Sample records for optical analysis software

  1. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    NASA Technical Reports Server (NTRS)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  2. Student project of optical system analysis API-library development

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana; Zhukova, Tatiana; Dantcaranov, Ruslan; Romanova, Maria; Zhadin, Alexander; Ivanov, Vyacheslav; Kalinkina, Olga

    2017-08-01

    In the paper API-library software developed by students of Applied and Computer Optics Department (ITMO University) for optical system design is presented. The library performs paraxial and real ray tracing, calculates 3d order (Seidel) aberration and real ray aberration of axis and non-axis beams (wave, lateral, longitudinal, coma, distortion etc.) and finally, approximate wave aberration by Zernike polynomials. Real aperture can be calculated by considering of real rays tracing failure on each surface. So far we assume optical system is centered, with spherical or 2d order aspherical surfaces. Optical glasses can be set directly by refraction index or by dispersion coefficients. The library can be used for education or research purposes in optical system design area. It provides ready to use software functions for optical system simulation and analysis that developer can simply plug into their software development for different purposes, for example for some specific synthesis tasks or investigation of new optimization modes. In the paper we present an example of using the library for development of cemented doublet synthesis software based on Slusarev's methodology. The library is used in optical system optimization recipes course for deep studying of optimization model and its application for optical system design. Development of such software is an excellent experience for students and help to understanding optical image modeling and quality analysis. This development is organized as student group joint project. We try to organize it as a group in real research and development project, so each student has his own role in the project and then use whole library functionality in his own master or bachelor thesis. Working in such group gives students useful experience and opportunity to work as research and development engineer of scientific software in the future.

  3. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  4. Optical analysis of electro-optical systems by MTF calculus

    NASA Astrophysics Data System (ADS)

    Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari

    2011-08-01

    One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.

  5. Integrated Optical Design Analysis (IODA): New Test Data and Modeling Features

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; Patrick, Brian

    2003-01-01

    A general overview of the capabilities of the IODA ("Integrated Optical Design Analysis") exchange of data and modeling results between thermal, structures, optical design, and testing engineering disciplines. This presentation focuses on new features added to the software that allow measured test data to be imported into the IODA environment for post processing or comparisons with pretest model predictions. software is presented. IODA promotes efficient

  6. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  7. Practical research on the teaching of Optical Design

    NASA Astrophysics Data System (ADS)

    Fan, Changjiang; Ren, Zhijun; Ying, Chaofu; Peng, Baojin

    2017-08-01

    Optical design, together with applied optics, forms a complete system from basic theory to application theory, and it plays a very important role in professional education. In order to improve senior undergraduates' understanding of optical design, this course is divided into three parts: theoretical knowledge, software design and product processing. Through learning theoretical knowledge, students can master the aberration theory and the design principles of typical optical system. By using ZEMAX(an imaging design software), TRACEPRO(a lighting optical design software), SOLIDWORKS or PROE( mechanical design software), student can establish a complete model of optical system. Student can use carving machine located in lab or cooperative units to process the model. Through the above three parts, student can learn necessary practical knowledge and get improved in their learning and analysis abilities, thus they can also get enough practice to prompt their creative abilities, then they could gradually change from scientific theory learners to an Optics Engineers.

  8. Integrated thermal disturbance analysis of optical system of astronomical telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jiang, Zibo; Li, Xinnan

    2008-07-01

    During operation, astronomical telescope will undergo thermal disturbance, especially more serious in solar telescope, which may cause degradation of image quality. As drives careful thermal load investigation and measure applied to assess its effect on final image quality during design phase. Integrated modeling analysis is boosting the process to find comprehensive optimum design scheme by software simulation. In this paper, we focus on the Finite Element Analysis (FEA) software-ANSYS-for thermal disturbance analysis and the optical design software-ZEMAX-for optical system design. The integrated model based on ANSYS and ZEMAX is briefed in the first from an overview of point. Afterwards, we discuss the establishment of thermal model. Complete power series polynomial with spatial coordinates is introduced to present temperature field analytically. We also borrow linear interpolation technique derived from shape function in finite element theory to interface the thermal model and structural model and further to apply the temperatures onto structural model nodes. Thereby, the thermal loads are transferred with as high fidelity as possible. Data interface and communication between the two softwares are discussed mainly on mirror surfaces and hence on the optical figure representation and transformation. We compare and comment the two different methods, Zernike polynomials and power series expansion, for representing and transforming deformed optical surface to ZEMAX. Additionally, these methods applied to surface with non-circular aperture are discussed. At the end, an optical telescope with parabolic primary mirror of 900 mm in diameter is analyzed to illustrate the above discussion. Finite Element Model with most interested parts of the telescope is generated in ANSYS with necessary structural simplification and equivalence. Thermal analysis is performed and the resulted positions and figures of the optics are to be retrieved and transferred to ZEMAX, and thus final image quality is evaluated with thermal disturbance.

  9. MTF measurements on real time for performance analysis of electro-optical systems

    NASA Astrophysics Data System (ADS)

    Stuchi, Jose Augusto; Signoreto Barbarini, Elisa; Vieira, Flavio Pascoal; dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fatima Maria Mitsue; Castro Neto, Jarbas C.; Linhari Rodrigues, Evandro Luis

    2012-06-01

    The need of methods and tools that assist in determining the performance of optical systems is actually increasing. One of the most used methods to perform analysis of optical systems is to measure the Modulation Transfer Function (MTF). The MTF represents a direct and quantitative verification of the image quality. This paper presents the implementation of the software, in order to calculate the MTF of electro-optical systems. The software was used for calculating the MTF of Digital Fundus Camera, Thermal Imager and Ophthalmologic Surgery Microscope. The MTF information aids the analysis of alignment and measurement of optical quality, and also defines the limit resolution of optical systems. The results obtained with the Fundus Camera and Thermal Imager was compared with the theoretical values. For the Microscope, the results were compared with MTF measured of Microscope Zeiss model, which is the quality standard of ophthalmological microscope.

  10. Educational Software for Interference and Optical Diffraction Analysis in Fresnel and Fraunhofer Regions Based on MATLAB GUIs and the FDTD Method

    ERIC Educational Resources Information Center

    Frances, J.; Perez-Molina, M.; Bleda, S.; Fernandez, E.; Neipp, C.; Belendez, A.

    2012-01-01

    Interference and diffraction of light are elementary topics in optics. The aim of the work presented here is to develop an accurate and cheap optical-system simulation software that provides a virtual laboratory for studying the effects of propagation in both time and space for the near- and far-field regions. In laboratory sessions, this software…

  11. Update on Integrated Optical Design Analyzer

    NASA Technical Reports Server (NTRS)

    Moore, James D., Jr.; Troy, Ed

    2003-01-01

    Updated information on the Integrated Optical Design Analyzer (IODA) computer program has become available. IODA was described in Software for Multidisciplinary Concurrent Optical Design (MFS-31452), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 8a. To recapitulate: IODA facilitates multidisciplinary concurrent engineering of highly precise optical instruments. The architecture of IODA was developed by reviewing design processes and software in an effort to automate design procedures. IODA significantly reduces design iteration cycle time and eliminates many potential sources of error. IODA integrates the modeling efforts of a team of experts in different disciplines (e.g., optics, structural analysis, and heat transfer) working at different locations and provides seamless fusion of data among thermal, structural, and optical models used to design an instrument. IODA is compatible with data files generated by the NASTRAN structural-analysis program and the Code V (Registered Trademark) optical-analysis program, and can be used to couple analyses performed by these two programs. IODA supports multiple-load-case analysis for quickly accomplishing trade studies. IODA can also model the transient response of an instrument under the influence of dynamic loads and disturbances.

  12. Fast and accurate modeling of stray light in optical systems

    NASA Astrophysics Data System (ADS)

    Perrin, Jean-Claude

    2017-11-01

    The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.

  13. Optical Coherence Tomography Angiography in Optic Disc Swelling.

    PubMed

    Fard, Masoud Aghsaei; Jalili, Jalil; Sahraiyan, Alireza; Khojasteh, Hassan; Hejazi, Marjane; Ritch, Robert; Subramanian, Prem S

    2018-05-04

    To compare optical coherence tomography angiography (OCT-A) of peripapillary total vasculature and capillaries in patients with optic disc swelling. Cross-sectional study. Twenty nine eyes with acute nonarteritic anterior ischemic optic neuropathy (NAION), 44 eyes with papilledema, 8 eyes with acute optic neuritis, and 48 eyes of normal subjects were imaged using OCT-A. Peripapillary total vasculature information was recorded using a commercial vessel density map. Customized image analysis with major vessel removal was also used to measure whole-image capillary density and peripapillary capillary density (PCD). Mixed models showed that the peripapillary total vasculature density values were significantly lower in NAION eyes, followed by papilledema eyes and control eyes, using commercial software (P < .0001 for all comparisons). The customized software also showed significantly lower PCD of NAION eyes compared with papilledema eyes (all P < .001), but did not show significant differences between papilledema and control subjects. Our software showed significantly lower whole image and PCD in eyes with optic neuritis than papilledema. There was no significant difference between NAION and optic neuritis using our software. The area under the receiver operating curves for discriminating NAION from papilledema eyes and optic neuritis from papilledema eyes was highest for whole-image capillary density (0.94 and 0.80, respectively) with our software, followed by peripapillary total vasculature (0.9 and 0.74, respectively ) with commercial software. OCT-A is helpful to distinguish NAION and papillitis from papilledema. Whole-image capillary density had the greatest diagnostic accuracy for differentiating disc swelling. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Real Time Metrology Using Heterodyne Interferometry

    NASA Astrophysics Data System (ADS)

    Evans, Joseph T..., Jr.

    1983-11-01

    The Air Force Weapons Laboratory (AFWL) located at Albuquerque, NM has developed a digital heterodyne interferometer capable of real-time, closed loop analysis and control of adaptive optics. The device uses independent phase modulation of two orthogonal polarizations of an argon ion laser to produce a temporally phase modulated interferogram of the test object in a Twyman-Green interferometer. Differential phase detection under the control of a Data General minicomputer helps reconstruct the phase front without noise effects from amplitude modulation in the optical train. The system consists of the interferometer optics, phase detection circuitry, and the minicomputer, allowing for complete software control of the process. The software has been unified into a powerful package that performs automatic data acquisition, OPD reconstruction, and Zernike analysis of the resulting wavefront. The minicomputer has the capability to control external devices so that closed loop analysis and control is possible. New software under development will provide a framework of data acquisition, display, and storage packages which can be integrated with analysis and control packages customized to the user's needs. Preliminary measurements with the system show that it is noise limited by laser beam phase quality and vibration of the optics. Active measures are necessary to reduce the impact of these noise sources.

