Science.gov

Sample records for optical activity roa

  1. Two-dimensional codistribution spectroscopy applied to UVRR and ROA investigations of biomolecular transitions

    NASA Astrophysics Data System (ADS)

    Ramer, Georg; Ashton, Lorna

    2016-11-01

    The first Raman optical activity (ROA) two-dimensional correlation spectroscopy (2DCOS) study in 2006, monitoring the temperature-induced α-helix-to-β-sheet transition in poly(L-lysine), demonstrated the versatility of 2DCOS. The combination of ROA and 2DCOS provided new ROA band assignments, enabled a direct comparison between the simultaneously collected Raman and ROA data using heterocorrelations and probed sequential information. This study also confirmed that 2DCOS can be successfully used with bisignate data, although specific care is needed when interpreting the results. However, as time has passed, doubts have been raised about not only the sequential orders reported in the study but also the general reliability of sequential data. This issue has now been addressed with the introduction of 2D codistribution (2DCDS) which is specifically designed to provide the sequence of the distributed presence of species along the perturbation variable axis. In light of these new developments in 2D correlation techniques we have revisited the original ROA data and we present our updated results. Furthermore, we demonstrate how 2DCDS can be successfully applied to bisignate data using new spectral data sets of perturbation-induced transitions in polynucleotides.

  2. Raman Optical Activity Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jovan Jose, K V; Raghavachari, Krishnan

    2016-02-01

    We present an efficient method for the calculation of the Raman optical activity (ROA) spectra for large molecules through the molecules-in-molecules (MIM) fragment-based method. The relevant higher energy derivatives from smaller fragments are used to build the property tensors of the parent molecule to enable the extension of the MIM method for evaluating ROA spectra (MIM-ROA). Two factors were found to be particularly important in yielding accurate results. First, the link-atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, yielding a mathematically rigorous method. Second, the long-range interactions between fragments are taken into account by using a less computationally expensive lower level of theory. The performance of the MIM-ROA model is calibrated on the enantiomeric pairs of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and ROA intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-ROA method is employed to predict the ROA spectra of d-maltose, α-D-cyclodextrin, and cryptophane-A, yielding spectra in excellent agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-ROA model for exploring ROA spectra of large molecules.

  3. Vibrational Raman optical activity of biological molecules

    NASA Astrophysics Data System (ADS)

    Barron, L. D.; Gargaro, A. R.; Hecht, Lutz; Wen, Z. Q.; Hug, W.

    1991-05-01

    Advances in Raman optical activity (ROA) instrumentation based on the employment of a backscattering geometry together with a cooled CCD detector have now enhanced the sensitivity to the level necessary to provide vibrational ROA spectra of biological molecules in aqueous solution. Preliminary results on peptides and proteins show features originating in coupled Ca-H and N-H deformations of the peptide backbone which appear to be sensitive to the secondary conformation. Also carbohydrates show many features that appear to be characteristic of the central aspects of carbohydrate architecture with effects from the glycosidic link in di- and oligosaccharides particularly prominent. 1.

  4. Vibrational Raman optical activity of biological molecules

    NASA Astrophysics Data System (ADS)

    Barron, L. D.; Hecht, Lutz; Wen, Z. Q.; Ford, Steven J.; Bell, A. F.

    1993-06-01

    Advances in Raman optical activity (ROA) instrumentation based on the employment of a backscattering geometry together with a cooled backthinned CCD detector, a holographic notch filter, and a high-efficiency single-grating spectrograph have now enhanced the sensitivity to the level necessary to provide vibrational ROA spectra of most biological molecules in aqueous solution. Results on peptides and proteins show features originating in coupled C(alpha )-H and N-H deformations of the peptide backbone which appear to be sensitive to the secondary conformation including loop and turn structures. Also carbohydrates show many features characteristic of the central aspects of carbohydrate architecture, with effects from the glycosidic link in oligosaccharides particularly prominent. Preliminary ROA spectra of pyrimidine nucleosides appear to reflect the mutual orientation of the sugar and base rings and the dominant furanose conformations.

  5. The asymmetry of (-)α-pinene as revealed from its raman optical activity spectrum.

    PubMed

    Wang, Peijie; Fang, Yan; Wu, Guozhen

    2013-10-01

    An algorithm is employed to retrieve the differential bond polarizabilities of the C-C bonds from the Raman optical activity (ROA) spectrum of (-)α-pinene. (-)α-pinene possesses two asymmetric centers (carbon atoms) and a local mirror symmetry. These differential bond polarizabilities show the characteristics of the asymmetry around the asymmetric carbons with respect to the mirror reflection. This analysis is accompanied along with the ROA mode signatures and the calculated β(G ')(2) and β(A)(2) which show the ROA coupling mechanisms involving the electric/magnetic dipoles and the electric dipole/quadrupole, respectively.

  6. Calculation of Raman optical activity spectra for vibrational analysis.

    PubMed

    Mutter, Shaun T; Zielinski, François; Popelier, Paul L A; Blanch, Ewan W

    2015-05-01

    By looking back on the history of Raman Optical Activity (ROA), the present article shows that the success of this analytical technique was for a long time hindered, paradoxically, by the deep level of detail and wealth of structural information it can provide. Basic principles of the underlying theory are discussed, to illustrate the technique's sensitivity due to its physical origins in the delicate response of molecular vibrations to electromagnetic properties. Following a short review of significant advances in the application of ROA by UK researchers, we dedicate two extensive sections to the technical and theoretical difficulties that were overcome to eventually provide predictive power to computational simulations in terms of ROA spectral calculation. In the last sections, we focus on a new modelling strategy that has been successful in coping with the dramatic impact of solvent effects on ROA analyses. This work emphasises the role of complementarity between experiment and theory for analysing the conformations and dynamics of biomolecules, so providing new perspectives for methodological improvements and molecular modelling development. For the latter, an example of a next-generation force-field for more accurate simulations and analysis of molecular behaviour is presented. By improving the accuracy of computational modelling, the analytical capabilities of ROA spectroscopy will be further developed so generating new insights into the complex behaviour of molecules.

  7. Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes.

    PubMed

    Nagy, Péter R; Koltai, János; Surján, Péter R; Kürti, Jenő; Szabados, Ágnes

    2016-07-21

    Resonance (vibrational) Raman Optical Activity (ROA) spectra of six chiral single-walled carbon nanotubes (SWCNTs) are studied by theoretical means. Calculations are performed imposing line group symmetry. Polarizability tensors, computed at the π-electron level, are differentiated with respect to DFT normal modes to generate spectral intensities. This computational protocol yields a ROA spectrum in good agreement with the only experiment on SWCNT, available at present. In addition to the conventional periodic electric dipole operator we introduce magnetic dipole and electric quadrupole operators, suitable for conventional k-space calculations. Consequences of the complex nature of the wave function on the scattering cross section are discussed in detail. The resonance phenomenon is accounted for by the short time approximation. Involvement of fundamental vibrations in the region of the intermediate frequency modes is found to be more notable in ROA than in Raman spectra. Calculations indicate exceptionally strong resonance enhancement of SWCNT ROA signals. Resonance ROA profile of the (6,5) tube shows an interesting sign change that may be exploited experimentally for SWCNT identification. PMID:27315548

  8. Vibrational Raman optical activity of ketose monosaccharides

    NASA Astrophysics Data System (ADS)

    Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.

    1995-07-01

    The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.

  9. Disulfide chromophore and its optical activity.

    PubMed

    Maloň, Petr; Bednárová, Lucie; Straka, Michal; Krejčí, Lucie; Kumprecht, Lukáš; Kraus, Tomáš; Kubáňová, Markéta; Baumruk, Vladimír

    2010-01-01

    The compounds I-IV derived from α-D-cyclodextrin moiety by bridging and/or interconnecting with various patterns of disulfide bonds were chosen as models for the spectroscopic study of conformation of the disulfide bridge. The energy gap between the disulfide and cyclodextrin's electronic transitions allows us to investigate absorption and electronic circular dichroism spectra without disturbing spectral overlaps with amides or aromatic amino acids in peptides or proteins. Raman optical activity (ROA) spectra were measured and the bands due to S-S and C-S stretching motion identified. Comparison with the quantum mechanical calculations of simple models indicates that sense of disulfide twist follows sign of the measured S-S ROA band.

  10. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  11. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package: Automation Impacts of ROA's in the NAS

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to analyze the impact of Remotely Operated Aircraft (ROA) operations on current and planned Air Traffic Control (ATC) automation systems in the En Route, Terminal, and Traffic Flow Management domains. The operational aspects of ROA flight, while similar, are not entirely identical to their manned counterparts and may not have been considered within the time-horizons of the automation tools. This analysis was performed to determine if flight characteristics of ROAs would be compatible with current and future NAS automation tools. Improvements to existing systems / processes are recommended that would give Air Traffic Controllers an indication that a particular aircraft is an ROA and modifications to IFR flight plan processing algorithms and / or designation of airspace where an ROA will be operating for long periods of time.

  12. Simulation of Raman optical activity of multi-component monosaccharide samples.

    PubMed

    Melcrová, Adéla; Kessler, Jiří; Bouř, Petr; Kaminský, Jakub

    2016-01-21

    Determination of the saccharide structure in solution is a laborious process that can be significantly enhanced by optical spectroscopies. Raman optical activity (ROA) spectra are particularly sensitive to the chirality and conformation. However, the interpretation of them is largely dependent on computational tools providing a limited precision only. To understand the limitations and the link between spectral shapes and the structure, in the present study we measured and interpreted using a combination of molecular dynamics (MD) and density functional theory (DFT) Raman and ROA spectra of glucose and mannose solutions. Factors important for analyses of mixtures of conformers, anomers, and different monosaccharides are discussed as well. The accuracy of the simulations was found to be strongly dependent on the quality of the hydration model; the dielectric continuum solvent model provided lower accuracy than averaging of many solvent-solute clusters. This was due to different conformer weighting rather than direct involvement of water molecules in scattering recorded as ROA. However, the cluster-based simulations also failed to correctly reproduce the ratios of principal monosaccharide forms. The best results were obtained by a combined MD/DFT simulation, with the ratio of α- and β-anomers and the -CH2OH group rotamers determined experimentally by NMR. Then a decomposition of experimental spectra into calculated subspectra provided realistic results even for the glucose and mannose mixtures. Raman spectra decomposition provided a better overall accuracy (∼5%) than ROA (∼10%). The combination of vibrational spectroscopy with theoretical simulations represents a powerful tool for analysing the saccharide structure. Conversely, the ROA and Raman data can be used to verify the quality of MD force fields and other parameters of computational modeling. PMID:26689801

  13. Telescope Fabra ROA Montsec: A New Robotic Wide Field Baker-Nunn Facility

    NASA Astrophysics Data System (ADS)

    Fors, Octavi; Núñez, Jorge; Muiños, José Luis; Montojo, Francisco Javier; Baena-Gallé, Roberto; Boloix, Jaime; Morcillo, Ricardo; Merino, María Teresa; Downey, Elwood C.; Mazur, Michael J.

    2013-05-01

    A Baker-Nunn Camera (BNC), originally installed at the Real Instituto y Observatorio de la Armada (ROA) in 1958, was refurbished and robotized. The new facility, called Telescope Fabra ROA Montsec (TFRM), was installed at the Observatori Astronòmic del Montsec (OAdM). The process of refurbishment is described in detail. Most of the steps of the refurbishment project were accomplished by purchasing commercial components, which involve little posterior engineering assembling work. The TFRM is a 0.5 m aperture f/0.96 optically modified BNC, which offers a unique combination of instrumental specifications: fully robotic and remote operation, wide field of view (4°.4 × 4°.4), moderate limiting magnitude (V ~ 19.5 mag), ability of tracking at arbitrary right ascension (α) and declination (δ) rates, as well as opening and closing CCD shutter at will during an exposure. Nearly all kinds of image survey programs can benefit from those specifications. Apart from other less time-consuming programs, since the beginning of science TFRM operations we have been conducting two specific and distinct surveys: super-Earths transiting around M-type dwarfs stars, and geostationary debris in the context of Space Situational Awareness/Space Surveillance and Tracking (SSA/SST) programs. Preliminary results for both cases will be shown.

  14. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  15. Current Hale ROA Voice and Control Communication Practices and Performance: White Paper

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The objective of this white paper is to help achieve the ACCESS 5 goal by sharing the UNITE members knowledge of current HALE ROA communication systems with other ACCESS 5 participants so that all interested parties start from a common understanding as we begin the clarification of requirements for voice and C2 communication. This white paper is also intended to describe the point of departure for any future developments that need to be realized to achieve the long term ACCESS 5 goal. Although this white paper describes the current systems, the functional and performance requirements that are also being developed under ACCESS 5 may not require the same levels of functionality and performance as currently exist. The paper addresses the following: 1) A description of a typical current HALE ROA communications system, 2) HALE ROA communications systems performance metrics, 3) HALE ROA communications systems performance, and 5) A comparison of current HALE ROA communications systems with current regulations.

  16. Intramolecular Enantiomerism in S(+)2,2-dimethyl -1,3-dioxolane-4-methanol: The Interpretation of Raman Optical Activity Intensity.

    PubMed

    Wu, Guozhen; Wang, Peijie

    2015-11-01

    A bond polarizability algorithm was developed and applied to interpret the Raman optical activity (ROA) intensity. It is demonstrated that for the chiral molecule such as S(+)2,2-dimethyl-1,3-dioxolane-4-methanol there exists approximate (or symmetry breaking) mirror reflection that reverses the signs of the differential bond polarizabilities of the pair bond coordinates that are related to each other by the mirror reflection, just like that between the right and left enantiomers. The magnitude difference of the differential bond polarizabilities of the pair bond coordinates becomes smaller as they are farther away from the asymmetric atom. Hence, that the asymmetric atom (center) plays a central role in ROA is confirmed from a spectroscopic viewpoint. Meanwhile, the concept of intramolecular enantiomerism is proposed. PMID:26385122

  17. Stochastic optical active rheology

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsuk; Shin, Yongdae; Kim, Sun Taek; Reinherz, Ellis L.; Lang, Matthew J.

    2012-07-01

    We demonstrate a stochastic based method for performing active rheology using optical tweezers. By monitoring the displacement of an embedded particle in response to stochastic optical forces, a rapid estimate of the frequency dependent shear moduli of a sample is achieved in the range of 10-1-103 Hz. We utilize the method to probe linear viscoelastic properties of hydrogels at varied cross-linker concentrations. Combined with fluorescence imaging, our method demonstrates non-linear changes of bond strength between T cell receptors and an antigenic peptide due to force-induced cell activation.

  18. Optical activity and evolution.

    PubMed

    Khasanov, M M; Gladyshev, G P

    1980-09-01

    It is noted that the chemical reactions occurring in rarefied cosmic clouds (molecular concentration less than or approximately to 10(2) cm-3) differ from similar laboratory reactions by the much greater effect on the outcome of external force fields. In this light it is hypothesized that the synthesis of optically active substances may occur in the outer space under the conjoint stereospecific effect of a magnetic and other molecule-orienting field. It is further conjectured that the optically active substances of the Solar System had been produced in the course of its formation out of the primal rarefield cloud.

  19. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks. PMID:25361349

  20. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  1. Optical activity of BL Lacertae

    NASA Astrophysics Data System (ADS)

    Larionov, V.; Blinov, D.; Konstantinova, T.

    2012-04-01

    We perform optical photometric and R-band polarimetric monitoring of BL Lac using 70-cm AZT-8 (CrAO, Ukraine) and 0.4-m LX-200 (St.Petersburg, Russia) telescopes, as a part of GASP project. As reported in Atel#4028, this blazar was found by Fermi LAT in active state on 2012 April 9. Our data show that a sharp optical maximum was reached on the date 2012-04-08UT02:20, R=13.10, while on 2012-04-11UT01:30 R=13.40.

  2. Optical Studies of Active Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    This grant was to support optical studies of comets close enough to the sun to be outgassing. The main focus of the observations was drawn to the two extraordinarily bright comets Hyakutake and Hale-Bopp, but other active comets were also studied in detail during the period of funding. Major findings (all fully published) under this grant include: (1) Combined optical and submillimeter observations of the comet/Centaur P/Schwassmann-Wachmann 1 were used to study the nature of mass loss from this object. The submillimeter observations show directly that the optically prominent dust coma is ejected by the sublimation of carbon monoxide. Simultaneous optical-submillimeter observations allowed us to test earlier determinations of the dust mass loss rate. (2) We modelled the rotation of cometary nuclei using time-resolved images of dust jets as the primary constraint. (3) We obtained broad-band optical images of several comets for which we subsequently attempted submillimeter observations, in order to test and update the cometary ephemerides. (4) Broad-band continuum images of a set of weakly active comets and, apparently, inactive asteroids were obtained in BVRI using the University of Hawaii 2.2-m telescope. These images were taken in support of a program to test the paradigm that many near-Earth asteroids might be dead or dormant comets. We measured coma vs. nucleus colors in active comets (finding that coma particle scattering is different from, and cannot be simply related to, nucleus color). We obtained spectroscopic observations of weakly active comets and other small bodies using the HIRES spectrograph on the Keck 10-m telescope. These observation place sensitive limits to outgassing from these bodies, aided by the high (40,000) spectral resolution of HIRES.

  3. Different ways to active optical frequency standards

    NASA Astrophysics Data System (ADS)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  4. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  5. Optical design and active optics methods in astronomy

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  6. Nondispersive optical activity of meshed helical metamaterials.

    PubMed

    Park, Hyun Sung; Kim, Teun-Teun; Kim, Hyeon-Don; Kim, Kyungjin; Min, Bumki

    2014-11-17

    Extreme optical properties can be realized by the strong resonant response of metamaterials consisting of subwavelength-scale metallic resonators. However, highly dispersive optical properties resulting from strong resonances have impeded the broadband operation required for frequency-independent optical components or devices. Here we demonstrate that strong, flat broadband optical activity with high transparency can be obtained with meshed helical metamaterials in which metallic helical structures are networked and arranged to have fourfold rotational symmetry around the propagation axis. This nondispersive optical activity originates from the Drude-like response as well as the fourfold rotational symmetry of the meshed helical metamaterials. The theoretical concept is validated in a microwave experiment in which flat broadband optical activity with a designed magnitude of 45° per layer of metamaterial is measured. The broadband capabilities of chiral metamaterials may provide opportunities in the design of various broadband optical systems and applications.

  7. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package: Data Modeling and Sharing Perspective for Development of a Common Operating Picture

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report documents analyses that were performed in support of Task #3 of Work Package #3 (WP3), ROA Impact on the NAS. The purpose of the overall work package was to determine if there are any serious issues that would prevent or prohibit ROA's flying in the NAS on a routine basis, and if so, what actions should be taken to address them. The purpose of Task #3 was to look at this problem from the perspective of data modeling and sharing.

  8. Measurement of optical activity of honey bee

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutiérrez, Mauricio; Olivares-Pérez, Arturo; Salgado-Verduzco, Marco Antonio; Ibarra-Torres, Juan Carlos

    2016-03-01

    Optical activity of some substances, such as chiral molecules, often exhibits circular birefringence. Circular birefringence causes rotation of the vibration plane of the plane polarized light as it passes through the substance. In this work we present optical characterization of honey as function of the optical activity when it is placed in a polariscope that consists of a light source and properly arranged polarizing elements.

  9. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.

    PubMed

    Li, Guozhou; Li, Qiang; Yang, Lizhen; Wu, Lijun

    2016-07-01

    We investigate optical magnetism and optical activity in a simple planar metamolecule composed of double U-shaped metal split ring resonators (SRRs) twisted by 90° with respect to one another. Compared to a single SRR, the resonant energy levels are split and strong magnetic response can be observed due to inductive and conductive coupling. More interestingly, the nonchiral structures exhibit strong optical gyrotropy (1100°/λ) under oblique incidence, benefiting from the strong electromagnetic coupling. A chiral molecule model is proposed to shed light on the physical origin of optical activity. These artificial chiral metamaterials could be utilized to control the polarization of light and promise applications in enantiomer sensing-based medicine, biology, and drug development.

  10. Chiral sensing of amino acids and proteins chelating with Eu(III) complexes by Raman optical activity spectroscopy.

    PubMed

    Wu, Tao; Kessler, Jiří; Bouř, Petr

    2016-09-14

    Chiroptical spectroscopy of lanthanides sensitively reflects their environment and finds various applications including probing protein structures. However, the measurement is often hampered by instrumental detection limits. In the present study circularly polarized luminescence (CPL) of a europium complex induced by amino acids is monitored by Raman optical activity (ROA) spectroscopy, which enables us to detect weak CPL bands invisible to conventional CPL spectrometers. In detail, the spectroscopic response to the protonation state could be studied, e.g. histidine at pH = 2 showed an opposite sign of the strongest CPL band in contrast to that at pH = 7. The spectra were interpreted qualitatively on the basis of the ligand-field theory and related to CPL induced by an external magnetic field. Free energy profiles obtained by molecular dynamic simulations for differently charged alanine and histidine forms are in qualitative agreement with the spectroscopic data. The sensitivity and specificity of the detection promise future applications in probing peptide and protein side chains, chemical imaging and medical diagnosis. This potential is observed for human milk and hen egg-white lysozymes; these proteins have a similar structure, but very different induced CPL spectra. PMID:27523964

  11. Active optics, adaptive optics, and laser guide stars.

    PubMed

    Hubin, N; Noethe, L

    1993-11-26

    Optical astronomy is crucial to our understanding of the universe, but the capabilities of ground-based telescopes are severely limited by the effects of telescope errors and of the atmosphere on the passage of light. Recently, it has become possible to construct inbuilt corrective devices that can compensate for both types of degradations as observations are conducted. For full use of the newly emerged class of 8-meter telescopes, such active corrective capabilities, known as active and adaptive optics, are essential. Some physical limitations in the adaptive optics field can be overcome by artificially created reference stars, called laser guide stars. These new technologies have lately been applied with success to some medium and very large telescopes. PMID:17736819

  12. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy

    PubMed Central

    Perera, Angelo S.; Thomas, Javix; Poopari, Mohammad R.; Xu, Yunjie

    2016-01-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed in the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones that contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed “clusters-in-a-liquid” approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, VCD, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with

  13. The clusters-in-a-liquid approach for solvation: New insights from the conformer specific gas phase spectroscopy and vibrational optical activity spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yunjie; Perera, Angelo; Thomas, Javix; Poopari, Mohammad

    2016-02-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as a powerful spectroscopic tool for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed at the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones who contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed “clusters-in-a-liquid” approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the

  14. Laser and optics activities at CREOL

    SciTech Connect

    Stickley, C.M.

    1995-06-01

    CREOL is an interdisciplinary institute with a mission to foster and support research and education in the optical and laser sciences and engineering. CREOL`s principal members are its 21-strong faculty. The faculty are encouraged and supported in developing, maintaining, and expanding innovative and sponsored research programs, especially ones that are coupled to industry`s needs. The CREOL Director and Assistant Director, through empowerment by the CREOL faculty, coordinate and oversee the interactive, interdisciplinary projects of the faculty, the 85 graduate students and the 39 research staff. CREOL integrates these research efforts with the general educational mission and goals of the university, develops comprehensive course work in the optical and laser sciences and engineering, provides guidance and instruction to graduate students, administers MS and PhD programs, and provides facilities, funds, and administrative support to assist the faculty in carrying out CREOL`s mission and obtaining financial support for the research projects. CREOL`s specific areas of research activity include the following: IR systems; nonlinear optics; crystal growth; nonlinear integrated optics; new solid-state lasers; tunable far-infrared lasers; thin-film optics; theory; semiconductor lasers; x-ray/optical scattering; laser-induced damage; free-electron lasers; solid-state spectroscopy; x-ray sources and applications; laser propagation; laser processing of materials; optical design; optical limiting/sensor protection; diffractive optics; quantum well optoelectronics; dense plasmas/high-field physics; laser radar and remote sensing; diode-based lasers; and glass science.

  15. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  16. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  17. Recent optical activity of Mrk 421

    NASA Astrophysics Data System (ADS)

    Semkov, E.; Bachev, R.; Strigachev, A.; Ibryamov, S.; Peneva, S.; Gupta, A. C.

    2013-04-01

    Our BVRI optical observations of Mrk 421 were performed within the multiwavelength international campaign (December 2012-June 2013), with the participation of GASP-WEBT, Swift, MAGIC, VLBA, NuSTAR, Fermi, VERITAS, F-GAMMA and other collaborations. Following the reports of enhanced X-ray and gamma activity of Mrk 421 (ATel #4978, ATel #4977, ATel #4976, ATel #4974, ATel #4918), we observed this blazar with the optical telescopes of the National Astronomical Observatory Rozhen and the Astronomical Observatory Belogradchik, Bulgaria.

  18. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  19. Manifestation of optical activity in different materials

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Golovina, T. G.; Konstantinov, K. K.

    2014-07-01

    Various manifestations of optical activity (OA) in crystals and organic materials are considered. Examples of optically active enantiomorphic and nonenantiomorphic crystals of 18 symmetry classes are presented. The OA of enantiomorphic organic materials as components of living nature (amino acids, sugars, and proteins) is analyzed. Questions related to the origin of life on earth are considered. Examples of differences in the enantiomers of drugs are shown. The consequences of replacing conventional left-handed amino acids with additionally right-handed amino acids for living organisms are indicated.

  20. An Overhead Projection Demonstration of Optical Activity

    ERIC Educational Resources Information Center

    Hill, John W.

    1973-01-01

    Describes the use of two polarizing lenses, a yellow filter, an oatmeal bos, a piece of cardboard, a 1,000 ml beaker, and an overhead projector to demonstrate compound optical activity to large classes. Indicates the presence of an accuracy within 1-2 degrees of usually acceptable data. (CC)

  1. Optical fiber sensor having an active core

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)

    1993-01-01

    An optical fiber is provided. The fiber is comprised of an active fiber core which produces waves of light upon excitation. A factor ka is identified and increased until a desired improvement in power efficiency is obtained. The variable a is the radius of the active fiber core and k is defined as 2 pi/lambda wherein lambda is the wavelength of the light produced by the active fiber core. In one embodiment, the factor ka is increased until the power efficiency stabilizes. In addition to a bare fiber core embodiment, a two-stage fluorescent fiber is provided wherein an active cladding surrounds a portion of the active fiber core having an improved ka factor. The power efficiency of the embodiment is further improved by increasing a difference between the respective indices of refraction of the active cladding and the active fiber core.

  2. Active Star Architectures For Fiber Optics Ethernet

    NASA Astrophysics Data System (ADS)

    Linde, Yoseph L.

    1988-12-01

    Ethernet, and the closely related IEEE 802.3 CSMA/CD standard (Carrier Sense Multiple Access with Collision Detection), is probably the widest used method for high speed Local Area Networks (LANs). The original Ethernet medium was baseband coax but the wide acceptance of the system necessitated the ability to use Ethernet on a variety of media. So far the use of Ethernet on Thin Coax (CheaperNet), Twisted Pair (StarLan) and Broadband Coax has been standardized. Recently, an increased interest in Fiber Optic based LANs resulted in a formation of an IEEE group whose charter is to recommend approaches for Active and Passive Fiber Optic Ethernet systems. The various approaches which are being considered are described in this paper with an emphasis on Active Star based systems.

  3. Optical activity of chirally distorted nanocrystals

    NASA Astrophysics Data System (ADS)

    Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-05-01

    We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.

  4. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  5. Optically Active Porphyrin and Phthalocyanine Systems.

    PubMed

    Lu, Hua; Kobayashi, Nagao

    2016-05-25

    This review highlights and summarizes various optically active porphyrin and phthalocyanine molecules prepared using a wide range of structural modification methods to improve the design of novel structures and their applications. The induced chirality of some illustrative achiral bis-porphyrins with a chiral guest molecule is introduced because these systems are ideal for the identification and separation of chiral biologically active substrates. In addition, the relationship between CD signal and the absolute configuration of the molecule is analyzed through an analysis of the results of molecular modeling calculations. Possible future research directions are also discussed. PMID:27186902

  6. Active optics control development at the LBT

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; Biddick, Christopher; Hill, John M.

    2014-07-01

    The Large Binocular Telescope (LBT) is built around two 8.4 m-diameter primary mirrors placed with a centerline separation of 14.4 m in a common altitude/azimuth mount. Each side of the telescope can utilize a deployable prime focus instrument; alternatively, the beam can be directed to a Gregorian instrument by utilizing a deployable secondary mirror. The direct-Gregorian beam can be intercepted and redirected to several bent-Gregorian instruments by utilizing a deployable tertiary mirror. Two of the available bent-Gregorian instruments are interferometers, capable of coherently combining the beams from the two sides of the telescope. Active optics can utilize as many as 26 linearly independent degrees of freedom to position the primary, secondary and tertiary mirrors to control optical collimation while the telescope operates in its numerous observing modes. Additionally, by applying differential forces at 160 locations on each primary mirror, active optics controls the primary mirror figure. The authors explore the challenges associated with collimation and primary mirror figure control at the LBT and outline the ongoing related development aimed at optimizing image quality and preparing the telescope for interferometric operations.

  7. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams. PMID:26630376

  8. Passive and Active Fiber Optic Components

    NASA Astrophysics Data System (ADS)

    Digonnet, Michel Jean-Francois

    This thesis is concerned with the development and characterization of both passive and active fiber-optic components for applications in single-mode fiber systems, in particular in the new technology of fiber sensors and signal processors. These components include single-mode fiber directional couplers, vital to many optical fiber systems, all-fiber wavelength multiplexers, with potential applications in communication systems and active fiber devices, and single-crystal fiber lasers and amplifiers as miniature light sources and signal regenerators. The fiber directional couplers involved in this work, fabricated by a polishing process, are described in detail. Experimental characterization of their coupling, loss and unique tuning properties, and their respective dependence on the coupler geometrical parameters, are reported. A theoretical model of fiber-to-fiber coupling is also developed and shown to be a very useful and accurate tool in the design and study of this type of fiber couplers. The dependence of the coupling properties of fiber couplers on the signal wavelength is studied both theoretically and experimentally for applications in wavelength division multiplexing. All-fiber multiplexers exhibiting a good wavelength selectivity and unique tunability are described and shown to operate according to the coupler model. Work on active fiber devices explores the potential of the new technology of single-crystal fibers grown by the laser-heated floating-zone technique. The status of crystal fiber growth is reported, together with the basic physical and optical characteristics of these fibers. A theoretical model of the effects of fiber model structure on the gain and laser operation of active fibers is also developed to predict the performance of lasers and amplifiers in a fiber form. Several conceptual pumping schemes are described which offer solutions to the difficult problem of optically pumping small diameter fiber amplifiers. The experimental

  9. Active microstructured x-ray optical arrays

    NASA Astrophysics Data System (ADS)

    Michette, Alan G.; Pfauntsch, Slawka J.; Sahraei, Shahin; Shand, Matthew; Morrison, Graeme R.; Hart, David; Vojnovic, Boris; Stevenson, Tom; Parkes, William; Dunare, Camelia; Willingale, Richard; Feldman, Charlotte H.; Button, Tim W.; Zhang, Dou; Rodriguez-Sanmartin, Daniel; Wang, Hongchang; Smith, Andy D.

    2009-05-01

    The UK Smart X-Ray Optics consortium is developing novel reflective adaptive/active x-ray optics for small-scale laboratory applications, including studies of radiation-induced damage to biological material. The optics work on the same principle as polycapillaries, using configured arrays of channels etched into thin silicon, such that each x-ray photon reflects at most once off a channel wall. Using two arrays in succession provides two reflections and thus the Abbe sine condition can be approximately satisfied, reducing aberrations. Adaptivity is achieved by flexing one or both arrays using piezo actuation, which can provide further reduction of aberrations as well as controllable focal lengths. Modelling of such arrays for used on an x-ray microprobe, based on a microfocus source with an emitting region approximately 1μm in diameter, shows that a focused flux approximately two orders of magnitude greater than possible with a zone plate of comparable focal length is possible, assuming that the channel wall roughness is less than about 2nm.

  10. Optical activity and Alfred Werner's coordination chemistry.

    PubMed

    Ernst, Karl-Heinz; Berke, Heinz

    2011-03-01

    It is widely accepted, that Pasteur's seminal discovery of the opposite optical activity of ammonium sodium tartrate enantiomorphs in solution gave the spark to organic stereochemistry and led to the development of the tetrahedron model by van't Hoff and Le Bel. The proof that chirality is inherently connected to octahedral coordination chemistry fostered greatly Werner's spatial views of metal complexes and his coordination theory. The actual proof of principle was established via separation of diastereomeric camphor sulfonate salts of racemic metal complexes. PMID:20928897

  11. Active microring based tunable optical power splitters

    NASA Astrophysics Data System (ADS)

    Peter, Eldhose; Thomas, Arun; Dhawan, Anuj; Sarangi, Smruti R.

    2016-01-01

    In this paper we propose a set of novel tunable optical power splitters based on active microring resonators. They work by operating ring resonators in the transient zone between full resonance and off-resonance states for a specific wavelength. We can achieve different split ratios by either varying the bias voltage, or by selectively enabling a given resonator with a specific split ratio among an array of ring resonators. We take 500 ps to tune the resonator, which is at least 10× better that competing designs. Its split ratio varies from 0.4 to 1.8 for an applied voltage range of 0-5 V.

  12. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  13. Active polarimeter optical system laser hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-07-01

    A laser hazard analysis was performed for the SNL Active Polarimeter Optical System based on the ANSI Standard Z136.1-2000, American National Standard for Safe Use of Lasers and the ANSI Standard Z136.6-2000, American National Standard for Safe Use of Lasers Outdoors. The Active Polarimeter Optical System (APOS) uses a pulsed, near-infrared, chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) crystal laser in conjunction with a holographic diffuser and lens to illuminate a scene of interest. The APOS is intended for outdoor operations. The system is mounted on a height adjustable platform (6 feet to 40 feet) and sits atop a tripod that points the beam downward. The beam can be pointed from nadir to as much as 60 degrees off of nadir producing an illuminating spot geometry that can vary from circular (at nadir) to elliptical in shape (off of nadir). The JP Innovations crystal Cr:LiSAF laser parameters are presented in section II. The illuminating laser spot size is variable and can be adjusted by adjusting the separation distance between the lens and the holographic diffuser. The system is adjusted while platform is at the lowest level. The laser spot is adjusted for a particular spot size at a particular distance (elevation) from the laser by adjusting the separation distance (d{sub diffuser}) to predetermined values. The downward pointing angle is also adjusted before the platform is raised to the selected operation elevation.

  14. Neutron activation of NIF Final Optics Assemblies

    NASA Astrophysics Data System (ADS)

    Sitaraman, S.; Dauffy, L.; Khater, H.; Brereton, S.

    2010-08-01

    Analyses were performed to characterize the radiation field in the vicinity of the Final Optics Assemblies (FOAs) at the National Ignition Facility (NIF) due to neutron activation following Deuterium-Deuterium (DD), Tritium-Hydrogen-Deuterium (THD), and Deuterium-Tritium (DT) shots associated with different phases of the NIF operations. The activation of the structural components of the FOAs produces one of the larger sources of gamma radiation and is a key factor in determining the stay out time between shots to ensure worker protection. This study provides estimates of effective dose rates in the vicinity of a single FOA and concludes that the DD and THD targets produce acceptable dose rates within10 minutes following a shot while about 6-days of stay out time is suggested following DT shots. Studies are ongoing to determine the combined effects of multiple FOAs and other components present in the Target Bay on stay-out time and worker dose.

  15. Nanomechanics of Actively Controlled Deployable Optics

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    2000-01-01

    This document is the interim, annual report for the research grant entitled "Nanomechanics of Actively Controlled Deployed Optics." It is supported by NASA Langley Research Center Cooperative Agreement NCC-1 -281. Dr. Mark S. Lake is the technical monitor of the research program. This document reports activities for the year 1998, beginning 3/11/1998, and for the year 1999. The objective of this report is to summarize the results and the status of this research. This summary appears in Section 2.0. Complete details of the results of this research have been reported in several papers, publications and theses. Section 3.0 lists these publications and, when available, presents their abstracts. Each publication is available in electronic form from a web site identified in Section 3.0.

  16. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  17. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  18. Active optics with a minimum number of actuators

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.

    2014-06-01

    Optics for astronomy implies powerful developments of active and adaptive optics methods applied to instrumentation from X-rays to the near infrared for the design of telescopes, spectrographs, and coronagraph planet finders. This presentation particularly emphasizes the development of active optics methods. Highly accurate and remarkably smooth surfaces from active optics methods allow new optical systems that use highly aspheric and non-axisymmetric - freeform - surfaces. Depending on the goal and performance required for a deformable optical surface, elasticity theory analysis is carried out either with small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, or the weakly conical shell theory. A mirror thickness distribution is then determined as a function of associated bending actuators and boundary conditions. For a given optical shape to generate, one searches for optical solutions with a minimum number of actuators.

  19. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers

    NASA Astrophysics Data System (ADS)

    Plum, Eric

    2016-06-01

    Conventional three-dimensional (3D) chiral media can exhibit optical activity for transmitted waves, but optical activity for reflected waves is negligible. This work shows that mirror asymmetry of the experimental arrangement—extrinsic 3D chirality—leads to giant optical activity for reflected waves with fundamentally different characteristics. It is demonstrated experimentally that extrinsically 3D-chiral illumination of a lossy metasurface backed by a mirror enables tunable circular dichroism and circular birefringence as well as perfect absorption of circularly polarized waves. In contrast, such polarization phenomena vanish for conventional optically active media backed by a mirror.

  20. Polarization ray tracing in anisotropic optically active media

    NASA Technical Reports Server (NTRS)

    Mcclain, Stephen C.; Chipman, Russell A.

    1992-01-01

    Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometric ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide or organic liquids. Refraction and reflection algorithms are presented which compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified.

  1. Terahertz chiral metamaterials with giant and dynamically tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Chowdhury, Dibakar Roy; Zhao, Rongkuo; Azad, Abul K.; Chen, Hou-Tong; Soukoulis, Costas M.; Taylor, Antoinette J.; O'Hara, John F.

    2012-07-27

    We demonstrated giant optical activity using a chiral metamaterial composed of an array of conjugated bilayer metal structures. The chiral metamaterials were further integrated with photoactive inclusions to accomplish a wide tuning range of the optical activity through illumination with near-infrared light. The strong chirality observed in our metamaterials results in a negative refractive index, which can also be well controlled by the near-infrared optical excitation.

  2. Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity.

    PubMed

    Walton, Richard D; Bernus, Olivier

    2015-01-01

    The spatiotemporal dynamics of arrhythmias are likely to be complex three-dimensional phenomena. Yet, the lack of high-resolution three-dimensional imaging techniques, both in the clinic and the experimental lab, limits our ability to better understand the mechanisms of such arrhythmias. Optical mapping using voltage-sensitive dyes is a widely used tool in experimental electrophysiology. It has been known for decades that even in its most basic application, epi-fluorescence, the optical signal contains information from within a certain intramural volume. Understanding of this fundamental property of optical signals has paved the way towards novel three-dimensional optical imaging techniques. Here, we review our current understanding of the three-dimensional nature of optical signals; how penetration depths of cardiac optical imaging can be improved by using novel imaging modalities and finally, we highlight new techniques inspired from optical tomography and aiming at full depth-resolved optical mapping of cardiac electrical activity. PMID:26238062

  3. Active Learning Environment with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  4. Fiber optic chemical microsensors employing optically active silica microspheres

    NASA Astrophysics Data System (ADS)

    Pope, Edward J. A.

    1995-05-01

    Dye-doped porous silica microspheres can be prepared from liquid solution at temperatures near ambient. Microsphere diameter can be controlled between approximately 5.0 microns to in excess of a millimeter. The resulting microspheres can be attached to the distal end of an optical fiber in which the proximal end is attached to a spectrophotometer. Depending upon the organic species doped into the microsphere, a wide variety of sensing functions are possible. In this paper, the use of microsensors for measuring pH, temperature, and solvent content of aqueous solutions is demonstrated. Potential utility of this type of sensor to heavy metals detection and biomedical diagnostics is also discussed.

  5. Giant nonlinear optical activity in a plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Ren, Mengxin; Plum, Eric; Xu, Jingjun; Zheludev, Nikolay I.

    2012-05-01

    In 1950, a quarter of a century after his first-ever nonlinear optical experiment when intensity-dependent absorption was observed in uranium-doped glass, Sergey Vavilov predicted that birefringence, dichroism and polarization rotatory power should be dependent on light intensity. It required the invention of the laser to observe the barely detectable effect of light intensity on the polarization rotatory power of the optically active lithium iodate crystal, the phenomenon now known as the nonlinear optical activity, a high-intensity counterpart of the fundamental optical effect of polarization rotation in chiral media. Here we report that a plasmonic metamaterial exhibits nonlinear optical activity 30 million times stronger than lithium iodate crystals, thus transforming this fundamental phenomenon of polarization nonlinear optics from an esoteric phenomenon into a major effect of nonlinear plasmonics with potential for practical applications.

  6. Active learning in optics and photonics: Fraunhofer diffraction

    NASA Astrophysics Data System (ADS)

    Ghalila, H.; Ben Lakhdar, Z.; Lahmar, S.; Dhouaidi, Z.; Majdi, Y.

    2014-07-01

    "Active Learning in Optics and Photonics" (ALOP), funded by UNESCO within its Physics Program framework with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE (Society of Photo-Optical Instrumentation Engineers), aimed to helps and promotes a friendly and interactive method in teaching optics using simple and inexpensive equipment. Many workshops were organized since 2005 the year when Z. BenLakhdar, whom is part of the creators of ALOP, proposed this project to STO (Société Tunisienne d'Optique). These workshops address several issues in optics, covering geometrical optics, wave optics, optical communication and they are dedicated to both teachers and students. We focus this lecture on Fraunhofer diffraction emphasizing the facility to achieve this mechanism in classroom, using small laser and operating a slit in a sheet of paper. We accompany this demonstration using mobile phone and numerical modeling to assist in the analysis of the diffraction pattern figure.

  7. THE NATURE OF OPTICALLY DULL ACTIVE GALACTIC NUCLEI IN COSMOS

    SciTech Connect

    Trump, Jonathan R.; Impey, Chris D.; Gabor, Jared M.; Taniguchi, Yoshi; Nagao, Tohru; Shioya, Yasuhiro; Brusa, Marcella; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Huchra, John P.; Jahnke, Knud; Koekemoer, Anton M.; Salvato, Mara; Capak, Peter; Scoville, Nick Z.; Kartaltepe, Jeyhan S.; Lanzuisi, Giorgio; McCarthy, Patrick J.; Maineri, Vincenzo

    2009-11-20

    We present infrared, optical, and X-ray data of 48 X-ray bright, optically dull active galactic nuclei (AGNs) in the COSMOS field. These objects exhibit the X-ray luminosity of an AGN but lack broad and narrow emission lines in their optical spectrum. We show that despite the lack of optical emission lines, most of these optically dull AGNs are not well described by a typical passive red galaxy spectrum: instead they exhibit weak but significant blue emission like an unobscured AGN. Photometric observations over several years additionally show significant variability in the blue emission of four optically dull AGNs. The nature of the blue and infrared emission suggest that the optically inactive appearance of these AGNs cannot be caused by obscuration intrinsic to the AGNs. Instead, up to approx70% of optically dull AGNs are diluted by their hosts, with bright or simply edge-on hosts lying preferentially within the spectroscopic aperture. The remaining approx30% of optically dull AGNs have anomalously high f{sub X} /f{sub O} ratios and are intrinsically weak, not obscured, in the optical. These optically dull AGNs are best described as a weakly accreting AGN with a truncated accretion disk from a radiatively inefficient accretion flow.

  8. Asymmetric fishnet metamaterials with strong optical activity.

    PubMed

    Zhang, Yong-Liang; Jin, Wei; Dong, Xian-Zi; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2012-05-01

    We investigate the optical properties of mono- and double-layer asymmetric fishnet metamaterials with orientated elliptical holes, which exhibit exotic spectral and polarization rotating characteristics in the visible spectral range. Our results show that nontrivial orientations of the holes with respect to the reciprocal lattice vectors of the periodic lattice in both systems produce strong polarization rotation as well as additional enhanced optical transmission peaks. Analysis of the electromagnetic field distribution shows the unusual effect is produced by the spinning localized surface plasmon resonances due to the asymmetric geometry. High sensitivity of the hybridized mode on the dielectric spacing, the aspect ratio of the holes and the embedding media in double-layer structure is also observed. The dependence of spectral and polarization response on the orientation of the holes and the embedding media is useful for design of chiral metamaterials at optical frequencies and tailoring the polarization behavior of the metallic nano-structures.

  9. Active reflective components for adaptive optical zoom systems

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew Edward Lewis

    This dissertation presents the theoretical and experimental exploration of active reflective components specifically for large-aperture adaptive optical zoom systems. An active reflective component can change its focal length by physically deforming its reflecting surface. Adaptive optical zoom (AOZ) utilizes active components in order to change magnification and achieve optical zoom, as opposed to traditional zooming systems that move elements along the optical axis. AOZ systems are theoretically examined using a novel optical design theory that enables a full-scale tradespace analysis, where optical design begins from a broad perspective and optimizes to a particular system. The theory applies existing strategies for telescope design and aberration simulation to AOZ, culminating in the design of a Cassegrain objective with a 3.3X zoom ratio and a 375mm entrance aperture. AOZ systems are experimentally examined with the development of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  10. Laser optical disk position encoder with active heads

    NASA Technical Reports Server (NTRS)

    Osborne, Eric P.

    1991-01-01

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  11. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    An angular position encoder that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads with beam steering optics that actively track the disk in directions along the disk radius and normal to its surface is discussed. The device adapts features prevalent in optical disk technology to the application of angular position sensing.

