical waveguide. Many experiments and devices may be possible with this cw atom laser. PMID:15302937

  19. Recent advances in optically pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Chilla, Juan; Shu, Qi-Ze; Zhou, Hailong; Weiss, Eli; Reed, Murray; Spinelli, Luis

    2007-02-01

    Optically pumped semiconductor lasers offer significant advantages with respect to all traditional diode-pumped solid state lasers (including fiber lasers) in regards to wavelength flexibility, broad pump tolerance, efficient spectral and spatial brightness conversion and high power scaling. In this talk we will describe our recent progress in the lab and applying this technology to commercial systems. Results include diversified wavelengths from 460 to 570nm, power scaling to >60W of CW 532nm, and the launch of a low cost 5W CW visible source for forensic applications.

  20. Aero-optics overview. [laser applications

    NASA Technical Reports Server (NTRS)

    Gilbert, K. G.

    1980-01-01

    Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.

  1. Optical eye simulator for laser dazzle events.

    PubMed

    Coelho, João M P; Freitas, José; Williamson, Craig A

    2016-03-20

    An optical simulator of the human eye and its application to laser dazzle events are presented. The simulator combines optical design software (ZEMAX) with a scientific programming language (MATLAB) and allows the user to implement and analyze a dazzle scenario using practical, real-world parameters. Contrary to conventional analytical glare analysis, this work uses ray tracing and the scattering model and parameters for each optical element of the eye. The theoretical background of each such element is presented in relation to the model. The overall simulator's calibration, validation, and performance analysis are achieved by comparison with a simpler model based uponCIE disability glare data. Results demonstrate that this kind of advanced optical eye simulation can be used to represent laser dazzle and has the potential to extend the range of applicability of analytical models. PMID:27140558

  2. Using an eye-safe laser rangefinder to assist active and passive electro-optical sensor performance prediction in low visibility conditions

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Persson, Rolf; Berglund, Folke; Gustafsson, Ove; Öhgren, Johan; Gustafsson, Frank

    2015-07-01

    Laser rangefinders are used in various electro-optical (EO) fire control systems. They often operate at eye-safe wavelengths around 1.55 μm, which extends their utility. The paper investigates the use of a modified eye-safe laser rangefinder at 1.55 μm to obtain information on atmospheric attenuation and couple that information to the performance of active and passive EO sensors with an emphasis of lower visibility conditions. Such information can be of great value both for estimating own sensor capabilities at a given moment as well as estimating the threat capability. One obvious example is ship defense where it is difficult to obtain visibility along variable and slant atmospheric paths, especially in darkness. The experimental equipment and the results from measurements of atmospheric backscatter along various atmospheric paths are presented. The backscatter curve is used to evaluate the extinction. These extinction values are compared with those deduced from a point visibility meter and from echo measurements against two similar nets positioned at two ranges from the sensor. TV and IR images of test targets along a 1.8 km path close to sea surface in the Baltic Sea were collected in parallel with the lidar. A weather station and a scintillometer collected weather and turbulence parameters. Results correlating the lidar attenuation with the imaging performance will be given.

  3. Optical monitoring of laser-generated plasma during laser welding

    NASA Astrophysics Data System (ADS)

    Connolly, John O.; Beirne, Gareth J.; O'Connor, Gerard M.; Glynn, Thomas J.; Conneely, Alan J.

    2000-03-01

    Process monitoring is a vital part of industrial laser applications that enables intelligent control of processes by observing acoustic, optical, thermal and other emissions. By monitoring these emission during laser processing, it is possible to ascertain characteristics that help diagnose features of the laser processed material and hence to optimize the technique. An experimental set up of observing plasmas during laser spot welding is described here. A pulsed Nd:YAG laser was used to spot-weld a variety of materials of different thickness, the plasmas generated during welding were monitored by a number of techniques, and the data obtained was used to characterize the welds. In the study photodiodes were set at different angles and observed the intensity and generation of the plasmas during the laser spot-welding process thereby giving a weld 'signature.' A portable spectrometer was used off-axis to obtain spectra of the emissions from the plasmas. Post process analysis was performed on the materials by mechanical polishing and chemical etching and observations of weld penetration depth and weld quality were correlated with the data collected on the plasmas. Different cover gases were also used during laser welding and the results of the effects of the various gases on the plasma are shown. The results indicate the relationship between laser weld generated plasma characteristics and weld features such as penetration depth. A direct correlation between the intensities of the photodiode and portable spectrometer signals was observed with weld penetration depth.

  4. Acousto-optic filter for electronic laser tuning

    NASA Technical Reports Server (NTRS)

    Harris, S. E.

    1972-01-01

    Electronically tunable lithium niobate filter utilizes acoustic-optic diffraction for tuning laser to desired frequencies. Filter placed inside laser cavity diffracts incident optical signal of one polarization into orthogonal polarization by collinearly propagating acoustic beam to desired wavelength.

  5. Carbon Dioxide Laser Fiber Optics In Endoscopy

    NASA Astrophysics Data System (ADS)

    Fuller, Terry A.

    1982-12-01

    Carbon dioxide laser surgery has been limited to a great extent to surgical application on the integument and accessible cavities such as the cervix, vagina, oral cavities, etc. This limitation has been due to the rigid delivery systems available to all carbon dioxide lasers. Articulating arms (series of hollow tubes connected by articulating mirrors) have provided an effective means of delivery of laser energy to the patient as long as the lesion was within the direct line of sight. Even direct line-of-sight applications were restricted to physical dimension of the articulating arm or associated hand probes, manipulators and hollow tubes. The many attempts at providing straight endoscopic systems to the laser only stressed the need for a fiber optic capable of carrying the carbon dioxide laser wavelength. Rectangular and circular hollow metal waveguides, hollow dielectric waveguides have proven ineffective to the stringent requirements of a flexible surgical delivery system. One large diameter (1 cm) fiber optic delivery system, incorporates a toxic thalliumAbased fiber optic material. The device is an effective alternative to an articulating arm for external or conventional laser surgery, but is too large and stiff to use as a flexible endoscopic tool. The author describes the first highly flexible inexpensive series of fiber optic systems suitable for either conventional or endoscopic carbon dioxide laser surgery. One system (IRFLEX 3) has been manufactured by Medlase, Inc. for surgical uses capable of delivering 2000w, 100 mJ pulsed energy and 15w continuous wave. The system diameter is 0.035 inches in diameter. Surgically suitable fibers as small as 120 um have been manufactured. Other fibers (IRFLEX 142,447) have a variety of transmission characteristics, bend radii, etc.

  6. Optical turbulence in fiber lasers.

    PubMed

    Wabnitz, Stefan

    2014-03-15

    We analyze the nonlinear stage of modulation instability in passively mode-locked fiber lasers leading to chaotic or noise-like emission. We present the phase-transition diagram among different regimes of chaotic emission in terms of the key cavity parameters: amplitude or phase turbulence, and spatio-temporal intermittency. PMID:24690788

  7. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  8. Airborne Visible Laser Optical Communications (AVLOC) experiment

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A series of optical communication experiments between a high altitude aircraft at 18.3 km (60,000 ft) and a ground station were conducted by NASA from summer 1972 through winter 1973. The basic system was an optical tracker and transmitter located in each terminal. The aircraft transceiver consisted of a 5-mW HeNe laser transmitter with a 30-megabit modulator. The ground station beacon was an argon laser operating at 488 nm. A separate pulsed laser radar was used for initial acquisition. The objective of the experiment was to obtain engineering data on the precision tracking and communication system performance at both terminals. Atmospheric effects on the system performance was also an experiment objective. The system description, engineering analysis, testing, and flight results are discussed.

  9. Laser-driven polyplanar optic display

    SciTech Connect

    Veligdan, J.T.; Biscardi, C.; Brewster, C.; DeSanto, L.; Beiser, L.

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.

  10. Eurolaser. High power excimer laser: Optical crystals

    NASA Astrophysics Data System (ADS)

    Gaenswein, Bernhard

    1987-09-01

    The crystals used in excimer lasers because of their excellent optical properties in the ultra violet spectrum are described. The crystals are fluorides of the alkaline earth metals magnesium, calcium and barium and the alkaline fluorides of lithium and sodium. It is possible to grow optical monocrystals of these compounds up to weights of 15 kg with a diameter of 180 mm. Some problems develop in growing crystals larger than this. To do so greater plants and improved automatic temperature monitoring and regulation are required. Special tools are needed for handling such large and heavy monocrystals. Understanding of the interaction between laser radiation and crystal must be improved upon in order to meet all the requirements to be placed on optical components in the future.

  11. A non-critically phase matched KTA optical parametric oscillator intracavity pumped by an actively Q-switched Nd:GYSGG laser with dual signal wavelengths

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Guo, Shibei; Wang, Maorong; Mei, Jialin; Xu, Degang; Yao, Jianquan

    2015-06-01

    A non-critically phase matched eye-safe KTA optical parametric oscillator intracavity pumped by a dual-wavelength acousto-optically Q-switched Nd:GYSGG laser is demonstrated. Simultaneous dual signal wavelength at 1525.1 nm/1531.2 nm can be realized using only one laser crystal and one nonlinear crystal. When the absorbed diode pump power at 808 nm is 7.48 W, the maximum output power, single pulse energy and peak power are 296 mW, 2.96 μJ and 6.4 kW, respectively. As the signal wavelengths exactly locates at the absorption band of C2H2, such an Nd:GYSGG/KTA eye-safe laser has good application prospects in differential absorption lidar (DIAL) for C2H2 detection and difference frequency generation for terahertz waves at 0.77 THz.

  12. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  13. Adaptive optics and laser guide stars at Lick observatory

    SciTech Connect

    Brase, J.M.

    1994-11-15

    For the past several years LLNL has been developing adaptive optics systems for correction of both atmospheric turbulence effects and thermal distortions in optics for high-power lasers. Our early work focused on adaptive optics for beam control in laser isotope separation and ground-based free electron lasers. We are currently developing innovative adaptive optics and laser systems for sodium laser guide star applications at the University of California`s Lick and Keck Observeratories. This talk will describe our adaptive optics technology and some of its applications in high-resolution imaging and beam control.

  14. Optical modeling of laser ablated microstructures

    NASA Astrophysics Data System (ADS)

    Gower, M. C.; Davies, E.; Holmes, A. S.

    2012-11-01

    From only an a priori knowledge of the optical parameters of a laser beam, the delivery system together with a substrate's material properties, a ray-tracing model capable of predicting the 3-D topology of micro/nanostructures machined by pulsed laser ablation has been developed. The model includes secondary illumination effects produced by the microstructure created by successive pulses (wall reflections, refraction, wave guiding, shadowing, etc.) as well as the complete optical properties of the beam delivery system. We have used material ablation by pulsed excimer lasers and associated beam delivery systems to demonstrate some of the capabilities of the model. Good agreement is obtained between computations and experimental results in terms of the predicted ablation depth per pulse and the wall taper angle of channels and holes. The model can predict ablated profiles of holes and indicate the most efficient drilling strategy in terms of material removal rates. The model also shows diffraction effects are not required to explain the tapering vertical walls observed when ablating microstructures. Finally, the model has been used to demonstrate aberrations in an optical imaging system limiting the creation of submicron features in an ablated microstructure. Provided photons are absorbed linearly in a substrate according to Beer's law with negligible thermal diffusion effects, the model is equally applicable to using other types of pulsed laser sources and systems with imaged or focused beams.

  15. Catadioptric Optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    In the design of a laser velocimeter system, attention must be given to the performance of the optical elements in their two principal tasks: focusing laser radiation into the probe volume, and collecting the scattered light. For large aperture applications, custom lens design and fabrication costs, long optical path requirements, and chromatic aberration (for two color operation) can be problematic. The adaptation of low cost Schmidt-Cassegrain astronomical telescopes to perform these laser beam manipulation and scattered light collection tasks is examined. A generic telescope design is analyzed using ray tracing and Gaussian beam propagation theory, and a simple modification procedure for converting from infinite to near unity conjugate ratio operation with image quality near the diffraction limit was identified. Modification requirements and performance are predicted for a range of geometries. Finally, a 200-mm-aperture telescope was modified for f/10 operation; performance data for this modified optic for both laser beam focusing and scattered light collection tasks agree well with predictions.

  16. Laser-optic Measurements of Velocity of Particles in the Powder Stream at Coaxial Laser Cladding

    NASA Astrophysics Data System (ADS)

    Sergachev, D. V.; Mikhal'chenko, A. A.; Kovalev, O. B.; Kuz'min, V. I.; Grachev, G. N.; Pinaev, P. A.

    The problems of particle velocity and temperature measurement can be solved with commonly-known methods of registration based on spectrometry and a complex of laser and optical means. The diagnostic technique combines two independent methods of particle velocity measurement, namely the passive way which is based on the intrinsic radiation of the heated particles in a gas flow, and the active one which utilizes the effect of the laser beam scattering. It is demonstrated that the laser radiation can affect significantly the particles velocity at the laser cladding. Presented bar charts of statistical distributions of the particles velocities illustrate two modes of the coaxial nozzle performance, with and without СО2-laser radiation. Different types of powders (Al2O3, Mo, Ni, Al) were used in tests, the particle size distributions were typical for the laser cladding; air, nitrogen, argon were used as working gases, continuous radiation of the СО2 laser reached 3 kW. It is shown that in the laser-radiation field, the powder particles undergo extra acceleration due to the laser evaporation and reactive force occurrence resulting from the recoil pressure vapors from the beamed part of particles' surfaces. The observed effect of particles acceleration depends on the particles concentration in the powder flow. Due to the laser acceleration, the velocities of individual particles may reach the values of about 80 - 100 m/s. The trichromatic pyrometry method was utilized to measure the particles temperature in the powder flow.

  17. Laser action by optically depumping lower states

    DOEpatents

    Krupke, William F.

    1977-01-01

    A method and apparatus for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium, which comprises populating the upper energy level to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and thereafter establishing an inverted population by transiently and selectively depumping the lower energy level such as by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.

  18. Laser action by optically depumping lower states

    DOEpatents

    Krupke, W.F.

    1975-11-26

    A method and apparatus are described for obtaining laser action between an upper energy level and a lower energy level of a gaseous medium. The upper energy level is populated to some degree (short of achieving a conventional inverted population) by any suitable pumping means, and an inverted population is established by transiently and selectively depumping the lower energy level. The depumping may be done by exposing the medium to an intense source of radiation which selectively causes the transformation of the lower energy level species to some other energy level. Thus, a thermally pumped/optically depumped gas laser system is produced.

  19. Active laser tweezers microrheometry of microbial biofilms

    NASA Astrophysics Data System (ADS)

    Osterman, N.; Slapar, V.; Boric, M.; Stopar, D.; Babič, D.; Poberaj, I.

    2010-08-01

    Microbial biofilms are present on biotic and abiotic surfaces and have a significant impact on many fields in industry, health care and technology. Thus, a better understanding of processes that lead to development of biofilms and their chemical and mechanical properties is needed. In the following paper we report the results of active laser tweezers microrheology study of optically inhomogeneous extracellular matrix secreted by Visbrio sp. bacteria. One particle and two particle active microrheology were used in experiments. Both methods exhibited high enough sensitivity to detect viscosity changes at early stages of bacterial growth. We also showed that both methods can be used in mature samples where optical inhomogeneity becomes significant.

  20. Terahertz graphene lasers: Injection versus optical pumping

    SciTech Connect

    Ryzhii, Victor; Otsuji, Taiichi; Ryzhii, Maxim; Mitin, Vladimir

    2013-12-04

    We analyze the formation of nonequilibrium states in optically pumped graphene layers and in forward-biased graphene structures with lateral p-i-n junctions and consider the conditions of population inversion and lasing. The model used accounts for intraband and interband relaxation processes as well as deviation of the optical phonon system from equilibrium. As shown, optical pumping suffers from a significant heating of both the electron-hole plasma and the optical phonon system, which can suppress the formation of population inversion. In the graphene structures with p-i-n junction, the injected electrons and holes have relatively low energies, so that the effect of cooling can be rather pronounced, providing a significant advantage of the injection pumping in realization of graphene terahertz lasers.

  1. Integrated optic chip for laser threat identification

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2010-04-01

    In this conference last year, we proposed free-space gratings, Fizeau interferometers and wavefront estimation for detecting the different lasers deployed in the battlefield for range finding, target designation, communications, dazzle, location of targets, munitions guidance, and destruction. Since last year, advanced laser weapons of the electron cyclotron type, are in development, such as the free-electron laser, that are tunable and can, unlike conventional bound-electron state lasers, be used at any wavelength from microwaves to soft X-rays. We list the characteristics of the nine dominant laser weapons because we assume that the free-electron lasers will initially use one of the current threat wavelengths because of availability of components and instrumentation. In this paper we replace the free-space grating with a higher performing array waveguide grating integrated optic chip, similar to that used in telecommunications, because integrated circuits are more robust and less expensive. It consists of a star coupler that fans out amongst waveguides of different length followed by a star coupler that focuses different wavelengths to different outputs in order to separate them. Design equations are derived to cover a range of frequencies at specific frequency spacing relevant to this application.

  2. Lens based adaptive optics scanning laser ophthalmoscope.

    PubMed

    Felberer, Franz; Kroisamer, Julia-Sophie; Hitzenberger, Christoph K; Pircher, Michael

    2012-07-30

    We present an alternative approach for an adaptive optics scanning laser ophthalmoscope (AO-SLO). In contrast to other commonly used AO-SLO instruments, the imaging optics consist of lenses. Images of the fovea region of 5 healthy volunteers are recorded. The system is capable to resolve human foveal cones in 3 out of 5 healthy volunteers. Additionally, we investigated the capability of the system to support larger scanning angles (up to 5°) on the retina. Finally, in order to demonstrate the performance of the instrument images of rod photoreceptors are presented.

  3. Guide star lasers for adaptive optics

    NASA Astrophysics Data System (ADS)

    Roberts, William Thomas, Jr.

    Exploitation of the imaging capabilities of the new generation of ground-based astronomical telescopes relies heavily on Adaptive Optics (AO). Current AO system designs call for sodium guide star lasers capable of producing at least eight Watts of power tuned to the peak of the sodium D2 line, with a high duty cycle to avoid saturation, and with 0.5-1.0 GHz spectral broadening. This work comprises development and testing of six candidate laser systems and materials which may afford a path to achieving these goals. An end-pumped CW dye laser producing 4.0 Watts of tuned output power was developed and used to obtain the first accurate measurement of sodium layer scattering efficiency. Methods of optimizing the laser output through improving pump overlap efficiency and reducing the number of intracavity scattering surfaces are covered. The 1181 nm fluorescence peak of Mn5+ ion in Ba5 (PO4)3Cl could be tuned and doubled to reach 589 nm. While efforts to grow this crystal were under way, the Mn5+ ion in natural apatite (Ca5(PO4)3F) was studied as a potential laser material. Fluorescence saturation measurements and transmission saturation are presented, as well as efforts to obtain CW lasing in natural apatite. A Q-switched laser color-center laser in LiF : F-2 was developed and successfully tuned and doubled to the sodium D 2 line. Broad-band lasing of 80 mW and tuned narrow-band lasing of 35 mW at 1178 nm were obtained with 275 mW of input pump power at 1064 nm. The measured thermal properties of this material indicate its potential for scaling to much higher power. A Q-switched intracavity Raman laser was developed in which CaWO 4 was used to shift a Nd:YAG laser, the frequency-doubled output of which was centered at 589.3 nm. To obtain light at 589.0 nm, a compositionally tuned pump laser of Nd : Y3Ga1.1Al3.9O 12 was produced which generated the desired shift, but was inhomogeneous broadened, limiting the tunable power of the material. Finally, temperature tuning of

  4. Electro-optic and acousto-optic laser beam scanners

    NASA Astrophysics Data System (ADS)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  5. Optical injection in semiconductor ring lasers

    SciTech Connect

    Coomans, W.; Beri, S.; Sande, G. Van der; Gelens, L.; Danckaert, J.

    2010-03-15

    We theoretically investigate optical injection in semiconductor ring lasers and disclose several dynamical regimes. Through numerical simulations and bifurcation continuation, two separate parameter regions in which two different injection-locked solutions coexist are revealed, in addition to a region in which a frequency-locked limit cycle coexists with an injection-locked solution. Finally, an antiphase chaotic regime without the involvement of any carrier dynamics is revealed. Parallels are drawn with the onset of chaos in the periodically forced Duffing oscillator.

  6. NONLINEAR OPTICS: Intracavity stimulated Raman scattering with feedback at the Stokes frequency in a laser with active mode locking. II

    NASA Astrophysics Data System (ADS)

    Apanasevich, Pavel A.; Zaporozhchenko, R. G.; Orlovich, V. A.; Chekhlov, O. V.; Kot, G. G.

    1989-05-01

    An experimental investigation was made of the energy and time characteristics of the Stokes radiation pulses as a function of the mismatch of a Stokes resonator relative to a laser resonator at different hydrogen pressures. An optimal dependence of the energy and duration of the Stokes pulses on the mismatch was observed. A theoretical analysis was made allowing for the phase relationships. This explained the optimum by the transient nature of stimulated Raman scattering, exhaustion of the pump radiation, and nonlinear phase modulation which appeared during energy exchange. A study was made of the time characteristics of the Stokes radiation when a change occurred in the dephasing time of induced molecular vibrations when a buffer gas (helium) was added to hydrogen.

  7. Resonant activation in bistable semiconductor lasers

    SciTech Connect

    Lepri, Stefano; Giacomelli, Giovanni

    2007-08-15

    We theoretically investigate the possibility of observing resonant activation in the hopping dynamics of two-mode semiconductor lasers. We present a series of simulations of a rate-equation model under random and periodic modulation of the bias current. In both cases, for an optimal choice of the modulation time scale, the hopping times between the stable lasing modes attain a minimum. The simulation data are understood by means of an effective one-dimensional Langevin equation with multiplicative fluctuations. Our conclusions apply to both edge-emitting and vertical cavity lasers, thus opening the way to several experimental tests in such optical systems.

  8. Key optical components for spaceborne lasers

    NASA Astrophysics Data System (ADS)

    Löhring, J.; Winzen, M.; Faidel, H.; Miesner, J.; Plum, D.; Klein, J.; Fitzau, O.; Giesberts, M.; Brandenburg, W.; Seidel, A.; Schwanen, N.; Riesters, D.; Hengesbach, S.; Hoffmann, H.-D.

    2016-03-01

    Spaceborne lidar (light detection and ranging) systems have a large potential to become powerful instruments in the field of atmospheric research. Obviously, they have to be in operation for about three years without any maintenance like readjusting. Furthermore, they have to withstand strong temperature cycles typically in the range of -30 to +50 °C as well as mechanical shocks and vibrations, especially during launch. Additionally, the avoidance of any organic material inside the laser box is required, particularly in UV lasers. For atmospheric research pulses of about several 10 mJ at repetition rates of several 10 Hz are required in many cases. Those parameters are typically addressed by DPSSL that comprise components like: laser crystals, nonlinear crystals in pockels cells, faraday isolators and frequency converters, passive fibers, diode lasers and of course a lot of mirrors and lenses. In particular, some components have strong requirements regarding their tilt stability that is often in the 10 μrad range. In most of the cases components and packages that are used for industrial lasers do not fulfil all those requirements. Thus, the packaging of all these key components has been developed to meet those specifications only making use of metal and ceramics beside the optical component itself. All joints between the optical component and the laser baseplate are soldered or screwed. No clamps or adhesives are used. Most of the critical properties like tilting after temperature cycling have been proven in several tests. Currently, these components are used to build up first prototypes for spaceborne systems.

  9. Application of repumping laser in optical switching

    NASA Astrophysics Data System (ADS)

    Ray, Ayan; Ali, Md. Sabir; Chakrabarti, Alok

    2014-08-01

    The application of electromagnetically induced transparency (EIT) in high speed optical switching has remained as a key topic in research related to all optical switching. Demonstration of optical switching through EIT realized under ladder (Ξ) level coupling has been reported earlier. Due to narrow linewidth (ГEIT) and low coherent dephasing rate (γ) the EIT needs to be prepared only once to demonstrate such switching action. However, in a Ξ system the EIT is accompanied with double resonance optical pumping (DROP) signal, which is limited by spontaneous decay (Г) rates. It has been shown by our group that the simultaneous presence of DROP-EIT combination paves the way for executing a kind of slow-fast switching action. However the focus always remain on improving the modulation depth in such type of coherence assisted switch. Here we report a possible way to improve modulation depth by using an additional (named 'repumping' after convention used in laser cooling experiments) laser in the Ξ system. The 5S1/2→5P3/2→5D5/2 level coupling scheme of 87Rb atom is used in the current experiment.

  10. Nanosecond laser damage of optical multimode fibers

    NASA Astrophysics Data System (ADS)

    Mann, Guido; Krüger, Jörg

    2016-07-01

    For pulse laser materials processing often optical step index and gradient index multimode fibers with core diameters ranging from 100 to 600 μm are used. The design of a high power fiber transmission system must take into account limitations resulting from both surface and volume damage effects. Especially, breakdown at the fiber end faces and selffocusing in the fiber volume critically influence the fiber performance. At least operation charts are desirable to select the appropriate fiber type for given laser parameters. In industry-relevant studies the influence of fiber core diameter and end face preparation on laser-induced (surface) damage thresholds (LIDT) was investigated for frequently used all-silica fiber types (manufacturer LEONI). Experiments on preform material (initial fiber material) and compact specimens (models of the cladding and coating material) accompanied the tests performed in accordance with the relevant LIDT standards ISO 21254-1 and ISO 21254-2 for 1-on-1 and S-on-1 irradiation conditions, respectively. The relation beam diameter vs. LIDT was investigated for fused silica fibers. Additionally, laser-induced (bulk) damage thresholds of fused silica preform material F300 (manufacturer Heraeus) in dependence on external mechanical stress simulating fiber bending were measured. All experiments were performed with 10-ns laser pulses at 1064 and 532 nm wavelength with a Gaussian beam profile.

  11. Even Illumination from Fiber-Optic-Coupled Laser Diodes

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.

    2006-01-01

    A method of equipping fiber-optic-coupled laser diodes to evenly illuminate specified fields of view has been proposed. The essence of the method is to shape the tips of the optical fibers into suitably designed diffractive optical elements. One of the main benefits afforded by the method would be more nearly complete utilization of the available light. Diffractive optics is a relatively new field of optics in which laser beams are shaped by use of diffraction instead of refraction.

  12. Nonlinear wideband optical filters for laser protection applications

    NASA Astrophysics Data System (ADS)

    Donval, Ariela; Golding, Karin; Nevo, Doron; Fisher, Tali; Lipman, Ofir; Oron, Moshe

    2012-02-01

    With the development of more powerful lasers for applications, optical limiters and blockers are required for providing human eye and optical sensors protection. We report on passive optical power control devices based on a range of photonic nanostructures, including mainly nanostructures for spatial field localization to enhance optical nonlinearities. We present the two main optical power control mechanisms: blocking and limiting, as well as their corresponding nanoscale phenomena. We propose a dynamic protection to cameras, sensors and the human eye from laser threats.

  13. Ring gas lasers with magneto-optical control for laser gyroscopy (invited paper)

    SciTech Connect

    Azarova, V V; Golyaev, Yu D; Dmitriev, Valentin G

    2000-02-28

    The main physical principles of the operation of ring gas lasers in the laser-gyroscope regime are examined. The influence of nonreciprocal effects on the operational parameters of ring gas lasers and the methods of controlling, with the aid of the nonreciprocal magneto-optical Zeeman effect, the parameters of these lasers used in gyroscopes are discussed. (laser gyroscopes)

  14. Broad-Area Laser Diode With Fiber-Optic Injection

    NASA Technical Reports Server (NTRS)

    Hazel, Geoffrey; Mead, Patricia; Davis, Christopher; Cornwell, Donald

    1992-01-01

    Fiber-optic injection-locked broad-area laser diode features single-mode output via fiber-optic injection and serves as compact, rugged, high-power near-infrared source. Useful in free-space and fiber-optic communication links, as communication-receiver preamplifier, and pump source for solid-state lasers.

  15. Laser induced damage in optical materials: 7th ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1976-06-01

    The Seventh ERDA-ASTM-ONR-NBS Symposium on Laser Induced Damage in Optical Materials was held at the National Bureau of Standards in Boulder, Colorado, on 29-31 July 1975. These Symposia are held as part of the activities in ASTM Subcommittee II on Lasers and Laser Materials, which is charged with the responsibilities of formulating standards and test procedures for laser materials, components, and devices. The Chairman of Subcommittee II is Haynes Lee, of Owens-Illinois, Inc. Co-chairmen for the Damage Symposia are Arthur Guenther of the Air Force Weapons Laboratory and Alexander J. Glass of Law-rence Livermore Laboratory. Over 150 attendees at the Symposium heard forty-five papers on topics relating fabrication procedures to laser induced damage in optical materials; on metal mirrors; in ir window materials; the multipulse, wavelength, and pulse length dependence of damage thresholds; damage in dielectric films and at exposed surfaces; as well as theoretical discussions on avalanche ionization and multiphoton processes of importance at shorter wavelengths. Of particular importance were the scaling relations developed from several parametric studies relating fundamental properties (refractive index, surface roughness etc.) to the damage threshold. This year many of the extrinsic influences tending to reduce a materials damage resistance were isolated such that measures of their egregious nature could be quantified. Much still needs to be accomplished to improve processing and fabrication procedures to allow a measurable approach to a materials intrinsic strength to be demonstrated.

  16. Wave-Chaotic Optical Resonators and Lasers

    NASA Astrophysics Data System (ADS)

    Stone, A. Douglas

    2001-10-01

    Deformed cylindrical and spherical dielectric optical resonators and lasers are analyzed from the perspective of non-linear dynamics and quantum chaos theory. In the short-wavelength limit such resonators behave like billiard systems with non-zero escape probability due to refraction. A ray model is introduced to predict the resonance lifetimes and emission patterns from such a cavity. A universal wavelength-independent broadening is predicted and found for large deformations of the cavity. However there are significant wave-chaotic corrections to the model which arise from chaos-assisted tunneling and dynamical localization effects. Highly directional emission from lasers based on these resonators is predicted from chaotic "whispering gallery" modes for index of refraction less than two. The detailed nature of the emission pattern can be understood from the nature of the phase-space flow in the billiard, and a dramatic variation of this pattern with index of refraction is found due to an effect we term "dynamical eclipsing". Semiconductor lasers of this type also show highly directional emission and high output power but from different modes associated with periodic orbits, both stable and unstable. A semiclassical approach to these modes is briefly reviewed. These asymmetric resonant cavities (ARCs) show promise as components in future integrated optical devices, providing perhaps the first application of quantum chaos theory.

  17. Grating THz laser with optical pumping

    NASA Astrophysics Data System (ADS)

    Khoury, Jed; Haji-saeed, Bahareh; Woods, Charles; Kierstead, John

    2010-04-01

    In this paper, we present a design for a widely tunable solid-state optically and electrically pumped THz laser based on the Smith-Purcell free-electron laser. In the free-electron laser, an energetic electron beam pumps a metallic grating to generate surface plasmons. Our solid-state optically pumped design consists of a thin layer of dielectic, such as SiNx, sandwiched between a corrugated structure and a thin metal or semiconductor layer. The lower layer is for current streaming, and replaces the electron beam in the original design. The upper layer consists of one micro-grating for coupling the electromagnetic field in, another for coupling out, and a nano-grating for coupling with the current in the lower layer for electromagnetic field generation. The surface plasmon waves generated from the upper layer by an external electromagnetic field, and the lower layer by the applied current, are coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  18. Applications of Adaptive Optics Scanning Laser Ophthalmoscopy

    PubMed Central

    Roorda, Austin

    2010-01-01

    Adaptive optics (AO) describes a set of tools to correct or control aberrations in any optical system. In the eye, AO allows for precise control of the ocular aberrations. If used to correct aberrations over a large pupil, for example, cellular level resolution in retinal images can be achieved. AO systems have been demonstrated for advanced ophthalmoscopy as well as for testing and/or improving vision. In fact, AO can be integrated to any ophthalmic instrument where the optics of the eye is involved, with a scope of applications ranging from phoropters to optical coherence tomography systems. In this paper, I discuss the applications and advantages of using AO in a specific system, the adaptive optics scanning laser ophthalmoscope, or AOSLO. Since the Borish award was, in part, awarded to me because of this effort, I felt it appropriate to select this as the topic for this paper. Furthermore, users of AOSLO continue to appreciate the benefits of the technology, some of which were not anticipated at the time of development, and so it is time to revisit this topic and summarize them in a single paper. PMID:20160657

  19. COMPUTER MODEL OF TEMPERATURE DISTRIBUTION IN OPTICALLY PUMPED LASER RODS

    NASA Technical Reports Server (NTRS)

    Farrukh, U. O.

    1994-01-01

    Managing the thermal energy that accumulates within a solid-state laser material under active pumping is of critical importance in the design of laser systems. Earlier models that calculated the temperature distribution in laser rods were single dimensional and assumed laser rods of infinite length. This program presents a new model which solves the temperature distribution problem for finite dimensional laser rods and calculates both the radial and axial components of temperature distribution in these rods. The modeled rod is either side-pumped or end-pumped by a continuous or a single pulse pump beam. (At the present time, the model cannot handle a multiple pulsed pump source.) The optical axis is assumed to be along the axis of the rod. The program also assumes that it is possible to cool different surfaces of the rod at different rates. The user defines the laser rod material characteristics, determines the types of cooling and pumping to be modeled, and selects the time frame desired via the input file. The program contains several self checking schemes to prevent overwriting memory blocks and to provide simple tracing of information in case of trouble. Output for the program consists of 1) an echo of the input file, 2) diffusion properties, radius and length, and time for each data block, 3) the radial increments from the center of the laser rod to the outer edge of the laser rod, and 4) the axial increments from the front of the laser rod to the other end of the rod. This program was written in Microsoft FORTRAN77 and implemented on a Tandon AT with a 287 math coprocessor. The program can also run on a VAX 750 mini-computer. It has a memory requirement of about 147 KB and was developed in 1989.