  15. Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2013-09-01

    Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.

  16. RxGen General Optical Model Prescription Generator

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert

    2012-01-01

    RxGen is a prescription generator for JPL's in-house optical modeling software package called MACOS (Modeling and Analysis for Controlled Optical Systems), which is an expert optical analysis software package focusing on modeling optics on dynamic structures, deformable optics, and controlled optics. The objectives of RxGen are to simplify and automate MACOS prescription generations, reducing errors associated with creating such optical prescriptions, and improving user efficiency without requiring MACOS proficiency. RxGen uses MATLAB (a high-level language and interactive environment developed by MathWorks) as the development and deployment platform, but RxGen can easily be ported to another optical modeling/analysis platform. Running RxGen within the modeling environment has the huge benefit that variations in optical models can be made an integral part of the modeling state. For instance, optical prescription parameters determined as external functional dependencies, optical variations by controlling the in-/exclusion of optical components like sub-systems, and/or controlling the state of all components. Combining the mentioned capabilities and flexibilities with RxGen's optical abstraction layer completely eliminates the hindering aspects for requiring proficiency in writing/editing MACOS prescriptions, allowing users to focus on the modeling aspects of optical systems, i.e., increasing productivity and efficiency. RxGen provides significant enhancements to MACOS and delivers a framework for fast prototyping as well as for developing very complex controlled optical systems.

  17. Adaptive optics system for the IRSOL solar observatory

    NASA Astrophysics Data System (ADS)

    Ramelli, Renzo; Bucher, Roberto; Rossini, Leopoldo; Bianda, Michele; Balemi, Silvano

    2010-07-01

    We present a low cost adaptive optics system developed for the solar observatory at Istituto Ricerche Solari Locarno (IRSOL), Switzerland. The Shack-Hartmann Wavefront Sensor is based on a Dalsa CCD camera with 256 pixels × 256 pixels working at 1kHz. The wavefront compensation is obtained by a deformable mirror with 37 actuators and a Tip-Tilt mirror. A real time control software has been developed on a RTAI-Linux PC. Scicos/Scilab based software has been realized for an online analysis of the system behavior. The software is completely open source.

  18. Center for Adaptive Optics | Software

    Science.gov Websites

    Center for Adaptive Optics A University of California Science and Technology Center home Adaptive Optics Software The Center for Adaptive Optics acts as a clearing house for distributing Software to Institutes it gives specialists in Adaptive Optics a place to distribute their software. All software is

  19. Advances in the production of freeform optical surfaces

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.; Luniya, Suneet S.

    2007-05-01

    Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.

  20. Light extraction efficiency analysis of GaN-based light-emitting diodes with nanopatterned sapphire substrates.

    PubMed

    Pan, Jui-Wen; Tsai, Pei-Jung; Chang, Kao-Der; Chang, Yung-Yuan

    2013-03-01

    In this paper, we propose a method to analyze the light extraction efficiency (LEE) enhancement of a nanopatterned sapphire substrates (NPSS) light-emitting diode (LED) by comparing wave optics software with ray optics software. Finite-difference time-domain (FDTD) simulations represent the wave optics software and Light Tools (LTs) simulations represent the ray optics software. First, we find the trends of and an optimal solution for the LEE enhancement when the 2D-FDTD simulations are used to save on simulation time and computational memory. The rigorous coupled-wave analysis method is utilized to explain the trend we get from the 2D-FDTD algorithm. The optimal solution is then applied in 3D-FDTD and LTs simulations. The results are similar and the difference in LEE enhancement between the two simulations does not exceed 8.5% in the small LED chip area. More than 10(4) times computational memory is saved during the LTs simulation in comparison to the 3D-FDTD simulation. Moreover, LEE enhancement from the side of the LED can be obtained in the LTs simulation. An actual-size NPSS LED is simulated using the LTs. The results show a more than 307% improvement in the total LEE enhancement of the NPSS LED with the optimal solution compared to the conventional LED.

  1. The Open AUC Project.

    PubMed

    Cölfen, Helmut; Laue, Thomas M; Wohlleben, Wendel; Schilling, Kristian; Karabudak, Engin; Langhorst, Bradley W; Brookes, Emre; Dubbs, Bruce; Zollars, Dan; Rocco, Mattia; Demeler, Borries

    2010-02-01

    Progress in analytical ultracentrifugation (AUC) has been hindered by obstructions to hardware innovation and by software incompatibility. In this paper, we announce and outline the Open AUC Project. The goals of the Open AUC Project are to stimulate AUC innovation by improving instrumentation, detectors, acquisition and analysis software, and collaborative tools. These improvements are needed for the next generation of AUC-based research. The Open AUC Project combines on-going work from several different groups. A new base instrument is described, one that is designed from the ground up to be an analytical ultracentrifuge. This machine offers an open architecture, hardware standards, and application programming interfaces for detector developers. All software will use the GNU Public License to assure that intellectual property is available in open source format. The Open AUC strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have plagued AUC innovation for the last 20 years. This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems. The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software. Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software.

  2. Novel non-contact retina camera for the rat and its application to dynamic retinal vessel analysis

    PubMed Central

    Link, Dietmar; Strohmaier, Clemens; Seifert, Bernd U.; Riemer, Thomas; Reitsamer, Herbert A.; Haueisen, Jens; Vilser, Walthard

    2011-01-01

    We present a novel non-invasive and non-contact system for reflex-free retinal imaging and dynamic retinal vessel analysis in the rat. Theoretical analysis was performed prior to development of the new optical design, taking into account the optical properties of the rat eye and its specific illumination and imaging requirements. A novel optical model of the rat eye was developed for use with standard optical design software, facilitating both sequential and non-sequential modes. A retinal camera for the rat was constructed using standard optical and mechanical components. The addition of a customized illumination unit and existing standard software enabled dynamic vessel analysis. Seven-minute in-vivo vessel diameter recordings performed on 9 Brown-Norway rats showed stable readings. On average, the coefficient of variation was (1.1 ± 0.19) % for the arteries and (0.6 ± 0.08) % for the veins. The slope of the linear regression analysis was (0.56 ± 0.26) % for the arteries and (0.15 ± 0.27) % for the veins. In conclusion, the device can be used in basic studies of retinal vessel behavior. PMID:22076270

  3. Dispersed Fringe Sensing Analysis - DFSA

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.

    2012-01-01

    Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems.

  4. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  5. MORTICIA, a statistical analysis software package for determining optical surveillance system effectiveness.

    NASA Astrophysics Data System (ADS)

    Ramkilowan, A.; Griffith, D. J.

    2017-10-01

    Surveillance modelling in terms of the standard Detect, Recognise and Identify (DRI) thresholds remains a key requirement for determining the effectiveness of surveillance sensors. With readily available computational resources it has become feasible to perform statistically representative evaluations of the effectiveness of these sensors. A new capability for performing this Monte-Carlo type analysis is demonstrated in the MORTICIA (Monte- Carlo Optical Rendering for Theatre Investigations of Capability under the Influence of the Atmosphere) software package developed at the Council for Scientific and Industrial Research (CSIR). This first generation, python-based open-source integrated software package, currently in the alpha stage of development aims to provide all the functionality required to perform statistical investigations of the effectiveness of optical surveillance systems in specific or generic deployment theatres. This includes modelling of the mathematical and physical processes that govern amongst other components of a surveillance system; a sensor's detector and optical components, a target and its background as well as the intervening atmospheric influences. In this paper we discuss integral aspects of the bespoke framework that are critical to the longevity of all subsequent modelling efforts. Additionally, some preliminary results are presented.

  6. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  7. TransFit: Finite element analysis data fitting software

    NASA Technical Reports Server (NTRS)

    Freeman, Mark

    1993-01-01

    The Advanced X-Ray Astrophysics Facility (AXAF) mission support team has made extensive use of geometric ray tracing to analyze the performance of AXAF developmental and flight optics. One important aspect of this performance modeling is the incorporation of finite element analysis (FEA) data into the surface deformations of the optical elements. TransFit is software designed for the fitting of FEA data of Wolter I optical surface distortions with a continuous surface description which can then be used by SAO's analytic ray tracing software, currently OSAC (Optical Surface Analysis Code). The improved capabilities of Transfit over previous methods include bicubic spline fitting of FEA data to accommodate higher spatial frequency distortions, fitted data visualization for assessing the quality of fit, the ability to accommodate input data from three FEA codes plus other standard formats, and options for alignment of the model coordinate system with the ray trace coordinate system. TransFit uses the AnswerGarden graphical user interface (GUI) to edit input parameters and then access routines written in PV-WAVE, C, and FORTRAN to allow the user to interactively create, evaluate, and modify the fit. The topics covered include an introduction to TransFit: requirements, designs philosophy, and implementation; design specifics: modules, parameters, fitting algorithms, and data displays; a procedural example; verification of performance; future work; and appendices on online help and ray trace results of the verification section.