  12. Hybrid plasmonic lattices with tunable magneto-optical activity.

    PubMed

    Kataja, Mikko; Pourjamal, Sara; Maccaferri, Nicolò; Vavassori, Paolo; Hakala, Tommi K; Huttunen, Mikko J; Törmä, Päivi; van Dijken, Sebastiaan

    2016-02-22

    We report on the optical and magneto-optical response of hybrid plasmonic lattices that consist of pure nickel and gold nanoparticles in a checkerboard arrangement. Diffractive far-field coupling between the individual emitters of the lattices results in the excitation of two orthogonal surface lattice resonance modes. Local analyses of the radiation fields indicate that both the nickel and gold nanoparticles contribute to these collective resonances and, thereby, to the magneto-optical activity of the hybrid arrays. The strong effect of noble metal nanoparticles on the magneto-optical response of hybrid lattices opens up new avenues for the realization of sensitive and tunable magneto-plasmonic nanostructures. PMID:26907022

  13. Photonic muscle active optics for space telescopes (active optics with 1023 actuators)

    NASA Astrophysics Data System (ADS)

    Ritter, Joe

    2009-08-01

    Presented is a novel optical system using Cis-Trans photoisomerization where nearly every molecule of a mirror substrate is itself an optically powered actuator. Primary mirrors require sub-wavelength figure (shape) error in order to achieve acceptable Strehl ratios. Traditional telescopy methods require rigid and therefore heavy mirrors and reaction structures as well as proportionally heavy and expensive spacecraft busses and launch vehicles. Areal density can be reduced by increasing actuation density. Making every molecule of a substrate an actuator approaches the limit of the areal density vs actuation design trade space. Cis-Trans photoisomerization, a reversible reorganization of molecular structure induced by light, causes a change in the shape and volume of azobenzene based molecules. Induced strain in these "photonic muscles" can be over 40%. Forces are pico-newtons/molecule. Although this molecular limit is not typically multiplied in aggregate materials we have made, considering the large number of molecules in a mole, future optimized systems may approach this limit In some π-π* mixed valence azo-polymer membranes we have made photoisomerization causes a highly controllable change in macroscopic dimension with application of light. Using different wavelengths and polarizations provides the capability to actively reversibly and remotely control membrane mirror shape and dynamics using low power lasers, instead of bulky actuators and wires, thus allowing the substitution of optically induced control for rigidity and mass. Areal densities of our photonic muscle mirrors are approximately 100 g/m2. This includes the substrate and actuators (which are of course the same). These materials are thin and flexible (similar to saran wrap) so high packing ratios are possible, suggesting the possibility of deployable JWST size mirrors weighing 6 kilograms, and the possibility of ultralightweight space telescopes the size of a football field. Photons weigh nothing

  14. Optical activity of chitosan films with induced anisotropy

    NASA Astrophysics Data System (ADS)

    Gegel, Natalia O.; Shipovskaya, Anna B.

    2016-04-01

    The optical anisotropy and optical activity of salt and basic chitosan films, both initial and modified in formic acid vapor were studied. The modification of such films was found to be accompanied by induced time-stable optical anisotropy, by varying the values of specific optical rotation [α] and an inversion of the sign of [α]. The angular dependences (indicatrices) of the specific optical rotation of films on the orientation angle of the sample relative to the direction of the polarization vector of the incident light beam in a plane perpendicular to the beam were obtained. The indicatrices of the initial chitosan films have an almost symmetrical character while those of the films modified in formic acid vapor are irregular. It is concluded of the formation of a vitrified cholesteric mesophase in the chitosan films with induced optical anisotropy.

  15. Trifluoromethyl nitrones: from fluoral to optically active hydroxylamines.

    PubMed

    Milcent, Thierry; Hinks, Nathan; Bonnet-Delpon, Danièle; Crousse, Benoit

    2010-06-28

    Trifluoromethyl nitrones were obtained in high yields by condensation of various hydroxylamines with trifluoroacetaldehyde hydrate. The nucleophilic diastereoselective additions of organometallic reagents to these nitrones afforded the corresponding optically active trifluoroethyl hydroxylamines in good yields. PMID:20458418

  16. Vibrational and electronic optical activity of the chiral disulphide group: implications for disulphide bridge conformation.

    PubMed

    Bednárová, Lucie; Bour, Petr; Malon, Petr

    2010-05-15

    Using dihydrogendisulphide (H(2)S(2)), dimethyl- ((CH(3))(2)S(2)), and diethyldisulphide ((CH(3)CH(2))(2)S(2))as model molecules, theoretical ECD, VCD, and ROA spectra of nonplanar disulphides were calculated by DFT methods. Most of the calculated electronic and vibrational chiroptical features suffer an equivocal relation between calculatedsigns of ECD, VCD, or ROA and the sense of disulphide nonplanarity as noted earlier for low-lying ECD bands. This is a consequence of local C(2) symmetry of a disulphide group causing most electronic and vibrational transitions to occur as pairs falling to alternative A, B symmetry species, which become degenerate and switch their succession (and consequently the observed chiroptical sign pattern) at the energetically most favorable perpendicular conformation. According to present calculations, the key to resolving this ambiguity may involve the S-S stretching vibrational mode at approximately 500 cm(-1). The relation of signs of the relevant VCD and ROA features to sense of disulphide chirality seems simpler and less ambiguous. The right-handed arrangement of the S-S group (0 < chi(S-S) < 180 degrees) results in mostly negative VCD signals. Although relation to ROA still suffers some ambiguity, it gets clearer along the series H(2)S(2)-(CH(3))(2)S(2)-(CH(3)CH(2))(2)S(2). ROA is also attractive for the analysis of disulphide-containing peptides and proteins, because applying it to aqueous solutions is not problematic.

  17. Label-free optical activation of astrocyte in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Yoon, Jonghee; Ku, Taeyun; Choi, Kyungsun; Choi, Chulhee

    2011-07-01

    As the most abundant cell type in the central nervous system, astrocyte has been one of main research topics in neuroscience. Although various tools have been developed, at present, there is no tool that allows noninvasive activation of astrocyte in vivo without genetic or pharmacological perturbation. Here we report a noninvasive label-free optical method for physiological astrocyte activation in vivo using a femtosecond pulsed laser. We showed the laser stimulation robustly induced astrocytic calcium activation in vivo and further verified physiological relevance of the calcium increase by demonstrating astrocyte mediated vasodilation in the brain. This novel optical method will facilitate noninvasive physiological study on astrocyte function.

  18. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    PubMed Central

    de Sousa, N.; Froufe-Pérez, L. S.; Sáenz, J. J.; García-Martín, A.

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. PMID:27488903

  19. Magneto-Optical Activity in High Index Dielectric Nanoantennas.

    PubMed

    de Sousa, N; Froufe-Pérez, L S; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  20. Magneto-Optical Activity in High Index Dielectric Nanoantennas

    NASA Astrophysics Data System (ADS)

    de Sousa, N.; Froufe-Pérez, L. S.; Sáenz, J. J.; García-Martín, A.

    2016-08-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.

  1. Magneto-Optical Activity in High Index Dielectric Nanoantennas.

    PubMed

    de Sousa, N; Froufe-Pérez, L S; Sáenz, J J; García-Martín, A

    2016-01-01

    The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones. PMID:27488903

  2. Active Learning Strategies for Introductory Light and Optics

    ERIC Educational Resources Information Center

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  3. Active stabilization of the optical part in fiber optic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Balygin, K. A.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.

    2016-03-01

    The method of active stabilization of the polarization and other parameters of the optical part of a two-pass fiber optic quantum cryptography has been proposed and implemented. The method allows the completely automated maintenance of the visibility of interference close to an ideal value ( V ≥ 0.99) and the reduction of the instrumental contribution to the error in primary keys (QBER) to 0.5%.

  4. Influence of optical activity on rogue waves propagating in chiral optical fibers

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Kofane, T. C.

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  5. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems. PMID:27415269

  6. Giant optical activity of sugar in thin soap films.

    PubMed

    Emile, Janine; Emile, Olivier; Ghoufi, Aziz; Moréac, Alain; Casanova, Federico; Ding, Minxia; Houizot, Patrick

    2013-10-15

    We report on enhanced experimental optical activity measurements of thin soap films in the presence of sugar. This unusual optical activity is linked to the intramolecular chiral conformation of the glucose molecules at the air/liquid interface. Choosing sodium dodecylsulfate (SDS) as a model surfactant and glucose as model sugar, favorable interactions between the anionic group -OSO3(-)- and the glucose molecules are highlighted. This induces an interfacial anchoring of glucose molecules leading to a perturbing influence of the asymmetric chiral environment. PMID:23932406

  7. Active optics system of the VLT Survey Telescope.

    PubMed

    Schipani, Pietro; Noethe, Lothar; Magrin, Demetrio; Kuijken, Konrad; Arcidiacono, Carmelo; Argomedo, Javier; Capaccioli, Massimo; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Fierro, Davide; Holzlöhner, Ronald; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; Ragazzoni, Roberto; Savarese, Salvatore; Rakich, Andrew; Umbriaco, Gabriele

    2016-03-01

    This paper describes the active optics system of the VLT Survey Telescope, the 2.6-m survey telescope designed for visible wavelengths of the European Southern Observatory at Cerro Paranal, in the Atacama desert. The telescope is characterized by a wide field of view (1.42 deg diameter), leading to tighter active optics than in conventional telescopes, in particular for the alignment requirements. We discuss the effects of typical error sources on the image quality and present the specific solutions adopted for wavefront sensing and correction of the aberrations, which are based on the shaping of a monolithic primary mirror and the positioning of the secondary in five degrees of freedom.

  8. Design of an Optically Controlled MR-Compatible Active Needle

    PubMed Central

    Ryu, Seok Chang; Quek, Zhan Fan; Koh, Je-Sung; Renaud, Pierre; Black, Richard J.; Moslehi, Behzad; Daniel, Bruce L.; Cho, Kyu-Jin; Cutkosky, Mark R.

    2015-01-01

    An active needle is proposed for the development of magnetic resonance imaging (MRI)-guided percutaneous procedures. The needle uses a low-transition-temperature shape memory alloy (LT SMA) wire actuator to produce bending in the distal section of the needle. Actuation is achieved with internal optical heating using laser light transported via optical fibers and side coupled to the LT SMA. A prototype, with a size equivalent to a standard 16-gauge biopsy needle, exhibits significant bending, with a tip deflection of more than 14° in air and 5° in hard tissue. A single-ended optical sensor with a gold-coated tip is developed to measure the curvature independently of temperature. The experimental results in tissue phantoms show that human tissue causes fast heat dissipation from the wire actuator; however, the active needle can compensate for typical targeting errors during prostate biopsy. PMID:26512231

  9. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    1992-04-01

    An angular position encoder is provided that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads which incorporate beam steering optics with the ability to actively track the disk in directions along the disk radius and normal to its surface. The device adapts features prevalent in optical disk technology toward the application of angular position sensing. A reflective disk and the principles of interferometry are employed. The servo-controlled steering optics move so as to acquire a track on the disk lying at a predetermined radius and distance below the head, and then adjust position and orientation in order to maintain the view of the disk track as required. Thus, the device is actively self-aligning.

  10. Laser optical disk position encoder with active heads

    NASA Astrophysics Data System (ADS)

    Osborne, Eric P.

    1990-03-01

    An angular position encoder is provided that minimizes the effects of eccentricity and other misalignments between the disk and the read stations by employing heads which incorporate beam steering optics with the ability to actively track the disk in directions along the disk radius and normal to its surface. The device adapts features prevalent in optical disk technology toward the application of angular position sensing. A reflective disk and the principles of interferometry are employed. The servo-controlled steering optics move so as to acquire a track on the disk lying at a predetermined radius and distance below the head, and then adjust position and orientation in order to maintain the view of the disk track as required. Thus, the device is actively self-aligning.

  11. 200-kV active optical fiber voltage transformer

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Luo, Sunan; Ye, Miaoyuan

    1999-02-01

    The report describes a 220kV Active Optical Fiber Voltage Transformer (AOVT). The transformer is different from the passive optical fiber voltage transformer, for no optical crystal is used in the 220kV AOVT. Its principle is that a low voltage is divided for the 220kV high voltage by a capacitive divider and then is converted into a digital signal. The optical fiber is used to transfer the measured digital signal and control signal. The 220kV AOVT consists of an outdoors-high voltage measurement unit and an indoors low voltage metering and controlling unit. The optical fiber connects these units. The low voltage is effectively isolated from the high voltage by means of the optical fiber and a special power supply method which is specially designed for the outdoor high voltage unit. As a result, the safe protection is reliable for the indoor low voltage equipment and the operation staff. Compared to the conventional voltage transformer, the advantages of the 220kV AOVT are high accuracy, low cost, excellent dynamic characteristics and immunity from electromagnetic interference. The 220kV AOVT has been tested, and its accuracy could achieve +/- 0.2 percent.

  12. Multicolour Optical Photometry of Active Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Jolley, A.; Wade, G.; Bedard, D.

    Although broadband photometry has been used to infer information about artificial satellites since soon after the launch of Sputnik 1, the development of photometric techniques for non-resolved space object identification or characterisation has been hampered by the large number of variables involved. Many individual studies, and some long ongoing experiments, have used costly metre-class telescopes to obtain data despite other experiments demonstrating that much more flexible and affordable small aperture telescopes may be suitable for the task. In addition, due to the highly time consuming and weather dependent nature of obtaining photometric observations, many studies have suffered from data sets of limited size, or relied upon simulations to support their claims. With this in mind, an experiment was conducted with the aim of determining the utility of small aperture telescopes for conducting broadband photometry of satellites for the purpose of non-resolved space object identification and characterisation. A 14 inch Celestron CG-14 telescope was used to gain multiple night-long, high temporal resolution data sets of six active geostationary satellites. The results of the experiment cast doubt on the efficacy of some of the previous approaches to obtaining and analysing photometric data. It was discovered that geostationary satellite lightcurves can vary to a greater degree than has generally been recognised, and colour ratios vary considerably with changes in the illumination/observation geometry, making it difficult to use colour for satellite discrimination. Evidence was also detected of variations in the spectral energy distribution of sunlight reflected off satellite surface materials, which could have implications for surface material characterisation and techniques that aim to separate satellite body and solar panel contributions to the total observed spectra.

  13. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  14. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  15. Low-cost active optical system for fire surveillance

    NASA Astrophysics Data System (ADS)

    Utkin, A. B.; Lavrov, A. V.; Vilar, R. M.

    2009-06-01

    Detection of smoke plumes using active optical sensors provides many advantages with respect to passive methods of fire surveillance. However, the price of these sensors is often too high as compared to passive fire detection instruments, such as infrared and video cameras. This article describes robust and cost effective diode-laser optical sensor for automatic fire surveillance in industrial environment. Physical aspects of the sensing process allowing to simplify the hardware and software design, eventually leading to significant reduction of manufacturing and maintenance costs, are discussed.

  16. Pattern matching based active optical sorting of colloids/cells

    NASA Astrophysics Data System (ADS)

    Verma, R. S.; Dasgupta, R.; Ahlawat, S.; Kumar, N.; Uppal, A.; Gupta, P. K.

    2013-08-01

    We report active optical sorting of colloids/cells by employing a cross correlation based pattern matching technique for selection of the desired objects and thereafter sorting using dynamically controllable holographic optical traps. The problem of possible collision between the different sets of objects during sorting was avoided by raising one set of particles to a different plane. We also present the results obtained on using this approach for some representative applications such as sorting of silica particles of two different sizes, of closely packed colloids and of white blood cells and red blood cells from a mixture of the two.

  17. Optical activity in planar chiral metamaterials: Theoretical study

    SciTech Connect

    Bai, Benfeng; Svirko, Yuri; Turunen, Jari; Vallius, Tuomas

    2007-08-15

    A thorough theoretical study of the optical activity in planar chiral metamaterial (PCM) structures, made of both dielectric and metallic media, is conducted by the analysis of gammadion-shaped nanoparticle arrays. The general polarization properties are first analyzed from an effective-medium perspective, by analogy with natural optical activity, and then verified by rigorous numerical simulation, some of which are corroborated by previous experimental results. The numerical analysis suggests that giant polarization rotation (tens of degrees) may be achieved in the PCM structures with a thickness of only hundreds of nanometers. The artificial optical activity arises from circular birefringence induced by the structural chirality and is enhanced by the guided-mode or surface-plasmon resonances taking place in the structures. There are two polarization conversion types in the dielectric PCMs, whereas only one type in the metallic ones. Many intriguing features of the polarization property of PCMs are also revealed and explained: the polarization effect is reciprocal and vanishes in the symmetrically layered structures; the effect occurs only in the transmitted field, but not in the reflected field; and the polarization spectra of two enantiomeric PCM structures are mirror symmetric to each other. These remarkable properties pave the way for the PCMs to be used as polarization elements in new-generation integrated optical systems.

  18. Remotely Operated Aircraft (ROA) Impact on the National Airspace System (NAS) Work Package, 2005: Composite Report on FAA Flight Plan and Operational Evaluation Plan. Version 7.0

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to present the findings that resulted from a high-level analysis and evaluation of the following documents: (1) The OEP (Operational Evolution Plan) Version 7 -- a 10-year plan for operational improvements to increase capacity and efficiency in U.S. air travel and transport and other use of domestic airspace. The OEP is the FAA commitment to operational improvements. It is outcome driven, with clear lines of accountability within FAA organizations. The OEP concentrates on operational solutions and integrates safety, certification, procedures, staffing, equipment, avionics and research; (2) The Draft Flight Plan 2006 through 2010 -- a multi-year strategic effort, setting a course for the FAA through 2001, to provide the safest and most efficient air transportation system in the world; (3) The NAS System Architecture Version 5 -- a blueprint for modernizing the NAS and improving NAS services and capabilities through the year 2015; and (4) The NAS-SR-1000 System Requirements Specification (NASSRS) -- a compilation of requirements which describe the operational capabilities for the NAS. The analysis is particularly focused on examining the documents for relevance to existing and/or planned future UAV operations. The evaluation specifically focuses on potential factors that could materially affect the development of a commercial ROA industry, such as: (1) Design limitations of the CNS/ATM system, (2) Human limitations, The information presented was taken from program specifications or program office lead personnel.

  19. Optical packaging activities at Institute of Microelectronics (IME), Singapore

    NASA Astrophysics Data System (ADS)

    Teo, Keng-Hwa; Sudharsanam, Krishnamachari; Pamidighantam, Ramana V.; Yeo, Yongkee; Iyer, Mahadevan K.

    2002-08-01

    The development of optoelectronic components for gigabit Ethernet communications is converging towards access networks where the cost of device makes a significant impact on the market acceptance. Device fabrication and packaging cost have to be brought down with novel assembly and packaging methods. Singapore has established a reputation in semiconductor device development and fabrication with excellent process and packaging facilities. Institute of Microelectronics (IME) was founded in 1991 to add value to the Singapore electronics industry. IME is involved in the development of active and passive photonics components using Silicon and polymer materials. We present a brief report on the development activities taking place in the field of optical component packaging at IME in recent years. We present a review of our competence and some of the optical device packaging activities that are being undertaken.

  20. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  1. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  2. Continued education and experimental activities for optics education

    NASA Astrophysics Data System (ADS)

    Shinomiya, George K.; Muramatsu, Mikiya

    2001-08-01

    Of the evidence that the optics knowledge is practically unknown for the pupils who complete Basic Education, we initiate, in 1998, a project involving teachers of the Public Network and University teachers with the objective to change this situation. The main cause of this abandonment of optics is the bad understanding by the teachers of the optic phenomena, result of their bad initial formation. Based on this situation, we developed a series of simple experimental activities that demonstrate the main concepts of optics in the program. After that, we elaborate courses of university extension, destined to the teachers of Basic Education, giving emphasis to the experimentation, using kits and demonstrations, complemented by texts, videos and group works. From 98 until now, more than 200 teachers had participated of our course, and they made a sufficiently positive evaluation of these works pointing not only the including of the optics, but also a significant change in its strategies of education, going of meeting to the new parameters of our basic education.

  3. Optical sensor based system to monitor caries activity

    NASA Astrophysics Data System (ADS)

    Shrestha, A.; Tahir, R.; Kishen, A.

    2007-07-01

    The aim of the study is to evaluate the ability of a visible light based spectroscopic sensor system to monitor caries activity in saliva. In this study an optical sensor is utilized to monitor the bacterial-mediated acidogenic profile of stimulated saliva using a photosensitive pH indicator. Microbiological assessment of the saliva samples were carried out using the conventional culture methods. In addition, the shifts in the pH of saliva-sucrose samples were recorded using a pH meter. The absorption spectra obtained from the optical sensor showed peak maxima at 595nm, which decreased as a function of time. The microbiological assessment showed increase in the bacterial count as a function of time. A strong positive correlation was also observed between the rates of decrease in the absorption intensity measured using the optical sensor and the decrease in pH measured using the pH meter. This study highlights the potential advantages of using the optical sensor as a sensitive and rapid chairside system for monitoring caries activity by quantification of the acidogenic profile of saliva.

  4. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  5. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  6. Active optics system of the VLT Survey Telescope.

    PubMed

    Schipani, Pietro; Noethe, Lothar; Magrin, Demetrio; Kuijken, Konrad; Arcidiacono, Carmelo; Argomedo, Javier; Capaccioli, Massimo; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Fierro, Davide; Holzlöhner, Ronald; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; Ragazzoni, Roberto; Savarese, Salvatore; Rakich, Andrew; Umbriaco, Gabriele

    2016-03-01

    This paper describes the active optics system of the VLT Survey Telescope, the 2.6-m survey telescope designed for visible wavelengths of the European Southern Observatory at Cerro Paranal, in the Atacama desert. The telescope is characterized by a wide field of view (1.42 deg diameter), leading to tighter active optics than in conventional telescopes, in particular for the alignment requirements. We discuss the effects of typical error sources on the image quality and present the specific solutions adopted for wavefront sensing and correction of the aberrations, which are based on the shaping of a monolithic primary mirror and the positioning of the secondary in five degrees of freedom. PMID:26974616

  7. Dispersion of optical activity of magnesium sulfite hexahydrate single crystals

    NASA Astrophysics Data System (ADS)

    Dimov, T.; Bunzarov, Zh; Iliev, I.; Petkova, P.; Tzoukrovski, Y.

    2010-11-01

    The magnesium sulfite hexahydrate (MgSO3.6H2O) crystals are unique because they are the only representative (with sodium periodate) of the crystallographic class C3 (without a center of symmetry). The crystal symmetry suggests presence of nonlinearity, piezo- and pyro-electric properties and gyrotropy as well. Single crystals of MgSO3.6H2O (pure and doped with Ni, Co and Zn) for the time being are grown only by the original method developed in the Laboratory for Crystal growth at the Faculty of Physics in Sofia University. The first results of optical activity of pure MgSO3.6H2O and Zn doped MgSO3.6H2O crystals are described and analyzed in a wide spectral range. The optical activity manifests itself in the direction (0001) as a rotation of the polarization plane.

  8. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques.

  9. Hemodynamic responses to functional activation accessed by optical imaging

    NASA Astrophysics Data System (ADS)

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  10. Optical activity of transparent polymer layers characterized by spectral means

    NASA Astrophysics Data System (ADS)

    Cosutchi, Andreea Irina; Dimitriu, Dan Gheorghe; Zelinschi, Carmen Beatrice; Breaban, Iuliana; Dorohoi, Dana Ortansa

    2015-06-01

    The method based on the channeled spectrum, validated for inorganic optical active layers, is used now to determine the optical activity of some transparent polymer solutions in different solvents. The circular birefringence, the dispersion parameter and the specific rotation were estimated in the visible range by using the measurements of wavelengths in the channeled spectra of Hydroxypropyl cellulose in water, methanol and acetic acid. The experiments showed the specific rotation dependence on the polymer concentration and also on the solvent nature. The decrease of the specific rotation in the visible range with the increase in wavelength was evidenced. The method has some advantages as the rapidity of the experiments and the large spectral range in which it can be applied. One disadvantage is the fact that the channeled spectrum does not allow to establish the rotation sense of the electric field intensity.

  11. Subtractive 3D printing of optically active diamond structures.

    PubMed

    Martin, Aiden A; Toth, Milos; Aharonovich, Igor

    2014-05-21

    Controlled fabrication of semiconductor nanostructures is an essential step in engineering of high performance photonic and optoelectronic devices. Diamond in particular has recently attracted considerable attention as a promising platform for quantum technologies, photonics and high resolution sensing applications. Here we demonstrate the fabrication of optically active, functional diamond structures using gas-mediated electron beam induced etching (EBIE). The technique achieves dry chemical etching at room temperature through the dissociation of surface-adsorbed H2O molecules by energetic electrons in a water vapor environment. Parallel processing is possible by electron flood exposure and the use of an etch mask, while high resolution, mask-free, iterative editing is demonstrated by direct write etching of inclined facets of diamond microparticles. The realized structures demonstrate the potential of EBIE for the fabrication of optically active structures in diamond.

  12. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  13. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer.

  14. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    SciTech Connect

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  15. Demonstrating Optical Activity Using an iPad

    ERIC Educational Resources Information Center

    Schwartz, Pauline M.; Lepore, Dante M.; Morneau, Brandy N.; Barratt, Carl

    2011-01-01

    Optical activity using an iPad as a source of polarized light is demonstrated. A sample crystal or solution can be placed on the iPad running a white screen app. The sample is viewed through a polarized filter that can be rotated. This setup can be used in the laboratory or with a document camera to easily project in a large lecture hall.…

  16. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer. PMID:27218801

  17. Active optics control of VST telescope secondary mirror.

    PubMed

    Schipani, Pietro; D'Orsi, Sergio; Fierro, Davide; Marty, Laurent

    2010-06-01

    In telescopes based on active optics, defocus and coma are usually compensated for by secondary mirror movements. They are performed at the Very Large Telescope Survey Telescope (VST) with a hexapod--a parallel robot with six degrees of freedom positioning capability. We describe the application of the two-mirror telescope theory to the VST case and the solutions adopted for the hexapod control. We present the results of performance and reliability tests performed both in the laboratory and at the telescope.

  18. Activities report of the Division of Optical Technology (FOA 33)

    NASA Astrophysics Data System (ADS)

    Letalick, Dietmar

    1988-11-01

    Research on hydro-optics; laser remote sensing; coherent CO2 laser radar; optical signatures; atmospheric transmission; ionizing radiation effects on electronics; fiber optics; optical processing; and terrain models is summarized.

  19. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1988-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  20. Sparse matrix approximation method for an active optical control system

    NASA Astrophysics Data System (ADS)

    Murphy, Timothy P.; Lyon, Richard G.; Dorband, John E.; Hollis, Jan M.

    2001-12-01

    We develop a sparse matrix approximation method to decompose a wave front into a basis set of actuator influence functions for an active optical system consisting of a deformable mirror and a segmented primary mirror. The wave front used is constructed by Zernike polynomials to simulate the output of a phase-retrieval algorithm. Results of a Monte Carlo simulation of the optical control loop are compared with the standard, nonsparse approach in terms of accuracy and precision, as well as computational speed and memory. The sparse matrix approximation method can yield more than a 50-fold increase in the speed and a 20-fold-reduction in matrix size and a commensurate decrease in required memory, with less than 10% degradation in solution accuracy. Our method is also shown to be better than when elements are selected for the sparse matrix on a magnitude basis alone. We show that the method developed is a viable alternative to use of the full control matrix in a phase-retrieval-based active optical control system.

  1. Sparse matrix approximation method for an active optical control system.

    PubMed

    Murphy, T P; Lyon, R G; Dorband, J E; Hollis, J M

    2001-12-10

    We develop a sparse matrix approximation method to decompose a wave front into a basis set of actuator influence functions for an active optical system consisting of a deformable mirror and a segmented primary mirror. The wave front used is constructed by Zernike polynomials to simulate the output of a phase-retrieval algorithm. Results of a Monte Carlo simulation of the optical control loop are compared with the standard, nonsparse approach in terms of accuracy and precision, as well as computational speed and memory. The sparse matrix approximation method can yield more than a 50-fold increase in the speed and a 20-fold reduction in matrix size and a commensurate decrease in required memory, with less than 10% degradation in solution accuracy. Our method is also shown to be better than when elements are selected for the sparse matrix on a magnitude basis alone. We show that the method developed is a viable alternative to use of the full control matrix in a phase-retrieval-based active optical control system. PMID:18364958

  2. Chiral magnetic effect and natural optical activity in (Weyl) metals

    NASA Astrophysics Data System (ADS)

    Pesin, Dmytro; Ma, Jing

    We consider the phenomenon of natural optical activity, and related chiral magnetic effect in metals with low carrier concentration. To reveal the correspondence between the two phenomena, we compute the optical conductivity of a noncentrosymmetric metal to linear order in the wave vector of the light wave, specializing to the low-frequency regime. We show that it is the orbital magnetic moment of quasiparticles that is responsible for the natural optical activity, and thus the chiral magnetic effect. While for purely static magnetic fields the chiral magnetic effect is known to have a topological origin and to be related to the presence of Berry curvature monopoles (Weyl points) in the band structure, we show that the existence of Berry monopoles is not required for the dynamic chiral magnetic effect to appear; the latter is thus not unique to Weyl metals. The magnitude of the dynamic chiral magnetic effect in a material is related to the trace of its gyrotropic tensor. We discuss the conditions under which this trace is non-zero; in noncentrosymmetric Weyl metals it is found to be proportional to the energy-space dipole moment of Berry curvature monopoles. The calculations are done within both the semiclassical kinetic equation, and Kubo linear response formalisms. This work was supported by NSF Grant No. DMR-1409089.

  3. Large-aperture active optical carbon fiber reinforced polymer mirror

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew E. L.; Wilcox, Christopher C.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Milinazzo, Jared J.; Robichaud, Joseph; Romeo, Robert C.; Martin, Robert N.; Ballesta, Jerome; Lavergne, Emeric; Dereniak, Eustace L.

    2013-05-01

    An active reflective component can change its focal length by physically deforming its reflecting surface. Such elements exist at small apertures, but have yet to be fully realized at larger apertures. This paper presents the design and initial results of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  4. Active Optics for a Segmented Primary Mirror on a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    This article investigates the active optical control of segments in the primary mirror to correct for wavefront errors in the Deep-Space Optical Receiver Antenna (DSORA). Although an exact assessment of improvement in signal blur radius cannot be made until a more detailed preliminary structural design is completed, analytical tools are identified for a time when such designs become available. A brief survey of appropriate sensing approaches is given. Since the choice of control algorithm and architecture depends on the particular sensing system used, typical control systems, estimated complexities, and the type of equipment required are discussed. Once specific sensor and actuator systems are chosen, the overall control system can be optimized using methods identified in the literature.

  5. Optical Assessment of Caries Lesion Structure and Activity

    NASA Astrophysics Data System (ADS)

    Lee, Robert Chulsung

    New, more sophisticated diagnostic tools are needed for the detection and characterization of caries lesions in the early stages of development. It is not sufficient to simply detect caries lesions, methods are needed to assess the activity of the lesion and determine if chemical or surgical intervention is needed. Previous studies have demonstrated that polarization sensitive optical coherence tomography (PS-OCT) can be used to nondestructively image the subsurface lesion structure and measure the thickness of the highly mineralized surface zone. Other studies have demonstrated that the rate of dehydration can be correlated with the lesion activity and that the rate can be measured using optical methods. The main objective of this work was to test the hypothesis that optical methods can be used to assess lesion activity on tooth coronal and root surfaces. Simulated caries models were used to develop and validate an algorithm for detecting and measuring the highly mineralized surface layer using PS-OCT. This work confirmed that the algorithm was capable of estimating the thickness of the highly mineralized surface layer with high accuracy. Near-infrared (NIR) reflectance and thermal imaging methods were used to assess activity of caries lesions by measuring the state of lesion hydration. NIR reflectance imaging performed the best for artificial enamel and natural coronal caries lesion samples, particularly at wavelengths coincident with the water absorption band at 1460-nm. However, thermal imaging performed the best for artificial dentin and natural root caries lesion samples. These novel optical methods outperformed the conventional methods (ICDAS II) in accurately assessing lesion activity of natural coronal and root caries lesions. Infrared-based imaging methods have shown potential for in-vivo applications to objectively assess caries lesion activity in a single examination. It is likely that if future clinical trials are a success, this novel imaging

  6. Optical impedance spectroscopy with single-mode electro-active-integrated optical waveguides.

    PubMed

    Han, Xue; Mendes, Sergio B

    2014-02-01

    An optical impedance spectroscopy (OIS) technique based on a single-mode electro-active-integrated optical waveguide (EA-IOW) was developed to investigate electron-transfer processes of redox adsorbates. A highly sensitive single-mode EA-IOW device was used to optically follow the time-dependent faradaic current originated from a submonolayer of cytochrome c undergoing redox exchanges driven by a harmonic modulation of the electric potential at several dc bias potentials and at several frequencies. To properly retrieve the faradaic current density from the ac-modulated optical signal, we introduce here a mathematical formalism that (i) accounts for intrinsic changes that invariably occur in the optical baseline of the EA-IOW device during potential modulation and (ii) provides accurate results for the electro-chemical parameters. We are able to optically reconstruct the faradaic current density profile against the dc bias potential in the working electrode, identify the formal potential, and determine the energy-width of the electron-transfer process. In addition, by combining the optically reconstructed faradaic signal with simple electrical measurements of impedance across the whole electrochemical cell and the capacitance of the electric double-layer, we are able to determine the time-constant connected to the redox reaction of the adsorbed protein assembly. For cytochrome c directly immobilized onto the indium tin oxide (ITO) surface, we measured a reaction rate constant of 26.5 s(-1). Finally, we calculate the charge-transfer resistance and pseudocapacitance associated with the electron-transfer process and show that the frequency dependence of the redox reaction of the protein submonolayer follows as expected the electrical equivalent of an RC-series admittance diagram. Above all, we show here that OIS with single-mode EA-IOW's provide strong analytical signals that can be readily monitored even for small surface-densities of species involved in the redox

  7. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  8. Polymer optical fiber grating as water activity sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Webb, David J.

    2014-05-01

    Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel.

  9. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-01

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported

  10. Enzymatic aerobic ring rearrangement of optically active furylcarbinols.

    PubMed

    Thiel, Daniel; Doknić, Diana; Deska, Jan

    2014-01-01

    Biogenic furans are currently discussed as highly attractive alternative feedstock in a post-fossil society; thus, also the creation of sustainable furan valorization pathways appears of great importance. Here an artificial Achmatowicz monooxygenase activity for the aerobic ring expansion of furans is achieved by the combination of commercial glucose oxidase as oxygen-activating biocatalyst and wild-type chloroperoxidase as oxygen-transfer mediator, providing a biological ready-to-use solution for this truly synthetic furan rearrangement. In concert with enzymatic transformations for the enantioselective preparation of optically active furylcarbinols, purely biocatalytic reaction cascades for the stereocontrolled construction of complex pyranones are obtained, exhibiting high functional group tolerance even to oxidation-sensitive moieties. PMID:25335580

  11. Active Star Configured Fiber Optic CSMA/CD LANs

    NASA Astrophysics Data System (ADS)

    Truman, Alan K.; Smith, Robert W.; Schmidt, Ronald V.

    1987-01-01

    The widespread use of the IEEE 802.3 CSMA/CD (Ethernet) Local Area Network (LAN) has created demand for a fiber optic physical layer implementation to address security issues, hostile electromagnetic environments, modern structured wiring requirements and distance limitations of coaxial based implementations. Active Star CSMA/CD LANs will be described in this paper which consist of a central wiring Concentrator which supports point to point fiber links to Media Access Units (Transceivers) located at the Host computers. The fiber optic Active Star configured CSMA/CD LAN implementation provides a robust network which meets all the requirements imposed on an Ethernet Physical Layer. Collision detection is reliably performed in the electrical domain of the Concentrator. Network requirements included guaranteed collision detection, network reliability and easy addition and rearrangement of host connections. In addition, the Active Star implementation can provide an increased network diameter to 4.2 km and can support the four basic multimode fiber types, simultaneously, with substantial system margins.

  12. (Bio)hybrid materials based on optically active particles

    NASA Astrophysics Data System (ADS)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  13. Application of Optical Biosensors in Small-Molecule Screening Activities

    PubMed Central

    Geschwindner, Stefan; Carlsson, Johan F.; Knecht, Wolfgang

    2012-01-01

    The last two decades have seen remarkable progress and improvements in optical biosensor systems such that those are currently seen as an important and value-adding component of modern drug screening activities. In particular the introduction of microplate-based biosensor systems holds the promise to match the required throughput without compromising on data quality thus representing a sought-after complement to traditional fluidic systems. This article aims to highlight the application of the two most prominent optical biosensor technologies, namely surface plasmon resonance (SPR) and optical waveguide grating (OWG), in small-molecule screening and will present, review and discuss the advantages and disadvantages of different assay formats on these platforms. A particular focus will be on the specific advantages of the inhibition in solution assay (ISA) format in contrast to traditional direct binding assays (DBA). Furthermore we will discuss different application areas for both fluidic as well as plate-based biosensor systems by considering the individual strength of the platforms. PMID:22666031

  14. Using DFT Methods to Study Activators in Optical Materials

    SciTech Connect

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials. DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.

  15. Using DFT Methods to Study Activators in Optical Materials

    DOE PAGESBeta

    Du, Mao-Hua

    2015-08-17

    Density functional theory (DFT) calculations of various activators (ranging from transition metal ions, rare-earth ions, ns2 ions, to self-trapped and dopant-bound excitons) in phosphors and scintillators are reviewed. As a single-particle ground-state theory, DFT calculations cannot reproduce the experimentally observed optical spectra, which involve transitions between multi-electronic states. However, DFT calculations can generally provide sufficiently accurate structural relaxation and distinguish different hybridization strengths between an activator and its ligands in different host compounds. This is important because the activator-ligand interaction often governs the trends in luminescence properties in phosphors and scintillators, and can be used to search for new materials.more » DFT calculations of the electronic structure of the host compound and the positions of the activator levels relative to the host band edges in scintillators are also important for finding optimal host-activator combinations for high light yields and fast scintillation response. Mn4+ activated red phosphors, scintillators activated by Ce3+, Eu2+, Tl+, and excitons are shown as examples of using DFT calculations in phosphor and scintillator research.« less

  16. Zeno inhibition of polarization rotation in an optically active medium

    NASA Astrophysics Data System (ADS)

    Gonzalo, Isabel; Porras, Miguel A.; Luis, Alfredo

    2015-07-01

    We describe an experiment in which the rotation of the polarization of light propagating in an optically active water solution of D-fructose tends to be inhibited by frequent monitoring whether the polarization remains unchanged. This is an example of the Zeno effect that has remarkable pedagogical interest because of its conceptual simplicity, easy implementation, low cost, and because the same the Zeno effect holds at classical and quantum levels. An added value is the demonstration of the Zeno effect beyond typical idealized assumptions in a practical setting with real polarizers.

  17. Calculation of optical second-harmonic susceptibilities and optical activity for crystals

    SciTech Connect

    Levine, Z.H.

    1994-12-31

    A new generation of nearly first-principles calculations predicts both the linear and second-harmonic susceptibilities for a variety of insulating crystals, including GaAs, GaP, AlAs, AlP, Se, {alpha}-quartz, and c-urea. The results are typically in agreement with experimental measurements. The calculations have been extended to optical activity, with somewhat less success to date. The theory, based on a simple self-energy correction to the local density approximation, and results are reviewed herein.

  18. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  19. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  20. Progress on the development of active micro-structured optical arrays for x-ray optics

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Zhang, Dou; Button, Tim; Atkins, Carolyn; Doel, Peter; Wang, Hongchang; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; Shand, Matthew; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andy

    2009-08-01

    The Smart X-Ray Optics (SXO) project comprises a U.K.-based consortium developing active/adaptive micro-structured optical arrays (MOAs). These devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels etched in silicon. The silicon channels have been produced both by dry and wet etching, the latter providing smoother channel walls. Adaptability is achieved using piezoelectric actuators, which bend the device and therefore change its focal distance. We aim to achieve a 5 cm radius of curvature which can provide a suitable focal length using a tandem pair MOA configuration. Finite Element Analysis (FEA) modelling has been carried out for the optimization of the MOA device design, consider different types of actuators (unimorph, bimorph and active fibre composites), and different Si/piezoelectric absolute and relative thicknesses. Prototype devices have been manufactured using a Viscous Plastic Processing Process for the piezoelectric actuators and dry etched silicon channels, bonded together using a low shrinkage adhesive. Characterisation techniques have been developed in order to evaluate the device performance in terms of the bending of the MOA channels produced by the actuators. This paper evaluates the progress to date on the actuation of the MOAs, comparing FEA modelling with the results obtained for different prototype structures.

  1. Optical Properties of Anisotropic Polycrystalline Ce+3 activated LSO

    PubMed Central

    Roy, Sudesna; Lingertat, Helmut; Brecher, Charles; Sarin, Vinod

    2012-01-01

    Polycrystalline cerium activated lutetium oxyorthosilicate (LSO:Ce) is highly desirable technique to make cost effective and highly reproducible radiation detectors for medical imaging. In this article methods to improve transparency in polycrystalline LSO:Ce were explored. Two commercially available powders of different particulate sizes (average particle size 30 and 1500 nm) were evaluated for producing dense LSO:Ce by pressure assisted densification routes, such as hot pressing and hot isostatic pressing. Consolidation of the powders at optimum conditions produced three polycrystalline ceramics with average grain sizes of 500 nm, 700 and 2000 nm. Microstructural evolution studies showed that for grain sizes larger than 1 µm, anisotropy in thermal expansion coefficient and elastic constants of LSO, resulted in residual stress at grain boundaries and triple points that led to intragranular microcracking. However, reducing the grain size below 1 µm effectively avoids microcracking, leading to more favorable optical properties. The optical scattering profiles generated by a Stover scatterometer, measured by a He-Ne laser of wavelength 633 nm, showed that by reducing the grain size from 2 µm to 500 nm, the in-line transmission increased by a factor of 103. Although these values were encouraging and showed that small changes in grain size could increase transmission by almost 3 orders of magnitude, even smaller grain sizes need to be achieved in order to get truly transparent material with high in-line transmission. PMID:23505329

  2. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  3. CMOS Imaging Device for Optical Imaging of Biological Activities

    NASA Astrophysics Data System (ADS)

    Shishido, Sanshiro; Oguro, Yasuhiro; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    In this paper, we propose a CMOS image sensor device placed on the brain surface or cerebral sulcus (Fig. 1). The device has a photo detector array where a single optical detector is usually used. The proposed imaging device enables the analysis which reflects a surface blood pattern in the observed area. It is also possible to improve effective sensitivity by image processing and to simplify the measurement system by the CMOS sensor device with on-chip light source. We describe the design details and characterization of proposed device. We also demonstrate detection of hemoglobin oxygenation level with external light source, imaging capability of biological activities, and image processing for sensitivity improvement is also realized.

  4. Optically Active Hybrid Materials Constructed from Helically Substituted Polyacetylenes.

    PubMed

    Zhang, Huanyu; Zhao, Biao; Deng, Jianping

    2016-04-01

    Functional materials derived from synthetic helical polymers are attracting increasing interest. Helically substituted polyacetylenes (HSPAs) are especially interesting as typical artificial helical polymers. In recent years, we designed and prepared a series of functional materials based on HSPAs and inorganic materials. The target is to establish some novel hybrid materials that combine the superior properties of both. The examined inorganic materials include silica, graphene, and magnetic Fe3 O4 nanoparticles. Such new functional materials hold great promise and are expected to find practical applications, for instance, as chiral absorbents, chiral sensors, chiral selectors for inducing enantioselective crystallization, chiral catalysts towards asymmetric catalysis, and chiral carriers for enantioselective release. The Personal Account summarizes our major achievements in preparing optically active hybrid materials. We hope it will speed up progress in chiral-related research areas.

  5. Sensor data fusion of optical and active radar data

    NASA Astrophysics Data System (ADS)

    Schultz, Johan; Gustafsson, Ulf; Crona, Torbjorn

    2004-08-01

    In this paper two different methods for fusing data from optical and active radar sensors are studied. The first method fuses data prior to feature extraction and the second method fuses data, in a more traditional way, after feature extraction. The advantage of fusing before feature extraction is that no information is lost prior to the fusion. The sensor data share one common dimension, namely azimuth, but the radar suffers from lower resolution. The algorithms are tested on real measurements from Ku- and millimeter wave radar combined with infrared or TV-camera. The study is in its initial phase and the two methods studied are simple in nature. The study aims to reveal differences between a raw data method and a feature-based method and should later result in a more complex and robust method.

  6. Optically powered active sensing system for Internet Of Things

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  7. Spectroscopic sensing of reflection optical activity in achiral AgGaS₂.

    PubMed

    Arteaga, Oriol

    2015-09-15

    Optical activity is a fundamental effect of electrodynamics that was discovered more than 200 years ago. While optical activity is typically recognized by the rotation of the polarization of light as it propagates through a bulk medium, in certain configurations, the specular reflection of light on the surface of a material is also sensitive to its optical activity. Here, we show that the ellipsometric analysis of the light reflected at the surface of a gyrotropic but achiral crystal of AgGaS(2) allows the spectroscopic determination of its optical activity above the bandgap, where transmission methods are not applicable. This is the first clear spectroscopic determination of reflection optical activity in a crystal, and the values obtained are, to the best of our knowledge, the largest ever reported for a natural material. We also demonstrate that normal incidence transmission and reflection measurements probe different aspects of optical activity.

  8. Spectroscopic sensing of reflection optical activity in achiral AgGaS₂.

    PubMed

    Arteaga, Oriol

    2015-09-15

    Optical activity is a fundamental effect of electrodynamics that was discovered more than 200 years ago. While optical activity is typically recognized by the rotation of the polarization of light as it propagates through a bulk medium, in certain configurations, the specular reflection of light on the surface of a material is also sensitive to its optical activity. Here, we show that the ellipsometric analysis of the light reflected at the surface of a gyrotropic but achiral crystal of AgGaS(2) allows the spectroscopic determination of its optical activity above the bandgap, where transmission methods are not applicable. This is the first clear spectroscopic determination of reflection optical activity in a crystal, and the values obtained are, to the best of our knowledge, the largest ever reported for a natural material. We also demonstrate that normal incidence transmission and reflection measurements probe different aspects of optical activity. PMID:26371915

  9. Rapid optical determination of β-lactamase and antibiotic activity

    PubMed Central

    2014-01-01

    Background The absence of rapid tests evaluating antibiotic susceptibility results in the empirical prescription of antibiotics. This can lead to treatment failures due to escalating antibiotic resistance, and also furthers the emergence of drug-resistant bacteria. This study reports a rapid optical method to detect β-lactamase and thereby assess activity of β-lactam antibiotics, which could provide an approach for targeted prescription of antibiotics. The methodology is centred on a fluorescence quenching based probe (β-LEAF – β-Lactamase Enzyme Activated Fluorophore) that mimics the structure of β-lactam antibiotics. Results The β-LEAF assay was performed for rapid determination of β-lactamase production and activity of β-lactam antibiotic (cefazolin) on a panel of Staphylococcus aureus ATCC strains and clinical isolates. Four of the clinical isolates were determined to be lactamase producers, with the capacity to inactivate cefazolin, out of the twenty-five isolates tested. These results were compared against gold standard methods, nitrocefin disk test for β-lactamase detection and disk diffusion for antibiotic susceptibility, showing results to be largely consistent. Furthermore, in the sub-set of β-lactamase producers, it was demonstrated and validated that multiple antibiotics (cefazolin, cefoxitin, cefepime) could be assessed simultaneously to predict the antibiotic that would be most active for a given bacterial isolate. Conclusions The study establishes the rapid β-LEAF assay for β-lactamase detection and prediction of antibiotic activity using S. aureus clinical isolates. Although the focus in the current study is β-lactamase-based resistance, the overall approach represents a broad diagnostic platform. In the long-term, these studies form the basis for the development of assays utilizing a broader variety of targets, pathogens and drugs. PMID:24708478

  10. Peptide-modified optical filters for detecting protease activity.

    PubMed

    Kilian, Kristopher A; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J Justin

    2007-11-01

    The organic derivatization of silicon-based nanoporous photonic crystals is presented as a method to immobilize peptides for the detection of protease enzymes in solution. A narrow-line-width rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index at the pore walls. To immobilize peptide in the pore of the photonic crystal, the hydrogen-terminated silicon surface was first modified with the alkene 10-succinimidyl undecenoate via hydrosilylation. The monolayer with the succinimide ester moiety at the distal end served the dual function of protecting the underlying silicon from oxidation as well as providing a surface suitable for subsequent derivatization with amines. The surface was further modified with 1-aminohexa(ethylene glycol) (EG(6)) to resist nonspecific adsorption of proteins common in complex biological samples. The distal hydroxyl of the EG(6) is activated using the solid-phase coupling reagent disuccinimidyl carbonate for selective immobilization of peptides as protease recognition elements. X-ray photoelectron spectroscopy analysis reveals high activation and coupling efficiency at each stage of the functionalization. Exposure of the peptide-modified crystals to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The lowest detected concentration of enzyme was 37 nM (7.4 pmol in 200 microL).