  20. Damage thresholds in laser irradiated optical materials

    SciTech Connect

    Guignard, F.; Autric, M.; Baudinaud, V.

    1997-12-01

    An experimental study on the damage induced by laser irradiation on different materials, borosilicate glass, fused silicate, moulded and stretched polymethylmethacrylate (PMMA), has been performed. The irradiation source is a 1KJ pulsed cold cathode electron gun preionized TEA CO{sub 2} laser. Damage mechanisms are controlled by the in-depth absorption of the 10,6 {mu}m radiation according to the Beer-Lambert law. The heating of the interaction area gives rise to thermal or thermo-mechanical damages. PMMA is damaged following a boiling process. Stretched PMMA is fractured first, releasing stresses, then boiled like moulded PMMA at higher energy. BK7 crazed after the irradiation due to thermomechanical stresses, silicate melt and vaporized. Optical damages have been characterized by measuring the contrast transfer function through the irradiated samples.

  1. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  2. Optically pumped Na/sub 2/ laser

    SciTech Connect

    Kanorskii, S.I.; Kaslin, V.M.; Yakushev, O.F.

    1980-10-01

    A pulsed copper vapor laser emitting the 578.2 nm line was used as the pump source in achieving stimulated emission as a result of the electronic A/sup 1/..sigma../sup +//sub u/ to X/sup 1/..sigma../sup +//sub g/ transitions in the Na/sub 2/ molecule in the spectral range 0.765 to 0.804 ..mu... The average power of all the emission lines was 10 mW when the pulsed pump power was 150 W and the efficiency of conversion of the optical pump energy was about 3%. The pulse repetition frequency was 3.3 kHz. Violet diffuse radiation of the Na/sub 2/ molecules, generated by pumping with the copper vapor laser, was observed. The superradiance regime was found for some of the lines.

  3. Actively mode-locked Raman fiber laser.

    PubMed

    Yang, Xuezong; Zhang, Lei; Jiang, Huawei; Fan, Tingwei; Feng, Yan

    2015-07-27

    Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking. PMID:26367642

  4. Open-ended projects in undergraduate optics and lasers courses

    NASA Astrophysics Data System (ADS)

    Hoyt, Chad

    This talk will describe the format and experience of undergraduate Lasers and Optics courses at Bethel University. The courses, which include a rigorous lecture portion, are built on open-ended research projects that have a novel aspect. They begin with four weeks of small student groups rotating between several standard laser and optics laboratory exercises. These may include, for example, alignment and characterization of a helium neon laser and measurements with a Michelson interferometer or a scanning Fabry-Pérot optical cavity. During the following seven weeks of the course, student groups (2-4 people) choose and pursue research questions in the lab. Their work culminates in a group manuscript typeset in and a twenty-minute presentation to the class. Projects in the spring, 2014 Optics course included experiments with ultracold lithium atoms in a magneto-optical trap, optical tweezers, digital holography and adaptive optics. Projects in the spring, 2015 Lasers course included ultrafast optics with a mode-locked erbium fiber laser, quantum optics, surface plasmon lasers (led by Nathan Lindquist) and a low-cost, near-infrared spectrometer. Several of these projects are related to larger scale, funded research in the physics department. The format and experience in Lasers and Optics is representative of other upper-level courses at Bethel, including Fluid Mechanics and Computer Methods. A physics education research group from the University of Colorado evaluated the spring, 2015 Lasers course. They focused on student experimental attitudes and measurements of student project ownership.

  5. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  6. From laser ultrasonics to optical manipulation.

    PubMed

    Požar, Tomaž; Babnik, Aleš; Možina, Janez

    2015-03-23

    During the interaction of a laser pulse with the surface of a solid object, the object always gains momentum. The delivered force impulse is manifested as propulsion. Initially, the motion of the object is composed of elastic waves that carry and redistribute the acquired momentum as they propagate and reflect within the solid. Even though only ablation- and light-pressure-induced mechanical waves are involved in propulsion, they are always accompanied by the ubiquitous thermoelastic waves. This paper describes 1D elastodynamics of pulsed optical manipulation and presents two diametrical experimental observations of elastic waves generated in the confined ablation and in the radiation pressure regime.

  7. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    SciTech Connect

    Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas; Law, Nicholas M.; Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  8. Femtosecond laser pulse induced birefringence in optically isotropic glass.

    SciTech Connect

    Vawter, Gregory Allen; Luk, Ting Shan; Guo, Junpeng; Yang, Pin; Burns, George Robert

    2003-07-01

    We used a regeneratively amplified Ti:sapphire femtosecond laser to create optical birefringence in an isotropic glass medium. Between two crossed polarizers, regions modified by the femtosecond laser show bright transmission with respect to the dark background of the isotropic glass. This observation immediately suggests that these regions possess optical birefringence. The angular dependence of transmission through the laser-modified region is consistent with that of an optically birefringent material. Laser-induced birefringence is demonstrated in different glasses, including fused silica and borosilicate glass. Experimental results indicate that the optical axes of laser-induced birefringence can be controlled by the polarization direction of the femtosecond laser. The amount of laser-induced birefringence depends on the pulse energy level and number of accumulated pulses.

  9. Properties of Optical and Laser-Related Materials: A Handbook

    NASA Astrophysics Data System (ADS)

    Nikogosyan, David N.

    2003-05-01

    Properties of Optical and Laser-Related Materials-A Handbook offers the reader a self-contained, concise and up-to-date collection of the key properties of 125 of the most common and important optical materials used in modern optics, laser physics and technology, spectroscopy and laser spectroscopy, nonlinear optics, quantum electronics and laser applications. This comprehensive volume presents not only the classical properties but also those that have appeared in the three decades since the invention of the laser. The presentation of the material is given in a clear tabular form with more than 1000 references. A wide variety of readers, ranging from workers in both industry and academia, to lecturers and students at postgraduate and undergraduate levels, will find Properties of Optical and Laser-Related Materials-A Handbook an invaluable resource.

  10. Recent results on bulk laser damage threshold of optical glasses

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Elsmann, Frank

    2013-02-01

    Modern pulsed laser applications cover a broad range of wavelength, power and pulse widths. Beam guiding optics in laser systems do not only have specific requirements on the imaging quality but also have to withstand high laser power. The laser damage threshold of an optical component depends on the surface (polishing, coating ...) and also on the bulk material properties. Actual values of bulk laser damage thresholds, particularly at pulse lengths less than 1 nanosecond (1 ns), of optical glasses are rarely found in literature, except for fused silica, which is known as a key optical material for components in high power laser. However, fused silica is rather expensive and limited in optical properties. That is the reason why customers often ask for laser damage threshold data of optical glasses. Therefore, SCHOTT has started a project for the characterization of the bulk laser damage threshold of optical glasses at the wavelengths 532 nm and 1064 nm with pulse lengths in the nano- and pico-second range. Bulk and surface laser damage testing has been performed by the Laser Zentrum Hannover in Germany according to the S-on-1 test of DIN EN ISO 11254-2 / DIN EN ISO 21254.

  11. CO2 laser and plasma microjet process for improving laser optics

    DOEpatents

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Butler, James A.; Grundler, Walter; Governo, George K.

    2003-09-16

    A optic is produced for operation at the fundamental Nd:YAG laser wavelength of 1.06 micrometers through the tripled Nd:YAG laser wavelength of 355 nanometers by the method of reducing or eliminating the growth of laser damage sites in the optics by processing the optics to stop damage in the optics from growing to a predetermined critical size. A system is provided of mitigating the growth of laser-induced damage in optics by virtue of very localized removal of glass and absorbing material.

  12. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  13. Activities report of the Division of Optical Technology (FOA 33)

    NASA Astrophysics Data System (ADS)

    Letalick, Dietmar

    1988-11-01

    Research on hydro-optics; laser remote sensing; coherent CO2 laser radar; optical signatures; atmospheric transmission; ionizing radiation effects on electronics; fiber optics; optical processing; and terrain models is summarized.

  14. Hole drilling with fiber-optically delivered visible lasers

    SciTech Connect

    Kautz, D.D.; Berzins, L.V.; Dragon, E.P.

    1994-12-31

    The use of lasers for high-speed drilling of holes in materials is well documented. To allow easier use of lasers in manufacturing processes, fiber-optically delivered beams are preferable to the use of conventional optics. Lawrence Livermore National Laboratory (LLNL) has adapted fiber-optic technology to its visible light, copper vapor lasers for use in hole drilling studies. Visible lasers afford better coupling of light to the workpiece and when fiber-optically delivered, allow high quality holes to be drilled in difficult accessibility areas and with easier setup. A fiber-optic delivery system was attached to the presently hard-optic copper vapor laser system. This system consisted of a 0.6 mm (0.024 in.) fiber that was then telescoped and refocused by a hard optics package at the workstation end of the fiber. The optics package produced a 0.2 mm (0.008 in.) focused spot size at the workpiece. This system was then run down to a 3-axis CNC machining table to allow part movement for these studies. The fiber-optically delivered light was found to work extremely well for drilling small diameter holes. In summary, it was found that fiber-optically delivered, visible laser beams have several advantages in drilling over those same beams delivered through conventional hard optics. These include much easier setup, reduced system maintenance, and typically higher hole quality.

  15. Optical System Design and Integration of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  16. CO.sub.2 optically pumped distributed feedback diode laser

    DOEpatents

    Rockwood, Stephen D.

    1980-01-01

    A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.

  17. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  18. Fiber Optic Laser Delivery For Endarterectomy Of Experimental Atheromas

    NASA Astrophysics Data System (ADS)

    Eugene, John; Pollock, Marc E.; McColgan, Stephen J.; Hammer-Wilson, Marie; Berns, Michael W.

    1986-08-01

    Fiber optic delivery of argon ion laser energy and Nd-YAG laser energy were compared by the performance of open laser endarterectomy in the rabbit arteriosclerosis model. In Group I, 6 open laser endarterectomies were performed with an argon ion laser (488 nm and 514.5 nm) with the laser beam directed through a 400 pm quartz fiber optic. In Group II, 6 open laser endarterectomies were performed with a Nd-YAG laser (1.06 pm) with the laser beam directed through a 600 pm quartz fiber optic. Gross and light microscopic examination revealed smooth endarterectomy surfaces with tapered end points in Group I. In Group II, the endarterectomy surfaces were uneven and perforation occurred at 5/6 end points. Although energy could be precisely delivered with each laser by fiber optics, satisfactory results could only be achieved with the argon ion laser because argon ion energy was well absorbed by atheromas. Successful intravascular laser use requires a strong interaction between wavelength and atheroma as well as a precise delivery system.

  19. Laser action of optically pumped atomic titanium vapor

    NASA Astrophysics Data System (ADS)

    Ninomiya, H.; Hirata, K.

    1989-09-01

    Laser action has been observed on the titanium 551.4 nm, 3D0(1)-F2, transition. A nitrogen laser is used to produce the titanium vapor by irradiating a metal plate, and the titanium atoms are optically pumped by another nitrogen laser.

  20. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  1. Optical velocimeters for moving surfaces using gas and semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Belousov, P. Ya.; Dubnistshev, Yu. N.; Meledin, V. G.

    1990-10-01

    A differential arrangement using a laser for the measurement of the velocity of moving surfaces is discussed. Configurations of optical velocimeters with diffraction beam-splitters are shown not to be critical on the wavelength stability of a semiconductor laser. Laser meters measuring the velocity and length of rolled stock have been built on the basis of the devices considered.

  2. The Laser Level as an Optics Laboratory Tool

    ERIC Educational Resources Information Center

    Kutzner, Mickey

    2013-01-01

    For decades now, the laser has been used as a handy device for performing ray traces in geometrical optics demonstrations and laboratories. For many ray- trace applications, I have found the laser level 3 to be even more visually compelling and easy for student use than the laser pointer.

  3. Robotic visible-light laser adaptive optics

    NASA Astrophysics Data System (ADS)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  4. Intrinsic stability of quantum cascade lasers against optical feedback.

    PubMed

    Mezzapesa, F P; Columbo, L L; Brambilla, M; Dabbicco, M; Borri, S; Vitiello, M S; Beere, H E; Ritchie, D A; Scamarcio, G

    2013-06-01

    We study the time dependence of the optical power emitted by terahertz and mid-IR quantum cascade lasers in presence of optical reinjection and demonstrate unprecedented continuous wave (CW) emission stability for strong feedback. We show that the absence of coherence collapse or other CW instabilities typical of diode lasers is inherently associated with the high value of the photon to carrier lifetime ratio and the negligible linewidth enhancement factor of quantum cascade lasers.

  5. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, Wigbert

    1987-01-01

    An apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities comprising, a focused and pulsed laser, an photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  6. Low-threshold terahertz molecular laser optically pumped by a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Pagies, A.; Ducournau, G.; Lampin, J.-F.

    2016-06-01

    We demonstrate a low-threshold, compact, room temperature, and continuous-wave terahertz molecular laser optically pumped by a mid-infrared quantum cascade laser. These characteristics are obtained, thanks to large dipole transitions of the active medium: NH3 (ammonia) in gas state. The low-power (<60 mW) laser pumping excites the molecules, thanks to intense mid-infrared transitions around 10.3 μm. The molecules de-excite by stimulated emission on pure inversion "umbrella-mode" quantum transitions allowed by the tunnel effect. The tunability of the quantum cascade laser gives access to several pure inversion transitions with different rotation states: we demonstrate the continuous-wave generation of ten laser lines around 1 THz. At 1.07 THz, we measure a power of 34 μW with a very low-threshold of 2 mW and a high differential efficiency of 0.82 mW/W. The spectrum was measured showing that the linewidth is lower than 1 MHz. To our knowledge, this is the first THz molecular laser pumped by a solid-state source and this result opens the way for compact, simple, and efficient THz source at room temperature for imaging applications.

  7. Passive and Active Fiber Optic Components

    NASA Astrophysics Data System (ADS)

    Digonnet, Michel Jean-Francois

    This thesis is concerned with the development and characterization of both passive and active fiber-optic components for applications in single-mode fiber systems, in particular in the new technology of fiber sensors and signal processors. These components include single-mode fiber directional couplers, vital to many optical fiber systems, all-fiber wavelength multiplexers, with potential applications in communication systems and active fiber devices, and single-crystal fiber lasers and amplifiers as miniature light sources and signal regenerators. The fiber directional couplers involved in this work, fabricated by a polishing process, are described in detail. Experimental characterization of their coupling, loss and unique tuning properties, and their respective dependence on the coupler geometrical parameters, are reported. A theoretical model of fiber-to-fiber coupling is also developed and shown to be a very useful and accurate tool in the design and study of this type of fiber couplers. The dependence of the coupling properties of fiber couplers on the signal wavelength is studied both theoretically and experimentally for applications in wavelength division multiplexing. All-fiber multiplexers exhibiting a good wavelength selectivity and unique tunability are described and shown to operate according to the coupler model. Work on active fiber devices explores the potential of the new technology of single-crystal fibers grown by the laser-heated floating-zone technique. The status of crystal fiber growth is reported, together with the basic physical and optical characteristics of these fibers. A theoretical model of the effects of fiber model structure on the gain and laser operation of active fibers is also developed to predict the performance of lasers and amplifiers in a fiber form. Several conceptual pumping schemes are described which offer solutions to the difficult problem of optically pumping small diameter fiber amplifiers. The experimental

  8. Advances in lasers and optical micro-nano-systems

    NASA Astrophysics Data System (ADS)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  9. Laser-based study of geometrical optics at school level

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Dhingra, Vishal; Sharma, Reena; Mittal, Ankit; Tiwadi, Raman; Chakravarty, Pratik

    2011-10-01

    Students at the school level from grade 7 to 12 are taught various concepts of geometrical optics but with little hands-on activities. Light propagation through different media, image formation using lenses and mirrors under different conditions and application of basic principles to characterization of lenses, mirrors and other instruments has been a subject which although fascinates students but due to lack of suitable demonstrating setups, students find difficulty in understanding these concepts and hence unable to appreciate the importance of such concepts in various useful scientific apparatus, day to day life, instruments and devices. Therefore, students tend to cram various concepts related to geometrical optics instead of understanding them. As part of the extension activity in the University Grants Commission major research project "Investigating science hands-on to promote innovation and research at undergraduate level" and University of Delhi at Acharya Narendra Dev College SPIE student chapter, students working under this optics outreach programme have demonstrated various experiments on geometrical optics using a five beam laser ray box and various optical components like different types of mirrors, lenses, prisms, optical fibers etc. The various hands-on activities includes demonstrations on laws of reflection, image formation using plane, concave and convex mirrors, mirror formula, total internal reflection, light propagation in an optical fiber, laws of refraction, image formation using concave and convex lenses and combination of these lenses, lens formula, light propagation through prisms, dispersion in prism, defects in eye- Myopia and hypermetropia. Subjects have been evaluated through pre and post tests in order to measure the improvement in their level of understanding.

  10. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  11. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  12. Nd:GGG disk laser with multipoint spatially periodic optical pumping

    NASA Astrophysics Data System (ADS)

    Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.

    2016-04-01

    The results of the study of the output laser beam spatial characteristics of the Nd:Gd3Ga5O12 (Nd:GGG) disk laser with multipoint spatially periodic diode-pumping are presented. The presence of the optical coupling between the TEM00 lasing channels is demonstrated. The phase-locking of channels was realized due to partial overlapping of laser beams inside the pumped areas of the active element disk.

  13. Temporal laser pulse manipulation using multiple optical ring-cavities

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)

    2010-01-01

    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  14. Integrated Optical Memory Based on Laser-Written Waveguides

    NASA Astrophysics Data System (ADS)

    Corrielli, Giacomo; Seri, Alessandro; Mazzera, Margherita; Osellame, Roberto; de Riedmatten, Hugues

    2016-05-01

    We propose and demonstrate a physical platform for the realization of integrated photonic memories based on laser-written waveguides in rare-earth-doped crystals. Using femtosecond-laser micromachining, we fabricate waveguides in Pr3 +∶Y2SiO5 crystal. We demonstrate that the waveguide inscription does not affect the coherence properties of the material and that the light confinement in the waveguide increases the interaction with the active ions by a factor of 6. We also demonstrate that analogous to the bulk crystals, we can operate the optical pumping protocols necessary to prepare the population in atomic-frequency combs that we use to demonstrate light storage in excited and spin states of the Praseodymium ions. Our results represent a realization of laser-written waveguides in a Pr3 +∶Y2SiO5 crystal and an implementation of an integrated on-demand spin-wave optical memory. They open perspectives for integrated quantum memories.

  15. Matter-wave analog of an optical random laser

    SciTech Connect

    Plodzien, Marcin; Sacha, Krzysztof

    2011-08-15

    The accumulation of atoms in the lowest energy level of a trap and the subsequent out coupling of these atoms is a realization of a matter-wave analog of a conventional optical laser. Optical random lasers require materials that provide optical gain but, contrary to conventional lasers, the modes are determined by multiple scattering and not a cavity. We show that a Bose-Einstein condensate can be loaded in a spatially correlated disorder potential prepared in such a way that the Anderson localization phenomenon operates as a bandpass filter. A multiple scattering process selects atoms with certain momenta and determines laser modes which represents a matter-wave analog of an optical random laser.

  16. Large aperture adaptive optics for intense lasers

    NASA Astrophysics Data System (ADS)

    Deneuville, François; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-05-01

    ISP SYSTEM has developed a range of large aperture electro-mechanical deformable mirrors (DM) suitable for ultra short pulsed intense lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations thanks to electromechanical actuators driven by stepper motors. DM design and assembly method have been adapted to large aperture beams and the performances were evaluated on a first application for a beam with a diameter of 250mm at 45° angle of incidence. A Strehl ratio above 0.9 was reached for this application. Simulations were correlated with measurements on optical bench and the design has been validated by calculation for very large aperture (up to Ø550mm). Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for actual MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The MD-AME mirrors can be adapted to circular, square or elliptical beams and they are compatible with all dielectric or metallic coatings.

  17. Combined laser and glycerol enhancing skin optical clearing

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Zhi, Zhongwei; Tuchin, Valery V.; Zhu, Dan

    2009-02-01

    The inherent barrier function of the stratum corneum (SC) makes optical clearing agents difficult to penetrate into skin. To date, several physicochemical methods have been studied to enhance skin optical clearing. In this study, the rat skin was initially irradiated by various light (Carbon-Dioxide Laser, Intensed Pulse Light, Nd:YAG Laser and its frequency-doubled laser) with different dose, and then topically applied anhydrous glycerol. A fiber spectrometer was used to monitor the change of skin diffuse reflectance spectrum so as to evaluate the optical clearing effect on skin. The results showed that Nd:YAG Laser(1,064 nm) with appropriate pulse width and energy density combined with glycerol could improve skin optical clearing effectively, and that Q-switched Nd:YAG Laser combining glycerol made the most significant decrease of skin diffuse reflectance. However, after the irradiation of Carbon-Dioxide Laser (ultra-pulsed), Intensed Pulse Light (400-700 nm) or frequency-doubled Q-switched Nd:YAG Laser(532 nm), the following application of glycerol didn't lead to skin optical clearing. Adversely, higher power of the former two light could result in erythema, the later one may harm skin apparently even lead to blood coagulation dot. This study provids a new idea to find out a noninvasive but high-effective approach to increase skin optical clearing, and available parameters of laser need to be further investigated.

  18. Enhanced performance of large 3ω optics using UV and IR lasers

    NASA Astrophysics Data System (ADS)

    Prasad, Rahul R.; Bruere, Justin R.; Peterson, John; Halpin, John M.; Borden, Michael; Hackel, Richard P.

    2004-06-01

    We have developed techniques using small-beam raster scanning to laser-condition fused silica optics to increase their damage threshold. Further, we showed that CO2 lasers could be used to mitigate and stabilize damage sites while still on the order of a few tens of microns in size, thereby greatly increasing the lifetime of an optic. We recently activated the Phoenix pre-production facility to condition and mitigate optics as large as 43 cm x 43 cm. Several full-scale optics have been processed in Phoenix. The optics were first photographed using a damage mapping system to identify scratches, digs, or other potential sites for initiation of laser damage. We then condition the optic, raster scanning with the excimer laser. The first scan is performed at a low fluence. A damage map is then acquired and any new damage sites or any sites that have grown in size are mitigated using the CO2 laser. The process is repeated at successively higher fluences until a factor of 1.7 above the nominal operating fluence is reached. After conditioning, optics were tested in a large beam 3ω laser and showed no damage at fluences of 8 J/cm2 average.

  19. Integrated semiconductor twin-microdisk laser under mutually optical injection

    SciTech Connect

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  20. Label-free optical activation of astrocyte in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Yoon, Jonghee; Ku, Taeyun; Choi, Kyungsun; Choi, Chulhee

    2011-07-01

    As the most abundant cell type in the central nervous system, astrocyte has been one of main research topics in neuroscience. Although various tools have been developed, at present, there is no tool that allows noninvasive activation of astrocyte in vivo without genetic or pharmacological perturbation. Here we report a noninvasive label-free optical method for physiological astrocyte activation in vivo using a femtosecond pulsed laser. We showed the laser stimulation robustly induced astrocytic calcium activation in vivo and further verified physiological relevance of the calcium increase by demonstrating astrocyte mediated vasodilation in the brain. This novel optical method will facilitate noninvasive physiological study on astrocyte function.

  1. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; et al

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  2. Optical laser systems at the Linac Coherent Light Source

    PubMed Central

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R.

    2015-01-01

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS. PMID:25931064

  3. Optical laser systems at the Linac Coherent Light Source.

    PubMed

    Minitti, Michael P; Robinson, Joseph S; Coffee, Ryan N; Edstrom, Steve; Gilevich, Sasha; Glownia, James M; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E; Fry, Alan R

    2015-05-01

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump-probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump-probe experiments to be performed at LCLS.

  4. Laser-scanning optical-resolution photoacoustic microscopy.

    PubMed

    Xie, Zhixing; Jiao, Shuliang; Zhang, Hao F; Puliafito, Carmen A

    2009-06-15

    We have developed a laser-scanning optical-resolution photoacoustic microscopy method that can potentially fuse with existing optical microscopic imaging modalities. To acquire an image, the ultrasonic transducer is kept stationary during data acquisition, and only the laser light is raster scanned by an x-y galvanometer scanner. A lateral resolution of 7.8 microm and a circular field of view with a diameter of 6 mm were achieved in an optically clear medium. Using a laser system working at a pulse repetition rate of 1,024 Hz, the data acquisition time for an image consisting of 256 x 256 pixels was less than 2 min. PMID:19529698

  5. Reduction of laser spot elongation in adaptive optics.

    PubMed

    Ribak, Erez N; Ragazzoni, Roberto

    2004-06-15

    Adaptive optics systems measure the wave front to be corrected by use of a reference source, a star, or a laser beacon. Such laser guide stars are a few kilometers long, and when observed near the edges of large telescopes they appear elongated. This limits their utility significantly. However, with more sophisticated launch optics their shape and length can be controlled. We propose to string around the rim of a telescope a number of small telescopes that will add laser beams in the scattering medium to create a compact spot. The method could also be adapted for ocular adaptive optics.

  6. Drastic emission-spectra changes in a semiconductor laser owing to optical feedback from an optical connector

    SciTech Connect

    Matsuura, M.; Tanifuji, T.; Yamamoto, Y.

    1986-07-01

    The time-averaged longitudinal-mode power of a semiconductor laser coupled to fiber changes drastically when an external force is applied to a multimode fiber terminated with an optical connector. No emission-spectra changes have been observed in the case of a single-mode fiber. This phenomenon is considered to be induced by the wavelength-dependent change of the reflected field speckle intensity coupled into the laser-active region.

  7. Laser Safety Method For Duplex Open Loop Parallel Optical Link

    DOEpatents

    Baumgartner, Steven John; Hedin, Daniel Scott; Paschal, Matthew James

    2003-12-02

    A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.

  8. Reliability of high power laser diodes with external optical feedback

    NASA Astrophysics Data System (ADS)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  9. Field-Testing of an Active Laser Tracking System

    NASA Astrophysics Data System (ADS)

    Markov, V.; Khiznyak, A.; Woll, D.; Liu, S.

    Comprehensive space surveillance demands a more accurate technique in tracking multi-dimensional state vector (3D coordinate, velocity, vibration, etc.) of the space objects. RF radiometric techniques typically can not provide the needed accuracy, while passive optical (and laser) tracking systems can provide distance to the object and its angular position, but not a direct reading of velocity, the parameter of primary importance for space object tracking and characterization. Addressing this problem with active optical tracking techniques is challenging because of the great distances involved, the high velocity of the satellites, and the optical aberrations induced by the atmosphere. We have proposed a phase conjugation based laser tracking concept, and accomplished the first version of design and engineering of a prototype for an Active Laser Tracking System (ALTS). In its current state the ALTS is capable to demonstrate the very basics operational principles of the proposed active tracking technique. We then performed a number of experiments to prove operational capabilities of this prototype both at MetroLaser's lab environment and at Edwards AFB Test Range. In its current architecture the ALTS is comprised of two laser cavities, Master and Slave that are coupled through a Phase Conjugate Mirror (PCM) formed in a non-linear medium (NLM) set at Master laser cavity. By pumping NLM and forming PCM, Master laser establishes the cavities coupling mode and injects the photons in the slave cavity. It is essential that the specific features of the PCM not only serve to couple ALTS cavities, but also serves to compensate optical aberrations of the ALTS (gain media and optical elements of the laser resonator). Due to its ability to compensate optical aberrations, phase conjugate resonators are capable of sustaining oscillation with a remote target as an output coupler. The entire system comprises of several modules, including a laser, emitting/receiving telescope, gimbal

  10. Optics and photonics research in the Lasers, Optics and Remote Sensing Department at Sandia National Laboratories

    SciTech Connect

    Simmons-Potter, K.; Meister, D.C.

    1997-04-01

    Photonic system and device technologies have claimed a significant share of the current high-tech market. In particular, laser systems and optical devices impact a broad range of technological areas including telecommunications, optical computing, optical data storage, integrated photonics, remote environmental sensing and biomedical applications. Below we present an overview of photonics research being conducted within the Lasers, Optics and Remote Sensing department of the Physical and Chemical Sciences Center at Sandia National Laboratories. Recent results in the fields of photosensitive materials and devices, binary optics device applications, wavelength generation using optical parametric oscillators, and remote sensing are highlighted. 11 refs., 6 figs.

  11. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  12. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  13. Stories from Laser Camp: outreach activities for kids

    NASA Astrophysics Data System (ADS)

    Tourangeau, Derek; Simoneau, James

    2010-08-01

    Often in the ever-expanding community of Optics and Photonics, what we do remains a mystery to the outside world. The technology created by our community permeates the lives of every citizen yet is taken for granted due to unfamiliarity. At Three Rivers Community College (TRCC), we have taken steps to rectify that situation. The college's Laser and Fiber Optic Technology program (LFOT) and the TRCC student chapter of SPIE run many outreach activities, the most successful of which is Laser Camp. This paper will present a comprehensive overview of Laser Camp from the students' aspect with testimonials, discussion of the optics themed activities and provide a view of the SPIE members' journey.

  14. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  15. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of investigation of optical breakdown statistics using multifrequency lasers

    NASA Astrophysics Data System (ADS)

    Ulanov, S. F.

    1990-06-01

    A method proposed for investigating the statistics of bulk optical breakdown relies on multifrequency lasers, which eliminates the influence of the laser radiation intensity statistics. The method is based on preliminary recording of the peak intensity statistics of multifrequency laser radiation pulses at the caustic using the optical breakdown threshold of K8 glass. The probability density distribution function was obtained at the focus for the peak intensities of the radiation pulses of a multifrequency laser. This method may be used to study the self-interaction under conditions of bulk optical breakdown of transparent dielectrics.

  16. Coherent combination of slab-coupled optical waveguide lasers

    NASA Astrophysics Data System (ADS)

    Huang, Robin K.; Chann, Bien; Missaggia, Leo J.; Augst, Steven J.; Connors, Michael K.; Turner, George W.; Sanchez-Rubio, Antonio; Donnelly, Joseph P.; Hostetler, John L.; Miester, Carl; Dorsch, Friedhelm

    2009-02-01

    A long-standing challenge for semiconductor lasers is scaling the optical power and brightness of many diode lasers by coherent beam combination. Because single-mode semiconductor lasers have limited power available from a single element, there is a strong motivation to coherently combine the outputs of many elements for applications including industrial lasers for materials processing, free space optical communications, and defense. Despite the fact that such a coherently-combined source is potentially the most efficient laser, coherent combination of semiconductor lasers is generally considered to be difficult, since precise phase control is required between elements. We describe our approach to coherent combination of semiconductor lasers. The Slab-Coupled Optical Waveguide Laser (SCOWL), invented at Lincoln Laboratory, is used as the single-mode diode laser element for coherent combination. With a 10-element SCOWL array, coherently combined output power as high as 7 W in continuous wave using an external cavity has been demonstrated, which is the highest output level achieved using a coherent array of semiconductor lasers. We are currently working on a related approach to scale the coherent power up to 100 W.

  17. Precision laser processing for micro electronics and fiber optic manufacturing

    NASA Astrophysics Data System (ADS)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  18. Laser beaming demonstrations at the Starfire Optical Range

    SciTech Connect

    Lipinski, R.J.; Meister, D.C.; Tucker, S.; Leatherman, P.; Fugate, R.Q.; Maes, C.; Lange, W.J.; Cowan, W.

    1995-03-01

    The ability to acquire, track, and accurately direct a laser beam to a satellite is crucial for power-beaming and laser-communications. To assess the state of the art in this area, a team consisting of Air Force Phillips Laboratory, Sandia National Laboratories, and COMSAT Corporation personnel performed some laser beaming demonstrations to various satellites. A ruby laser and a frequency-doubled YAG laser were used with the Phillips Lab Starfire Optical Range (SOR) beam director for this activity. The ruby laser projected 20 J in 6 ms out the telescope with a beam divergence that increased from 1.4 to 4 times the diffraction limit during that time. The doubled YAG projected 0.09 J in 10 ns at 20 Hz. The SOR team demonstrated the ability to move rapidly to a satellite, center it in the telescope, then lock onto it with the tracker, and establish illumination. Several low-earth-orbit satellites with corner-cube retro-reflectors were illuminated at ranges from 1000 to 6000 km with a beam divergence estimated to be about 20 {mu}radians. The return signal from the ruby laser was collected in a 15-cm telescope, detected by a photomultiplier tube, and recorded at 400 kHz. Rapid variations in intensity (as short at 15 {mu}s) were noted, which may be due to speckles caused by phase interference from light reflected from different retro-reflectors on the satellite. The return light from the YAG was collected by a 35-cm telescope and detected by an intensified CCD camera. The satellite brightened by about a factor of 30 in the sunlight when the laser was turned on, and dimmed back to normal when the 50-{mu}radian point-ahead was turned off. The satellite was illuminated at 1 Hz as it entered the earth`s shadow and followed for about 10 seconds in the shadow. In another demonstration, four neighboring GEO satellites were located and centered in succession with a 3.5-m telescope at a rate of about 16 seconds per satellite.