  8. Ghost analysis visualization techniques for complex systems: examples from the NIF Final Optics Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, G K; Hendrix, J L; Rowe, J

    1998-06-26

    The stray light or "ghost" analysis of the National Ignition Facility's (NIP) Final Optics Assembly (FOA) has proved to be one of the most complex ghost analyses ever attempted. The NIF FOA consists of a bundle of four beam lines that: 1) provides the vacuum seal to the target chamber, 2) converts 1ω to 3ω light, 3) focuses the light on the target, 4) separates a fraction of the 3ω beam for energy diagnostics, 5) separates the three wavelengths to diffract unwanted 1ω & 2ω light away from the target, 6) provides spatial beam smoothing, and 7) provides a debrismore » barrier between the target chamber and the switchyard mirrors. The three wavelengths of light and seven optical elements with three diffractive optic surfaces generate three million ghosts through 4 th order. Approximately 24,000 of these ghosts have peak fluence exceeding 1 J/cm 2. The shear number of ghost paths requires a visualization method that allows overlapping ghosts on optics and mechanical components to be summed and then mapped to the optical and mechanical component surfaces in 3D space. This paper addresses the following aspects of the NIF Final Optics Ghost analysis: 1) materials issues for stray light mitigation, 2) limitations of current software tools (especially in modeling diffractive optics), 3) computer resource limitations affecting automated coherent raytracing, 4) folding the stray light analysis into the opto-mechanical design process, 5) analysis and visualization tools from simple hand calculations to specialized stray light analysis computer codes, and 6) attempts at visualizing these ghosts using a CAD model and another using a high end data visualization software approach.« less

  9. Model-based engineering for laser weapons systems

    NASA Astrophysics Data System (ADS)

    Panthaki, Malcolm; Coy, Steve

    2011-10-01

    The Comet Performance Engineering Workspace is an environment that enables integrated, multidisciplinary modeling and design/simulation process automation. One of the many multi-disciplinary applications of the Comet Workspace is for the integrated Structural, Thermal, Optical Performance (STOP) analysis of complex, multi-disciplinary space systems containing Electro-Optical (EO) sensors such as those which are designed and developed by and for NASA and the Department of Defense. The CometTM software is currently able to integrate performance simulation data and processes from a wide range of 3-D CAD and analysis software programs including CODE VTM from Optical Research Associates and SigFitTM from Sigmadyne Inc. which are used to simulate the optics performance of EO sensor systems in space-borne applications. Over the past year, Comet Solutions has been working with MZA Associates of Albuquerque, NM, under a contract with the Air Force Research Laboratories. This funded effort is a "risk reduction effort", to help determine whether the combination of Comet and WaveTrainTM, a wave optics systems engineering analysis environment developed and maintained by MZA Associates and used by the Air Force Research Laboratory, will result in an effective Model-Based Engineering (MBE) environment for the analysis and design of laser weapons systems. This paper will review the results of this effort and future steps.

  10. NASA Tech Briefs, March 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The topics include: 1) Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy; 2) Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control; 3) In Situ Geochemical Analysis and Age Dating of Rocks Using Laser Ablation-Miniature Mass Spectrometer; 4) Physics Mining of Multi-Source Data Sets; 5) Photogrammetry Tool for Forensic Analysis; 6) Connect Global Positioning System RF Module; 7) Simple Cell Balance Circuit; 8) Miniature EVA Software Defined Radio; 9) Remotely Accessible Testbed for Software Defined Radio Development; 10) System-of-Systems Technology-Portfolio-Analysis Tool; 11) VESGEN Software for Mapping and Quantification of Vascular Regulators; 12) Constructing a Database From Multiple 2D Images for Camera Pose Estimation and Robot Localization; 13) Adaption of G-TAG Software for Validating Touch and Go Asteroid Sample Return Design Methodology; 14) 3D Visualization for Phoenix Mars Lander Science Operations; 15) RxGen General Optical Model Prescription Generator; 16) Carbon Nanotube Bonding Strength Enhancement Using Metal Wicking Process; 17) Multi-Layer Far-Infrared Component Technology; 18) Germanium Lift-Off Masks for Thin Metal Film Patterning; 19) Sealing Materials for Use in Vacuum at High Temperatures; 20) Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded With Electropolymers; 21) Nano Sponges for Drug Delivery and Medicinal Applications; 22) Molecular Technique to Understand Deep Microbial Diversity; 23) Methods and Compositions Based on Culturing Microorganisms in Low Sedimental Fluid Shear Conditions; 24) Secure Peer-to-Peer Networks for Scientific Information Sharing; 25) Multiplexer/Demultiplexer Loading Tool (MDMLT); 26) High-Rate Data-Capture for an Airborne Lidar System; 27) Wavefront Sensing Analysis of Grazing Incidence Optical Systems; 28) Foam-on-Tile Damage Model; 29) Instrument Package Manipulation Through the Generation and Use of an Attenuated-Fluent Gas Fold; 30) Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras; 31) Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem; and 32) Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes.

  11. Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing

    NASA Astrophysics Data System (ADS)

    Lin, Psang Dain; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat's eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  12. Analysis and Design of Optical Systems by Use of Sensitivity Analysis of Skew Ray Tracing

    NASA Astrophysics Data System (ADS)

    Dain Lin, Psang; Lu, Chia-Hung

    2004-02-01

    Optical systems are conventionally evaluated by ray-tracing techniques that extract performance quantities such as aberration and spot size. Current optical analysis software does not provide satisfactory analytical evaluation functions for the sensitivity of an optical system. Furthermore, when functions oscillate strongly, the results are of low accuracy. Thus this work extends our earlier research on an advanced treatment of reflected or refracted rays, referred to as sensitivity analysis, in which differential changes of reflected or refracted rays are expressed in terms of differential changes of incident rays. The proposed sensitivity analysis methodology for skew ray tracing of reflected or refracted rays that cross spherical or flat boundaries is demonstrated and validated by the application of a cat ?s eye retroreflector to the design and by the image orientation of a system with noncoplanar optical axes. The proposed sensitivity analysis is projected as the nucleus of other geometrical optical computations.

  13. Analysis of Multilayered Printed Circuit Boards using Computed Tomography

    DTIC Science & Technology

    2014-05-01

    complex PCBs that present a challenge for any testing or fault analysis. Set-to- work testing and fault analysis of any electronic circuit require...Electronic Warfare and Radar Division in December 2010. He is currently in Electro- Optic Countermeasures Group. Samuel works on embedded system design...and software optimisation of complex electro-optical systems, including the set to work and characterisation of these systems. He has a Bachelor of

  14. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.

    PubMed

    Afouxenidis, D; Polymeris, G S; Tsirliganis, N C; Kitis, G

    2012-05-01

    This paper exploits the possibility of using commercial software for thermoluminescence and optically stimulated luminescence curve deconvolution analysis. The widely used software package Microsoft Excel, with the Solver utility has been used to perform deconvolution analysis to both experimental and reference glow curves resulted from the GLOw Curve ANalysis INtercomparison project. The simple interface of this programme combined with the powerful Solver utility, allows the analysis of complex stimulated luminescence curves into their components and the evaluation of the associated luminescence parameters.

  15. CAD Integration : new optical design possibilities

    NASA Astrophysics Data System (ADS)

    Haumonte, Jean-Baptiste; Venturino, Jean-Claude

    2005-09-01

    The development of optical design and analysis tools in a CAD software can help to optimise the design, size and performance of tomorrow's consumer products. While optics was still held back by software limitations, CAD programs were moving forward in leaps and bounds, improving manufacturing technologies and making it possible to design and produce highly innovative and sophisticated products. The problem was that in the past, 'traditional' optical design programs were only able to simulate spherical and aspherical lenses, meaning that the optical designers were limited to designing systems which were a series of imperfect lenses, each one correcting the last. That is why OPTIS has created the first optical design program to be fully integrated into a CAD program. The technology is available from OPTIS in an integrated SOLIDWORKS or CATIA V5 version. Users of this software can reduce the number of lenses needed in a system. Designers will now have access to complex surfaces such as NURBS meaning they will now be able to define free shape progressive lenses and even improve on optical performances using fewer lenses. This revolutionary technology will allow mechanical designers to work on optical systems and to share information with optical designers for the first time. Previously not possible in a CAD program you may now determine all the optical performances of any optical system, providing first order and third order performances, sequential and non-sequential ray-tracing, wavefront surfaces, point spread function, MTF, spot-diagram, using real optical surfaces and guaranteeing the mechanical precision necessary for an optical system.

  16. TweezPal - Optical tweezers analysis and calibration software

    NASA Astrophysics Data System (ADS)

    Osterman, Natan

    2010-11-01

    Optical tweezers, a powerful tool for optical trapping, micromanipulation and force transduction, have in recent years become a standard technique commonly used in many research laboratories and university courses. Knowledge about the optical force acting on a trapped object can be gained only after a calibration procedure which has to be performed (by an expert) for each type of trapped objects. In this paper we present TweezPal, a user-friendly, standalone Windows software tool for optical tweezers analysis and calibration. Using TweezPal, the procedure can be performed in a matter of minutes even by non-expert users. The calibration is based on the Brownian motion of a particle trapped in a stationary optical trap, which is being monitored using video or photodiode detection. The particle trajectory is imported into the software which instantly calculates position histogram, trapping potential, stiffness and anisotropy. Program summaryProgram title: TweezPal Catalogue identifier: AEGR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 44 891 No. of bytes in distributed program, including test data, etc.: 792 653 Distribution format: tar.gz Programming language: Borland Delphi Computer: Any PC running Microsoft Windows Operating system: Windows 95, 98, 2000, XP, Vista, 7 RAM: 12 Mbytes Classification: 3, 4.14, 18, 23 Nature of problem: Quick, robust and user-friendly calibration and analysis of optical tweezers. The optical trap is calibrated from the trajectory of a trapped particle undergoing Brownian motion in a stationary optical trap (input data) using two methods. Solution method: Elimination of the experimental drift in position data. Direct calculation of the trap stiffness from the positional variance. Calculation of 1D optical trapping potential from the positional distribution of data points. Trap stiffness calculation by fitting a parabola to the trapping potential. Presentation of X-Y positional density for close inspection of the 2D trapping potential. Calculation of the trap anisotropy. Running time: Seconds

  17. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a desired number of steps perceived necessary to build up the bounding volume or cone shape. At each plane, the ray coordinates are again evaluated using the convex hull algorithm to reduce the data to a minimal set. When all of the coordinates of interest are obtained for every plane of the propagation, the data is formatted into an xyz file suitable for FRED optical analysis software to import and create a STEP file of the data. This results in a spiral-like structure that is easily imported by mechanical CAD users who can then use an automated algorithm to wrap a skin around it and create a solid that represents the beam.

  18. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  19. Software and mathematical support of Kazakhstani star tracker

    NASA Astrophysics Data System (ADS)

    Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A.

    2016-10-01

    Currently the specialists of Kazakhstan have been developing the star tracker that is further planned to use on Kazakhstani satellites of various purposes. At the first stage it has been developed the experimental model of star tracker that has following characteristics: field of view 20°, update frequency 2 Hz, exclusion angle 40°, accuracy of attitude determination of optical axis/around optical axis 15/50 arcsec. Software and mathematical support are the most high technology parts of star tracker. The results of software and mathematical support development of experimental model of Kazakhstani star tracker are represented in this article. In particular, there are described the main mathematical models and algorithms that have been used as a basis for program units of preliminary image processing of starry sky, stars identification and star tracker attitude determination. The results of software and mathematical support testing with the help of program simulation complex using various configurations of defects including image sensor noises, point spread function modeling, optical system distortion up to 2% are presented. Analysis of testing results has shown that accuracy of attitude determination of star tracker is within the permissible range

  20. Integration of LCoS-SLM and LabVIEW based software to simulate fundamental optics, wave optics, and Fourier optics

    NASA Astrophysics Data System (ADS)

    Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei

    2017-08-01

    Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.