  11. Ciliary motility activity measurement using a dense optical flow algorithm.

    PubMed

    Parrilla, Eduardo; Armengot, Miguel; Mata, Manuel; Cortijo, Julio; Riera, Jaime; Hueso, José L; Moratal, David

    2013-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. In this study, an automatic method has been established to determine the ciliary motility activity from cell cultures by means of optical flow computation, and has been applied to 136 control cultures and to 144 RSV-infected cultures. The control group presented an average of cell surface with cilia motility per field of 41 ± 15 % (mean ± standard deviation), while the infected group presented a 11 ± 5 %, t-Student p<0.001. The cutoff value to classify a infected specimen was <17.89 % (sensitivity 0.94, specificity 0.93). This methodology has proved to be a robust technique to evaluate cilia motility in cell cultures. PMID:24110720

  12. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    PubMed

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities.

  13. Origin invariance in vibrational resonance Raman optical activity

    SciTech Connect

    Vidal, Luciano N. Cappelli, Chiara; Egidi, Franco; Barone, Vincenzo

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  14. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  15. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    PubMed

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities. PMID:26772187

  16. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM).

  17. Passive and active optical fibers for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Alam, Mansoor; Abramczyk, Jaroslaw; Farroni, Julia; Manyam, Upendra; Guertin, Douglas

    2006-08-01

    Being the new frontier of science and technology, as the near earth space begins to attract attention, low cost and rapidly deployable earth observation satellites are becoming more important. Among other things these satellites are expected to carry out missions in the general areas of science and technology, remote sensing, national defense and telecommunications. Except for critical missions, constraints of time and money practically mandate the use of commercial-off-the-shelf (COTS) components as the only viable option. The near earth space environment (~50-50000 miles) is relatively hostile and among other things components/devices/systems are exposed to ionizing radiation. Photonic devices/systems are and will continue to be an integral part of satellites and their payloads. The ability of such devices/systems to withstand ionizing radiation is of extreme importance. Qualification of such devices/systems is time consuming and very expensive. As a result, manufacturers of satellites and their payloads have started to ask for radiation performance data on components from the individual vendors. As an independent manufacturer of both passive and active specialty silica optical fibers, Nufern is beginning to address this issue. Over the years, Nufern has developed fiber designs, compositions and processes to make radiation hard fibers. Radiation performance data (both gamma and proton) of a variety of singlemode (SM), multimode (MM), polarization maintaining (PM) and rare-earth doped (RED) fibers that find applications in space environment are presented.

  18. Informal Activities with Lasers, Lights, and Lenses: The Hands-On Optics Project

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Sparks, C. E.; Sparks, R. T.

    2005-12-01

    The Hands-On Optics project began as a follow-up to the 2001 NSF planning grant "Optics Education -- A Blueprint for the 21st Century", which described the value of informal science programs in addressing the disconnect between the ubiquity of optics in everyday life and the noticeable absence of optics education in K-12 curricula and in informal science education programs. Key partners in the project are NOAO, SPIE-The International Society for Optical Engineering, and the Optical Society of America (OSA). The informal instructional materials created by the project are distributed through science centers nationwide and through the Mathematics, Engineering, Science Achievement Program (MESA) in a number of states, including Arizona, California, Washington, and Maryland. A key part of the project is the involvement, modeled after Project ASTRO, of optics professionals currently engaged in outreach activities and programs. Optics professionals (termed optics resource volunteers) are teamed with MESA and science center educators in implementing the program. These hands-on, high-interest, standards-connected activities and materials provide 6, three-hour-long optics activity modules that can be used in a variety of informal settings. We will describe the techniques used at NOAO to train educators, parents, and optics professionals who will work with the HOO activities as well as the different approaches needed for different informal education programs, ranging from Saturday programs, after-school programs, and science center programs. NOAO is developing the six modules and associated kits as well as competitions that have broad appeal to 12-year olds. Hands-On Optics: Making an Impact with Light (HOO) is a collaborative NSF-funded four-year informal science education program to excite students about science by actively engaging them in optics activities. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative

  19. Infrared optical activity: electric field approaches in time domain.

    PubMed

    Rhee, Hanju; Choi, Jun-Ho; Cho, Minhaeng

    2010-12-21

    Vibrational circular dichroism (VCD) spectroscopy provides detailed information about the absolute configurations of chiral molecules including biomolecules and synthetic drugs. This method is the infrared (IR) analogue of the more popular electronic CD spectroscopy that uses the ultraviolet and visible ranges of the electromagnetic spectrum. Because conventional electronic CD spectroscopy measures the difference in signal intensity, problems such as weak signal and low time-resolution can limit its utility. To overcome the difficulties associated with that approach, we have recently developed femtosecond IR optical activity (IOA) spectrometry, which directly measures the IOA free-induction-decay (FID), the impulsive chiroptical IR response that occurs over time. In this Account, we review the time-domain electric field measurement and calculation methods used to simultaneously characterize VCD and related vibrational optical rotatory dispersion (VORD) spectra. Although conventional methods measure the electric field intensity, this vibrational technique is based on a direct phase-and-amplitude measurement of the electric field of the chiroptical signal over time. This method uses a cross-polarization analyzer to carry out heterodyned spectral interferometry. The cross-polarization scheme enables us to selectively remove the achiral background signal, which is the dominant noise component present in differential intensity measurement techniques. Because we can detect the IOA FID signal in a phase-amplitude-sensitive manner, we can directly characterize the time-dependent electric dipole/magnetic dipole response function and the complex chiral susceptibility that contain information about the angular oscillations of charged particles. These parameters yield information about the VCD and VORD spectra. In parallel with such experimental developments, we have also calculated the IOA FID signal and the resulting VCD spectrum. These simulations use a quantum mechanical

  20. Infrared optical activity: electric field approaches in time domain.

    PubMed

    Rhee, Hanju; Choi, Jun-Ho; Cho, Minhaeng

    2010-12-21

    Vibrational circular dichroism (VCD) spectroscopy provides detailed information about the absolute configurations of chiral molecules including biomolecules and synthetic drugs. This method is the infrared (IR) analogue of the more popular electronic CD spectroscopy that uses the ultraviolet and visible ranges of the electromagnetic spectrum. Because conventional electronic CD spectroscopy measures the difference in signal intensity, problems such as weak signal and low time-resolution can limit its utility. To overcome the difficulties associated with that approach, we have recently developed femtosecond IR optical activity (IOA) spectrometry, which directly measures the IOA free-induction-decay (FID), the impulsive chiroptical IR response that occurs over time. In this Account, we review the time-domain electric field measurement and calculation methods used to simultaneously characterize VCD and related vibrational optical rotatory dispersion (VORD) spectra. Although conventional methods measure the electric field intensity, this vibrational technique is based on a direct phase-and-amplitude measurement of the electric field of the chiroptical signal over time. This method uses a cross-polarization analyzer to carry out heterodyned spectral interferometry. The cross-polarization scheme enables us to selectively remove the achiral background signal, which is the dominant noise component present in differential intensity measurement techniques. Because we can detect the IOA FID signal in a phase-amplitude-sensitive manner, we can directly characterize the time-dependent electric dipole/magnetic dipole response function and the complex chiral susceptibility that contain information about the angular oscillations of charged particles. These parameters yield information about the VCD and VORD spectra. In parallel with such experimental developments, we have also calculated the IOA FID signal and the resulting VCD spectrum. These simulations use a quantum mechanical

  1. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal.

    PubMed

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  2. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    PubMed Central

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  3. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal

    NASA Astrophysics Data System (ADS)

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang

    2016-07-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc.

  4. Efficient high repetition rate electro-optic Q-switched laser with an optically active langasite crystal.

    PubMed

    Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I; Wang, Jiyang

    2016-01-01

    With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819

  5. The fiber-optic imaging and manipulation of neural activity during animal behavior.

    PubMed

    Miyamoto, Daisuke; Murayama, Masanori

    2016-02-01

    Recent progress with optogenetic probes for imaging and manipulating neural activity has further increased the relevance of fiber-optic systems for neural circuitry research. Optical fibers, which bi-directionally transmit light between separate sites (even at a distance of several meters), can be used for either optical imaging or manipulating neural activity relevant to behavioral circuitry mechanisms. The method's flexibility and the specifications of the light structure are well suited for following the behavior of freely moving animals. Furthermore, thin optical fibers allow researchers to monitor neural activity from not only the cortical surface but also deep brain regions, including the hippocampus and amygdala. Such regions are difficult to target with two-photon microscopes. Optogenetic manipulation of neural activity with an optical fiber has the advantage of being selective for both cell-types and projections as compared to conventional electrophysiological brain tissue stimulation. It is difficult to extract any data regarding changes in neural activity solely from a fiber-optic manipulation device; however, the readout of data is made possible by combining manipulation with electrophysiological recording, or the simultaneous application of optical imaging and manipulation using a bundle-fiber. The present review introduces recent progress in fiber-optic imaging and manipulation methods, while also discussing fiber-optic system designs that are suitable for a given experimental protocol.

  6. Dispersionless optical activity based on novel windmill-shaped chiral metamaterial

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolong; Xiao, Zhongyin; Liu, Dejun; Wang, Lei; Xu, Kai; Tang, Jingyao; Wang, Zihua

    2016-01-01

    In this paper, the optical properties of the novel windmill-shaped chiral metamaterial (CMM) with low ellipticity have been studied numerically in THz band. The dispersionless optical activity can be achieved in a wide frequency range (i.e. from 1.7 THz to 2.7 THz). The dependence of CMM’s optical properties on the structural parameters is studied systematically and the frequency range of low ellipticity can be controlled dynamically through adjusting the width of the metal. The excitation mechanism of optical activity based on the current distribution is also analyzed in detail.

  7. Active-medium inhomogeneities and optical quality of radiation of supersonic chemical oxygen-iodine lasers

    SciTech Connect

    Boreysho, A S; Druzhinin, S L; Lobachev, V V; Savin, A V; Strakhov, S Yu; Trilis, A V

    2007-09-30

    Optical inhomogeneities of the active medium of a supersonic chemical oxygen-iodine laser (COIL) and their effect on the radiation parameters are studied in the case when an unstable resonator is used. Classification of optical inhomogeneities and the main factors affecting the quality of COIL radiation are considered. The results of numerical simulation of a three-dimensional gas-dynamic active medium and an unstable optical resonator in the diffraction approximation are presented. The constraints in the fabrication of large-scale COILs associated with a deterioration of the optical quality of radiation are determined. (lasers)

  8. Optical Breath Gas Sensor for Extravehicular Activity Application

    NASA Technical Reports Server (NTRS)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S> ; Chullen, Cinda; Falconi, Eric A.

    2012-01-01

    The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .

  9. High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks.

    PubMed

    Banthí, Juan Carlos; Meneses-Rodríguez, David; García, Fernando; González, María Ujué; García-Martín, Antonio; Cebollada, Alfonso; Armelles, Gaspar

    2012-03-01

    Metal-dielectric Au-Co-SiO(2) magnetoplasmonic nanodisks are found to exhibit large magneto-optical activity and low optical losses. The internal architecture of the nanodisks is such that, in resonant conditions, the electromagnetic field undertakes a particular spatial distribution. This makes it possible to maximize the electromagnetic field at the magneto-optically active layers and minimize it in the other, optically lossy ones.

  10. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds

    PubMed Central

    Winkler, Christoph K.; Tasnádi, Gábor; Clay, Dorina; Hall, Mélanie; Faber, Kurt

    2012-01-01

    Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues. PMID:22498437

  11. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds.

    PubMed

    Winkler, Christoph K; Tasnádi, Gábor; Clay, Dorina; Hall, Mélanie; Faber, Kurt

    2012-12-31

    Ene-reductases from the 'Old Yellow Enzyme' family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues.

  12. Impact of optical antennas on active optoelectronic devices.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2014-10-01

    Remarkable progress has been made in the fabrication and characterization of optical antennas that are integrated with optoelectronic devices. Herein, we describe the fundamental reasons for and experimental evidence of the dramatic improvements that can be achieved by enhancing the light-matter interaction via an optical antenna in both photon-emitting and -detecting devices. In addition, integration of optical antennas with optoelectronic devices can lead to the realization of highly compact multifunctional platforms for future integrated photonics, such as low-cost lab-on-chip systems. In this review paper, we further focus on the effect of optical antennas on the detectivity of infrared photodetectors. One particular finding is that the antenna can have a dual effect on the specific detectivity, while it can elevate light absorption efficiency of sub-wavelength detectors, it can potentially increase the noise of the detectors due to the enhanced spontaneous emission rate. In particular, we predict that the detectivity of interband photon detectors can be negatively affected by the presence of optical antennas across a wide wavelength region covering visible to long wavelength infrared bands. In contrast, the detectivity of intersubband detectors could be generally improved with a properly designed optical antenna.

  13. A new generation active arrays for optical flexibility in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, G.; Jaskó, A.; Pragt, J. H.; Venema, L.; De Haan, M.

    2012-09-01

    Throughout the history of telescopes and astronomical instrumentation, new ways were found to open up unexplored possibilities in fundamental astronomical research by increasing the telescope size and instrumentation complexity. The ever demanding requirements on instrument performance pushes instrument complexity to the edge. In order to take the next leap forward in instrument development the optical design freedom needs to be increased drastically. The use of more complex and more accurate optics allows for shorter optical trains with smaller sizes, smaller number of components and reduced fabrication and alignment verification time and costs. Current optics fabrication is limited in surface form complexity and/or accuracy. Traditional active and adaptive optics lack the needed intrinsic long term stability and simplicity in design, manufacturing, verification and control. This paper explains how and why active arrays literally provide a flexible but stable basis for the next generation optical instruments. Combing active arrays with optically high quality face sheets more complex and accurate optical surface forms can be provided including extreme a-spherical (freeform) surfaces and thus allow for optical train optimization and even instrument reconfiguration. A zero based design strategy is adopted for the development of the active arrays addressing fundamental issues in opto-mechanical engineering. The various choices are investigated by prototypes and Finite Element Analysis. Finally an engineering concept will be presented following a highly stable adjustment strategy allowing simple verification and control. The Optimization metrology is described in an additional paper for this conference by T. Agócs et al.

  14. Integrated Modeling Activities for the James Webb Space Telescope: Structural-Thermal-Optical Analysis

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.; Parrish, Keith A.; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.

    2004-01-01

    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal-optical, often referred to as STOP, analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. Temperatures predicted using geometric and thermal math models are mapped to a structural finite element model in order to predict thermally induced deformations. Motions and deformations at optical surfaces are then input to optical models, and optical performance is predicted using either an optical ray trace or a linear optical analysis tool. In addition to baseline performance predictions, a process for performing sensitivity studies to assess modeling uncertainties is described.

  15. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    SciTech Connect

    Bu, Xiaohai; Zhou, Yuming Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-15

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8–14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles. - Graphical abstract: Optically active SPA@MWCNTs nanohybrids with low infrared emissivity. - Highlights: • Synthesis of optically active SPA copolymer derived from serine and phenylalanine. • Preparation and characterization of optically active SPA@MWCNTs nanohybrids. • Application study of the SPA@MWCNTs nanohybrids (ε=0.707) in lowering the infrared emissivity.

  16. Quasar S5 0836+710 active in near-infrared and optical bands

    NASA Astrophysics Data System (ADS)

    Larionov, V. M.; Arkharov, A. A.; Efimova, N. V.; Klimanov, S. A.; Di Paola, A.

    2015-11-01

    As reported in ATels #8223, #8266, #8271, quasar S5 0836+710 (4C 71.07) is in enhanced state of activity. We perform optical and near-infrared monitoring of this object using 40-cm LX-200 (optical, St.Petersburg, Russia), 70-cm AZT-8 (optical, Crimea) and 1.1-m AZT-24 (near-infrared, Campo Imperatore, Italy), as a part of WEBT/GASP project.

  17. Doppler and range determination for deep space vehicles using active optical transponders

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1988-01-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.

  18. Optical Activity Governed by Local Chiral Structures in Two-Dimensional Curved Metallic Nanostructures.

    PubMed

    Narushima, Tetsuya; Hashiyada, Shun; Okamoto, Hiromi

    2016-07-01

    Chiral nanostructures show macroscopic optical activity. Local optical activity and its handedness are not uniform in the nanostructure, and are spatially distributed depending on the shape of the nanostructure. In this study we fabricated curved chain nanostructures made of gold by connecting linearly two or more arc structures in a two-dimensional plane. Spatial features of local optical activity in the chain structures were evaluated with near-field circular dichroism (CD) imaging, and analyzed with the aid of classical electromagnetic simulation. The electromagnetic simulation predicted that local optical activity appears at inflection points where arc structures are connected. The handedness of the local optical activity was dependent on the handedness of the local chirality at the inflection point. Chiral chain structures have odd inflection points and the local optical activity distributed symmetrically with respect to structural centers. In contrast, achiral chain structures have even inflection points and showed antisymmetric distribution. In the near-field CD images of fabricated chain nanostructures, the symmetric and antisymmetric distributions of local CD were observed for chiral and achiral chain structures, respectively, consistent with the simulated results. The handedness of the local optical activity was found to be determined by the handedness of the inflection point, for the fabricated chain structures having two or more inflection points. The local optical activity was thus governed primarily by the local chirality of the inflection points for the gold chain structures. The total effect of all the inflection points in the chain structure is considered to be a predominant factor that determines the macroscopic optical activity. Chirality 28:540-544, 2016. © 2016 Wiley Periodicals, Inc.

  19. Approximation error method can reduce artifacts due to scalp blood flow in optical brain activation imaging

    NASA Astrophysics Data System (ADS)

    Heiskala, Juha; Kolehmainen, Ville; Tarvainen, Tanja; Kaipio, Jari. P.; Arridge, Simon R.

    2012-09-01

    Diffuse optical tomography can image the hemodynamic response to an activation in the human brain by measuring changes in optical absorption of near-infrared light. Since optodes placed on the scalp are used, the measurements are very sensitive to changes in optical attenuation in the scalp, making optical brain activation imaging susceptible to artifacts due to effects of systemic circulation and local circulation of the scalp. We propose to use the Bayesian approximation error approach to reduce these artifacts. The feasibility of the approach is evaluated using simulated brain activations. When a localized cortical activation occurs simultaneously with changes in the scalp blood flow, these changes can mask the cortical activity causing spurious artifacts. We show that the proposed approach is able to recover from these artifacts even when the nominal tissue properties are not well known.

  20. Activation Analysis of the Final Optics Assemblies at the National Ignition Facility

    SciTech Connect

    Dauffy, L S; Khater, H Y; Sitaraman, S; Brereton, S J

    2008-10-14

    Commissioning shots have commenced at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. Within a year, the 192 laser beam facility will be operational and the experimental phase will begin. At each shot, the emitted neutrons will interact in the facility's surroundings, activating them, especially inside the target bay where the neutron flux is the highest. We are calculating the dose from those activated structures and objects in order to plan and minimize worker exposures during maintenance and normal NIF operation. This study presents the results of the activation analysis of the optics of the Final Optics Assemblies (FOA), which are a key contributor to worker exposure. Indeed, there are 48 FOAs weighting three tons each, and routine change-out and maintenance of optics and optics modules is expected. The neutron field has been characterized using the three-dimensional Monte Carlo particle transport code MCNP with subsequent activation analysis performed using the activation code, ALARA.

  1. Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography

    PubMed Central

    Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle

    2015-01-01

    Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382

  2. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    NASA Astrophysics Data System (ADS)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  3. Activities Using Headsticks and Optical Pointers: A Description of Methods.

    ERIC Educational Resources Information Center

    Eriksson, Britt-Marie; And Others

    A variety of head-mounted aids have been developed in the past decade to fill in the functional gaps of children and adults unable to use their hands at standard capacity. For those with speech difficulties, the optical pointer, headstick and mouthstick also provide communication alternatives. This handbook discusses the characteristics of several…

  4. Violent optical activity of the blazar OJ 287

    NASA Astrophysics Data System (ADS)

    Larionov, V.; Mokrushina, A. A.; Grishina, T. S.

    2016-10-01

    We perform optical photometric and polarimetric monitoring of a sample of gamma-bright blazars using 0.7-m AZT-8 telescope (Crimean Astrophysical Observatory) and 0.4-m LX-200 telescope (St.Petersburg), as a part of WEBT/GASP project.

  5. Using optical dating to assess the recent activity of active faults in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Watanuki, T.; Chen, Y.

    2003-12-01

    The aim of this study is to evaluate the recent activity of active fault systems mapped in Hsinchu area, northwestern Taiwan. Since it is the largest site of industrial park and highly populated, it is essential to assess potential of earthquake hazards. As a result of previous work, two active fault systems (Hsinchu and Hsincheng) were identified as active. However, they have not been included in dangerous active faults on published map because Holocene offset has not been confirmed yet. Relationship between five river terraces and faults were discussed by mapping on geomorphic features; both of these thrust faults contain active anticlines in their hanging walls based on folded terraces that are composed of young alluvial deposits. Neither long-term nor short-term slip rate has been reported due to lack of age control on development timing of the terraces mentioned above. We collected samples from these terraces and open-pit trench on the highest terrace, where intercalated sandy layers are found within cobbles. As literatures optically stimulated luminescence (OSL) dating method can directly measure the burial ages of sedimentary deposits that underwent a short period of sunlight bleaching. Therefore, OSL dating is applied via single aliquot regeneration method on sand size quartz extract from our study terraces. OSL ages about 46ka and 68-75ka are obtained from 4 fluvial deposits at trenching site. We tentatively suggest that the terrace was abandoned by the main channel after 68ka and then upper strata were subsequently deposited by local small creeks. The vertical displacements cross these Hsinchu and Hsincheng active faults are ca. 90m and 70m, respectively since 68ka. Consequently, the derived long-term rates of vertical slip are 1.3 and 1.0 m/ka respectively for both of them. The details of the other age results and discussion on recent structural behavior will be presented.

  6. Review of active optics methods in astronomy from x-rays to the infrared

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gérard R.

    2010-09-01

    This review on Active Optics Methods presents various concepts of deformable uv, visible and ir telescope optics which have been mainly developed at the Marseille Observatory - for now 40 years - and other institutes. An optical surface generated by active optics and spherical figuring is free from high spatial frequency errors i.e. ripple errors. Active Optics allows applications of new concepts as: stress figuring aspherization processes, variable curvature mirrors, in situ stressing aspherization processes, under stress replications to generate corrected diffraction gratings, multimode deformable compensators, and situ control of large telescope optics. X-ray telescope mirrors could also benefit soon from the enhanced imaging performances of active optics. The 0.5- 1 arcsec spatial resolution of Chandra should be followed up by increased resolution space telescopes. This requires constructing new grazing-incidence telescopes which will strictly satisfy Abbe's sine condition, i.e. a Chase-VanSpeybroeck design for the two-mirror case. The recent elaboration of an elasticity theory of weakly conical shells allows reviewing some potential innovative concepts for the active figuring and in situ control of either monolithic or segmented telescope mirrors for x-ray astronomy.

  7. Integrated Modeling Activities for the James Webb Space Telescope: Optical Jitter Analysis

    NASA Technical Reports Server (NTRS)

    Hyde, T. Tupper; Ha, Kong Q.; Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.

    2004-01-01

    This is a continuation of a series of papers on the integrated modeling activities for the James Webb Space Telescope(JWST). Starting with the linear optical model discussed in part one, and using the optical sensitivities developed in part two, we now assess the optical image motion and wavefront errors from the structural dynamics. This is often referred to as "jitter: analysis. The optical model is combined with the structural model and the control models to create a linear structural/optical/control model. The largest jitter is due to spacecraft reaction wheel assembly disturbances which are harmonic in nature and will excite spacecraft and telescope structural. The structural/optic response causes image quality degradation due to image motion (centroid error) as well as dynamic wavefront error. Jitter analysis results are used to predict imaging performance, improve the structural design, and evaluate the operational impact of the disturbance sources.

  8. Active control of electromagnetic radiation through an enhanced thermo-optic effect.

    PubMed

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2015-03-09

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved.

  9. Active control of electromagnetic radiation through an enhanced thermo-optic effect.

    PubMed

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2015-01-01

    The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689

  10. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  11. Coherent phonon optics in a chip with an electrically controlled active device

    PubMed Central

    Poyser, Caroline L.; Akimov, Andrey V.; Campion, Richard P.; Kent, Anthony J.

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  12. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-01-01

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale. PMID:25652241

  13. Enzyme activity assays within microstructured optical fibers enabled by automated alignment

    PubMed Central

    Warren-Smith, Stephen C.; Nie, Guiying; Schartner, Erik P.; Salamonsen, Lois A.; Monro, Tanya M.

    2012-01-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women’s health. PMID:23243579

  14. Photo-induced optical activity in phase-change memory materials.

    PubMed

    Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I

    2015-03-05

    We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.

  15. Optical imaging of neural activity: from neuron to brain

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Zeng, Shaoqun; Gong, Hui

    2003-12-01

    This paper introduces the optical imaging approaches at three levels in cognitive neuroscience in the Key Laboratory of Biomedical Photonics of Ministry of Education of China. In molecular and cellular level, the advances in microscopy, molecular optical marker, and sample preparations have made possible studies that characterize the form and function of neurons in unprecedented detail. The development of two-photon excitation has enabled fluorescent imaging of small structures in the midst of highly scattering media with little photodamage. The combination of MPE and multi-electrode array provides a powerful approach for neuronal networks imaging. Intrinsic signal imaging (ISI) and laser speckle imaging (LSI) are effective approaches for intrinsic signal imaging at a given cortical site. No alternative imaging technique for the visualization of functional organization in the living brain provides a comparable spatial resolution. It is this level of resolution that reveals where processing is performed - a necessary step for the understanding of the neural code at the population level. Completely noninvasive optical imaging through the intact human skull, such as functional near infrared imaging may provide an imaging tool offering both the spatial and the temporal resolutions required to expand our knowledge of the principles underlying the remarkable performance of the human cerebral cortex.

  16. Using modalmetric fiber optic sensors to monitor the activity of the heart

    NASA Astrophysics Data System (ADS)

    Życzkowski, M.; Uzięblo-Zyczkowska, B.; Dziuda, L.; Różanowski, K.

    2011-03-01

    The paper presents the concept of the modalmetric fiber optic sensor system for human psychophysical activity detection. A fiber optic sensor that utilizes intensity of propagated light to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an multimode fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled by the singlemode optical fiber to detector. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use. We present the laboratory test of comparing their results with the known methods like EKG. addition, the article describes the work on integrated system to human psychophysiology activity monitoring. That system including a EMFIT, microwave, fiber optic and capacitive sensors.

  17. Integration of active materials with silicon micromachining: applications to optical MEMS

    NASA Astrophysics Data System (ADS)

    Gouy, Jean-Philippe; Arakawa, Yasuhiko; Fujita, Hiroyuki

    2001-11-01

    Most of the MOEMS including optical switches and micro optical benches are developed on silicon. As for the MEMS, the main reason is that silicon has consistently been the material of choice for the microelectronics industry, due to a mature processing technology which offers the possibility to integrate MEMS devices with Integrated Circuits in a low cost batch fabrication process. However, since the beginning of Optoelectronic, silicon has been suffering from its poor efficiency to emit light because of its indirect band gap. Optical active devices can be integrated on silicon by combining specific active materials in order to keep the main advantage of silicon micromachining for MOEMS applications. This paper illustrates this purpose through one project developed in the frame of the LIMMS, joint laboratory between France and Japan. This project deals with optical active devices for which silicon micromachining technology has been employed to fabricate an organic semiconductors based light emitted diode on silicon substrate.

  18. Integrated Modeling Activities for the James Webb Space Telescope (JWST): Structural-Thermal-Optical Analysis

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Parrish, Keith; Howard, Joseph M.; Mosier, Gary E.; McGinnis, Mark; Bluth, Marcel; Kim, Kevin; Ha, Hong Q.

    2004-01-01

    This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal- optical, often referred to as "STOP", analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. The paper begins an overview of multi-disciplinary engineering analysis, or integrated modeling, which is a critical element of the JWST mission. The STOP analysis process is then described. This process consists of the following steps: thermal analysis, structural analysis, and optical analysis. Temperatures predicted using geometric and thermal math models are mapped to the structural finite element model in order to predict thermally-induced deformations. Motions and deformations at optical surfaces are input to optical models and optical performance is predicted using either an optical ray trace or WFE estimation techniques based on prior ray traces or first order optics. Following the discussion of the analysis process, results based on models representing the design at the time of the System Requirements Review. In addition to baseline performance predictions, sensitivity studies are performed to assess modeling uncertainties. Of particular interest is the sensitivity of optical performance to uncertainties in temperature predictions and variations in metal properties. The paper concludes with a discussion of modeling uncertainty as it pertains to STOP analysis.

  19. Optical design of an all-reflecting, high resolution camera for active-optics on ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Richardson, E. H.; Morbey, C. L.

    Optical designs of high-resolution all-mirror cameras for the active optics of the 3.6-m Canada-France-Hawaii Telescope (CFHT) with classical optics (a paraboloidal primary), and the 2.2-m University of Hawaii telescope with Ritchey-Chretien (R-C) optics (a hyperboloidal primary), are presented. An oblate spheroid is used to produce longer focal ratios in the R-C telescope, lessening its disadvantage of a very small field of good definition at focal ratios longer than the optimized secondary focal ratio. Unlike the R-C telescope, the CFHT is not coma-free, and the prolate spheroid works well as its tertiary mirror. In the present camera design, the scale at the final focus is such that 0.25 arcsec covers 0.065 mm in order to match the resolution of the available detector. These cameras are off-axis, resulting in a slight change of magnification with the field rotation of alt-azimuth telescopes.

  20. Monocular distance estimation from optic flow during active landing maneuvers.

    PubMed

    van Breugel, Floris; Morgansen, Kristi; Dickinson, Michael H

    2014-06-01

    Vision is arguably the most widely used sensor for position and velocity estimation in animals, and it is increasingly used in robotic systems as well. Many animals use stereopsis and object recognition in order to make a true estimate of distance. For a tiny insect such as a fruit fly or honeybee, however, these methods fall short. Instead, an insect must rely on calculations of optic flow, which can provide a measure of the ratio of velocity to distance, but not either parameter independently. Nevertheless, flies and other insects are adept at landing on a variety of substrates, a behavior that inherently requires some form of distance estimation in order to trigger distance-appropriate motor actions such as deceleration or leg extension. Previous studies have shown that these behaviors are indeed under visual control, raising the question: how does an insect estimate distance solely using optic flow? In this paper we use a nonlinear control theoretic approach to propose a solution for this problem. Our algorithm takes advantage of visually controlled landing trajectories that have been observed in flies and honeybees. Finally, we implement our algorithm, which we term dynamic peering, using a camera mounted to a linear stage to demonstrate its real-world feasibility.

  1. Functional Imaging of Chemically Active Surfaces with Optical Reporter Microbeads

    PubMed Central

    Ahuja, Punkaj; Nair, Sumitha; Narayan, Sreenath; Gratzl, Miklós

    2015-01-01

    We have developed a novel approach to allow for continuous imaging of concentration fields that evolve at surfaces due to release, uptake, and mass transport of molecules, without significant interference of the concentration fields by the chemical imaging itself. The technique utilizes optical “reporter” microbeads immobilized in a thin layer of transparent and inert hydrogel on top of the surface. The hydrogel has minimal density and therefore diffusion in and across it is like in water. Imaging the immobilized microbeads over time provides quantitative concentration measurements at each location where an optical reporter resides. Using image analysis in post-processing these spatially discrete measurements can be transformed into contiguous maps of the dynamic concentration field across the entire surface. If the microbeads are small enough relative to the dimensions of the region of interest and sparsely applied then chemical imaging will not noticeably affect the evolution of concentration fields. In this work colorimetric optode microbeads a few micrometers in diameter were used to image surface concentration distributions on the millimeter scale. PMID:26332766

  2. Fiber optic illumination by laser activated remote phosphor

    NASA Astrophysics Data System (ADS)

    Hartwig, Ulrich

    2012-10-01

    For some fiber optic applications, like high-end endoscopy, light sources with high luminance are necessary. Currently, short arc discharge lamps are being used. However, more and more LED solutions are trying to compete, but they can not yet reach the performance obtainable by 300 W Xenon short arc discharge lamps. To make this field of application accessible for solid state light sources, a new approach is necessary. Diode lasers have rapidly advanced in the past years. This is particularly true for multimode laser diodes emitting at around 445 nm wavelength. Single diodes emitting more than 1 W of optical power are already available. These laser sources exhibit extremely high radiance, thus they can be focused onto very small areas. Phosphors placed near the focus can result in high luminance sources. On the basis of this idea, a device has been developed to match the performance of a state of the art 300 W Xenon lamp system. An array of laser diodes is used to illuminate a phosphor plate which converts the blue pump light into yellow light. The converted light is collected and adapted to the application by a tapered TIR rod. To achieve a color point on the Planckian locus at 6000 K, the light of an LED emitting at around 460 nm is superimposed to the converted light.

  3. N-methyl-D-aspartate receptors strongly regulate postsynaptic activity levels during optic nerve regeneration.

    PubMed

    Kolls, Brad J; Meyer, Ronald L

    2013-10-01

    During development, neuronal activity is used as a cue to guide synaptic rearrangements to refine connections. Many studies, especially in the visual system, have shown that the N-methyl-D-aspartate receptor (NMDAr) plays a key role in mediating activity-dependent refinement through long-term potentiation (LTP)-like processes. Adult goldfish can regenerate their optic nerve and utilize neuronal activity to generate precise topography in their projection onto tectum. Although the NMDAr has been implicated in this process, its precise role in regeneration has not been extensively studied. In examining NMDAr function during regeneration, we found salient differences compared with development. By using field excitatory postsynaptic potential (fEPSP) recordings, the contribution of the NMDAr at the primary optic synapse was measured. In contrast to development, no increase in NMDAr function was detectable during synaptic refinement. Unlike development, LTP could not be reliably elicited during regeneration. Unexpectedly, we found that NMDAr exerted a major effect on regulating ongoing tectal (postsynaptic) activity levels during regeneration. Blocking NMDAr strongly suppressed spontaneous activity during regeneration but had no significant effect in the normal projection. This difference could be attributed to an occlusion effect of strong optic drive in the normal projection, which dominated ongoing tectal activity. During regeneration, this optic drive is largely absent. Optic nerve stimulation further indicated that the NMDAr had little effect on the ability of optic fibers to evoke early postsynaptic impulse activity but was important for late network activity. These results indicate that, during regeneration, the NMDAr may play a critical role in the homeostatic regulation of ongoing activity and network excitability. PMID:23873725

  4. Research based activities in teacher professional development on optics

    NASA Astrophysics Data System (ADS)

    Michelini, Marisa; Stefanel, Alberto

    2016-05-01

    The aim of this research is to understand how teachers take ownership of content given them in formative intervention modules and transform it into suggestions and materials for teaching. To this end a module on optics was designed for a group of kindergarten, primary and lower secondary school teachers which sought to integrate meta-cultural, experiential and situated approaches with various context specific factors. The study investigated how teachers deal with conceptual difficulties in the module and how they adapt it to their school situations with data being gathered through a variety of tools. It emerged that the most difficult concepts teachers encountered at the formative stage were those they most often incorporated into their materials. The steps taken in this process of appropriation were then reviewed via a collaborative discussion among the teachers themselves on the materials they had produced.

  5. Active Optical Metasurfaces Based on Defect-Engineered Phase-Transition Materials.

    PubMed

    Rensberg, Jura; Zhang, Shuyan; Zhou, You; McLeod, Alexander S; Schwarz, Christian; Goldflam, Michael; Liu, Mengkun; Kerbusch, Jochen; Nawrodt, Ronny; Ramanathan, Shriram; Basov, D N; Capasso, Federico; Ronning, Carsten; Kats, Mikhail A

    2016-02-10

    Active, widely tunable optical materials have enabled rapid advances in photonics and optoelectronics, especially in the emerging field of meta-devices. Here, we demonstrate that spatially selective defect engineering on the nanometer scale can transform phase-transition materials into optical metasurfaces. Using ion irradiation through nanometer-scale masks, we selectively defect-engineered the insulator-metal transition of vanadium dioxide, a prototypical correlated phase-transition material whose optical properties change dramatically depending on its state. Using this robust technique, we demonstrated several optical metasurfaces, including tunable absorbers with artificially induced phase coexistence and tunable polarizers based on thermally triggered dichroism. Spatially selective nanoscale defect engineering represents a new paradigm for active photonic structures and devices.

  6. Quasi-optical solid-state power combining for millimeter-wave active seeker applications

    SciTech Connect

    Halladay, R.H.; Terrill, S.D.; Bowling, D.R.; Gagnon, D.R. U.S. Navy, Naval Air Warfare Center, China Lake, CA )

    1992-05-01

    Consideration is given to quasi-optical power combining techniques, state-of-the-art demonstrated performance, and system issues as they apply to endoatmospheric homing seeker insertion. Quasi-optical power combining is based on combining microwave and millimeter-wave solid-state device power in space through the use of antennas and lenses. It is concluded that quasi-optical power combining meets the severe electrical requirements and packaging constraints of active MMW seekers for endoatmospheric hit-to-kill missiles. The approach provides the possibility of wafer-scale integration of major components for low cost production and offers high reliability. Critical issues include thermal loading and system integration, which must be resolved before the quasi-optical power combining technology will be applied to an active MMW seeker. 18 refs.

  7. Actively mode-locked fiber ring laser by intermodal acousto-optic modulation.

    PubMed

    Bello-Jiménez, M; Cuadrado-Laborde, C; Sáez-Rodríguez, D; Diez, A; Cruz, J L; Andrés, M V

    2010-11-15

    We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power.

  8. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells

    NASA Astrophysics Data System (ADS)

    Maldiney, Thomas; Bessière, Aurélie; Seguin, Johanne; Teston, Eliott; Sharma, Suchinder K.; Viana, Bruno; Bos, Adrie J. J.; Dorenbos, Pieter; Bessodes, Michel; Gourier, Didier; Scherman, Daniel; Richard, Cyrille

    2014-04-01

    Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.

  9. Study of passive and active optical waveguides: Synthesis, processing and characterization of materials

    NASA Astrophysics Data System (ADS)

    Yoshida, Makoto

    Photonics uses photons for information and image processing, and has been touted as the technology of the 21 st century. An optical waveguide is a key component of an optical integrated circuit which is the optical analog of an electrical integrated circuit (IC). Electrical transistor IC technology resulted in an enormous impact on society, and it changed our life styles from the age of the vacuum tube. The advent of the optical integrated circuit is expected to have the same impact on society as the electronic IC. Various optical circuit elements are interrelated to materials, therefore, the study and the better understanding of materials and processing have been receiving a great deal of attention. My research focuses on the study of optical waveguide materials and their processings in terms of passive and active optical waveguides. The first target was to establish a method for measuring the refractive index and optical propagation loss of optical waveguides. The second target was to develop passive waveguide materials which can route, split and combine optical signals on a substrate. There are several requirements for waveguiding, such as high optical transparency, proper refractive index, and proper thickness. The sol-gel technique was used to meet the requirements, and several types of organic: inorganic composite materials were developed. The third target involved the development of processing methods to fabricate channel waveguides using the above-mentioned passive and active waveguide materials. Selective laser densification was developed for sol-gel composite materials. Use of trenched substrates and photobleaching were also studied. The last target was to develop an active material which could process optical signals using the electrooptic effect. A crosslinked urethane polymer with a newly synthesized chromophore was used due to its high thermal stability and optical transparency. In order to obtain second order nonlinearity, macroscopic molecular

  10. Complementary chiral metasurface with strong broadband optical activity and enhanced transmission

    SciTech Connect

    Jia, Yan-Peng; Zhang, Yong-Liang; Dong, Xian-Zi E-mail: xmduan@mail.ipc.ac.cn; Zheng, Mei-Ling; Li, Jing; Liu, Jie; Zhao, Zhen-Sheng; Duan, Xuan-Ming E-mail: xmduan@mail.ipc.ac.cn

    2014-01-06

    We present the design and realization of ultra-thin chiral metasurfaces with giant broadband optical activity in the infrared wavelength. The chiral metasurfaces consisting of periodic hole arrays of complementary asymmetric split ring resonators are fabricated by femtosecond laser two-photon polymerization. Enhanced transmission with strong polarization conversion up to 97% is observed owing to the chiral surface plasmons resulting from mirror symmetry broken. The dependence of optical activity on the degree of structural asymmetry is investigated. This simple planar metasurface is expected to be useful for designing ultra-thin active devices and tailoring the polarization behavior of complex metallic nanostructures.

  11. Cathodoluminescence-activated nanoimaging: noninvasive near-field optical microscopy in an electron microscope.

    PubMed

    Bischak, Connor G; Hetherington, Craig L; Wang, Zhe; Precht, Jake T; Kaz, David M; Schlom, Darrell G; Ginsberg, Naomi S

    2015-05-13

    We demonstrate a new nanoimaging platform in which optical excitations generated by a low-energy electron beam in an ultrathin scintillator are used as a noninvasive, near-field optical scanning probe of an underlying sample. We obtain optical images of Al nanostructures with 46 nm resolution and validate the noninvasiveness of this approach by imaging a conjugated polymer film otherwise incompatible with electron microscopy due to electron-induced damage. The high resolution, speed, and noninvasiveness of this "cathodoluminescence-activated" platform also show promise for super-resolution bioimaging.

  12. Analyses of space environment effects on active fiber optic links orbited aboard the LDEF

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Monarski, T. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1993-01-01

    The results of the 'Preliminary Analysis of WL Experiment no. 701, Space Environment Effects on Operating Fiber Optic Systems,' is correlated with space simulated post retrieval terrestrial studies performed on the M0004 experiment. Temperature cycling measurements were performed on the active optical data links for the purpose of assessing link signal to noise ratio and bit error rate performance some 69 months following the experiment deployment in low Earth orbit. The early results indicate a high correlation between pre-orbit, orbit, and post-orbit functionality of the first known and longest space demonstration of operating fiber optic systems.

  13. Morphology and optical properties of aluminum oxide formed into oxalic electrolyte with addition surface active agents

    NASA Astrophysics Data System (ADS)

    Kazarkin, B.; Stsiapanau, A.; Zhilinski, V.; Chernik, A.; Bezborodov, V.; Kozak, G.; Danilovich, S.; Smirnov, A.

    2016-08-01

    The article discusses the results of investigations of porous films of alumina, formed into oxalic electrolyte with addition surface active agents, in particular, ordering structure, roughness of a surface, the optical transparency of the electrolyte concentration and surface active agents. Also discusses the features of the formation of porous films of temperature and IR radiation.

  14. Spin polarization and additional magneto-optical activity of nonmagnetic layers in Fe/Ag CMF

    NASA Astrophysics Data System (ADS)

    Xu, Y. B.; Zhai, H. R.; Lu, M.; Jin, Q. Y.; Miao, Y. Z.

    1992-08-01

    The experimental magneto-optical Kerr rotation spectra of Fe/Ag compositionally modulated films reported by Katayama et al. are studied theoretically. It is found that the free electrons of Ag are spin polarized. The magnitude of the polarization is about 1% with a direction opposite to that of Fe. The polarized Ag also gives rise to an additional magneto-optical activity as in Pt and Pd.

  15. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo

    PubMed Central

    Ward, Patricia J.; Jones, Laura N.; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C.; English, Arthur W.

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  16. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    PubMed

    Ward, Patricia J; Jones, Laura N; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C; English, Arthur W

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  17. Optical activity of catalytic elements of hetero-metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Antosiewicz, Tomasz J.; Apell, S. Peter; Wadell, Carl; Langhammer, Christoph

    2015-05-01

    Interaction of light with metals in the form of surface plasmons is used in a wide range of applications in which the scattering decay channel is important. The absorption channel is usually thought of as unwanted and detrimental to the efficiency of the device. This is true in many applications, however, recent studies have shown that maximization of the decay channel of surface plasmons has potentially significant uses. One of these is the creation of electron-hole pairs or hot electrons which can be used for e.g. catalysis. Here, we study the optical properties of hetero-metallic nanostructures that enhance light interaction with the catalytic elements of the nanostructures. A hybridized LSPR that matches the spectral characteristic of the light source is excited. This LSPR through coupling between the plasmonic elements maximizes light absorption in the catalytic part of the nanostructure. Numerically calculated visible light absorption in the catalytic nanoparticles is enhanced 12-fold for large catalytic disks and by more 30 for small nanoparticles on the order of 5 nm. In experiments we measure a sizable increase in the absorption cross section when small palladium nanoparticles are coupled to a large silver resonator. These observations suggest that heterometallic nanostructures can enhance catalytic reaction rates.

  18. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  19. Stable aqueous dispersions of optically and electronically active phosphorene

    PubMed Central

    Kang, Joohoon; Wells, Spencer A.; Wood, Joshua D.; Lee, Jae-Hyeok; Liu, Xiaolong; Ryder, Christopher R.; Zhu, Jian; Guest, Jeffrey R.; Husko, Chad A.; Hersam, Mark C.