  19. Optical measuring and laser technologies for safety problems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.; Verkhogliad, Alexander G.; Makarov, Sergei N.; Sysoev, Evgeny V.; Finogenov, Leonid V.; Zav'yalov, Peter S.; Lemeshko, Yuri A.

    2008-05-01

    The novel results of the R & D activity of TDI SIE SB RAS in the field of the optical measuring and laser technologies, for solving safety problems in atomic and oil industry, as well as in railway transport are presented. 3D profilometer with submicron and nanometer resolution using Linnik white-light interferometer and testing results of industrial system for measuring surface defects of fuel elements are given. The metrological characterization of a perspective Fresnel method for high precision measuring the dimensions of objects is investigated. Results of development and testing the industrial system prototype for 3D inspection of nuclear grid spacers with micron resolution based on DOE structured illumination are presented. We have developed an optical structured light method and an optical-electronic system for automatic noncontact distant measurements of wear and defects detection for a contact wire electro-supply network. For permanent noncontact bearing position inspection of oil-drilling platforms on Sakhalin coast, Russia) we have developed optical-electronic method and produce system SAKHALIN. Experimental results and technical performances are presented.

  20. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  1. Optical communication with semiconductor laser diodes

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1987-01-01

    A 25 megabit/sec direct detection optical communication system that used Q=4 PPM signalling was constructed and its performance measured under laboratory conditions. The system used a single-mode AlGaAs laser diode transmitter and low noise silicon avalanche photodiode (APD) photodetector. Comparison of measured performance with the theoretical revealed that modeling the APD output as a Gaussian process under conditions of negligible background radiation and low (less than 10 to the -12 power A) APD bulk leakage currents leads to substantial underestimates of optimal APD gain to use and overestimates of system bit error probability. A procedure is given to numerically compute system performance which uses the more accurate Webb's Approximation of the exact Conradi distribution for the APD ouput signal that does not require excessive amounts of computer time (a few minutes of VAX 8600 CPU time per system operating point). Examples are given which illustrate the breakdown of the Gaussian approximation in assessing system performance. This system achieved a bit error probability of 10 to the -6 power at a received signal energy corresponding to an average of 60 absorbed photons/bit and optimal APD gain of 700.

  2. Optical communication with semiconductor laser diodes

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1988-01-01

    Slot timing recovery in a direct detection optical PPM communication system can be achieved by processing the photodetector waveform with a nonlinear device whose output forms the input to a phase lock group. The choice of a simple transition detector as the nonlinearity is shown to give satisfactory synchronization performance. The rms phase error of the recovered slot clock and the effect of slot timing jitter on the bit error probability were directly measured. The experimental system consisted of an AlGaAs laser diode (lambda = 834 nm) and a silicon avalanche photodiode (APD) photodetector and used Q=4 PPM signaling operated at a source data rate of 25 megabits/second. The mathematical model developed to characterize system performance is shown to be in good agreement with actual performance measurements. The use of the recovered slot clock in the receiver resulted in no degradation in receiver sensitivity compared to a system with perfect slot timing. The system achieved a bit error probability of 10 to the minus 6 power at received signal energies corresponding to an average of less than 60 detected photons per information bit.

  3. Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects.

    PubMed

    Takeda, Koji; Sato, Tomonari; Fujii, Takuro; Kuramochi, Eiichi; Notomi, Masaya; Hasebe, Koichi; Kakitsuka, Takaaki; Matsuo, Shinji

    2015-01-26

    We demonstrate the continuous-wave operation of lambda-scale embedded active-region photonic-crystal (LEAP) lasers at room temperature, which we fabricated on a Si wafer. The on-Si LEAP lasers exhibit a threshold current of 31 μA, which is the lowest reported value for any type of semiconductor laser on Si. This reveals the great potential of LEAP lasers as light sources for on- or off-chip optical interconnects with ultra-low power consumption in future information communication technology devices including CMOS processors.

  4. Diffractive-optics-based beam combination of a phase-locked fiber laser array.

    PubMed

    Cheung, Eric C; Ho, James G; Goodno, Gregory D; Rice, Robert R; Rothenberg, Josh; Thielen, Peter; Weber, Mark; Wickham, Michael

    2008-02-15

    A diffractive optical element (DOE) is used as a beam combiner for an actively phase-locked array of fiber lasers. Use of a DOE eliminates the far-field sidelobes and the accompanying loss of beam quality typically observed in tiled coherent laser arrays. Using this technique, we demonstrated coherent combination of five fiber lasers with 91% efficiency and M2=1.04. Combination efficiency and phase locking is robust even with large amplitude and phase fluctuations on the input laser array elements. Calculations and power handling measurements suggest that this approach can scale to both high channel counts and high powers.

  5. Wide baseline optical interferometry with Laser Guide Stars

    SciTech Connect

    Gavel, D. T., LLNL

    1998-03-01

    Laser guide stars have been used successfully as a reference source for adaptive optics systems. We present a possible method for utilizing laser beacons as sources for interferometric phasing. The technique would extend the sky coverage for wide baseline interferometers and allow interferometric measurement and imaging of dim objects.

  6. High Performance Lasers and LEDs for Optical Communication

    NASA Astrophysics Data System (ADS)

    Nelson, R. J.

    1987-01-01

    High performance 1.3 um lasers and LEDs have been developed for optical communications systems. The lasers exhibit low threshold currents, excellent high speed and spectral characteristics, and high reliability. The surface emitting LEDs provide launched powers greater than -15 dBm into 62.5 um core fiber with rise and fall times suitable for operation to 220 Mb/s.

  7. Phase noise reduction in semiconductor lasers by optical negative feedback

    NASA Astrophysics Data System (ADS)

    Yasaka, Hiroshi; Aoyama, Konosuke; Yokota, Nobuhide

    2016-04-01

    Phase noise of a single mode semiconductor laser is reduced drastically by introducing a newly proposed optical negative feedback scheme. Proof-of-concept experiment confirms that the spectral linewidth of a semiconductor laser can be reduced to 1/1,000 successfully by applying the scheme.

  8. Laser guide stars and adaptive optics for astronomy

    SciTech Connect

    Max, C.E.

    1992-07-15

    Five papers are included: feasibility experiment for sodium-alyer laser guide stars at LLNL; system design for a high power sodium beacon laser; sodium guide star adaptive optics system for astronomical imaging in the visible and near-infrared; high frame-rate, large field wavefront sensor; and resolution limits for ground-based astronomical imaging. Figs, tabs, refs.

  9. Phase control of HF chemical lasers for coherent optical recombination.

    PubMed

    Wang, C P; Smith, P L

    1979-05-01

    A servo system for phase-locking two HF chemical lasers has been designed and simulated. A steady-state phase error is achieved that is adequate for coherent optical recombination. The results are based on the measured frequency drift of a small HF chemical laser and the measured frequency response of a piezoelectric transducer (PZT) mirror driver. A major innovation is the use of rate feedback with a laser Doppler sensor to extend the useful frequency response of the PZT driver.

  10. Holmium laser with an acousto-optic paratellurite filter

    NASA Astrophysics Data System (ADS)

    Mukhin, A. V.; Velikanov, S. D.; Glukhodedov, V. D.; Zakharov, N. G.; Frolov, Yu N.

    2016-08-01

    Experimental results on a solid-state holmium laser (Ho : YAG) with an intracavity acousto-optic paratellurite filter are presented. The laser power in cw and repetitively pulsed regimes is determined experimentally. It is shown that the use of an acoustooptic filter in the Ho : YAG laser cavity makes it possible to solve several important problems such as obtaining repetitively pulsed lasing, wavelength tuning and linearly polarised emission.

  11. A Comparison of Two Prototype Laser-Optical Firing Systems

    SciTech Connect

    Gregg L. Morelli; Michelle R. Bright

    2008-08-11

    The design and characterization of small, ruggedized laser-optical subsystems is required for the continued development of robust laser-optical firing systems. Typically, these subsystems must be capable of generating the needed laser optical energy, delivering that energy via fiber-optical cables while taking up occupying a volume as small as possible. A novel beam splitting and fiber injection scheme has been proposed which utilizes two diffractive optical components. These components were utilized to reduce the volume of a previously designed system. A laser-optical prototype system was assembled and tested which utilized this beam splitting and fiber injection scheme along other modifications to the laser module and the power supply. This prototype was based on earlier designs that utilized environmentally proven opto-mechanical sub-assemblies. The system was tested to characterize the laser performance, the splitter-coupler transmission efficiency, channel-to-channel energy balance and fiber interchangeability. The results obtained for this design will be compared to the performance of a prototype system based on a more traditional beam splitting and fiber injection scheme. The traditional design utilized partially reflecting mirrors for beam splitting and plano-convex lenses for fiber injection. These results will be discussed as will their ultimate impact on future designs and packaging strategies.

  12. Towards acousto-optic tissue imaging with nanosecond laser pulses.

    PubMed

    Resink, S G; Hondebrink, E; Steenbergen, W

    2014-02-10

    We present a way to generate acousto-optical signals in timovssue-like media with nanosecond laser pulses. Our method is based on recording and analyzing speckle patterns formed by interaction of nanosecond laser pulses with tissue, without and with simultaneous application of ultrasound. Stroboscopic application allows visualizing the temporal behavior of speckles while the ultrasound is propagating through the medium. We investigate two ways of quantifying the acousto-optic effect, viz. adding and subtracting speckle patterns obtained at various ultrasound phases. Both methods are compared with the existing speckle contrast method using a 2D scan and are found to perform similarly. Our method gives outlook on overcoming the speckle decorrelation problem in acousto-optics, and therefore brings in-vivo acousto-optic measurements one step closer. Furthermore it enables combining acousto-optics and photoacoustics in one setup with a single laser.

  13. Green laser light activates the inner ear

    NASA Astrophysics Data System (ADS)

    Wenzel, Gentiana I.; Balster, Sven; Zhang, Kaiyin; Lim, Hubert H.; Reich, Uta; Massow, Ole; Lubatschowski, Holger; Ertmer, Wolfgang; Lenarz, Thomas; Reuter, Guenter

    2009-07-01

    The hearing performance with conventional hearing aids and cochlear implants is dramatically reduced in noisy environments and for sounds more complex than speech (e. g. music), partially due to the lack of localized sensorineural activation across different frequency regions with these devices. Laser light can be focused in a controlled manner and may provide more localized activation of the inner ear, the cochlea. We sought to assess whether visible light with parameters that could induce an optoacoustic effect (532 nm, 10-ns pulses) would activate the cochlea. Auditory brainstem responses (ABRs) were recorded preoperatively in anesthetized guinea pigs to confirm normal hearing. After opening the bulla, a 50-μm core-diameter optical fiber was positioned in the round window niche and directed toward the basilar membrane. Optically induced ABRs (OABRs), similar in shape to those of acoustic stimulation, were elicited with single pulses. The OABR peaks increased with energy level (0.6 to 23 μJ/pulse) and remained consistent even after 30 minutes of continuous stimulation at 13 μJ, indicating minimal or no stimulation-induced damage within the cochlea. Our findings demonstrate that visible light can effectively and reliably activate the cochlea without any apparent damage. Further studies are in progress to investigate the frequency-specific nature and mechanism of green light cochlear activation.

  14. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  15. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    NASA Astrophysics Data System (ADS)

    Stankova, N. E.; Atanasov, P. A.; Nikov, Ru. G.; Nikov, R. G.; Nedyalkov, N. N.; Stoyanchov, T. R.; Fukata, N.; Kolev, K. N.; Valova, E. I.; Georgieva, J. S.; Armyanov, St. A.

    2016-06-01

    This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm-2 for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm-2 and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm-2. The threshold laser fluence needed to induce incubation process after certain number of pulses of 8 is different for every wavelength irradiation as the values increase from 1.0 for 266 nm up to 16 J cm-2 for 1064 nm. The incubation and the ablation processes occur in the PDMS elastomer material during its pulsed laser treatment are a complex function of the wavelength, fluence, number of pulses and the material properties as well.

  16. Pulsed operation of a TEA CO{sub 2} laser under the conditions of the growth of an optical inhomogeneity of the active medium at high specific pump energies

    SciTech Connect

    Makarov, K N; Roerich, V C; Satov, Yu A; Stepanov, A E; Khomenko, S V

    2000-04-30

    A CO{sub 2} laser system with self-modulation of the intracavity losses was developed. This system was capable of generating efficiently pulses free of a radiation 'tail' typical for CO{sub 2} lasers. A simple method was used to detect the optical inhomogeneity of the medium of a gas-discharge TEA module. The results of the measurements are presented. (lasers)

  17. Giant nonlinear optical activity in a plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Ren, Mengxin; Plum, Eric; Xu, Jingjun; Zheludev, Nikolay I.

    2012-05-01

    In 1950, a quarter of a century after his first-ever nonlinear optical experiment when intensity-dependent absorption was observed in uranium-doped glass, Sergey Vavilov predicted that birefringence, dichroism and polarization rotatory power should be dependent on light intensity. It required the invention of the laser to observe the barely detectable effect of light intensity on the polarization rotatory power of the optically active lithium iodate crystal, the phenomenon now known as the nonlinear optical activity, a high-intensity counterpart of the fundamental optical effect of polarization rotation in chiral media. Here we report that a plasmonic metamaterial exhibits nonlinear optical activity 30 million times stronger than lithium iodate crystals, thus transforming this fundamental phenomenon of polarization nonlinear optics from an esoteric phenomenon into a major effect of nonlinear plasmonics with potential for practical applications.

  18. Characterization of the Los Alamos IPG YLR-6000 fiber laser using multiple optical paths and laser focusing optics

    SciTech Connect

    Milewski, John O; Bernal, John E

    2009-01-01

    Fiber laser technology has been identified as the replacement power source for the existing Los Alamos TA-55 production laser welding system. An IPG YLR-6000 fiber laser was purchased, installed at SM-66 R3, and accepted in February 2008. No characterization of the laser and no welding was performed in the Feb 2008 to May 2009 interval. T. Lienert and J. Bernal (Ref. 1, July 2009) determined the existing 200 mm Rofin collimator and focus heads used with the Rofin diode pumped lasers were inadequate for use with the IPG laser due to clipping of the IPG laser beam. Further efforts in testing of the IPG laser with Optoskand fiber delivery optics and a Rofin 120 mm collimator proved problematic due to optical fiber damage. As a result, IPG design optical fibers were purchased as replacements for subsequent testing. Within the same interval, an IPG fiber-to-fiber (F2F) connector, custom built for LANL, (J. Milewski, S. Gravener, Ref.2) was demonstrated and accepted at IPG Oxford, MA in August 2009. An IPG service person was contracted to come to LANL to assist in the installation, training, troubleshooting and characterization of the multiple beam paths and help perform laser head optics characterization. The statement of work is provided below: In summary the laser system, optical fibers, F2F connector, Precitec head, and a modified Rofin type (w/120mm Optoskand collimator) IWindowIBoot system focus head (Figure 1) were shown to perform well at powers up to 6 kW CW. Power measurements, laser spot size measurements, and other characterization data and lessons learned are contained within this report. In addition, a number of issues were identified that will require future resolution.

  19. Skin optical clearing for improvement of laser tattoo removal

    NASA Astrophysics Data System (ADS)

    Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V.; Altshuler, G. B.

    2009-06-01

    The possibility of improvement of laser tattoo removal due to the optical clearing of human skin is investigated. It is shown experimentally that previously perforation of skin stratum corneum allows increasing tattoo image contrast at topical administration of immersion agent in contrast with non-perforated skin. Computer Monte Carlo simulation shows that at the optical clearing of upper skin layers the tattoo image contrast and the photon fraction absorbed in the tattoo area at the depths of 0.5 or 1.0 mm increase, that allows significant decreasing of the power of laser radiation used at laser thermolysis.

  20. Ejection of atoms by laser produced optical breakdown plasma

    SciTech Connect

    Wang, M.R.; Meng, H.C.

    1981-06-01

    High-power CO/sub 2/ laser radiation has been used to study the optical breakdown plasma on various solid targets (NaCl, KBr, ZnSe, and Ge). The breakdown threshold for irreversible changes of the optical characteristics was determined as well as the evaporation threshold of Na atoms from NaCl samples by CO/sub 2/ laser irradiation; the latter value was about 2.8 x 10/sup 7/ W/cm/sup 2/. The time profiles of the ejected Na atoms and the propagation of the atoms in front of the sample was measured with the laser fluorescence method.

  1. Optical power control filters: from laser dazzling to damage protection

    NASA Astrophysics Data System (ADS)

    Donval, Ariela; Golding, Karin; Nevo, Doron; Fisher, Tali; Lipman, Ofir; Oron, Moshe

    2012-02-01

    With the development of more powerful lasers for applications, optical limiters and blockers are required for providing human eye and optical sensors protection. In some scenarios, laser radiation may seriously interrupt the signal, from transient saturation and can lead to permanent damage. We present a variety of non-linear, solid-state dynamic filter solutions protecting from dazzling and damage in a passive way. Our filters either limit or block the transmission, only if the power exceeds a certain threshold as opposed to spectral filters that block a certain wavelength permanently. We propose a dynamic protection for cameras, sensors and the human eye from laser threats.

  2. Virtual Mie particle model of laser damage to optical elements

    NASA Astrophysics Data System (ADS)

    Hirata, Kazuya; Haraguchi, Koshi

    2011-12-01

    In recent years, devices being developed for application systems have used laser beams that have high average power, high peak power, short pulse width, and short wavelength. Therefore, optical elements using such application systems require a high laser damage threshold. The laser damage threshold is provided by International Organization for Standardization 11254 (ISO11254). One of the measurement methods of the laser damage threshold provided by ISO11254 is an online method to measure the intensity of light scattering due to a laser damage trace. In this paper, we propose a measurement method for the laser damage threshold that realizes high sensitivity and high accuracy by using polarized light and lock-in detection. Since the scattering light with laser damage is modeled on the asperity of the optical element-surface as Mie particles (virtual Mie particles), we consider the intensity change of scattering light as a change in the radius of a virtual Mie particle. To evaluate this model, the laser damage trace on the optical element-surface was observed by an atomic force microscopy (AFM). Based on the observed AFM image, we analyzed the frequency domain by the Fourier transform, and estimated the dominant virtual Mie particle radius in the AFM measurement area. In addition, we measured the laser damage threshold. The light source was the fifth generation of a Nd:YAG laser (λ =213nm). The specifications of the laser were: repetition frequency 10Hz, pulse width 4ns, linear type polarization, laser pulse energy 4mJ, and laser transverse mode TEM00. The laser specifications were a repetition frequency, pulse width, pulse energy and beam diameter of 10Hz, 4ns, 4mJ and 13mm, respectively. The laser damage thresholds of an aluminum coated mirror and a dielectric multi-layer mirror designed at a wavelength of 213nm as measured by this method were 0.684 J/cm2 and 0.998J/cm2, respectively. These laser damage thresholds were 1/4 the laser damage thresholds measured based

  3. Temperature Monitoring by Optical Methods in Laser Processing

    NASA Astrophysics Data System (ADS)

    Smurov, I.; Doubenskaia, M.

    Diverse optical diagnostic tools were applied for monitoring high temperature heat and mass transfer in a number of laser-based technologies . A set of pyrometers was developed and applied for surface temperature monitoring in pulsed periodic Nd-YAG laser welding and surface treatment, deep penetration welding by CO2 and Nd:YAG lasers, laser cladding (LC) with lateral and coaxial powder injection, and selective laser melting (SLM). Particle-in-flight parameters in LC were measured by CCD camera-based diagnostic system. Infrared camera was applied for process visualization in laser welding, cladding, and SLM. Process monitoring was carried out at different temporal and spatial scales and in different spectral bands. True temperature was restored in pulsed laser surface treatment and in pulsed periodic (PP) LC.

  4. Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses.

    PubMed

    Jiang, Xiao-Fang; Polavarapu, Lakshminarayana; Neo, Shu Ting; Venkatesan, T; Xu, Qing-Hua

    2012-03-15

    Graphene oxide (GO) thin films on glass and plastic substrates were found to display interesting broadband nonlinear optical properties. We have investigated their optical limiting activity for femtosecond laser pulses at 800 and 400 nm, which could be tuned by controlling the extent of reduction. The as-prepared GO films were found to exhibit excellent broadband optical limiting behaviors, which were significantly enhanced upon partial reduction by using laser irradiation or chemical reduction methods. The laser-induced reduction of GO resulted in enhancement of effective two-photon absorption coefficient at 400 nm by up to ∼19 times and enhancement of effective two- and three-photon absorption coefficients at 800 nm by ∼12 and ∼14.5 times, respectively. The optical limiting thresholds of partially reduced GO films are much lower than those of various previously reported materials. Highly reduced GO films prepared by using the chemical method displayed strong saturable absorption behavior.

  5. Frequency chirping in semiconductor-optical fiber ring laser

    SciTech Connect

    Zhang, Jiangping; Ye, Peida )

    1990-01-01

    In this letter, a complete small-signal analysis for frequency chirping in the semiconductor-optical fiber ring laser is presented. It shows that chirp-to-power ratio (CPR) strongly depends on the junction phase shift, the optical coupling, and the phase detuning between two cavities, especially if the modulation frequency is below the gigahertz range. 7 refs.

  6. Laser Measurement of Optical Errors of the Eye

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Wiesner, Hartmut

    2006-01-01

    One way to motivate students' interest in physics is to teach it in the context of medicine. Optics, for example, can be taught with examples from the eye. For many years simple optics of lenses has been taught using a model of the eye. However, recent advances in using lasers for ophthalmological (ocular) examinations can be used to increase…

  7. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    SciTech Connect

    Nostrand, M C; Weiland, T L; Luthi, R L; Vickers, J L; Sell, W D; Stanley, J A; Honig, J; Auerbach, J; Hackel, R P; Wegner, P J

    2003-11-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm{sup 2} high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics.

  8. Picosecond laser surface micropatterning of ceramics by optical fiber induction

    NASA Astrophysics Data System (ADS)

    Li, Jian; Ji, Lingfei; Hu, Yan; Wu, Yan; Yan, Yinzhou

    2015-06-01

    Parallel microgrooves and mesh structure with a line width of about 16 μm, which is much smaller than the diameter of the laser focus spot of 50 μm, are fabricated on Al2O3 ceramic surfaces by picosecond laser patterning with optical fiber induction. The patterned grooves are of high quality without burr, recasting or thermally induced cracks. Grain refinement of the groove surfaces caused by the rapid condensation and redeposition during picosecond laser irradiation with optical fiber induction improved the smoothness and mechanical strength of the grooves. Different patterns can be fabricated by adjusting the optical fiber layout, which is independent of the laser scanning direction. The regions etched by the laser are kept in near-field contact with the optical fibers when the laser beam passes through the fibers and irradiates the ceramic surface. This results in localized field enhancement between the transparent optic fiber and ceramic surface, which produces the precise microgrooves. The developed technique allows high-resolution micromachining of the surfaces of hard and brittle ceramic-type materials.

  9. An active alignment method for post launch co-alignment of laser beam combiner systems

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Green, J. W.; Maynard, W. L.; Minott, P. O.; Krainak, M. A.

    1992-01-01

    A laser transmitter for high bandwidth geosynchronous satellite communications is described. High optical power is achieved by combining semiconductor laser diodes. An active alignment scheme is proposed for achieving the +/- 20 microrad post launch multiple laser angular co-alignment requirement.

  10. CO2 laser beam propagation with ZnSe optics

    NASA Astrophysics Data System (ADS)

    Leong, K. H.; Liu, Yi; Holdridge, D. J.

    Beam propagation characteristics of ZnSe optics used in kiloWatt power CO2 laser aided material processing applications are determined using the Prometec Laser Beam Analyzer. The laser used was a Rofin Sinar RS6000 CO2 laser with mode aperturing. Beam power varied from 500W to 6300W and beam modes used were TEM(sub 00), TEM(sub 01), TEM(sub 10), and TEM(sub 20). Both transmissive and reflective optics were examined. The ZnSe lenses tested included meniscus, diffractive, and cylindrical lenses of 5 in. focal length and a 10 in. focal length integrating lens. Reflective optics included an integrator and a 5 in. focal length parabolic mirror for welding. Parameters obtained included beam propagation profiles, intensity profiles, depth of focus, spot size, and back focal length. A subset of the data obtained is presented here. Details of the work will appear in a full length paper.

  11. Laser damage testing of optical components under cryogenic conditions

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindrich; Pokorný, Pavel; Lazar, Josef

    2012-11-01

    In this contribution we present a technology for deposition and testing of interference coatings for optical components designed to operate in power pulsed lasers. The aim of the technology is to prepare components for high power laser facilities such as ELI (Extreme Light Infrastructure) or HiLASE. ELI is a part of the European plan to build a new generation of large research facilities selected by the European Strategy Forum for Research Infrastructures (ESFRI). These facilities rely on the use of diode pumped solid state lasers (DPSSL). The choice of the material for the lasers' optical components is critical. Some of the most important properties include the ability to be antireflection and high reflection coated to reduce the energy losses and increase the overall efficiency. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. The conducted experiments served as preliminary tests of laser damage threshold measurement methodology that we plan to use in the future. We designed a special apparatus consisting of a vacuum chamber and a cooling system. The samples were placed into the vacuum chamber which was evacuated and then the samples were cooled down to approximately 120K and illuminated by a pulsed laser. Pulse duration was in the nanosecond region. Multiple test sites on the sample's surface were used for different laser pulse energies. We used optical and electron microscopy and spectrophotometer measurements for coating investigation after the conducted experiments.

  12. Laser damage testing of optical components under cryogenic conditions

    NASA Astrophysics Data System (ADS)

    Oulehla, Jindřich; Pokorný, Pavel; Lazar, Josef

    2012-01-01

    In this contribution we present a technology for deposition and testing of interference coatings for optical components designed to operate in power pulsed lasers. The aim of the technology is to prepare components for high power laser facilities such as ELI (Extreme Light Infrastructure) or HiLASE. ELI is a part of the Eropean plan to build a new generation of large research facilities selected by the the Eropean Strategy Forum for Research Infrastructures (ESFRI). These facilities rely on the use of diode pumped solid state lasers (DPSSL). The choice of the material or the lasers' optical components is critical. Some of the most important properties include the ability to be antireflection and high reflection coated to reduce the energy losses and increase the overall efficiency. As large amounts of hear need to be dissipated during laser operation, cryogenic cooling is necessary. The conducted experiments served as preliminary tests of laser damage threshold measurement methodology that we plan to use in the future. We designed a special apparatus consistion of a vacuum chamber an a cooling system. The samples were placed into the vacuum chamber which was evacuated and them the samples were cooled down to approximately 120K and illuminated by a pulsed laser. Pulse duration was in the nanosecond region. Multiple test sites on the sample's surface were used for different laser pulse energies. We used optical and electron microscopy and spectrophotometer measurements for coating investigation after the conducted experiments.

  13. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  14. High energy laser optics manufacturing: a preliminary study

    SciTech Connect

    Baird, E.D.

    1980-07-01

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.

  15. Reference beam laser Doppler velocimeter incorporating fiber optic components

    SciTech Connect

    James, S.W.; Lockey, R.A.; Egan, D.; Tatam, R.P.

    1995-12-31

    A compact reference beam laser Doppler velocimeter, constructed using a semiconductor laser diode, optical fiber components and semiconductor detectors, is reported. The device has been designed to overcome many of the problems commonly associated with reference beam configurations. The anemometer may be operated with the laser diode operating in cw and pulsed modes, demonstrating its applicability to wavelength and time division multiplexing schemes for 3D laser Doppler velocimetry. The probe is used to measure the velocity of a spinning disk in the range {minus}20 m/s to +20 m/s.

  16. Calculations of laser cavity dumping for optical communications

    NASA Technical Reports Server (NTRS)

    Robinson, D. L.; Rayman, M. D.

    1988-01-01

    For deep-space pulse-position modulation (PPM) optical communication links using Nd:YAG lasers, two types of laser transmitter modulation techniques are available for efficiently producing laser pulses over a broad range of repetition rates: Q-switching and cavity dumping. The desired modulation scheme is dependent on the required pulse repetition frequency and link parameters. These two techniques are discussed, theoretical and numerical calculations of the internal energy of the laser cavity in cavity dumping are described, and an example of cavity dumping is applied to a link for a proposed experiment package on Cassini.

  17. Tunable optical microwave source using spatially resolved laser eigenstates.

    PubMed

    Brunel, M; Bretenaker, F; Le Floch, A

    1997-03-15

    A two-propagation-axis solid-state laser is shown to provide a widely tunable optical microwave source. The spatial separation of the laser eigenstates is shown to enable an étalon to act as a coarse tuner, forcing oscillation in any nonadjacent cavity modes. The frequency difference between opposite helicoidal eigenstates operating in nonadjacent cavity modes can then be tuned continuously. The beat note from such a solid-state laser is shown to vary from dc to 26 GHz, i.e., 30 times the laser free-spectral range, and is limited only by the free-spectral range of the étalon.

  18. Polarimetric optical fiber sensor using a frequency stabilized semiconductor laser

    SciTech Connect

    Tsuchida, H.; Mitsuhashi, Y.; Ishihara, S. )

    1989-05-01

    The authors discuss the performance of a polarimetric optical fiber sensor for remote temperature measurement improved by the use of a frequency stabilized semiconductor laser. The temperature change is measured from the phase delay between two orthogonally polarized modes in a polarization maintaining fiber. The sensor output signal is demodulated utilizing direct modulation of the laser frequency. The center frequency of the modulated laser is locked to a Fabry-Perot interferometer by controlling the injection current. The minimum detectable temperature change is evaluated experimentally to be less than 0.005{sup 0}C, which is seven times smaller than that obtained with the freerunning laser.

  19. Optical activity of BL Lacertae

    NASA Astrophysics Data System (ADS)

    Larionov, V.; Blinov, D.; Konstantinova, T.

    2012-04-01

    We perform optical photometric and R-band polarimetric monitoring of BL Lac using 70-cm AZT-8 (CrAO, Ukraine) and 0.4-m LX-200 (St.Petersburg, Russia) telescopes, as a part of GASP project. As reported in Atel#4028, this blazar was found by Fermi LAT in active state on 2012 April 9. Our data show that a sharp optical maximum was reached on the date 2012-04-08UT02:20, R=13.10, while on 2012-04-11UT01:30 R=13.40.

  20. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Microwave generation in an optical breakdown plasma created by modulated laser radiation

    NASA Astrophysics Data System (ADS)

    Antipov, A. A.; Grasyuk, Arkadii Z.; Losev, Leonid L.; Soskov, V. I.

    1990-06-01

    It was established that when laser radiation, intensity modulated at a frequency of 2.2 GHz, interacted with an optical breakdown plasma which it had created, a microwave component appeared in the thermal emf of the plasma. The amplitude of the microwave thermal emf reached 0.7 V for a laser radiation intensity of 6 GW/cm2. Laser radiation with λL = 1.06 μm was converted to the microwave range with λmω = 13 cm in the optical breakdown plasma. A microwave signal power of ~ 0.5 W was obtained from a laser power of ~ 5 MW.

  1. Integrated modeling of the GMT laser tomography adaptive optics system

    NASA Astrophysics Data System (ADS)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  2. Femtosecond laser microhole drilling inside a fused silica optical fiber with optical inner surface quality

    NASA Astrophysics Data System (ADS)

    Shiraishi, Masahiko; Goya, Kenji; Nishiyama, Michiko; Kubodera, Shoichi; Watanabe, Kazuhiro

    2016-09-01

    We have demonstrated femtosecond laser microhole drilling inside a fused silica optical fiber with optical inner surface quality. An optical quality microhole with a diameter of 3 μ m and a length of approximately 35 μ m was produced inside an optical fiber of a cladding diameter of 125 μ m. The microhole drilling inside an optical fiber was caused as a result of plasma filamentation of focused femtosecond laser irradiation at a wavelength of 400 nm. The size of the microhole was reproduced with a ray trace of the focused laser beam with consideration of self-focusing. The optical quality of the microhole was verified by measuring the transmittance of 94 % of infrared diode emission.

  3. Active learning in optics and photonics: Fraunhofer diffraction

    NASA Astrophysics Data System (ADS)

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  4. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  5. Versatile optical manipulation system for inspection, laser processing, and isolation of individual living cells

    NASA Astrophysics Data System (ADS)

    Stuhrmann, B.; Jahnke, H.-G.; Schmidt, M.; Jähn, K.; Betz, T.; Müller, K.; Rothermel, A.; Käs, J.; Robitzki, A. A.

    2006-06-01

    Isolation of individual cells from a heterogeneous cell population is an invaluable step in the analysis of single cell properties. The demands in molecular and cellular biology as well as molecular medicine are the selection, isolation, and monitoring of single cells and cell clusters of biopsy material. Of particular interest are methods which complement a passive optical or spectroscopic selection with a variety of active single cell processing techniques such as mechanical, biochemical, or genetic manipulation prior to isolation. Sophisticated laser-based cell processing systems are available which can perform single cell processing in a contact-free and sterile manner. Until now, however, these multipurpose turnkey systems offer only basic micromanipulation and are not easily modified or upgraded, whereas laboratory situations often demand simple but versatile and adaptable solutions. We built a flexible laser micromanipulation platform combining contact-free microdissection and catapulting capabilities using a pulsed ultraviolet (337nm) laser with simultaneous generation of optical tweezing forces using a continuous wave infrared (1064nm) laser. The potential of our platform is exemplified with techniques such as local laser-induced injection of biomolecules into individual living cells, laser surgery, isolation of single cells by laser catapulting, and control of neuronal growth using optical gradient forces. Arbitrary dynamic optical force patterns can be created by fast laser scanning with acousto-optical deflectors and galvanometer mirrors, allowing multibeam contact-free micromanipulation, a prerequisite for reliable handling of material in laboratory-on-a-chip applications. All common microscopy techniques can be used simultaneously with the offered palette of micromanipulation methods. Taken together, we show that advanced optical micromanipulation systems can be designed which combine quality, cost efficiency, and adaptability.