  1. Future Directions for Astronomical Image Display

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    2000-01-01

    In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.

  2. Stray Light Analysis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Based on a Small Business Innovation Research contract from the Jet Propulsion Laboratory, TracePro is state-of-the-art interactive software created by Lambda Research Corporation to detect stray light in optical systems. An image can be ruined by incidental light in an optical system. To maintain image excellence from an optical system, stray light must be detected and eliminated. TracePro accounts for absorption, specular reflection and refraction, scattering and aperture diffraction of light. Output from the software consists of spatial irradiance plots and angular radiance plots. Results can be viewed as contour maps or as ray histories in tabular form. TracePro is adept at modeling solids such as lenses, baffles, light pipes, integrating spheres, non-imaging concentrators, and complete illumination systems. The firm's customer base includes Lockheed Martin, Samsung Electronics and other manufacturing, optical, aerospace, and educational companies worldwide.

  3. Integrating opto-thermo-mechanical design tools: open engineering's project presentation

    NASA Astrophysics Data System (ADS)

    De Vincenzo, P.; Klapka, Igor

    2017-11-01

    An integrated numerical simulation package dedicated to the analysis of the coupled interactions of optical devices is presented. To reduce human interventions during data transfers, it is based on in-memory communications between the structural analysis software OOFELIE and the optical design application ZEMAX. It allows the automated enhancement of the existing optical design with information related to the deformations of optical surfaces due to thermomechanical solicitations. From the knowledge of these deformations, a grid of points or a decomposition based on Zernike polynomials can be generated for each surface. These data are then applied to the optical design. Finally, indicators can be retrieved from ZEMAX in order to compare the optical performances with those of the system in its nominal configuration.

  4. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging

    PubMed Central

    Chew, Avenell L.; Lamey, Tina; McLaren, Terri; De Roach, John

    2016-01-01

    Purpose To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. Methods En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering)) were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO) and microperimetry. Results Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE) pathology due to segmentation error at the level of Bruch’s membrane (BM). Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities. Conclusions Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis. PMID:27959968

  5. FSO and quality of service software prediction

    NASA Astrophysics Data System (ADS)

    Bouchet, O.; Marquis, T.; Chabane, M.; Alnaboulsi, M.; Sizun, H.

    2005-08-01

    Free-space optical (FSO) communication links constitute an alternative option to radio relay links and to optical cables facing growth needs in high-speed telecommunications (abundance of unregulated bandwidth, rapid installation, availability of low-cost optical components offering a high data rate, etc). Their operationalisation requires a good knowledge of the atmospheric effects which can negatively affect role propagation and the availability of the link, and thus to the quality of service (QoS). Better control of these phenomena will allow for the evaluation of system performance and thus assist with improving reliability. The aim of this paper is to compare the behavior of a FSO link located in south of France (Toulouse: with the following parameters: around 270 meters (0.2 mile) long, 34 Mbps data rate, 850 nm wavelength and PDH frame) with airport meteorological data. The second aim of the paper is to assess in-house FSO quality of service prediction software, through comparing simulations with the optical link data and the weather data. The analysis uses in-house software FSO quality of service prediction software ("FSO Prediction") developed by France Telecom Research & Development, which integrates news fog fading equations (compare to Kim & al.) and includes multiple effects (geometrical attenuation, atmospheric fading, rain, snow, scintillation and refraction attenuation due to atmospheric turbulence, optical mispointing attenuation). The FSO link field trial, intended to enable the demonstration and evaluation of these different effects, is described; and preliminary results of the field trial, from December 2004 to May 2005, are then presented.

  6. Using MountainsMap (Digital Surf) surface analysis software as an analysis tool for x-ray mirror optical metrology data

    NASA Astrophysics Data System (ADS)

    Duffy, Alan; Yates, Brian; Takacs, Peter

    2012-09-01

    The Optical Metrology Facility at the Canadian Light Source (CLS) has recently purchased MountainsMap surface analysis software from Digital Surf and we report here our experiences with this package and its usefulness as a tool for examining metrology data of synchrotron x-ray mirrors. The package has a number of operators that are useful for determining surface roughness and slope error including compliance with ISO standards (viz. ISO 4287 and ISO 25178). The software is extensible with MATLAB scripts either by loading an m-file or by a user written script. This makes it possible to apply a custom operator to measurement data sets. Using this feature we have applied the simple six-line MATLAB code for the direct least square fitting of ellipses developed by Fitzgibbon et. al. to investigate the residual slope error of elliptical mirrors upon the removal of the best-fit-ellipse. The software includes support for many instruments (e.g. Zygo, MicroMap, etc...) and can import ASCII data (e.g. LTP data). The stitching module allows the user to assemble overlapping images and we report on our experiences with this feature applied to MicroMap surface roughness data. The power spectral density function was determined for the stitched and unstitched data and compared.

  7. Analysis-Software for Hyperspectral Algal Reflectance Probes v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timlin, Jerilyn A.; Reichardt, Thomas A.; Jenson, Travis J.

    This software provides onsite analysis of the hyperspectral reflectance data acquired on an outdoor algal pond by a multichannel, fiber-coupled spectroradiometer. The analysis algorithm is based on numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a function of the single backscattering albedo, which is dependent on the backscatter and absorption coefficients of the algal culture, which are in turn related to the algal biomass and pigment optical activity, respectively. Prior to the development of this software, while raw multichannel data were displayed in real time, analysis required a post-processing procedure to extract the relevantmore » parameters. This software provides the capability to track the temporal variation of such culture parameters in real time, as raw data are being acquired, or can be run in a post processing mode. The software allows the user to select between different algal species, incorporate the appropriate calibration data, and observe the quality of the resulting model inversions.« less

  8. Pressure distribution under flexible polishing tools. I - Conventional aspheric optics

    NASA Astrophysics Data System (ADS)

    Mehta, Pravin K.; Hufnagel, Robert E.

    1990-10-01

    The paper presents a mathematical model, based on Kirchoff's thin flat plate theory, developed to determine polishing pressure distribution for a flexible polishing tool. A two-layered tool in which bending and compressive stiffnesses are equal is developed, which is formulated as a plate on a linearly elastic foundation. An equivalent eigenvalue problem and solution for a free-free plate are created from the plate formulation. For aspheric, anamorphic optical surfaces, the tool misfit is derived; it is defined as the result of movement from the initial perfect fit on the optic to any other position. The Polisher Design (POD) software for circular tools on aspheric optics is introduced. NASTRAN-based finite element analysis results are compared with the POD software, showing high correlation. By employing existing free-free eigenvalues and eigenfunctions, the work may be extended to rectangular polishing tools as well.

  9. Wide-field Imaging System and Rapid Direction of Optical Zoom (WOZ)

    DTIC Science & Technology

    2010-09-25

    commercial software packages: SolidWorks, COMSOL Multiphysics, and ZEMAX optical design. SolidWorks is a computer aided design package, which as a live...interface to COMSOL. COMSOL is a finite element analysis/partial differential equation solver. ZEMAX is an optical design package. Both COMSOL and... ZEMAX have live interfaces to MatLab. Our initial investigations have enabled a model in SolidWorks to be updated in COMSOL, an FEA calculation

  10. Review on Microstructure Analysis of Metals and Alloys Using Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Rekha, Suganthini; Bupesh Raja, V. K.

    2017-05-01

    The metals and alloys find vast application in engineering and domestic sectors. The mechanical properties of the metals and alloys are influenced by their microstructure. Hence the microstructural investigation is very critical. Traditionally the microstructure is studied using optical microscope with suitable metallurgical preparation. The past few decades the computers are applied in the capture and analysis of the optical micrographs. The advent of computer softwares like digital image processing and computer vision technologies are a boon to the analysis of the microstructure. In this paper the literature study of the various developments in the microstructural analysis, is done. The conventional optical microscope is complemented by the use of Scanning Electron Microscope (SEM) and other high end equipments.

  11. Taking the Observatory to the Astronomer

    NASA Astrophysics Data System (ADS)

    Bisque, T. M.

    1997-05-01

    Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.

  12. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.N.

    1990-01-01

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less

  13. Evaluation of Optical Disk Jukebox Software.

    ERIC Educational Resources Information Center

    Ranade, Sanjay; Yee, Fonald

    1989-01-01

    Discusses software that is used to drive and access optical disk jukeboxes, which are used for data storage. Categories of the software are described, user categories are explained, the design of implementation approaches is discussed, and representative software products are reviewed. (eight references) (LRW)

  14. Integration of design, structural, thermal and optical analysis: And user's guide for structural-to-optical translator (PATCOD)

    NASA Technical Reports Server (NTRS)

    Amundsen, R. M.; Feldhaus, W. S.; Little, A. D.; Mitchum, M. V.

    1995-01-01

    Electronic integration of design and analysis processes was achieved and refined at Langley Research Center (LaRC) during the development of an optical bench for a laser-based aerospace experiment. Mechanical design has been integrated with thermal, structural and optical analyses. Electronic import of the model geometry eliminates the repetitive steps of geometry input to develop each analysis model, leading to faster and more accurate analyses. Guidelines for integrated model development are given. This integrated analysis process has been built around software that was already in use by designers and analysis at LaRC. The process as currently implemented used Pro/Engineer for design, Pro/Manufacturing for fabrication, PATRAN for solid modeling, NASTRAN for structural analysis, SINDA-85 and P/Thermal for thermal analysis, and Code V for optical analysis. Currently, the only analysis model to be built manually is the Code V model; all others can be imported for the Pro/E geometry. The translator from PATRAN results to Code V optical analysis (PATCOD) was developed and tested at LaRC. Directions for use of the translator or other models are given.

  15. Simulation of aspheric tolerance with polynomial fitting

    NASA Astrophysics Data System (ADS)

    Li, Jing; Cen, Zhaofeng; Li, Xiaotong

    2018-01-01

    The shape of the aspheric lens changes caused by machining errors, resulting in a change in the optical transfer function, which affects the image quality. At present, there is no universally recognized tolerance criterion standard for aspheric surface. To study the influence of aspheric tolerances on the optical transfer function, the tolerances of polynomial fitting are allocated on the aspheric surface, and the imaging simulation is carried out by optical imaging software. Analysis is based on a set of aspheric imaging system. The error is generated in the range of a certain PV value, and expressed as a form of Zernike polynomial, which is added to the aspheric surface as a tolerance term. Through optical software analysis, the MTF of optical system can be obtained and used as the main evaluation index. Evaluate whether the effect of the added error on the MTF of the system meets the requirements of the current PV value. Change the PV value and repeat the operation until the acceptable maximum allowable PV value is obtained. According to the actual processing technology, consider the error of various shapes, such as M type, W type, random type error. The new method will provide a certain development for the actual free surface processing technology the reference value.