    2016-01-01

    Understanding and exploiting the remarkable optical and electronic properties of phosphorene require mass production methods that avoid chemical degradation. Although solution-based strategies have been developed for scalable exfoliation of black phosphorus, these techniques have thus far used anhydrous organic solvents in an effort to minimize exposure to known oxidants, but at the cost of limited exfoliation yield and flake size distribution. Here, we present an alternative phosphorene production method based on surfactant-assisted exfoliation and postprocessing of black phosphorus in deoxygenated water. From comprehensive microscopic and spectroscopic analysis, this approach is shown to yield phosphorene dispersions that are stable, highly concentrated, and comparable to micromechanically exfoliated phosphorene in structure and chemistry. Due to the high exfoliation efficiency of this process, the resulting phosphorene flakes are thinner than anhydrous organic solvent dispersions, thus allowing the observation of layer-dependent photoluminescence down to the monolayer limit. Furthermore, to demonstrate preservation of electronic properties following solution processing, the aqueous-exfoliated phosphorene flakes are used in field-effect transistors with high drive currents and current modulation ratios. Overall, this method enables the isolation and mass production of few-layer phosphorene, which will accelerate ongoing efforts to realize a diverse range of phosphorene-based applications. PMID:27092006

  20. Probing the Active Galactic Nuclei using optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Vivek, M.

    Variability studies offer one of the best tools for understanding the physical conditions present in regions close to the central engine in an AGN. We probed the various properties of AGN through time variability studies of spectral lines in the optical wavelengths using the 2m telescope in IUCAA Girawali observatory. The absorption line variability studies are mainly concentrated in understanding the nature of outflows in quasars. Quasar outflows have a huge impact on the evolution of central supermassive blackholes, their host galaxies and the surrounding intergalactic medium. Studying the variability in these Broad Absorption Lines (BALs) can help us understand the structure, evolution, and basic physical properties of these outflows. We conducted a repeated Low ionization BAL monitoring program with 27 LoBALs (Low Ionization BALs) at z 0.3-2.1 covering timescales from 3.22 to 7.69 years in the quasar rest frame. We see a variety of phenomena, including some BALs that either appeared or disappeared completely and some BALs which do not vary over the observation period. In one case, the excited fine structure lines have changed dramatically. One source shows signatures of radiative acceleration. Here, we present the results from this program. Emission line studies are concentrated in understanding the peculiar characteristics of a dual-AGN source SDSS J092712.64+294344.0.

  1. Sulfoximine-mediated syntheses of optically active alcohols. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stark, C. J., Jr.

    1978-01-01

    Several routes are described for the production of optically active secondary and tertiary alcohols. In all cases, the asymmetry emanates from the use of (+)-(S)-N,S-dimethyl-S-phenyl-sulfoximine (1) at some point in the variation of the diastereomers. One route relies upon the separation of the diastereomers produced from the condensation of (+)-(S)-(N-methylphenyl-sulfonimidoyl) methyllithium with prochiral aldehydes and ketones. Subsequent carbon-sulfur bond cleavage of the separated diastereomeric beta-hydroxysulfoximines yields optically active alcohols. Alternatively, beta-hydroxysulfoximines were produced from the reduction of chiral beta-ketosulfoximines. The reductions were most successfully achieved with diborane generated externally and bubbled into a toluene solution of the ketone at -78 C. Optically active alcohols were also produced from prochiral ketones by reduction with diborane or lithium aluminum hydride complexes of resolved diastereomers of beta-hydroxysulfoximines.

  2. Active compensation of flexure on the High-Resolution Optical Spectrograph for Gemini

    NASA Astrophysics Data System (ADS)

    D'Arrigo, P.; Diego, Francisco; Walker, David D.

    1997-03-01

    Gravity-induced flexure has been a long-standing challenge in Cassegrain spectrographs at 4-meter class telescopes; it is the more so at the scale of 8-meter telescopes. This is of particular concern for the Gemini high resolution optical spectrograph, which will be Cassegrain-mounted for its routine mode of operation. In this paper we address the general flexure problem, and how to solve it with the use of active optics. We also present the results of an experimental active flexure compensation system for the ISIS (intermediate- dispersion spectroscopic and imaging system) spectrograph on the 4.2 m William Herschel Telescope (WHT). This instrument, called ISAAC (ISIS spectrograph automatic active collimator), is based on the concept of active correction, where spectrum drifts, due to the spectrograph flexing under the effect of gravity, are compensated by the movement of an active optical element (in this case a fine steering tip-tilt collimator mirror). The experiment showed that active compensation can reduce flexure down to less than 3 micrometer over four hours of telescope motions, dramatically improving the spectrograph performance. The results of the experiment are used to discuss a flexure compensation system for the high resolution optical spectrograph (HROS) for the 8 m Gemini telescope.

  3. Low-noise and high-gain Brillouin optical amplifier for narrowband active optical filtering based on a pump-to-signal optoelectronic tracking.

    PubMed

    Souidi, Yahia; Taleb, Fethallah; Zheng, Junbo; Lee, Min Won; Du Burck, Frédéric; Roncin, Vincent

    2016-01-10

    We implement and characterize an optical narrowband amplifier based on stimulated Brillouin scattering with pump-to-signal relative frequency fluctuations overcome thanks to an active pump tracking. We achieve a precise characterization of this amplifier in terms of gain and noise degradation (noise figure). The performances of this stable selective amplification are compared to those of a conventional erbium-doped fiber amplifier in order to highlight the interest of the Brillouin amplification solution for active narrow optical filtering with a bandpass of 10 MHz. Thanks to the simple optoelectronic pump-to-signal tracking, the Brillouin active filter appears as a stable and reliable solution for narrowband optical processing in the coherent optical communication context and optical sensor applications. PMID:26835759

  4. Conformal optical elements for correcting wavefront distortions in YAG : Nd{sup 3+} active elements

    SciTech Connect

    Korolkov, V P; Nasyrov, R K; Poleshchuk, A G; Arapov, Yu D; Ivanov, A F

    2013-02-28

    Correction of the wavefront is studied for the light beam passing wide-aperture YAG : Nd3+ single-crystal rods, which are used as active elements in high-power solid-state lasers. A nonideal character of the crystal structure is responsible for the deformation of the wavefront of passing radiation. By using the halftone technology we have developed conformal aberration correctors capable of compensating rod nonuniformities and reducing the laser radiation divergence by an order of magnitude. The results obtained make it possible to employ optically nonuniform active elements in laser constructions. (laser optics 2012)

  5. Optical Tools to Investigate Cellular Activity in the Intestinal Wall

    PubMed Central

    Boesmans, Werend; Hao, Marlene M; Berghe, Pieter Vanden

    2015-01-01

    Live imaging has become an essential tool to investigate the coordinated activity and output of cellular networks. Within the last decade, 2 Nobel prizes have been awarded to recognize innovations in the field of imaging: one for the discovery, use, and optimization of the green fluorescent protein (2008) and the second for the development of super-resolved fluorescence microscopy (2014). New advances in both optogenetics and microscopy now enable researchers to record and manipulate activity from specific populations of cells with better contrast and resolution, at higher speeds, and deeper into live tissues. In this review, we will discuss some of the recent developments in microscope technology and in the synthesis of fluorescent probes, both synthetic and genetically encoded. We focus on how live imaging of cellular physiology has progressed our understanding of the control of gastrointestinal motility, and we discuss the hurdles to overcome in order to apply the novel tools in the field of neurogastroenterology and motility. PMID:26130630

  6. Thermal and Optical Activation Mechanisms of Nanospring-Based Chemiresistors

    PubMed Central

    Dobrokhotov, Vladimir; Oakes, Landon; Sowell, Dewayne; Larin, Alexander; Hall, Jessica; Barzilov, Alexander; Kengne, Alex; Bakharev, Pavel; Corti, Giancarlo; Cantrell, Timothy; Prakash, Tej; Williams, Joseph; Bergman, Leah; Huso, Jesse; McIlroy, David

    2012-01-01

    Chemiresistors (conductometric sensor) were fabricated on the basis of novel nanomaterials—silica nanosprings ALD coated with ZnO. The effects of high temperature and UV illumination on the electronic and gas sensing properties of chemiresistors are reported. For the thermally activated chemiresistors, a discrimination mechanism was developed and an integrated sensor-array for simultaneous real-time resistance scans was built. The integrated sensor response was tested using linear discriminant analysis (LDA). The distinguished electronic signatures of various chemical vapors were obtained at ppm level. It was found that the recovery rate at high temperature drastically increases upon UV illumination. The feasibility study of the activation method by UV illumination at room temperature was conducted. PMID:22778604

  7. Active flutter suppression using optical output feedback digital controllers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.

  8. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.

    PubMed

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-24

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.

  9. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization.

    PubMed

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2014-02-10

    We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam. Trajectories, in both the transverse plane and the longitudinal direction, are analyzed showing that the behavior of the optical conveyor can be optimized by conveniently choosing the configuration of the mask of the two annular pupils (inner and outer radius of the two rings) in order to trap and transport all particles at the focal plane. PMID:24663619

  10. Fail-safe fiber-optics data bus using active multimode mirror terminals.

    PubMed

    Spillman, W B; Gravel, R L; Soref, R A

    1978-12-01

    A prototype fail-safe optical data bus utilizing active LiTaO(3) electrooptic mirror terminals has been constructed and tested. Features of the system include (1) a single optical source; (2) an optical insertion loss of less than 6 dB and a tapoff ratio of 13 dB for the mirror terminals in the fail-safe mode; (3) compatibility with commercially available LED sources, P-I-N photodiode detectors, and step-index multimode monofibers; (4) remote terminal modulation depth approaching 50% for 100 V applied; and (5) the use of a pulse transformer technique which allows the required electrooptic modulation voltages to be obtained from a 5-V electrical supply. The construction of a working prototype data bus using mirror terminals demonstrates the feasibility of such systems for use in optical communications at the present state of the art.

  11. Backward reflection analysis of transmitting channel of active laser ranging optics

    NASA Astrophysics Data System (ADS)

    Hong, Jinsuk; Koh, Hae Seog

    2013-09-01

    The designed Active LDR(Laser Detection and Ranging) System contains high-power Laser and its diameter is approximately 24mm. Although the laser transmitting channel and receiving optic channel are completely separated from each other and doesn't share any of the optical components in design, each channel shares 4 wedge scanners, which are to overcome the narrow FOV(Field of View) of the optical system. Any backward reflection back to the fiber laser end must be carefully studied since it can damage the LD(Laser Diodes), the inner components of the laser unit because of the high amplification factor of the laser unit. In this study, the stray light caused by the transmitting channel's laser and inner reflection by optical components were analyzed by ASAP(Advanced System Analysis Program) software. We also can confirm the operability and stability of the system by more than 6 months of operation of the system.

  12. Defects in electro-optically active polymer solids

    NASA Technical Reports Server (NTRS)

    Martin, David C.

    1993-01-01

    There is considerable current interest in the application of organic and polymeric materials for electronic and photonic devices. The rapid, non-linear optical (NLO) response of these materials makes them attractive candidates for waveguides, interferometers, and frequency doublers. In order to realize the full potential of these systems, it is necessary to develop processing schemes which can fabricate these molecules into ordered arrangements. There is enormous potential for introducing well-defined, local variations in microstructure to control the photonic properties of organic materials by rational 'defect engineering.' This effort may eventually become as technologically important as the manipulation of the electronic structure of solid-state silicon based devices is at present. The success of this endeavor will require complimentary efforts in the synthesis, processing, and characterization of new materials. Detailed information about local microstructure will be necessary to understand the influence of symmetry breaking of the solid phases near point, line, and planar defects. In metallic and inorganic polycrystalline materials, defects play an important role in modifying macroscopic properties. To understand the influence of particular defects on the properties of materials, it has proven useful to isolate the defect by creating bicrystals between two-component single crystals. In this way the geometry of a grain boundary defect and its effect on macroscopic properties can be determined unambiguously. In crystalline polymers it would be valuable to establish a similar depth of understanding about the relationship between defect structure and macroscopic properties. Conventionally processed crystalline polymers have small crystallites (10-20 nm), which implies a large defect density in the solid state. Although this means that defects may play an important or even dominant role in crystalline or liquid crystalline polymer systems, it also makes it difficult

  13. Extremely aspheric mirrors: prototype development of an innovative manufacturing process based on active optics

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Ferrari, Marc; Le Merrer, Joël.; Le Mignant, David; Cuby, Jean-Gabriel

    2012-09-01

    The next generation of focal-plane astronomical instruments requires technological breakthroughs to reduce their system complexity while increasing their scientific performances. Applied to the optical systems, recent studies show that the use of freeform reflective optics allows competitive compact systems with less optical components. In this context, our challenge is to supply an active freeform mirror system, using a combination of different active optics techniques. The optical shape will be provided during the fabrication using the mechanical property of metals to plasticize and will be coupled with a specific actuator system to compensate for the residual form errors, during the instrument operation phase. We present in this article the development of an innovative manufacturing process based on cold hydro-forming method, with the aim to adapt it for VIS/NIR requirements in terms of optical surface quality. It can operate on thin and flat polished initial substrates. The realization of a first prototype for a 100 mm optical diameter mirror is in progress, to compare the mechanical behaviours obtained by tests and by Finite Element Analysis (FEA), for different materials. Then, the formed samples will be characterized optically. The opto-mechanical results will allow a fine tuning of FEA parameters to optimize the residual form errors obtained through this process. It concerns the microstructure considerations, the springback effects and the work hardening evolutions of the samples, depending on the initial substrate properties and the boundary conditions applied. Modeling and tests have started with axi-symmetric spherical and aspherical shapes and will continue with highly aspherics and freeforms.

  14. Tracking on non-active collaborative objects from San Fernando Laser station

    NASA Astrophysics Data System (ADS)

    Catalán, Manuel; Quijano, Manuel; Cortina, Luis M.; Pazos, Antonio A.; Martín-Davila, José

    2016-04-01

    The Royal Observatory of the Spanish Navy (ROA) works on satellite geodesy from the early days of the space age, when the first artificial satellite tracking telescope was installed in 1958: the Baker-Nunn camera. In 1975 a French satellite Laser ranging (SLR) station was installed and operated at ROA . Since 1980, ROA has been operating this instrument which was upgraded to a third generation and it is still keep into a continuous update to reach the highest level of operability. Since then ROA has participated in different space geodesy campaigns through the International Laser Service Stations (ILRS) or its European regional organization (EUROLAS), tracking a number of artificial satellites types : ERS, ENVISAT, LAGEOS, TOPEX- POSEIDON to name but a few. Recently we opened a new field of research: space debris tracking, which is receiving increasing importance and attention from international space agencies. The main problem is the relatively low accuracy of common used methods. It is clear that improving the predicted orbit accuracy is necessary to fulfill our aims (avoiding unnecessary anti-collision maneuvers,..). Following results obtained by other colleagues (Austria, China, USA,...) we proposed to share our time-schedule using our satellite ranging station to obtain data which will make orbital elements predictions far more accurate (sub-meter accuracy), while we still keep our tracking routines over active satellites. In this communication we report the actions fulfill until nowadays.

  15. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio

    2010-07-01

    In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

  16. Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Noskov, Roman E.; Ginzburg, Pavel; Gun’ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2015-01-01

    For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal’s electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals—with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio—will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules. PMID:26424498

  17. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  18. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Congjun; Ohodnicki, Paul R.; Su, Xin; Keller, Murphy; Brown, Thomas D.; Baltrus, John P.

    2015-01-01

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an

  19. Optics outreach activities with elementary school kids from public education in Mexico

    NASA Astrophysics Data System (ADS)

    Viera-González, P.; Sánchez-Guerrero, G.; Ruiz-Mendoza, J.; Cárdenas-Ortiz, G.; Ceballos-Herrera, D.; Selvas-Aguilar, R.

    2014-09-01

    This work shows the results obtained from the "O4K" Project supported by International Society for Optics and Photonis (SPIE) and the Universidad Autonoma de Nuevo Leon (UANL) through its SPIE Student Chapter and the Dr. Juan Carlos Ruiz-Mendoza, outreach coordinator of the Facultad de Ciencias Fisico Matematicas of the UANL. Undergraduate and graduate students designed Optics representative activities using easy-access materials that allow the interaction of children with optics over the exploration, observation and experimentation, taking as premise that the best way to learn Science is the interaction with it. Several activities were realized through the 2011-2013 events with 1,600 kids with ages from 10 to 12; the results were analyzed using surveys. One of the principal conclusions is that in most of the cases the children changed their opinions about Sciences in a positive way.

  20. Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.

    1975-01-01

    One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.

  1. The Age of Enlightenment: Evolving Opportunities in Brain Research Through Optical Manipulation of Neuronal Activity

    PubMed Central

    Jerome, Jason; Heck, Detlef H.

    2011-01-01

    Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments. PMID:22275886

  2. Investigations of electron helicity in optically active molecules using polarized beams of electrons and positrons

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J. C.; Zitzewitz, P. W.

    1981-01-01

    A positronium-formation experiment with a high sensitivity to a possible relation between the helicity of beta particles emitted in nuclear beta decay and the optical asymmetry of biological molecules is presented. The experiment is based on a mechanism in which the electrons in optically active molecules possess a helicity of less than 0.001, too weak to detect in radiolysis experiments, the sign of which depends on the chirality of the isomer. A helicity-dependent asymmetry is sought in the formation of the triplet ground state of positronium when a low-energy beam of polarized positrons of reversible helicity interacts with an optically active substance coating a channel electron multiplier. Asymmetries between positronium decays observed at positive and negative helicities for the same substance can thus be determined with a sensitivity of 0.0001, which represents a factor of 100 improvement over previous positronium experiments.

  3. Optical resolution by preferential crystallization of (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid and its use in synthesizing optically active 2-amino-2-methyl-3-phenylpropanoic acid.

    PubMed

    Shiraiwa, Tadashi; Suzuki, Masahiro; Sakai, Yoshio; Nagasawa, Hisashi; Takatani, Kazuhiro; Noshi, Daisuke; Yamanashi, Kenji

    2002-10-01

    To synthesize optically active 2-amino-2-methyl-3-phenylpropanoic acid (1), (RS)-2-benzoylamino-2-benzyl-3-hydroxypropanoic acid [(RS)-2] was first optically resolved using cinchonidine as a resolving agent to yield optically pure (S)- and (R)-2 in yields of about 70%, based on half of the starting amount of (RS)-2. Next, the racemic structure of (RS)-2 was examined based on melting point, solubility, IR spectrum, and binary and ternary phase diagrams, with the aim of optical resolution by preferential crystallization of (RS)-2. Results indicated that the (RS)-2 exists as a conglomerate at room temperature, although it forms a racemic compound at the melting point. The optical resolution by preferential crystallization yielded (S)- and (R)-2 with optical purities of about 90%, which were fully purified by recrystallization. After O-tosylation of (S)- and (R)-2, reduction by zinc powder and sodium iodide gave (R)- and (S)-1, respectively.

  4. Active magneto-optical control of spontaneous emission in graphene

    DOE PAGESBeta

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magneticmore » field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.« less

  5. Active magneto-optical control of spontaneous emission in graphene

    SciTech Connect

    Kort-Kamp, W. J. M.; Amorim, B.; Bastos, G.; Pinheiro, F. A.; Rosa, F. S. S.; Peres, N. M. R.; Farina, C.

    2015-11-13

    In this study, we investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.

  6. Active optics primary mirror support system for the 26m VST telescope

    NASA Astrophysics Data System (ADS)

    Schipani, Pietro; D'Orsi, Sergio; Ferragina, Luigi; Fierro, Davide; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco

    2010-03-01

    The Very Large Telescope Survey Telescope (VST) is equipped with an active optics system in order to correct low-order aberrations. The 2.6 m primary mirror is supported both axially and laterally and is surrounded by several safety devices for earthquake protection. We describe the mirror support system and discuss the results of the qualification test campaign.

  7. An increase of Optical Activity in the Quasar 3C454.3

    NASA Astrophysics Data System (ADS)

    Jorstad, Svetlana

    2016-06-01

    The quasar 3C454.3 shows an increase of the optical activity during the last three nights. According to our observations at the Perkins telescope of the Lowell Observatory (Flagstaff, AZ) the brightness of the source on June 10 (JD 2457549.8770) in R band was 15.817+-0.018 with a of polarization of 2.27+-0.39%.

  8. Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study

    NASA Astrophysics Data System (ADS)

    Bu, Xiaohai; Zhou, Yuming; Zhang, Tao; Wang, Yongjuan; Zhang, Zewu; He, Man

    2014-08-01

    Optically active substituted polyacetylene@multiwalled carbon nanotubes (SPA@MWCNTs) nanohybrids were fabricated by wrapping helical SPA copolymers onto the surface of modified nanotubes through ester bonding linkage. SPA copolymer based on chiral phenylalanine and serine was pre-polymerized by a rhodium zwitterion catalyst in THF, and evidently proved to possess strong optical activity and adopt a predominately one-handed helical conformation. Various characterizations including Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) demonstrated that the SPA had been covalently grafted onto the nanotubes without destroying their original graphite structure. The wrapped SPA was found to exhibit an enhancement in thermal stability and still maintained considerable optical activity after grafting. The infrared emissivity property of the nanohybrids at 8-14 μm was investigated in addition. The results indicated that the SPA@MWCNTs hybrid matrix could possess a much lower infrared emissivity value (ε=0.707) than raw MWCNTs, which might be due to synergistic effect of the unique helical conformation of optically active SPA and strengthened interfacial interaction between the organic polymers and inorganic nanoparticles.

  9. Are passive red spirals truly passive?. The current star formation activity of optically red disc galaxies

    NASA Astrophysics Data System (ADS)

    Cortese, L.

    2012-07-01

    We used GALEX ultraviolet and WISE 22 μm observations to investigate the current star formation activity of the optically red spirals recently identified as part of the Galaxy Zoo project. These galaxies were accurately selected from the Sloan Digital Sky Survey as pure discs with low or no current star formation activity, representing one of the best optically selected samples of candidate passive spirals. However, we show that these galaxies are not only still forming stars at a significant rate (≳1 M⊙ yr-1) but, more importantly, their star formation activity is not different from that of normal star-forming discs of the same stellar mass (M∗ ≳ 1010.2 M⊙). Indeed, these systems lie on the UV-optical blue sequence, even without any corrections for internal dust attenuation, and they follow the same specific star formation rate vs. stellar mass relation of star-forming galaxies. Our findings clearly show that at high stellar masses, optical colours do not allow to distinguish between actively star-forming and truly quiescent systems.

  10. Optics: Light, Color, and Their Uses. An Educator's Guide with Activities in Science and Mathematics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This educator's guide from discusses optics, light, color and their uses. Activities include: (1) "Reflection of Light with a Plane (Flat) Mirror--Trace a Star"; (2) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a 90-Degree Angle"; (3) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a Number of…

  11. Mosher Amides: Determining the Absolute Stereochemistry of Optically-Active Amines

    ERIC Educational Resources Information Center

    Allen, Damian A.; Tomaso, Anthony E., Jr.; Priest, Owen P.; Hindson, David F.; Hurlburt, Jamie L.

    2008-01-01

    The use of chiral reagents for the derivatization of optically-active amines and alcohols for the purpose of determining their enantiomeric purity or absolute configuration is a tool used by many chemists. Among the techniques used, Mosher's amide and Mosher's ester analyses are among the most reliable and one of the most often used. Despite this,…

  12. Optical activity and circular dichroism of plasmonic nanorod assemblies

    NASA Astrophysics Data System (ADS)

    Khosravi Khorashad, Larousse; Liu, Na; Govorov, Alexander O.

    Plasmonic circular dichroism (CD) has offered an efficient spectroscopy method for the electronic, chemical, and structural properties of different types of light active molecules in the subwavelength regime. Among the different chiral geometries of metal nanoparticles utilized by the plasmonic CD spectroscopy, gold nanorods (AuNRs) have shown strong CD signals in the visible frequency range. In this work, we theoretically study the CD signals of AuNR arrangements in order to mimic structures and chemical bonds of chiral biomolecules. In particular, our twisted three-AuNR geometries resemble a molecular structure of tartaric acid. This molecule played an important role in the discovery of chemical chirality. In our study, we show that the strength of CD signals changes dramatically by tuning the interparticle distances and angles. Since the CD signals are typically weak, we develop reliable computational approaches to calculate the plasmonic CD. Manipulating interparticle distances, size, and molecular bond angles result in full control over peak positions, handedness, and positive and negative bands which are observed in the CD spectra. This work has been supported under the grant from Volkswagen Foundation. We also acknowledge the financial support of Condensed Matter and Surface Science program of Ohio University.

  13. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices. PMID:25572664

  14. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  15. The fabrication and characterisation of piezoelectric actuators for active x-ray optics

    NASA Astrophysics Data System (ADS)

    Zhang, Dou; Rodriguez Sanmartin, Daniel; Button, Tim W.; Meggs, Carl; Atkins, Carolyn; Doel, Peter; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andrew; Wang, Hongchang

    2009-08-01

    Piezoelectric actuators are widely employed in adaptive optics to enable an actively controlled mirror surface and improve the optical resolution and sensitivity. Currently two new prototype adaptive X-ray optical systems are under development through the Smart X-ray Optics project in a UK based consortium. One proposed technology is micro-structured optical arrays (MOAs) which uses aligned micro-channels structures obtained by deep silicon etching using both dry and wet techniques and bonded piezoelectric actuators to produce a micro-focused X-ray source for biological applications. The other technology is large scale optics which uses a thin shell mirror segment with 20-40 bonded piezo-actuators for the next generation of X-ray telescopes with an aim to achieve a resolution greater than that currently available by Chandra (0.5"). The Functional Materials Group of Birmingham University has the capability of fabricating a wide range of piezo-actuators including, for example, unimorph, bimorph and active fibre composites (AFC) by using a viscous plastic processing technique. This offers flexibility in customising the shapes (from planar to 3-D helix) and feature sizes (>20 μm) of the actuators, as well as achieving good piezoelectric properties. PZT unimorph actuators are being developed in this programme according to the design and implementation of the proposed mirror and array structures. Precise controls on the dimension, thickness, surface finishing and the curvature have been achieved for delivering satisfactory actuators. Results are presented regarding the fabrication and characterisation of such piezo-actuators, as well as the progress on the large optic and MOAs prototypes employing the piezo-actuators.

  16. Activation of cell signaling via optical manipulation of gold-coated liposomes encapsulating signaling molecules

    NASA Astrophysics Data System (ADS)

    Orsinger, Gabriel V.; Leung, Sarah J.; Romanowski, Marek

    2013-02-01

    Many diseases involve changes in cell signaling cascades, as seen commonly in drug resistant cancers. To better understand these intricate signaling events in diseased cells and tissues, experimental methods of probing cellular communication at a single to multi-cell level are required. We recently introduced a general platform for activation of selected signaling pathways by optically controlled delivery and release of water soluble factors using gold-coated liposomes. In the example presented here, we encapsulated inositol trisphosphate (IP3), a ubiquitous intracellular secondary messenger involved in GPCR and Akt signaling cascades, within 100 nm gold-coated liposomes. The high polarizability of the liposome's unique gold pseudo-shell allows stable optical trapping for subcellular manipulation in the presence of cells. We take this optical manipulation further by optically injecting IP3-containing liposomes into the cytosol of a single cell to initiate localized cell signaling. Upon optical injection of liposomal IP3 into a single ovarian carcinoma cell, we observed localized activation as reported by changes in Indo-1 fluorescence intensity. With established gap junctions between the injected cell and neighboring cells, we monitored propagation of this signaling to and through nearby cells.

  17. A NEW APPROACH TO CONSTRAIN BLACK HOLE SPINS IN ACTIVE GALAXIES USING OPTICAL REVERBERATION MAPPING

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Li, Yan-Rong; Hu, Chen; Ho, Luis C.; Bai, Jin-Ming

    2014-09-01

    A tight relation between the size of the broad-line region (BLR) and optical luminosity has been established in about 50 active galactic nuclei studied through reverberation mapping of the broad Hβ emission line. The R {sub BLR}-L relation arises from simple photoionization considerations. Using a general relativistic model of an optically thick, geometrically thin accretion disk, we show that the ionizing luminosity jointly depends on black hole mass, accretion rate, and spin. The non-monotonic relation between the ionizing and optical luminosity gives rise to a complicated relation between the BLR size and the optical luminosity. We show that the reverberation lag of Hβ to the varying continuum depends very sensitively on black hole spin. For retrograde spins, the disk is so cold that there is a deficit of ionizing photons in the BLR, resulting in shrinkage of the hydrogen ionization front with increasing optical luminosity, and hence shortened Hβ lags. This effect is specially striking for luminous quasars undergoing retrograde accretion, manifesting in strong deviations from the canonical R {sub BLR}-L relation. This could lead to a method to estimate black hole spins of quasars and to study their cosmic evolution. At the same time, the small scatter of the observed R {sub BLR}-L relation for the current sample of reverberation-mapped active galaxies implies that the majority of these sources have rapidly spinning black holes.

  18. Active optical system design for the 4.2-m SOAR telescope

    NASA Astrophysics Data System (ADS)

    Krabbendam, Victor L.; Ruthven, Gregory P.; Bennett, Victor P.; Blackburn, John P.; Cox, Charles D.; Keung, Chi S.; Facey, Terence A.; Furber, Mark E.; Neufeld, Conrad; Rockwell, Richard A.; Sarnik, Andrea M.; Stein, John T.

    2000-07-01

    The SOAR Telescope project has embarked on the development of a very high quality 4.2-meter diameter optical telescope to be sited on Cerro Pachon in Chile. The telescope will feature an image quality of 0.18 arc seconds, a moderate field of 11 arc minutes, a very large instrument payload capacity for as many as 9 hot instruments, and an Active Optical System optimized for the optical to near IR wavelengths. The active optical system features a 10 cm thick ULETM primary mirror supported by 120 electro- mechanical actuators for a highly correctable surface. the 0.6 meter diameter secondary is articulated by a hexapod for real time optical alignment. The 0.6-meter class tertiary will provide fast beam steering to compensate for atmospheric turbulence at 50 hertz and a turret for directing the light to either of two nasmyth or three-bent cassegrain ports. Both the secondary and tertiary are light- weighted by machining to achieve cost-effective low weight mirrors. This paper discusses the unique features of this development effort including many commercial products and software programs that enable its technical feasibility and high cost efficiency.

  19. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  20. Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery J.; Atkins, Carolyn; Roche, Jacqueline M.; ODell, Stephen L.; Ramsey, Brian D.; Elsner, Ronald F.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested xray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  1. Analysis of Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffrey J.; Roche, Jacqueline M.; O'Dell, Stephen L.; Ramsey, Brian D.; Elsner, Ryan F.; Gubarev, Mikhail V.; Weisskopf, Martin C.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested x-ray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  2. Lipase-catalyzed preparation of optically active 1'-acetoxychavicol acetates and their structure-activity relationships in apoptotic activity against human leukemia HL-60 cells.

    PubMed

    Azuma, Hideki; Miyasaka, Keita; Yokotani, Tsuyoshi; Tachibana, Taro; Kojima-Yuasa, Akiko; Matsui-Yuasa, Isao; Ogino, Kenji

    2006-03-15

    Structure-activity relationships of 1'-acetoxychavicol acetate (ACA) for apoptotic activity against human leukemia HL-60 cells were investigated using optically active ACA and various racemic ACA analogues. Natural-type (or with different acyl group) ACA showed a high apoptotic activity, but the ortho or meta isomers, 4-deacetoxy analogue, and the 2'-3' dehydrogenated derivative had no effect, or a weak activity. Optically active (R)- and (S)-ACA were prepared by a lipase-catalyzed esterification. Using a mixture of vinyl acetate-tetrahydrofuran (1:1 v/v) as a solvent at refluxing temperature, optically pure (R)- and (S)-ACA were obtained (99.7% ee and 99.1% ee, respectively). The apoptosis-inducing effects of both enantiomers were compared by means of an MTT assay and the detection of typical apoptotic phenomena (DNA fragmentation, caspase-3 activation, and PARP cleavage) and these two activities were almost equal. These results indicate that the essential moieties of ACA for apoptotic activity against HL-60 cells are both the presence of a 4-acetoxyl group and an unsaturated double bond between C-2' and C-3', and that the configuration at the 1'-position is unrelated to activity.

  3. Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial

    NASA Astrophysics Data System (ADS)

    Dietrich, K.; Menzel, C.; Lehr, D.; Puffky, O.; Hübner, U.; Pertsch, T.; Tünnermann, A.; Kley, E.-B.

    2014-05-01

    We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology.

  4. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas. PMID:27494498

  5. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  6. Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial

    SciTech Connect

    Dietrich, K. Menzel, C.; Lehr, D.; Puffky, O.; Pertsch, T.; Tünnermann, A.; Kley, E.-B.; Hübner, U.

    2014-05-12

    We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology.

  7. Scour monitoring system of subsea pipeline using distributed Brillouin optical sensors based on active thermometry

    NASA Astrophysics Data System (ADS)

    Zhao, Xue-Feng; Li, Le; Ba, Qin; Ou, Jin-Ping

    2012-10-01

    A scour monitoring system of subsea pipeline is proposed using distributed Brillouin optical sensors based on active thermometry. The system consists in a thermal cable running parallel to the pipeline, which acquires frequency shift of optical sensors during heating and cooling, directly indicating temperature change. The free spans can be detected through the different behaviors of heat transfer between in-water and in-sediment scenarios. Three features were extracted from temperature time histories including magnitude, spatial continuity and temporal stability. Several experimental tests were conducted using the proposed system. The results substantiate the monitoring technique.

  8. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  9. Removing static aberrations from the active optics system of a wide-field telescope.

    PubMed

    Schipani, Pietro; Noethe, Lothar; Arcidiacono, Carmelo; Argomedo, Javier; Dall'Ora, Massimo; D'Orsi, Sergio; Farinato, Jacopo; Magrin, Demetrio; Marty, Laurent; Ragazzoni, Roberto; Umbriaco, Gabriele

    2012-07-01

    The wavefront sensor in active and adaptive telescopes is usually not in the optical path toward the scientific detector. It may generate additional wavefront aberrations, which have to be separated from the errors due to the telescope optics. The aberrations that are not rotationally symmetric can be disentangled from the telescope aberrations by a series of measurements taken in the center of the field, with the wavefront sensor at different orientation angles with respect to the focal plane. This method has been applied at the VLT Survey Telescope on the ESO Paranal observatory.

  10. Preparation of optically active (2RS,3SR)-2-amino-3-hydroxy-3-phenylpropanoic acid (threo-beta-phenylserine) via optical resolutions by replacing and preferential crystallization.

    PubMed

    Shiraiwa, Tadashi; Kawashima, Yuka; Ikaritani, Atsushi; Suganuma, Yumiko; Saijoh, Reiichi

    2006-08-01

    To obtain optically active threo-2-amino-3-hydroxy-3-phenylpropanoic acid (1) via optical resolutions by replacing and preferential crystallization, the racemic structure of (2RS,3SR)-1 hydrochloride [(2RS,3SR)-1.HCl] was examined based on the melting point, solubility, and infrared spectrum. (2RS,3SR)-1.HCl was indicated to exist as a conglomerate at room temperature, although it forms a racemic compound at the melting point. When, in optical resolution by replacing crystallization, L-phenylalanine methyl ester hydrochloride (L-2) was used as the optically active co-solute, (2R,3S)-1.HCl was preferentially crystallized from the supersaturated racemic solution; the use of D-2 as the co-solute afforded (2S,3R)-1.HCl with an optical purity of 95%. In addition, optical resolution by preferential crystallization was successfully achieved to give successively (2R,3S)- and (2S,3R)-1.HCl with optical purities of 90-92%. The (2R,3S)- and (2S,3R)-1.HCl purified by recrystallization from 1-propanol were treated with triethylamine in methanol to give optically pure (2R,3S)- and (2S,3R)-1.

  11. High-power fiber optic cable with integrated active sensors for live process monitoring

    NASA Astrophysics Data System (ADS)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  12. Active x-ray optics for the next generation of x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Atkins, Carolyn; Wang, Hongchang; Doel, Peter; Brooks, David; Thompson, Samantha; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Zhang, Dou; James, Ady; Theobald, Craig; Willis, Graham; Smith, Andrew D.

    2009-05-01

    The immediate future for X-ray astronomy is the need for high sensitivity, requiring large apertures and collecting areas, the newly combined NASA, ESA and JAXA mission IXO (International X-ray Observatory) is specifically designed to meet this need. However, looking beyond the next decade, there have been calls for an X-ray space telescope that can not only achieve this high sensitivity, but could also boast an angular resolution of 0.1 arc-seconds, a factor of five improvement on the Chandra X-ray Observatory. NASA's proposed Generation-X mission is designed to meet this demand; it has been suggested that the X-ray optics must be active in nature in order to achieve this desired resolution. The Smart X-ray Optics (SXO) project is a UK based consortium looking at the application of active/adaptive optics to both large and small scale devices, intended for astronomical and medical purposes respectively. With Generation-X in mind, an active elliptical prototype has been designed by the SXO consortium to perform point-to-point X-ray focussing, while simultaneously manipulating its optical surface to improve its initial resolution. Following the completion of the large scale SXO prototype, presented is an overview of the production and operation of the prototype, with emphasis on the X-ray environment and preliminary results.

  13. Optical activity and defect/dopant evolution in ZnO implanted with Er

    SciTech Connect

    Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej; Monakhov, Edouard; Svensson, Bengt G.; Hallén, Anders

    2015-09-28

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Er atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.

  14. High-density active optical cable: from a new concept to a prototype

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Denis; Lemke, Frank; Froening, Holger; Schenk, Sven; Bruening, Ulrich

    2011-01-01

    Evolution in high performance computing (HPC) leads to increasing demands on bandwidth, connectivity and flexibility. Active optical cables (AOC) are of special interest, combining the benefits of electrical connectors and optical transmission. Optimization and development of AOC solutions requires enhancements concerning different technology barriers. Area and volume occupied by connectors is of special interest within HPC networks. This led to the development of a 12x AOC for the mini-HT connector creating the densest AOC available. In order to integrate electrical optical conversion into a module not higher than 3 mm, a new concept of coupling fibers to VCSELs or photodiodes had to be developed. This unique concept is based on a direct replication process of an integrated fiber coupler consisting of a 90° light deflecting and focusing mirror, a fiber guiding structure, and a fiber funnel. The integrated fiber coupler is directly replicated on top of active components, reducing the distance between active components and fibers to a minimum, thus providing a highly efficient light coupling. As AOC prototype, multi-chipmodules (MCM) including the complete electrical to optical conversion for send and receive connected by two 12x fiber ribbons have been developed. The paper presents the integrated fiber coupling technique and also design and measurement data of the prototype.

  15. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  16. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope.

    PubMed

    Sheehy, Christy K; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-07-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone.

  17. A thin film active-lens with translational control for dynamically programmable optical zoom

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Park, Suntak; Park, Bongje; Nam, Saekwang; Park, Seung Koo; Kyung, Ki-Uk

    2015-08-01

    We demonstrate a thin film active-lens for rapidly and dynamically controllable optical zoom. The active-lens is composed of a convex hemispherical polydimethylsiloxane (PDMS) lens structure working as an aperture and a dielectric elastomer (DE) membrane actuator, which is a combination of a thin DE layer made with PDMS and a compliant electrode pattern using silver-nanowires. The active-lens is capable of dynamically changing focal point of the soft aperture as high as 18.4% through its translational movement in vertical direction responding to electrically induced bulged-up deformation of the DE membrane actuator. Under operation with various sinusoidal voltage signals, the movement responses are fairly consistent with those estimated from numerical simulation. The responses are not only fast, fairly reversible, and highly durable during continuous cyclic operations, but also large enough to impart dynamic focus tunability for optical zoom in microscopic imaging devices with a light-weight and ultra-slim configuration.

  18. Active eye-tracking for an adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Sheehy, Christy K.; Tiruveedhula, Pavan; Sabesan, Ramkumar; Roorda, Austin

    2015-01-01

    We demonstrate a system that combines a tracking scanning laser ophthalmoscope (TSLO) and an adaptive optics scanning laser ophthalmoscope (AOSLO) system resulting in both optical (hardware) and digital (software) eye-tracking capabilities. The hybrid system employs the TSLO for active eye-tracking at a rate up to 960 Hz for real-time stabilization of the AOSLO system. AOSLO videos with active eye-tracking signals showed, at most, an amplitude of motion of 0.20 arcminutes for horizontal motion and 0.14 arcminutes for vertical motion. Subsequent real-time digital stabilization limited residual motion to an average of only 0.06 arcminutes (a 95% reduction). By correcting for high amplitude, low frequency drifts of the eye, the active TSLO eye-tracking system enabled the AOSLO system to capture high-resolution retinal images over a larger range of motion than previously possible with just the AOSLO imaging system alone. PMID:26203370

  19. Determination of bacterial activity by use of an evanescent-wave fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    John, M. Shelly; Kishen, Anil; Sing, Lim Chu; Asundi, Anand

    2002-12-01

    A novel technique based on fiber-optic evanescent-wave spectroscopy is proposed for the detection of bacterial activity in human saliva. The sensor determines the specific concentration of Streptococcus mutans in saliva, which is a major causative factor in dental caries. In this design, one prepares the fiber-optic bacterial sensor by replacing a portion of the cladding region of a multimode fiber with a dye-encapsulated xerogel, using the solgel technique. The exponential decay of the evanescent wave at the core-cladding interface of a multimode fiber is utilized for the determination of bacterial activity in saliva. The acidogenic profile of Streptococcus mutans is estimated by use of evanescent-wave absorption spectra at various levels of bacterial activity.

  20. Active optics system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gardiol, Daniele; Capobianco, Gerardo; Fantinel, Daniela; Giro, Enrico; Lessio, Luigi; Loreggia, Davide; Rodeghiero, Gabriele; Russo, Federico; Volpicelli, Antonio C.

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) SST-2M is an end-to-end prototype of Small Size class of Telescope for the Cherenkov Telescope Array. It will apply a dual mirror configuration to Imaging Atmospheric Cherenkov Telescopes. The 18 segments composing the primary mirror (diameter 4.3 m) are equipped with an active optics system enabling optical re-alignment during telescope slew. The secondary mirror (diameter 1.8 m) can be moved along three degrees of freedom to perform focus and tilt corrections. We describe the kinematic model used to predict the system performance as well as the hardware and software design solution that will be implemented for optics control.

  1. Design of an experiment to study optically-active centers in diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Ankit; Tiwari, Kunal; Sharma, Suresh

    2012-03-01

    The silicon-vacancy (SiV) and nitrogen-vacancy (NV) complexes in diamond nanoparticles (NPs) are optically active centers, which produce single photon events. These centers may be formed when a silicon atom from the silicon substrate often used in CVD growth or nitrogen from impurities in the feed gas ends up next to a vacancy in the diamond lattice. Because of their stability and high quantum efficiency, SiV and NV centers in diamond NPs are attractive for applications in quantum computing, optics, biotechnology, and medicine. We briefly review our recently published results on diamond NPs, describe the design of an experimental system for carrying out in-situ optical spectroscopy and time-correlation measurements, and show preliminary photoluminescence data.

  2. Correlation Analysis of Optical and Radio Light Curves for a Large Sample of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Clements, S. D.; Smith, A. G.; Aller, H. D.; Aller, M. F.

    1995-08-01

    The Rosemary Hill Observatory has accumulated internally consistent light curves extending over as much as 26 years for a large sample of active galactic nuclei. Forty-six of these optical records have been compared with similar radio records from the University of Michigan Radio Astronomy Observatory and the Algonquin Radio Observatory. For 18 objects, pairs of records were sufficiently long and unconfused to allow reliable application of the Discrete Correlation Function analysis; this group included 8 BL Lacertids, 8 quasars, and 2 Seyfert galaxies. Nine of the 18 sources showed positive radio-optical correlations, with the radio events lagging the optical by intervals ranging from 0 to 14 months. Consistent with the relativistic beaming model of the BL Lacertids, the group displaying correlations was dominated by this type of object.

  3. Taming the flow of light via active magneto-optical impurities

    NASA Astrophysics Data System (ADS)

    Kalish, Samuel; Ramezani, Hamidreza; Lin, Zin; Kottos, Tsampikos; Kovanis, Vassilios; Vitebskiy, Ilya

    2013-03-01

    We demonstrate that the interplay of a magneto-optical layer sandwiched between two judiciously balanced gain and loss layers which are both birefringent with misaligned in-plane anisotropy, induces unidirectional electromagnetic modes. Embedding one such optically active non-reciprocal unit between a pair of birefringent Bragg reflectors, results in an exceptionally strong asymmetry in light transmission. Remarkably, such asymmetry persists regardless of the incident light polarization. This photonic architecture may be used as the building block for chip-scale non-reciprocal devices such as optical isolators and circulators. This research was supported by an AFOSR No. FA 9550-10-1-0433 grant and LRIR 09RY04COR grant, and by an NSF ECCS-1128571 grant.

  4. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide

    NASA Astrophysics Data System (ADS)

    Fuchs, F.; Stender, B.; Trupke, M.; Simin, D.; Pflaum, J.; Dyakonov, V.; Astakhov, G. V.

    2015-07-01

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

  5. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide.

    PubMed

    Fuchs, F; Stender, B; Trupke, M; Simin, D; Pflaum, J; Dyakonov, V; Astakhov, G V

    2015-07-07

    Vacancy-related centres in silicon carbide are attracting growing attention because of their appealing optical and spin properties. These atomic-scale defects can be created using electron or neutron irradiation; however, their precise engineering has not been demonstrated yet. Here, silicon vacancies are generated in a nuclear reactor and their density is controlled over eight orders of magnitude within an accuracy down to a single vacancy level. An isolated silicon vacancy serves as a near-infrared photostable single-photon emitter, operating even at room temperature. The vacancy spins can be manipulated using an optically detected magnetic resonance technique, and we determine the transition rates and absorption cross-section, describing the intensity-dependent photophysics of these emitters. The on-demand engineering of optically active spins in technologically friendly materials is a crucial step toward implementation of both maser amplifiers, requiring high-density spin ensembles, and qubits based on single spins.