  6. Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks

    NASA Astrophysics Data System (ADS)

    Bidaux, Y.; Terazzi, R.; Bismuto, A.; Gresch, T.; Blaser, S.; Muller, A.; Faist, J.

    2015-09-01

    We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement is furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL.

  7. Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks

    SciTech Connect

    Bidaux, Y.; Terazzi, R.; Bismuto, A.; Gresch, T.; Blaser, S.; Muller, A.; Faist, J.

    2015-09-07

    We report spectrally resolved gain measurements and simulations for quantum cascade lasers (QCLs) composed of multiple heterogeneous stacks designed for broadband emission in the mid-infrared. The measurement method is first demonstrated on a reference single active region QCL based on a double-phonon resonance design emitting at 7.8 μm. It is then extended to a three-stack active region based on bound-to-continuum designs with a broadband emission range from 7.5 to 10.5 μm. A tight agreement is found with simulations based on a density matrix model. The latter implements exhaustive microscopic scattering and dephasing sources with virtually no fitting parameters. The quantitative agreement is furthermore assessed by measuring gain coefficients obtained by studying the threshold current dependence with the cavity length. These results are particularly relevant to understand fundamental gain mechanisms in complex semiconductor heterostructure QCLs and to move towards efficient gain engineering. Finally, the method is extended to the measurement of the modal reflectivity of an anti-reflection coating deposited on the front facet of the broadband QCL.

  8. Actively Q-switched Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. G.; Podivilov, E. V.; Babin, S. A.

    2015-03-01

    A new scheme providing actively Q-switched operation of a Raman fiber laser (RFL) has been proposed and tested. The RFL consists of a 1 km single-mode fiber with a switchable loop mirror at one end and an angled cleaved output end. An 1080 nm pulse with microsecond duration is generated at the output by means of acousto-optic switching of the mirror at ~30 kHz in the presence of 6 W backward pumping at 1030 nm. In the proposed scheme, the generated pulse energy is defined by the pump energy distributed along the passive fiber, which amounts to 30 μJ in our case. The available pump energy may be increased by means of fiber lengthening. Pulse shortening is also expected.

  9. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  10. High-energy laser activities at MBDA Germany

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Dietrich, Stephan; Tassini, Leonardo; Protz, Rudolf; Geidek, Franz; Zoz, Jürgen

    2013-05-01

    At MBDA Germany a concept for a high-energy laser weapon system is investigated, which is based on existing industrial laser sources. Due to the enormous progress in the field of high-power fiber lasers, commercial industrial fiber lasers are now available delivering a nearly-diffraction limited beam quality with power levels of up to 10 kW. By using a geometric beam coupling scheme, a number of individual high-power fiber laser beams are combined together using one common beam director telescope. A total laser beam power of more than 100 kW can be achieved, which is sufficient for an operational laser weapon system. The individual beams from the different lasers are steered by servo-loops using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at one common focal point on a distant target, also allowing fine tracking of target movements and first-order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated by using different experimental set-ups. A number of experiments were performed successfully to investigate laser beam target interaction and target fine tracking, also at large distances and at moving targets. Content and results of these investigations are reported, which demonstrate the complete engagement sequence for a C-RAM scenario. This includes subsequent steps of target acquisition by radar and IR optics, followed by large angle coarse tracking, active fine tracking and destruction of the target by the laser system. This successful implementation of geometric beam combining is an important step for the realization of a laser weapon system in the near future.

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Optical velocimeter based on a semiconductor laser

    NASA Astrophysics Data System (ADS)

    Belousov, P. Ya; Dubnishchev, Yu N.; Meledin, V. G.

    1988-03-01

    It is shown that optical velocimeters using diffraction beam splitters are not critically sensitive to the stability of the emission wavelength of a semiconductor laser. A functional scheme of a semiconductor laser source with systems for stabilization of the temperature and pump current is described. The technical characteristics are given of a semiconductor-laser velocimeter for the determination of the velocity and length of rolling stock.

  12. Different ways to active optical frequency standards

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  13. Pretty Lights and Glowing Rocks: Using Lasers Pointers to Demonstrate Optical Phenomena

    NASA Astrophysics Data System (ADS)

    Huang, A.; Bodner, G.; Zheng, C.

    2011-12-01

    Green and violet lasers have recently become both inexpensive and portable, more than 70 years after the first laser was built. Despite the technology's age, the general public is still fascinated by the exotic nature of laser light. This activity uses green and violet laser pointers to produce a veritable rainbow of colors from household items and common minerals. Our objective is to create an educational experience which uses vivid colors and appealing effects to engage the audience, while teaching basic optical concepts such as scattering, fluorescence, Snell's law, and the quantum nature of light. The activity can be adapted to a lecture demonstration or to a laboratory exercise in which students handle the lasers and test samples. Learning outcomes have not been formally measured, but this demonstration will still captivate audiences in museum settings, community outreach programs, and introductory science courses.

  14. Usefulness of a wavelength tunable optical parametric oscillator laser on photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Nishiwaki, Yoshiro; Yoshida, Takato O.; Nakamura, Satoshi; Baba, Shozo; Matsusawa, Eiji; Suzuki, Hideo; Hirano, Toru

    1995-03-01

    By rotating the optical axis of a nonlinear optical crystal ((beta) -BaB2O4), a tunable laser beam could be obtained from an optical parametric oscillator (OPO) laser. When the crystal was optically pumped by the third harmonics of the 1064 nm Nd:YAG laser, we had a coherent beam from 410 nm through 2550 nm continuously without changing the optical cavity. We compared photodynamic therapy (PDT) effects of two photosensitizers, phenophorbide a(Phd) and Photosan-3(Ph-3, hematoporphyrin-polyester), on Wistar rat liver. Twenty-four hours after sensitization (5 mg/kg i.v.), 670 nm and 630 nm light (75 mW/cm2) was irradiated for Phd and Ph-3 respectively at energy doses of 25, 50, and 100 J/cm2. The rats were sacrificed 24 hours after laser irradiation and analyzed pathologically. Phd produced more severe necrosis than Ph-3. Twenty-five J/cm2 of Phd was identical with 100 J/cm2 of Ph-3. Next, we treated HeLa cell tumors of nude mice by Phd 670 nm PDT and Ph-3 630 nm PDT. The PDT effects of the two photosensitizers on HeLa cell tumors were similar to those on normal liver tissue. In conclusion the OPO laser could make it possible to compare PDT effects of photosensitizers by activating them with their matched wavelengths.

  15. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  16. EIGENMODE ANALYSIS OF OPTICAL GUIDING IN FREE ELECTRON LASERS

    SciTech Connect

    Xie, M.; Deacon, D.A.G.; Madey, J.M.J.

    1989-03-01

    The spatial properties of the optical field and hence the performance of a free electron laser depend on the fact that the electron beam, which acts as both an amplifying and a refractive medium, is transversely nonuniform. Under certain circumstances, optical guiding may be realized, where the optical field is stably confined near the electron beam and amplified along the beam over many Rayleigh ranges. We show that the three-dimensional evolution of the optical field through the interaction region can be determined by a guided mode expansion before saturation. Optical guiding occurs when the fundamental growing mode becomes dominant. The guided mode expansion is made possible by implementing the biorthogonality of the eigenmodes of the coupled electron-beam-optical-wave system. The eigenmodes are found to be of vectorial form with three components; one specifies the guided optical mode and the other two describe the density and the energy modulations of the electron beam.

  17. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  18. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  19. Acousto-optic laser projection systems for displaying TV information

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  20. Laser Pulse-Stretching Using Multiple Optical Ring-Cavities

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Lee, Chi-Ming (Technical Monitor)

    2002-01-01

    We describe a simple and passive nanosecond-long (ns-long) laser 'pulse-stretcher' using multiple optical ring-cavities. We present a model of the pulse-stretching process for an arbitrary number of optical ring-cavities. Using the model, we optimize the design of a pulse-stretcher for use in a spontaneous Raman scattering excitation system that avoids laser-induced plasma spark problems. From the optimized design, we then experimentally demonstrate and verify the model with a 3-cavity pulse-stretcher system that converts a 1000 mJ, 8.4 ns-long input laser pulse into an approximately 75 ns-long (FWHM) output laser pulse with a peak power reduction of 0.10X, and an 83% efficiency.

  1. Advances in optical materials for large aperture lasers

    SciTech Connect

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  2. Chemical Bond Activation Observed with an X-ray Laser.

    PubMed

    Beye, Martin; Öberg, Henrik; Xin, Hongliang; Dakovski, Georgi L; Dell'Angela, Martina; Föhlisch, Alexander; Gladh, Jörgen; Hantschmann, Markus; Hieke, Florian; Kaya, Sarp; Kühn, Danilo; LaRue, Jerry; Mercurio, Giuseppe; Minitti, Michael P; Mitra, Ankush; Moeller, Stefan P; Ng, May Ling; Nilsson, Anders; Nordlund, Dennis; Nørskov, Jens; Öström, Henrik; Ogasawara, Hirohito; Persson, Mats; Schlotter, William F; Sellberg, Jonas A; Wolf, Martin; Abild-Pedersen, Frank; Pettersson, Lars G M; Wurth, Wilfried

    2016-09-15

    The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding-antibonding splitting following bond-activation using an ultrashort optical laser pulse. PMID:27584914

  3. Optical injection enables coherence resonance in quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Ziemann, D.; Aust, R.; Lingnau, B.; Schöll, E.; Lüdge, K.

    2013-07-01

    We demonstrate that optically injected semiconductor quantum-dot lasers operated in the frequency-locked regime exhibit the counterintuitive effect of coherence resonance, i.e., the regularity of noise-induced spiking is a non-monotonic function of the spontaneous emission noise, and it is optimally correlated at a non-zero value of the noise intensity. We uncover the mechanism of coherence resonance from a microscopically based model of the quantum-dot laser structure, and show that it is related to excitability under optical injection and to a saddle-node infinite period (SNIPER) bifurcation occurring for small injection strength at the border of the frequency locking regime. By a model reduction we argue that the phenomenon of coherence resonance is generic for a wide class of optically injected lasers.

  4. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    SciTech Connect

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary D.; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parameter dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.

  5. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    DOE PAGES

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary D.; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  6. Hemodynamic responses to functional activation accessed by optical imaging

    NASA Astrophysics Data System (ADS)

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  7. Optical delay control of large-spectral-bandwidth laser pulses

    SciTech Connect

    Ignesti, E.; Tognetti, M. V.; Buffa, R.; Cavalieri, S.; Fini, L.; Sali, E.; Eramo, R.

    2009-07-15

    In this Rapid Communication we report an experimental observation of temporal delay control of large-spectral-bandwidth multimode laser pulses by means of electromagnetically induced transparency. We achieved optically controllable retardation of laser pulses with an input spectral bandwidth of 3.3 GHz with limited temporal distortion and excellent values of the delay-bandwidth product. The experimental results compare favorably with a theoretical analysis.

  8. Adaptive optics for ultra short pulsed lasers in UHV environment

    NASA Astrophysics Data System (ADS)

    Deneuville, Francois; Ropert, Laurent; Sauvageot, Paul; Theis, Sébastien

    2015-02-01

    ISP SYSTEM has developed an electro-mechanical deformable mirror compatible with Ultra High Vacuum environment, suitable for ultra short pulsed lasers. The design of the MD-AME deformable mirror is based on force application on numerous locations. μ-AME actuators are driven by stepper motors, and their patented special design allows controlling the force with a very high accuracy. Materials and assembly method have been adapted to UHV constraints and the performances were evaluated on a first application for a beam with a diameter of 250mm. A Strehl ratio above 0.9 was reached for this application. Optical aberrations up to Zernike order 5 can be corrected with a very low residual error as for standard MD-AME mirror. Amplitude can reach up to several hundreds of μm for low order corrections. Hysteresis is lower than 0.1% and linearity better than 99%. Contrary to piezo-electric actuators, the μ-AME actuators avoid print-through effects and they permit to keep the mirror shape stable even unpowered, providing a high resistance to electro-magnetic pulses. The deformable mirror design allows changing easily an actuator or even the membrane if needed, in order to improve the facility availability. They are designed for circular, square or elliptical aperture from 30mm up to 500mm or more, with incidence angle from 0° to 45°. They can be equipped with passive or active cooling for high power lasers with high repetition rate.

  9. Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical Communications

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Chen, How-Foo; Tang, Shuo

    The objective of this chapter is to provide a complete picture of the nonlinear dynamics and chaos synchronization of single-mode semiconductor lasers for chaotic optical communications. Basic concepts and theoretical framework are reviewed. Experimental results are presented to demonstrate the fundamental concepts. Numerical computations are employed for mapping the dynamical states and for illustrating certain detailed characteristics of the chaotic states. Three different semiconductor laser systems, namely, the optical injection system, the optical feedback system, and the optoelectronic feedback system, that are of most interest for high-bit-rate chaotic optical communications are considered. The optical injection system is a nonautonomous system that follows a period-doubling route to chaos. The optical feedback system is a phase-sensitive delayed-feedback autonomous system for which all three known routes, namely, period-doubling, quasiperiodicity, and intermittency, to chaos can be found. The optical feedback system is a phase-insensitive delayed-feedback autonomous system that follows a quasiperiodicity route to chaotic pulsing. Identical synchronization in unidirectionally coupled configurations is the focus of discussions for chaotic communications. For optical injection and optical feedback systems, the frequency, phase, and amplitude of the optical fields of both transmitter and receiver lasers are all locked in synchronism when complete synchronization is accomplished. For the optoelectronic feedback system, chaos synchronization involves neither the locking of the optical frequency nor the synchronization of the optical phase. For both optical feedback and optoelectronic feedback systems, where the transmitter is configured with a delayed feedback loop, anticipated and retarded synchronization can be observed as the difference between the feedback delay time and the propagation time from the transmitter laser to the receiver laser is varied. For a

  10. An acoustic-optically Q-switched Tm:SSO laser at 2 μm

    NASA Astrophysics Data System (ADS)

    Feng, T. L.; Yang, K. J.; Zhao, S. Z.; Qiao, W. C.; Zhao, J.; Li, D. C.; Li, G. Q.; Li, T.; Zheng, L. H.; Xu, J.; Wang, Q. G.; Xu, X. D.; Su, L. B.

    2015-02-01

    An actively Q-switched Tm:SSO laser was realized by using an acoustic-optical (AO) modulator, and stable Q-switching operation was obtained with the pulse repetition frequency (PRF) varying from 1 kHz to 10 kHz. At PRF of 1 kHz, the Tm:SSO laser yielded a shortest 308 ns pulse with M2 factor less than 1.6 at 1968 nm, corresponding to a single pulse energy of 128 μJ and pulse peak power of 416 W. The experimental results indicate the Tm:SSO crystal is favorable for obtaining low PRF 2 μm laser pulses.

  11. Optical isolation in the LIGO gravitational wave laser detector in transient states

    SciTech Connect

    Soloviev, A A; Khazanov, Efim A

    2012-04-30

    This paper presents a numerical analysis of the degree of optical isolation of the laser source by the Faraday isolator in transient states of the laser interferometer gravitational wave observatory (LIGO) detector. This system may be in transient states where the power of the light reflected from the detector to the laser source can exceed many times the power of the source. The present results can be used to analyse the need for installing an additional active mechanical isolation of the source and to evaluate its response time.

  12. Sequential description of the catastrophic optical damage of high power laser diodes

    NASA Astrophysics Data System (ADS)

    Souto, J.; Pura, J. L.; Torres, A.; Jiménez, J.; Bettiati, M.; Laruelle, F. J.

    2016-03-01

    Cathodoluminescence (CL) analysis of high power laser diodes permits to reveal the main defects issued from the catastrophic optical degradation (COD). These defects are revealed as discontinuous dark lines along the ridge. The different levels of damage are analysed, and a thermomechanical model taking account of the thermal and mechanical properties of the laser structure is settled up. In this model the COD is described as a local temperature enhancement, which generates thermal stresses leading to the generation of dislocations, which are responsible for the degradation of the thermal conductivity of the of the active zone of the laser.

  13. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  14. Tunable semiconductor laser with an acousto-optic filter in an external fibre cavity

    SciTech Connect

    Andreeva, E V; Mamedov, D S; Ruenkov, A A; Shramenko, M V; Magdich, L N; Yakubovich, S D

    2006-04-30

    A tunable semiconductor laser with a laser amplifier based on a double-pass superluminescent diode as an active element and an acousto-optic filter in an external fibre cavity as a selective element is investigated. A continuous spectral tuning is achieved in a band of width 60 nm centered at a wavelength of 845 nm and the 'instant' linewidth below 0.05 nm is obtained. The sweep frequency within the tuning range achieves 200 Hz. The cw power at the output of a single-mode fibre was automatically maintained constant at the level up to 1.5 mW. (lasers and amplifiers)

  15. Monolithic arrays of grating-surface-emitting diode lasers and quantum well modulators for optical communications

    NASA Technical Reports Server (NTRS)

    Carlson, N. W.; Evans, G. A.; Liew, S. K.; Kaiser, C. J.

    1990-01-01

    The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator.

  16. Skin optical clearing for improvement of laser tattoo removal

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Bashkatov, Alexey N.; Gavrilova, Anna A.; Pravdin, Alexander B.; Tuchin, Valery V.; Yaroslavsky, Ilya V.; Altshuler, Gregory B.

    2007-06-01

    The removal of tattoo pigments by laser energy is effected through a process of selective photothermolysis. Dehydration and optical immersion based on refractive index matching of scattering centers with that of surrounding matter through introduction of an exogenous index-matching agent can improve laser tattoo removal by providing increased efficiency of laser delivery to embedded ink particles and enabling the use of shorter wavelength visible lasers more effective on certain inks. Effectiveness of a method of accelerating penetration of the index-matching compounds by enhancing skin permeability through creating a lattice of micro-zones of limited thermal damage in the stratum corneum was studied. As optical clearing agents 100% and 88%-aqueous glycerol solutions were used. The effect of stratum corneum perforation on the rate of the immersion clearing of skin was studied. Dynamics of refractive index alteration of glycerol solution during its interaction with skin samples was monitored. Improvement of tattoo visualization was observed. The results of the experiments have shown that the lattice of island damage method the is effective for transepidermal delivery of optical clearing agents and could be used successfully in in vivo conditions for the enhancement of optical clearing of treated skin area and as enabling improvement of laser tattoo removal.

  17. Optical design of a laser system for nuclear fusion research.

    PubMed

    de Metz, J

    1971-07-01

    High power laser improvements, high quality aspheric lenses, and sharp focusing on a solid deuterium target enable us to get numerous nuclear fusion reactions inside the deuterium plasma. Since Maiman successfully built the first light amplifier in 1960 [Nature 187, 493 (1960)] and Terhune performed air breakdown experiments in 1962 ["Optical Third Harmonic Generation," Comptes rendus de la 3ème Conférence Internationale d'Electronique Quantique, Paris, 11-15 février 1963, P. Grivet and N. Bloembergen, Eds. (Dunod, Paris, 1964), pp. 1559-15761, the laser has been thought of as a valuable energy source for fusion devices. Now a kind of race has started toward high temperature plasmas created by powerful lasers. However, the peak power of solid state laser is limited by glass damage, pump efficiences, and unwanted effects such as superradiance. So it is necessary to improve all the optical properties of the laser and the focusing of the lens on the target. In this paper, requirements for fusion implying a very high flux will be stated. Successive optical designs will be described together with measurement methods, and the contribution of optical improvements to the occurrence of nuclear fusion reaction in deuterium targets will be evaluated.

  18. Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations

    PubMed Central

    Lehman, John H.; Vayshenker, Igor; Livigni, David J.; Hadler, Joshua

    2004-01-01

    The responsivity of two optical detectors was determined by the method of direct substitution in four different NIST measurement facilities. The measurements were intended to demonstrate the determination of absolute responsivity as provided by NIST calibration services at laser and optical-communication wavelengths; nominally 633 nm, 850 nm, 1060 nm, 1310 nm, and 1550 nm. The optical detectors have been designated as checks standards for the purpose of routine intramural comparison of our calibration services and to meet requirements of the NIST quality system, based on ISO 17025. The check standards are two optical-trap detectors, one based on silicon and the other on indium gallium arsenide photodiodes. The four measurement services are based on: (1) the laser optimized cryogenic radiometer (LOCR) and free field collimated laser light; (2) the C-series isoperibol calorimeter and free-field collimated laser light; (3) the electrically calibrated pyroelectric radiometer and fiber-coupled laser light; (4) the pyroelectric wedge trap detector, which measures light from a lamp source and monochromator. The results indicate that the responsivity of the check standards, as determined independently using the four services, agree to within the published expanded uncertainty ranging from approximately 0.02 % to 1.24 %. PMID:27366611

  19. Airborne molecular contamination: quality criterion for laser and optical components

    NASA Astrophysics Data System (ADS)

    Otto, Michael

    2015-02-01

    Airborne molecular contaminations (AMCs) have been recognized as a major problem in semiconductor fabrication. Enormous technical and financial efforts are made to remove or at least reduce these contaminations in production environments to increase yield and process stability. It can be shown that AMCs from various sources in laser devices have a negative impact on quality and lifetime of lasers and optical systems. Outgassing of organic compounds, especially condensable compounds were identified as the main source for deterioration of optics. These compounds can lead to hazing on surfaces of optics, degradation of coating, reducing the signal transmission or the laser signal itself and can enhance the probability of laser failure and damage. Sources of organic outgassing can be molding materials, resins, seals, circuit boards, cable insulation, coatings, paints and others. Critical compounds are siloxanes, aromatic amines and high boiling aromatic hydrocarbons like phthalates which are used as softeners in plastic materials. Nowadays all sensitive assembly steps are performed in controlled cleanroom environments to reduce risks of contamination. We will demonstrate a high efficient air filter concept to remove AMCs for production environments with special AMC filters and methods for the qualification and monitoring of these environments. Additionally, we show modern techniques and examples for the pre-qualification of materials. For assembled components, we provide sampling concepts for a routine measurement for process, component and product qualification. A careful selection of previously tested and certified materials and components is essential to guarantee the quality of lasers and optical devices.

  20. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    NASA Astrophysics Data System (ADS)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  1. Laser Induced Damage in Optical Materials: 6th ASTM Symposium.

    PubMed

    Glass, A J; Guenther, A H

    1975-03-01

    The Sixth ASTM-ONR-NBS Symposium on Laser Induced Damage in Optical Materials was held at the National Bureau of Standards in Boulder, Colorado on 22-23 May 1974. Over 150 attendees at the Symposium heard thirty-one papers on topics relating to laser induced damage in crystalline and nonlinear optical materials, at dielectric surfaces, and in thin film coatings as well as discussions of damage problems in the ir region due both to cw and pulsed irradiation. In addition, several reports on the theoretical analysis of laser-materials interaction relative to the damage progress were given, along with tabulations of fundamental materials properties of importance in evaluation of optical material response to high-power laser radiation. Attention was given to high-power laser system design considerations that relate to improved system performance and reliability when various damage mechanisms are operable in such systems. A workshop on the machining of optics was held, and nine papers on various facets of the topic were presented dealing with machining procedures, surface characterization of machined elements, coating of machined components, and the polishing and damage resistance of polished, coated, and bare metal reflectors. PMID:20134954

  2. Fundamentals and curriculum of education on optical and laser metrology

    NASA Astrophysics Data System (ADS)

    Ryabukho, Vladimir P.; Tuchin, Valery V.

    1995-10-01

    In this paper we are to observing the training system for specialists in the physics of optical and laser measurements at the Department of Optics, Saratov State University and at its Branch at Mechanical Engineering Institute of the Russian Academy of Sciences. The training course is presented in educational schedule. The specialists are prepared for researching and designing of laser measurements, testing, and diagnostical methods and systems at universities, academic and research institutes, enterprises with high technological level and at medical institutes and hospitals.

  3. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  4. Automated system for laser damage testing of coated optics

    NASA Astrophysics Data System (ADS)

    Ness, Dale C.; Streater, Alan D.

    2005-12-01

    Research Electro-Optics Inc. (REO) has recently developed a new laser damage testing facility for the purpose of optimizing process parameters for fabrication and coating of high-damage optics. It also enables full or sample qualification of optics with laser damage specifications. The fully automated laser damage testing system uses microscope photography for detection of damage and a 3 ns pulse length 1064 nm laser for irradiation of the sample. It can test and statistically analyze damage events from a large number of shots, enabling large area testing for low probability events. The system measures and maps sizes and locations of damage sites down to a few microns in diameter. The results are not subject to variations due to the human operator. For coatings deposited by ion beam sputtering, small defects (less than 20 microns) are found to be most prevalent at the fluences specified for small optics for the National Ignition Facility. The ability to measure and characterize small defects has improved REO's ability to optimize their processes for making coated optics with high damage thresholds. In addition to qualifying particular parts, the periodic testing also assures that equipment and processes remain optimized.

  5. Laser radiation attenuation by sparks of optical breakdown

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Semenov, L. P.; Skripkin, A. M.; Volkovitskii, O. A.

    1989-06-01

    A breakdown generated by laser radiation in a gas contaminated by aerosol particles is known to occur at much lower radiation intensities than in case of pure gases. Laser radiation is heavily attenuated by sparks of plasma formed at breakdowns. Energy loss estimation is important at radiation propagation in the atmosphere and in laser resonators. The breakdown phenomenon may be used in diagnostics of the atmospheric aerosol contamination events. The report presents experimental data on the influence of aerosol size distribution and concentration on optical breakdown generation and other results.

  6. Laser Radiation Attenuation By Sparks Of Optical Breakdown

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Semenov, L. P.; Skripkin, A. M.; Volkovitsky, O. A.

    1990-01-01

    A breakdown generated by laser radiation in a gas contaminated by aerosol particles is known to occur at much lower radiation intensities than in case of pure gases, Laser radiation is heavily attenuated by sparks of plasma formed at breakdowns. Energy loss estimation is important at radiation propagation in the atmosphere and in laser resonators. The breakdown phenomenon may be used in diagnostics of the atmospheric aerosol contamination events. The report presents experimental data on the influence of aerosol size distribution and concentration on optical breakdown generation and other results.

  7. University teaching laboratory on laser physics, photonics and fiber optics

    NASA Astrophysics Data System (ADS)

    Golovnin, I. V.; Makarov, V. A.; Morozov, V. B.; Nanii, O. E.; Shlenov, S. A.

    2005-10-01

    International laser Center of Moscow State University offers teaching setups for undergraduate students and students of retraining courses who apply photonics, lasers, and optical communication methods in different fields. Each teaching task is targeted to make a student carry out a real experiment. Most of laboratory works are intended both for phenomena demonstration and for in-depth study of physical mechanisms. The developers of the laboratory works tried to link them to the concepts from other physics courses: quantum mechanics, electricity and magnetism, solid-state physics. Laboratory experience with lasers and photonics reinforces ideas learned in these courses.

  8. Multimode regimes in quantum cascade lasers with optical feedback.

    PubMed

    Columbo, L L; Brambilla, M

    2014-05-01

    We study the instability thresholds of the stationary emission of a quantum cascade laser with optical feedback described by the Lang Kobayashi model. We introduce an exact linear stability analysis and an approximated one for an unipolar lasers, who does not exhibit relaxation oscillations, and investigate the regimes of the emitter beyond the continuous wave instability threshold, depending on the number and density of the external cavity modes. We then show that a unipolar laser with feedback can exhibit coherent multimode oscillations that indicate spontaneous phase-locking.

  9. Laser based microstructuring of polymer optical fibers for sensors optimization

    NASA Astrophysics Data System (ADS)

    Athanasekos, Loukas; Vasileiadis, Miltiadis; El Sachat, Alexandros; Vainos, Nikolaos A.; Riziotis, Christos

    2015-03-01

    Microstructuring of Polymer Optical Fibers-POF through surface modification with UV excimer laser radiation has been performed and studied. The laser modified surface cavities on fibers act as material receptors of exact volume allowing highly controllable and repeatable structures. The effect of Laser writing conditions on different etching characteristics of cladding and core materials of the fibres are presented. Ablated structures on the fibres are examined for optimised sensors' response characteristics. As a case study humidity and ammonia sensors are demonstrated by employing sensitive block copolymer materials on suitably micromachined segments of fibres.

  10. Multiple Isotope Magneto Optical Trap from a single diode laser

    NASA Astrophysics Data System (ADS)

    Gomez, Eduardo; Valenzuela, Victor; Hamzeloui, Saeed; Gutierrez, Monica

    2013-05-01

    We present a simple design for a Dual Isotope Magneto Optical Trap. The system requires a single diode laser, a fiber modulator and a tapered amplifier to trap and completely control both 85Rb and 87Rb. We generate all the frequencies needed for trapping both species using the fiber intensity modulator. All the frequencies are amplified simultaneously with the tapered amplifier. The position and power of each frequency is now controlled independently on the RF rather than on the optical side. This introduces an enormous simplification for laser cooling that often requires an acousto-optic modulator for each frequency. The range of frequency changes is much bigger than what is available with acousto-optic modulators since in our case is determined by the modulator bandwidth (10 GHz). Additional isotopes can be simply added by including additional RF frequencies to the modulator and extra beams for other uses can be produced the same way. Support from CONACYT, PROMEP and UASLP.

  11. Tissue ablation via optical fibre delivery of UV laser radiation

    NASA Astrophysics Data System (ADS)

    Miller, Joseph; Yu, Xiaobo; Yu, Paula K.; Cringle, Stephen J.; Yu, Dao-Yi

    2008-04-01

    We report the use of an ultraviolet (UV) laser and optical fibre arrangement capable of precise and controllable tissue ablation. The 5th (213nm) and 4th (266nm) harmonics of a Nd:YAG laser were launched into optical fibres using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibres were used, all commercially available. The available energy and fluence, as a function of optical fibre length, were evaluated and maximised. Single 5ns pulses were used to ablate both fresh porcine retina and in vivo rat trabecular meshwork. Fluences of 0.4 to 4.0 J/cm2 of 266nm and 0.2 to 1.0 J/cm2 of 213nm were used respectively. Thus demonstrating the potential use of this system for intraocular surgical applications.

  12. Medical Applications Of CO2 Laser Fiber Optics

    NASA Astrophysics Data System (ADS)

    McCord, R. C.

    1981-07-01

    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  13. Evaluation and testing of semiconductor laser reliability in optic system

    NASA Astrophysics Data System (ADS)

    Tang, Wenyan; Fan, Xianguang; Sun, Heyi

    2007-01-01

    In order to improve the performance of an optic system, a new evaluation and testing methodology for the light source which uses semiconductor laser is presented. A new system, combining high accuracy source and measure capabilities for pulsed testing, is developed to achieve the aim of automatic measurement of Light-Current-Power (LIV) for semiconductor laser. The test can provide customer with L-I, V-I curves and other correlative parameters, such as the threshold current and slope efficiency, and so on. Meanwhile, the change of environment temperature versus lasing wavelength under pulse injection is discussed, and the relationship between the lasing wavelength and the width and cycle of injection pulse is obtained. The temperature character of packaged laser unit is measured conveniently. Making use of the above examined curves and parameters, the reliability of semiconductor laser and quality of device can be compared directly and evaluated accurately. The technique is successfully applied for the evaluation of semiconductor laser reliability.

  14. Selection and amplification of a single optical frequency comb mode for laser cooling of the strontium atoms in an optical clock

    SciTech Connect

    Liu, Hui; Yin, Mojuan; Kong, Dehuan; Xu, Qinfang; Zhang, Shougang; Chang, Hong

    2015-10-12

    In this paper, we report on the active filtering and amplification of a single mode from an optical femtosecond laser comb with mode spacing of 250 MHz by optical injection of two external-cavity diode lasers operating in cascade to build a narrow linewidth laser for laser cooling of the strontium atoms in an optical lattice clock. Despite the low injection of individual comb mode of approximately 50 nW, a single comb line at 689 nm could be filtered and amplified to reach as high as 10 mW with 37 dB side mode suppression and a linewidth of 240 Hz. This method could be applied over a broad spectral band to build narrow linewidth lasers for various applications.

  15. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  16. Optical power supply unit utilizing high power laser diode module developed for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Sakamoto, Akira; Kiyoyama, Wataru; Yamauchi, Ryozo

    2014-05-01

    High power laser diode developed for fiber laser pumping is evaluated as a light source for an optical power supply unit. The output power of the newly developed laser diode module exceeds 15 W with 105 μm core fiber. It is estimated that more than 1600 mW power supply can be achieved with the single emitter laser diode module and a polycrystalline silicon cell over 1 km away from the light source. This unit can be used for sensor nodes in the fiber sensor network.