  16. Portable open-path optical remote sensing (ORS) Fourier transform infrared (FTIR) instrumentation miniaturization and software for point and click real-time analysis

    NASA Astrophysics Data System (ADS)

    Zemek, Peter G.; Plowman, Steven V.

    2010-04-01

    Advances in hardware have miniaturized the emissions spectrometer and associated optics, rendering them easily deployed in the field. Such systems are also suitable for vehicle mounting, and can provide high quality data and concentration information in minutes. Advances in software have accompanied this hardware evolution, enabling the development of portable point-and-click OP-FTIR systems that weigh less than 16 lbs. These systems are ideal for first-responders, military, law enforcement, forensics, and screening applications using optical remote sensing (ORS) methodologies. With canned methods and interchangeable detectors, the new generation of OP-FTIR technology is coupled to the latest forward reference-type model software to provide point-and-click technology. These software models have been established for some time. However, refined user-friendly models that use active, passive, and solar occultation methodologies now allow the user to quickly field-screen and quantify plumes, fence-lines, and combustion incident scenarios in high-temporal-resolution. Synthetic background generation is now redundant as the models use highly accurate instrument line shape (ILS) convolutions and several other parameters, in conjunction with radiative transfer model databases to model a single calibration spectrum to collected sample spectra. Data retrievals are performed directly on single beam spectra using non-linear classical least squares (NLCLS). Typically, the Hitran line database is used to generate the initial calibration spectrum contained within the software.

  17. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  18. Design and evaluation of a THz time domain imaging system using standard optical design software.

    PubMed

    Brückner, Claudia; Pradarutti, Boris; Müller, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas

    2008-09-20

    A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.

  19. Contamination control research activities for space optics in JAXA RANDD

    NASA Astrophysics Data System (ADS)

    Kimoto, Y.

    2017-11-01

    Contamination control research activities for space optics projects in JAXA R&D are described. More accurate contamination control techniques are requested because of intensified recent science mission requirements. One approach to control the contamination effects is analysis by software. JAXA has been developing a contamination analytical tool "J-SPICE" (Japanese Spacecraft Induced Contamination analysis software) as well as experiment facilities to improve the J-SPICE. A reflection model in J-SPICE has been experimentally verified and outgassing model data has been acquired by a facility. JAXA has developed a facility which could determine the influence of the contamination at a specific wavelength by combining a vacuum chamber with an I-R spectrometer and performed an experiment to inspect the effect of baking. Space material exposure experiment results reveal the actual thickness of the contamination layer in ISS orbit.

  20. Optical eye simulator for laser dazzle events.

    PubMed

    Coelho, João M P; Freitas, José; Williamson, Craig A

    2016-03-20

    An optical simulator of the human eye and its application to laser dazzle events are presented. The simulator combines optical design software (ZEMAX) with a scientific programming language (MATLAB) and allows the user to implement and analyze a dazzle scenario using practical, real-world parameters. Contrary to conventional analytical glare analysis, this work uses ray tracing and the scattering model and parameters for each optical element of the eye. The theoretical background of each such element is presented in relation to the model. The overall simulator's calibration, validation, and performance analysis are achieved by comparison with a simpler model based uponCIE disability glare data. Results demonstrate that this kind of advanced optical eye simulation can be used to represent laser dazzle and has the potential to extend the range of applicability of analytical models.

  1. Development and Integration of Control System Models

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  2. SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales.

    PubMed

    Rueckl, Martin; Lenzi, Stephen C; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W

    2017-01-01

    The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca 2+ -imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca 2+ imaging datasets, particularly when these have been acquired at different spatial scales.

  3. SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales

    PubMed Central

    Rueckl, Martin; Lenzi, Stephen C.; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W.

    2017-01-01

    The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca2+-imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca2+ imaging datasets, particularly when these have been acquired at different spatial scales. PMID:28706482

  4. Software Development to Assist in the Processing and Analysis of Data Obtained Using Fiber Bragg Grating Interrogation Systems

    NASA Technical Reports Server (NTRS)

    Hicks, Rebecca

    2009-01-01

    A fiber Bragg grating is a portion of a core of a fiber optic strand that has been treated to affect the way light travels through the strand. Light within a certain narrow range of wavelengths will be reflected along the fiber by the grating, while light outside that range will pass through the grating mostly undisturbed. Since the range of wavelengths that can penetrate the grating depends on the grating itself as well as temperature and mechanical strain, fiber Bragg gratings can be used as temperature and strain sensors. This capability, along with the light-weight nature of the fiber optic strands in which the gratings reside, make fiber optic sensors an ideal candidate for flight testing and monitoring in which temperature and wing strain are factors. The purpose of this project is to research the availability of software capable of processing massive amounts of data in both real-time and post-flight settings, and to produce software segments that can be integrated to assist in the task as well.

  5. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components' optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  6. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components" optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  7. Pricing Software and Information on CD-ROM.

    ERIC Educational Resources Information Center

    Gibbins, Patrick

    1987-01-01

    Examines the relationships between purchases of optical data disk products, publishers, and software suppliers. The discussion covers current pricing strategies for optical data disk software and information products, and possible future developments in marketing and pricing. (CLB)

  8. Thermal management and design for optical refrigeration

    NASA Astrophysics Data System (ADS)

    Symonds, G.; Farfan, B. G.; Ghasemkhani, M. R.; Albrecht, A. R.; Sheik-Bahae, M.; Epstein, R. I.

    2016-03-01

    We present our recent work in developing a robust and versatile optical refrigerator. This work focuses on minimizing parasitic energy losses through efficient design and material optimization. The cooler's thermal linkage system and housing are studied using thermal analysis software to minimize thermal gradients through the device. Due to the extreme temperature differences within the device, material selection and characterization are key to constructing an efficient device. We describe the design constraints and material selections necessary for thermally efficient and durable optical refrigeration.

  9. OIPAV: an integrated software system for ophthalmic image processing, analysis and visualization

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Xiang, Dehui; Jin, Chao; Shi, Fei; Yu, Kai; Chen, Xinjian

    2018-03-01

    OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.

  10. Development of online NIR urine analyzing system based on AOTF

    NASA Astrophysics Data System (ADS)

    Wan, Feng; Sun, Zhendong; Li, Xiaoxia

    2006-09-01

    In this paper, some key techniques on development of on-line MR urine analyzing system based on AOTF (Acousto - Optics Tunable Filter) are introduced. Problems about designing the optical system including collimation of incident light and working distance (the shortest distance for separating incident light and diffracted light) are analyzed and researched. DDS (Direct Digital Synthesizer) controlled by microprocessor is used to realize the wavelength scan. The experiment results show that this MR urine analyzing system based on. AOTF has 10000 - 4000cm -1 wavelength range and O.3ms wavelength transfer rate. Compare with the conventional Fourier Transform NIP. spectrophotometer for analyzing multi-components in urine, this system features low cost, small volume and on-line measurement function. Unscrambler software (multivariate statistical software by CAMO Inc. Norway) is selected as the software for processing the data. This system can realize on line quantitative analysis of protein, urea and creatinine in urine.

  11. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  12. Optical analysis of crystal growth

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Passeur, Andrea; Harper, Sabrina

    1994-01-01

    Processing and data reduction of holographic images from Spacelab presents some interesting challenges in determining the effects of microgravity on crystal growth processes. Evaluation of several processing techniques, including the Computerized Holographic Image Processing System and the image processing software ITEX150, will provide fundamental information for holographic analysis of the space flight data.

  13. "Diagnosis by behavioral observation" home-videosomnography - a rigorous ethnographic approach to sleep of children with neurodevelopmental conditions.

    PubMed

    Ipsiroglu, Osman S; Hung, Yi-Hsuan Amy; Chan, Forson; Ross, Michelle L; Veer, Dorothee; Soo, Sonja; Ho, Gloria; Berger, Mai; McAllister, Graham; Garn, Heinrich; Kloesch, Gerhard; Barbosa, Adriano Vilela; Stockler, Sylvia; McKellin, William; Vatikiotis-Bateson, Eric

    2015-01-01

    Advanced video technology is available for sleep-laboratories. However, low-cost equipment for screening in the home setting has not been identified and tested, nor has a methodology for analysis of video recordings been suggested. We investigated different combinations of hardware/software for home-videosomnography (HVS) and established a process for qualitative and quantitative analysis of HVS-recordings. A case vignette (HVS analysis for a 5.5-year-old girl with major insomnia and several co-morbidities) demonstrates how methodological considerations were addressed and how HVS added value to clinical assessment. We suggest an "ideal set of hardware/software" that is reliable, affordable (∼$500) and portable (=2.8 kg) to conduct non-invasive HVS, which allows time-lapse analyses. The equipment consists of a net-book, a camera with infrared optics, and a video capture device. (1) We present an HVS-analysis protocol consisting of three steps of analysis at varying replay speeds: (a) basic overview and classification at 16× normal speed; (b) second viewing and detailed descriptions at 4-8× normal speed, and (c) viewing, listening, and in-depth descriptions at real-time speed. (2) We also present a custom software program that facilitates video analysis and note-taking (Annotator(©)), and Optical Flow software that automatically quantifies movement for internal quality control of the HVS-recording. The case vignette demonstrates how the HVS-recordings revealed the dimension of insomnia caused by restless legs syndrome, and illustrated the cascade of symptoms, challenging behaviors, and resulting medications. The strategy of using HVS, although requiring validation and reliability testing, opens the floor for a new "observational sleep medicine," which has been useful in describing discomfort-related behavioral movement patterns in patients with communication difficulties presenting with challenging/disruptive sleep/wake behaviors.

  14. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol

    NASA Astrophysics Data System (ADS)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang

    2016-02-01

    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  15. Validation of luminescent source reconstruction using spectrally resolved bioluminescence images

    NASA Astrophysics Data System (ADS)

    Virostko, John M.; Powers, Alvin C.; Jansen, E. D.