  6. Integration of magneto-optical active bismuth iron garnet on nongarnet substrates

    NASA Astrophysics Data System (ADS)

    Körner, Timo; Heinrich, Andreas; Weckerle, Martin; Roocks, Patrick; Stritzker, Bernd

    2008-04-01

    For optical communication, high quality magneto-optical active iron garnet films such as Y3Fe5O12 are important ceramic systems with extensive applications, e.g., as optical isolators [H. Dötsch et al., J. Opt. Soc. Am. B 22, 240 (2005)], optical modulators, etc. Thereby, garnets stand out due to their high Faraday rotation and low optical losses in the near infrared. Currently, it is desirable to integrate such macroscopic optical components on a single chip (Si, SiO2, etc.) to build up optical circuits as in the case of microelectronics (integrated optics) or the use for magneto-optical imaging. Up to now, Bi3Fe5O12 shows the highest Faraday rotation over 20°/μm. Unfortunately, Bi3Fe5O12 forms in a nonthermodynamical way. Thus, it can only be grown on garnet substrates which prevent it from direct deposition on substrates such as Si or SiO2. In our present work, we studied the integration of Bi3Fe5O12 on different SiO2 substrates using the pulsed laser deposition method. Therefore, we deposited an Y3Fe5O12 buffer first which was optimized in a postannealing step above 900°C in order to form a polycrystalline garnet phase, which is needed for further Bi3Fe5O12 growth. We measured the Faraday rotation of the double layered films and intensely studied them with x-ray diffraction, Rutherford backscattering spectroscopy, environmental scanning electron microscopy, and high-resolution transmission electron microscopy. The attained Faraday rotation can be compared with epitaxial Bi3Fe5O12 films grown on Gd3Ga5O12 substrates or even overcome them due to interference effects in the double layer. So they are highly attractive for magneto-optical imaging. For the determination of the film thicknesses which is usually done by Rutherford backscattering or profilometry, we used another approach. We measured the transmission spectra of the stack which we also derived from a theoretical model that uses a transfer matrix formalism. The thickness of the multilayer can be

  7. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Davenport, James R. A.; Ivezic, Zeljko; Burnett, T. H.; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-20

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the {approx}30% of {gamma}-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability {tau}, and driving amplitudes on short timescales {sigma}-circumflex. Imposing cuts on minimum {tau} and {sigma}-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of {gamma}-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E {>=} 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other {gamma}-ray blazars and is likely to be the {gamma}-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is {approx}3 years in the rest frame of the jet, in contrast with the {approx}320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  8. High-temperature optically activated GaAs power switching for aircraft digital electronic control

    NASA Technical Reports Server (NTRS)

    Berak, J. M.; Grantham, D. H.; Swindal, J. L.; Black, J. F.; Allen, L. B.

    1983-01-01

    Gallium arsenide high-temperature devices were fabricated and assembled into an optically activated pulse-width-modulated power control for a torque motor typical of the kinds used in jet engine actuators. A bipolar heterojunction phototransistor with gallium aluminum arsenide emitter/window, a gallium arsenide junction field-effect power transistor and a gallium arsenide transient protection diode were designed and fabricated. A high-temperature fiber optic/phototransistor coupling scheme was implemented. The devices assembled into the demonstrator were successfully tested at 250 C, proving the feasibility of actuator-located switching of control power using optical signals transmitted by fibers. Assessments of the efficiency and technical merits were made for extension of this high-temperature technology to local conversion of optical power to electrical power and its control at levels useful for driving actuators. Optical power sources included in the comparisons were an infrared light-emitting diode, an injection laser diode, tungsten-halogen lamps and arc lamps. Optical-to-electrical power conversion was limited to photovoltaics located at the actuator. Impedance matching of the photovoltaic array to the load was considered over the full temperature range, -55 C to 260 C. Loss of photovoltaic efficiency at higher temperatures was taken into account. Serious losses in efficiency are: (1) in the optical source and the cooling which they may require in the assumed 125 C ambient, (2) in the decreased conversion efficiency of the gallium arsenide photovoltaic at 260 C, and (3) in impedance matching. Practical systems require improvements in these areas.

  9. Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  10. Active disturbance rejection controller of fine tracking system for free space optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liu, Yang; Chen, Xinglin; Wang, Yan

    2013-08-01

    Free space optical communication is one of the best approaches in future communications. Laser beam's acquisition, pointing and tracking are crucial technologies of free space optical communication. Fine tracking system is important component of APT (acquisition, pointing and tracking) system. It cooperates with the coarse pointing system in executing the APT mission. Satellite platform vibration and disturbance, which reduce received optical power, increase bit error rate and affect seriously the natural performance of laser communication. For the characteristic of satellite platform, an active disturbance rejection controller was designed to reduce the vibration and disturbance. There are three major contributions in the paper. Firstly, the effects of vibration on the inter satellite optical communications were analyzed, and the reasons and characters of vibration of the satellite platform were summarized. The amplitude-frequency response of a filter was designed according to the power spectral density of platform vibration of SILEX (Semiconductor Inter-satellite Laser Experiment), and then the signals of platform vibration were generated by filtering white Gaussian noise using the filter. Secondly, the fast steering mirror is a key component of the fine tracking system for optical communication. The mechanical design and model analysis was made to the tip/tilt mirror driven by the piezoelectric actuator and transmitted by the flexure hinge. The transfer function of the fast steering mirror, camera, D/A data acquisition card was established, and the theory model of transfer function of this system was further obtained. Finally, an active disturbance rejection control method is developed, multiple parallel extended state observers were designed for estimation of unknown dynamics and external disturbance, and the estimated states were used for nonlinear feedback control and compensation to improve system performance. The simulation results show that the designed

  11. Optical observations of comet 67P/Churyumov-Gerasimenko with the Nordic Optical Telescope. Comet activity before the solar conjunction

    NASA Astrophysics Data System (ADS)

    Zaprudin, B.; Lehto, H. J.; Nilsson, K.; Pursimo, T.; Somero, A.; Snodgrass, C.; Schulz, R.

    2015-11-01

    Context. 67P/Churyumov-Gerasimenko (67P) is a short-period Jupiter-family comet that was chosen as a target for the Rosetta mission by the European Space Agency (ESA). Monitoring of 67P with the Nordic Optical Telescope (NOT; La Palma, Spain) intends to aid this mission by providing ground-based reference information about the overall activity of the target and its astrometric position before the rendezvous. One motivation for our observations was to monitor sudden major increases in activity because they might have affected the Rosetta mission planning. None were observed. Ground-based photometric observations register the global activity of the comet, while the Rosetta spacecraft mostly measures local events. These data combined can lead to new insights into the comet behavior. Aims: The aim of this work is to perform the photometric and the astrometric monitoring of comet 67P with the NOT and to compare the results with the latest predictions for its position and activity. A new method of fitting extended-source components to the target surface brightness distribution was developed and applied to the data to estimate the size and contribution of the coma to the total brightness of the target. Methods: Comet 67P was monitored by the NOT in service mode during the period between 12.5.2013 and 11.11.2014. The very first observations were performed in the V band alone, but in the latest observations, the R band was used as well to estimate the color and nature of activity of the target. We applied a new method for estimating the coma size by deconvolving the point spread function profile from the image, which used Markov chain Monte Carlo and Bayesian statistics. This method will also be used for coma size estimations in further observations after the solar conjunction of 67P. Results: Photometric magnitudes in two colors were monitored during the period of observations. At the end of April 2014, the beginning of activity was observed. In late September 2014, a

  12. Analysis of nearly simultaneous X-ray and optical observations of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Webb, James Raymond

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 active galactic nuclei (AGN) were reduced and analyzed. Seventy-two X-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectral observations, significant hydrogen column densities above the galactic value were required for nine of the eleven sources which were observed more than once by EINSTEIN. Correlations between the X-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the X-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the X-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the X-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  13. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers

  14. The optical blocking filter for the ATHENA wide field imager: ongoing activities towards the conceptual design

    NASA Astrophysics Data System (ADS)

    Barbera, M.; Branduardi-Raymont, G.; Collura, A.; Comastri, A.; Eder, J.; Kamisiński, T.; Lo Cicero, U.; Meidinger, N.; Mineo, T.; Molendi, S.; Parodi, G.; Pilch, A.; Piro, L.; Rataj, M.; Rauw, G.; Sciortino, L.; Sciortino, S.; Wawer, P.

    2015-08-01

    ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe" (launch scheduled in 2028). One of the key instruments of ATHENA is the Wide Field Imager (WFI) which will provide imaging in the 0.1-15 keV band over a 40'x40' large field of view, together with spectrally and time-resolved photon counting. The WFI camera, based on arrays of DEPFET active pixel sensors, is also sensitive to UV/Vis photons. Optically generated electron-hole pairs may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of an X-ray transparent optical blocking filter is needed to allow the observation of all type of X-ray sources that present a UV/Visible bright counterpart. In this paper, we describe the main activities that we are carrying on for the conceptual design of the optical blocking filter, that will be mounted on the filter wheel, in order to satisfy the scientific requirements on optical load from bright UV/Vis astrophysical source, to maximize the X-ray transmission, and to withstand the severe acoustic and vibration loads foreseen during launch.

  15. SPECTROPOLARIMETRIC EVIDENCE FOR RADIATIVELY INEFFICIENT ACCRETION IN AN OPTICALLY DULL ACTIVE GALAXY

    SciTech Connect

    Trump, Jonathan R.; Murayama, Takashi; Taniguchi, Yoshi; Impey, Christopher D.; Stocke, John T.; Civano, Francesca; Elvis, Martin; Kelly, Brandon C.; Jahnke, Knud; Koekemoer, Anton M.

    2011-05-01

    We present Subaru/FOCAS spectropolarimetry of two active galaxies in the Cosmic Evolution Survey. These objects were selected to be optically dull, with the bright X-ray emission of an active galactic nucleus (AGN) but missing optical emission lines in our previous spectroscopy. Our new observations show that one target has very weak emission lines consistent with an optically dull AGN, while the other object has strong emission lines typical of a host-diluted Type 2 Seyfert galaxy. In neither source do we observe polarized emission lines, with 3{sigma} upper limits of P{sub BLR} {approx}< 2%. This means that the missing broad emission lines (and weaker narrow emission lines) are not due to simple anisotropic obscuration, e.g., by the canonical AGN torus. The weak-lined optically dull AGN exhibits a blue polarized continuum with P = 0.78% {+-} 0.07% at 4400 A < {lambda}{sub rest} < 7200 A (P = 1.37% {+-} 0.16% at 4400 A < {lambda}{sub rest} < 5050 A). The wavelength dependence of this polarized flux is similar to that of an unobscured AGN continuum and represents the intrinsic AGN emission, either as synchrotron emission or the outer part of an accretion disk reflected by a clumpy dust scatterer. Because this intrinsic AGN emission lacks emission lines, this source is likely to have a radiatively inefficient accretion flow.

  16. Gamma-radiation-induced degradation of actively pumped single-mode ytterbium-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Singleton, B.; Petrosky, J.; Pochet, M.; Usechak, N. G.; Francis, S. A.

    2014-03-01

    The integration of optical components into the digital processing units of satellite subsystems has the potential to remove interconnect bottlenecks inherent to the volume, mass, complexity, reliability and crosstalk issues of copper-based interconnects. Assuming on-board high-bandwidth communications will utilize passive optical fibers as a communication channel, this work investigates the impact of gamma irradiation from a Co-60 source on both passive optical fibers and ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active Yb-doped double-clad fibers. Varied exposure times and signal transmission wavelengths were used to investigate the degradation of the fibers exposed to total doses above 100 krad (Si). The effect on the amplified signal gain was studied for the Yb-doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure along with the effect that the increased attenuation has on the actively pumped Yb-doped fiber amplifier performance, is discussed.

  17. Extraction of Neural Activity from In Vivo Optical Recordings Using Multiple Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Yoshida, Takamasa; Sakagami, Masanori; Yamazaki, Kyoko; Katura, Takusige; Iwamoto, Mitsumasa; Tanaka, Naoki

    A multiple independent component analysis (ICA) method based on the noisy time-delayed decorrelation algorithm is described that overcomes the problems and improves the usefulness of conventional ICA, which is commonly used for extracting the actual neural activity from data measured using optical recording with a voltage-sensitive dye to visualize neural activities in cortical areas as two-dimensional images. The problems with conventional ICA extraction include the lack of an a priori guarantee that the solution will be appropriate, the linear mixing of mutually independent random variables although the mixtures are not random variables but time signals in many applications, and the general requirement for repetitive calculation of large matrices. Application of multiple ICA to the extraction of neural activities in the guinea pig auditory cortex evoked by both click sounds and pure tones from optical recordings made using a voltage sensitive dye demonstrated that it effectively removes pulsatile and respiratory components from the measurement data and extracts neural activities from the optical recordings.

  18. Reflector adjustment for a large radio telescope based on active optics

    NASA Astrophysics Data System (ADS)

    Li, Tongying; Zhang, Zhenchao; Li, Aihua; Wang, You

    2012-09-01

    The reflector deformation caused by gravity, temperature, humidity, wind loading and so on can reduce the global performance of a large radio telescope. In this paper, considering the characteristics of the primary reflector of a 13.7 m millimeter-wave telescope a novel reflector adjustment method based on active optics has therefore been proposed to control the active surface of the reflector through the communication between the active surface computer and embedded intelligent controller with a large quantity of displacement actuators, in which the active surface computer estimates and controls the real time active surface figure at any elevation angle, reduces or eliminates the adverse effects of the reflector deformation to increase the resolution and sensitivity of the radio telescope due to the more radio signals collected. A Controller Area Network /Ethernet protocol converter is designed for the communication between the active surface control computer as a host computer in Ethernet and the displacement actuator controller in Controller Area Network. The displacement actuator is driven by a stepper motor and controlled by an intelligent controller with the data from the active surface computer. The closed-loop control of the stepper motor improves the control accuracy greatly through the feedback link based on the optical encoder.

  19. Influence of the interface on the optical activity of confined glucose films.

    PubMed

    Emile, Olivier; Emile, Janine; Ghoufi, Aziz

    2016-09-01

    We report on the time evolution of the optical activity of a thinning liquid film containing glucose, and confined between two glass slides. This dynamics strongly depends on the presence of surfactant molecules. With sodium dodecyl sulfate (SDS), we evidence favorable interactions of sugar molecules with the sulfate group. As previously observed for a freely suspended soap film in the air (see Emile et al., 2013), this corresponds to an anchoring of glucose molecules at the interface. For glucose alone, we also highlight a molecular rearrangement that is not instantaneous and occurs after several minutes. This interfacial organization leads to an unusual giant optical activity that is different with or without SDS. Molecular simulations confirm the anchoring of the glucose molecules at the glass/liquid interface, and show a different molecular orientation in each case. PMID:27254252

  20. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    SciTech Connect

    Premkumar, S.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin; Jawahar, A.

    2015-06-24

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  1. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  2. Optical filter finesses enhancement based on nested coupled cavities and active medium

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-04-01

    Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.

  3. Cross-sectional imaging of functional activation in the rat somatosensory cortex with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Aguirre, A. D.; Chen, Y.; Ruvinskaya, L.; Devor, A.; Boas, D. A.; Fujimoto, J. G.

    2005-08-01

    Simultaneous optical coherence tomography (OCT) and video microscopy were performed on the rat somatosensory cortex through a thinned skull during forepaw stimulation. Fractional change measurements in OCT images reveal a functional signal timecourse similar to well understood hemodynamic signal timecourses measured with video microscopy. The precise etiology of the observed OCT functional signal is still under investigation, but these results suggest that OCT can provide high-resolution cross-sectional images of functional neuro-vascular activation.

  4. Polarimeter with linear response for measuring optical activity in organic compounds

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Montoya, Marcial; Garcia-Torales, G.; Gonzalez Alvarez, Alejandro

    2005-08-01

    A polarimeter designed for measuring small rotation angles on the polarization plane of light is described. The experimental device employs one fixed polarizer and a rotating analyzer. The system generates a periodical intensity signal, which is then Fourier analyzed. The coefficients of Fourier Transform contain information about rotation angles produced by organic compounds that exhibited optical activity. The experimental device can be used to determine the sugar concentration in agave juice.

  5. Generation of unipolar optical pulses in a Raman-active medium

    NASA Astrophysics Data System (ADS)

    Arkhipov, R. M.; Arkhipov, M. V.; Belov, P. A.; Tolmachev, Yu A.; Babushkin, I.

    2016-04-01

    Response of a Raman-active media (RAM) to the excitation by a series of ultrashort (few-cycle) optical pulses propagating at a superluminal velocity is studied theoretically. It is shown that under certain conditions rectangular unipolar pulses (video-pulses) can be generated as the RAM response. The duration, shape and amplitude of these video-pulses can be widely tuned by modifying the pump pulse parameters.

  6. Measurement of polyphenol oxidase activity using optical waveguide lightmode spectroscopy-based immunosensor.

    PubMed

    Kim, Namsoo; Kim, Woo-Yeon

    2015-02-15

    Polyphenol oxidase (PPO) is an important quality index during food processing involving heat-treatment and sensitive determination of PPO activity has been a critical concern in the food industry. In this study, a new measurement of PPO activity exploiting an optical waveguide lightmode spectroscopy-based immunosensor is presented using a polyclonal anti-PPO antibody that was immobilized in situ to the surface of a 3-aminopropyltriethoxysilane-treated optical grating coupler activated with glutaraldehyde. When analysed with a purified PPO fraction from potato tubers, a linear relationship was found between PPO activities of 0.0005607-560.7U/mL and the sensor responses obtained. The sensor was applicable to measurement of PPO activity in real samples that were prepared from potato tubers, grapes and Kimchi cabbage, and the analytical results were compared with those obtained by a conventional colorimetric assay measuring PPO activity. When tested for long-term stability, the sensor was reusable up to 10th day after preparation.

  7. Measurement of polyphenol oxidase activity using optical waveguide lightmode spectroscopy-based immunosensor.

    PubMed

    Kim, Namsoo; Kim, Woo-Yeon

    2015-02-15

    Polyphenol oxidase (PPO) is an important quality index during food processing involving heat-treatment and sensitive determination of PPO activity has been a critical concern in the food industry. In this study, a new measurement of PPO activity exploiting an optical waveguide lightmode spectroscopy-based immunosensor is presented using a polyclonal anti-PPO antibody that was immobilized in situ to the surface of a 3-aminopropyltriethoxysilane-treated optical grating coupler activated with glutaraldehyde. When analysed with a purified PPO fraction from potato tubers, a linear relationship was found between PPO activities of 0.0005607-560.7U/mL and the sensor responses obtained. The sensor was applicable to measurement of PPO activity in real samples that were prepared from potato tubers, grapes and Kimchi cabbage, and the analytical results were compared with those obtained by a conventional colorimetric assay measuring PPO activity. When tested for long-term stability, the sensor was reusable up to 10th day after preparation. PMID:25236218

  8. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  9. Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons

    PubMed Central

    Bernstein, Jacob G.; Han, Xue; Henninger, Michael A.; Ko, Emily Y.; Qian, Xiaofeng; Franzesi, Giovanni Talei; McConnell, Jackie P.; Stern, Patrick; Desimone, Robert; Boyden, Edward S.

    2008-01-01

    Many neural disorders are associated with aberrant activity in specific cell types or neural projection pathways embedded within the densely-wired, heterogeneous matter of the brain. An ideal therapy would permit correction of activity just in specific target neurons, while leaving other neurons unaltered. Recently our lab revealed that the naturally-occurring light-activated proteins channelrhodopsin-2 (ChR2) and halorhodopsin (Halo/NpHR) can, when genetically expressed in neurons, enable them to be safely, precisely, and reversibly activated and silenced by pulses of blue and yellow light, respectively. We here describe the ability to make specific neurons in the brain light-sensitive, using a viral approach. We also reveal the design and construction of a scalable, fully-implantable optical prosthetic capable of delivering light of appropriate intensity and wavelength to targeted neurons at arbitrary 3-D locations within the brain, enabling activation and silencing of specific neuron types at multiple locations. Finally, we demonstrate control of neural activity in the cortex of the non-human primate, a key step in the translation of such technology for human clinical use. Systems for optical targeting of specific neural circuit elements may enable a new generation of high-precision therapies for brain disorders. PMID:18458792

  10. Properties of the long-term optical activity of the prototype polar AM Herculis

    NASA Astrophysics Data System (ADS)

    Šimon, Vojtěch

    2016-08-01

    AM Her displays strong long-term activity with the high and low states. This investigation uses AAVSO optical data for a time-series analysis of the long-term variations. Rapid changes of brightness (e.g. the orbital modulation) were smoothed out to emphasise the activity on super-orbital time-scale. I show that the character of this activity changed considerably on time-scales of years, which is reflected in a large evolution of the complicated histogram of the optical brightness. The high states are not the well-defined, narrow levels of brightness. I also show that AM Her displays transitions between the high and low states with the intermittently existing cycles. The longest uninterrupted series of transitions from the high to low state consists of seven episodes (about six years). The existence of this series can be controlled by the lifetime of the active regions on the donor, which modulates the mass transfer rate. I show that the episodes of the high and low states accumulate in clusters, which produces an additional cycle after smoothing by the moving averages. The cycles of activity of the donor can explain this modulation. A single isolated short episode of the low state does not imply a break of this cycle. I also argue that the specific properties of star spots and their migration caused by the differential rotation of the donor would be needed to explain the complex activity of AM Her.

  11. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo

    PubMed Central

    Packer, Adam M.; Russell, Lloyd E.; Dalgleish, Henry W.P.; Häusser, Michael

    2016-01-01

    We describe an all-optical strategy for simultaneously manipulating and recording the activity of multiple neurons with cellular resolution in vivo. Concurrent two-photon optogenetic activation and calcium imaging is enabled by coexpression of a red-shifted opsin and a genetically encoded calcium indicator. A spatial light modulator allows tens of user-selected neurons to be targeted for spatiotemporally precise optogenetic activation, while simultaneous fast calcium imaging provides high-resolution network-wide readout of the manipulation with negligible optical crosstalk. Proof-of-principle experiments in mouse barrel cortex demonstrate interrogation of the same neuronal population during different behavioral states, and targeting of neuronal ensembles based on their functional signature. This approach extends the optogenetic toolkit beyond the specificity obtained with genetic or viral approaches, enabling high-throughput, flexible and long-term optical interrogation of functionally defined neural circuits with single-cell and single-spike resolution in the mammalian brain in vivo. PMID:25532138

  12. Active thermal lensing elements for mode matching optimization in optical systems

    NASA Astrophysics Data System (ADS)

    Fulda, Paul

    2014-03-01

    In interferometric gravitational wave detectors of the advanced era and beyond, the high laser powers used lead to the generation of thermal lenses in the optics. This can lead to a reduction in the coupling between the various optical cavities comprising the detector, thus reducing its overall sensitivity. We present here an active device which can be used to compensate for such thermal effects, as well as static mismatches between cavities. The device uses a 4 segmented heater to heat a transmissive optic, generating a spherical or astigmatic lens which can be used to compensate other thermal lenses within an optical system. We report on in-vacuum tests of the device, including an interferometric measurement of the wavefront distortions induced by the device, and measurements of the dynamic range and response time. The device was shown to have no observable detrimental effect on wavefront distortion, a focal power dynamic range of 0 to -40 mD, and a response time of the order 1000 s. Supported by NSF grant PHY-1205512.

  13. Synthesis of optically pure dioxolane nucleosides and their anti-HIV activity

    SciTech Connect

    Siddigui, M.A.; Evans, C.; Jin, H.L.; Tse, A.; Brown, W.; Nguyen-Ba, N.; Mansour, T.S.; Cameron, J.M.

    1993-12-31

    The clinical candidate 3TC, 1, possessing non-natural absolute stereochemistry is a potent and non-toxic inhibitor of a key enzyme, reverse transcriptase, involved in the replicative cycle of the HIV. Selective inhibition of both HIV and HBV is seen. In view of the authors` interest in finding correlation between stereochemistry and antiviral activity, several enantiomerically pure dioxolane nucleosides, 2, were synthesized and assayed. The discussion will focus on (a) the synthesis of optically pure dioxolane sugars from L-ascorbic acid, (b) enzymatic resolution of purine dioxolane nucleosides, (c) anti HIV-1 activity in MT-4 cells.

  14. Optically activated shutter using a photo-tunable short-pitch chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Morris, S. M.; Qasim, M. M.; Cheng, K. T.; Castles, F.; Ko, D.-H.; Gardiner, D. J.; Nosheen, S.; Wilkinson, T. D.; Coles, H. J.; Burgess, C.; Hill, L.

    2013-09-01

    We report the demonstration of an optically activated shutter based upon a short-pitch chiral nematic liquid crystal (LC) device sandwiched between crossed polarizers. This LC is comprised of photo-active chiral dopants. In the trans-state, the LC appears dark between crossed polarizers due to the very short pitch. As the pitch is extended through exposure to ultraviolet light, the device becomes transmissive reaching a maximum for a particular value of the pitch. As a result, it is possible to switch between the light and dark states by subjecting the device to visible light so as to cause a cis-trans photo-isomerisation.

  15. Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves

    NASA Astrophysics Data System (ADS)

    Zhi Cheng, Yong; Li Yang, Yong; Jie Zhou, Yu; Zhang, Zhe; Mao, Xue Song; Gong, Rong Zhou

    2016-09-01

    A complementary Y-shaped chiral metamaterial (CYCMM) is proposed for the realization of giant optical activity and circular polarization with strong circular dichroism (CD) simultaneously for terahertz (THz) waves. It is demonstrated that the proposed CYCMM can achieve 90° linear polarization rotation around 2.13 THz and a giant CD effect at 2.38 THz through full-wave simulations. The mechanism of the giant CD effect and optical activity is illustrated by simulated surface current distribution. Due to strong optical activity and the CD effect, the proposed CYCMM is useful for the development of integrated terahertz spectroscopic and imaging devices.

  16. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System.

    PubMed

    Grudniewska, Aleksandra; Kłobucki, Marek; Dancewicz, Katarzyna; Szczepanik, Maryla; Gabryś, Beata; Wawrzeńczyk, Czesław

    2015-01-01

    Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three insect pests: lesser mealworm, Alphitobius diaperinus (Panzer); Colorado potato beetle, Leptinotarsa decemlineata (Say); and peach-potato aphid, Myzus persicae (Sulz.). The chemical transformation of piperitone by the introduction of a lactone moiety and a hydroxy group changed its antifeedant properties. Behavioral bioassays showed that the feeding deterrent activity depended on the insect species and the structure of the compounds. All hydroxy lactones deterred the settling of M. persicae. Among chewing insects, the highest sensitivity showed A. diaperinus adults. PMID:26132506

  17. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System

    PubMed Central

    Grudniewska, Aleksandra; Kłobucki, Marek; Dancewicz, Katarzyna; Szczepanik, Maryla; Gabryś, Beata; Wawrzeńczyk, Czesław

    2015-01-01

    Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three insect pests: lesser mealworm, Alphitobius diaperinus (Panzer); Colorado potato beetle, Leptinotarsa decemlineata (Say); and peach-potato aphid, Myzus persicae (Sulz.). The chemical transformation of piperitone by the introduction of a lactone moiety and a hydroxy group changed its antifeedant properties. Behavioral bioassays showed that the feeding deterrent activity depended on the insect species and the structure of the compounds. All hydroxy lactones deterred the settling of M. persicae. Among chewing insects, the highest sensitivity showed A. diaperinus adults. PMID:26132506

  18. Graphical computational method for active materials in simulation of optical electromagnetics

    NASA Astrophysics Data System (ADS)

    Potasek, M.; Parilov, E.; Beeson, K.

    2014-03-01

    Traditional numerical analyses of laser beam transmission through "active" nonlinear materials have involved many assumptions that narrow their general applicability. As more complex optical phenomena are widely employed in research and industry, it is necessary to expand the use of numerical simulation methods. Historically, laser-matter interactions have involved calculations of "classical" wave propagation by Maxwell's equations and photon absorption through rate equations using numerous approximations. We describe a novel numerical modeling framework that adapts itself for simulation of different types of active materials provided by a simple graphical input. Our framework combines classical electric field propagation with "active" photon absorption kinetics using computational active photonic building blocks (APBB). It allows investigating a plane electromagnetic wave propagating through generic organic or inorganic photoactive materials; while, "active" photo-transitions are implemented using the APBB algorithm on the user interface. To date we have used the method in multiphoton absorbers, upconversion, semiconductor quantum dots, rare earth ions, organic chromophores, singlet oxygen formation, energy transfer, and optically-induced chemical reactions. We will demonstrate the method with applications of amplification in rare-earth ions and multiple two-photon absorbers materials in tandem.

  19. Phantoms for polarized light exhibiting controllable scattering, birefringence, and optical activity

    NASA Astrophysics Data System (ADS)

    Wood, Michael F. G.; Ghosh, Nirmalya; Guo, Xinxin; Vitkin, I. Alex

    2008-02-01

    Recently, the use of polarized light for medical diagnosis and therapeutic management has seen increased interest due the noninvasive nature of light-tissue interactions. Examples of the use of polarized light include polarization imaging to enhance spatial resolution in turbid media, selective imaging of polarized light to increase surface contrast in tissue, polarization-sensitive optical coherence tomography (PS-OCT), and glucose monitoring. With these emerging applications there is a need for controllable phantoms to validate the emerging techniques; however, this has been done only to a limited degree primarily due to the difficulty in creating controllable phantoms. The primary effects of tissue on the polarization of light are scattering, linear birefringence, and optical activity (circular birefringence). An ideal phantom would exhibit all these effects simultaneously in a controllable fashion. We have achieved this through the use of polyacrylamide gels with polystyrene microspheres added as scattering particles, strain applied to the gels to create birefringence, and sucrose added for optical activity. The phantom methodology has been validated using our polarimetry system. Currently, the phantom system is being used to extend our work in birefringence mapping of the myocardium and to further our work in characterizing tissue.

  20. Rare earth ion implantation and optical activation in nitride semiconductors for multicolor emission

    NASA Astrophysics Data System (ADS)

    Ruterana, Pierre; Chauvat, Marie-Pierre; Lorenz, Katharina

    2015-04-01

    In order to understand the behavior of nitride semiconductors when submitted to ion implantation, we have used 300 keV europium at fluences from 1012 to above 1017 ions cm-2. Subsequently, Rutherford backscattering (RBS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to investigate the evolution of damage. The optical properties were investigated prior to and after annealing. It was found that the behavior of the three compounds (AlN, GaN InN) under ion implantation is rather different: whereas InN breaks down at very low fluences (˜1012 ions cm-2), the damage formation mechanisms are similar in AlN and GaN. In both compounds, extended defects such as stacking faults play a critical role. However, they exhibit different stability, as a consequence, GaN transforms to nanocrystalline state from the surface at a fluence of around 2.5 × 1015 ions cm-2, whereas AlN undergoes a chemical amorphization starting at the projected range (Rp), when implanted to extremely high Eu fluences >1017 ionscm-2. As for the optical activation, the formation of highly stable extended defects in these compounds constitutes a real challenge for the annealing of heavily doped layers, and it was noticed that for a substantial optical activation, the implantation fluences should be kept low (<1015 Eu at cm-2).

  1. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials.

    PubMed

    Tsuji, Hideto; Yamamoto, Satomi; Okumura, Ayaka; Sugiura, Yu

    2010-01-11

    The thermal properties and crystallization of biodegradable and optically active poly[(S)-2-hydroxybutyrate] [P(S-2HB)], poly(l-lactide) (PLLA), poly(d-lactide) (PDLA) and their blends were investigated. The results of differential scanning calorimetry, wide-angle X-ray scattering (WAXS), and polarized optical microscopy first indicated heterostereocomplexation between biodegradable and optically active polyesters having different chemical structures and opposite configurations, that is, P(S-2HB) and PDLA. The melting temperature of the heterostereocomplex was higher than those of pure polymers. Such cocrystallization was not observed for P(S-2HB)/PLLA blends having identical configurations. The WAXS profile of P(S-2HB)/PDLA heterostereocomplex was very similar to those of the PLLA/PDLA and P(S-2HB)/P(R-2HB) homostereocomplexes and each crystalline diffraction peak of the heterostereocomplex was located between those of the homostereocomplexes. The present study strongly suggests that heterostereocomplexation will provide a novel versatile method for preparing biodegradable polyester materials with a wide range of physical properties and biodegradability.

  2. Chiral magnetic effect and natural optical activity in metals with or without Weyl points

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Pesin, D. A.

    2015-12-01

    We consider the phenomenon of natural optical activity, and related chiral magnetic effect in metals with low carrier concentration. To reveal the correspondence between the two phenomena, we compute the optical conductivity of a noncentrosymmetric metal to linear order in the wave vector of the light wave, specializing to the low-frequency regime. We show that it is the orbital magnetic moment of quasiparticles that is responsible for the natural optical activity, and thus the chiral magnetic effect. While for purely static magnetic fields the chiral magnetic effect is known to have a topological origin and to be related to the presence of Berry curvature monopoles (Weyl points) in the band structure, we show that the existence of Berry monopoles is not required for the dynamic chiral magnetic effect to appear; the latter is thus not unique to Weyl metals. The magnitude of the dynamic chiral magnetic effect in a material is related to the trace of its gyrotropic tensor. We discuss the conditions under which this trace is nonzero; in noncentrosymmetric Weyl metals it is found to be proportional to the energy-space dipole moment of Berry curvature monopoles. The calculations are done within both the semiclassical kinetic equation, and Kubo linear-response formalisms, with coincident results.

  3. Optical evidence for the unification of active galactic nuclei and quasi-stellar objects.

    PubMed Central

    Miller, J S

    1995-01-01

    There is a variety of optical evidence for some unification of different types of active galactic nuclei and quasi-stellar objects (QSOs). The case is very strong for the unification of at least some Seyfert galaxies, where polarization data show that the type assigned to the Seyfert galaxy must depend on viewing direction. It has been proposed that Fanaroff-Riley type 2 (FR2) radio galaxies are quasars seen in a direction from which the quasar is obscured, and there is some limited direct evidence for this picture. The broad absorption line QSOs may be normal QSOs seen from a special direction. Some of the sources observed to have high luminosities in the far infrared could be obscured QSOs and active nuclei. Mergers and interactions are likely to play an important role in nuclear activity, and active galaxies and QSOs could change their apparent types through these encounters followed by subsequent evolution. PMID:11607611

  4. Optical evidence for the unification of active galactic nuclei and quasi-stellar objects.

    PubMed

    Miller, J S

    1995-12-01

    There is a variety of optical evidence for some unification of different types of active galactic nuclei and quasi-stellar objects (QSOs). The case is very strong for the unification of at least some Seyfert galaxies, where polarization data show that the type assigned to the Seyfert galaxy must depend on viewing direction. It has been proposed that Fanaroff-Riley type 2 (FR2) radio galaxies are quasars seen in a direction from which the quasar is obscured, and there is some limited direct evidence for this picture. The broad absorption line QSOs may be normal QSOs seen from a special direction. Some of the sources observed to have high luminosities in the far infrared could be obscured QSOs and active nuclei. Mergers and interactions are likely to play an important role in nuclear activity, and active galaxies and QSOs could change their apparent types through these encounters followed by subsequent evolution.

  5. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    SciTech Connect

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  6. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications. PMID:26891938

  7. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.

  8. Development of active/adaptive lightweight optics for the next generation of telescopes

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Basso, S.; Citterio, O.; Mazzoleni, F.; Vernani, D.

    2006-02-01

    The future large optical telescopes will have such large dimensions to require innovative technical solutions either in the engineering and optical fields. Their optics will have dimensions ranging from 30 to 100 m. and will be segmented. It is necessary to develop a cost effective industrial process, fast and efficient, to create the thousands of segments neeededs to assemble the mirrors of these instruments. INAF-OAB (Astronomical Observatory of Brera) is developing with INAF-Arcetri (Florence Astronomical Observatory) a method of production of lightweight glass optics that is suitable for the manufacturing of these segments. These optics will be also probably active and therefore the segments have to be thin, light and relatively flexible. The same requirements are valid also for the secondary adaptive mirrors foreseen for these telescopes and that therefore will benefit from the same technology. The technique under investigation foresees the thermal slumping of thin glass segments using a high quality ceramic mold (master). The sheet of glass is placed onto the mold and then, by means of a suitable thermal cycle, the glass is softened and its shape is changed copying the master shape. At the end of the slumping the correction of the remaining errors will be performed using the Ion Beam Figuring technique, a non-contact deterministic technique. To reduce the time spent for the correction it will be necessary to have shape errors on the segments as small as possible. A very preliminary series of experiments already performed on reduced size segments have shown that it is possible to copy a master shape with high accuracy (few microns PV) and it is very likely that copy accuracies of 1 micron or less are possible. The paper presents in detail the concepts of the proposed process and describes our current efforts that are aimed at the production of a scaled demonstrative adaptive segment of 50 cm of diameter.

  9. Optics At The Arctic Circle, An Example Of Application-Oriented Research Generating New Industrial Activities

    NASA Astrophysics Data System (ADS)

    Lammasniemi, Jorma; Myllyla, Risto; Hannula, Tapio

    1989-04-01

    This paper discusses research/industry interaction in application-oriented research groups specializing in the development of optoelectronic instruments and measurement methods. The research groups are working in Oulu, a city in Northern Finland, in an industrial environment consisting originally of pulp and paper industries together with metalworking and engineering industries. These established industrial areas are active in adopting new technologies for automation and process renewal. Furthermore, new emerging businesses are being generated through pilot installations and new product ideas created by research groups. The technologies considered are optical and infrared process analyzers, semiconductor laser-based dimension measurements and optoelectronic hybrid module fabrication. Examples of new products and enterprises employing these technologies are given. Additional skills and education especially in miniature optics and related constructions, are considered important for the future.

  10. All optical active high decoder using integrated 2D square lattice photonic crystals

    NASA Astrophysics Data System (ADS)

    Moniem, Tamer A.

    2015-11-01

    The paper introduces a novel all optical active high 2 × 4 decoder based on 2D photonic crystals (PhC) of silicon rods with permittivity of ε = 10.1 × 10-11 farad/m. The main structure of optical decoder is designed using a combination of five nonlinear photonic crystal ring resonator, set of T-type waveguide, and line defect of Y and T branch splitters. The proposed structure has two logic input ports, four output ports, and one bias input port. The total size of the proposed 2 × 4 decoder is equal to 40 μm × 38 μm. The PhC structure has a square lattice of silicon rod with refractive index of 3.39 in air. The overall design and the results are discussed through the realization and the numerically simulation to confirm its operation and feasibility.

  11. Active control for vibration suppression in a flexible beam using a modal domain optical fiber sensor

    NASA Technical Reports Server (NTRS)

    Cox, D. E.; Lindner, D. K.

    1991-01-01

    An account is given of the use of a modal-domain (MD) fiber-optic sensor as an active control system component for vibration suppression, whose output is proportional to the integral of the axial strain along the optical fiber. When an MD sensor is attached to, or embedded in, a flexible structure, it senses the strain in the structure along its gage length. On the basis of the present integration of the sensor model into a flexible-structure model, it becomes possible to design a control system with a dynamic compensator which adds damping to the low-order modes of the flexible structure. This modeling procedure has been experimentally validated.

  12. Magnetically induced optical activity and dichroism of gadolinium oxide nanoparticle-based ferrofluids

    NASA Astrophysics Data System (ADS)

    Paul, Nibedita; Devi, Manasi; Mohanta, Dambarudhar; Saha, Abhijit

    2012-02-01

    The present work reports on magnetically induced optical activity (such as Faraday rotation and linear dichroism) of pristine and gamma-irradiated gadolinium oxide (Gd2O3) nanoparticle-based ferrofluids. The ferrofluids were produced by dispersing N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)-coated ˜9-nm-sized Gd2O3 particles in a carrier fluid of ethanol. The ferrofluids were then irradiated with 1.25 MeV energetic gamma rays (dose: 868 Gy and 2.635 kGy). Irradiation-led formation of a number of point defects was revealed through high resolution electron microscopy. The interaction of light with the ionized point defects is believed to have caused substantial improvement in the magneto-optic response of irradiated magnetic fluids.

  13. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.

  14. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented. PMID:19904341

  15. Magnetically induced optical activity and dichroism of gadolinium oxide nanoparticle-based ferrofluids

    SciTech Connect

    Paul, Nibedita; Devi, Manasi; Mohanta, Dambarudhar; Saha, Abhijit

    2012-02-15

    The present work reports on magnetically induced optical activity (such as Faraday rotation and linear dichroism) of pristine and gamma-irradiated gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle-based ferrofluids. The ferrofluids were produced by dispersing N-cetyl-N,N,N-trimethyl ammonium bromide (CTAB)-coated {approx}9-nm-sized Gd{sub 2}O{sub 3} particles in a carrier fluid of ethanol. The ferrofluids were then irradiated with 1.25 MeV energetic gamma rays (dose: 868 Gy and 2.635 kGy). Irradiation-led formation of a number of point defects was revealed through high resolution electron microscopy. The interaction of light with the ionized point defects is believed to have caused substantial improvement in the magneto-optic response of irradiated magnetic fluids.

  16. JPL activities on development of acousto-optic tunable filter imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    Recent activities of JPL in the development of a new type of imaging spectrometers for earth observation and planetary exploration are reported. This instrument uses the acousto-optic tunable filter (AOTF) as high resolution and fast programmable bandpass filter. AOTF operates in the principle of acousto-optic interaction in an anisotropic medium. This filter can be tuned in sequential, random, and multiwavelength access modes, providing observational flexibility. The diffraction process in the filter generates two diffracted monochromatic beams with polarization orthogonal to each other, creating a unique capability to measure both polarimetric and spectral properties of the incoming light simultaneously with a single instrument. The device gives wide wavelength operations with reasonably large throughput. In addition, it is in a compact solid-state structure without moving parts, providing system reliability. These attractive features give promising opportunities to develop a new generation of airborne/spaceborne and ground, real-time, imaging spectrometer systems for remote sensing applications.

  17. Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Jones, Michael W.; Kulick, Jeffrey H.; Lindquist, Robert G.; Kowel, Stephen T.

    1996-12-01

    We describe the design, construction, and performance of the first real-time autostereoscopic 3D display based on the partial pixel 3D display architecture. The primary optical components of the 3D display are an active-matrix liquid crystal display and a diffractive optical element (DOE). The display operates at video frame rates and is driven with a conventional VGA signal. 3D animations with horizontal motion parallax are readily viewable as sets of stereo images. Formation of the virtual viewing slits by diffraction from the partial pixel apertures is experimentally verified. The measured contrast and perceived brightness of the display are excellent, but there are minor flaws in image quality due to secondary images. The source of these images and how they may be eliminated is discussed. The effects of manufacturing-related systematic errors in the DOE are also analyzed.

  18. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    PubMed Central

    Eitel, Jan U. H.; Keefe, Robert F.; Long, Dan S.; Davis, Anthony S.; Vierling, Lee A.

    2010-01-01

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and do not require spectral reference readings. Besides measuring red (590–670 nm) and near-infrared (>760 nm) reflectance AGORS devices have recently become available that also measure red-edge (730 nm) reflectance. We tested the hypothesis that the additional availability of red-edge reflectance information would improve AGORS of plant stress induced chlorophyll breakdown in Scots pine (Pinus sylvestris). Our results showed that the availability of red-edge reflectance information improved AGORS estimates of stress induced variation in chlorophyll concentration (r2 > 0.73, RMSE < 1.69) when compared to those without (r2 = 0.57, RMSE = 2.11). PMID:22319275

  19. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  20. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  1. Laser-based optical activity detection of amino acids and proteins

    SciTech Connect

    Reitsma, B.H.

    1987-08-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. Four free amino acids were resolved using cation-exchange chromatography followed by detection with refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (uv) for tyrosine and phenylalanine. Amino acid detection by refractive index is not sensitive and uv absorbance detects only three amino acids. Derivatization of amino acids to make them detectable by uv absorbance enhances the applicability of OA/uv for the determination of enantiomeric ratios. The separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/uv is illustrated. Calculation of the specific rotation of 22 dansyl-L-amino acids shows that derivatization enhances the OA detectability of some amino acids but degrades that of others. RP-HPLC of proteins is a rapidly developing technique. Several researchers have reported the detection of multiple peaks when a pure protein is subjected to HPLC under certain conditions. These multiple peaks have been determined to be different conformations of the same protein. Since proteins are optically active, OA is a suitable detector. The RP-HPLC separation of conformers of soybean trypsin inhibitor is illustrated. Detection by OA/uv provides insights from the chromatogram unavailable from uv absorbance detection alone. In addition, identification of impurities is simplified with OA/uv. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation. 163 refs., 13 figs., 9 tabs.

  2. Development and performance of the EAGLE active optics LGS WFS refocusing system

    NASA Astrophysics Data System (ADS)

    Madec, Fabrice; Le Mignant, David; Chardin, Elodie; Hugot, Emmanuel; Mazzanti, Silvio; Gimenez, Jean-Luc; Ferrari, Marc; Moreaux, Gabriel; Vives, Sébastien; Cuby, Jean-Gabriel

    2010-07-01

    We designed, developed, and tested a Variable Curvature Mirror (VCM) as an active refocusing system for the Laser Guide Star (LGS) Wave Front Sensor (WFS) of the E-ELT EAGLE instrument [1]. This paper is the second of two from our team on this R&D activity: Hugot et al. this conf. [2] presented the mirror design and performance simulations. Here, we report on the fabrication integration, testing and performance of the VCM system. During this activity, we developed all necessary parts for the VCM system: a metallic mirror, its housing and mounts, a computer-controlled pressure system, an internal metrology, a testbench etc. The functional testing of the VCM system is successful: we can control the internal pressure to less than 1 mBar, and measure the mirror displacement with a 100 nm accuracy. The mirror displacement is a near-linear and well-simulated function of internal pressure for the desired range of focus. The intrinsic optical quality of the mirror meniscus is well within the specifications. Once mounted in its housing, we observe additional mechanical constraints for the current design that generate optical aberrations. We measured the amplitude of the Zernike modes, and we showed that the axisymetric terms display a variation trend very similar to simulations, with amplitude close to simulations. All these results are very promising for a design of focus compensation without any moving part.

  3. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  4. Motionless active depth from defocus system using smart optics for camera autofocus applications

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, Nabeel A.

    2016-04-01

    This paper describes a motionless active Depth from Defocus (DFD) system design suited for long working range camera autofocus applications. The design consists of an active illumination module that projects a scene illuminating coherent conditioned optical radiation pattern which maintains its sharpness over multiple axial distances allowing an increased DFD working distance range. The imager module of the system responsible for the actual DFD operation deploys an electronically controlled variable focus lens (ECVFL) as a smart optic to enable a motionless imager design capable of effective DFD operation. An experimental demonstration is conducted in the laboratory which compares the effectiveness of the coherent conditioned radiation module versus a conventional incoherent active light source, and demonstrates the applicability of the presented motionless DFD imager design. The fast response and no-moving-parts features of the DFD imager design are especially suited for camera scenarios where mechanical motion of lenses to achieve autofocus action is challenging, for example, in the tiny camera housings in smartphones and tablets. Applications for the proposed system include autofocus in modern day digital cameras.