  17. Optical cell cleaning with NIR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  18. Theoretical and experimental studies of optically pumped molecular gas lasers

    NASA Astrophysics Data System (ADS)

    Ratanavis, Amarin

    Optically pumped molecular gas lasers based on vibrational-rotational transitions in the infrared spectral region were studied experimentally and theoretically. A model was developed to predict the performance of such lasers and explore their potentials for energy and power scaling. This rate equation model was applied to explore the performance of a second-overtone (pulsed) and a first-overtone (CW) pumped HBr laser. Experimental improvements concerning temperature spectral tuning and frequency stabilization of a Nd:YAG laser that pumped HBr were accomplished. Lasing at 4 microns was demonstrated from such a system. We identified acetylene and hydrogen cyanide as potential laser gases that can be pumped with lasers emitting in the attractive telecommunication C band region at about 1.5 microns. Estimations and fluorescence measurements suggest the possibility of lasing in the 3 micron region. Lasing was demonstrated for the first time with a 5 ns pump pulse from an optical parametric oscillator using traditional cavities. The first gas filled hollow fiber laser based on population inversion was demonstrated with C2H2 and emission in the 3 micron region was observed. An analytical model indicates the possibility of CW lasing with small Stokes shift in both C2H 2 and HCN.

  19. Optical modulation of quantum cascade laser with optimized excitation wavelength.

    PubMed

    Yang, Tao; Chen, Gang; Tian, Chao; Martini, Rainer

    2013-04-15

    The excitation wavelength for all-optical modulation of a 10.6 μm mid-infrared (MIR) quantum cascade laser (QCL) was varied in order to obtain maximum modulation depth. Both amplitude and wavelength modulation experiments were conducted at 820 nm and 1550 nm excitation respectively, whereby the latter matches the interband transition in the QCL active region. Experimental results show that for continuous-wave mode-operated QCL, the efficiency of free carrier generation is doubled under 1550 nm excitation compared with 820 nm excitation, resulting in an increase of the amplitude modulation index from 19% to 36%. At the same time, the maximum wavelength shift is more than doubled from 1.05 nm to 2.80 nm. Furthermore, for the first time to our knowledge, we demonstrated the optical switching of a QCL operated in pulse mode by simple variation of the excitation wavelength.

  20. Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry.

    PubMed

    Blaize, Sylvain; Bérenguier, Baptiste; Stéfanon, Ilan; Bruyant, Aurélien; Lérondel, Gilles; Royer, Pascal; Hugon, Olivier; Jacquin, Olivier; Lacot, Eric

    2008-08-01

    The use of laser optical feedback Imaging (LOFI) for scattering-type scanning near-field optical microscopy (sSNOM) is proposed and investigated. We implement this sensitive imaging method by combining a sSNOM with optical heterodyne interferometry and the dynamic properties of a B class laser source which is here used both as source and detector. Compared with previous near field optical heterodyne experiments, this detection scheme provides an optical amplification that is several orders of magnitude higher, while keeping a low noise phase-sensitive detection. Successful demonstration of this complex field imaging technique is done on Silicon on Insulator (SOI) optical waveguides revealing phase singularities and directional leakage.

  1. Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry.

    PubMed

    Blaize, Sylvain; Bérenguier, Baptiste; Stéfanon, Ilan; Bruyant, Aurélien; Lérondel, Gilles; Royer, Pascal; Hugon, Olivier; Jacquin, Olivier; Lacot, Eric

    2008-08-01

    The use of laser optical feedback Imaging (LOFI) for scattering-type scanning near-field optical microscopy (sSNOM) is proposed and investigated. We implement this sensitive imaging method by combining a sSNOM with optical heterodyne interferometry and the dynamic properties of a B class laser source which is here used both as source and detector. Compared with previous near field optical heterodyne experiments, this detection scheme provides an optical amplification that is several orders of magnitude higher, while keeping a low noise phase-sensitive detection. Successful demonstration of this complex field imaging technique is done on Silicon on Insulator (SOI) optical waveguides revealing phase singularities and directional leakage. PMID:18679441

  2. Optical design and active optics methods in astronomy

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  3. Novel fiber optic tip designs and devices for laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  4. Optical measurement on quantum cascade lasers using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Cai, Hong

    Quantum cascade lasers (QCLs) as the state-of-the-art mid-infrared (mid-IR) coherent sources have been greatly developed in aspects such as output power, energy efficiency and spectral purity. However, there are additional applications of QCLs in high demand, namely mode-locking, mid-IR modulation, etc. The inherent optical properties and ultrafast carrier dynamics can lead to solutions to these challenges. In this dissertation, we further characterize QCLs using mid-IR femtosecond (fs) pulses generated from a laser system consisting of a Ti:sapphire oscillator, a Ti:sapphire regenerative amplifier, an optical parametric amplifier and a difference frequency generator. We study the Kerr nonlinearity of QCLs by coupling resonant and off-resonant mid-IR fs pulses into an active QCL waveguide. We observe an increase in the spectral width of the transmitted fs pulses as the coupled mid-IR pulse power increases. This is explained by the self-phase modulation effect due to the large Kerr nonlinearity of QCL waveguides. We further confirm this effect by observing the intensity dependent far-field profile of the transmitted mid-IR pulses, showing the pulses undergo self-focusing as they propagate through the active QCL due to the intensity dependent refractive index. The finite-difference time-domain simulations of QCL waveguides with Kerr nonlinearity incorporated show similar behavior to the experimental results. The giant Kerr nonlinearity investigated here may be used to realize ultrafast pulse generation in QCLs. In addition, we temporally resolved the ultrafast mid-infrared transmission modulation of QCLs using a near-infrared pump/mid-infrared probe technique at room temperature. Two different femtosecond wavelength pumps are used with photon energy above and below the quantum well (QW) bandgap. The shorter wavelength pump modulates the mid-infrared probe transmission through interband transition assisted mechanisms, resulting in a high transmission modulation depth

  5. Nested parabolic reflective optics for laser plasmas

    SciTech Connect

    O`Hara, D.

    1995-12-31

    Applications for laboratory soft-x-ray/VuV sources would benefit from the ability to collect a large energy bandwidth of radiation emanating from the very small source and redirect it into a well collimated beam without losing most of the incident radiation. Such optics would be beneficial to x-ray spectroscopy, x-ray lithography, diffractometry and other applications. The author has been working to apply technology originally developed for astronomical x-ray telescopes to production of low cost replicated collimation optics for such x-ray/VuV instruments. Most of the steps in the production of these optics have previously been accomplished with the larger astronomical optics but the author wants to reduce the size of these optics by at least an order of magnitude which introduces problems. In addition, very few copies of an x-ray telescope are made while he wants to make hundreds of copies of the optics. This paper briefly discusses the design and fabrication of these small collimation optics and is a report on work in progress.

  6. Optical trapping and laser ablation of microtubules in fission yeast.

    PubMed

    Maghelli, Nicola; Tolić-Nørrelykke, Iva M

    2010-01-01

    Manipulation has been used as a powerful investigation technique since the early history of biology. Every technical advance resulted in more refined instruments that led to the discovery of new phenomena and to the solution of old problems. The invention of laser in 1960 gave birth to what is now called optical manipulation: the use of light to interact with matter. Since then, the tremendous progress of laser technology made optical manipulation not only an affordable, reliable alternative to traditional manipulation techniques but disclosed also new, intriguing applications that were previously impossible, such as contact-free manipulation. Currently, optical manipulation is used in many fields, yet has the potential of becoming an everyday technique in a broader variety of contexts. Here, we focus on two main optical manipulation techniques: optical trapping and laser ablation. We illustrate with selected applications in fission yeast how in vivo optical manipulation can be used to study organelle positioning and the force balance in the microtubule cytoskeleton. PMID:20719271

  7. Compressive sensing optical coherence tomography using randomly accessible lasers

    NASA Astrophysics Data System (ADS)

    Harfouche, Mark; Satyan, Naresh; Vasilyev, Arseny; Yariv, Amnon

    2014-05-01

    We propose and demonstrate a novel a compressive sensing swept source optical coherence tomography (SSOCT) system that enables high speed images to be taken while maintaining the high resolution offered from a large bandwidth sweep. Conventional SSOCT systems sweep the optical frequency of a laser ω(t) to determine the depth of the reflectors at a given lateral location. A scatterer located at delay τ appears as a sinusoid cos (ω(t)τ ) at the photodetector. The finite optical chirp rate and the speed of analog to digital and digital to analog converters limit the acquisition rate of an axial scan. The proposed acquisition modality enables much faster image acquisition rates by interrogating the beat signal at randomly selected optical frequencies while preserving resolution and depth of field. The system utilizes a randomly accessible laser, a modulated grating Y-branch laser, to sample the interference pattern from a scene at randomly selected optical frequencies over an optical bandwidth of 5 THz , corresponding to a resolution of 30 μm in air. The depth profile is then reconstructed using an l1 minimization algorithm with a LASSO constraint. Signal-dependent noise sources, shot noise and phase noise, are analyzed and taken into consideration during the recovery. Redundant dictionaries are used to improve the reconstruction of the depth profile. A compression by a factor of 10 for sparse targets up to a depth of 15 mm in noisy environments is shown.

  8. Catadioptric optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.

  9. Zigzag laser with reduced optical distortion

    DOEpatents

    Albrecht, Georg F.; Comaskey, Brian; Sutton, Steven B.

    1994-01-01

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.

  10. Zigzag laser with reduced optical distortion

    DOEpatents

    Albrecht, G.F.; Comaskey, B.; Sutton, S.B.

    1994-04-19

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.

  11. Improved optical resonator for laser radars

    NASA Astrophysics Data System (ADS)

    Lavigne, Pierre; McCarthy, Nathalie; Parent, Andre; Pascale, Danny

    1986-01-01

    It is theoretically and experimentally demonstrated that Gaussian reflectivity mirrors can improve the performance of lasers for radar applications. The effects of misalignment and hard apertures are investigated. The optimum design parameters are given. Single mode operation of a TE-CO2 laser was obtained in a Cassegrain resonator made of a hard concave mirror and a convex mirror with a Gaussian reflectivity profile. The 70-nsec FWHM pulses had an energy of 175 mJ, a peak power of about 2.0 MW, a near-diffraction-limited far field, and a chirp rate smaller than 0.060 MHz/microsec sq.

  12. Design of fiber optic probes for laser light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  13. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    PubMed Central

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  14. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  15. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  16. A Multiterawatt Laser Using a High-Contrast, Optical Parametric Chirped-Pulse Presamplifier

    SciTech Connect

    Bagnoud, V.; Puth, J.; Begishev, I.; Guardalben, M.; Zuegel, J.D.; Forget, N.; LeBlanc, C.

    2005-09-30

    A laser has been built that uses optical parametric chirped-pulse preamplification and a glass booster amplifier. We review the performance of the 5-Hz, multijoule OPCPA pump laser, the 370-mJ OPCPA, and the overall laser.

  17. Computing Temperatures In Optically Pumped Laser Rods

    NASA Technical Reports Server (NTRS)

    Farrukh, Usamah O.

    1991-01-01

    Computer program presents new model solving temperature-distribution problem for laser rods of finite length and calculates both radial and axial components of temperature distributions in these rods. Contains several self-checking schemes to prevent over-writing of memory blocks and to provide simple tracing of information in case of trouble. Written in Microsoft FORTRAN 77.

  18. Transurethral optical-laser knife and probe director for lateral firing laser probes

    NASA Astrophysics Data System (ADS)

    Malek, Reza S.

    1994-02-01

    Laser energy has been used by many for transurethral incision of small, obstructive prostates, vesical neck contractures, and urethral strictures. The customary techniques of moving the tip of the laser fiber through a cystoscope with a conventional laser guide, almost tangentially to the tissue to be incised, or drilling radially arranged holes in the scar, or both, have been cumbersome and imprecise. To provide exact control of the laser fiber and precise delivery of laser energy, a new guide was devised. It conducts the quartz fiber through the sheath and along the lens of an optical urethrotome. The tip of the quartz fiber contacts the tissue at an angle of 20 degree(s). KTP/532 laser energy is used to perform internal urethrotomy for urethral stricture, transurethral incision of postoperative contracture of the vesical neck, and transurethral incision of the small prostate under constant visual control.

  19. Laser illuminator and optical system for disk patterning

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John

    2000-01-01

    Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.

  20. Active reflective components for adaptive optical zoom systems

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew Edward Lewis

    This dissertation presents the theoretical and experimental exploration of active reflective components specifically for large-aperture adaptive optical zoom systems. An active reflective component can change its focal length by physically deforming its reflecting surface. Adaptive optical zoom (AOZ) utilizes active components in order to change magnification and achieve optical zoom, as opposed to traditional zooming systems that move elements along the optical axis. AOZ systems are theoretically examined using a novel optical design theory that enables a full-scale tradespace analysis, where optical design begins from a broad perspective and optimizes to a particular system. The theory applies existing strategies for telescope design and aberration simulation to AOZ, culminating in the design of a Cassegrain objective with a 3.3X zoom ratio and a 375mm entrance aperture. AOZ systems are experimentally examined with the development of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  1. Laser/Optical Data Base Products: Evaluation and Selection.

    ERIC Educational Resources Information Center

    Nicholls, Paul Travis

    1988-01-01

    The practical advice for the evaluation of laser/optical data disk materials (e.g., CD-ROM) is based on a review of the relevant literature. An evaluation framework is outlined and collection development tools and sources of published reviews are identified. (34 references) (Author/CLB)

  2. Noise in an acoustic-optic modulated laser source

    SciTech Connect

    Kachelmyer, A.L.; Eng, R.S.

    1989-01-01

    This paper considers the measurement of amplitude modulation (AM) and phase modulation (PM) noise in a tunable CO{sub 2} laser source. Theoretical and experimental heterodyned output power spectrums are used to evaluate the quality of the acousto-optically tuned source.

  3. Laser beacon adaptive optics for power beaming applications

    SciTech Connect

    Fugate, R.Q.

    1994-12-31

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory`s Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 {mu}m, the author has achieved Strehl ratios of {approximately}0.50 using laser beacons and {approximately}0.65 using natural stars for exposures longer than one minute on objects of {approximately}8{sup th} magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  4. Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…

  5. Quantum mechanical features of optically pumped CW FIR lasers

    NASA Technical Reports Server (NTRS)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  6. Optical superheterodyne receiver uses laser for local oscillator

    NASA Technical Reports Server (NTRS)

    Lucy, R. F.

    1966-01-01

    Optical superheterodyne receiver uses a laser coupled to a frequency translator to supply both the incident signal and local oscillator signal and thus permit reception of amplitude modulated video bandwidth signals through the atmosphere. This receiver is useful in scientific propagation experiments, tracking experiments, and communication experiments.

  7. Optical feedback effects upon laser diode oscillation field spectrum

    SciTech Connect

    Favre, F.; LeGuen, D.; Simon, J.

    1982-10-01

    Optical feedback effects on spectral properties of a semi-conductor laser diode coupled to a single-mode fiber cavity are investigated. Linewidth reduction from 6 MHz to less than 30 kHz and freququency stability improvement with increasing feedback are reported. Experiments are in good agreement with theory for short fiber cavities.

  8. Holograms for laser diode: Single mode optical fiber coupling

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  9. Modulation properties of optically injection-locked quantum cascade lasers.

    PubMed

    Wang, Cheng; Grillot, Fédéric; Kovanis, Vassilios I; Bodyfelt, Joshua D; Even, Jacky

    2013-06-01

    A rate equation analysis on the modulation response of an optical injection-locked quantum cascade laser is outlined. It is found that the bifurcation diagram exhibits both bistable and unstable locked regions. In addition, the stable locked regime widens as the linewidth enhancement factor increases. It is also shown that both positive and negative optical detunings as well as strong injection strength enhance the 3 dB modulation bandwidth by as much as 30 GHz. Finally, the peak in the modulation response is significantly influenced by the optical frequency detuning.

  10. Wavefront control of optical components by laser-ablative figuring

    NASA Astrophysics Data System (ADS)

    Jitsuno, Takahisa; Akashi, Tomoyoshi; Nakatsuka, Masahiro; Nakai, Sadao; Tokumura, Keiu

    1997-12-01

    A new method for figuring the surface profile of optical plastics and optical glass have been proposed and demonstrated. An ArF excimer laser is used to ablate very thin layer of the surface of the substrates. The shape of the ablated surface is monitored by an interferometer in site condition. The ablation rate of PMMA is 0.08 micrometers per pulse at the energy density of 50 mJ/cm2. The optical glass (BK-7) can be ablated 0.15 micrometers per pulse at the fluence of 1.5 J/cm2.

  11. Test Port for Fiber-Optic-Coupled Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  12. Optical glucose monitoring using vertical cavity surface emitting lasers (VCSELs)

    NASA Astrophysics Data System (ADS)

    Talebi Fard, Sahba; Hofmann, Werner; Talebi Fard, Pouria; Kwok, Ezra; Amann, Markus-Christian; Chrostowski, Lukas

    2009-08-01

    Diabetes Mellitus is a common chronic disease that has become a public health issue. Continuous glucose monitoring improves patient health by stabilizing the glucose levels. Optical methods are one of the painless and promising methods that can be used for blood glucose predictions. However, having accuracies lower than what is acceptable clinically has been a major concern. Using lasers along with multivariate techniques such as Partial Least Square (PLS) can improve glucose predictions. This research involves investigations for developing a novel optical system for accurate glucose predictions, which leads to the development of a small, low power, implantable optical sensor for diabetes patients.

  13. Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.

  14. Conformal optical elements for correcting wavefront distortions in YAG : Nd{sup 3+} active elements

    SciTech Connect

    Korolkov, V P; Nasyrov, R K; Poleshchuk, A G; Arapov, Yu D; Ivanov, A F

    2013-02-28

    Correction of the wavefront is studied for the light beam passing wide-aperture YAG : Nd3+ single-crystal rods, which are used as active elements in high-power solid-state lasers. A nonideal character of the crystal structure is responsible for the deformation of the wavefront of passing radiation. By using the halftone technology we have developed conformal aberration correctors capable of compensating rod nonuniformities and reducing the laser radiation divergence by an order of magnitude. The results obtained make it possible to employ optically nonuniform active elements in laser constructions. (laser optics 2012)

  15. Integrated all-optical infrared switchable plasmonic quantum cascade laser.

    PubMed

    Kohoutek, John; Bonakdar, Alireza; Gelfand, Ryan; Dey, Dibyendu; Nia, Iman Hassani; Fathipour, Vala; Memis, Omer Gokalp; Mohseni, Hooman

    2012-05-01

    We report a type of infrared switchable plasmonic quantum cascade laser, in which far field light in the midwave infrared (MWIR, 6.1 μm) is modulated by a near field interaction of light in the telecommunications wavelength (1.55 μm). To achieve this all-optical switch, we used cross-polarized bowtie antennas and a centrally located germanium nanoslab. The bowtie antenna squeezes the short wavelength light into the gap region, where the germanium is placed. The perturbation of refractive index of the germanium due to the free carrier absorption produced by short wavelength light changes the optical response of the antenna and the entire laser intensity at 6.1 μm significantly. This device shows a viable method to modulate the far field of a laser through a near field interaction.

  16. Optically pumped pulsed Li/sub 2/ laser

    SciTech Connect

    Kaslin, V.; Yakushev, O.

    1982-02-01

    Pulsed lasing was obtained for the first time from Li/sub 2/ molecules by optical pumping with radiation from a pulsed copper vapor laser (578.2 nm, pulse repetition frequency 5 kHz). The laser transitions, with wavelengths in the range 867--907 nm, belong to the electronic A/sup 1/..sigma../sup +//sub u/--X/sup 1/..sigma../sup +//sub g/ system. With a pump power of 190 mW, an average output power of 8 mW was achieved with an efficiency for the conversion of the optical pumping energy of 7%. A number of Li/sub 2/ laser emission lines were observed in the superradiant regime.

  17. Laser resonators and coherent optics: Modeling, technology, and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1993

    SciTech Connect

    Bhowmik, A.

    1993-01-01

    The topics discussed in these proceedings include free-electron laser resonators, excimer and CO2 lasers, resonator theory and modeling, solid state devices, resonator physics, and chemical and high-power laser resonators. Papers are presented on optical resonators for free-electron lasers (FELs), an experimental test of hole-coupled FEL resonator designs using a CW He-Ne laser, the dependence of laser properties on statistical distortions of active medium, formation of filaments in expanding beams in semiconductor optical amplifiers, and mode competition in a loop-stimulated Brillouin scattering laser. Particular attention is given to a canonical analysis of roof-top resonators, an investigation of novel cavities with self-reconstructed points, low-power laser concepts for high-power laser ring resonator alignment, and alternative coolants for intense thermal loading on optical components.

  18. Optical diagnostics for laser wakefields in plasma channels

    NASA Astrophysics Data System (ADS)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  19. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles.

    PubMed

    Nadkarni, Seemantini K; Bouma, Brett E; Yelin, Dvir; Gulati, Amneet; Tearney, Guillermo J

    2008-01-01

    Laser speckle imaging (LSI), a new technique that measures an index of plaque viscoelasticity, has been investigated recently to characterize atherosclerotic plaques. These prior studies demonstrated the diagnostic potential of LSI for detecting high-risk plaques and were conducted ex vivo. To conduct intracoronary LSI in vivo, the laser speckle pattern must be transmitted from the coronary wall to the image detector in the presence of cardiac motion. Small-diameter, flexible optical fiber bundles, similar to those used in coronary angioscopy, may be incorporated into an intravascular catheter for this purpose. A key challenge is that laser speckle is influenced by inter-fiber leakage of light, which may be exacerbated during bundle motion. In this study, we tested the capability of optical fiber bundles to transmit laser speckle patterns obtained from atherosclerotic plaques and evaluated the influence of motion on the diagnostic accuracy of fiber bundle-based LSI. Time-varying helium-neon laser speckle images of aortic plaques were obtained while cyclically moving the flexible length of the bundle to mimic coronary motion. Our results show that leached fiber bundles may reliably transmit laser speckle images in the presence of cardiac motion, providing a viable option to conduct intracoronary LSI. PMID:19021396

  20. Horizontal Path Laser Communications Employing MEMS Adaptive Optics Correction

    SciTech Connect

    Thompson, C A; Wilks, S C; Brase, J M; Young, R A; Johnson, G W; Ruggiero, A J

    2001-09-05

    Horizontal path laser communications are beginning to provide attractive alternatives for high-speed optical communications, In particular, companies are beginning to sell fiberless alternatives for intranet and sporting event video. These applications are primarily aimed at short distance applications (on the order of 1 km pathlength). There exists a potential need to extend this pathlength to distances much greater than a 1km. For cases of long distance optical propagation, atmospheric turbulence will ultimately limit the maximum achievable data rate. In this paper, we propose a method of improved signal quality through the use of adaptive optics. In particular, we show work in progress toward a high-speed, small footprint Adaptive Optics system for horizontal path laser communications. Such a system relies heavily on recent progress in Micro-Electro-Mechanical Systems (MEMS) deformable mirrors as well as improved communication and computational components. In this paper we detail two Adaptive Optics approaches for improved through-put, the first is the compensated receiver (the traditional Adaptive Optics approach), the second is the compensated transmitter/receiver. The second approach allows for correction of the optical wavefront before transmission from the transmitter and prior to detection at the receiver.

  1. Integrated acousto-optic mode locking device for a mode locked laser system

    SciTech Connect

    Myslinski, P.

    1988-04-05

    An integrated acousto-optic mode locker is described comprising: a laser medium having first and second ends and a longitudinal axis; an excitation source for producing a population inversion in the medium; an acoustic-optic modulator mounted along the longitudinal axis of the laser medium and placed in close proximity to a first end of the laser medium; an output mirror mounted close to a second end to the laser medium and constituting together with the acoustic-optic modulator an optical resonator having an optical axis and an optical path of length L; means for controlling and maintaining the temperature of the acousto-optic modulator.

  2. Precision laser spectroscopy using acousto-optic modulators

    SciTech Connect

    Van Wijngaarden, W.A.

    1996-12-31

    This paper reports on a new spectroscopic method that uses a frequency-modulated laser to excite an atomic beam. It has an especially promising future given the rapid technological advances in developing new relatively inexpensive acousto-optic and electro-optic modulators. Most significantly, this new method is free of various systematic effects that have limited the accuracy of past experiments. This chapter is organized as follows. Section II briefly reviews some of the advances made in optical spectroscopy during the last few decades. Principally, it discusses the use of Fabry-Perot etalons in conjunction with laser atomic beam spectroscopy. Interferometers have been extensively employed by numerous groups to determine many different kinds of frequency shifts. Section III describes three possible experimental arrangements using optically modulated laser beams to make frequency measurements. The advantages and limitations of these approaches are illustrated in Section IV by three specific examples of experiments that determined isotope shifts and hyperfine structure. Section V discusses some precision Stark shift measurements for optical transitions. It concludes with a summary of polarizability data having uncertainties of less than 0.5%. Sections IV and V also compare the results obtained using a variety of competing spectroscopic techniques. Finally, Section VI gives concluding remarks. 96 refs., 15 figs., 6 tabs.

  3. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  4. Modeling the Laser Interferometer Space Antenna Optics

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Pedersen, Tracy R.; McNamara, paul

    2005-01-01

    The Laser Interferometer Space Antenna (LISA), shown below, will detect gravitational waves produced by objects such as binary black holes or objects falling into black holes (extreme mass ratio inspirals) over a frequency range of l0(exp -4) to 0.1 Hz. Within the conceptual frame work of Newtonian physics, a gravitational wave produces a strain, (Delta)l/l, with magnitudes of the order of Earth based gravitational wave detectors, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, use Michelson interferometers with arm lengths l = 4 km to detect these strains. Earth induced seismic noise limits ground-based instruments detecting gravitational waves with frequencies lower than approx. 1 Hz.

  5. Adaptive optics for laser power beaming

    NASA Technical Reports Server (NTRS)

    Leland, Robert P.

    1992-01-01

    It has been proposed to use a high energy pulsed laser to beam power into space for satellites or a lunar base. The effects of atmospheric transmission are critical to such a system. Thermal blooming in the atmosphere can cause the beam to spread rapidly. Atmospheric turbulence can cause beam bending or beam spreading, resulting in the loss of transmitted energy that fails to hit the target receiver.

  6. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  7. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  8. Micromanipulation of sperm by a laser generated optical trap

    SciTech Connect

    Tadir, Y.; Wright, W.H.; Vafa, O.; Ord, T.; Asch, R.H.; Berns, M.W. )

    1989-11-01

    The force generated by the radiation pressure of a low power laser beam induces an optical trap which may be used to manipulate sperm. We studied the effect of the optical trap on sperm motility. A Nd:YAG laser beam was coupled to a conventional microscope and focused into the viewing plane by the objective lens. Sperm were caught in the trap and manipulated by a joy stick controlled motorized stage. After different exposure periods, the velocity and patterns were analysed by a computerized image processor. There were minor changes in sperm velocity when exposed to the trap for 30 seconds or less. A gradual decrease in the mean linear velocity was observed after 45 seconds of exposure. This optical micromanipulator may also be useful for studying the force generated by a single spermatozoa and evaluating the influence of drugs on motility.

  9. Time division multiplexed laser Doppler anemometry using pulsed laser diodes and optical fibers

    SciTech Connect

    Lockey, R.A.; Tatam, R.P.

    1995-12-31

    Laser Doppler anemometry (LDA) is a well established technique for non-invasive measurement of fluid flow, by measuring the frequency shift of light scattered by particles entrained in the flow. A time division multiplexed laser Doppler anemometer is reported, using a single high frequency pulsed laser diode as a source. Time division multiplexing requires a single detector channel, removing the need for multiple detectors and wavelength separation optics found in conventional CW laser Doppler systems. By incorporating optical fibers into the system to distribute the pulses into each channel and impose a delay between channels, the electronic requirements of such an instrument are reduced. Results for a two-dimensional system are presented, measured on a water-seeded air jet. Individual velocity components of up to 16 ms{sup {minus}1} and overall velocities of up to 20 ms{sup {minus}1} have been detected, but the potential range of the instrument is very much greater.

  10. Fiber-optic laser sensor for mine detection and verification

    SciTech Connect

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to Ep=1 mJ, a repetition rate of frep.=2-20 kHz and a pulse duration of tp=620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis.

  11. Fiber-optic laser sensor for mine detection and verification.

    PubMed

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-06-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to E(p) = 1 mJ, a repetition rate of f(rep.) = 2-20 kHz and a pulse duration of t(p) = 620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis. PMID:16724144

  12. Injection locking of an optically pumped FIR laser

    NASA Astrophysics Data System (ADS)

    Weiss, C. O.; Bava, E.; Demarchi, A.; Godone, A.

    1980-05-01

    The practical possibility of optically pumped far-infrared laser stabilization by injection of a highly stable synthesized signal into the laser is experimentally investigated. The injection locking takes place in a 350 kHz locking range and the two lasers used in the experiment work on the 432 micron line of HCOOH pumped by the 9R (20) line of a CO2 laser. Locking range versus injected power attenuation is plotted, and it is noted that the locking range can be increased by improving the coupling of the injected signal. Experimental results show that this method can be efficiently used in the frequency range up to one THz, for metrological purposes.

  13. Cancellation of laser dither modulation from optical frequency standards.

    PubMed

    Taubman, M S; Hall, J L

    2000-03-01

    We demonstrate the removal of the dither modulation from an iodine-stabilized He-Ne laser by using a frequency-modulated acousto-optic modulator and feed-forward techniques. This procedure reduces the linewidth of the beat between this laser and a flywheel He-Ne laser from 6 MHz to 8 kHz, the undithered beat linewidth being ~7 kHz. Dither suppression greatly reduces counter errors during beat measurements from stroboscopic effects between the counter's gate and the frequency of the dither modulation and increases the utility of the already formidable array of dithered laser frequency standards by making locking to them an easier task. PMID:18059864

  14. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  15. CO2 laser induced refractive index changes in optical polymers.

    PubMed

    Liu, Qing; Chiang, Kin Seng; Reekie, Laurence; Chow, Yuk Tak

    2012-01-01

    We study the infrared photosensitivity properties of two optical polymer materials, benzocyclobutene (BCB) and epoxy OPTOCAST 3505, with a 10.6 μm CO2 laser. We discover that the CO2 laser radiation can lower the refractive index of BCB by as much as 5.5 × 10(-3), while inducing no measurable index change in the epoxy. As confirmed by Fourier transform infrared spectroscopy, the observed index change in BCB can be attributed to photothermal modification of chemical bonds in the material by the CO2 laser radiation. Our findings open up a new possibility of processing polymer materials with a CO2 laser, which could be further developed for application in the areas of post-processing and direct-writing of polymer waveguide devices.

  16. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  17. Nonparaxial optical vortices and Kummer laser beams

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Kotlyar, Victor V.; Nalimov, Anton G.

    2013-09-01

    Two approaches to describe nonparaxial optical vortices were considered. One approach is to use a revised Kirchhoff integral, which does not neglect the relief of an optical element. Using this integral and the finite-difference time-domain method it is shown that an optical vortex generated by a refractive spiral plate with a relief step has an asymmetric profile. The annular diffraction pattern in the vortex beam cross-section is found to be disturbed not only for the near-field diffraction but also for the middle-field diffraction, at a distance of several Fresnel lengths. Another approach is to solve the Helmholtz equation without any approximations. An analytical solution to describe propagation of a light beam in the positive direction of the optical axis was found. The complex amplitude of such a beam is found to be in direct proportion to the product of two linearly independent solutions of Kummer's differential equation. Relationships for a particular case of such beams-namely, the Hankel-Bessel (HB) beams-are deduced. The autofocusing of the HB beams is studied.

  18. Insight in the Chemistry of Laser-Activated Dental Bleaching

    PubMed Central

    De Moor, Roeland Jozef Gentil; Meire, Maarten August; De Coster, Peter Jozef; Walsh, Laurence James

    2015-01-01

    The use of optical radiation for the activation of bleaching products has not yet been completely elucidated. Laser light is suggested to enhance the oxidizing effect of hydrogen peroxide. Different methods of enhancing hydrogen peroxide based bleaching are possible. They can be classified into six groups: alkaline pH environment, thermal enhancement and photothermal effect, photooxidation effect and direct photobleaching, photolysis effect and photodissociation, Fenton reaction and photocatalysis, and photodynamic effect. PMID:25874251

  19. Insight in the chemistry of laser-activated dental bleaching.

    PubMed

    De Moor, Roeland Jozef Gentil; Verheyen, Jeroen; Diachuk, Andrii; Verheyen, Peter; Meire, Maarten August; De Coster, Peter Jozef; Keulemans, Filip; De Bruyne, Mieke; Walsh, Laurence James

    2015-01-01

    The use of optical radiation for the activation of bleaching products has not yet been completely elucidated. Laser light is suggested to enhance the oxidizing effect of hydrogen peroxide. Different methods of enhancing hydrogen peroxide based bleaching are possible. They can be classified into six groups: alkaline pH environment, thermal enhancement and photothermal effect, photooxidation effect and direct photobleaching, photolysis effect and photodissociation, Fenton reaction and photocatalysis, and photodynamic effect.

  20. Modeling optical breakdown in dielectrics during ultrafast laser processing.

    PubMed

    Fan, C H; Longtin, J P

    2001-06-20

    Laser ablation is widely used in micromachining, manufacturing, thin-film formation, and bioengineering applications. During laser ablation the removal of material and quality of the features depend strongly on the optical breakdown region induced by the laser irradiance. The recent advent of amplified ultrafast lasers with pulse durations of less than 1 ps has generated considerable interest because of the ability of the lasers to process virtually all materials with high precision and minimal thermal damage. With ultrashort pulse widths, however, traditional breakdown models no longer accurately capture the laser-material interaction that leads to breakdown. A femtosecond breakdown model for dielectric solids and liquids is presented that characterizes the pulse behavior and predicts the time- and position-dependent breakdown region. The model includes the pulse propagation and small spatial extent of ultrashort laser pulses. Model results are presented and compared with classical breakdown models for 1-ns, 1-ps, and 150-fs pulses. The results show that the revised model is able to model breakdown accurately in the focal region for pulse durations of less than 10 ps. The model can also be of use in estimating the time- and position-resolved electron density in the interaction volume, the breakdown threshold of the material, shielding effects, and temperature distributions during ultrafast processing. PMID:18357333

  1. Optical design of the adaptive optics laser guide star system

    SciTech Connect

    Bissinger, H.