    2008-02-01

    This study examines the accuracy of the Living Image® Software 3D Analysis Package (Xenogen, Alameda, CA) in reconstruction of light source depth and intensity. Constant intensity light sources were placed in an optically homogeneous medium (chicken breast). Spectrally filtered images were taken at 560, 580, 600, 620, 640, and 660 nanometers. The Living Image® Software 3D Analysis Package was employed to reconstruct source depth and intensity using these spectrally filtered images. For sources shallower than the mean free path of light there was proportionally higher inaccuracy in reconstruction. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively. The ability to distinguish multiple sources decreased with increasing source depth and typically required a spatial separation of twice the depth. The constant intensity light sources were also implanted in mice to examine the effect of optical inhomogeneity. The reconstruction accuracy suffered in inhomogeneous tissue with accuracy influenced by the choice of optical properties used in reconstruction.

  16. Enhancing performance of LCoS-SLM as adaptive optics by using computer-generated holograms modulation software

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh

    2017-05-01

    We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system

  17. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  18. Computerized literature reference system: use of an optical scanner and optical character recognition software.

    PubMed

    Lossef, S V; Schwartz, L H

    1990-09-01

    A computerized reference system for radiology journal articles was developed by using an IBM-compatible personal computer with a hand-held optical scanner and optical character recognition software. This allows direct entry of scanned text from printed material into word processing or data-base files. Additionally, line diagrams and photographs of radiographs can be incorporated into these files. A text search and retrieval software program enables rapid searching for keywords in scanned documents. The hand scanner and software programs are commercially available, relatively inexpensive, and easily used. This permits construction of a personalized radiology literature file of readily accessible text and images requiring minimal typing or keystroke entry.

  19. Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system

    NASA Astrophysics Data System (ADS)

    Kampmann, R.; Sinzinger, S.

    2014-12-01

    In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.

  20. Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching

    NASA Astrophysics Data System (ADS)

    Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David

    2011-05-01

    The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.

  1. [Design and Realization of Personalized Corneal Analysis Software Based on Corneal Topography System].

    PubMed

    Huang, Xueping; Xie, Zhonghao; Cen, Qin; Zheng, Suilian

    2016-08-01

    As the most important refraction part in the optical system,cornea possesses characteristics which are important parameters in ophthalmology clinical surgery.During the measurement of the cornea in our study,we acquired the corneal data of Orbscan Ⅱ corneal topographer in real time using the Hook technology under Windows,and then took the data into the corneal analysis software.We then further analyzed and calculated the data to obtain individual Q-value of overall corneal 360semi-meridian.The corneal analysis software took Visual C++ 6.0as development environment,used OpenGL graphics technology to draw three-dimensional individual corneal morphological map and the distribution curve of the Q-value,and achieved real-time corneal data query.It could be concluded that the analysis would further extend the function of the corneal topography system,and provide a solid foundation for the further study of automatic screening of corneal diseases.

  2. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition

    PubMed Central

    Sun, Ryan; Bouchard, Matthew B.; Hillman, Elizabeth M. C.

    2010-01-01

    Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software. PMID:21258475

  3. The initial design of LAPAN's IR micro bolometer using mission analysis process

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.

    2016-11-01

    As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process

  4. Easy-to-use software tools for teaching the basics, design and applications of optical components and systems

    NASA Astrophysics Data System (ADS)

    Gerhard, Christoph; Adams, Geoff

    2015-10-01

    Geometric optics is at the heart of optics teaching. Some of us may remember using pins and string to test the simple lens equation at school. Matters get more complex at undergraduate/postgraduate levels as we are introduced to paraxial rays, real rays, wavefronts, aberration theory and much more. Software is essential for the later stages, and the right software can profitably be used even at school. We present two free PC programs, which have been widely used in optics teaching, and have been further developed in close cooperation with lecturers/professors in order to address the current content of the curricula for optics, photonics and lasers in higher education. PreDesigner is a single thin lens modeller. It illustrates the simple lens law with construction rays and then allows the user to include field size and aperture. Sliders can be used to adjust key values with instant graphical feedback. This tool thus represents a helpful teaching medium for the visualization of basic interrelations in optics. WinLens3DBasic can model multiple thin or thick lenses with real glasses. It shows the system focii, principal planes, nodal points, gives paraxial ray trace values, details the Seidel aberrations, offers real ray tracing and many forms of analysis. It is simple to reverse lenses and model tilts and decenters. This tool therefore provides a good base for learning lens design fundamentals. Much work has been put into offering these features in ways that are easy to use, and offer opportunities to enhance the student's background understanding.

  5. Particle detection, number estimation, and feature measurement in gene transfer studies: optical fractionator stereology integrated with digital image processing and analysis.

    PubMed

    King, Michael A; Scotty, Nicole; Klein, Ronald L; Meyer, Edwin M

    2002-10-01

    Assessing the efficacy of in vivo gene transfer often requires a quantitative determination of the number, size, shape, or histological visualization characteristics of biological objects. The optical fractionator has become a choice stereological method for estimating the number of objects, such as neurons, in a structure, such as a brain subregion. Digital image processing and analytic methods can increase detection sensitivity and quantify structural and/or spectral features located in histological specimens. We describe a hardware and software system that we have developed for conducting the optical fractionator process. A microscope equipped with a video camera and motorized stage and focus controls is interfaced with a desktop computer. The computer contains a combination live video/computer graphics adapter with a video frame grabber and controls the stage, focus, and video via a commercial imaging software package. Specialized macro programs have been constructed with this software to execute command sequences requisite to the optical fractionator method: defining regions of interest, positioning specimens in a systematic uniform random manner, and stepping through known volumes of tissue for interactive object identification (optical dissectors). The system affords the flexibility to work with count regions that exceed the microscope image field size at low magnifications and to adjust the parameters of the fractionator sampling to best match the demands of particular specimens and object types. Digital image processing can be used to facilitate object detection and identification, and objects that meet criteria for counting can be analyzed for a variety of morphometric and optical properties. Copyright 2002 Elsevier Science (USA)

  6. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1993-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X DataSlice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  7. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1992-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X Data Slice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  8. Model MTF for the mosaic window

    NASA Astrophysics Data System (ADS)

    Xing, Zhenchong; Hong, Yongfeng; Zhang, Bao

    2017-10-01

    An electro-optical targeting system mounted either within an airframe or housed in separate pods requires a window to form an environmental barrier to the outside world. In current practice, such windows usually use a mosaic or segmented window. When scanning the target, internally gimbaled systems sweep over the window, which can affect the modulation transfer function (MTF) due to wave-front division and optical path differences arising from the thickness/wedge differences between panes. In this paper, a mathematical model of the MTF of the mosaic window is presented that allows an analysis of influencing factors; we show how the model may be integrated into ZEMAX® software for optical design. The model can be used to guide both the design and the tolerance analysis of optical systems that employ a mosaic window.

  9. Analysis and design of a mechanical system to use with the Ronchi and Fizeau tests

    NASA Astrophysics Data System (ADS)

    Galán-Martínez, Arturo D.; Santiago-Alvarado, Agustín.; González-García, Jorge; Cruz-Martínez, Víctor M.; Cordero-Dávila, Alberto; Granados-Agustin, Fermin S.; Robledo-Sánchez, Calos

    2013-11-01

    Nowadays, there is a demand for more efficient opto-mechanical mounts which allow for the implementation of robust optical arrays in a quick and simple fashion. That is to say, mounts are needed which facilitate alignment of the optical components in order to perform the desired movements of each component. Optical testing systems available in the market today are costly, heavy and sometimes require multiple kits depending on the dimensions of the optical components. In this paper, we present the design and analysis of a mechanical system with some interchangeable basic mounts which allow for the application of both Ronchi and Fizeau tests for the evaluation of concave reflective surfaces with a diameter of 2 to 10 cm. The mechanical system design is done using the methodology of product design process, while the analysis is performed using the commercial software SolidWorks.

  10. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    NASA Technical Reports Server (NTRS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  11. Optical testing and verification methods for the James Webb Space Telescope Integrated Science Instrument Module element

    NASA Astrophysics Data System (ADS)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  12. Instrument control software requirement specification for Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Kiekebusch, Mario J.; Chiozzi, Gianluca

    2010-07-01

    Engineers in several observatories are now designing the next generation of optical telescopes, the Extremely Large Telescopes (ELT). These are very complex machines that will host sophisticated astronomical instruments to be used for a wide range of scientific studies. In order to carry out scientific observations, a software infrastructure is required to orchestrate the control of the multiple subsystems and functions. This paper will focus on describing the considerations, strategies and main issues related to the definition and analysis of the software requirements for the ELT's Instrument Control System using modern development processes and modelling tools like SysML.

  13. Remote Thermal Analysis Through the Internet

    NASA Astrophysics Data System (ADS)

    Malroy, Eric T.

    2002-07-01

    The Heater of the Hypersonic Tunnel Facility (HTF) was modeled using SINDA/FLUINT thermal software. A description of the model is given. The project presented the opportunity of interfacing the thermal model with the Internet and was a demonstration that complex analysis is possible through the Internet. Some of the issues that need to be addressed related to interfacing software with the Internet are the following: justification for using the Internet, selection of the web server, choice of the CGI language, security of the system, communication among the parties, maintenance of state between web pages, and simultaneous users on the Internet system. The opportunities available for using the Internet for analysis are many and can present a significant jump in technology. This paper presents a vision how interfacing with the Internet could develop in the future. Using a separate Optical Internet (OI) for analysis, coupled with virtual reality analysis rooms (VRAR), could provide a synergistic environment to couple together engineering analysis within industry, academia, and government. The process of analysis could be broken down into sub-components so that specialization could occur resulting in superior quality, minimized cost and reduced time for engineering analysis and manufacturing. Some possible subcomponents of the system are solver routines, databases, Graphical User Interfaces, engineering design software, VRARs, computer processing, CAD systems, manufacturing, and a plethora of other options only limited by ones imagination. On a larger scope, the specialization of companies on the optical network would allow companies to rapidly construct and reconstruct their infrastructure based on changing economic conditions. This could transform business.

  14. Teaching practice and effect of the curriculum design and simulation courses under the support of professional optical software

    NASA Astrophysics Data System (ADS)

    Lin, YuanFang; Zheng, XiaoDong; Huang, YuJia

    2017-08-01

    Curriculum design and simulation courses are bridges to connect specialty theories, engineering practice and experimental skills. In order to help students to have the computer aided optical system design ability adapting to developments of the times, a professional optical software-Advanced System of Analysis Program (ASAP) was used in the research teaching of curriculum design and simulation courses. The ASAP tutorials conducting, exercises both complementing and supplementing the lectures, hands-on practice in class, autonomous learning and independent design after class were bridged organically, to guide students "learning while doing, learning by doing", paying more attention to the process instead of the results. Several years of teaching practice of curriculum design and simulation courses shows that, project-based learning meets society needs of training personnel with knowledge, ability and quality. Students have obtained not only skills of using professional software, but also skills of finding and proposing questions in engineering practice, the scientific method of analyzing and solving questions with specialty knowledge, in addition, autonomous learning ability, teamwork spirit and innovation consciousness, still scientific attitude of facing failure and scientific spirit of admitting deficiency in the process of independent design and exploration.