  5. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574312

  6. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  7. Disease Activity and Conversion into Multiple Sclerosis after Optic Neuritis Is Treated with Erythropoietin

    PubMed Central

    Sühs, Kurt-Wolfram; Papanagiotou, Panagiotis; Hein, Katharina; Pul, Refik; Scholz, Kerstin; Heesen, Christoph; Diem, Ricarda

    2016-01-01

    Changes in cerebral lesion load by magnetic resonance imaging (MRI) in patients from a double-blind, placebo-controlled, phase II study on erythropoietin in clinically isolated optic neuritis (ClinicalTrials.gov, NCT00355095) were analyzed. Therefore, patients with acute optic neuritis were assigned to receive either 33,000 IU of recombinant human erythropoietin (IV) daily for three days, or a placebo, as an add-on to methylprednisolone. Of 35 patients, we investigated changes in cerebral lesion load in MRIs obtained at baseline and at weeks 4, 8, and 16. In 5 of the 35 patients, we found conversion into multiple sclerosis (MS) based on MRI progression only. These five patients had received the placebo. Another five patients showed MRI progression together with relapses. Three of these patients had received erythropoietin, and two the placebo. Yet, analyzing the change in absolute numbers of periventricular, juxtacortical, and infratentorial lesions including gadolinium-enhancing lesions, there were no significant differences between the groups. Although effective in terms of retinal nerve fiber layer protection, erythropoietin treatment of acute isolated optic neuritis did not influence further evolution of MRI lesions in the brain when comparing absolute numbers. However, early conversion from clinically isolated syndrome to MS assessed by MRI activity seemed to occur more frequently in the placebo-treated group. PMID:27706045

  8. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    NASA Astrophysics Data System (ADS)

    Syed, Wasif; Hammer, David; Lipson, Michal

    2007-11-01

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (terbium borate glass) placed adjacent to, or within, the wire array in experiments on the COBRA pulsed power generator [1]. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. We will also present our progress on field measurements using an optical fiber sensor and a very small ``thin film waveguide'' coupled to a fiber optic system. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor for a greater fraction of the current pulse than magnetic probes, with which we compare our results. This research was sponsored by NNSA under SSAA program via DOE Coop Agreement DE-F03-02NA00057. [1] W. Syed, D. A. Hammer, & M. Lipson, 34^th ICOPS & 16^th PPPS, Albuquerque, NM, June 2007.

  9. Long Term Optical and Infrared Reverberation Mapping of High and Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; Joner, Mike; Kenney, John; McGreer, Ian; Nordgren, Tyler; Schneider, Donald; Shen, Yue; Tao, Charling

    2016-08-01

    Previous Spitzer reverberation monitoring projects looking for UV/optical light absorbed and re-emitted in the IR by dust have been limited to very low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle (~1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. By combining ground based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. We propose to continue this project to capitalize on the continuing optical motnoring from the ground and to increase the confidence in the detected lags. Additionally, the Call for Proposals asks for up to 1000 hours of observations in the Spitzer CVZ to accommodate battery charging needs. We propose to add to our quasar sample five lower luminosity Seyfert galaxies from the Pan-STARRS ground based optical survey that are in the Spitzer CVZ, which will increase the luminosity range of AGN we are studying and, combined with additional ground based observatories, provide for a continuous monitoring campaign lasting 2 years and thus provide the most detailed study of dust around AGN to date.

  10. Effects of silver and gold catalytic activities on the structural and optical properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Lajvardi, M.; Eshghi, H.; Izadifard, M.; Ghazi, M. E.; Goodarzi, A.

    2016-01-01

    The metal-assisted chemical etching of silicon in an aqueous solution of hydrofluoric acid and hydrogen peroxide is established for the fabrication of large area, uniform silicon nanowire (SiNW) arrays. In this study, silver (Ag) and gold (Au) are considered as catalysts and the effect of different catalysts with various thicknesses on the structural and optical properties of the fabricated SiNWs is investigated. The morphology of deposited catalysts on the silicon wafer is characterized by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is shown that the morphology of the fabricated silicon nanostructures remarkably depends upon the catalyst layer thickness, and the catalyst etching time directly affects the structural and optical properties of the synthesized SiNWs. FESEM images show a linear increment of the nanowire length versus time, whereas the etching rate for the Au-etched SiNWs was lower than the Ag-etched ones. Strong light scattering in SiNWs caused the total reflection to decrease in the range of visible light, and this decrement was higher for the Ag-etched SiNW sample, with a longer length than the Au-etched one. A broadband visible photoluminescence (PL) with different peak positions is observed for the Au- and Ag-etched samples. The synthesized optically active SiNWs can be considered as a promising candidate for a new generation of nano-scale opto-electronic devices.

  11. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    SciTech Connect

    Lyu, Jianwei; Hao, Lei; Li, Aigen

    2014-09-01

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, the optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.

  12. Lorentz factor distribution of blazars from the optical Fundamental Plane of black hole activity

    NASA Astrophysics Data System (ADS)

    Saikia, Payaswini; Körding, Elmar; Falcke, Heino

    2016-09-01

    Blazar radiation is dominated by a relativistic jet which can be modelled at first approximation using just two intrinsic parameters - the Lorentz factor Γ and the viewing angle θ. Blazar jet observations are often beamed due to relativistic effects, complicating the understanding of these intrinsic properties. The most common way to estimate blazar Lorentz factors needs the estimation of apparent jet speeds and Doppler beaming factors. We present a new and independent method of constructing the blazar Lorentz factor distribution, using the optical Fundamental Plane of black hole activity. The optical Fundamental Plane is a plane stretched out by both the supermassive black holes and the X-ray binaries, in the 3D space provided by their [O III] line luminosity, radio luminosity and black hole mass. We use the intrinsic radio luminosity obtained from the optical Fundamental Plane to constrain the boosting parameters of the VLBA Imaging and Polarimetry Survey blazar sample. We find a blazar bulk Lorentz factor distribution in the form of a power law as N(Γ) ∝ Γ-2.1 ± 0.4 for the Γ range of 1-40. We also discuss the viewing angle distribution of the blazars and the dependence of our results on the input parameters.

  13. Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

    PubMed Central

    Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio

    2012-01-01

    Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473

  14. Formation of optically-active, metal silicides using ion implantation and/or oxidation

    NASA Astrophysics Data System (ADS)

    Mitchell, L. J.; Holland, O. W.; Hossain, K.; Smith, E. B.; Golden, T. D.; Duggan, J. L.; McDaniel, F. D.

    2005-12-01

    While Si-based integrated circuits dominate the microelectronics marketplace, they cannot be fabricated with optical functionality since Si is indirect. Alternative materials have been used in such applications but the ability to integrate an optically active material directly onto a silicon substrate to co-opt the advances in Si technology and processing capabilities is the better solution. Many of the transition metals form silicides that are direct band gap semiconductors and, as such, may be integrated with Si to achieve the desired optical properties. Ion implantation of the transition metal into Si was used to form the desired silicide phase by reaction of the metal with the Si substrate. Depending upon the fluence the resulting implanted layer can consist of a two-phase region in which the silicide phase forms as isolated precipitates randomly oriented within a heavily dislocated Si matrix. Rutherford backscattering/ion channeling spectrometry was used to monitor this process as a function of temperature and time. A unique method for orienting the silicide precipitates to align them crystallographically with the Si substrate and eliminate the ion-induced dislocations that form during the initial implant is discussed. This method involves oxidation of the implanted region to segregate the silicide phase at the oxide interface. Initial results of Os- ions implanted into Si(1 0 0) are presented.

  15. Pattern formation for active particles on optically created ordered and disordered substrates (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles M.; Ray, Dipanjan; Reichhardt, Cynthia J.

    2015-08-01

    There has been tremendous growth in the field of active matter, where the individual particles that comprise the system are self-driven. Examples of this class of system include biological systems such as swimming bacteria and crawling cells. More recently, non-biological swimmers have been created using colloidal Janus particles that undergo chemical reactions on one side to produce self-propulsion. These active matter systems exhibit a wide variety of behaviors that are absent in systems undergoing purely thermal fluctuations, such as transitions from uniform liquids to clusters or living crystals, pushing objects around, ratchet effects, and phase separation in mixtures of active and passive particles. Here we examine the collective effects of active matter disks in the presence of static or dynamic substrates. For colloids, such substrates could be created optically in the form of periodic, random, or quasiperiodic patterns. For thermal particles, increasing the temperature generally increases the diffusion or mobility of the particles when they move over a random or periodic substrates. We find that when the particles are active, increasing the activity can increase the mobility for smaller run lengths but decrease the mobility at large run lengths. Additionally we find that at large run lengths on a structured substrate, a variety of novel active crystalline states can form such as stripes, squares and triangular patterns.

  16. Optical characterization of femtosecond laser induced active channel waveguides in lithium fluoride crystals

    SciTech Connect

    Chiamenti, I.; Kalinowski, H. J.; Bonfigli, F.; Montereali, R. M.; Gomes, A. S. L.; Michelotti, F.

    2014-01-14

    We successfully realized broad-band light-emitting color center waveguides buried in LiF crystals by using femtosecond laser pulses. The characterization of the waveguides was performed by optical microscopy, photoluminescence spectra, loss measurements and near-field profiling. The experimental results show that the direct-writing fabrication process induces low-index contrast active channel waveguides: their wavelength-dependent refractive index changes, estimated from 10{sup −3} to 10{sup −4} depending on the writing conditions, allow supporting few modes at visible and near-infrared wavelengths.

  17. Active cleaning techniques for removing contamination from optical surfaces in space

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    Research in developing an active cleaning technique for removing contaminants from optical surfaces in space is reported. In situ contamination/cleaning experiments were conducted on gold and platimum coated mirrors, which were contaminated by exposure to UV radiation in a 1,3, butadiene environment. Argon and oxygen plasma exposure cleaned the mirrors equally well. Silicone cleaning experiments were also conducted. Exposure of the contaminated mirrors to helium, oxygen, and hydrogen plasmas restored the reflectance at the shorter wavelengths and degraded it at the longer wavelengths.

  18. Brain activation and connectivity of social cognition using diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Godavarty, Anuradha

    2009-02-01

    In the current research, diffuse optical imaging (DOI) is used for the first time towards studies related to sociocommunication impairments, which is a characteristic feature of autism. DOI studies were performed on normal adult volunteers to determine the differences in the brain activation (cognitive regions) in terms of the changes in the cerebral blood oxygenation levels in response to joint and non-joint attention based stimulus (i.e. socio-communicative paradigms shown as video clips). Functional connectivity models are employed to assess the extent of synchronization between the left and right pre-frontal regions of the brain in response to the above stimuli.

  19. Orbital Analysis of Molecular Optical Activity Based on Configuration Rotatory Strength.

    PubMed

    Caricato, Marco

    2015-04-14

    We present a method to analyze the origin of molecular optical activity in terms of orbital contributions and rotatory strength in configuration space. The method uses quantities already available at completion of standard linear-response calculations of specific rotation and requires minimal manipulation. Preliminary application to (1S,4S)-norborne-none and (P)-2,3-pentadiene shows that only a few orbitals (6 and 4, respectively) contribute significantly to the specific rotation and can be used directly for a qualitative interpretation of this fundamental property.

  20. Enhanced optical precursors by Doppler effect via active Raman gain process.

    PubMed

    Peng, Yandong; Niu, Yueping; Zhang, Lida; Yang, Aihong; Jiang, Lin; Gong, Shangqing

    2012-08-15

    A scheme for enhancing precursor pulse by Doppler effect is proposed in a room-temperature active-Raman-gain medium. Due to abnormal dispersion between two gain peaks, main fields are advanced and constructively interfere with optical precursors, which leads to enhancement of the transient pulse at the rise edge of the input. Moreover, after Doppler averaging, the abnormal dispersion intensifies and the constructive interference between precursors and main fields is much strengthened, which boosts the transient spike. Simulation results demonstrate that the peak intensity of precursors could be enhanced nearly 20 times larger than that of the input.

  1. Nanoreactors for simultaneous remote thermal activation and optical monitoring of chemical reactions.

    PubMed

    Vázquez-Vázquez, Carmen; Vaz, Belén; Giannini, Vincenzo; Pérez-Lorenzo, Moisés; Alvarez-Puebla, Ramon A; Correa-Duarte, Miguel A

    2013-09-18

    We report herein the design of plasmonic hollow nanoreactors capable of concentrating light at the nanometer scale for the simultaneous performance and optical monitoring of thermally activated reactions. These reactors feature the encapsulation of plasmonic nanoparticles on the inner walls of a mesoporous silica capsule. A Diels-Alder cycloaddition reaction was carried out in the inner cavities of these nanoreactors to evidence their efficacy. Thus, it is demonstrated that reactions can be accomplished in a confined volume without alteration of the temperature of the bulk solvent while allowing real-time monitoring of the reaction progress.

  2. Sun-tracking optical element realized using thermally activated transparency-switching material.

    PubMed

    Apostoleris, Harry; Stefancich, Marco; Lilliu, Samuele; Chiesa, Matteo

    2015-07-27

    We present a proof of concept demonstration of a novel optical element: a light-responsive aperture that can track a moving light beam. The element is created using a thermally-activated transparency-switching material composed of paraffin wax and polydimethylsiloxane (PDMS). Illumination of the material with a focused beam causes the formation of a localized transparency at the focal spot location, due to local heating caused by absorption of a portion of the incident light. An application is proposed in a new design for a self-tracking solar collector. PMID:26367692

  3. The AMIGA sample of isolated galaxies. XI. Optical characterisation of nuclear activity

    NASA Astrophysics Data System (ADS)

    Sabater, J.; Verdes-Montenegro, L.; Leon, S.; Best, P.; Sulentic, J.

    2012-09-01

    Context. This paper is part of a series involving the AMIGA project (Analysis of the Interstellar Medium of Isolated GAlaxies), which identifies and studies a statistically significant sample of the most isolated galaxies in the northern sky. Aims: We present a catalogue of nuclear activity, traced by optical emission lines, in a well-defined sample of the most isolated galaxies in the local Universe, which will be used as a basis for studying the effect of the environment on nuclear activity. Methods: We obtained spectral data from the 6th Data Release of the Sloan Digital Sky Survey, which were inspected in a semi-automatic way. We subtracted the underlying stellar populations from the spectra (using the software Starlight) and modelled the nuclear emission features. Standard emission-line diagnostics diagrams were applied, using a new classification scheme that takes into account censored data, to classify the type of nuclear emission. Results: We provide a final catalogue of spectroscopic data, stellar populations, emission lines and classification of optical nuclear activity for AMIGA galaxies. The prevalence of optical active galactic nuclei (AGN) in AMIGA galaxies is 20.4%, or 36.7% including transition objects. The fraction of AGN increases steeply towards earlier morphological types and higher luminosities. We compare these results with a matched analysis of galaxies in isolated denser environments (Hickson Compact Groups). After correcting for the effects of the morphology and luminosity, we find that there is no evidence for a difference in the prevalence of AGN between isolated and compact group galaxies, and we discuss the implications of this result. Conclusions: We find that a major interaction is not a necessary condition for the triggering of optical AGN. Full Tables 1-7 and A.1-A.3 are only available in electronic form at http://amiga.iaa.es/ and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc

  4. Enhanced optical precursors by Doppler effect via active Raman gain process.

    PubMed

    Peng, Yandong; Niu, Yueping; Zhang, Lida; Yang, Aihong; Jiang, Lin; Gong, Shangqing

    2012-08-15

    A scheme for enhancing precursor pulse by Doppler effect is proposed in a room-temperature active-Raman-gain medium. Due to abnormal dispersion between two gain peaks, main fields are advanced and constructively interfere with optical precursors, which leads to enhancement of the transient pulse at the rise edge of the input. Moreover, after Doppler averaging, the abnormal dispersion intensifies and the constructive interference between precursors and main fields is much strengthened, which boosts the transient spike. Simulation results demonstrate that the peak intensity of precursors could be enhanced nearly 20 times larger than that of the input. PMID:23381248

  5. Chemoenzymatic collective synthesis of optically active hydroxyl(methyl)tetrahydronaphthalene-based bioactive terpenoids.

    PubMed

    Batwal, Ramesh U; Argade, Narshinha P

    2015-12-14

    Starting from succinic anhydride and 2-methylanisole, a chemoenzymatic collective formal/total synthesis of several optically active tetrahydronaphthalene based bioactive natural products has been presented via advanced level common precursors; the natural product and antipode (-)/(+)-aristelegone B. Regioselective benzylic oxidations, stereoselective introduction of hydroxyl groups at the α-position of ketone moiety in syn-orientation, efficient enzymatic resolutions with high enantiomeric purity, stereoselective reductions, samarium iodide induced deoxygenations and tandem acylation-Wittig reactions without racemization and/or eliminative aromatization were the key features. An attempted diastereoselective synthesis of (±)-vallapin has also been described.

  6. Impact of Using Assimilated Data for Evaluating Performance of Active CO2 Optical Depth Measurements

    NASA Astrophysics Data System (ADS)

    Kooi, S. A.; Harrison, F. W.; Lin, B.; Ismail, S.; Browell, E. V.; Yang, M. M.; Choi, Y.

    2015-12-01

    NASA has recently conducted multiple DC-8 flight campaigns of candidate instruments for the future Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. For each campaign, the precision and accuracy of the remote measurements of atmospheric CO2 differential absorption optical depths from the candidate instruments were evaluated with respect to corresponding CO2 optical depths derived from in situ profiles of atmospheric state variables including atmospheric CO2 mixing ratios, temperature (T), pressure (p), and humidity (q) and radiative transfer calculations using the HITRAN spectroscopic database in combination with recent measurements of spectral line parameters. To enable this evaluation, the DC-8 flights were designed to include multiple overpasses of a comparison location where the aircraft performed a spiral ascent or descent and captured the in situ profiles using a suite of onboard instruments. However large segments of some flights took place far from spiral locations and therefore had no coincident in situ measurements of the atmospheric state (CO2, T, p, q). For these situations meterological analysis data from the Goddard Modeling and Assimilation Office (GMAO) GEOS-5 gridded data have been used to assimilate atmospheric state profiles for use in the CO2 optical depth derivation. We use the location of the DC-8 spirals to identify all of the GMAO GEOS-5 gridded profiles that would compare with each spiral and report their differences with respect to the DC-8 in situ profiles. We show how these differences affect the in situ derived CO2 optical depth for the three campaigns and the impacts of these differences on the precision and accuracy evaluations of the remote CO2 measurements.

  7. Evaluating a Genetically Encoded Optical Sensor of Neural Activity Using Electrophysiology in Intact Adult Fruit Flies

    PubMed Central

    Jayaraman, Vivek; Laurent, Gilles

    2007-01-01

    Genetically encoded optical indicators hold the promise of enabling non-invasive monitoring of activity in identified neurons in behaving organisms. However, the interpretation of images of brain activity produced using such sensors is not straightforward. Several recent studies of sensory coding used G-CaMP 1.3—a calcium sensor—as an indicator of neural activity; some of these studies characterized the imaged neurons as having narrow tuning curves, a conclusion not always supported by parallel electrophysiological studies. To better understand the possible cause of these conflicting results, we performed simultaneous in vivo 2-photon imaging and electrophysiological recording of G-CaMP 1.3 expressing neurons in the antennal lobe (AL) of intact fruitflies. We find that G-CaMP has a relatively high threshold, that its signal often fails to capture spiking response kinetics, and that it can miss even high instantaneous rates of activity if those are not sustained. While G-CaMP can be misleading, it is clearly useful for the identification of promising neural targets: when electrical activity is well above the sensor's detection threshold, its signal is fairly well correlated with mean firing rate and G-CaMP does not appear to alter significantly the responses of neurons that express it. The methods we present should enable any genetically encoded sensor, activator, or silencer to be evaluated in an intact neural circuit in vivo in Drosophila. PMID:18946545

  8. Active optics for dynamical correction of fluctuations of atmospheric refraction on a differential optical absorption spectroscopy device.

    PubMed

    Fuentes-Inzunza, Rodrigo A; Gutiérrez, Javier; Saavedra, Carlos

    2012-10-20

    We have designed and developed a feedback mechanism for continuous monitoring in a long-pass differential optical absorption spectroscopy (LP-DOAS) setup. This allows one to correct photo-thermal deflection due to the local fluctuations refraction index of the air. For this purpose, using an unbalanced beam splitter, a small fraction of the collected DOAS signal is imaged onto a low-cost CCD camera using a biconvex lens, while the other portion of the signal is coupled into a fiber optic for trace gas detection. By monitoring the registered signal at the CCD camera, a feedback mechanism acting on the transversal position of the lens is able to compensate an arbitrary transversal displacement of the collected signal at the focal plane of the receiver telescope, allowing an optimal coupling into the optical fiber. PMID:23089775

  9. Optimized mirror supports, active primary mirrors and adaptive secondaries for the Optical Very Large Array (OVLA)

    NASA Astrophysics Data System (ADS)

    Arnold, Luc

    1994-06-01

    This article first deals with general aspects of optimizing mirror supports. A wide variety of support topologies have been optimized by Nelson et al for unobscured entrance pupils. Optical forces and locations of point supports have been calculated here for annular pupils. Efficient topologies introducing a small amount of defocusing are also proposed for unobscured and annular pupils. Support efficiencies are given for each topology. Wavefront errors are estimated in the case of a defective cell, in order to specify tolerances on forces and geometries. The OVLA active optics is then discussed. The very thin, meniscus-shaped primary will be actively supported by 29 actuators and 3 fixed points. Actuator locations and forces have been calculated to minimize the mirror deflection under its own weight but also to allow a good control of astigmatism. We finally present a study of a concave adaptive secondary for the OVLA telescopes. As an initial result, we propose a defocus adaptive corrector with a variable thickness distribution. Conditions of use are defined, and performances are evaluated.

  10. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  11. The enantioselective immunoaffinity extraction of an optically active ibuprofen-modified peptide fragment.

    PubMed

    Ikegawa, S; Isriyanthi, N M; Nagata, M; Yahata, K; Ito, H; Mano, N; Goto, J

    2001-09-01

    Acyl glucuronides are known to produce the covalently bound protein adducts which may be the cause of hypersensitivity and toxic responses to acidic drugs. The structural analysis of the drug-protein adducts is therefore needed. From this point of view, we developed an enantioselective immunoaffinity extraction method, which employs an immobilized antibody to specifically isolate peptide fragments that have been modified with optically active ibuprofen. Rabbits were immunized with (S)-ibuprofen coupled to bovine serum albumin through a beta-alanine group. The elicited antibody strongly recognizes the asymmetric center and the isobutylphenyl moiety of (S)-ibuprofen and its conjugates but has a low affinity for their anti podes. A 0.5-mL aliquot of the immunosorbent (11.5 mg of IgG/mL gel) prepared by immobilization of the antibody was capable of retaining up to 1 microg of (S)-ibuprofen. When a mixture of substance P with (R)- and (S)-ibuprofen-modified substance P was loaded on the immunosorbent, the (S)-ibuprofen-modified substance P was selectively retained. The modified peptide was quantitatively recovered by elution with 10 mM ammonium acetate buffer (pH 5.0)/methanol (5:95, v/v). The proposed method would be useful for the structural characterization of optically active ibuprofen-modified human serum albumin.

  12. Deep brain optical measurements of cell type–specific neural activity in behaving mice

    PubMed Central

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Luo, Guoxiang; Pham, Michael D; Lovinger, David M; Vogel, Steven S; Costa, Rui M

    2014-01-01

    Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (tcspc)–based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with cre-dependent selective expression of genetically encoded ca2+ indicators (GecIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. as an example, we used viral expression of GcaMps in striatal projection neurons (spns) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. the whole procedure, consisting of virus injection, behavior training and optical recording, takes 3–4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. the simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior. PMID:24784819

  13. Characterization of optically actuated MRI-compatible active needles for medical interventions

    NASA Astrophysics Data System (ADS)

    Black, Richard J.; Ryu, Seokchang; Moslehi, Behzad; Costa, Joannes M.

    2014-03-01

    The development of a Magnetic Resonance Imaging (MRI) compatible optically-actuated active needle for guided percutaneous surgery and biopsy procedures is described. Electrically passive MRI-compatible actuation in the small diameter needle is provided by non-magnetic materials including a shape memory alloy (SMA) subject to precise fiber laser operation that can be from a remote (e.g., MRI control room) location. Characterization and optimization of the needle is facilitated using optical fiber Bragg grating (FBG) temperature sensors arrays. Active bending of the needle during insertion allows the needle to be accurately guided to even relatively small targets in an organ while avoiding obstacles and overcoming undesirable deviations away from the planned path due to unforeseen or unknowable tissue interactions. This feature makes the needle especially suitable for use in image-guided surgical procedures (ranging from MRI to CT and ultrasound) when accurate targeting is imperative for good treatment outcomes. Such interventions include reaching small tumors in biopsies, delineating freezing areas in, for example, cryosurgery and improving the accuracy of seed placement in brachytherapy. Particularly relevant are prostate procedures, which may be subject to pubic arch interference. Combining diagnostic imaging and actuation assisted biopsy into one treatment can obviate the need for a second exam for guided biopsy, shorten overall procedure times (thus increasing operating room efficiencies), address healthcare reimbursement constraints and, most importantly, improve patient comfort and clinical outcomes.

  14. Helical polyurethane-attapulgite nanocomposite: Preparation, characterization and study of optical activity

    SciTech Connect

    Wang Zhiqiang; Zhou Yuming; Sun Yanqing; Fan Kai; Guo Xingxing; Jiang Xiaolei

    2009-08-15

    Helical polyurethane-attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) composite was prepared after the surface modification of attapulgite (ATT). BM-ATT was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HTEM) and vibrational circular dichroism (VCD) spectroscopy. FT-IR and XRD analyses indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. BM-ATT exhibits the rod-like structure by SEM, TEM, and HTEM photographs. BM-ATT displays obvious Cotton effect for some absorbance in VCD spectrum, and its optical activity results from the singlehanded conformation of helical polyurethane. - Graphical Abstract: Helical polyurethane-attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) nanocomposite was prepared after surface modification of attapulgite (ATT). This rod-like composite is coated by the optically active polyurethane shell on the surfaces.

  15. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    SciTech Connect

    Yang, Yong; Zhou, Yuming; Ge, Jianhua; Yang, Xiaoming

    2012-09-15

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm) were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.

  16. Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models.

    PubMed

    Chulhai, Dhabih V; Jensen, Lasse

    2014-10-01

    Raman optical activity has proven to be a powerful tool for probing the geometry of small organic and biomolecules. It has therefore been expected that the same mechanisms responsible for surface-enhanced Raman scattering may allow for similar enhancements in surface-enhanced Raman optical activity (SEROA). However, SEROA has proved to be an experimental challenge and mirror-image SEROA spectra of enantiomers have so far not been measured. There exists a handful of theories to simulate SEROA, all of which treat the perturbed molecule as a point-dipole object. To go beyond these approximations, we present two new methods to simulate SEROA: the first is a dressed-tensors model that treats the molecule as a point-dipole and point-quadrupole object; the second method is the discrete interaction model/quantum mechanical (DIM/QM) model, which considers the entire charge density of the molecule. We show that although the first method is acceptable for small molecules, it fails for a medium-sized one such as 2-bromohexahelicene. We also show that the SEROA mode intensities and signs are highly sensitive to the nature of the local electric field and gradient, the orientation of the molecule, and the surface plasmon frequency width. Our findings give some insight into why experimental SEROA, and in particular observing mirror-image SEROA for enantiomers, has been difficult.

  17. Multipolar Effects in the Optical Active Second Harmonic Generation from Sawtooth Chiral Metamaterials

    PubMed Central

    Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C. T.; Wong, Kam Sing

    2016-01-01

    Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions. PMID:26911449

  18. Calculation of a mirror asymmetric effect in electron scattering from chiral targets. [in optically active medium

    NASA Technical Reports Server (NTRS)

    Rich, A.; Van House, J.; Hegstrom, R. A.

    1982-01-01

    A dynamical calculation is presented of the helicity induced in an initially unpolarized electron beam after elastic scattering from an optically active medium, a process analogous to the circular polarization induced in unpolarized light following Rayleigh scattering from chiral targets. The calculation is based on the bound helical electron model of a chiral molecule, according to which the major contribution to the helicity is provided by the perturbation of the electron bound state by the spin-orbit interaction of the bound electrons moving in the electric field of the molecular core. The net helicity acquired is found to depend directly on a molecular asymmetry factor and the square of the atomic number of the heaviest atom in an asymmetric environment. For the case of carbon, the induced helicity is on the order of 0.00001, which would account for its lack of observation in a recent experiment. Results may have implications for the origin of optical activity in biological molecules by the differential ionization of D and L isomers by beta-decay electrons.

  19. Laser-based optical activity detection of amino acids and proteins

    SciTech Connect

    Reitsma, B.H.

    1987-01-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. This study illustrates the use of the OAD in three related areas. Section I illustrates the separation of four free amino acids using cation-exchange chromatography. Detection by coupling the OAD to a refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (UV) for tyrosine and phenylalanine allows the calculation of enantiomeric (D/L) ratios of these amino acids without physical separation. Specific rotations of these four amino acids are also reported. Section II illustrates the separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/UV. Section III illustrates the RP-HPLC separation of conformers of soybean trypsin inhibitor. Detection by OA/UV provides insights from the chromatogram unavailable for UV absorbance detection alone. In addition, identification of impurities is simplified with OA/UV. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation.

  20. Multipolar Effects in the Optical Active Second Harmonic Generation from Sawtooth Chiral Metamaterials.

    PubMed

    Su, Huimin; Guo, Yuxiang; Gao, Wensheng; Ma, Jie; Zhong, Yongchun; Tam, Wing Yim; Chan, C T; Wong, Kam Sing

    2016-02-25

    Based on the facts that chiral molecules response differently to left- and right-handed circular polarized light, chiroptical effects are widely employed for determining structure chirality, detecting enantiomeric excess, or controlling chemical reactions of molecules. Compared to those in natural materials, chiroptical behaviors can be significantly amplified in chiral plasmonic metamaterials due to the concentrated local fields in the structure. The on-going research towards giant chiroptical effects in metamaterial generally focus on optimizing the field-enhancement effects. However, the observed chiroptical effects in metamaterials rely on more complicated factors and various possibilities towards giant chiroptical effects remains unexplored. Here we study the optical-active second harmonic generation (SHG) behaviors in a pair of planar sawtooth gratings with mirror-imaged patterns. Significant multipolar effects were observed in the polarization-dependent SHG curves. We show that the chirality of the nanostructure not only give rise to nonzero chiral susceptibility tensor components within the electric-dipole approximation, but also lead to different levels of multipolar interactions for the two orthogonal circular polarizations that further enhance the nonlinear optical activity of the material. Our results thus indicate novel ways to optimize nonlinear plasmonic structures and achieve giant chiroptical response via multipolar interactions.

  1. Optical activation of Si nanowires using Er-doped, sol-gel derived silica

    SciTech Connect

    Suh, Kiseok; Shin, Jung H.; Park, Oun-Ho; Bae, Byeong-Soo; Lee, Jung-Chul; Choi, Heon-Jin

    2005-01-31

    Optical activation of Si nanowires (Si-NWs) using sol-gel derived Er-doped silica is investigated. Si-NWs of about 100 nm diameter were grown on Si substrates by the vapor-liquid-solid method using Au catalysts and H{sub 2} diluted SiCl{sub 4}. Afterwards, Er-doped silica sol-gel solution was spin-coated, and annealed at 950 deg. C in flowing N{sub 2}/O{sub 2} environment. Such Er-doped silica/Si-NWs nanocomposite is found to combine the advantages of crystalline Si and silica to simultaneously achieve both high carrier-mediated excitation efficiency and high Er{sup 3+} luminescence efficiency while at the same time providing high areal density of Er{sup 3+} and easy current injection, indicating the possibility of developing sol-gel activated Si-NWs as a material platform for Si-based photonics.

  2. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  3. Novel method for the preparation of polymethacrylates with nonlinear optically active side groups

    NASA Astrophysics Data System (ADS)

    Strohriegl, Peter; Mueller, Harry; Nuyken, Oskar

    1993-01-01

    Because of their excellent optical properties, a variety of polymethacrylates with pendant NLO-chromophores has been prepared and investigated by different research groups. The method normally used for the synthesis of these polymers is the free radical polymerization of the corresponding methacrylates with NLO-active side groups. However, the NLO- chromophores, usually large conjugated molecules with an electron donor and an electron acceptor substituent, often contain a number of functional groups, e.g., nitro- or azo groups. These may act as retarders or inhibitors in a free radical polymerization. So in many cases the yields are not quantitative and the molecular weights are quite low. We present an alternative method for the preparation of polymethacrylates with pendant NLO-chromophores, the polymeranalogous esterification of poly(methacryloyl chloride). In a first step, reactive prepolymers are prepared by the free radical polymerization of methacryloyl chloride (MAC1) or by copolymerization of MAC1 with methyl methacrylate (MMA). These prepolymers are esterified using NLO-active side groups with a hydroxy-terminated spacer. Well defined, high molecular weight polymethacrylates with high dye contents can be prepared by this method. A copolymer with 19 mole% of azochromophores exhibits an electro-optical coefficient of 9 pm/V at 1300 mm after poling, whereas 19 pm/V (1500 nm) were measured for a polymer with 90 mole% of NLO active azobenzene side groups. In addition, the novel method provides easy access to some novel copolymers with both NLO-active azobenzene units and photocrosslinkable cinnamoyl groups.

  4. Evaluation of Muscle Activities in Human Forearms under Exercises by Diffuse Optical Tomography

    NASA Astrophysics Data System (ADS)

    Tanikawa, Yukari; Gao, Feng; Miyakawa, Michio; Kiryu, Toru; Kizuka, Tomohiro; Endo, Yasuomi; Okawa, Shinpei; Yamada, Yukio

    During the forearm exercise, it is generally understood that the inner muscles work for the task, and the outer muscles work to fix the joints for the efficient work of the inner muscles. For evaluation of the exercise, quantitative measurement of inner muscle activities is necessary. Electromyograph (EMG) and oxygen monitoring using continuous-wave near-infrared spectroscopy (CW-NIRS) have been used for the evaluation because both of them are the modalities of safe, portable and noninvasive measurements of muscle activities. However, these modalities can show the qualitative changes in the muscle activities in the vicinity of the skin surface. Time-resolved diffuse optical tomography (TR-DOT) can quantitatively provide tomographic images of the changes in the oxygenation state of the whole muscles. In vivo experiments of TR-DOT were performed for human forearms under handgrip exercises, and DOT images of the changes in the oxygenation state of the forearms were reconstructed using the algorithm based on the modified generalized pulsed spectrum technique. The DOT images are compared with the MR-images, and it is shown that the activities of the inner muscles of the forearms were active during the handgrip excises.

  5. Fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA

    NASA Astrophysics Data System (ADS)

    Deng, Ye; Li, Ming; Shi, Nuannuan; Tang, Jian; Sun, Shuqian; Zhang, Lihong; Li, Wei; Zhu, Ninghua

    2016-10-01

    A fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA has been theoretically analyzed and experimentally demonstrated in this paper. By employing an optical vector network analyzer (OVNA), transmission characteristics of the equivalent-phase-shifted DFB-SOA are obtained. The influences of driven current on transmission characteristics of the equivalent-phase-shifted DFB-SOA are also investigated. In addition to the advantage of integration, the proposed equivalent-phase-shifted DFB-SOA also shows significant application in design of photonic devices for all-optical signal processing and computing.

  6. Active photonic sensor communication cable for field application of optical data and power transmission

    NASA Astrophysics Data System (ADS)

    Suthau, Eike; Rieske, Ralf; Zerna, Thomas

    2014-10-01

    Omitting electrically conducting wires for sensor communication and power supply promises protection for sensor systems and monitored structures against lightning or high voltages, prevention of explosion hazards, and reduction of susceptibility to tampering. The ability to photonically power remote systems opens up the full range of electrical sensors. Power-over-fiber is an attractive option in electromagnetically sensitive environments, particularly for longterm, maintenance-free applications. It can deliver uninterrupted power sufficient for elaborate sensors, data processing or even actuators alongside continuous high speed data communication for remote sensor application. This paper proposes an active photonic sensor communication system, which combines the advantages of optical data links in terms of immunity to electromagnetic interference (EMI), high bandwidth, hardiness against tampering or eavesdropping, and low cable weight with the robustness one has come to expect from industrial or military electrical connectors. An application specific integrated circuit (ASIC) is presented that implements a closed-loop regulation of the sensor power supply to guarantee continuous, reliable data communications while maintaining a highly efficient, adaptive sensor supply scheme. It is demonstrated that the resulting novel photonic sensor communication cable can handle sensors and actuators differing orders of magnitude with respect to power consumption. The miniaturization of the electro-optical converters and driving electronics is as important to the presented development as the energy efficiency of the detached, optically powered sensor node. For this reason, a novel photonic packaging technology based on wafer-level assembly of the laser power converters by means of passive alignment will be disclosed in this paper.

  7. LONG-TERM OPTICAL CONTINUUM COLOR VARIABILITY OF NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Sakata, Yu; Minezaki, Takeo; Yoshii, Yuzuru; Uchimoto, Yuka Katsuno; Sugawara, Shota; Kobayashi, Yukiyasu; Koshida, Shintaro; Aoki, Tsutomu; Tomita, Hiroyuki; Enya, Keigo; Suganuma, Masahiro

    2010-03-01

    We examine whether the spectral energy distribution of optical continuum emission of active galactic nuclei (AGNs) changes during flux variation, based on accurate and frequent monitoring observations of 11 nearby Seyfert galaxies and QSOs carried out in the B, V, and I bands for seven years by the MAGNUM telescope. The multi-epoch flux data in any two different bands obtained on the same night show a very tight linear flux-to-flux relationship for all target AGNs. The flux of the host galaxy within the photometric aperture is carefully estimated by surface brightness fitting to available high-resolution Hubble Space Telescope images and MAGNUM images. The flux of narrow emission lines in the photometric bands is also estimated from available spectroscopic data. We find that the non-variable component of the host galaxy plus narrow emission lines for all target AGNs is located on the fainter extension of the linear regression line of multi-epoch flux data in the flux-to-flux diagram. This result strongly indicates that the spectral shape of AGN continuum emission in the optical region ({approx}4400-7900 A) does not systematically change during flux variation. The trend of spectral hardening that optical continuum emission becomes bluer as it becomes brighter, which has been reported by many studies, is therefore interpreted as the domination of the variable component of the nearly constant spectral shape of an AGN as it brightens over the non-variable component of the host galaxy plus narrow lines, which is usually redder than AGN continuum emission.

  8. Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum.

    PubMed

    Brickley, S G; Dawes, E A; Keating, M J; Grant, S

    1998-02-15

    Spatiotemporal correlations in the pattern of spontaneous and evoked retinal ganglion cell (RGC) activity are believed to influence the topographic organization of connections throughout the developing visual system. We have tested this hypothesis by examining the effects of interfering with these potential activity cues during development on the functional organization of binocular maps in the Xenopus frog optic tectum. Paired recordings combined with cross-correlation analyses demonstrated that exposing normal frogs to a continuous 1 Hz of stroboscopic illumination synchronized the firing of all three classes of RGC projecting to the tectum and induced similar patterns of temporally correlated activity across both lobes of the nucleus. Embryonic and eye-rotated larval animals were reared until early adulthood under equivalent stroboscopic conditions. The maps formed by each RGC class in the contralateral tectum showed normal topography and stratification after strobe rearing, but with consistently enlarged multiunit receptive fields. Maps of the ipsilateral eye, formed by crossed isthmotectal axons, showed significant disorder and misalignment with direct visual input from the retina, and in the eye-rotated animals complete compensatory reorientation of these maps usually induced by this procedure failed to occur. These findings suggest that refinement of retinal arbors in the tectum and the ability of crossed isthmotectal arbors to establish binocular convergence with these retinal afferents are disrupted when they all fire together. Our data thus provide direct experimental evidence that spatiotemporal activity patterns within and between the two eyes regulate the precision of their developing connections. PMID:9454857

  9. Robot-assisted motor activation monitored by time-domain optical brain imaging

    NASA Astrophysics Data System (ADS)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  10. Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    PubMed Central

    Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren

    2011-01-01

    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813

  11. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    NASA Astrophysics Data System (ADS)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  12. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor.

    PubMed

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-11

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based 'cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  13. Active Optical Sensors for Tree Stem Detection and Classification in Nurseries

    PubMed Central

    Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J.; Hanson, Bradley D.; Slaughter, David C.

    2014-01-01

    Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops. PMID:24949638

  14. Next-generation CMOS active pixel sensors for satellite hybrid optical communications/imaging sensor systems

    NASA Astrophysics Data System (ADS)

    Stirbl, Robert C.; Pain, Bedabrata; Cunningham, Thomas J.; Hancock, Bruce R.; McCarty, Kenneth P.

    1998-12-01

    Given the current choices of (1) an ever increasing population of large numbers of satellites in low-earth orbit (LEO) constellations for commercial and military global coverage systems, or (2) the alternative of smaller count geosynchronous satellite system constellations in high-earth (HEO), of higher cost and complexity, a number of commercial communications and military operations satellite systems designers are investigating the potential advantages and issues of operating in the mid-earth orbit altitudes (MEO) (between LEO and HEO). At these MEO altitudes both total dose and displacement damage can be traded against the system advantages of fewer satellites required. With growing demand for higher bandwidth communication for real-time earth observing satellite sensor systems, and NASA's interplanetary and deep space virtual unmanned exploration missions in stressing radiation environments, JPL is developing the next generation of smart sensors to address these new requirements of: low-cost, high bandwidth, miniaturization, ultra low-power and mission environment ruggedness. Radiation hardened/tolerant Active Pixel Sensor CMOS imagers that can be adaptively windowed with low power, on-chip control, timing, digital output and provide data-channel efficient on-chip compression, high bandwidth optical communications links are being designed and investigated to reduce size, weight and cost for common optics/hybrid architectures.

  15. A Spaceflight Magnetic Bearing Equipped Optical Chopper with Six-Axis Active Control

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Lee, Kenneth Y.; Schepis, Joseph P.

    1998-01-01

    This paper describes the development of an ETU (Engineering Test Unit) rotary optical chopper with magnetic bearings. An ETU is required to be both flight-like, nearly identical to a flight unit without the need for material certifications, and demonstrate structural and performance integrity. A prototype breadboard design previously demonstrated the feasibility of meeting flight performance requirements using magnetic bearings. The chopper mechanism is a critical component of the High Resolution Dynamics Limb Sounder (HIRDLS) which will be flown on EOS-CHEM (Earth Observing System-Chemistry). Particularly noteworthy are the science requirements which demand high precision positioning and minimal power consumption along with full redundancy of coils and sensors in a miniature, lightweight package. The magnetic bearings are unique in their pole design to minimize parasitic losses and utilize collocated optical sensing. The motor is of an unusual disk-type ironless stator design. The ETU design has evolved from the breadboard design. A number of improvements have been incorporated into the ETU design. Active thrust control has been added along with changes to improve sensor stability, motor efficiency, and touchdown and launch survivability. It was necessary to do all this while simultaneously reducing the mechanism volume. Flight-like electronics utilize a DSP (Digital Signal Processor) and contain all sensor electronics and drivers on a single five inch by nine inch circuit board. Performance test results are reported including magnetic bearing and motor rotational losses.

  16. A note on periodicity of long-term variations of optical continuum in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Kai-Xing; Li, Yan-Rong; Bi, Shao-Lan; Wang, Jian-Min

    2016-06-01

    Graham et al. found a sample of active galactic nuclei (AGNs) and quasars from the Catalina Real-time Transient Survey (CRTS) that have long-term periodic variations in optical continuum. The nature of the periodicity remains uncertain. We investigate the periodic variability characteristics of the sample by testing the relations of the observed variability periods with AGN optical luminosity, black hole mass and accretion rates, and find no significant correlations. We also test the observed periods in several different aspects related to accretion discs surrounding single black holes, such as the Keplerian rotational periods of 5100 Å photon-emission regions and self-gravity dominated regions and the precessing period of warped discs. These tests shed new lights on understanding AGN variability in general. Under the assumption that the periodic behaviour is associated with supermassive black hole binary systems in particular, we compare the separations (r {D}_{bullet }) against characteristic radii of broad-line regions (R_riptscriptstyle BLR) of the binaries and find r {D}_{bullet }≈ 0.05R_riptscriptstyle BLR. This interestingly implies that these binaries have only circumbinary BLRs.

  17. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  18. Absolute frequency synthesis of pulsed coherent light waves through phase-modulation active optical feedback.

    PubMed

    Shimizu, K; Horiguchi, T; Koyamada, Y

    1996-11-15

    A novel method for the broadband absolute frequency synthesis of pulsed coherent lightwaves is demonstrated. It is based on pulse recirculation around an active optical feedback ring containing a delay-line fiber, an external phase modulator, an acousto-optic frequency shifter (AOFS), and a high-finesse Fabry-Perot étalon. The modulation frequency F(M) and the frequency shift F(AO) that are due to AOFS are designed so that their sum or difference equals the free-spectral range of the étalon and F(AO) is set at larger than the half-width at full maximum of its resonant peaks. If one of the peak frequencies is tuned to the frequency of the initial pulse, the frequency of the recirculating pulse jumps to the next peak for each round trip. In the experiment the absolute frequency is synthesized over a frequency span of 700 GHz around the initial stabilized frequency of the master laser.

  19. Nonlinear optical chromophores based on Dewar's rules: enhancement of electro-optic activity by introducing heteroatoms into the donor or bridge.

    PubMed

    Xu, Huajun; Yang, Dan; Liu, Fenggang; Fu, Mingkai; Bo, Shuhui; Liu, Xinhou; Cao, Yuan

    2015-11-28

    In this work, we investigated the enhancement of the electro-optic response by introducing electron-rich heteroatoms as additional donors into the donor or bridge of a conventional second-order nonlinear optical chromophore. A series of chromophores C2-C4 based on the same tricyanofuran acceptor (TCF) but with different heteroatoms in the alkylamino phenyl donor (C2 or C3) or thiophene bridge (C4) have been synthesized and systematically investigated. Density functional theory calculations suggested that chromophores C2-C4 had a smaller energy gap and larger first-order hyperpolarizability (β) than traditional chromophore C1 due to the additional heteroatoms. Single crystal structure analyses and optimized configurations indicate that the rationally introduced heteroatom group would bring larger β and weaker intermolecular interactions which were beneficial for translating molecular β into macro-electro-optic activity in electric field poled films. The electro-optic coefficient of poled films containing 25 wt% of these new chromophores doped in amorphous poly-carbonate afforded values of 83 and 91 pm V(-1) at 1310 nm for chromophores C3 and C4, respectively, which are two times higher than that of the traditional chromophore C1 (39 pm V(-1)). High r33 values indicated that introducing heteroatoms to the donor and bridge of a conventional molecular structure can efficiently improve the electron-donating ability, which improves the β. The long-chain on the donor or bridge part, acting as the isolation group, may reduce inter-molecular electrostatic interactions, thus enhancing the macroscopic EO activity. These results, together with good solubility and compatibility with the polymer, show the new chromophore's potential application in electro-optic devices. PMID:26477670

  20. Nonlinear optical chromophores based on Dewar's rules: enhancement of electro-optic activity by introducing heteroatoms into the donor or bridge.