    1994-11-15

    The design of an adaptive optics package for the 3 meter Lick telescope is presented. This instrument package includes a 69 actuator deformable mirror and a Hartmann type wavefront sensor operating in the visible wavelength; a quadrant detector for the tip-tile sensor and a tip-tilt mirror to stabilize atmospheric first order tip-tile errors. A high speed computer drives the deformable mirror to achieve near diffraction limited imagery. The different optical components and their individual design constraints are described. motorized stages and diagnostics tools are used to operate and maintain alignment throughout observation time from a remote control room. The expected performance are summarized and actual results of astronomical sources are presented.

  2. Nonlinear semiconductor lasers and amplifiers for all-optical information processing.

    PubMed

    Adams, M J; Hurtado, A; Labukhin, D; Henning, I D

    2010-09-01

    The nonlinear properties of semiconductor lasers and laser amplifiers when subject to optical injection are reviewed and new results are presented for multisection lasers, vertical cavity semiconductor optical amplifiers, and surface-emitting lasers. The main underlying material parameters are outlined and the key design approaches are discussed for both edge-emitting and vertical cavity devices. An overview of theoretical modeling approaches is discussed and a summary of key experimental results is presented. The practical use of optically injected edge-emitting and vertical cavity semiconductor lasers and laser amplifiers is illustrated with examples of applications including, among others, optical logic and chaotic communication.

  3. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  4. A new class of optical sensors: a random laser based device

    NASA Astrophysics Data System (ADS)

    Ignesti, Emilio; Tommasi, Federico; Fini, Lorenzo; Martelli, Fabrizio; Azzali, Niccolò; Cavalieri, Stefano

    2016-10-01

    In a random laser the optical feedback is provided by scattering rather than by an optical cavity. Then, since its emission characteristics are very susceptible to the scattering details, it is a natural candidate for making active sensors to use as a diagnostic tool for disordered media like biological samples. However, the methods reported up to now, requiring the injection of toxic substances in the sample, have the drawback of altering the physical-chemical composition of the medium and are not suitable for in-vivo measurements. Here we present a random laser based sensor that overcomes these problems by keeping gain and diffusion separated. We provide an experimental characterisation of the sensor by using a reference diffusive liquid phantom and we show that, compared to a passive method, this sensor takes advantage of the gain and spectral properties of the random laser principle.

  5. A new class of optical sensors: a random laser based device

    PubMed Central

    Ignesti, Emilio; Tommasi, Federico; Fini, Lorenzo; Martelli, Fabrizio; Azzali, Niccolò; Cavalieri, Stefano

    2016-01-01

    In a random laser the optical feedback is provided by scattering rather than by an optical cavity. Then, since its emission characteristics are very susceptible to the scattering details, it is a natural candidate for making active sensors to use as a diagnostic tool for disordered media like biological samples. However, the methods reported up to now, requiring the injection of toxic substances in the sample, have the drawback of altering the physical-chemical composition of the medium and are not suitable for in-vivo measurements. Here we present a random laser based sensor that overcomes these problems by keeping gain and diffusion separated. We provide an experimental characterisation of the sensor by using a reference diffusive liquid phantom and we show that, compared to a passive method, this sensor takes advantage of the gain and spectral properties of the random laser principle. PMID:27725755

  6. Polyethylene laser welding based on optical absorption variations

    NASA Astrophysics Data System (ADS)

    Galtieri, G.; Visco, A.; Nocita, D.; Torrisi, L.; Ceccio, G.; Scolaro, C.

    2016-04-01

    Polymeric materials, both pure and containing nanostructures, can be prepared as thin sheets in order to produce joints with an interface between an optically transparent sheet and an optically absorbent substrate to be welded by infrared pulsed laser irradiation. The Laser Transmission Welding (LTW) technique has been successfully applied in order to join two or more thermoplastic polymeric sheets that must have a similar chemical composition. In this research work, polymeric joints of Ultra High Molecular Weight Polyethylene sheets were realized, characterized and welded. Some polymer sheets were doped, at different concentrations, with carbon nano-particles absorbent the laser radiation. A pulsed laser operating in the wavelength region 532 nm with intensity of the order of 109 Watt/cm2 was employed to be transmitted by the transparent polymer and to be absorbed by the carbon enriched surface. At the interface of the two polymers the released energy induces melting, that is assisted by pressure, producing a fast and resistant welding zone. Mechanical and optical characterizations and surface analyses are presented and discussed.

  7. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  8. Controllable Dispersion in an Optical Laser Gyroscope

    NASA Astrophysics Data System (ADS)

    Wolfe, Owen; Du, Shuangli; Rochester, Simon; Budker, Dmitry; Novikova, Irina; Mikhailov, Eugeniy

    2016-05-01

    Optical gyroscopes use Sagnac interferometry to make precise measurements of angular velocity. Increased gyroscope sensitivity will allow for more accurate control of aerospace systems and allow for more precise measurements of the Earth's rotation. Severalfold improvements to optical gyroscope sensitivity were predicted for fast light regimes (ng < 1). We evaluated the feasibility of these improvements in the N-bar dual pump scheme in 87 Rb vapor. We were able to modify the stimulated gyroscope response via tuning the experimental parameters. Gyroscope sensitivity was shown to be dependent on several parameters including pump power, pump detunning, and vapor density. This work was supported by the NSF and Naval Air Warfare Center STTR program N68335-11-C-0428.

  9. Laser Metrology for an Optical-Path-Length Modulator

    NASA Technical Reports Server (NTRS)

    Gursel, Yekta

    2005-01-01

    Laser gauges have been developed to satisfy requirements specific to monitoring the amplitude of the motion of an optical-path-length modulator that is part of an astronomical interferometer. The modulator includes a corner-cube retroreflector driven by an electromagnetic actuator. During operation of the astronomical interferometer, the electromagnet is excited to produce linear reciprocating motion of the corner-cube retroreflector at an amplitude of 2 to 4 mm at a frequency of 250, 750, or 1,250 Hz. Attached to the corner-cube retroreflector is a small pick-off mirror. To suppress vibrations, a counterweight having a mass equal to that of the corner-cube retroreflector and pick-off mirror is mounted on another electromagnetic actuator that is excited in opposite phase. Each gauge is required to measure the amplitude of the motion of the pick-off mirror, assuming that the motions of the pick-off mirror and the corner-cube retroreflector are identical, so as to measure the amplitude of motion of the corner- cube retroreflector to within an error of the order of picometers at each excitation frequency. Each gauge is a polarization-insensitive heterodyne interferometer that includes matched collimators, beam separators, and photodiodes (see figure). The light needed for operation of the gauge comprises two pairs of laser beams, the beams in each pair being separated by a beat frequency of 80 kHz. The laser beams are generated by an apparatus, denoted the heterodyne plate, that includes stabilized helium-neon lasers, acousto-optical modulators, and associated optical and electronic subsystems. The laser beams are coupled from the heterodyne plate to the collimators via optical fibers.

  10. Research on laser damage of final optics assembly on high-power laser facility

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfeng; Wu, Rong; Lin, Zunqi; Zhu, Jianqiang; Wang, Li

    2014-10-01

    In order to improve laser damage resistance of the Final Optics Assembly (FOA), simulation analysis have been done for 1ω, 2ω and 3ω laser beam considering ghost images to the 4th order. The panels of ground glass scatter ghost laser around the FOA walls and the panels of architectural glass absorb the 1th order energy. The appearance of smoothing fused silica surface defect and the effect of wiping off etching contamination are researched on HF-based etching processes under ultrasonic. Now, 18 shots were executed using 310x310mm laser with 3ns pulse width. During the experiment, the third harmonic laser terminal output energy is 1500J~3500J, and the maximum laser energy flux is about 4J/cm2. This presentation addresses the optical configuration of the FOA, the simulation analysis of ghost, the way of ground glasses absorbing energy and the result of laser damage resistance of fused silica on HF-based etching processes under ultrasonic.

  11. Optical-fiber laser amplifier for ultrahigh-speed communications

    SciTech Connect

    Gosnell, T.; Xie, Ping; Cockroft, N.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to develop a praseodymium-based 1.31-{mu}m fiber amplifier that can be optically pumped with off-the-shelf semiconductor diode lasers. Development of optical amplifiers for the 1.31-{mu}m communications window is motivated by the push towards ``all-optical`` networks that will support multigigabits per second communication rates. Our approach exploited radiationless energy transfer from optically pumped Yb{sup 3+} ions co-doped with Pr{sup 3+} into a fluorozirconate glass (ZBLAN). We obtained a gain of approximately 10 on a 1.31-{mu}m amplifier, a value too low for practical applications. In two spin- off applications, all-solid-state operation at all four output wavelengths was achieved in the development of a four-color visible laser, and laser cooling of a solid material was demonstrated for the first time in the development of a fluorescent cryogenic refrigerator.

  12. Study of laser reflection of infrared cameras with germanium optics

    NASA Astrophysics Data System (ADS)

    Chiu, Patrio; Shih, Ishiang; Shi, S.; Laou, Philips

    2003-09-01

    Infrared cameras are widely used in today's battlefield for surveillance purpose. Because of retroreflection, an incident laser beam entering the camera optics results in a beam reflecting back to the direction of the laser source. An IR detector positioned close to the laser source can then detect the reflected beam. This effect can reveal the location of the cameras and thus increases the risk of covert operations. In the present work, the characteristics of the retroreflection is studied. It is found that the reflection intensity is high when the incident beam enters through the middle part of the lenses while it is low and the beam is diverged when entering through the outer part of the lenses. The reflection is symmetric when the incident beam is normal to the lenses while asymmetric when it is incident with an angle to the lenses. In order to study the potential effects on retroreflection of modified camera optics, IR low index slides (ZnSe and KCl with refractive indices of 2.49 and 1.54, respectively) with different thicknesses (2mm, 4mm and 6mm) are placed in the optical system. The result shows that the focal point of the lenses is changed by the addition of the slide but the optical paths of the reflection remain unchanged. The relationship between the different slides and beam intensity is also studied.

  13. Towards 3-D laser nano patterning in polymer optical materials

    NASA Astrophysics Data System (ADS)

    Scully, Patricia J.; Perrie, Walter

    2015-03-01

    Progress towards 3-D subsurface structuring of polymers using femtosecond lasers is presented. Highly localised refractive index changes can be generated deep in transparent optical polymers without pre doping for photosensitisation or post processing by annealing. Understanding the writing conditions surpasses the limitations of materials, dimensions and chemistry, to facilitate unique structures entirely formed by laser-polymeric interactions to overcome materials, dimensional, refractive index and wavelength constraints.. Numerical aperture, fluence, temporal pulselength, wavelength and incident polarisation are important parameters to be considered, in achieving the desired inscription. Non-linear aspects of multiphoton absorption, plasma generation, filamentation and effects of incident polarisation on the writing conditions will be presented.

  14. Dual state antiphase excitability in optically injected quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Kelleher, B.; Goulding, D.; Tykalewicz, B.; Fedorov, N.; Dubinkin, I.; Hegarty, S. P.; Huyet, G.; Erneux, T.; Viktorov, E. A.

    2016-04-01

    Depending on device and operating parameters, the emission of lasers based on InAs quantum dot (QD) material may come from the ground state (GS) only, from the first excited state (ES) only or simultaneously from both states. When the emission is from the ES only, optical injection at the GS frequency can completely suppress the ES output and instead, phase-locked emission from the GS can be obtained. We report on a variety of non-linear phenomena obtained when the frequency of the master laser is varied revealing two antiphase, dual-state excitable regimes.

  15. Short wavelength optics for future free electron lasers

    SciTech Connect

    Attwood, D.T.

    1984-04-01

    Although much free-electron laser work is directed toward achieving sufficient single-pass gain to be useful for research purposes, the availability of mirrors of high reflectance for the vacuum ultraviolet and soft x-ray regime would make resonant cavities a possibility. In addition, as in ordinary synchrotron radiation work, mirrors are required for the construction of realistic experiments and for beam manipulation purposes such as folding and extraction. The Working Group discussed a number of approaches to reflecting optics for free electron lasers, which are summarized here, and described in some detail. 16 references, 2 figures.

  16. Stabilization of spatio-temporal instabilities in optically injected broad-area lasers

    NASA Astrophysics Data System (ADS)

    Pakhomov, A. V.; Krents, A. A.; Molevich, N. E.; Anchikov, D. A.

    2016-04-01

    In the present paper we investigated the spatio-temporal instabilities of stationary lasing in class-B broad-area lasers. The onset conditions of filamentary instability and its spatio-temporal characteristics were obtained analytically on the basis of Maxwell-Bloch equations without phase-amplitude coupling. The lasing stabilization capabilities through varying laser parameters were considered. We demonstrated that coherent external optical injection can effectively suppress the transverse filamentary instability. We considered the case of weak optical injection, so that the amplitude of injected field is small compared to the amplitude of intracavity laser field. The latter restriction is ascribed to active cavity where injected field doesn't play a driving role in laser operation. We report that injected field can have the stabilizing impact even for such relatively weak injection. Moreover our findings show that both relaxation oscillations and spiking behaviour may be significantly suppressed up to complete elimination in broad-area laser submit to coherent optical injection. All the results were also found to stay principally valid for weak nonzero phase-amplitude coupling.

  17. Deep trap, laser activated image converting system

    NASA Technical Reports Server (NTRS)

    Maserjian, J. (Inventor)

    1975-01-01

    Receiving an optical image on the surface of a photoconducting semiconductor is presented, storing the image in deep traps of the semiconductor, and later scanning the semiconductor with a laser beam to empty the deep traps, thereby producing a video signal. The semiconductor is illuminated with photons of energy greater than the band gap producing electron-hole pairs in the semiconductor which subsequently fill traps in energy from the band edges. When the laser beam of low energy photons excites the trapped electrons and holes out of the traps into the conduction and valence bands, a photoconductivity can be observed.

  18. Detection of Laser Optic Defects Using Gradient Direction Matching

    SciTech Connect

    Chen, B Y; Kegelmeyer, L M; Liebman, J A; Salmon, J T; Tzeng, J; Paglieroni, D W

    2005-12-14

    That National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be the world's largest and most energetic laser. It has thousands of optics and depends heavily on the quality and performance of these optics. Over the past several years, we have developed the NIF Optics Inspection Analysis System that automatically finds defects in a specific optic by analyzing images taken of that optic. This paper describes a new and complementary approach for the automatic detection of defects based on detecting the diffraction ring patterns in downstream optic images caused by defects in upstream optics. Our approach applies a robust pattern matching algorithm for images called Gradient Direction Matching (GDM). GDM compares the gradient directions (the direction of flow from dark to light) of pixels in a test image to those of a specified model and identifies regions in the test image whose gradient directions are most in line with those of the specified model. For finding rings, we use luminance disk models whose pixels have gradient directions all pointing toward the center of the disk. After GDM identifies potential rings locations, we rank these rings by how well they fit the theoretical diffraction ring pattern equation. We perform false alarm mitigation by throwing out rings of low fit. A byproduct of this fitting procedure is an estimate of the size of the defect and its distance from the image plane. We demonstrate the potential effectiveness of this approach by showing examples of rings detected in real images of NIF optics.

  19. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    NASA Technical Reports Server (NTRS)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  20. Laser activated diffuse discharge switch

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1988-01-01

    The invention is a gas mixture for a diffuse discharge switch which is capable of changing from a conducting state to an insulating state in the presence of electrons upon the introduction of laser light. The mixture is composed of a buffer gas such as nitrogen or argon and an electron attaching gas such as C.sub.6 H.sub.5 SH, C.sub.6 H.sub.5 SCH.sub.3, CH.sub.3 CHO and CF.sub.3 CHO wherein the electron attachment is brought on by indirect excitation of molecules to long-lived states by exposure to laser light.

  1. PREFACE: Second International Conference on Optical and Laser Diagnostics

    NASA Astrophysics Data System (ADS)

    Arcoumanis, C.; Grattan, K. T. V.

    2006-08-01

    The area of optical and laser diagnostics continues to expand and develop, and is now an essential part of many fields in engineering. Indeed it is one of the most interdisciplinary of the topics of today's research, impacting upon areas from fundamental physics to IT and encompassing a wide number of specific fields in engineering today. The proceedings of this, the second International Conference on Optical and Laser Diagnostics (ICOLAD 2005), follows upon the very successful first conference held in 2002, and reflects in its content many of the developments in this area since that time. The aim of a Conference which is an international forum for new ideas and developments in this exciting branch of optical engineering continues, building upon the foundation of research in optical diagnostics and optical sensing for a number of industrial and biomedical application areas at the City University, London. The Conference was structured into a number of sessions, held over three days in London, with the contributed talks led by invited papers from many internationally known and respected experts in their field from the UK, mainland Europe, the United States and Japan. The material covered includes such major themes as laser diagnostics, reciprocating engine-related applications and flow velocity measurement, extending to encompass, for example, biomedical and structural monitoring using advanced optical techniques. The papers draw their authority from the reputations of the authors and the groups and companies internationally that they represent and this volume brings together a valuable cross-section of such world-leading research. The local Organizing Committee would like to acknowledge and thank the industrial sponsors of the Conference and the members of the local and the International Steering Committee for their contribution to the success of this Conference. In particular thanks are due to Ms Claire Pantlin and the Institute of Physics for their work to make

  2. Picosecond and subpicosecond visible laser ablation of optically transparent polymers

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Skordoulis, C. D.; Makropoulou, M. I.; Kar, A. K.

    1998-09-01

    The ablation rates, as a function of the laser fluence, of the optically transparent polymers, Nylon-6,6 and PMMA, are reported using picosecond and subpicosecond laser pulses, obtained from a Regenerative Amplified Nd:YAG laser system. The laser pulses had a duration of 100 ps at 1064 and 532 nm wavelengths and 0.8 ps at 595 nm. The ablation rate results indicate a strong saturation behaviour for both polymers in the investigated irradiation conditions. The material removal is 2-3 times higher in the case of the visible (532 nm) picosecond laser ablation experiments. The surface topology of the polymers was also studied. The obtained Atomic Force Microscopy images reveal no mechanical damage in the inner ablation crater wall. The qualitative analysis of the ablation mechanism for ultrashort pulse laser irradiation reveals a combination of photochemically induced direct bond dissociation and a photothermal process due to the relaxation of the excited polymers within the vibrational levels of the ground state.

  3. Optical truss and retroreflector modeling for picometer laser metrology

    NASA Astrophysics Data System (ADS)

    Hines, Braden E.

    1993-09-01

    Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.

  4. Laser induced damage in optical materials: ninth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado.

  5. Optical trapping and manipulation of neutral particles using lasers

    PubMed Central

    Ashkin, Arthur

    1997-01-01

    The techniques of optical trapping and manipulation of neutral particles by lasers provide unique means to control the dynamics of small particles. These new experimental methods have played a revolutionary role in areas of the physical and biological sciences. This paper reviews the early developments in the field leading to the demonstration of cooling and trapping of neutral atoms in atomic physics and to the first use of optical tweezers traps in biology. Some further major achievements of these rapidly developing methods also are considered. PMID:9144154

  6. Development of fluorides for high power laser optics

    SciTech Connect

    Ready, J.F.; Vora, H.

    1980-07-01

    The laser-assisted thermonuclear fusion program has significant needs for improved optical materials with high transmission in the ultraviolet, and with low values of nonlinear index of refraction. Lithium fluoride (LiF) possesses a combination of optical properties which are of potential use. Single-crystalline LiF is limited by low mechanical strength. In this program, we investigated the technique of press-forging to increase the mechanical strength. LiF single crystals were press-forged over the temperature range 300 to 600/sup 0/C to produce fine-grained polycrystalline material.

  7. Hybrid Ray/Wave Optics for Laser-Plasma Interaction

    SciTech Connect

    Ratowsky, R.P.; Kallman, J.S.; Afeyan, B.B.; Feit, M.D.

    1999-02-18

    This aim of this FY 1998 LDRD project was to create a computational tool which bridges the gap between wave and ray optical regimes, important for application areas such as laser propagation in plasma and multimode photonics. We used phase space methods, where a set of rays distributed in a particular way in position and angle retain many essential features of wave optics. To characterize and enhance our understanding of the method, we developed a GUI-based photonics tool which can analyze light propagation in systems with a variety of axial and transverse refractive index distributions.

  8. Optical mode control of surface-plasmon quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Moreau, V.; Bahriz, M.; Palomo, J.; Wilson, L. R.; Krysa, A. B.; Sirtori, C.; Austin, D. A.; Cockburn, J. W.; Roberts, J. S.; Colombelli, R.

    2007-04-01

    Surface-plasmon waveguides based on metallic strips can provide a two dimensional optical confinement. This concept has been successfully applied to quantum cascade lasers, processed as ridge waveguides, to demonstrate that the lateral extension of the optical mode can be influenced solely by the width of the device top contact. For devices operating at a wavelength of λ ≈7.5 μm, the room-temperature threshold current density was reduced from 6.3 kA/cm2 to 4.4 kA/cm2 with respect to larger devices with full top metallization.

  9. Nondispersive optical activity of meshed helical metamaterials.

    PubMed

    Park, Hyun Sung; Kim, Teun-Teun; Kim, Hyeon-Don; Kim, Kyungjin; Min, Bumki

    2014-11-17

    Extreme optical properties can be realized by the strong resonant response of metamaterials consisting of subwavelength-scale metallic resonators. However, highly dispersive optical properties resulting from strong resonances have impeded the broadband operation required for frequency-independent optical components or devices. Here we demonstrate that strong, flat broadband optical activity with high transparency can be obtained with meshed helical metamaterials in which metallic helical structures are networked and arranged to have fourfold rotational symmetry around the propagation axis. This nondispersive optical activity originates from the Drude-like response as well as the fourfold rotational symmetry of the meshed helical metamaterials. The theoretical concept is validated in a microwave experiment in which flat broadband optical activity with a designed magnitude of 45° per layer of metamaterial is measured. The broadband capabilities of chiral metamaterials may provide opportunities in the design of various broadband optical systems and applications.

  10. Low-cost active optical system for fire surveillance

    NASA Astrophysics Data System (ADS)

    Utkin, A. B.; Lavrov, A. V.; Vilar, R. M.

    2009-06-01

    Detection of smoke plumes using active optical sensors provides many advantages with respect to passive methods of fire surveillance. However, the price of these sensors is often too high as compared to passive fire detection instruments, such as infrared and video cameras. This article describes robust and cost effective diode-laser optical sensor for automatic fire surveillance in industrial environment. Physical aspects of the sensing process allowing to simplify the hardware and software design, eventually leading to significant reduction of manufacturing and maintenance costs, are discussed.

  11. Transurethral optical laser knife and probe director for lateral firing laser probes

    NASA Astrophysics Data System (ADS)

    Malek, Reza S.

    1993-05-01

    Laser energy has been used by many for transurethral incision of small, obstructive prostates, vesical neck contractures, and urethral strictures. The customary techniques of moving the tip of the laser fiber through a cystoscope with a conventional laser guide, almost tangentially to the tissue to be incised, or drilling radially arranged holes in the scar, or both, have been cumbersome and imprecise. To provide exact control of the laser fiber and precise delivery of laser energy, a new guide was devised. It conducts the quartz fiber through the sheath and along the lens of an optical urethrotome. The tip of the quartz fiber contacts the tissue at an angle of 20 degree(s). KTP/532 laser energy is used to perform internal urethrotomy for urethral stricture, transurethral incision of postoperative contracture of the vesical neck, and transurethral incision of the small prostate under constant visual control. Recently, a straight version of this guide, called probe director, was devised to conduct the newly marketed lateral firing laser probes. This probe director allows precise control of such a probe within the prostatic urethral lumen and excellent maneuverability of the probe during transurethral laser prostatectomy.

  12. Coherent Semiconductor Laser Systems For Optical Intersatellite Links

    NASA Astrophysics Data System (ADS)

    Somerset, R. J.; Fletcher, G. D.

    1990-04-01

    Semiconductor laser based optical intersatellite links are attractive for use in both DRS type applications, and as links in the existing satellite-based telecommunications networks (for example between EUTELSAT SMS and INTELSAT IBS business services satellites). Initial ISL experiments will demonstrate direct detection systems using intensity modulation. Coherent systems offer significant improvements over these: the use of frequency shift keying modulation and heterodyne receivers provide significantly improved system sensitivities, which will allow practical systems with reliable laser sources (50 mW CW), and small optical telescopes (20 cm diameter). The SILEX ADD-ON CHANNEL is intended to demonstrate the potential of such systems within the framework of the ESA SILEX program.

  13. Optical accelerometer design based on laser self-mixing interference

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Li, Xingfei; Kou, Ke; Zhang, Limin

    2015-03-01

    A novel optical accelerometer based on laser self-mixing effect is presented and experimentally demonstrated, which consists of a mass-loaded elastic-beam assembly and laser self-mixing interferometer. Under external acceleration, an inertial force is applied to the mass, flexible beams deflect from their equilibrium position. The deflection can be read out by the self-mixing interferometer. In order to reduce the impact of higher harmonic, wavelet analysis is introduced to remove singular points. Preliminary results indicate that the resolution is 0.19μg/Hz1/2 within a bandwidth of 100Hz. The optical accelerometer has the potential to achieve high-precision, compact accelerometers.

  14. Modeling of Laser Induced Damage in NIF UV Optics

    SciTech Connect

    Feit, M D; Rubenchik, A M

    2001-02-21

    Controlling damage to nominally transparent optical elements such as lenses, windows and frequency conversion crystals on high power lasers is a continuing technical problem. Scientific understanding of the underlying mechanisms of laser energy absorption, material heating and vaporization and resultant mechanical damage is especially important for UV lasers with large apertures such as NIF. This LDRD project was a single year effort, in coordination with associated experimental projects, to initiate theoretical descriptions of several of the relevant processes. In understanding laser damage, we distinguish between damage initiation and the growth of existent damage upon subsequent laser irradiation. In general, the effect of damage could be ameliorated by either preventing its initiation or by mitigating its growth. The distinction comes about because initiation is generally due to extrinsic factors such as contaminants, which provide a means of local laser energy absorption. Thus, initiation tends to be local and stochastic in nature. On the other hand, the initial damaging event appears to modify the surrounding material in such a way that multiple pulse damage grows more or less regularly. More exactly, three ingredients are necessary for visible laser induced damage. These are adequate laser energy, a mechanism of laser energy absorption and mechanical weakness. For damage growth, the material surrounding a damage site is already mechanically weakened by cracks and probably chemically modified as well. The mechanical damage can also lead to electric field intensification due to interference effects, thus increasing the available laser energy density. In this project, we successfully accounted for the pulselength dependence of damage threshold in bulk DKDP crystals with the hypothesis of small absorbers with a distribution of sizes. We theoretically investigated expected scaling of damage initiation craters both to baseline detailed numerical simulations

  15. Influence of the pump-to-laser beam overlap on the performance of optically pumped cesium vapor laser.

    PubMed

    Cohen, Tom; Lebiush, Eyal; Auslender, Ilya; Barmashenko, Boris D; Rosenwaks, Salman

    2016-06-27

    Experimental and theoretical study of the influence of the pump-to-laser beam overlap, a crucial parameter for optimization of optically pumped alkali atom lasers, is reported for Ti:Sapphire pumped Cs laser. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency ~55% was obtained. The dependence of the lasing power on the pump power was found for different pump beam radii at constant laser beam radius. Non monotonic dependence of the laser power (optimized over the temperature of the Cs cell) on the pump beam radius was observed with a maximum achieved at the ratio ~0.7 between the pump and laser beam radii. The optimal temperature decreased with increasing pump beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the pump power at different pump beam radii and also of the laser power, threshold pump power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency and can be applied to different Ti:Sapphire and diode pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths. PMID:27410591

  16. A Search for Optical Laser Emission Using Keck HIRES

    NASA Astrophysics Data System (ADS)

    Tellis, Nathaniel K.; Marcy, Geoffrey W.

    2015-06-01

    We present a search for laser emissions coming from point sources in the vicinity of 2796 stars, including 1368 Kepler objects-of-interest (KOIs) that host one or more exoplanets. We search for extremely narrow emission lines in the wavelength region between 3640 and 7890 Å using the Keck 10 m telescope and spectroscopy with high-resolution (λ/Δλ = 60,000). Laser-emission lines coming from nonnatural sources are distinguished from natural astrophysical sources by being monochromatic and coming from an unresolved point in space. We search for laser emissions located 2-7'' from the 2796 target stars. The detectability of laser emissions is limited by Poisson statistics of the photons and scattered light, yielding a detection threshold flux of ~1 photons m-2 min-1 for typical Kepler stars and ~1 00 photons m-2 min-1 for solar-type stars within 100 lt-yr. Diffraction-limited lasers having a 10 m aperture can be detected from 100 lt-yr away if their power exceeds 90 W, and from 1000 lt-yr away (Kepler planets), if their power exceeds 1 kW (from lasers located 60-200 AU, and 2000-7000 AU from the nearby and Kepler stars, respectively). We did not find any such laser emission coming from any of the 2796 target stars. We discuss the implications for the search for extraterrestrial intelligence (SETI). We dedicate this work to the memory of Charles H. Townes, inventor of the laser and pioneer of optical SETI.

  17. Picosecond laser welding of optical to metal components

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jinanyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-03-01

    We report on practical, industrially relevant, welding of optical components to themselves and aluminum alloy components. Weld formation is achieved through the tight focusing of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. By selecting suitable surface preparation, clamping and laser parameters, the plasma can be confined, even with comparatively rough surfaces, by exploiting the melt properties of the glass. The short interaction time allows for a permanent weld to form between the two materials with heating limited to a region ~300 µm across. Practical application of these weld structures is typically limited due to the induced stress within the glass and, critically, the issues surrounding post-weld thermal expansion. We report on the measured strength of the weld, with a particular emphasis on laser parameters and surface preparation.

  18. Optical parametric amplifier pumped by two mutually incoherent laser beams

    NASA Astrophysics Data System (ADS)

    Tamošauskas, G.; Dubietis, A.; Valiulis, G.; Piskarskas, A.

    2008-05-01

    We report on the experimental proof-of-principle demonstration of the ultrashort pulse single-pass beta-barium borate, BBO optical parametric amplifier pumped by two mutually incoherent laser sources. We show that the amplified signal at 1054 nm gains energy from both pump pulses with wavelengths of 680 and 527 nm, respectively, with overall energy conversion of 36%, and exhibits low wavefront distortions and improved energy stability in the gain saturation regime.

  19. Optical feedback signal for ultrashort laser pulse ablation of tissue

    SciTech Connect

    Kim, B.-M.; Feit, M.D.; Rubenchik, A.M.; Mammini, B.M.; Da Silva, L.B.

    1997-07-01

    An optical feedback system for controlled precise tissue ablation is discussed. Our setup includes an ultrashort pulse laser (USPL), and a diagnostic system using analysis of either tissue fluorescence or plasma emission luminescence. Current research is focused on discriminating hard and soft tissues such as bone and spinal cord during surgery using either technique. Our experimental observations exhibit considerable spectroscopic contrast between hard and soft tissue, and both techniques offer promise for a practical diagnostic system.

  20. Heating of optical materials by pulsed CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Dmitriev, E. I.; Sakyan, A. S.; Starchenko, Aleksey N.; Goryachkin, Dmitri A.

    1998-12-01

    The results are presented on experimental investigations of action onto an optical glass BK-7 and some other materials of a CO2 laser radiation with the pulse duration of 20 - 70 microsecond(s) and the energy density of 0.1 - 3 J/cm2. The dynamics of a thermal response, temperature of heating and emissivity of irradiated glass samples are under consideration. The results obtained can be used in imaging techniques for objects selection.

  1. Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation.

    PubMed

    Ren, Yingying; Tan, Yang; Chen, Feng; Jaque, Daniel; Zhang, Huaijin; Wang, Jiyang; Lu, Qingming

    2010-07-19

    Optical channel waveguides have been produced for the first time in Nd:LGS multi-functional laser crystals by using proton implantation. The obtained good guiding performance exhibits the well-confined modal fields in the waveguiding structures. The confocal fluorescence images of the obtained waveguides have revealed that the photoluminescence properties of the Nd(3+) ions have been well-preserved in the waveguide's active volume, which suggests promising applications as multi-functional integrated laser generation elements. These images have been also used to elucidate the spatial distribution of lattice damage and distortion caused by the implantation process, which are both mainly located at the nuclear collision region.

  2. Optical Shaping of X-Ray Free-Electron Lasers.

    PubMed

    Marinelli, A; Coffee, R; Vetter, S; Hering, P; West, G N; Gilevich, S; Lutman, A A; Li, S; Maxwell, T; Galayda, J; Fry, A; Huang, Z

    2016-06-24

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes. PMID:27391728

  3. Optical Shaping of X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  4. Multimode laser beam analyzer instrument using electrically programmable optics

    NASA Astrophysics Data System (ADS)

    Marraccini, Philip J.; Riza, Nabeel A.

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M2. Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M2 experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  5. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    PubMed

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  6. Multimode laser beam analyzer instrument using electrically programmable optics.