  15. Analysis of Tyman green detection system based on polarization interference

    NASA Astrophysics Data System (ADS)

    Huang, Yaolin; Wang, Min; Shao, Xiaoping; Kou, Yuanfeng

    2018-02-01

    The optical surface deviation of the lens can directly affect the quality of the optical system.In order to effectively and accurately detect the surface shape, an optical surface on-line detection system based on polarization interference technology is designed and developed. The system is based on Tyman-Green interference optical path, join the polarization interference measuring technology. Based on the theoretical derivation of the optical path and the ZEMAX software simulation, the experimental optical path is constructed. The parallel light is used to detect the concave lens. The parallel light is used as the light source, the size of the polarization splitting prism, detection radius of curvature, the relations between and among the size of the lens aperture, a detection range is given.

  16. Optical ensemble analysis of intraocular lens performance through a simulated clinical trial with ZEMAX.

    PubMed

    Zhao, Huawei

    2009-01-01

    A ZEMAX model was constructed to simulate a clinical trial of intraocular lenses (IOLs) based on a clinically oriented Monte Carlo ensemble analysis using postoperative ocular parameters. The purpose of this model is to test the feasibility of streamlining and optimizing both the design process and the clinical testing of IOLs. This optical ensemble analysis (OEA) is also validated. Simulated pseudophakic eyes were generated by using the tolerancing and programming features of ZEMAX optical design software. OEA methodology was verified by demonstrating that the results of clinical performance simulations were consistent with previously published clinical performance data using the same types of IOLs. From these results we conclude that the OEA method can objectively simulate the potential clinical trial performance of IOLs.

  17. A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2017-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  18. Computer-based classification of bacteria species by analysis of their colonies Fresnel diffraction patterns

    NASA Astrophysics Data System (ADS)

    Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina

    2012-01-01

    In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.

  19. Software Development to Assist in the Processing and Analysis of Data Obtained Using Fiber Bragg Grating Interrogation Systems

    NASA Technical Reports Server (NTRS)

    Hicks, Rebecca

    2010-01-01

    A fiber Bragg grating is a portion of a core of a fiber optic stand that has been treated to affect the way light travels through the strand. Light within a certain narrow range of wavelengths will be reflected along the fiber by the grating, while light outside that range will pass through the grating mostly undisturbed. Since the range of wavelengths that can penetrate the grating depends on the grating itself as well as temperature and mechanical strain, fiber Bragg gratings can be used as temperature and strain sensors. This capability, along with the light-weight nature of the fiber optic strands in which the gratings reside, make fiber optic sensors an ideal candidate for flight testing and monitoring in which temperature and wing strain are factors. A team of NASA Dryden engineers has been working to advance the fiber optic sensor technology since the mid 1990 s. The team has been able to improve the dependability and sample rate of fiber optic sensor systems, making them more suitable for real-time wing shape and strain monitoring and capable of rivaling traditional strain gauge sensors in accuracy. The sensor system was recently tested on the Ikhana unmanned aircraft and will be used on the Global Observer unmanned aircraft. Since a fiber Bragg grating sensor can be placed every halfinch on each optic fiber, and since fibers of approximately 40 feet in length each are to be used on the Global Observer, each of these fibers will have approximately 1,000 sensors. A total of 32 fibers are to be placed on the Global Observer aircraft, to be sampled at a rate of about 50 Hz, meaning about 1.6 million data points will be taken every second. The fiber optic sensors system is capable of producing massive amounts of potentially useful data; however, methods to capture, record, and analyze all of this data in a way that makes the information useful to flight test engineers are currently limited. The purpose of this project is to research the availability of software capable of processing massive amounts of data in both real-time and post-flight settings, and to produce software segments that can be integrated to assist in the task as well. The selected software must be able to: (1) process massive amounts of data (up to 4GB) at a speed useful in a real-time settings (small fractions of a second); (2) process data in post-flight settings to allow test reproduction or further data analysis, inclusive; (3) produce, or make easier to produce, three-dimensional plots/graphs to make the data accessible to flight test engineers; and (4) be customized to allow users to use their own processing formulas or functions and display the data in formats they prefer. Several software programs were evaluated to determine their utility in completing the research objectives. These programs include: OriginLab, Graphis, 3D Grapher, Visualization Sciences Group (VSG) Avizo Wind, Interactive Analysis and Display System (IADS), SigmaPlot, and MATLAB.

  20. A learning tool for optical and microwave satellite image processing and analysis

    NASA Astrophysics Data System (ADS)

    Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.

    2016-04-01

    This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.

  1. Digital coherent receiver based transmitter penalty characterization.

    PubMed

    Geisler, David J; Kaufmann, John E

    2016-12-26

    For optical communications links where receivers are signal-power-starved, such as through free-space, it is important to design transmitters and receivers that can operate as close as practically possible to theoretical limits. A total system penalty is typically assessed in terms of how far the end-to-end bit-error rate (BER) is from these limits. It is desirable, but usually difficult, to determine the division of this penalty between the transmitter and receiver. This paper describes a new rigorous and computationally based method that isolates which portion of the penalty can be assessed against the transmitter. There are two basic parts to this approach: (1) use of a coherent optical receiver to perform frequency down-conversion of a transmitter's optical signal waveform to the electrical domain, preserving both optical field amplitude and phase information, and (2): software-based analysis of the digitized electrical waveform. The result is a single numerical metric that quantifies how close a transmitter's signal waveform is to the ideal, based on its BER performance with a perfect software-defined matched-filter receiver demodulator. A detailed description of applying the proposed methodology to the waveform characterization of an optical burst-mode differential phase-shifted keying (DPSK) transmitter is experimentally demonstrated.

  2. Determination of fiber volume in graphite/epoxy materials using computer image analysis

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1990-01-01

    The fiber volume of graphite/epoxy specimens was determined by analyzing optical images of cross sectioned specimens using image analysis software. Test specimens were mounted and polished using standard metallographic techniques and examined at 1000 times magnification. Fiber volume determined using the optical imaging agreed well with values determined using the standard acid digestion technique. The results were found to agree within 5 percent over a fiber volume range of 45 to 70 percent. The error observed is believed to arise from fiber volume variations within the graphite/epoxy panels themselves. The determination of ply orientation using image analysis techniques is also addressed.

  3. Service-oriented Software Defined Optical Networks for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Liu, Yuze; Li, Hui; Ji, Yuefeng

    2017-10-01

    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.

  4. IAC level "O" program development

    NASA Technical Reports Server (NTRS)

    Vos, R. G.

    1982-01-01

    The current status of the IAC development activity is summarized. The listed prototype software and documentation was delivered, and details were planned for development of the level 1 operational system. The planned end product IAC is required to support LSST design analysis and performance evaluation, with emphasis on the coupling of required technical disciplines. The long term IAC effectively provides two distinct features: a specific set of analysis modules (thermal, structural, controls, antenna radiation performance and instrument optical performance) that will function together with the IAC supporting software in an integrated and user friendly manner; and a general framework whereby new analysis modules can readily be incorporated into IAC or be allowed to communicate with it.

  5. Optical performance assessment under environmental and mechanical perturbations in large, deployable telescopes

    NASA Astrophysics Data System (ADS)

    Folley, Christopher; Bronowicki, Allen

    2005-09-01

    Prediction of optical performance for large, deployable telescopes under environmental conditions and mechanical disturbances is a crucial part of the design verification process of such instruments for all phases of design and operation: ground testing, commissioning, and on-orbit operation. A Structural-Thermal-Optical-Performance (STOP) analysis methodology is often created that integrates the output of one analysis with the input of another. The integration of thermal environment predictions with structural models is relatively well understood, while the integration of structural deformation results into optical analysis/design software is less straightforward. A Matlab toolbox has been created that effectively integrates the predictions of mechanical deformations on optical elements generated by, for example, finite element analysis, and computes optical path differences for the distorted prescription. The engine of the toolbox is the real ray-tracing algorithm that allows the optical surfaces to be defined in a single, global coordinate system thereby allowing automatic alignment of the mechanical coordinate system with the optical coordinate system. Therefore, the physical location of the optical surfaces is identical in the optical prescription and the finite element model. The application of rigid body displacements to optical surfaces, however, is more general than for use solely in STOP analysis, such as the analysis of misalignments during the commissioning process. Furthermore, all the functionality of Matlab is available for optimization and control. Since this is a new tool for use on flight programs, it has been verified against CODE V. The toolbox' functionality, to date, is described, verification results are presented, and, as an example of its utility, results of a thermal distortion analysis are presented using the James Webb Space Telescope (JWST) prescription.

  6. Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Tátrai, Erika; Ranganathan, Sudarshan; Ferencz, Mária; Debuc, Delia Cabrera; Somfai, Gábor Márk

    2011-05-01

    Purpose: To compare thickness measurements between Fourier-domain optical coherence tomography (FD-OCT) and time-domain OCT images analyzed with a custom-built OCT retinal image analysis software (OCTRIMA). Methods: Macular mapping (MM) by StratusOCT and MM5 and MM6 scanning protocols by an RTVue-100 FD-OCT device are performed on 11 subjects with no retinal pathology. Retinal thickness (RT) and the thickness of the ganglion cell complex (GCC) obtained with the MM6 protocol are compared for each early treatment diabetic retinopathy study (ETDRS)-like region with corresponding results obtained with OCTRIMA. RT results are compared by analysis of variance with Dunnett post hoc test, while GCC results are compared by paired t-test. Results: A high correlation is obtained for the RT between OCTRIMA and MM5 and MM6 protocols. In all regions, the StratusOCT provide the lowest RT values (mean difference 43 +/- 8 μm compared to OCTRIMA, and 42 +/- 14 μm compared to RTVue MM6). All RTVue GCC measurements were significantly thicker (mean difference between 6 and 12 μm) than the GCC measurements of OCTRIMA. Conclusion: High correspondence of RT measurements is obtained not only for RT but also for the segmentation of intraretinal layers between FD-OCT and StratusOCT-derived OCTRIMA analysis. However, a correction factor is required to compensate for OCT-specific differences to make measurements more comparable to any available OCT device.