    PubMed

    Xu, Huajun; Yang, Dan; Liu, Fenggang; Fu, Mingkai; Bo, Shuhui; Liu, Xinhou; Cao, Yuan

    2015-11-28

    In this work, we investigated the enhancement of the electro-optic response by introducing electron-rich heteroatoms as additional donors into the donor or bridge of a conventional second-order nonlinear optical chromophore. A series of chromophores C2-C4 based on the same tricyanofuran acceptor (TCF) but with different heteroatoms in the alkylamino phenyl donor (C2 or C3) or thiophene bridge (C4) have been synthesized and systematically investigated. Density functional theory calculations suggested that chromophores C2-C4 had a smaller energy gap and larger first-order hyperpolarizability (β) than traditional chromophore C1 due to the additional heteroatoms. Single crystal structure analyses and optimized configurations indicate that the rationally introduced heteroatom group would bring larger β and weaker intermolecular interactions which were beneficial for translating molecular β into macro-electro-optic activity in electric field poled films. The electro-optic coefficient of poled films containing 25 wt% of these new chromophores doped in amorphous poly-carbonate afforded values of 83 and 91 pm V(-1) at 1310 nm for chromophores C3 and C4, respectively, which are two times higher than that of the traditional chromophore C1 (39 pm V(-1)). High r33 values indicated that introducing heteroatoms to the donor and bridge of a conventional molecular structure can efficiently improve the electron-donating ability, which improves the β. The long-chain on the donor or bridge part, acting as the isolation group, may reduce inter-molecular electrostatic interactions, thus enhancing the macroscopic EO activity. These results, together with good solubility and compatibility with the polymer, show the new chromophore's potential application in electro-optic devices.

  1. Multiwavelength Optical Observations of Two Chromospherically Active Binary Systems: V789 Mon and GZ Leo

    NASA Astrophysics Data System (ADS)

    Gálvez, M. C.; Montes, D.; Fernández-Figueroa, M. J.; De Castro, E.; Cornide, M.

    2009-04-01

    This paper describes a multiwavelength optical study of chromospheres in two X-ray/EUV-selected active binary stars with strong Hα emission, V789 Mon (2RE J0725 - 002) and GZ Leo (2RE J1101+223). The goal of the study is to determine radial velocities and fundamental stellar parameters in chromospherically active binary systems in order to include them in the activity-rotation and activity-age relations. We carried out high-resolution echelle spectroscopic observations and applied spectral-subtraction technique in order to measure emission excesses due to chromosphere. The detailed study of activity indicators allowed us to characterize the presence of different chromospheric features in these systems and enabled to include them in a larger activity-rotation survey. We computed radial velocities of the systems using cross-correlation with the radial velocity standards. The double-line spectral binarity was confirmed and the orbital solutions improved for both systems. In addition, other stellar parameters such as spectral types, projected rotational velocities (vsin i) and the equivalent width of the lithium Li I λ6707.8 Å absorption line were determined. Based on observations collected with the 2.2 m telescope at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto (Almería, Spain), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC) and with the 2.1 m Otto Struve Telescope at McDonald Observatory of the University of Texas at Austin (USA).

  2. Building blocks for actively-aligned micro-optical systems in rapid prototyping and small series production

    NASA Astrophysics Data System (ADS)

    Böttger, Gunnar; Queisser, Marco; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, K.-D.

    2015-03-01

    In recent years there has been considerable progress in utilizing fully automated machines for the assembly of microoptical systems. Such systems integrate laser sources, optical elements and detectors into tight packages, and efficiently couple light to free space beams, waveguides in optical backplanes, or optical fibers for longer reach transmission. The required electrical-optical and optical components are placed and aligned actively in more than one respect. For one, all active components are actually operated in the alignment process, and, more importantly, the placing of all components is controlled actively by camera systems and power detectors with live feedback for an optimal coupling efficiency. The total number of optical components typically is in the range of 5 to 50, whereas the number of actors with gripping tools for the actual handling and aligning is limited, with little flexibility in the gripping width. The assembly process therefore is strictly sequential and, given that an automated tool changing has not been established in this class of machines yet, there are either limitations in the geometries of components that may be used, or time-consuming interaction by human operators is needed. As a solution we propose and present lasered glass building blocks with standardized gripping geometries that enclose optical elements of various shapes and functionalities. These are cut as free form geometries with green short pulse and CO2 lasers. What seems to add cost at first rather increases freedom of design and adds an economical flexibility to create very hybrid assemblies of various micro-optical assemblies also in small numbers.

  3. Method and apparatus for active tamper indicating device using optical time-domain reflectometry

    DOEpatents

    Smith, D. Barton; Muhs, Jeffrey D.; Pickett, Chris A.; Earl, D. Duncan

    1999-01-01

    An optical time-domain reflectometer (OTDR) launches pulses of light into a link or a system of multiplexed links and records the waveform of pulses reflected by the seals in the link(s). If a seal is opened, the link of cables will become a discontinuous transmitter of the light pulses and the OTDR can immediately detect that a seal has been opened. By analyzing the waveform, the OTDR can also quickly determine which seal(s) were opened. In this way the invention functions as a system of active seals. The invention is intended for applications that require long-term surveillance of a large number of closures. It provides immediate tamper detection, allows for periodic access to secured closures, and can be configured for many different distributions of closures. It can monitor closures in indoor and outdoor locations and it can monitor containers or groups of containers located many kilometers apart.

  4. How to control optical activity in organic-silver hybrid nanoparticles.

    PubMed

    Hidalgo, Francisco; Noguez, Cecilia

    2016-08-14

    The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules. PMID:27406401

  5. Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tserkezis, C.; Schaafsma, M. C.; Aizpurua, J.; Gómez Rivas, J.

    2015-03-01

    We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes. Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for optoelectronic devices.

  6. Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells.

    PubMed

    Acevedo, Ramiro; Lombardini, Richard; Halas, Naomi J; Johnson, Bruce R

    2009-11-26

    Surface-enhanced Raman optical activity (SEROA) is investigated theoretically for molecules near a metal nanoshell. For this purpose, induced molecular electric dipole, magnetic dipole, and electric quadrupole moments must all be included. The incident field and the induced multipole fields all scatter from the nanoshell, and the scattered waves can be calculated via extended Mie theory. It is straightforward in this framework to calculate the incident frequency dependence of SEROA intensities, i.e., SEROA excitation profiles. The differential Raman scattering is examined in detail for a simple chiroptical model that provides analytical forms for the relevant dynamical molecular response tensors. This allows a detailed investigation into circumstances that simultaneously provide strong enhancement of differential intensities and remain selective for molecules with chirality. PMID:19639972

  7. An optical assay of the transport activity of ClC-7

    PubMed Central

    Zanardi, Ilaria; Zifarelli, Giovanni; Pusch, Michael

    2013-01-01

    Osteoporosis, characterized by excessive osteoclast mediated bone resorption, affects millions of people worldwide representing a major public health problem. ClC-7 is a chloride-proton exchanger localized in lysosomes and in the resorption lacuna in osteoclasts where it is essential for bone resorption. Thus, drugs targeted at ClC-7 have been proposed for ameliorating osteoporosis. However, functional assays suited for high throughput screening (HTS) of ClC-7 function are lacking. Here we describe two complementary variants of purely optical assays of the transport activity of ClC-7, redirected to the plasma membrane employing a genetically encoded fluorescent Cl−/pH indicator fused to the ClC-7 protein. These simple and robust functional assays of ClC-7 transport are well-suited to be applied in HTS of small-molecule inhibitors and may help to develop drugs suited for the treatment of osteoporosis. PMID:23390581

  8. Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity.

    PubMed

    Oulevey, Patric; Luber, Sandra; Varnholt, Birte; Bürgi, Thomas

    2016-09-19

    Ionic liquids (ILs) are receiving increasing interest for their use in synthetic laboratories and industry. Being composed of charged entities, they show a complex and widely unexplored dynamic behavior. Chiral ionic liquids (CILs) have a high potential as solvents for use in asymmetric synthesis. Chiroptical methods, owing to their sensitivity towards molecular conformation, offer unique possibilities to study the structure of these chiral ionic liquids. Raman optical activity proved particularly useful to study ionic liquids composed of amino acids and the achiral 1-ethyl-3-methylimidazolium counterion. We could substantiate, supported by selected theoretical methods, that the achiral counterion adopts an overall chiral conformation in the presence of chiral amino acid ions. These findings suggest that in the design of chiral ionic liquids for asymmetric synthesis, the structure of the achiral counter ion also has to be carefully considered.

  9. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    SciTech Connect

    Chang-Hwan Kim

    2003-12-12

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  10. Active cleaning technique for removing contamination from optical surfaces in space

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.; Cruz, G. A.

    1973-01-01

    An active cleaning technique for removing contaminants from optical surfaces in space was investigated with emphasis on the feasibility of using plasma exposure as a means of in-situ cleaning. The major work accomplished includes: (1) development of an in-situ reflectometer for use in conjunction with the contaminant film deposition/cleaning facility; (2) completion of Apollo Telescope Mount (ATM) filter treatment experiments to assess the effects of plasma exposure on the UV transmittance; (3) attempts to correlate the atomic oxygen flux with cleaning rate; (4) completion of in-situ butadien contamination/plasma cleaning/UV reflectance measurement experiments; (5) carbon cleaning experiments using various gases; (6) completion of silicone contamination/cleaning experiments; and (7) experiments conducted at low chamber pressures to determine cleaning rate distribution and contamination of surfaces adjacent to those being cleaned.

  11. Helical polyurethane@attapulgite nanocomposite: Preparation, characterization and study of optical activity

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Zhou, Yuming; Sun, Yanqing; Fan, Kai; Guo, Xingxing; Jiang, Xiaolei

    2009-08-01

    Helical polyurethane@attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) composite was prepared after the surface modification of attapulgite (ATT). BM-ATT was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HTEM) and vibrational circular dichroism (VCD) spectroscopy. FT-IR and XRD analyses indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. BM-ATT exhibits the rod-like structure by SEM, TEM, and HTEM photographs. BM-ATT displays obvious Cotton effect for some absorbance in VCD spectrum, and its optical activity results from the singlehanded conformation of helical polyurethane.

  12. Electro-optical parameters in excited states of some spectrally active molecules

    NASA Astrophysics Data System (ADS)

    Benchea, Andreea Celia; Closca, Valentina; Rusu, Cristina Marcela; Morosanu, Cezarina; Dorohoi, Dana Ortansa

    2014-08-01

    The spectral shifts measured in different solvents are expressed as functions of the solvent macroscopic parameters. The value of the correlation coefficient multiplying the functions of electric permittivity was determined by statistical means. The correlation coefficient depends on the electric dipole moment of the spectrally active molecules. The electro-optical parameters in the ground state of the solute molecules can be approximated by molecular modeling. The excited state parameters are usually estimated using the results obtained both by HyperChem Programme and solvatochromic study. The importance of this approximate method is that it offers information about of the excited state of solute molecule for which our measuring possibilities are very restrictive. The information about the excited electronic state is affected by the limits in which the theories of liquid solutions are developed. Our results refer to two molecules of vitamins from B class, namely B3 and B6.

  13. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    SciTech Connect

    Coker, Eric Nicholas; Haddad, Raid Edward; Fan, Hongyou; Ta, Anh; Bai, Feng; Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  14. Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity.

    PubMed

    Oulevey, Patric; Luber, Sandra; Varnholt, Birte; Bürgi, Thomas

    2016-09-19

    Ionic liquids (ILs) are receiving increasing interest for their use in synthetic laboratories and industry. Being composed of charged entities, they show a complex and widely unexplored dynamic behavior. Chiral ionic liquids (CILs) have a high potential as solvents for use in asymmetric synthesis. Chiroptical methods, owing to their sensitivity towards molecular conformation, offer unique possibilities to study the structure of these chiral ionic liquids. Raman optical activity proved particularly useful to study ionic liquids composed of amino acids and the achiral 1-ethyl-3-methylimidazolium counterion. We could substantiate, supported by selected theoretical methods, that the achiral counterion adopts an overall chiral conformation in the presence of chiral amino acid ions. These findings suggest that in the design of chiral ionic liquids for asymmetric synthesis, the structure of the achiral counter ion also has to be carefully considered. PMID:27554057

  15. Facile net cycloaddition approach to optically active 1,5-benzothiazepines.

    PubMed

    Fukata, Yukihiro; Asano, Keisuke; Matsubara, Seijiro

    2015-04-29

    The 1,5-benzothiazepine moiety is well-known as a versatile pharmacophore, and its derivatives are expected to have antagonism against numerous diseases. Thus, it is desirable to develop a synthetic route that enables facile enantioselective preparation of a wide range of such derivatives. Although the cycloaddition approach could be considered a possible route to these compounds, to date, there has been no precedent of such a protocol. We therefore present the first example of a highly enantioselective net [4 + 3] cycloaddition to afford 1,5-benzothiazepines by utilizing α,β-unsaturated acylammonium intermediates generated by chiral isothiourea catalysts, which undergo two sequential chemoselective nucleophilic attacks by 2-aminothiophenols. This protocol provided cycloadducts in extremely high regioselectivity, with a good-to-excellent stereoselectivity being achieved regardless of the steric and electronic properties of the substrates. This method therefore offers promising synthetic routes for the construction of a library of optically active 1,5-benzothiazepines for assay evaluation.

  16. Towards advanced study of Active Galactic Nuclei with visible light adaptive optics

    NASA Astrophysics Data System (ADS)

    Ammons, Stephen Mark

    It is thought that the immense energies associated with accretion of matter onto black holes in Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSOs) may "feedback," via intense photon flux or outward motion of gas, and affect certain properties of the host galaxy. In particular, AGN feedback may contribute to "quenching," or ceasing, of star formation by the expulsion or heating of cold gas, causing the host galaxy to evolve onto the red sequence (e.g., Di Matteo et al. 2005, Hopkins et al. 2006). I probe for the effects of feedback on the stellar populations of 60 X-ray-selected AGN hosts at a redshift of 1 in the Great Observatories Origins Deep Survey (GOODS) Southern field. Combining high spatial resolution optical imaging from the Hubble Space Telescope Advanced Camera for Surveys (HST ACS), and high spatial resolution near infrared data from Keck Laser Guide Star Adaptive Optics (AO) and HST Near-Infrared Camera and Multi-Object Spectrograph (NICMOS), I test for the presence of young stars on sub-kiloparsec scales, independent of dust extinction. Testing for correlations between near-ultraviolet/optical ( NUV- R ) colors and gradients and X-ray parameters such as hardness ratio and luminosity reveals new information about the nature of AGN-driven feedback. These AGN hosts display color gradients in rest-frame NUV - R as far inward as ~400 pc, suggesting stellar mixtures with nonuniform age distributions. There is little (< 0.3 mags) difference between the NUV - R gradients of the obscured (hard in X-ray) sources and the unobscured (soft in X-ray) sources, suggesting that the unobscured sources are not increasingly quenched of star formation. I compare the NUV - R colors of spiral galaxies that host AGN to non-active spirals, finding similar color gradients, but redder colors. These observations support the notion that unobscured intermediate-luminosity AGN hosts do not appear to be increasingly quenched of star formation relative to obscured sources

  17. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  18. Active infrared hyperspectral imaging system using a broadly tunable optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Malcolm, G. P. A.; Maker, G. T.; Robertson, G.; Dunn, M. H.; Stothard, D. J. M.

    2009-09-01

    The in situ identification and spatial location of gases, discrete liquid droplets and residues on surfaces is a technically challenging problem. Active Infrared (IR) hyperspectral imaging is a powerful technique that combines real-time imaging and optical spectroscopy for "standoff" detection of suspected chemical substances, including chemical warfare agents, toxic industrial chemicals, explosives and narcotics. An active IR hyperspectral imaging system requires a coherent, broadly tunable IR light source of high spectral purity, in order to detect a broad range of target substances. In this paper we outline a compact and power-efficient IR illumination source with high stability, efficiency, tuning range and spectral purity based upon an optical parametric oscillator (OPO). The fusion of established OPO technology with novel diode-pumped laser technology and electro-mechanical scanning has enabled a broadly applicable imaging system. This system is capable of hyperspectral imaging at both Near-IR (1.3 - 1.9 μm) and Mid-IR (2.3 - 4.6 μm) wavelengths simultaneously with a line width of < 3 cm-1. System size and complexity are minimised by using a dual InGaAs/InSb single element detector, and images are acquired by raster scanning the coaxial signal and idler beams simultaneously, at ranges up to 20 m. Reflection, absorption and scatter of incident radiation by chemical targets and their surroundings provide a method for spatial location, and characteristic spectra obtained from each sample can be used to identify targets uniquely. To date, we have recognized liquids in sample sizes as small 20 μl-and gases with sensitivity as high as 10ppm.m-at detection standoff distances > 10 m.

  19. How to control optical activity in organic-silver hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Hidalgo, Francisco; Noguez, Cecilia

    2016-07-01

    The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules.The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6

  20. A hybrid active optical system for wave front preservation and variable focal distance

    NASA Astrophysics Data System (ADS)

    Cocco, Daniele; Bortoletto, Gianluca; Sergo, Rudi; Sostero, Giovanni; Cudin, Ivan

    2010-05-01

    A new Free Electron Laser (FEL) user facility, named FERMI@Elettra, is under construction at Sincrotrone Trieste (Italy). It is based on a seeded scheme to provide an almost perfect transform limited beam with fully spatial coherence. The wavelength range will be 100-3 nm with fundamental and will go down to 1 nm by using higher harmonics. It will be operative by autumn 2010. The exceptional characteristics of the source must be preserved until the experimental chamber, where a large set of different experiments will be performed. This condition poses very tight requirements to the design of the beamlines and, in particular, to the focusing optics. Here we will present the active optics system developed for Fermi but intended to be used also on the Elettra beamlines. It is based on the adoption of a hybrid active system composed by UHV compatible stepping motors and piezo ceramic actuators. These mirrors are supposed to provide focal distances from 0.8 m to infinity with an angle of incidence up to a few degrees and residual shape errors below 10 or 5 nm (depending on the wavelength). In this way it is possible to work with an almost perfect focused coherent beam as well as with a uniform defocused or unfocused image. The metrology results on the first 400 mm long mirror will be shown and the actuator system described. A strain gauge assembly, calibrated in Elettra by means of a long trace profiler, and controlled by a custom made electronic system developed by us, is used as a direct in situ encoder.

  1. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Li; Wang, Rongyao; Ji, Yinglu; Zhai, Dawei; Wu, Xiaochun; Liu, Yu; Chen, Keqiu; Xu, Hongxing

    2013-04-01

    We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field plasmonic coupling, rather than a strong near-field coupling. However, such a chiral system of twisted gold nanorods show a huge surface plasmon based circular dichroism response, with the highest anisotropy factor around 0.027. This is in contrast to the previous studies in which near-field plasmonic coupling is an indispensable prerequisite to obtain strong optical activity from a chiral plasmonic nanostructure. Our study demonstrates here an alternative strategy for achieving huge chiroptical response of a chiral plasmonic nanostructure based on far-field, radiative electromagnetic interactions of metallic nanoparticles. Theoretical simulations show a satisfactory agreement with the experimental results. This study may provide more flexible ways to design chiral plasmon nanostructures with strong CD responses for various applications.We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field plasmonic coupling, rather than a strong near-field coupling. However, such a chiral system of twisted gold nanorods show a huge surface plasmon based circular dichroism response, with the highest anisotropy factor around 0.027. This is in contrast to the previous studies in which near-field plasmonic coupling is an indispensable prerequisite to obtain

  2. Combining an Optical Resonance Biosensor with Enzyme Activity Kinetics to Understand Protein Adsorption and Denaturation

    PubMed Central

    Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.

    2014-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme’s adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. PMID:25453976

  3. HYPATIA and STOIC: an active optics system for a large space telescope

    NASA Astrophysics Data System (ADS)

    Devaney, Nicholas; Reinlein, Claudia; Lange, Nicolas; Goy, Matthias; Goncharov, Alexander; Hallibert, Pascal

    2016-07-01

    The next generation of UVOIR space telescopes will be required to provide excellent wavefront control despite perturbations due to thermal changes, gravity release and vibrations. The STOIC project is a response to an ESA Invitation to Tender to develop an active optics correction chain for future space telescopes. The baseline space telescope being considered is a two-mirror, 4m telescope with a monolithic primary mirror - we refer to this concept as Hypatia. The primary mirror diameter could be extended, but is limited in the near future by launch vehicle dimensions. A deformable mirror (pupil diameter 110mm) will be an integral part of the telescope design; it is being designed for high precision and the ability to maintain a stable form over long periods of time. The secondary mirror of the telescope will be activated to control tip-tilt, defocus and alignment with the primary. Wavefront sensing will be based on phase diversity and a dedicated Shack-Hartmann wavefront sensor. The project will develop a laboratory prototype to demonstrate key aspects of the active correction chain. We present the current state of the preliminary design for both the Hypatia space telescope and the laboratory breadboard.

  4. 2D-Visualization of metabolic activity with planar optical chemical sensors (optodes)

    NASA Astrophysics Data System (ADS)

    Meier, R. J.; Liebsch, G.

    2015-12-01

    Microbia plays an outstandingly important role in many hydrologic compartments, such as e.g. the benthic community in sediments, or biologically active microorganisms in the capillary fringe, in ground water, or soil. Oxygen, pH, and CO2 are key factors and indicators for microbial activity. They can be measured using optical chemical sensors. These sensors record changing fluorescence properties of specific indicator dyes. The signals can be measured in a non-contact mode, even through transparent walls, which is important for many lab-experiments. They can measure in closed (transparent) systems, without sampling or intruding into the sample. They do not consume the analytes while measuring, are fully reversible and able to measure in non-stirred solutions. These sensors can be applied as high precision fiberoptic sensors (for profiling), robust sensor spots, or as planar sensors for 2D visualization (imaging). Imaging enables to detect thousands of measurement spots at the same time and generate 2D analyte maps over a region of interest. It allows for comparing different regions within one recorded image, visualizing spatial analyte gradients, or more important to identify hot spots of metabolic activity. We present ready-to-use portable imaging systems for the analytes oxygen, pH, and CO2. They consist of a detector unit, planar sensor foils and a software for easy data recording and evaluation. Sensors foils for various analytes and measurement ranges enable visualizing metabolic activity or analyte changes in the desired range. Dynamics of metabolic activity can be detected in one shot or over long time periods. We demonstrate the potential of this analytical technique by presenting experiments on benthic disturbance-recovery dynamics in sediments and microbial degradation of organic material in the capillary fringe. We think this technique is a new tool to further understand how microbial and geochemical processes are linked in (not solely) hydrologic

  5. Quantification of Natural Gradient Flow Using Active Fiber Optic DTS in Sealed Boreholes

    NASA Astrophysics Data System (ADS)

    Coleman, T. I.; Parker, B. L.; Munn, J. D.; Chalari, A.; Mondanos, M.

    2014-12-01

    Temperature has been used for many years to characterize flow in fractured rock systems. Fiber-optic distributed temperature sensing (DTS) was adopted by the oil/gas industry over two decades ago for monitoring processes in deep fractured rock environments. Improvements in DTS system resolutions, methodology advancements, and improved data processing techniques have caused recent popularity for shallow fractured rock hydrogeologic applications. A powerful advance in DTS methodology is the use of response data collected during active cable heating. When applied to borehole applications active heating creates a thermal disequilibrium in the aquifer system that enhances the detection of groundwater flow. Active DTS has been applied to open borehole environments; however, characterization methods based on open borehole measurements are limited in that only the effects of unnatural flow (i.e. vertical cross-connection and redistribution of flow creating local, induced flows) can be observed. To characterize natural gradient flow processes borehole effects need to be minimized.The literature shows borehole sealing using flexible impervious fabric liners creates a static water column in the well that eliminates the negative effects of cross-connection. Measurements in this sealed environment have been shown by others to be representative of natural gradient flow conditions, rather than the conditions created by the borehole short circuiting units or fractures with varying hydraulic head. A new method for flow system characterization using active DTS in sealed boreholes has been developed with excellent prospects for quantitation of natural gradient groundwater fluxes and related hydraulic properties. This project demonstrates the utility of using an analytical solution for calculating apparent thermal conductivities and natural gradient groundwater fluxes at depth-discrete intervals observed continuously along a borehole using active DTS. Groundwater flux data can then be

  6. Observation of power gain in an inductive pulsed power system with an optically activated semiconductor closing and opening switch

    NASA Astrophysics Data System (ADS)

    Kung, Chun C.; Funk, Eric E.; Chauchard, Eve A.; Rhee, M. J.; Lee, Chi H.; Yan, Li

    1991-03-01

    Peak power gain greater than 15 was obtained with a current charged transmission line and an optically activated semiconductor opening switch. The optical pulse used for activating the switch is generated by a Nd:glass laser emitting at 1. 054 pm. It has a slow rise-time (''--''2OO uS) and a fast fall-time (s1O uS). In the experiment a 2 kV output voltage pulse was achieved with a 5 mm cube GaAs p-i-n diode sitch at 500 V charging voltage.

  7. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    NASA Astrophysics Data System (ADS)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  8. An optical device employing multiwavelength photoplethysmography for non-invasive in-vivo monitoring of optically active nanoparticles

    NASA Astrophysics Data System (ADS)

    Michalak, Gregory J.; Adhikari, Pratik; Schwartz, Jon A.; Goodrich, Glenn P.; O'Neal, D. Patrick

    2011-03-01

    Researchers employ increasingly complex sub-micron particles for oncological applications to deliver bioactive therapeutic or imaging compounds to known and unknown in vivo tumor targets. These particles are often manufactured using a vast array of compounds and techniques resulting in a complex architecture, which can be quantified ex vivo by conventional metrology and chemical assays. In practice however, experimental homogeneity using nanoparticles can be difficult to achieve. While several imaging techniques have been previously shown to follow the accumulation of nanoparticles into tumor targets, a more rapid sensor that provides a quantifiable estimate of dose delivery and short-term systemic response could increase the clinical efficacy and greatly reduce the variability of these treatments. We have developed an optical device, the pulse photometer, that when placed on an accessible location will estimate the vascular concentration of near-infrared extinguishing nanoparticles in murine subjects. Using a technique called multi-wavelength photoplethysmography, the same technique used in pulse oximetry, our pulse photometer requires no baseline for each estimate allowing it to be taken on and off of the subject several times during experiments employing long circulating nanoparticles. We present a formal study of our prototype instrument in which circulation half-life and nanoparticle concentration of gold nanorods is determined in murine subjects with the aid of light anesthesia. In this study, we show good agreement between vascular nanorod concentrations (given in optical density) as determined by our device and with UV-VIS spectrophotometry using low volume blood samples.

  9. Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue

    PubMed Central

    Zhang, Jiayi; Laiwalla, Farah; Kim, Jennifer A; Urabe, Hayato; Van Wagenen, Rick; Song, Yoon-Kyu; Connors, Barry W; Zhang, Feng; Deisseroth, Karl; Nurmikko, Arto V

    2010-01-01

    Neural stimulation with high spatial and temporal precision is desirable both for studying the real-time dynamics of neural networks and for prospective clinical treatment of neurological diseases. Optical stimulation of genetically targeted neurons expressing the light sensitive channel protein Channelrhodopsin (ChR2) has recently been reported as a means for millisecond temporal control of neuronal spiking activities with cell-type selectivity. This offers the prospect of enabling local delivery of optical stimulation and the simultaneous monitoring of the neural activity by electrophysiological means, both in the vicinity of and distant to the stimulation site. We report here a novel dual-modality hybrid device, which consists of a tapered coaxial optical waveguide (‘optrode’) integrated into a 100 element intra-cortical multi-electrode recording array. We first demonstrate the dual optical delivery and electrical recording capability of the single optrode in in vitro preparations of mouse retina, photo-stimulating the native retinal photoreceptors while recording light-responsive activities from ganglion cells. The dual-modality array device was then used in ChR2 transfected mouse brain slices. Specifically, epileptiform events were reliably optically triggered by the optrode and their spatiotemporal patterns were simultaneously recorded by the multi-electrode array. PMID:19721185

  10. Enhanced Energetic Stability and Optical Activity of Symmetry-Reduced C60

    SciTech Connect

    Manaa, M R

    2006-01-24

    Since its discovery in 1985, the celebrated geodesic cage structure of the C{sub 60} molecule has been recognized: a truncated icosahedron in which all sixty vertices are equivalent and has the full I{sub h} symmetry, making it thus far the most spherical of all known molecules. Inherent in this high symmetry is an intricate network of electron-phonon coupling, evident in phonon progressions and vibronic peak broadening, and resulting in structural distortions of neutral C{sub 60} in the presence of solvent. Within the I{sub h} symmetry group of this molecule, of the forty-six distinct vibrational frequencies only ten are Raman-active and four are IR-active (in the first order), while the remaining 32 modes are optically silent. Symmetry-reduced structures of C{sub 60} would activate some of these silent modes, which could then be amenable to experimental verification such as in resonance Raman scattering. Here, quantum chemical calculations within density functional theory establish for the first times (1) lower-symmetry, energetically more stable structures for C{sub 60}, the lowest of which is of D{sub 3d} symmetry, and with a new assignment of the ground state as the {sup 1}A{sub 1g} state, (2) the activation of some IR and Raman I{sub h} silent modes: the IR H{sub u} mode around 540 cm{sup -1} and G{sub u} band at 1465 cm{sup -1}, and the Raman G{sub g} mode around 1530 cm{sup -1}.

  11. Optical and electrical recording of neural activity evoked by graded contrast visual stimulus

    PubMed Central

    Rovati, Luigi; Salvatori, Giorgia; Bulf, Luca; Fonda, Sergio

    2007-01-01

    Background Brain activity has been investigated by several methods with different principles, notably optical ones. Each method may offer information on distinct physiological or pathological aspects of brain function. The ideal instrument to measure brain activity should include complementary techniques and integrate the resultant information. As a "low cost" approach towards this objective, we combined the well-grounded electroencephalography technique with the newer near infrared spectroscopy methods to investigate human visual function. Methods The article describes an embedded instrumentation combining a continuous-wave near-infrared spectroscopy system and an electroencephalography system to simultaneously monitor functional hemodynamics and electrical activity. Near infrared spectroscopy (NIRS) signal depends on the light absorption spectra of haemoglobin and measures the blood volume and blood oxygenation regulation supporting the neural activity. The NIRS and visual evoked potential (VEP) are concurrently acquired during steady state visual stimulation, at 8 Hz, with a b/w "windmill" pattern, in nine human subjects. The pattern contrast is varied (1%, 10%, 100%) according to a stimulation protocol. Results In this study, we present the measuring system; the results consist in concurrent recordings of hemodynamic changes and evoked potential responses emerging from different contrast levels of a patterned stimulus. The concentration of [HbO2] increases and [HHb] decreases after the onset of the stimulus. Their variation shows a clear relationship with the contrast value: large contrast produce huge difference in concentration, while low contrast provokes small concentration difference. This behaviour is similar to the already known relationship between VEP response amplitude and contrast. Conclusion The simultaneous recording and analysis of NIRS and VEP signals in humans during visual stimulation with a b/w pattern at variable contrast, demonstrates a

  12. Parasitic and immune modulation of flight activity in honey bees tracked with optical counters.

    PubMed

    Alaux, Cédric; Crauser, Didier; Pioz, Maryline; Saulnier, Cyril; Le Conte, Yves

    2014-10-01

    Host-parasite interactions are often characterized by changes in the host behaviour, which are beneficial to either the parasite or the host, or are a non-adaptive byproduct of parasitism. These interactions are further complicated in animal society because individual fitness is associated with group performance. However, a better understanding of host-parasite interaction in animal society first requires the identification of individual host behavioural modification. Therefore, we challenged honey bee (Apis mellifera) workers with the parasite Nosema ceranae or an immune stimulation and tracked their flight activity over their lifetime with an optic counter. We found that bees responded differently to each stress: both Nosema-infected and immune-challenged bees performed a lower number of daily flights compared with control bees, but the duration of their flights increased and decreased over time, respectively. Overall, parasitized bees spent more time in the field each day than control bees, and the inverse was true for immune-challenged bees. Despite the stress of immune challenge, bees had a survival similar to that of control bees likely because of their restricted activity. We discuss how those different behavioural modifications could be adaptive phenotypes. This study provides new insights into how biological stress can affect the behaviour of individuals living in society and how host responses have evolved.

  13. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates

    NASA Technical Reports Server (NTRS)

    Mikic, I.; Krucinski, S.; Thomas, J. D.

    1998-01-01

    This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.

  14. Single-molecule kinetics under force: probing protein folding and enzymatic activity with optical tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley

    2010-03-01

    Weak non-covalent bonds between and within single molecules govern many aspects of biological structure and function (e.g. DNA base-paring, receptor-ligand binding, protein folding, etc.) In living systems, these interactions are often subject to mechanical forces, which can greatly alter their kinetics and activity. My group develops and applies novel single-molecule manipulation techniques to explore and quantify these force-dependent kinetics. Using optical tweezers, we have quantified the force-dependent unfolding and refolding kinetics of different proteins, including the cytoskeletal protein spectrin in collaboration with E. Evans's group [1], and the A2 domain of the von Willebrand factor blood clotting protein in collaboration with T. Springer's group [2]. Furthermore, we have studied the kinetics of the ADAMTS13 enzyme acting on a single A2 domain, and have shown that physiolgical forces in the circulation can act as a cofactor for enzymatic cleavage, regulating hemostatic activity [2]. References: 1. E. Evans, K. Halvorsen, K. Kinoshita, and W.P. Wong, Handbook of Single Molecule Biophysics, P. Hinterdorfer, ed., Springer (2009). 2. X. Zhang, K. Halvorsen, C.-Z. Zhang, W.P. Wong, and T.A. Springer, Science 324 (5932), 1330-1334 (2009).

  15. Active Gaze Control Improves Optic Flow-Based Segmentation and Steering

    PubMed Central

    Raudies, Florian; Mingolla, Ennio; Neumann, Heiko

    2012-01-01

    An observer traversing an environment actively relocates gaze to fixate objects. Evidence suggests that gaze is frequently directed toward the center of an object considered as target but more likely toward the edges of an object that appears as an obstacle. We suggest that this difference in gaze might be motivated by specific patterns of optic flow that are generated by either fixating the center or edge of an object. To support our suggestion we derive an analytical model that shows: Tangentially fixating the outer surface of an obstacle leads to strong flow discontinuities that can be used for flow-based segmentation. Fixation of the target center while gaze and heading are locked without head-, body-, or eye-rotations gives rise to a symmetric expansion flow with its center at the point being approached, which facilitates steering toward a target. We conclude that gaze control incorporates ecological constraints to improve the robustness of steering and collision avoidance by actively generating flows appropriate to solve the task. PMID:22719889

  16. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  17. An optical luminescence chronology for late Pleistocene aeolian activity in the Colombian and Venezuelan Llanos

    NASA Astrophysics Data System (ADS)

    Carr, Andrew S.; Armitage, Simon J.; Berrío, Juan-Carlos; Bilbao, Bibiana A.; Boom, Arnoud

    2016-03-01

    The lowland savannas (Llanos) of Colombia and Venezuela are covered by extensive aeolian landforms for which little chronological information exists. We present the first optically stimulated luminescence (OSL) age constraints for dunes in the Llanos Orientales of lowland Colombia and new ages for dunes in the Venezuelan Llanos. The sampled dunes are fully vegetated and show evidence of post-depositional erosion. Ages range from 4.5 ± 0.4 to 66 ± 4 ka, with the majority dating to 27-10 ka (Marine Isotope Stage 2). Some dunes accumulated quickly during the last glacial maximum, although most were active 16-10 ka. Accretion largely ceased after 10 ka. All dunes are elongated downwind from rivers, parallel with dry season winds, and are interpreted as source-bordering features. As they are presently isolated from fluvial sediments by gallery forest it is proposed that activity was associated with a more prolonged dry season, which restricted gallery forest, leading to greater sediment availability on river shorelines. Such variability in dry season duration was potentially mediated by the mean latitude of the ITCZ. The cessation of most dune accretion after ca. 10 ka suggests reduced seasonality and a more northerly ITCZ position, consistent with evidence from the Cariaco Basin.

  18. Strain-accelerated formation of chiral, optically active buta-1,3-dienes.

    PubMed

    Chiu, Melanie; Tchitchanov, Boris H; Zimmerli, Daniel; Sanhueza, Italo A; Schoenebeck, Franziska; Trapp, Nils; Schweizer, W Bernd; Diederich, François

    2015-01-01

    The formal [2+2] cycloaddition-retroelectrocyclization (CA-RE) reactions between tetracyanoethylene (TCNE) and strained, electron-rich dibenzo-fused cyclooctynes were studied. The effect of ring strain on the reaction kinetics was quantified, revealing that the rates of cycloaddition using strained, cyclic alkynes are up to 5500 times greater at 298 K than those of reactions using unstrained alkynes. Cyclobutene reaction intermediates, as well as buta-1,3-diene products, were isolated and their structures were studied crystallographically. Isolation of a rare example of a chiral buta-1,3-diene that is optically active and configurationally stable at room temperature is reported. Computational studies on the enantiomerization pathway of the buta-1,3-diene products showed that the eight-membered ring inverts via a boat conformer in a ring-flip mechanism. In agreement with computed values, experimentally measured activation barriers of racemization in these compounds were found to be up to 26 kcal mol(-1) . PMID:25425560

  19. Aeolian activity in northern Amazonia: optical dating of Late Pleistocene and Holocene palaeodunes

    NASA Astrophysics Data System (ADS)

    Teeuw, Richard M.; Rhodes, Edward J.

    2004-01-01

    Palaeodunes were examined on the eastern margin of the Rio Branco-Rupununi savanna, northeast Amazonia. Optical dating suggests that the onset of aeolian activity was between 17 000 and 15 000 yr ago, just after the Last Glacial Maximum. Both the palaeodune axes and modern dominant wind directions have northeast to east-northeast directions, implying no significant shift in atmospheric circulation patterns over northeast Amazonia during the Late Pleistocene to Holocene. Major regional climate change events, such as the Younger Dryas, do not appear to have had any effect on the rates of aeolian deposition at the study site. Aeolian activity appears to have continued to the present day, showing a remarkably constant deposition rate of around 0.13 m kyr-1 initially, increasing smoothly to the present. Until more palaeodunes in northern Amazonia are dated, it is impossible to determine if this record of gradual aeolian deposition is a reliable regional palaeoclimate indicator, rather than being the result of local bioclimatic and geomorphological effects. Copyright

  20. The MOSDEF Survey: Optical Active Galactic Nucleus Diagnostics at z ~ 2.3

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.; Aird, James; Reddy, Naveen; Shapley, Alice E.; Kriek, Mariska; Siana, Brian; Mobasher, Bahram; Freeman, William R.; Price, Sedona H.; Shivaei, Irene

    2015-03-01

    We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on rest-frame optical active galactic nucleus (AGN) identification and completeness at z ~ 2.3. With our sample of 50 galaxies and 10 X-ray and IR-selected AGNs with measured Hβ, [O III], Hα, and N II emission lines, we investigate the location of AGNs in the BPT, MEx (mass-excitation), and CEx (color-excitation) diagrams. We find that th BPT diagram works well to identify AGNs at z ~ 2.3 and that the z ~ 0 AGN/star-forming galaxy classifications do not need to shift substantially at z ~ 2.3 to robustly separate these populations. However, the MEx diagram fails to identify all of the AGN identified in the BPT diagram, and the CEx diagram is substantially contaminated at high redshift. We further show that AGN samples selected using the BPT diagram have selection biases in terms of both host stellar mass and stellar population, in that AGNs in low mass and/or high specific star formation rate galaxies are difficult to identify using the BPT diagram. These selection biases become increasingly severe at high redshift, such that optically selected AGN samples at high redshift will necessarily be incomplete. We also find that the gas in the narrow-line region appears to be more enriched than gas in the host galaxy for at least some MOSDEF AGNs. However, AGNs at z ~ 2 are generally less enriched than local AGNs with the same host stellar mass.

  1. A strong magneto-optical activity in rare-earth La{sup 3+} substituted M-type strontium ferrites

    SciTech Connect

    Hu Feng; Liu Xiansong; Zhu Deru; Fernandez-Garcia, Lucia; Suarez, Marta; Luis Menendez, Jose

    2011-06-01

    M-type strontium ferrites with substitution of Sr{sup 2+} by rare-earth La{sup 3+} were prepared by conventional ceramic technology. The structure, magnetic properties, and magneto-optical Kerr activity of Sr{sub 1-x}La{sub x}Fe{sub 12}O{sub 19} (x = 0, 0.05, 0.10, 0.15, 0.20) were investigated by x-ray diffraction (XRD), vibrating sample magnetometer (VSM), and magneto-optical ellipsometry, respectively. X-ray diffraction showed that the samples sintered at 1290 deg. C for 3 h were single M-type hexagonal ferrites. The magnetic properties were remarkably changed due to the valence change of Fe ions induced by the substitution of La ions. Most significantly, an important magneto-optical activity was induced in the La{sup 3+} substituted M-type strontium ferrites around 3 eV.

  2. Activity-dependent potentiation and depression of visual cortical responses to optic nerve stimulation in kittens.

    PubMed

    Tamura, H; Tsumoto, T; Hata, Y

    1992-11-01

    1. To see whether long-lasting changes in synaptic efficacy are induced in the developing visual cortex (VC), field potentials evoked by test stimulation given alternatively to each of the optic nerves (ONs) were recorded from VC of kittens ranging in age from 4 to 8 wk. In some experiments, field potentials were recorded simultaneously from the dorsal lateral geniculate nucleus (LGN) in addition to VC. 2. Tetanic stimulation was applied to one of the ONs for 1-60 min at 5 Hz. Homosynaptic potentiation of cortical responses, defined as an increase lasting > 2.5 h in the cortical field potential evoked by test stimulation of the ON that was tetanized, was induced without any changes in LGN responses in 3 of the 12 kittens tested. Heterosynaptic depression, defined as a decrease lasting > 0.5 h in the field potential evoked by stimulation of the ON that was not tetanized, was also induced in two of those three kittens. 3. To elucidate a role of inputs originating from spontaneous activity of retinal ganglion cells in induction of potentiation and depression in the cortex, tetrodotoxin (TTX) was injected into both eyes of 11 kittens. After we confirmed the suppression of retinal activity by TTX, tetanic stimulation was applied to ON. Homosynaptic potentiation of cortical responses was induced in 6 of the 11 kittens, and the ratio of the mean amplitude of posttetanic responses to that of pretetanic responses for the 11 kittens was on average larger than that for the 12 control kittens. Heterosynaptic depression was not observed in any of the 11 kittens. 4. To see a role of postsynaptic activity in induction of potentiation and depression, gamma-aminobutyric acid (GABA) was applied continuously to the VC by an infusion pump in 10 kittens. Tetanic stimulation was given to ON while cortical activities were suppressed by GABA. After recovery of cortical activities, homosynaptic depression was found to be induced in 3 of the 10 kittens, but homosynaptic potentiation was not

  3. Expression and Activation of STAT3 in the Astrocytes of Optic Nerve in a Rat Model of Transient Intraocular Hypertension

    PubMed Central

    Zhang, Shaodan; Li, Weiyi; Wang, Wenqian; Zhang, Samuel S.; Huang, Ping; Zhang, Chun

    2013-01-01

    Lamina cribosa, an astrocyte-rich region, is the origin of axonal degeneration in glaucomatous neuropathy. Astrocytes are particularly activated during optic nerve (ON) degeneration and are likely to contribute to the pathogenesis of glaucomatous optic neuropathy. Signalling mechanisms that regulate different aspects of astrocyte reactiviation in response to intraocular hypertensive injury are not well defined. Signal transducer and activator of transcription protein-3 (STAT3) is a transcription factor that participates in many biological processes and has been implicated as activator of reactive astrogliosis. In this study, we investigated the role of STAT3 in regulating the activation of astrocytes to transient intraocular hypertension in vivo by using a rat ocular hypertension model. ON astrocytes hypertrophy was observed early after intraocular hypertensive stress. Morphological changes in glial fibrillary acidic protein (GFAP) positive cells coupled with axon loss in the optic nerve was detected at day 7 after the injury. Nestin was significantly upregulated in ON astrocytes as early as day 2 post injury and kept elevated through post injury day 7. Phosphorylated STAT3 (pSTAT3) was markedly upregulated in ON astrocytes at post injury day 1, prior to the reactivation of ON astrocytes. These findings indicate that STAT3 signalling is involved in the initiation of astrocyte reactivation in optic nerve injury. PMID:23383263

  4. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology.

    PubMed

    Wood, Michael F G; Guo, Xinxin; Vitkin, I Alex

    2007-01-01

    A Monte Carlo model for polarized light propagation in birefringent, optically active, multiply scattering media is developed in an effort to accurately represent the propagation of polarized light in biological tissue. The model employs the Jones N-matrix formalism to combine both linear birefringence and optical activity into a single effect that can be applied to photons as they propagate between scattering events. Polyacrylamide phantoms with strain-induced birefringence, sucrose-induced optical activity, and polystyrene microspheres as scattering particles are used for experimental validation. Measurements are made using a Stokes polarimeter that detects scattered light in different geometries, and compared to the results of Monte Carlo simulations run with similar parameters. The results show close agreement between the experimental measurements and Monte Carlo calculations for phantoms exhibiting turbidity and birefringence, as well as for phantoms exhibiting turbidity, birefringence, and optical activity. Other scattering-independent polarization properties can be incorporated into the developed Jones N-matrix formalism, enabling quantification of the polarization effects via an accurate polarization-sensitive Monte Carlo model. PMID:17343504

  5. Active microrheology with optical tweezers: a versatile tool to investigate anisotropies in intermediate filament networks

    NASA Astrophysics Data System (ADS)

    Neckernuss, T.; Mertens, L. K.; Martin, I.; Paust, T.; Beil, M.; Marti, O.

    2016-02-01

    Mechanical properties of cells are determined by the cytoskeleton and especially by intermediate filaments (IFs). To measure the contribution of IFs to the mechanics of the cytoskeleton, we determine the shear moduli of in vitro assembled IF networks consisting of keratin 8/18 and MgCl2, serving as a crosslinker. In this study we want to present a new method, a combination of active and passive microrheology, to characterize these networks. We also show the applicability of the new method and discuss new findings on the organization and force transmission in keratin networks gained by the new method. We trap and move embedded polystyrene particles with an optical tweezers setup in an oscillatory manner. The amplitude response of the trapped particle is measured and evaluated with a lock-in approach in order to suppress random motions. With this technique we determine the degree of isotropy of the assembled network and sense preferred directions due to inhomogeneities of the network. Furthermore, we show that we can deliberately create anisotropic networks by adjusting the assembly process and chamber geometry. To determine whether there are local network anisotropies in a globally isotropic network, we altered the evaluation method and included the motion of embedded particles in the vicinity of the trapped one. The correlations of the observed motions enable us to map local network anisotropies. Finally, we compare mechanical properties determined from passive with ones from active microrheology. We find the networks measured with the active technique to be approximately 20% more compliant than the ones from passive measurements.

  6. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    NASA Astrophysics Data System (ADS)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  7. Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas.