    PubMed

    Marraccini, Philip J; Riza, Nabeel A

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  7. Test for optical systems in laser projection imaging for PCB

    NASA Astrophysics Data System (ADS)

    Qin, Ouyang; Zhou, Jinyun; Lei, Liang; Lin, Qinghua

    2010-11-01

    Projection imaging is one of the most important steps in the fabrication of Printed Circuit Board. In order to meet the increasing demand for higher resolution, speed and larger area of imaging, a novel Laser Projection Imaging (LPI) has been developed to take the place of the conventional Hg lamp exposure. We set up a system with resolution 10μm over large exposure area of 460mm×610mm on substrate materials. The system is available by the combination of three main parts: an XeF excimer laser with a wavelength of 351nm and single pulse energy of 120mJ, an illumination system with numerical aperture (NA) value of 0.02, and a double telecentric optical projection lens with NA value of 0.025. Such designs can theoretically meet the demand of actual lithography. However, experiments have shown that the propagation loss ratio of laser power from the light source to the substrate can be up to 50% or more so as to hardly achieve the expected results. In this paper, we present our results of experiments under different conditions on laser projection imaging equipment, and meanwhile, parameters such as gas lifetime, pulse repetition rate, exposure dose, as well as the optical lose of quartz microlens array are analyzed. Finally, we acquired the optimum exposure parameters.

  8. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during

  9. Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis

    DOEpatents

    Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

    2004-07-13

    A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

  10. Novel optical measuring systems and laser technologies for science and industry

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri; Plotnikov, Sergei; Potashnikov, Anatoly; Verkhogliad, Alexander

    2006-11-01

    The novel results of the R & D activity of TDI SIE SB RAS in the field of the optical measuring technologies, as well as laser technologies for solving safety problems are presented. To measure the rocks stress and to prevent the mountain impact, as well as for basic investigations, a set of optical-electronic deformers and systems was developed and produced. For permanent noncontact bearing position inspection of oil-drilling platforms on Sakhalin coast, Russia) we have developed optical-electronic method and system SAKHALIN with cumulative traveled distance (3 km) measurement error less than 0.03 %. Multifunctional laser technological system LSP-2000 equipped by two Nd-YAG lasers was developed for cutting, welding and surface micro profiling with ablation process (working range of 3 × 2 × 0.6 m 3, positioning error less than 10 mkm). Safety of Russian nuclear reactors takes 100 % noncontact 3D dimensional inspection of all parts of fuel assemblies, including grid spacers. Results of development and testing the specialized high productive laser measuring machine, based on structured illumination, for 3D inspection of grid spacers with micron resolution are presented. Ensuring the safety of running trains is the actual task for railways. Using high-speed laser noncontact method on the base of triangulation position sensors, TDI SIE has developed and produced automatic laser diagnostic system COMPLEX for inspection of geometric parameters of wheel pairs (train speed up to 60 km/hr.), which is used successfully on Russian railways. Experimental results on measuring and laser technological systems testing are presented.

  11. Laser parameters, focusing optics, and side effects in femtosecond laser corneal surgery

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Nuzzo, Valeria; Peyrot, Donald A.; Deloison, Florent; Savoldelli, Michèle; Legeais, Jean-Marc

    2008-02-01

    Nowadays, femtosecond lasers are routinely used in refractive eye surgery. Until recently, commercialised clinical systems were exclusively based on ytterbium or neodymium-doped solid state lasers emitting sub-picosecond pulses at a wavelength of about 1 μm and repetition rates of a few 10 kHz. These systems use pulse energies in the μJ range and focussing optics of NA = 0.3 to 0.5. Recent developments have provided a variety of alternative and equally viable approaches: systems are now available using nJ pulses at high numerical apertures and MHz repetition rates - an approach so far only used for femtosecond cell surgery - and fibre laser technology is now being used for femtosecond laser corneal surgery. Recent research has also provided more insight in side effects occurring in present systems: self focusing phenomena and so far unexplained periodical structures have been observed even at high numerical apertures (NA >> 0.5) and moderate pulse energies. The interaction of femtosecond laser pulses with strongly scattering tissue has been studied in view of extending the application of femtosecond lasers to keratoplasty for opaque corneas and to glaucoma surgery. The use of new laser wavelengths and adaptive optics has been proposed. Despite the reputation of femtosecond surgical systems for their precision, repeatability and the absence of secondary effects or complications, a closer examination reveals the presence of subtle phenomena which merit further investigation. We present three of these phenomena: the influence of optical aberration on the quality of the incision, the occurrence of filamentation effects, and the deposit of microscopic glass fragments when performing penetrating incisions.

  12. PREFACE: Third International Conference on Optical and Laser Diagnostics

    NASA Astrophysics Data System (ADS)

    Arcoumanis, C.; Grattan, K. T. V.

    2007-09-01

    The International Conference on Optical and Laser Diagnostics (ICOLAD 2007), held at City University in May 2007, was the third meeting in this well established series, following upon the first in 2002 and the second in 2005. During that time the area of optical and laser diagnostics has continued to develop and to expand with both the changes seen in the technology and the availability of new optical components and laser systems. The field remains one of the most interdisciplinary of the topics of today's research, impacting upon areas from fundamental physics to IT and encompassing a number of different areas in engineering today. These proceedings are a record of current practice in this area from a Conference which remains an international forum for new ideas and developments in this exciting branch of optical engineering. It builds upon the foundation of research in the broad field of optical diagnostics in a number of industrial and biomedical application areas at the City University, London. The Conference was structured into a number of sessions reflecting topical developments in engine research, optical sensing and measurement and biomedical engineering held over three days in London, with the contributed talks led by invited papers from many internationally known and respected experts in their field from mainland Europe, the United States and Japan and the UK. The material covered encompasses such major themes as laser diagnostics, reciprocating engine-related applications and flow velocity measurement, extending to include biomedical and structural monitoring using advanced optical techniques. The papers at this Conference continue to draw their authority from the reputations of the authors and the groups and companies internationally that they represent. This volume brings together a valuable cross-section of world-leading research at the time. The local Organizing Committee would like to acknowledge and thank the industrial sponsors of the Conference

  13. Measurement of optical activity of honey bee

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  14. Intracavity Fourier-optical transverse mode selection in an AlGaInP broad-area laser

    NASA Astrophysics Data System (ADS)

    Wolff, Sandra; Messerschmidt, Dirk; Fouckhardt, Henning

    1999-05-01

    A Fourier-optical set-up within the external cavity of a commercially available broad-area laser diode to select certain transverse modes is investigated experimentally. The external cavity consists of a lens and a spatial frequency filter, the latter consisting of a reflecting slit (perpendicular to the active layer) surrounded by a darkened background. This is a Fourier-optical 4f set-up (2f plus reflection). The laser employed first is a partially antireflection coated 0.25 W 655 nm AlGaInP broad area laser. The free running laser shows non-stationary filamentation. Placing the slit directly onto the optical axis gives cw fundamental mode operation and a transverse shift of the spatial filter allows for selective excitation of higher order modes at low pump currents. Next, a highly antireflection coated 1.2 W 811 nm AlGaAs broad area laser is utilized in the 4f set-up. Selective excitation of higher order modes is achieved at high pump currents. Another approach to support fundamental mode operation uses a 2f set-up (1f plus reflection) consisting of a concave mirror at a distance f away from the laser facet. Here, the laser facet with its active region dimensions is the spatial filter. Also, the feasibility of autocatalytic mode coupling for reduction of unstable filamentation of broad-area lasers is examined experimentally.

  15. COMPONENTS OF LASER SYSTEMS: Single-channel adaptive mirrors for laser optics

    NASA Astrophysics Data System (ADS)

    Safronov, A. G.

    1995-11-01

    Single-channel deformable mirrors for use in low-correction-order laser adaptive systems were developed and investigated. The structure of the mirrors is described and the results are given of experimental determinations of the initial shape of the optical surface, of the response functions, of the sensitivity, and of the electromechanical hysteresis. Calculations are reported of the thermal deformation of the mirrors subjected to the effects of heat under various conditions, and also of the frequency characteristics of these mirrors. It is shown that such adaptive mirrors are effective in compensation for large-scale axisymmetric distortions of the wavefront in laser optics operating at powers up to 1 kW. The operational range of these mirrors is approximately ±20 μm in respect of the amplitude of the optical surface displacements and up to 1 kHz in respect of the frequency.

  16. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  17. Multipass laser amplification with near-field far-field optical separation

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    This invention discloses two classes of optical configurations for high power laser amplification, one allowing near-field and the other allowing far-field optical separation, for the multiple passage of laser pulses through one or more amplifiers over an open optical path. These configurations may reimage the amplifier or any other part of the cavity on itself so as to suppress laser beam intensity ripples that arise from diffraction and/or non-linear effects. The optical cavities combine the features of multiple passes, spatial filtering and optical reimaging and allow sufficient time for laser gain recovery.

  18. Performance and production requirements for the optical components in a high-average-power laser system

    SciTech Connect

    Chow, R.; Doss, F.W.; Taylor, J.R.; Wong, J.N.

    1999-07-02

    Optical components needed for high-average-power lasers, such as those developed for Atomic Vapor Laser Isotope Separation (AVLIS), require high levels of performance and reliability. Over the past two decades, optical component requirements for this purpose have been optimized and performance and reliability have been demonstrated. Many of the optical components that are exposed to the high power laser light affect the quality of the beam as it is transported through the system. The specifications for these optics are described including a few parameters not previously reported and some component manufacturing and testing experience. Key words: High-average-power laser, coating efficiency, absorption, optical components

  19. Design of an Optically Controlled MR-Compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.

    2015-01-01

    An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231

  20. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    NASA Astrophysics Data System (ADS)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  1. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode

    PubMed Central

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-01-01

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging. PMID:26568136

  2. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-01

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  3. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    PubMed

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  4. CRC handbook of laser science and technology. Volume 3. Optical materials, Part 1 - Nonlinear optical properties/radiation damage

    SciTech Connect

    Weber, M.J.

    1986-01-01

    This book examines the nonlinear optical properties of laser materials. The physical radiation effects on laser materials are also considered. Topics considered include: nonlinear optical properties; nonlinear and harmonic generation materials; two-photon absorption; nonlinear refractive index; stimulated Raman scattering; radiation damage; crystals; and glasses.

  5. Fully automated hybrid diode laser assembly using high precision active alignment

    NASA Astrophysics Data System (ADS)

    Böttger, Gunnar; Weber, Daniel; Scholz, Friedemann; Schröder, Henning; Schneider-Ramelow, Martin; Lang, Klaus-Dieter

    2016-03-01

    Fraunhofer IZM, Technische Universität Berlin and eagleyard Photonics present various implementations of current micro-optical assemblies for high quality free space laser beam forming and efficient fiber coupling. The laser modules shown are optimized for fast and automated assembly in small form factor packages via state-of-the-art active alignment machinery, using alignment and joining processes that have been developed and established in various industrial research projects. Operational wavelengths and optical powers ranging from 600 to 1600 nm and from 1 mW to several W respectively are addressed, for application in high-resolution laser spectroscopy, telecom and optical sensors, up to the optical powers needed in industrial and medical laser treatment.

  6. Gas dynamics of the active medium of a supersonic cw HF chemical laser

    SciTech Connect

    Fedorov, Igor' A; Rotinyan, Mikhail A; Krivitskii, A M

    2000-12-31

    Gas-dynamic characteristics of a 5-kW supersonic cw HF chemical laser with a nozzle array of size 25 cm x 2.8 cm and the nozzle - nozzle mixing scheme were experimentally studied. The distributions of Mach numbers, static pressure, total pressure behind the normal shock, and the loss of total pressure were measured in the flow of an active medium in wide ranges of variation of the flow rate of secondary fuel (hydrogen) and pressure in the atomic-fluorine generator. The energy parameters of the laser were found to be interrelated with the gas dynamics and the optical quality of the active laser medium. (lasers)

  7. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  8. Optical AND/OR gates based on monolithically integrated vertical cavity laser with depleted optical thyristor structure.

    PubMed

    Choi, Woon-Kyung; Kim, Doo-Gun; Kim, Do-Gyun; Choi, Young-Wan; Choquette, Kent D; Lee, Seok; Woo, Deok-Ha

    2006-11-27

    Latching optical switches and optical logic gates with AND and OR functionality are demonstrated for the first time by the monolithic integration of a vertical cavity lasers with depleted optical thyristor structure. The thyristors have a low threshold current of 0.65 mA and a high on/off contrast ratio of more than 50 dB. By simply changing a reference switching voltage, this single device operates as two logic functions, optical logic AND and OR. The thyristor laser fabricated by using the oxidation process and has achieved high optical output power efficiency and a high sensitivity to the optical input light.

  9. 80-channel optical recording unit for laser plotter

    NASA Astrophysics Data System (ADS)

    Okazaki, Masahide; Hayashi, Takahisa; Wakimoto, Zenji

    1993-04-01

    This paper explains a new optical recording unit with 80 semiconductor lasers ((lambda) equals 780 nm), and it can be used in the drum rotation type prepress equipment for film exposure. The optical system consists of three units: a unit composed of an off-axis paraboloid mirror and a stereographic projection lens, a both-side telocentric zoom lens unit, and an afocal reduction lens unit. A both side telocentrical optical design has been adopted for each of the units. The stereographic projection lens and the off-axis paraboloid mirror combine to keep the beam intervals regular. As a result, excellent imaging performance and telocentric characteristics at the exposure plane are now available for all magnification ranges.

  10. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  11. Optical apparatus for laser scattering by objects having complex shapes

    DOEpatents

    Ellingson, William A.; Visher, Robert J.

    2006-11-14

    Apparatus for observing and measuring in realtime surface and subsurface characteristics of objects having complex shapes includes an optical fiber bundle having first and second opposed ends. The first end includes a linear array of fibers, where the ends of adjacent fibers are in contact and are aligned perpendicular to the surface of the object being studied. The second ends of some of the fibers are in the form of a polished ferrule forming a multi-fiber optical waveguide for receiving laser light. The second ends of the remaining fibers are formed into a linear array suitable for direct connection to a detector, such as a linear CMOS-based optical detector. The output data is analyzed using digital signal processing for the detection of anomalies such as cracks, voids, inclusions and other defects.

  12. Graphene active plasmonic metamaterials for new types of terahertz lasers

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  13. THz quantum cascade lasers with wafer bonded active regions.

    PubMed

    Brandstetter, M; Deutsch, C; Benz, A; Cole, G D; Detz, H; Andrews, A M; Schrenk, W; Strasser, G; Unterrainer, K

    2012-10-01

    We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.

  14. Long-term optical phase locking between femtosecond Ti:sapphire and Cr:forsterite lasers

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yohei; Yoshitomi, Dai; Kakehata, Masayuki; Takada, Hideyuki; Torizuka, Kenji

    2005-09-01

    Long-term optical phase-coherent two-color femtosecond pulses were generated by use of passively timing-synchronized Ti:sapphire and Cr:forsterite lasers. The relative carrier-envelope phase relation was fixed by an active feedback loop. The accumulated phase noise from 10 mHz to 1 MHz of the locked beat note was 0.43 rad, showing tight phase locking. The optical frequency fluctuation between two femtosecond combs was submillihertz, with a 1 s averaged counter measurement over 3400 s, leading to a long-term femtosecond frequency-comb connection.

  15. Triangulating laser profilometer as a navigational aid for the blind: optical aspects

    NASA Astrophysics Data System (ADS)

    Farcy, R.; Denise, B.; Damaschini, R.

    1996-03-01

    We propose a navigational aid approach for the blind that relies on active optical profilometry with real-time electrotactile interfacing on the skin. Here we are concerned with the optical parts of this system. We point out the particular requirements the profilometer must meet to meet the needs of blind people. We show experimentally that an adequate compromise is possible that consists of a compact class I IR laser-diode triangulation profilometer with the following angular resolution, 20-ms acquisition time per measure of distance, 60 degrees angular scanning field.

  16. Laser remote monitoring of plant photosynthetic activity

    NASA Astrophysics Data System (ADS)

    Barbini, Roberto; Colao, Francesco; Fantoni, Roberta; Palucci, Antonio; Ribezzo, Sergio

    1995-11-01

    Laboratory measurements of laser induced chlorophyll fluorescence kinetics (Kautsky effect) on dark-adapted vegetation targets (maize, pine-tree) have been performed with a lidar fluorosensor by superimposing probe pulses upon an actinic light. The collected induction curves (fast rise and slow decline) have been used to reveal the occurrence of stresses and the damage produced by a pine-tree parasite. A new two-pulse LIF (laser induced fluorescence) methodology has been investigated both theoretically and experimentally, in view of remotely monitoring the plant photosynthetic activity. This technique may yield information upon the in-vivo photosynthetic processes of plants, revealing a possible stress status (nutrients depletion, presence of herbicides, photoinhibition, etc.). The lidar apparatus used contains two laser sources in order to differentially measure the chlorophyll fluorescence by means of a laser pump-and-probe technique. In fact LIF signals in the red chlorophyll band 690 nm may provide in-vivo information upon photosynthesis process in high order plants and algae. Laser pump-and-probe experimental tests, with excitation 355 nm or 532 nm, already detect the presence of herbicides, and the effects of plant exposure to thermal stresses and to low levels of gaseous pollutants. Laser measured fluorescence yields (Y) have been found to be consistent with those obtained by an in-situ fluorimeter (PAM). With proper choices of experimental parameters (pump and probe laser intensities), Y approaches the theoretical value expected for a healthy dark-adapted plant.

  17. Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1993-01-01

    Major accomplishments under NASA grant NAG-1-1346 are summarized. (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed and several design parameters to be used for the construction of a femtosecond forsterite laser were revealed by simulation. (2) femtosecond pulses from a continuous wave mode-locked chromium doped forsterite laser were generated. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured. (3) Self-mode-locked operation of the Cr:forsterite laser was achieved. Synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking. The pulses generated had an FWHM of 105 fs and were tunable between 1230-1270 nm. (4) Numerical calculations indicated that the pair of SF 14 prisms used in the cavity compensated for quadratic phase but introduced a large cubic phase term. Further calculations of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same amount of quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was observed in the stability of the self mode-locked forsterite laser and in the ease of achieving mode locking. Using the same experimental arrangement and a new forsterite crystal with improved FOM the pulse width was reduced to 36 fs.

  18. Optical Parameter Variability in Laser Nerve Stimulation: A Study of Pulse Duration, Repetition Rate, and Wavelength

    PubMed Central

    Walsh, Joseph T.; Jansen, E. Duco; Bendett, Mark; Webb, Jim; Ralph, Heather; Richter, Claus-Peter

    2012-01-01

    Pulsed lasers can evoke neural activity from motor as well as sensory neurons in vivo. Lasers allow more selective spatial resolution of stimulation than the conventional electrical stimulation. To date, few studies have examined pulsed, mid-infrared laser stimulation of nerves and very little of the available optical parameter space has been studied. In this study, a pulsed diode laser, with wavelength between 1.844–1.873 μm, was used to elicit compound action potentials (CAPs) from the auditory system of the gerbil. We found that pulse durations as short as 35 μs elicit a CAP from the cochlea. In addition, repetition rates up to 13 Hz can continually stimulate cochlear spiral ganglion cells for extended periods of time. Varying the wavelength and, therefore, the optical penetration depth, allowed different populations of neurons to be stimulated. The technology of optical stimulation could significantly improve cochlear implants, which are hampered by a lack of spatial selectivity. PMID:17554829

  19. Free electron laser (FEL) laser-tissue interaction with human cornea and optic nerve

    NASA Astrophysics Data System (ADS)

    Joos, Karen M.; Edwards, Glenn S.; Shen, Jin-Hui; Shetlar, Debra J.; Robinson, Richard D.; O'Day, Denis M.

    1996-05-01

    A free electron laser (FEL) may be tuned to novel wavelengths to explore laser-tissue interactions for development or improvement of laser surgical procedures. This study investigated the effect of selected infrared wavelengths upon human cornea and optic nerve tissues. Human cadaver eyes were placed in 10% dextran solution to normalize corneal thickness, and solution was injected intraocularly to achieve a physiologic intraocular pressure. The corneas and optic nerves were lased with the 6.0 micrometer amide I band, 6.1 micrometer water absorbency peak, 6.45 micrometer amide II band, and 7.7 micrometer. The Vanderbilt FEL produces 5 microsecond long macropulses at 10 Hz with each macropulse consisting of 1 ps micropulses at 3 GHz. Histologic examination of the corneal tissue showed the least amount of collateral damage (10 - 20 micrometers) with the 6.0 micrometer amide I band, while marked shrinkage occurred with the 7.7 micrometer wavelength. For optic nerve tissue, the least amount of collateral damage (0 micrometer visible) occurred at 6.1 micrometer water absorbency peak and 6.45 micrometer amide II band, while the most damage (30 - 50 micrometers) was observed with the 7.7 micrometer wavelength. We conclude that different tissues may have different optimal wavelengths for surgical laser procedures.

  20. Combined advanced finishing and UV laser conditioning process for producing damage resistant optics

    DOEpatents

    Menapace, Joseph A.; Peterson, John E.; Penetrante, Bernardino M.; Miller, Philip E.; Parham, Thomas G.; Nichols, Michael A.

    2005-07-26

    A method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects, and are better capable of resisting optical deterioration upon exposure to a high-power laser beam.

  1. Overview of the laser activities at Rheinmetall Waffe Munition

    NASA Astrophysics Data System (ADS)

    Ludewigt, Klaus; Riesbeck, Thomas; Schünemann, B.; Graf, A.; Jung, Markus; Schreiber, Th.; Eberhardt, Ramona; Tünnermann, A.

    2012-11-01

    The paper will give an overview over the laser weapon activities at RWM (Rheinmetall Waffe Munition) over the last years. Starting from the actual scenarios for laser weapon applications as: CRAM (Counter Rocket Artillery Mortar), Air Defence and UXO (unexploded ordnance) clearing. The basic requirements of a future laser weapon as beam diameter, beam quality, tracking capability, adaptive optics were deduced. For the UXO scenario a mobile directed energy laser demonstrator for humanitarian mine and UXO clearing based on fiber lasers is presented. Based on the parameters the system concept including the cooling system, power supply and the integration into the armoured vehicle TM 170 are explained. The contribution show first experiments of UXO and IED clearing. Different technical approaches to achieve laser power in the 100 kW regime combined with very good beam quality are discussed to fulfil the requirements of the CRAM and Air Defence scenario. Spectral coupling and the beam superimposing both are performed by Rheinmetall Waffe Munition. At the spectral coupling the basic technology parameters for the fiber laser and the dielectric grating as the latest results were put into context with the power levels reached at other groups. For the beam super imposing technology the basic experiments regarding the tracking capability and compensation of the atmosphere on the test range at Unterlüß will be explained. A generic 10 kW Laser Weapon Demonstrator based on 2 Laser Weapon Modules (LWM) from RWM each 5 kW fiber Laser with beam forming and tracking integrate by the team of RWM and RAD (Rheinmetall Air Defense) into a Ground based Air Defend system consisting of Skyguard and Millenium turret are presented. The flight path of the UAV within the valley of the life firing range at Ochsenboden Switzerland is shown. Selected results of the successful tests against UAV's are presented. It shows the capability of the generic 10 kW Laser Weapon Demonstrator to track and

  2. Active/passive mode-locked laser oscillator

    DOEpatents

    Fountain, William D.; Johnson, Bertram C.

    1977-01-01

    A Q-switched/mode-locked Nd:YAG laser oscillator employing simultaneous active (electro-optic) and passive (saturable absorber) loss modulation within the optical cavity is described. This "dual modulation" oscillator can produce transform-limited pulses of duration ranging from about 30 psec to about 5 nsec with greatly improved stability compared to other mode-locked systems. The pulses produced by this system lack intrapulse frequency or amplitude modulation, and hence are idealy suited for amplification to high energies and for other applications where well-defined pulses are required. Also, the pulses of this system have excellent interpulse characteristics, wherein the optical noise between the individual pulses of the pulse train has a power level well below the power of the peak pulse of the train.

  3. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.

    PubMed

    Li, Guozhou; Li, Qiang; Yang, Lizhen; Wu, Lijun

    2016-07-01

    We investigate optical magnetism and optical activity in a simple planar metamolecule composed of double U-shaped metal split ring resonators (SRRs) twisted by 90° with respect to one another. Compared to a single SRR, the resonant energy levels are split and strong magnetic response can be observed due to inductive and conductive coupling. More interestingly, the nonchiral structures exhibit strong optical gyrotropy (1100°/λ) under oblique incidence, benefiting from the strong electromagnetic coupling. A chiral molecule model is proposed to shed light on the physical origin of optical activity. These artificial chiral metamaterials could be utilized to control the polarization of light and promise applications in enantiomer sensing-based medicine, biology, and drug development.

  4. Hybrid optical (freeform) components--functionalization of nonplanar optical surfaces by direct picosecond laser ablation.

    PubMed

    Kleindienst, Roman; Kampmann, Ronald; Stoebenau, Sebastian; Sinzinger, Stefan

    2011-07-01

    The performance of optical systems is typically improved by increasing the number of conventionally fabricated optical components (spheres, aspheres, and gratings). This approach is automatically connected to a system enlargement, as well as potentially higher assembly and maintenance costs. Hybrid optical freeform components can help to overcome this trade-off. They merge several optical functions within fewer but more complex optical surfaces, e.g., elements comprising shallow refractive/reflective and high-frequency diffractive structures. However, providing the flexibility and precision essential for their realization is one of the major challenges in the field of optical component fabrication. In this article we present tailored integrated machining techniques suitable for rapid prototyping as well as the fabrication of molding tools for low-cost mass replication of hybrid optical freeform components. To produce the different feature sizes with optical surface quality, we successively combine mechanical machining modes (ultraprecision micromilling and fly cutting) with precisely aligned direct picosecond laser ablation in an integrated fabrication approach. The fabrication accuracy and surface quality achieved by our integrated fabrication approach are demonstrated with profilometric measurements and experimental investigations of the optical performance. PMID:21743521

  5. Optical methods for diagnostics and feedback control in laser-induced regeneration of spine disc and joint cartilages

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Sviridov, Alexander; Omeltchenko, Alexander; Baum, Olga; Baskov, Andrey; Borchshenko, Igor; Golubev, Vladimir; Baskov, Vladimir

    2011-03-01

    In 1999 we have introduced a new approach for treatment of spine diseases based on the mechanical effect of nondestructive laser radiation on the nucleus pulposus of the intervertebral disc. Laser reconstruction of spine discs (LRD) involves puncture of the disc and non-destructive laser irradiation of the nucleus pulposus to activate reparative processes in the disc tissues. In vivo animal study has shown that LRD allows activate the growth of hyaline type cartilage in laser affected zone. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reparation in cartilages of spine and joints. The results of laser reconstruction of intervertebral discs for 510 patients have shown substantial relief of back pain for 90% of patients. Laser technology has been experimentally tested for reparation of traumatic and degenerative diseases in joint cartilage of 20 minipigs. It is shown that laser regeneration of cartilage allows feeling large (more than 5 mm) defects which usually never repair on one's own. Optical techniques have been used to promote safety and efficacy of the laser procedures.

  6. Laser-modulated scatter from optical surfaces using fiber detection

    NASA Astrophysics Data System (ADS)

    Natoli, Jean-Yves; Deumie, Carole; Amra, Claude

    2000-03-01

    The improvement of optical components for high power laser applications is still topical. Indeed the different signal cant progress made these last years, had allowed to improve the damage resistance of optical components by in particular, the identification of micronic precursors centers. A new challenge today is the identification of precursor centers of damage with size in the range of few nanometers. This kind of defects seems to play an important role in the laser damage process. In any case the challenge is to find an efficient tool able to detect these defects which are invisible with usual techniques as optical microscope or standard scattering. The technique of Laser Modulated Scattering (LMS) has been performed to reach this challenge. This new tool presented last year in the Boulder symposium, is based on a very high sensitivity detection of photothermal response of the defect. The LMS has been performed via two different setup arrangements. The first one uses tow beams as in the configuration of a standard Photothermal microscope, and the second one uses only one beam. In this article we first briefly remind the principle of the LMS technique with one and two beams. Then we will show by different results, the advantages of using an optical fiber to collect the scatted light instead of a block beam system used before. One of the main advantages of the setup using a fiber, is that it is easily possible to realize an angular study of scattering which allows a best understanding of the physical origin of the defect-induced scattered signal. The last part of this work consists of a series of stimulation of angular scattering LMS curve, in order to quantify the sensitivity and the powerfulness of this technique.

  7. LIFT: analysis of performance in a laser assisted adaptive optics

    NASA Astrophysics Data System (ADS)

    Plantet, Cedric; Meimon, Serge; Conan, Jean-Marc; Neichel, Benoît; Fusco, Thierry

    2014-08-01

    Laser assisted adaptive optics systems rely on Laser Guide Star (LGS) Wave-Front Sensors (WFS) for high order aberration measurements, and rely on Natural Guide Stars (NGS) WFS to complement the measurements on low orders such as tip-tilt and focus. The sky-coverage of the whole system is therefore related to the limiting magnitude of the NGS WFS. We have recently proposed LIFT, a novel phase retrieval WFS technique, that allows a 1 magnitude gain over the usually used 2×2 Shack-Hartmann WFS. After an in-lab validation, LIFT's concept has been demonstrated on sky in open loop on GeMS (the Gemini Multiconjugate adaptive optics System at Gemini South). To complete its validation, LIFT now needs to be operated in closed loop in a laser assisted adaptive optics system. The present work gives a detailed analysis of LIFT's behavior in presence of high order residuals and how to limit aliasing effects on the tip/tilt/focus estimation. Also, we study the high orders' impact on noise propagation. For this purpose, we simulate a multiconjugate adaptive optics loop representative of a GeMS-like 5 LGS configuration. The residual high orders are derived from a Fourier based simulation. We demonstrate that LIFT keeps a high performance gain over the Shack-Hartmann 2×2 whatever the turbulence conditions. Finally, we show the first simulation of a closed loop with LIFT estimating turbulent tip/tilt and focus residuals that could be induced by sodium layer's altitude variations.

  8. Continued advancement of laser damage resistant optically functional microstructures

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.; MacLeod, Bruce D.; Sabatino, Ernest

    2012-11-01

    Micro- and nano-structured optically functional surface textures continue to exhibit higher performance and longer term survivability than thin-film coatings for an increasing number of materials used within high energy laser (HEL) systems. Anti-reflection (AR) microstructures (ARMs) produce a graded refractive index yielding high transmission over wide spectral ranges along with a chemical, mechanical and laser damage resistance inherited from the bulk optic material. In this study, ARMs were fabricated in the relevant HEL materials sapphire, neodymium-doped YAG, fused silica, BK7 glass, and the magnesium aluminate known as SPINEL. Standardized pulsed laser induced damage threshold (LiDT) measurements were made using commercial testing services to directly compare the damage resistance of ARMs-treated optics to uncoated and thin-film-AR-coated (TFARC) optics at wavelengths of 532nm, 694nm, 800nm, 1064nm, and 1538nm. As found with prior work, the LiDT of ARMs etched in fused silica was typically in the range of 35 J/cm2 at a wavelength of 1064nm and a pulse width of 10ns, a level that is comparable to uncoated samples and 3.5 times greater than the level specified by six prominent TFARC providers. The Army Research Laboratory measured the pulsed LiDT at 532nm (10ns) of ARMs in fused silica to be up to 5 times the level of the ion beam sputtered TFARC previously employed in their HEL system, and 2 times higher than a low performance single layer MgF2 TFARC. This result was repeated and expanded using a commercial LiDT testing service for ARMs in two types of fused silica and for Schott N-BK7 glass. An average damage threshold of 26.5 J/cm2 was recorded for the ARMs-treated glass materials, a level 4 times higher than the commercial IBS TFARCs tested.

  9. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation.

    PubMed

    Habbema, Louis; Verhagen, Rieko; Van Hal, Robbert; Liu, Yan; Varghese, Babu

    2012-02-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create optical breakdown in the dermis while leaving the epidermis intact, resulting in lesions due to cavitation and plasma explosion. This stimulates a healing response and consequently skin remodelling, resulting in skin rejuvenation effects. Analysis of ex-vivo and in-vivo treated human skin samples successfully demonstrated the safety and effectiveness of the microscopic lesion creation inside the dermis. Treatments led to mild side effects that can be controlled by small optimizations of the optical skin contact and treatment depth within the skin. The histological results from a limited panel test performed on five test volunteers show evidence of microscopic lesion creation and new collagen formation at the sites of the optical breakdown. This potentially introduces a safe, breakthrough treatment procedure for skin rejuvenation without damaging the epidermis with no or little social down-time and with efficacy comparable to conventional fractional ablative techniques.

  10. Modeling of laser-induced damage and optic usage at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Liao, Zhi M.; Nostrand, Mike; Carr, Wren; Bude, Jeff; Suratwala, Tayyab I.

    2016-07-01

    Modeling of laser-induced optics damage has been introduced to benchmark existing optic usage at the National Ignition Facility (NIF) which includes the number of optics exchanged for damage repair. NIF has pioneered an optics recycle strategy to allow it to run the laser at capacity since fully commissioned in 2009 while keeping the cost of optics usage manageable. We will show how the damage model is being used to evaluate strategies to streamline our optics loop efficiency, as we strive to increase the laser shot rate without increasing operating costs.

  11. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  12. Photonic-crystal lasers on silicon for chip-scale optical interconnects

    NASA Astrophysics Data System (ADS)

    Takeda, Koji; Fujii, Takuro; Shinya, Akihiko; Kuramochi, Eiichi; Notomi, Masaya; Hasebe, Koichi; Kakitsuka, Takaaki; Matsuo, Shinji

    2016-03-01

    Optical interconnects are expected to reduce the power consumption of ICT instruments. To realize chip-to-chip or chip-scale optical interconnects, it is essential to fabricate semiconductor lasers with a smaller energy cost. In this context, we are developing lambda-scale embedded active-region photonic-crystal (LEAP) lasers as light sources for chip-scale optical interconnects. We demonstrated the first continuous-wave (CW) operation of LEAP lasers in 2012 and reported a record low threshold current and energy cost of 4.8 μA and 4.4 fJ/bit at 10 Gbit/s in 2013. We have also integrated photonic crystal photodetectors on the same InP chip and demonstrated waveform transfer along 500-μm-long waveguides. Although LEAP lasers exhibit excellent performance, they have to be integrated on Si wafers for use as light sources for chip-scale optical interconnects. In this paper, we give a brief overview of our LEAP lasers on InP and report our recent progress in fabricating them on Si. We bonded the InP wafers with quantum-well gain layers directly on thermally oxidized Si wafers and performed all process steps on the Si wafer, including high-temperature regrowth. After this process modification, we again achieved CW operation and obtained a threshold current of 57 μA with a maximum output power of more than 3.5 μW at the output waveguides. An output light was successfully guided through 500 × 250-nm InP waveguides.

  13. Laser-optical treatment for toothbrush bristles (nylon, synthetic, and polymeric materials, etc.)

    NASA Astrophysics Data System (ADS)

    Ma, Yangwu

    1994-08-01

    On the basis of the principle of laser radiation and materials interaction, a laser-optical treatment method for toothbrush bristles (nylon et al., synthetic and polymeric materials) is provided. In this process, laser irradiation is stopped during melting and followed by cooling, so the free end of each bristle of toothbrush is formed for a smooth globe. The toothbrush with laser-optical end-globed bristles have many remarkable functions.

  14. Effect of laser irradiation of nanoparticles in aqueous uranium salt solutions on nuclide activity

    SciTech Connect

    Simakin, Aleksandr V; Shafeev, Georgii A

    2011-07-31

    This paper presents an experimental study of the effect of laser irradiation of aqueous uranyl chloride solutions containing gold nanoparticles on the activity of the uranium series radionuclides {sup 234}Th, {sup 234m}Pa, and {sup 235}U. The solutions were exposed to femtosecond Ti:sapphire laser pulses and to the second or third harmonic of a Nd:YAG laser (150-ps pulses) at a peak intensity in the medium of {approx}10{sup 12} W cm{sup -2}. The activities of the radionuclides in the irradiated solutions were shown to differ markedly from their equilibrium values. The sign of the deviation depends on the laser wavelength. The measured activity deviations can be interpreted as evidence that laser exposure of nanoparticles accelerates the alpha and beta decays of the radionuclides. The observed effects are accounted for in terms of a mechanism that involves resonant enhancement of optical waves by metallic nanoparticles. (interaction of laser radiation with matter)

  15. LACOMA- OPTICAL ANALYSIS FOR LASER HETERODYNE COMMUNICATION SYSTEM

    NASA Technical Reports Server (NTRS)

    Cohen, S.

    1994-01-01

    LACOMA (Laser Communicator Analysis Program) was developed to predict the effects of optical aberrations on transmitters and receivers used in heterodyne communication systems. Combining the proven techniques of a previous optical program with a new approach designed to evaluate heterodyne performance, the program is a general purpose package to be used by optical and communication engineers. Two independent optical trains for the received signal and the local oscillator are specified and evaluated. A comprehensive ray trace subroutine and Fourier transform compute complex amplitude spread functions in a specified detector plane. The two functions are combined and integrated over a specific detector to determine heterodyne signal power. This power is normalized with respect to an ideal value to provide a quantitative value for receiver degradation. Values of local oscillator illumination efficiency, optical transmission, detection efficiency and phase match efficiency are also evaluated to isolate the cause of any unexpected degradations. The program has been used for a tolerance analysis of a selected system designed for space communications, and for evaluation of several other systems. This program was implemented on an IBM 360/91 and an IBM 360/95 and needs approximately 103K bytes of core.

  16. Optical guiding and beam bending in free-electron lasers

    SciTech Connect

    Scharlemann, E.T.

    1987-01-01

    The electron beam in a free-electron laser (FEL) can act as an optical fiber, guiding or bending the optical beam. The refractive and gain effects of the bunched electron beam can compensate for diffraction, making possible wigglers that are many Rayleigh ranges (i.e., characteristic diffraction lengths) long. The origin of optical guiding can be understood by examining gain and refractive guiding in a fiber with a complex index of refraction, providing a mathematical description applicable also to the FEL, with some extensions. In the exponential gain regime of the FEL, the electron equations of motion must be included, but a self-consistent description of exponential gain with diffraction fully included becomes possible. The origin of the effective index of refraction of an FEL is illustrated with a simple example of bunched, radiating dipoles. Some of the properties of the index of refraction are described. The limited experimental evidence for optical beam bending is summarized. The evidence does not yet provide conclusive proof of the existence of optical guiding, but supports the idea. Finally, the importance of refractive guiding for the performance of a high-gain tapered-wiggler FEL amplifier is illustrated with numerical simulations.

  17. Improved Method for Laser Damage Testing Coated Optics

    SciTech Connect

    Borden, M R; Folta, J A; Stolz, C J; Taylor, J R; Wolfe, J E; Griffin, A J; Thomas, M D

    2005-10-25

    The damage test procedure for qualifying a coating run of anti-reflection coated optics consists of scanning a pulsed 1064 nm laser over a 1 cm x 1 cm area on a test sample to illuminate approximately 2400 sites. Scans are repeated at 3 J/cm{sup 2} increments until the fluence specification for the optic is reached. In the past, initiation of 1 or more damage sites was classified as a failed coating run, requiring the production optics in the corresponding coating lot be reworked and recoated. Recent laser damage growth tests of 300 repetitive pulses performed on numerous damage sites revealed that all were stable up to 20 J/cm{sup 2}. Therefore the acceptance criteria has been modified to allow a moderate number of damage sites, as long as they are smaller than the allowed dig size and are stable (do not grow). Consequently many coating runs that previously would have been rejected are now accepted, resulting in higher yield, lower cost, and improved delivery schedule. The new test also provides assurance that initiated damage sites are stable during long term operation.

  18. Laser induced oxidation and optical properties of bismuth telluride nanoplates

    NASA Astrophysics Data System (ADS)

    Ye, Zhipeng; Sucharitakul, Sukrit; Keiser, Courtney; Kidd, Tim E.; Gao, Xuan P. A.; He, Rui

    2015-03-01

    Bi-Te nanoplates (NPs) grown by low pressure vapor transport method were studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry. Controlling the stoichiometry in the Bi-Te NP growth is thus very important for their thermoelectric, electronic, and optical device applications. Supported by American Chemical Society Petroleum Research Fund (Grant 53401-UNI10), NSF (No. DMR-1206530, No. DMR-1410496, DMR-1151534), UNI Faculty Summer Fellowship and a UNI capacity building grant.

  19. Mode locking of an all-fiber laser by acousto-optic superlattice modulation.

    PubMed

    Cuadrado-Laborde, C; Diez, A; Delgado-Pinar, M; Cruz, J L; Andrés, M V

    2009-04-01

    Active mode locking of an erbium-doped all-fiber laser with a Bragg-grating-based acousto-optic modulator is demonstrated. The fiber Bragg grating was acoustically modulated by a standing longitudinal elastic wave, which periodically modulates the sidebands at twice the acoustic frequency. The laser has a Fabry-Perot configuration in which cavity loss modulation is achieved by tuning the output fiber Bragg grating to one of the acoustically induced sidebands. Optical pulses at 9 MHz repetition rate, 120 mW peak power, and 780 ps temporal width were obtained. The output results to be stable and has a timing jitter below 40 ps. The measured linewidth, 2.8 pm, demonstrates that these pulses are transform limited.

  20. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  1. Antiphase dynamics in multimode semiconductor lasers with optical feedback

    SciTech Connect

    Masoller, C.; Torre, M. S.; Mandel, Paul

    2005-01-01

    We study the dynamics of multimode semiconductor lasers with optical feedback. Our model takes into account explicitly spatial effects, which are included by considering spatial profiles for N longitudinal modes coupled to the space-dependent gain. We also consider the effect of carrier diffusion. We find that in the weak feedback regime the longitudinal modes display antiphase oscillations that lead to a nearly constant output intensity. This result is largely independent of the value of the diffusion coefficient. For larger feedback we observe in-phase fast oscillations at a frequency close to the relaxation oscillation frequency of the solitary laser. In these two regimes, the total output of the laser has the properties of a single-mode laser for nondispersive applications. We assess the validity of an existing approximation scheme that has dealt with spatial inhomogeneities by expanding the carrier density into a truncated hierarchy of moments. We demonstrate that this approximation is very good when the underlying carrier diffusion is fast, thus leading to a weakly developed carrier grating.

  2. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  3. COMPONENTS OF LASER SYSTEMS: Diffraction gratings with high optical strength for laser resonators

    NASA Astrophysics Data System (ADS)

    Svakhin, A. S.; Sychugov, V. A.; Tikhomirov, A. E.

    1994-03-01

    A new approach to the fabrication of efficient diffraction gratings of the reflection type with a high optical strength is proposed. A diffraction grating with an efficiency of 64% was made and used in a resonator of a Q-switched YAG : Nd3+ laser. Gratings of this type are capable of withstanding the action of pulsed optical radiation right up to a power density of 180 MW cm-2. Possible use of such gratings at high angles of incidence of radiation so as to improve the spectral selectivity is considered.

  4. Electro-optical detection probability of optical devices determined by bidirectional laser retro-reflection cross section

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Christnacher, Frank; Matwyschuk, Alexis; Schertzer, Stephane; Hengy, Sebastien

    2015-05-01

    A good measure for the probability to detect a sniper telescopic sight is the effective bi-directional laser retro-reflection cross section. This angular (bi-directional) property of an optical device can be measured and can be used for a fist estimation of its probability to be detected by an active imaging. In the present paper, the authors give examples for resolved and non-resolved sensing of a telescopic sight under mono-static and bi-static conditions. As a result of these measurements, the resolved sensing under mono-static conditions shows the highest signal response in a wide angular range.

  5. Rate equations model and optical external efficiency of optically pumped electrically driven terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Hamadou, A.; Thobel, J.-L.; Lamari, S.

    2016-10-01

    A four level rate equations model for a terahertz optically pumped electrically driven quantum cascade laser is here introduced and used to model the system both analytically and numerically. In the steady state, both in the presence and absence of the terahertz optical field, we solve the resulting nonlinear system of equations and obtain closed form expressions for the levels occupation, population inversion as well as the mid-infrared pump threshold intensity in terms of the device parameters. We also derive, for the first time for this system, an analytical formula for the optical external efficiency and analyze the simultaneous effects of the cavity length and pump intensity on it. At moderate to high pump intensities, we find that the optical external efficiency scales roughly as the reciprocal of the cavity length.

  6. Optimum cavity length and absolute cavity detuning in acousto-optically mode-locked argon-ion lasers

    NASA Astrophysics Data System (ADS)

    Ruddock, I. S.; Illingworth, R.

    1987-09-01

    Acousto-optic mode-locking in an argon-ion laser was investigated in detail. Measurement of the discharge current is shown to be an accurate means of locating the optimum cavity length which depends strongly on level of excitation. The absolute cavity mismatch between the optimum length and that corresponding to c/4 vRF was determined by direct measurement and by using a cw dye laser as an active interferometer.

  7. An active solid state ring laser gyroscope

    SciTech Connect

    Valle, T.J.

    1992-01-01

    The properties of an active, solid state ring laser gyroscope were investigated. Two laser diode pumped monolithic nonplanar ring oscillators (NPRO), forced to lase in opposite directions, formed the NPRO-Gyro. It was unique in being an active ring laser gyroscope with a homogeneously broadened gain medium. This work examined sources of technical and fundamental noise. Associated calculations accounted for aspects of the NPRO-Gyro performance, suggested design improvements, and outlined limitations. The work brought out the need to stabilize the NPRO environment in order to achieve performance goals. Two Nd:YAG NPROs were mounted within an environment short term stabilized to microdegrees Celsius. The Allan variance of the NPRO-Gyro beat note was 500 Hz for a one second time delay. Unequal treatment of the NPROs appeared as noise on the beat frequency, therefore reducing its rotation sensitivity. The sensitivity to rotation was limited by technical noise sources.

  8. Laser-driven Sisyphus cooling in an optical dipole trap

    SciTech Connect

    Ivanov, Vladyslav V.; Gupta, Subhadeep

    2011-12-15

    We propose a laser-driven Sisyphus-cooling scheme for atoms confined in a far-off resonance optical dipole trap. Utilizing the differential trap-induced ac Stark shift, two electronic levels of the atom are resonantly coupled by a cooling laser preferentially near the trap bottom. After absorption of a cooling photon, the atom loses energy by climbing the steeper potential, and then spontaneously decays preferentially away from the trap bottom. The proposed method is particularly suited to cooling alkaline-earth-metal-like atoms where two-level systems with narrow electronic transitions are present. Numerical simulations for the cases of {sup 88}Sr and {sup 174}Yb demonstrate the expected recoil and Doppler temperature limits. The method requires a relatively small number of scattered photons and can potentially lead to phase-space densities approaching quantum degeneracy in subsecond time scales.

  9. Damage thresholds in laser-irradiated optical materials

    NASA Astrophysics Data System (ADS)

    Guignard, Franck; Autric, Michel L.; Baudinaud, Vincent

    1997-05-01

    An experimental study on the damage induced by laser irradiation on different materials, borosilicate glass, fused silicate, molded and stretched polymethylmethacrylate (PMMA), has been performed. The irradiation source is a 1KL pulsed cold cathode electron gun preionized TEA CO2 laser. Damage mechanisms are controlled by the in-depth absorption of the 10.6 micrometers radiation according to the Beer-Lambert law. PMMA is damaged following a boiling process. Stretched PMMA is fractured first, releasing stresses, then boiled like molded PMMA at a higher energy. BK7 crazed after the irradiation due to thermomechanical stresses, silicate melt and vaporized. Optical damages have been characterized by measuring the contrast transfer function through the irradiated samples.

  10. Recycle Rate in a Pulsed, Optically Pumped Rubidium Laser

    SciTech Connect

    Miller, Wooddy S.; Sulham, Clifford V.; Holtgrave, Jeremy C.; Perram, Glen P.

    2010-10-08

    A pulsed, optically pumped rubidium laser operating in analogy to the diode pumped alkali laser (DPAL) system at pump intensities as high as 750 kW/cm{sup 2} has been demonstrated with output energies of up to 13 {mu}J/pulse. Output energy is dramatically limited by spin-orbit relaxation rates under these high intensity pump conditions. More than 250 photons are available for every rubidium atom in the pumped volume, requiring a high number of cycles per atom during the 2-8 ns duration of the pump pulse. At 550 Torr of ethane, the spin-orbit relaxation rate is too slow to effectively utilize all the incident pump photons. Indeed, a linear dependence of output energy on pump pulse duration for fixed pump energy is demonstrated.

  11. Optical phase distortion due to compressible flow over laser turrets

    NASA Technical Reports Server (NTRS)

    Fuhs, A. E.; Fuhs, S. E.

    1980-01-01

    Analytical models for optical phase distortion due to compressible flow over a laser turret are developed. Phase distortion is calculated for both blunt and small perturbation turrets. For the blunt turret, the Janzen-Rayleigh technique is used to determine the flow field. Phase distortions of 2.2 wavelengths at 3.8 microns are calculated for the blunt turret. For small perturbation turrets, a versatile analytical model is developed for a turret on a fuselage with circular cross section. With a two dimensional Fourier series representation of the turret, any shape can be considered. Both subsonic and supersonic flows can be calculated. Phase distortions of 1.2 wavelengths at 3.8 microns are calculated for one turret at high subsonic Mach number. In addition to being of value for laser turrets, the methods are applicable to reconnaissance aircraft using photographic equipment and cruise missiles using celestial navigation.

  12. Optical Measurement of the Connection State in Laser Brazing

    NASA Astrophysics Data System (ADS)

    Tenner, Felix; Ramoser, Stephan; Dobler, Michael; Zalevsky, Zeev; Schmidt, Michael

    The laser brazing of steel sheets is widely applied in car-body manufacturing. The critical value for the strength of the joint is the minimal connection width between the two sheets. However, this value is depending on the feed rate and power of the laser and the feed rate and preheating current of the filler wire used. Furthermore, the wetting behavior of the brazing solder is affected by the surface properties of the joining partners and is thus prone to errors. Currently, mostly destructive testing is used to evaluate the connection state. Therefore, we studied a novel optical measurement technique which is capable of remotely measuring oscillations of the joining partners. In the proposed study, we show how the oscillations are connected to the process behavior and the fusion area and how the setup might be applied as a post- and in-process measurement system.

  13. Development of a terrain severity measurement system utilizing optical lasers

    NASA Astrophysics Data System (ADS)

    Dembski, Nicholas; Rizzoni, Giorgio; Soliman, Ahmed

    2006-05-01

    A terrain severity measurement system utilizing non-contact optical scanning laser technologies employed in on-road profiling has been developed to make detailed measurements of the relative smoothness of all types of terrain from paved roads to extreme off-road conditions. The objectives included operation in all climatic conditions, simplified operation, and rapid availability of data. Accelerometers and inclinometers are used to measure laser sensor movement in order to eliminate measurement errors due to vehicle pitch and roll. A GPS receiver is used to correlate terrain profile information to position and elevation data. The end result is an accurate description of the longitudinal and lateral terrain profile that can be used to characterize the terrain and within vehicle modeling and simulation programs.

  14. Limitations of synthetic aperture laser optical feedback imaging.

    PubMed

    Glastre, Wilfried; Jacquin, Olivier; Hugon, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric

    2012-11-01

    In this paper we study the origin and the effect of amplitude and phase noise on laser optical feedback imaging associated with a synthetic aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise; it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal, and drift phase noise; we show that it acts as a multiplicative noise. We explain how we can reduce phase noise by making oversampling or multiple measurements depending on its type. This work can easily be extended to all SA systems (radar, laser, or terahertz), especially when raw holograms are acquired point by point.

  15. Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)

    NASA Technical Reports Server (NTRS)

    Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael

    1993-01-01

    The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.

  16. Fiber-optic laser Doppler turbine tip clearance probe.

    PubMed

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 microm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades. PMID:16642064

  17. Q-switched fiber laser based on an acousto-optic modulator with injection seeding technique.

    PubMed

    Li, Wencai; Liu, Haowei; Zhang, Ji; Long, Hu; Feng, Sujuan; Mao, Qinghe

    2016-06-10

    The operation mechanism and the pulse property of an actively Q-switched erbium-doped fiber laser based on an acousto-optic modulator (AOM) switch with the injection seeding technique are investigated. Our results show that the Q-switched pulses can be locked to oscillate near a fixed frequency higher than that of the seed laser, though the frequency-shift effect of the AOM impedes stable cavity mode oscillations. The operation mechanism of such Q-switch fiber lasers can be explained by the mutual locking-in among the shifted frequency components originated from the injected coherence seed with the help of the gain dynamics of the Q-switch cavity. Moreover, narrow-linewidth Q-switched pulses with different repetition rates can be obtained with different cavity lengths for incredibly stable output pulses without any use of cavity-stabilized techniques. PMID:27409015

  18. Optical system of an imaging CO{sub 2} laser radar

    SciTech Connect

    He Yi; Wu Jian

    1996-12-31

    In this paper, an optical system is described that is an optical head of a coherent imaging CO{sub 2} laser radar. Discrimination and field of regard limit decided by the optical head itself are discussed. In the experimental laser radar only one continuous wave, single mode CO{sub 2} laser is used, and the signals from buildings of 7km away are obtained with acceptable SNR while the laser output is about 5w. Furthermore, the comparison between two optical systems based on individually linear frequency modulation (or chirp) pulse compression and frequency modulated continuous wave technique is also introduced in this paper.

  19. Optical caries diagnostics: comparison of laser spectroscopic PNC method with method of laser integral fluorescence

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2000-11-01

    In this research we present the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyses parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries-involved bacterias. He-Ne-laser ((lambda) =632,8 nm, 1-2mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) =655 nm, 0.1 mW and 630nm, 1mW) and He-Ne laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries.

  20. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  1. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado.

  2. Through the optical combiner monitoring in remote fiber laser welding of zinc coated steels

    NASA Astrophysics Data System (ADS)

    Colombo, Daniele; Colosimo, Bianca M.; Previtali, Barbara; Bassan, Daniele; Lai, Manuel; Masotti, Giovanni

    2012-03-01

    Thanks to the recent affirmation of the active fiber lasers, remote laser welding of zinc coated steels is under investigation with a particular emphasis on the overlap joint geometry. Due to the high power and high beam quality offered by these lasers, the remote laser welding process has become more practicable. However laser welding of lap zinc coated steels is still problematic because of the violent vaporisation of zinc. The presence of a gap between the plates allowing vapour degassing has been proven to avoid defects due to zinc vaporization. On the other hand variation in the gap value can lead to the welding defect formation. Therefore constant gap values should be ensured and deviation from the reference gap value has to be monitored during the execution of the welding process. Furthermore, the on-line monitoring of the gap values between the plates can be helpful for the on-line quality control of the welding process. The paper proposes a new monitoring solution for the measurement of the gap in remote fiber laser welding of overlapped zinc coated steels. In this solution, referred as Through the Optical Combiner Monitoring (TOCM) , the optical emissions from the welding process are directly observed through the optical combiner of the fiber laser source with spectroscopic equipment. The TOCM solution presented in the paper is integrated in an IPG YLS 3000 fiber laser source whose beam is deflected and focused by means of an El.En. ScanFiber scanning system with an equivalent focal length of 300 mm. After the definition of the right welding process conditions, spectroscopic tests are exploited to evaluate the optical emission from the welding plasma/plume. Acquired spectra are then analysed with multivariate data analysis approach in order to ensure gap monitoring. Results showed that with the proposed method it is possible to evaluate not only the gap between the plates but also the location inside the weld at which the variation occurs. Furthermore

  3. Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass.

    PubMed

    Fernandez, T Toney; Della Valle, G; Osellame, R; Jose, G; Chiodo, N; Jha, A; Laporta, P

    2008-09-15

    We report on fs-laser micromachining of active waveguides in a new erbium-doped phospho-tellurite glass by means of a compact cavity-dumped Yb-based writing system. The spectroscopic properties of the glass were investigated, and the fs-laser written waveguides were characterized in terms of passive as well as active performance. In particular, internal gain was demonstrated in the whole C+L band of optical communications (1530- 1610 nm).

  4. Dual electro-optical modulator polarimeter based on adaptive optics scanning laser ophthalmoscope.

    PubMed

    Song, Hongxin; Qi, Xiaofeng; Zou, Weiyao; Zhong, Zhangyi; Burns, Stephen A

    2010-10-11

    We constructed a high speed and high-resolution Stokes vector retinal imaging polarimeter with dual electro-optical modulators based on adaptive optics scanning laser ophthalmoscope. By varying the voltages on the EO crystals line by line, we were able to measure over 500,000 Stokes vectors per second. We used this system in three human subjects demonstrating the capability of the system to be employed in vivo. The high speed effectively decreases the adverse impact of eye motion induced errors in polarization calculations, improving the contrast of retinal structures based on their polarization properties. PMID:20941089

  5. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments.

    PubMed

    Parker, B; Marra, G; Johnson, L A M; Margolis, H S; Webster, S A; Wright, L; Lea, S N; Gill, P; Bayvel, P

    2014-12-10

    We report the design and performance of a transportable laser system at 1543 nm, together with its application as the source for a demonstration of optical carrier frequency transmission over 118 km of an installed dark fiber network. The laser system is based around an optical reference cavity featuring an elastic mounting that bonds the cavity to its support, enabling the cavity to be transported without additional clamping. The cavity exhibits passive fractional frequency insensitivity to vibration along the optical axis of 2.0×10(-11)  m(-1) s(2). With active fiber noise cancellation, the optical carrier frequency transmission achieves a fractional frequency instability, measured at the user end, of 2.6×10(-16) at 1 s, averaging down to below 3×10(-18) after 20,000 s. The fractional frequency accuracy of the transfer is better than 3×10(-18). This level of performance is sufficient for comparison of state-of-the-art optical frequency standards and is achieved in an urban fiber environment.

  6. Supernovae and extragalactic astronomy with laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Ryder, Stuart D.; Mattila, Seppo; Kankare, Erkki; Väisänen, Petri

    2014-07-01

    Using the latest generation of adaptive optics imaging systems together with laser guide stars on 8m-class telescopes, we are finally revealing the previously-hidden population of supernovae in starburst galaxies. Finding these supernovae and measuring the amount of absorption due to dust is crucial to being able to accurately trace the star formation history of our Universe. Our images are amongst the sharpest ever obtained from the ground, and reveal much about how and why these galaxies are forming massive stars (that become supernovae) at such a prodigious rate.

  7. Optical turbulence and spectral condensate in long fibre lasers

    PubMed Central

    Turitsyna, E. G.; Falkovich, Gregory; El-Taher, Atalla; Shu, Xuewen; Harper, Paul; Turitsyn, Sergei K.

    2012-01-01

    We study numerically optical turbulence using the particular example of a recently created, ultra-long fibre laser. For normal fibre dispersion, we observed an intermediate state with an extremely narrow spectrum (condensate), which experiences instability and a sharp transition to a fluctuating regime with a wider spectrum. We demonstrate that the number of modes has an impact on the condensate's lifetime. The smaller the number of modes, the more resistant is the condensate to perturbations. Experimental results show a good agreement with numerical simulations. PMID:22870062

  8. Optical monitoring of scoliosis by 3D medical laser scanner

    NASA Astrophysics Data System (ADS)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  9. Binary arithmetic using optical symbolic substitution and integrated phototransistor surface-emitting laser logic

    SciTech Connect

    Cheng, J. ); Olbright, G.R.; Bryan, R.P. )

    1991-10-20

    We outline an architecture for performing binary addition by using optical symbolic substitution and optical logic gates based on heterojunction phototransistors and vertical-cavity surface-emitting lasers.

  10. Optical ablation by high-power short-pulse lasers

    SciTech Connect

    Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D.

    1996-02-01

    Laser-induced damage threshold measurements were performed on homogeneous and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations {tau} ranging from 140 fs to 1 ns. Gold coatings were found, both experimentally and theoretically, to be limited to 0.6 J/cm{sup 2} in the subpicosecond range for 1053-nm pulses. In dielectrics, we find qualitative differences in the morphology of damage and a departure from the diffusion-dominated {tau}{sup 1/2} scaling that indicate that damage results from plasma formation and ablation for {tau}{le}10 ps and from conventional heating and melting for {tau}{approx_gt}50 ps. A theoretical model based on electron production by multiphoton ionization, joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulse-width and the wavelength scaling of experimental results. {copyright} {ital 1996 Optical Society of America.}

  11. Linear laser diode arrays for improvement in optical disk recording

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.

  12. Optical third-harmonic generation using ultrashort laser pulses

    SciTech Connect

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-06-15

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal.

  13. Combined Endoscopic Optical Coherence Tomography and Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tumlinson, Alexandre R.; Utzinger, Urs

    Optical coherence tomography (OCT) and laser-induced fluorescence (LIF) are promising modalities for tissue characterization in human patients and animal models. OCT detects coherently backscattered light, whereas LIF detects fluorescence emission of endogenous biochemicals, such as reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), collagen, and fluorescent proteins, or exogenous substances such as cyanine dyes. Given the complementary mechanisms of contrast for OCT and LIF, the combination of the two modalities could potentially provide more sensitive and specific detection of disease than either modality alone. Sample probes for both OCT and LIF can be implemented using small diameter optical fibers, suggesting a particular synergy for endoscopic applications. In this chapter, the mechanisms of contrast and diagnostic capability for both OCT and LIF are briefly examined. Evidence of complementary capability is described. Example published combined OCT-LIF systems are reviewed, one successful commercial instrument is discussed, and example applications are provided.

  14. Electro-optic Laser-Sampled Neutron Detector

    SciTech Connect

    J. Kenneth Shultis; Douglas McGregor

    2009-11-30

    A new method of detecting radiation which can allow for long distance measurements is being investigated. The device is primarily for neutrons detection althought it could, in principle, be used for gamma ray detection. The neutron detection medium is a solid, transparent, electro-optical material, such as lithium niobate, lithium tantalite, or barium borate. Crystals of these materials act as optical gates to laser light, allowing light to pass through only when a neutron interaction occurs in the crystal. Typical light detection devices, such as CCD cameras or photomultiplier tubes, can be used to signal when light passes through the crystal. The overall goal of the project is to investigate the feasibility of such devices for the detection of neutron radiation and to quantify their capabilities and limitations.

  15. Optical vibration sensor fabricated by femtosecond laser micromachining

    SciTech Connect

    Kamata, Masanao; Obara, Minoru; Gattass, Rafael R.; Cerami, Loren R.; Mazur, Eric

    2005-08-01

    We fabricated an optical vibration sensor using a high-repetition rate femtosecond laser oscillator. The sensor consists of a single straight waveguide written across a series of three pieces of glass. The central piece is mounted on a suspended beam to make it sensitive to mechanical vibration, acceleration, or external forces. Displacement of the central piece is detected by measuring the change in optical transmission through the waveguide. The resulting sensor is small, simple, and requires no alignment. The sensor has a linear response over the frequency range 20 Hz-2 kHz, can detect accelerations as small as 0.01 m/s{sup 2}, and is nearly temperature independent.

  16. Optical transmission through a polarization preserving single mode optical fiber at two Ar(+) laser wavelengths

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.

    1989-01-01

    The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.

  17. Doppler and range determination for deep space vehicles using active optical transponders

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1988-01-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.

  18. Optically pumped DBR-free semiconductor disk lasers.

    PubMed

    Yang, Zhou; Albrecht, Alexander R; Cederberg, Jeffrey G; Sheik-Bahae, Mansoor

    2015-12-28

    We report high power distributed Bragg reflector (DBR)-free semiconductor disk lasers. With active regions lifted off and bonded to various transparent heatspreaders, the high thermal impedance and narrow bandwidth of DBRs are mitigated. For a strained InGaAs multi-quantum-well sample bonded to a single-crystalline chemical-vapor deposited diamond, a maximum CW output power of 2.5 W and a record 78 nm tuning range centered at λ≈1160 nm was achieved. Laser operation using a total internal reflection geometry is also demonstrated. Furthermore, analysis for power scaling, based on thermal management, is presented. PMID:26831984

  19. Novel shaping optics of CO2 laser beam: LSV optics--principles and applications

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu; Horiguchi, Yukihiro; Maruo, Hiroshi

    1990-10-01

    A novel beam shaping optics, Linear-polarized Shape Variable (LSV) optics for high power CO2 laser beam has been developed, which provides a beam spot with variable beam shape in terms of different aspect ratios, and negligible shaping loss of 5% with high beam absorptivity of 50% in non-coated steel, which is as high as carbon coated steel, The high efficiencies both in shaping and metal heating are attained by utilizing linear-polarized CO2 laser beam. In laser hardening, the case depth larger than 2mm (width=l5mm) was obtained without any absorption coating. By changing the beam width in the direction of beam motion, D, in accordance with the traveling speed, hardened depth from 0.3mm to 2.5mm (width=l5mm) was obtained at constant surface temperature of 1400 C at 3kW power level. LSV optics was also used for local heating up to 1100 C in brazing Si3N4 ceramics with insertion of Al foil, and joint strength as high as 400 MPa was obtained in an irradiation time of about 20 sec without any preheating.

  20. Fiber Lasers and all Optical Logic Gates for Header Processing in High-Bit Optical Networks

    NASA Astrophysics Data System (ADS)

    Barnett, Brandon Craig

    As information technologies push network capacities toward higher bit rates, fiber-optic communication networks will eventually be capable of transmitting data at a rate at which electronic switches cannot respond. A solution to this problem is to replace the electronics at the front and back ends of the transmission system where data enters and exists in optical format with all-optical header processors. In this thesis, I will describe how the header processor has been divided into all-optical switching modules, which will act as the basic building block for the header processing unit. Each module arises from the integration of an erbium -doped fiber laser and an all-optical logic gate. The erbium-doped fiber laser (EDFL) acts as a local power supply for the module. It restores the pulse shape, pulse amplitude, and timing of an incoming optical bit stream. The development of a short-pulse EDFL and a high-power EDFL for this application is described. The high-power EDFL employs a unique cavity design that eliminates multiple pulses when pumped with high powers. Data processing is performed within the module by all-optical logic gates, which switch due to the nonlinear interaction of one pulse of light with another in optical fiber. Therefore, these gates can work at the bit rate of the transmission system and avoid the bottlenecks inherent in electronic processors. The design and demonstration of a low-latency soliton-dragging gate and a low-birefringent nonlinear optical loop mirror (low-bi NOLM) logic gate are described. The two logic gates are optimized for energy contrast, switching energy, timing sensitivity, and cascadability. Logic functionality is also demonstrated. The thesis culminates in an experiment that integrates the laser and logic gate work by driving two cascaded low -bi NOLM's with an EDFL. It is shown that this experiment utilizes all the components necessary to read the header of a high-bit-rate data packet, bringing closure to the switching