    PubMed

    Wang, Peng; Chen, Li; Wang, Rongyao; Ji, Yinglu; Zhai, Dawei; Wu, Xiaochun; Liu, Yu; Chen, Keqiu; Xu, Hongxing

    2013-05-01

    We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field plasmonic coupling, rather than a strong near-field coupling. However, such a chiral system of twisted gold nanorods show a huge surface plasmon based circular dichroism response, with the highest anisotropy factor around 0.027. This is in contrast to the previous studies in which near-field plasmonic coupling is an indispensable prerequisite to obtain strong optical activity from a chiral plasmonic nanostructure. Our study demonstrates here an alternative strategy for achieving huge chiroptical response of a chiral plasmonic nanostructure based on far-field, radiative electromagnetic interactions of metallic nanoparticles. Theoretical simulations show a satisfactory agreement with the experimental results. This study may provide more flexible ways to design chiral plasmon nanostructures with strong CD responses for various applications.

  8. Plasmon-mediated large enhancement of magneto-optical activity in colloidal magnetic metals

    NASA Astrophysics Data System (ADS)

    Herranz, Gervasi; Vlasin, Ondrej; Pascu, Oana; Roig, Anna

    2014-03-01

    Magnetic properties may undergo dramatic changes at the nanoscale that, eventually, can be exploited as a basis for enhanced functionality. This is the case that we present here, in which we analyzed the rotation and ellipticity that magnetic nanoparticles exerted on the polarization of light. More specifically, we observed an outstanding increase of the magneto-optical activity at the frequencies of the plasmon resonances of the metallic magnetic nanoparticles, yielding a dramatic increase of the Verdet constant. Furthermore, we have established an innovative theoretical framework in excellent quantitative agreement with the experimental data, endowing our model with a powerful predictive character for the interaction of polarized light with magnetic nanoclusters embedded in dielectric hosts. The relevance of our results goes well beyond the particular case of colloidal metals, as other systems such as metal inclusions in polymers or glasses containing small magnetic clusters can be as well considered. In addition, the observed large Verdet constants allow envisioning the exploitation of light polarization, instead as the commonly used reflectance, as a probe for plasmon-sensing devices. Our results provide new routes for plasmon-based biological and chemical detection.

  9. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    SciTech Connect

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-21

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as {approx}2 T inside a wire-array for {approx}40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  10. Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent; Kanp, Jaroslaw

    Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.

  11. High-resolution wind speed measurements using actively heated fiber optics

    NASA Astrophysics Data System (ADS)

    Sayde, Chadi; Thomas, Christoph K.; Wagner, James; Selker, John

    2015-11-01

    We present a novel technique to simultaneously measure wind speed (U) at thousands of locations continuously in time based on measurement of velocity-dependent heat transfer from a heated surface. Measuring temperature differences between paired passive and actively heated fiber-optic (AHFO) cables with a distributed temperature sensing system allowed estimation of U at over 2000 sections along the 230 m transect (resolution of 0.375 m and 5.5 s). The underlying concept is similar to that of a hot wire anemometer extended in space. The correlation coefficient between U measured by two colocated sonic anemometers and the AHFO were 0.91 during the day and 0.87 at night. The combination of classical passive and novel AHFO provides unprecedented dynamic observations of both air temperature and wind speed spanning 4 orders of magnitude in spatial scale (0.1-1000 m) while resolving individual turbulent motions, opening new opportunities for testing basic theories for near-surface geophysical flows.

  12. Vibrational optical activity of chiral carbon nanoclusters treated by a generalized π-electron method

    NASA Astrophysics Data System (ADS)

    Nagy, Péter R.; Surján, Péter R.; Szabados, Ágnes

    2014-01-01

    Cross sections of inelastic light scattering accompanied by vibronic excitation in large conjugated carbon structures is assessed at the π-electron level. Intensities of Raman and vibrational Raman optical activity (VROA) spectra of fullerenes are computed, relying on a single electron per atom. When considering only first neighbor terms in the Hamiltonian (a tight-binding (TB) type or Hückel-model), Raman intensities are captured remarkably well, based on comparison with frequency-dependent linear response of the self-consistent field (SCF) method. Resorting to π-electron levels when computing spectral intensities brings a beneficial reduction in computational cost as compared to linear response SCF. At difference with total intensities, the first neighbor TB model is found inadequate for giving the left and right circularly polarized components of the scattered light, especially when the molecular surface is highly curved. To step beyond first neighbor approximation, an effective π-electron Hamiltonian, including interaction of all sites is derived from the all-electron Fockian, in the spirit of the Bloch-equation. Chiroptical cross-sections computed by this novel π-electron method improve upon first-neighbor TB considerably, with no increase in computational cost. Computed VROA spectra of chiral fullerenes, such as C76 and C28, are reported for the first time, both by conventional linear response SCF and effective π-electron models.

  13. Optically-Activated GaAs Switches for Ground Penetrating Radar and Firing Set Applications

    SciTech Connect

    Aurand, J.; Brown, D.J.; Carin, L.; Denison, G.J.; Helgeson, W.D.; Loubriel, G.M.; Mar, A.; O'Malley, M.W.; Rinehart, L.F.; Zutavern, F.J.

    1999-07-14

    Optically activated, high gain GaAs switches are being tested for many different applications. TWO such applications are ground penetrating radar (GPR) and firing set switches. The ability of high gain GaAs Photoconductive Semiconductor Switches (PCSs) to deliver fast risetime pulses makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for the detection of buried items because it can operate at low frequency, high average power, and close to the ground, greatly increasing power on target. We have demonstrated that a PCSs based system can be used to produce a bipolar waveform with a total duration of about 6 ns and with minimal ringing. Such a pulse is radiated and returns from a 55 gallon drum will be presented. For firing sets, the switch requirements include small size, high current, dc charging, radiation hardness and modest longevity. We have switched 1 kA at 1 kV and 2.8 kA at 3 kV dc charge.

  14. Design of active disturbance rejection controller for space optical communication coarse tracking system

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Ai, Yong

    2015-10-01

    In order to improve the dynamic tracking performance of coarse tracking system in space optical communication, a new control method based on active disturbance rejection controller (ADRC) is proposed. Firstly, based on the structure analysis of coarse tracking system, the simplified system model was obtained, and then the extended state observer was designed to calculate state variables and spot disturbance from the input and output signals. Finally, the ADRC controller of coarse tracking system is realized with the combination of nonlinear PID controller. The simulation experimental results show that compared with the PID method, this method can significantly reduce the step response overshoot and settling time. When the target angular velocity is120mrad/s, tracking error with ADRC method is 30μrad, which decreases 85% compared with the PID method. Meanwhile the disturbance rejection bandwidth is increased by 3 times with ADRC. This method can effectively improve the dynamic tracking performance of coarse tracking and disturbance rejection degree, with no need of hardware upgrade, and is of certain reference value to the wide range and high dynamic precision photoelectric tracking system.

  15. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    PubMed

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-01

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  16. High-speed linear optics quantum computing using active feed-forward.

    PubMed

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-01

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  17. Optically active helical vinylterphenyl polymers: chiral teleinduction in radical polymerization and tunable stereomutation.

    PubMed

    Wang, Rong; Zhang, Jie; Wan, Xinhua

    2015-04-01

    Helical vinyl aromatic polymers are emerging as interesting chiral materials due to their dynamic tailorability, synthetic simplicity, and outstanding chemical and physical stabilities. This Personal Account discusses long-range chirality transfer in the radical polymerization of vinylterphenyl monomers and tunable stereomutation of the resultant polymers. It begins with a general introduction to the design, synthesis, and characterization of helical poly{(+)-2,5-bis[4'-((S)-2-methylbutyloxy)phenyl]styrene}, the first one of this series of polymers. Then, long-range chirality transfer during radical polymerization of terphenyl-based vinyl monomers is explained. After that, the chiroptical property control of the resultant polymers by means of the transition from kinetically controlled conformation to thermodynamically controlled conformation and external stimulus is described. This Personal Account concludes by discussing the advantages and disadvantages of the strategy of using vinylterphenyls to obtain optically active helical polymers and providing a short outlook, especially emphasizing the importance of tacticity on the chiroptical properties of polymers.

  18. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    NASA Astrophysics Data System (ADS)

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-01

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  19. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    NASA Astrophysics Data System (ADS)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  20. Intrinsic Optical Activity and Environmental Perturbations: Solvation Effects in Chiral Building Blocks

    NASA Astrophysics Data System (ADS)

    Lemler, Paul M.; Vaccaro, Patrick

    2016-06-01

    The non-resonant interaction of electromagnetic radiation with an isotropic ensemble of chiral molecules, which causes the incident state of linear polarization to undergo a signed rotation, long has served as a metric for gauging the enantiomeric purity of asymmetric syntheses. While the underlying phenomenon of circular birefringence (CB) typically is probed in the condensed phase, recent advances in ultrasensitive circular-differential detection schemes, as exemplified by the techniques of Cavity Ring-Down Polarimetry (CRDP), have permitted the first quantitative analyses of such processes to be performed in rarefied media. Efforts to extend vapor-phase investigations of CB to new families of chiral substrates will be discussed, with particular emphasis directed towards the elucidation of intrinsic (e.g., solvent-free) properties and their mediation by environmental perturbations (e.g., solvation). Specific species targeted by this work will include the stereoselective building blocks phenylpropylene oxide and α-methylbenzyl amine, both of which exhibit pronounced solvent-dependent changes in measured optical activity. The nature of chiroptical response in different environments will be highlighted, with quantum-chemical calculations serving to unravel the structural and electronic provenance of observed behavior.

  1. Optically active conjugated polymer from solvent chirality transfer polymerization in monoterpenes.

    PubMed

    Kim, Hyojin; Lee, Daehoon; Lee, Seul; Suzuki, Nozomu; Fujiki, Michiya; Lee, Chang-Lyoul; Kwak, Giseop

    2013-09-01

    Disubstituted acetylene monomers [1,2-diphenylacetylenes (DPAs: DPA-pC1, DPA-mC1, DPA-pC8); 1-phenyl-2-hexylacetylene (PHA-pC1)] are tested for asymmetric polymerization in chiral monoterpenes used as solvents and compared with the corresponding monosubstituted acetylene monomer [1-phenylacetylene (PA-pC1)]. DPA-pC1 containing a trimethylsilyl group in the para-position of the phenyl ring produces an optically active polymer with a large Cotton effect, despite the absence of a stereogenic center. The polymer sample obtained by polymerization in 87% ee (-)-α-pinene shows the strongest CD signal (gCD value at 385 nm: ∼3.2 × 10⁻³). The Cotton bands of the polymers obtained in (-)- and (+)-α-pinenes show the opposite sign in the CD signals. Theoretical calculations show that only the cis-cisoid model adopts a helical conformation. A time-correlated single photon counting experiment shows that the emission of the chiral polymer originates from a virtually single excited species with a 98% component fraction. This polymer solution does not show any significant decrease in gCD value over a wide temperature range of 20 to 80 °C. No noticeable decrease in the gCD value is detected when the polymer solution is kept at relatively low temperatures for a prolonged period (35 d). In contrast, the other polymers show no CD signal.

  2. Highly selective anti-Prelog synthesis of optically active aryl alcohols by recombinant Escherichia coli expressing stereospecific alcohol dehydrogenase.

    PubMed

    Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan

    2016-07-01

    Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.

  3. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity.

    PubMed

    Li, Xiang; Chen, Yinguang; Zhao, Shu; Chen, Hong; Zheng, Xiong; Luo, Jinyang; Liu, Yanan

    2015-03-01

    Bio-production of optically pure L-lactic acid from food waste has attracted much interest as it can treat organic wastes with simultaneous recovery of valuable by-products. However, the yield of L-lactic acid was very low and no optically pure L-lactic acid was produced in the literature due to (1) the lower activity of enzymes involved in hydrolysis and L-lactic acid generation, and (2) the participation of other enzymes related to D-lactic acid and acetic and propionic acids production. In this paper, a new strategy was reported for effective production of optically pure L-lactic acid from food waste at ambient temperature, i.e. via regulating key enzyme activity by sewage sludge supplement and intermittent alkaline fermentation. It was found that not only optically pure L-lactic acid was produced, but the yield was enhanced by 2.89-fold. The mechanism study showed that the activities of enzymes relevant to food waste hydrolysis and lactic acid production were enhanced, and the key enzymes related to volatile fatty acids and D-lactic acid generations were severally decreased or inhibited. Also, the microbes responsible for L-lactic acid production were selectively proliferated. Finally, the pilot-scale continuous experiment was conducted to testify the feasibility of this new technique.

  4. The influence of posterior parietal cortex on extrastriate visual activity: A concurrent TMS and fast optical imaging study.

    PubMed

    Parks, Nathan A; Mazzi, Chiara; Tapia, Evelina; Savazzi, Silvia; Fabiani, Monica; Gratton, Gabriele; Beck, Diane M

    2015-11-01

    The posterior parietal cortex (PPC) is a critical node in attentional and saccadic eye movement networks of the cerebral cortex, exerting top-down control over activity in visual cortex. Here, we sought to further elucidate the properties of PPC feedback by providing a time-resolved map of functional connectivity between parietal and occipital cortex using single-pulse TMS to stimulate the left PPC while concurrently recording fast optical imaging data from bilateral occipital cortex. Magnetic stimulation of the PPC induced transient ipsilateral occipital activations (BA 18) 24-48ms post-TMS. Concurrent TMS and fast optical imaging results demonstrate a clear influence of PPC stimulation on activity within human extrastriate visual cortex and further extend this time- and space-resolved method for examining functional connectivity. PMID:26449990

  5. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment.

    PubMed

    Zhang, Yong; Yang, Dehua; Cui, Xiangqun

    2004-02-01

    We describe the measurement of atmospheric enclosure seeing along a 120-m light path by use of a Shack-Hartmann wave-front sensor (S-H WFS) for the first time to our knowledge in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) outdoor active-optics experiment system, based on the differential image motion method and a S-H WFS. Seeing estimates that were gained with the S-H WFS were analyzed and found to be in close agreement with the actual seeing conditions, the estimates of refractive-index structure constant, and the thin-mirror active optics results, which usually include the shape sensing precision and the active correction precision of the experimental system. Finally, some countermeasures against poor seeing conditions were considered and adopted.

  6. Extension of the Optical Absorption Range in Zn-Doped MgO Powders and Its Effect on Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Ohira, Toshiaki; Kawamura, Mari; Fukuda, Masayuki; Alvarez, Kelly; Özkal, Burak; Yamamoto, Osamu

    2010-04-01

    In order to produce powder samples of Zn-doped MgO, the precursors, MgO and ZnO, were mixed in a molar ratio higher than 1.86 and subsequently treated at 1200 °C for 5 h in air atmosphere. With increasing Zn content in MgO, the lattice constant increased linearly, and the optical absorption intensity increased in the wavelength ranging from 200 to 400 nm. Antibacterial activity of the obtained powder samples was examined by colony count method using Escherichia coli and Staphylococcus aureus. In the antibacterial tests, it was found that the antibacterial activity enhanced with increasing Zn content in MgO. Antibacterial action toward S. aureus was greater than that toward E. coli, irrespective of the Zn content in MgO. From these results, the enhancement of the antibacterial activity could be related with the optical absorption of Zn-doped MgO.

  7. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    SciTech Connect

    Zhuo, Ye

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this

  8. Local domains of motor cortical activity revealed by fiber-optic calcium recordings in behaving nonhuman primates.

    PubMed

    Adelsberger, Helmuth; Zainos, Antonio; Alvarez, Manuel; Romo, Ranulfo; Konnerth, Arthur

    2014-01-01

    Brain mapping experiments involving electrical microstimulation indicate that the primary motor cortex (M1) directly regulates muscle contraction and thereby controls specific movements. Possibly, M1 contains a small circuit "map" of the body that is formed by discrete local networks that code for specific movements. Alternatively, movements may be controlled by distributed, larger-scale overlapping circuits. Because of technical limitations, it remained unclear how movement-determining circuits are organized in M1. Here we introduce a method that allows the functional mapping of small local neuronal circuits in awake behaving nonhuman primates. For this purpose, we combined optic-fiber-based calcium recordings of neuronal activity and cortical microstimulation. The method requires targeted bulk loading of synthetic calcium indicators (e.g., OGB-1 AM) for the staining of neuronal microdomains. The tip of a thin (200 µm) optical fiber can detect the coherent activity of a small cluster of neurons, but is insensitive to the asynchronous activity of individual cells. By combining such optical recordings with microstimulation at two well-separated sites of M1, we demonstrate that local cortical activity was tightly associated with distinct and stereotypical simple movements. Increasing stimulation intensity increased both the amplitude of the movements and the level of neuronal activity. Importantly, the activity remained local, without invading the recording domain of the second optical fiber. Furthermore, there was clear response specificity at the two recording sites in a trained behavioral task. Thus, the results provide support for movement control in M1 by local neuronal clusters that are organized in discrete cortical domains. PMID:24344287

  9. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    NASA Astrophysics Data System (ADS)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  10. FAST OPTICAL VARIABILITY OF A NAKED-EYE BURST-MANIFESTATION OF THE PERIODIC ACTIVITY OF AN INTERNAL ENGINE

    SciTech Connect

    Beskin, G.; Karpov, S.; Bondar, S.; Greco, G.; Guarnieri, A.; Bartolini, C.; Piccioni, A.

    2010-08-10

    We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r {approx} 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison with the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine-supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.

  11. Time-resolved phase-change recording mark formation with zinc oxide near-field optical active layer

    NASA Astrophysics Data System (ADS)

    Kao, Tsung Sheng; Chen, Mu-Ku; Chen, Jia-Wern; Chen, Yi-Hao; Wu, Pei Ru; Tsai, Din Ping

    2015-09-01

    In this paper, an optical active thin film of zinc oxide (ZnOx) nano-composites exploited for the enhancement of optical signals in an ultra-high density recording scheme has been demonstrated. Via the electron microscope investigation, the results display randomly distributed crystalline nanograins in the ZnOx thin films. Optical disks with the ZnOx nanostructured thin films show that the carrier-to-noise ratio (CNR) above 25 dB can be obtained at the mark trains of 100 nm, while the optimal writing power is reduced as a function of the increasing thickness of the ZnOx films. Furthermore, by conducting a series of the optical pump-probe experiments, the optical responses of recording marks on as-deposited phase-change Ge2Sb2Te5 (as-GST) recording layers present that the highly contrast bright recording bits can be acquired with the existence of the ZnOx nanostructured thin films, providing prospective potentials in future data storage and optoelectronic devices.

  12. Fast Optical Variability of a Naked-eye Burst—Manifestation of the Periodic Activity of an Internal Engine

    NASA Astrophysics Data System (ADS)

    Beskin, G.; Karpov, S.; Bondar, S.; Greco, G.; Guarnieri, A.; Bartolini, C.; Piccioni, A.

    2010-08-01

    We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r ≈ 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison with the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine—supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.

  13. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  14. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    PubMed

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm. PMID:23482053

  15. Simultaneous EEG and diffuse optical imaging of seizure-related hemodynamic activity in the newborn infant brain

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Cooper, Robert J.; Gibson, Adam; Everdell, Nick; Austin, Topun

    2012-06-01

    An optical imaging system has been developed which uses measurements of diffusely reflected near-infrared light to produce maps of changes in blood flow and oxygenation occurring within the cerebral cortex. Optical sources and detectors are coupled to the head via an array of optical fibers, on a probe held in contact with the scalp, and data is collected at a rate of 10 Hz. A clinical electroencephalography (EEG) system has been integrated with the optical system to enable simultaneous observation of electrical and hemodynamic activity in the cortex of neurologically compromised newborn infants diagnosed with seizures. Studies have made a potentially critically important discovery of previously unknown transient hemodynamic events in infants treated with anticonvulsant medication. We observed repeated episodes of small increases in cortical oxyhemoglobin concentration followed by a profound decrease in 3 of 4 infants studied, each with cerebral injury who presented with neonatal seizures. This was not accompanied by clinical or EEG seizure activity and was not present in nineteen matched controls. The underlying cause of these changes is currently unknown. We tentatively suggest that our results may be associated with a phenomenon known as cortical spreading depolarization, not previously observed in the infant brain.

  16. Optical Modeling Activities for the James Webb Space Telescope (JWST) Project. II; Determining Image Motion and Wavefront Error Over an Extended Field of View with a Segmented Optical System

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Ha, Kong Q.

    2004-01-01

    This is part two of a series on the optical modeling activities for JWST. Starting with the linear optical model discussed in part one, we develop centroid and wavefront error sensitivities for the special case of a segmented optical system such as JWST, where the primary mirror consists of 18 individual segments. Our approach extends standard sensitivity matrix methods used for systems consisting of monolithic optics, where the image motion is approximated by averaging ray coordinates at the image and residual wavefront error is determined with global tip/tilt removed. We develop an exact formulation using the linear optical model, and extend it to cover multiple field points for performance prediction at each instrument aboard JWST. This optical model is then driven by thermal and dynamic structural perturbations in an integrated modeling environment. Results are presented.

  17. Optical Tomography of MMP Activity Allows a Sensitive Noninvasive Characterization of the Invasiveness and Angiogenesis of SCC Xenografts12

    PubMed Central

    Al Rawashdeh, Wa'el; Arns, Susanne; Gremse, Felix; Ehling, Josef; Knüchel-Clarke, Ruth; Kray, Stefan; Spöler, Felix; Kiessling, Fabian; Lederle, Wiltrud

    2014-01-01

    For improved tumor staging and therapy control, imaging biomarkers are of great interest allowing a noninvasive characterization of invasiveness. In squamous epithelial skin and cervix lesions, transition to invasive stages is associated with enhanced matrix metalloproteinase (MMP) activity, increased angiogenesis, and worsened prognosis. Thus, we investigated MMP activity as imaging biomarker of invasiveness and the potential of optical tomography in characterizing the angiogenic and invasive behavior of skin squamous cell carcinoma (SCC) xenografts. MMP activity was measured in vivo in HaCaT-ras A-5RT3 tumors at different angiogenic and invasive stages (onset of angiogenesis, intermediate and highly angiogenic, invasive stage) and after 1 week of sunitinib treatment by fluorescence molecular tomography–microcomputed tomography imaging using an activatable probe. Treatment response was additionally assessed morphologically by optical coherence tomography (OCT). In vivo MMP activity significantly differed between the groups, revealing highest levels in the highly angiogenic, invasive tumors that were confirmed by immunohistochemistry. At the onset of angiogenesis with lowest MMP activity, fibroblasts were detected in the MMP-positive areas, whereas macrophages were absent. Accumulation of both cell types occurred in both invasive groups, again to a significantly higher degree at the most invasive and angiogenic stage. Sunitinib treatment significantly reduced the MMP activity and accumulation of fibroblasts and macrophages and blocked tumor invasion that was additionally visualized by OCT. Human cervical SCCs also showed high MMP activity and a similar stromal composition as the HaCaT xenografts, whereas normal tissue was negative. This study strongly suggests MMP activity as imaging biomarker and demonstrates the high sensitivity of optical tomography in determining tumor invasiveness that can morphologically be supported by OCT. PMID:24784000

  18. Optical tomography of MMP activity allows a sensitive noninvasive characterization of the invasiveness and angiogenesis of SCC xenografts.

    PubMed

    Al Rawashdeh, Wa'el; Arns, Susanne; Gremse, Felix; Ehling, Josef; Knüchel-Clarke, Ruth; Kray, Stefan; Spöler, Felix; Kiessling, Fabian; Lederle, Wiltrud

    2014-03-01

    For improved tumor staging and therapy control, imaging biomarkers are of great interest allowing a noninvasive characterization of invasiveness. In squamous epithelial skin and cervix lesions, transition to invasive stages is associated with enhanced matrix metalloproteinase (MMP) activity, increased angiogenesis, and worsened prognosis. Thus, we investigated MMP activity as imaging biomarker of invasiveness and the potential of optical tomography in characterizing the angiogenic and invasive behavior of skin squamous cell carcinoma (SCC) xenografts. MMP activity was measured in vivo in HaCaT-ras A-5RT3 tumors at different angiogenic and invasive stages (onset of angiogenesis, intermediate and highly angiogenic, invasive stage) and after 1 week of sunitinib treatment by fluorescence molecular tomography-microcomputed tomography imaging using an activatable probe. Treatment response was additionally assessed morphologically by optical coherence tomography (OCT). In vivo MMP activity significantly differed between the groups, revealing highest levels in the highly angiogenic, invasive tumors that were confirmed by immunohistochemistry. At the onset of angiogenesis with lowest MMP activity, fibroblasts were detected in the MMP-positive areas, whereas macrophages were absent. Accumulation of both cell types occurred in both invasive groups, again to a significantly higher degree at the most invasive and angiogenic stage. Sunitinib treatment significantly reduced the MMP activity and accumulation of fibroblasts and macrophages and blocked tumor invasion that was additionally visualized by OCT. Human cervical SCCs also showed high MMP activity and a similar stromal composition as the HaCaT xenografts, whereas normal tissue was negative. This study strongly suggests MMP activity as imaging biomarker and demonstrates the high sensitivity of optical tomography in determining tumor invasiveness that can morphologically be supported by OCT.

  19. An optical and near-infrared color-magnitude diagram for type I Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Palmer, Robert J.; Gibbs, John; Gorjian, Varoujan; Pruett, Lee; Young, Diedre; Boyd, Robert; Byrd, Joy; Cheshier, Jaicie; Chung, Stephanie; Clark, Ruby; Fernandez, Joseph; Gonzales, Elyse; Kumar, Anika; McGinnis, Gillian; Palmer, John; Perrine, Luke; Phelps, Brittney; Reginio, Margaret; Richter, Kristi; Sanchez, Elias; Washburn, Claire

    2016-01-01

    This project is seeking another standard candle for measuring cosmic distances by trying to establish a color-magnitude diagram for active galactic nuclei (AGN). Type I AGN selected from the NASA/IPAC Extragalactic Database (NED) were used to establish a correlation between the color and the luminosity of AGN. This work builds on previous NASA/IPAC Teacher Archive Research Program team attempts to establish such a relationship. This is novel in that it uses both optical and 1-2 micron near-infrared (NIR) wavelengths as a better color discriminator of the transition between accretion-dominated and dust/torus-dominated emission.Photometric data from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS) was extracted and analyzed for type I AGN with redshifts z < 0.20. Our color-magnitude diagram for the area where the dust vaporizes is analogous to a stellar Hertzsprung-Russell (HR) diagram. Data from SDSS and 2MASS were specifically selected to focus on the sublimation boundary between the coolest part of the accretion disk and the hottest region of the inner edge of the dusty torus surrounding the accretion disk to find the greatest ratio for the color. The more luminous the AGN, the more extended the dust sublimation radius, causing a larger hot dust emitting surface area, which corresponds to a greater NIR luminosity.Our findings suggest that the best correlations correspond to colors associated with the Sloan z band and any of the 2MASS bands with slight variations dependent on redshift. This may result in a tool for using AGN as a standard for cosmic distances. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  20. Few layers graphene as thermally activated optical modulator in the visible-near IR spectral range.

    PubMed

    Benítez, J L; Hernández-Cordero, Juan; Muhl, S; Mendoza, D

    2016-01-01

    We report the temperature modulation of the optical transmittance of a few layers of graphene (FLG). The FLG was heated either by the Joule effect of the current flowing between coplanar electrodes or by the absorption of a continuous-wave 532 nm laser. The optical signals used to evaluate the modulation of the FLG were at 633, 975, and 1550 nm; the last wavelengths are commonly used in optical communications. We also evaluated the effect of the substrate on the modulation effect by comparing the performance of a freely suspended FLG sample with one mounted on a glass substrate. Our results show that the modulation of the optical transmittance of FLG can be from millihertz to kilohertz. PMID:26696185

  1. Active vibration control using a modal-domain fiber optic sensor

    NASA Technical Reports Server (NTRS)

    Cox, David E.

    1992-01-01

    A closed-loop control experiment is described in which vibrations of a cantilevered beam are suppressed using measurements from a modal-domain fiber optic sensor. Modal-domain sensors are interference between the modes of a few-mode optical waveguide to detect strain. The fiber is bonded along the length of the beam and provides a measurement related to the strain distribution on the surface of the beam. A model for the fiber optic sensor is derived, and this model is integrated with the dynamic model of the beam. A piezoelectric actuator is also bonded to the beam and used to provide control forces. Control forces are obtained through dynamic compensation of the signal from the fiber optic sensor. The compensator is implemented with a real-time digital controller. Analytical models are verified by comparing simulations to experimental results for both open-loop and closed-loop configurations.

  2. Systemic Simvastatin Rescues Retinal Ganglion Cells from Optic Nerve Injury Possibly through Suppression of Astroglial NF-κB Activation

    PubMed Central

    Morishita, Seita; Oku, Hidehiro; Horie, Taeko; Tonari, Masahiro; Kida, Teruyo; Okubo, Akiko; Sugiyama, Tetsuya; Takai, Shinji; Hara, Hideaki; Ikeda, Tsunehiko

    2014-01-01

    Neuroinflammation is involved in the death of retinal ganglion cells (RGCs) after optic nerve injury. The purpose of this study was to determine whether systemic simvastatin can suppress neuroinflammation in the optic nerve and rescue RGCs after the optic nerve is crushed. Simvastatin or its vehicle was given through an osmotic minipump beginning one week prior to the crushing. Immunohistochemistry and real-time PCR were used to determine the degree of neuroinflammation on day 3 after the crushing. The density of RGCs was determined in Tuj-1 stained retinal flat mounts on day 7. The effect of simvastain on the TNF-α-induced NF-κB activation was determined in cultured optic nerve astrocytes. On day 3, CD68-positive cells, most likely microglia/macrophages, were accumulated at the crushed site. Phosphorylated NF-κB was detected in some astrocytes at the border of the lesion where the immunoreactivity to MCP-1 was intensified. There was an increase in the mRNA levels of the CD68 (11.4-fold), MCP-1 (22.6-fold), ET-1 (2.3-fold), GFAP (1.6-fold), TNF-α (7.0-fold), and iNOS (14.8-fold) genes on day 3. Systemic simvastatin significantly reduced these changes. The mean ± SD number of RGCs was 1816.3±232.6/mm2 (n = 6) in the sham controls which was significantly reduced to 831.4±202.5/mm2 (n = 9) on day 7 after the optic nerve was crushed. This reduction was significantly suppressed to 1169.2±201.3/mm2 (P = 0.01, Scheffe; n = 9) after systemic simvastatin. Simvastatin (1.0 µM) significantly reduced the TNF-α-induced NF-κB activation in cultured optic nerve astrocytes. We conclude that systemic simvastatin can reduce the death of RGCs induced by crushing the optic nerve possibly by suppressing astroglial NF-κB activation. PMID:24392131

  3. Ultra-high Speed Optical Imaging of Ultrasound-activated Microbubbles in Mesenteric Microvessels

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    Ultrasound contrast agent microbubbles have gained widespread applications in diagnostic and therapeutic ultrasound. Animal studies of bioeffects induced by ultrasound-activated microbubbles have demonstrated that microbubbles can cause microvessel damage. Much scientific attention has been attracted to such microvascular bioeffects, not only because of the related safety concerns, but also because of the potential useful applications of microbubbles in the intravascular delivery of drugs and genetic materials into target tissues. A significant challenge in using microbubbles in medical ultrasound is the lack of knowledge about how the microbubbles behave in blood vessels when exposed to ultrasound and how their interactions with ultrasound cause vascular damage. Although extensive studies were performed in the past to study the dynamics of microbubbles, most of those studies were performed in vitro and did not directly address the clinical environment in which microbubbles are injected into blood vessels. In this thesis work, a synchronized optical-acoustic system was set up for ultrahigh speed imaging of insonated microbubbles in microvessels. The recorded images revealed the formation of microjets penetrating the microbubbles, as well as vessel distention (motion outward against the surrounding tissue) and vessel invagination (motion inward toward the lumen) caused by the expansion and collapse of the microbubbles, respectively. Contrary to current paradigms which propose that microbubbles damage vessels either by distending them or by forming liquid jets impinging on them, microbubbles translation and jetting were in the direction away from the nearest vessel wall; furthermore, invagination typically exceeded distention in arterioles and venules. Vessel invagination was found to be associated with vascular damage. These studies suggest that vessel invagination may be a newly discovered potential mechanism for vascular damage by ultrasound-activated microbubbles

  4. Structural, vibrational spectroscopic and nonlinear optical activity studies on 2-hydroxy- 3, 5-dinitropyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.

  5. Investigation of solar active regions at high resolution by balloon flights of the solar optical universal polarimeter, definition phase

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore D.; Topka, Kenneth P.

    1992-01-01

    The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.

  6. Structural, vibrational spectroscopic and nonlinear optical activity studies on 2-hydroxy- 3, 5-dinitropyridine: A DFT approach

    SciTech Connect

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin; Jawahar, A.

    2015-06-24

    The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.

  7. Soliton generation from an actively mode-locked fiber laser incorporating an electro-optic fiber modulator.

    PubMed

    Malmström, Mikael; Margulis, Walter; Tarasenko, Oleksandr; Pasiskevicius, Valdas; Laurell, Fredrik

    2012-01-30

    This work demonstrates an actively mode-locked fiber laser operating in soliton regime and employing an all-fiber electro-optic modulator. Nonlinear polarization rotation is utilized for femtosecond pulse generation. Stable operation of the all-fiber ring laser is readily achieved at a fundamental repetition rate of 2.6 MHz and produces 460 fs pulses with a spectral bandwidth of 5.3 nm.

  8. Thermotolerant Bacillus licheniformis TY7 produces optically active l-lactic acid from kitchen refuse under open condition.

    PubMed

    Sakai, Kenji; Yamanami, Tetsuya

    2006-08-01

    A thermotolerant l-lactic-acid-producing bacterium was isolated and identified as Bacillus licheniformis TY7. TY7 shows optimum growth at pH 6.5 at 30 degrees C and normal growth up to 65 degrees C. Using nonsterile kitchen refuse at 50 degrees C, the strain produced 40 g/ll-lactic acid with 97% optical activity and 2.5 g/lxh productivity.

  9. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 4; Overview and Introduction of Matlab Based Toolkits used to Interface with Optical Design Software

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part four of a series on the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written in Matlab, which interface with optical design software (CodeV, OSLO, and Zemax) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  10. Metallic influence on the atomic structure and optical activity of ligand-protected nanoparticles: a comparison between Ag and Au.

    PubMed

    Hidalgo, Francisco; Noguez, Cecilia; Olvera de la Cruz, Monica

    2014-03-21

    Using time-perturbed density functional theory the optical activity of metal-thiolate compounds formed by highly symmetric Ag and Au nanoparticles (NPs) and a methyl-thiol molecule is studied after performing atomic optimizations and electronic calculations upon adsorption. Many different sites and orientations of the adsorbed molecule on icosahedral Ag and Au NPs of 55 atoms are considered. Upon molecular adsorption atomic distortions on Au NPs are induced while not on Ag, which causes higher molecular adsorption energies in Au than in Ag. Structural distortions and the specific molecular adsorption site and orientation result in chiral metal-thiolate NPs. Ag and Au compounds with similar chirality, according to Hausdorff chirality measurements, show different optical activity signatures, where circular dichroism spectra of Au NPs are more intense. These dissimilarities are attributed in part to the differences in the electronic density of states, which are a consequence of relativistic effects and the atomic distortion. It is concluded that the optical activity of Ag and Au compounds is due to different mechanisms, while in Au it is mainly due to the atomic distortion of the metallic NPs induced after molecular adsorption, in Ag it is defined by the adsorption site and molecular orientation with respect to the NP symmetry.

  11. Optical activity and ultraviolet absorbance detection of dansyl L-amino acids separated by gradient liquid chromatography

    SciTech Connect

    Not Available

    1987-04-01

    Many scientific investigations (e.g., geochronology, pharmaceuticals) have the need to determine enantiometric ratios of amino acids and other compounds. It has been reported that OA/UV or OA/RI (refractive index) are ideal methods for the determination of enantiomeric ratios without the need for chiral columns, chiral eluents, or diasteromer preparation. Unfortunately, only three amino acids are naturally UV absorbing (254 nm), and RI sensitivity for amino acids is low. Derivatization by several methods (o-phthalaldehyde, dansyl, phenylisothiocyanate, fluorescamine, 2,4-dinitrofluorobenzene, and phenylthiohydantoin) renders all amino acids UV absorbing and makes UV or fluorescence viable techniques for amino acids determinations. A previously neglected aspect of derivatization is the effect on optical activity. These highly polar groups influence the chiral center of amino acids drastically (electronic and steric effects). The shifting of the absorption band to the proximity of the wavelength used for OA measurements further enhances the importance of the substituent. The authors report here the determination of 17 dansyl amino acids in a mixture by UV absorbance and optical activity. This involves gradient elution. Previously, the optical activity detector (OAD) has been used only with isocratic HPLC.

  12. Sunglint effects on the characterization of optically active substances in high spatial resolution airborne hyperspectral images

    NASA Astrophysics Data System (ADS)

    Streher, A. S.; Faria Barbosa, C. Clemente; Soares Galvão, L.; Goodman, J. A.; Silva, T. S.

    2013-05-01

    Sunglint, also known as the specular reflection of light from water surfaces, is a component of sensor-received radiance that represents a confounding factor on the characterization of water bodies by remote sensing. In airborne remote sensing images, the effect of sunglint can be minimized by optimizing the flight paths, directing the sensor towards or away from the Sun, and by keeping solar zenith angles between 30° and 60°. However, these guidelines cannot always be applied, often due to the irregular spatial pattern of lakes, estuaries and coastlines. The present study assessed the impact of sunglint on the relationship between the optically active substances (OAS) concentration, in optically complex waters, and the spectral information provided by an airborne high spatial resolution hyperspectral sensor (SpecTIR). The Ibitinga reservoir, located in southeastern Brazil (state of São Paulo), was selected as the study area because of its meandering shape. As a result, there is demanding constant changes in data acquisition geometry to achieve complete coverage, therefore not allowing sunglint conditions to be minimized during image acquisition. Field data collection was carried out on October 23 and 24, 2011. During these two days, 15 water stations along the reservoir were sampled, concurrently with the SpecTIR image acquisition in 357 bands (398-2455 nm) and at 3 m spatial resolution. Chlorophyll, pheophytin, total suspended solids, organic and inorganic suspended solids and colored dissolved matter were determined in laboratory. The images were corrected for the atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm and then geometrically corrected. In order to evaluate the sunglint effects on the OAS characterization, the images were corrected for such effects using the deglint algorithm from Goodman et al. (2008). The SpecTIR 662-nm band reflectance was selected to be correlated to the OAS due to

  13. TEMPORAL CORRELATIONS BETWEEN OPTICAL AND GAMMA-RAY ACTIVITY IN BLAZARS

    SciTech Connect

    Cohen, Daniel P.; Filippenko, Alexei V.; Zheng, WeiKang; Li, Weidong; Romani, Roger W.; Cenko, S. Bradley

    2014-12-20

    We have been using the 0.76 m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory to optically monitor a sample of 157 blazars that are bright in gamma-rays being detected with high significance (≥10σ) in one year by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. We attempt to observe each source on a three-day cadence with KAIT, subject to weather and seasonal visibility. The gamma-ray coverage is essentially continuous. KAIT observations extend over much of the five-year Fermi mission for several objects, and most have >100 optical measurements spanning the last three years. These blazars (flat-spectrum radio quasars and BL Lac objects) exhibit a wide range of flaring behavior. Using the discrete correlation function (DCF), here we search for temporal relationships between optical and gamma-ray light curves in the 40 brightest sources in hopes of placing constraints on blazar acceleration and emission zones. We find strong optical-gamma-ray correlation in many of these sources at time delays of ∼1 to ∼10 days, ranging between –40 and +30 days. A stacked average DCF of the 40 sources verifies this correlation trend, with a peak above 99% significance indicating a characteristic time delay consistent with 0 days. These findings strongly support the widely accepted leptonic models of blazar emission. However, we also find examples of apparently uncorrelated flares (optical flares with no gamma-ray counterpart and gamma-ray flares with no optical counterpart) that challenge simple, one-zone models of blazar emission. Moreover, we find that flat-spectrum radio quasars tend to have gamma-rays leading the optical, while intermediate- and high-synchrotron peak blazars with the most significant peaks have smaller lags/leads. It is clear that long-term monitoring at high cadence is necessary to reveal the underlying physical correlation.

  14. Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond.

    PubMed

    Palyanov, Yuri N; Kupriyanov, Igor N; Borzdov, Yuri M; Surovtsev, Nikolay V

    2015-01-01

    Diamond attracts considerable attention as a versatile and technologically useful material. For many demanding applications, such as recently emerged quantum optics and sensing, it is important to develop new routes for fabrication of diamond containing defects with specific optical, electronic and magnetic properties. Here we report on successful synthesis of diamond from a germanium-carbon system at conditions of 7 GPa and 1,500-1,800 °C. Both spontaneously nucleated diamond crystals and diamond growth layers on seeds were produced in experiments with reaction time up to 60 h. We found that diamonds synthesized in the Ge-C system contain a new optical centre with a ZPL system at 2.059 eV, which is assigned to germanium impurities. Photoluminescence from this centre is dominated by zero-phonon optical transitions even at room temperature. Our results have widened the family of non-metallic elemental catalysts for diamond synthesis and demonstrated the creation of germanium-related optical centres in diamond. PMID:26435400

  15. Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond

    PubMed Central

    Palyanov, Yuri N.; Kupriyanov, Igor N.; Borzdov, Yuri M.; Surovtsev, Nikolay V.

    2015-01-01

    Diamond attracts considerable attention as a versatile and technologically useful material. For many demanding applications, such as recently emerged quantum optics and sensing, it is important to develop new routes for fabrication of diamond containing defects with specific optical, electronic and magnetic properties. Here we report on successful synthesis of diamond from a germanium-carbon system at conditions of 7 GPa and 1,500–1,800 °C. Both spontaneously nucleated diamond crystals and diamond growth layers on seeds were produced in experiments with reaction time up to 60 h. We found that diamonds synthesized in the Ge-C system contain a new optical centre with a ZPL system at 2.059 eV, which is assigned to germanium impurities. Photoluminescence from this centre is dominated by zero-phonon optical transitions even at room temperature. Our results have widened the family of non-metallic elemental catalysts for diamond synthesis and demonstrated the creation of germanium-related optical centres in diamond. PMID:26435400

  16. Active optical system for advanced 3D surface structuring by laser remelting

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  17. Ultrahigh responsivity of optically active, semiconducting asymmetric nano-channel diodes

    NASA Astrophysics Data System (ADS)

    Akbas, Y.; Stern, A.; Zhang, L. Q.; Alimi, Y.; Song, A. M.; Iñiguez-de-la-Torre, I.; Mateos, J.; González, T.; Wicks, G. W.; Sobolewski, Roman

    2015-10-01

    We present our research on the fabrication and optical characterization of novel semiconducting asymmetric nano-channel diodes (ANCDs). We focus on optical properties of ANCDs and demonstrate that they can be operated as very sensitive, single-photon-level, visible-light photodetectors. Our test devices consisted of 1.2-μm-long, ∼200- to 300-nm-wide channels that were etched in an InGaAs/InAlAs quantum-well hetero structure with a twodimensional electron gas layer. The ANCD I-V curves were collected by measuring the transport current both in the dark and under 800-nm-wavelength, continuous-wave-light laser illumination. In all of our devices, the impact of the light illumination was very clear, and there was a substantial photocurrent, even for incident optical power as low as 1 nW. The magnitude of the optical responsivity in ANCDs with the conducting nano-channel increased linearly with a decrease in optical power over many orders of magnitude, reaching a value of almost 10,000 A/W at 1-nW excitation.

  18. Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array

    NASA Astrophysics Data System (ADS)

    Lim, Jiseok; Vrignon, Jérémy; Gruner, Philipp; Karamitros, Christos S.; Konrad, Manfred; Baret, Jean-Christophe

    2013-11-01

    We demonstrate the use of a hybrid microfluidic-micro-optical system for the screening of enzymatic activity at the single cell level. Escherichia coli β-galactosidase activity is revealed by a fluorogenic assay in 100 pl droplets. Individual droplets containing cells are screened by measuring their fluorescence signal using a high-speed camera. The measurement is parallelized over 100 channels equipped with microlenses and analyzed by image processing. A reinjection rate of 1 ml of emulsion per minute was reached corresponding to more than 105 droplets per second, an analytical throughput larger than those obtained using flow cytometry.

  19. [The active search for occupational diseases in the engineering industries. Diseases associated with exposure to welding activities in optical radiation: dry eye syndrome].

    PubMed

    Messineo, A; Leone, M; Sanna, S; Arrigoni, E; Teodori, C; Pecorella, I; Imperatore, A; Villarini, S; Macchiaroli, S

    2011-01-01

    In the project of active research of occupational diseases was conducted a study on 45 welders in the engineering companies, with particular attention to the hazards of exposure to the optical radiation. The protocol used involved the execution of Breack Up test, Schirmer test, corneal staining and scraping cytology. It revealed that more than half of the welders had ocular lesions referable to their work activity as well as some permanent functional damages with the characters of dry eye syndrome. None of these diseases, which could alert for medical-legal and insurance, was highlighted by the occupational health physician.

  20. Optical and Radar Satellite Remote Sensing for Large Area Analysis of Landslide Activity in Southern Kyrgyzstan, Central Asia

    NASA Astrophysics Data System (ADS)

    Roessner, S.; Behling, R.; Teshebaeva, K. O.; Motagh, M.; Wetzel, H. U.

    2014-12-01

    The presented work has been investigating the potential of optical and radar satellite remote sensing for the spatio-temporal analysis of landslide activity at a regional scale along the eastern rim of the Fergana Basin representing the area of highest landslide activity in Kyrgyzstan. For this purpose a multi-temporal satellite remote sensing database has been established for a 12.000 km2 study area in Southern Kyrgyzstan containing a multitude of optical data acquired during the last 28 years as well as TerraSAR-X and ALOS-PALSAR acquired since 2007. The optical data have been mainly used for creating a multi-temporal inventory of backdated landslide activity. For this purpose an automated approach for object-oriented multi-temporal landslide detection has been developed which is based on the analysis of temporal NDVI-trajectories complemented by relief information to separate landslide-related surface changes from other land cover changes. Applying the approach to the whole study area using temporal high resolution RapidEye time series data has resulted in the automated detection of 612 landslide objects covering a total area of approx. 7.3 km². Currently, the approach is extended to the whole multi-sensor time-series database for systematic analysis of longer-term landslide occurrence at a regional scale. Radar remote sensing has been focussing on SAR Interferometry (InSAR) to detect landslide related surface deformation. InSAR data were processed by repeat-pass interferometry using the DORIS and SARScape software. To better assess ground deformation related to individual landslide objects, InSAR time-series analysis has been applied using the Small Baseline Subset (SBAS) method. Analysis of the results in combination with optical data and DEM information has revealed that most of the derived deformations are caused by slow movements in areas of already existing landslides indicating the reactivation of older slope failures. This way, InSAR analysis can