  7. Parallel Wavefront Analysis for a 4D Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2011-01-01

    This software provides a programming interface for automating data collection with a PhaseCam interferometer from 4D Technology, and distributing the image-processing algorithm across a cluster of general-purpose computers. Multiple instances of 4Sight (4D Technology s proprietary software) run on a networked cluster of computers. Each connects to a single server (the controller) and waits for instructions. The controller directs the interferometer to several images, then assigns each image to a different computer for processing. When the image processing is finished, the server directs one of the computers to collate and combine the processed images, saving the resulting measurement in a file on a disk. The available software captures approximately 100 images and analyzes them immediately. This software separates the capture and analysis processes, so that analysis can be done at a different time and faster by running the algorithm in parallel across several processors. The PhaseCam family of interferometers can measure an optical system in milliseconds, but it takes many seconds to process the data so that it is usable. In characterizing an adaptive optics system, like the next generation of astronomical observatories, thousands of measurements are required, and the processing time quickly becomes excessive. A programming interface distributes data processing for a PhaseCam interferometer across a Windows computing cluster. A scriptable controller program coordinates data acquisition from the interferometer, storage on networked hard disks, and parallel processing. Idle time of the interferometer is minimized. This architecture is implemented in Python and JavaScript, and may be altered to fit a customer s needs.

  8. Course for undergraduate students: analysis of the retinal image quality of a human eye model

    NASA Astrophysics Data System (ADS)

    del Mar Pérez, Maria; Yebra, Ana; Fernández-Oliveras, Alicia; Ghinea, Razvan; Ionescu, Ana M.; Cardona, Juan C.

    2014-07-01

    In teaching of Vision Physics or Physiological Optics, the knowledge and analysis of the aberration that the human eye presents are of great interest, since this information allows a proper evaluation of the quality of the retinal image. The objective of the present work is that the students acquire the required competencies which will allow them to evaluate the optical quality of the human visual system for emmetropic and ammetropic eye, both with and without the optical compensation. For this purpose, an optical system corresponding to the Navarro-Escudero eye model, which allows calculating and evaluating the aberration of this eye model in different ammetropic conditions, was developed employing the OSLO LT software. The optical quality of the visual system will be assessed through determinations of the third and fifth order aberration coefficients, the impact diagram, wavefront analysis, calculation of the Point Spread Function and the Modulation Transfer Function for ammetropic individuals, with myopia or hyperopia, both with or without the optical compensation. This course is expected to be of great interest for student of Optics and Optometry Sciences, last courses of Physics or medical sciences related with human vision.

  9. Software to model AXAF-I image quality

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees; Feng, Chen

    1995-01-01

    A modular user-friendly computer program for the modeling of grazing-incidence type x-ray optical systems has been developed. This comprehensive computer software GRAZTRACE covers the manipulation of input data, ray tracing with reflectivity and surface deformation effects, convolution with x-ray source shape, and x-ray scattering. The program also includes the capabilities for image analysis, detector scan modeling, and graphical presentation of the results. A number of utilities have been developed to interface the predicted Advanced X-ray Astrophysics Facility-Imaging (AXAF-I) mirror structural and thermal distortions with the ray-trace. This software is written in FORTRAN 77 and runs on a SUN/SPARC station. An interactive command mode version and a batch mode version of the software have been developed.

  10. A COTS RF Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RFOptical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  11. System analysis tools for an ELT at ESO

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Koch, Franz

    2006-06-01

    Engineering of complex, large scale systems like the ELT designs currently investigated and developed in Europe and Northern America require powerful and sophisticated tools within specific technical disciplines such as mechanics, optics and control engineering. However, even analyzing a certain component of the telescope like the telescope structure necessitates a system approach to evaluate the structural effects onto the optical performance. This paper shows several software tools developed by the European Southern Observatory (ESO) which focus onto the system approach in the analyses: Using modal results of a finite element analysis the SMI-toolbox allows an easy generation of structural models with different sizes and levels of accuracy for the control design and closed-loop simulations. The optical modeling code BeamWarrior was developed by ESO and Astrium GmbH, Germany) especially for integrated modeling and interfering with a structural model. Within BeamWarrior displacements and deformations can be applied in an arbitrary coordinate system, and hence also in the global coordinates of the FE model avoiding error prone transformations. In addition to this, a sparse state space model object was developed for Matlab to gain in computational efficiency and reduced memory requirements due to the sparsity pattern of both the structural models and the control architecture. As one result these tools allow building an integrated model in order to reliably simulate interactions, cross-coupling effects, system responses, and to evaluate global performance. In order to evaluate disturbance effects on the optical performance in openloop more efficiently, an optical evaluation toolbox was built in the FE software ANSYS which performs Zernike decomposition and best-fit computation of the deformations directly in the FE analysis.

  12. Comparative study of 2-DOF micromirrors for precision light manipulation

    NASA Astrophysics Data System (ADS)

    Young, Johanna I.; Shkel, Andrei M.

    2001-08-01

    Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

  13. Free-space laser communication system with rapid acquisition based on astronomical telescopes.

    PubMed

    Wang, Jianmin; Lv, Junyi; Zhao, Guang; Wang, Gang

    2015-08-10

    The general structure of a free-space optical (FSO) communication system based on astronomical telescopes is proposed. The light path for astronomical observation and for communication can be easily switched. A separate camera is used as a star sensor to determine the pointing direction of the optical terminal's antenna. The new system exhibits rapid acquisition and is widely applicable in various astronomical telescope systems and wavelengths. We present a detailed analysis of the acquisition time, which can be decreased by one order of magnitude compared with traditional optical communication systems. Furthermore, we verify software algorithms and tracking accuracy.

  14. Tolerancing aspheres based on manufacturing knowledge

    NASA Astrophysics Data System (ADS)

    Wickenhagen, S.; Kokot, S.; Fuchs, U.

    2017-10-01

    A standard way of tolerancing optical elements or systems is to perform a Monte Carlo based analysis within a common optical design software package. Although, different weightings and distributions are assumed they are all counting on statistics, which usually means several hundreds or thousands of systems for reliable results. Thus, employing these methods for small batch sizes is unreliable, especially when aspheric surfaces are involved. The huge database of asphericon was used to investigate the correlation between the given tolerance values and measured data sets. The resulting probability distributions of these measured data were analyzed aiming for a robust optical tolerancing process.

  15. Tolerancing aspheres based on manufacturing statistics

    NASA Astrophysics Data System (ADS)

    Wickenhagen, S.; Möhl, A.; Fuchs, U.

    2017-11-01

    A standard way of tolerancing optical elements or systems is to perform a Monte Carlo based analysis within a common optical design software package. Although, different weightings and distributions are assumed they are all counting on statistics, which usually means several hundreds or thousands of systems for reliable results. Thus, employing these methods for small batch sizes is unreliable, especially when aspheric surfaces are involved. The huge database of asphericon was used to investigate the correlation between the given tolerance values and measured data sets. The resulting probability distributions of these measured data were analyzed aiming for a robust optical tolerancing process.

  16. Experimental demonstration of software defined data center optical networks with Tbps end-to-end tunability

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhang, Jie; Ji, Yuefeng; Li, Hui; Wang, Huitao; Ge, Chao

    2015-10-01

    The end-to-end tunability is important to provision elastic channel for the burst traffic of data center optical networks. Then, how to complete the end-to-end tunability based on elastic optical networks? Software defined networking (SDN) based end-to-end tunability solution is proposed for software defined data center optical networks, and the protocol extension and implementation procedure are designed accordingly. For the first time, the flexible grid all optical networks with Tbps end-to-end tunable transport and switch system have been online demonstrated for data center interconnection, which are controlled by OpenDayLight (ODL) based controller. The performance of the end-to-end tunable transport and switch system has been evaluated with wavelength number tuning, bit rate tuning, and transmit power tuning procedure.

  17. Development of Matlab GUI educational software to assist a laboratory of physical optics

    NASA Astrophysics Data System (ADS)

    Fernández, Elena; Fuentes, Rosa; García, Celia; Pascual, Inmaculada

    2014-07-01

    Physical optics is one of the subjects in the Grade of Optics and Optometry in Spanish universities. The students who come to this degree often have difficulties to understand subjects that are related to physics. For this reason, the aim of this work is to develop optics simulation software that provides a virtual laboratory for studying the effects of different aspects of physical optics phenomena. This software can let optical undergraduates simulate many optical systems for a better understanding of the practical competences associated with the theoretical concepts studied in class. This interactive environment unifies the information that brings the manual of the practices, provides the visualization of the physical phenomena and allows users to vary the values of the parameters that come into play to check its effect. So, this virtual tool is the perfect complement to learning more about the practices developed in the laboratory. This software will be developed through the choices which have the Matlab to generate Graphical User Interfaces or GUIs. A set of knobs, buttons and handles will be included in the GUI's in order to control the parameters of the different physics phenomena. Graphics can also be inserted in the GUIs to show the behavior of such phenomena. Specifically, by using this software, the student is able to analyze the behaviour of the transmittance and reflectance of the TE and TM modes, the polarized light through of the Malus'Law or degree of polarization.

  18. Design and performance evaluation of an OpenFlow-based control plane for software-defined elastic optical networks with direct-detection optical OFDM (DDO-OFDM) transmission.

    PubMed

    Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B

    2014-01-13

    Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.

  19. An Optical Receiver Post Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  20. An Optical Receiver Post-Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  1. Data format standard for sharing light source measurements

    NASA Astrophysics Data System (ADS)

    Gregory, G. Groot; Ashdown, Ian; Brandenburg, Willi; Chabaud, Dominique; Dross, Oliver; Gangadhara, Sanjay; Garcia, Kevin; Gauvin, Michael; Hansen, Dirk; Haraguchi, Kei; Hasna, Günther; Jiao, Jianzhong; Kelley, Ryan; Koshel, John; Muschaweck, Julius

    2013-09-01

    Optical design requires accurate characterization of light sources for computer aided design (CAD) software. Various methods have been used to model sources, from accurate physical models to measurement of light output. It has become common practice for designers to include measured source data for design simulations. Typically, a measured source will contain rays which sample the output distribution of the source. The ray data must then be exported to various formats suitable for import into optical analysis or design software. Source manufacturers are also making measurements of their products and supplying CAD models along with ray data sets for designers. The increasing availability of data has been beneficial to the design community but has caused a large expansion in storage needs for the source manufacturers since each software program uses a unique format to describe the source distribution. In 2012, the Illuminating Engineering Society (IES) formed a working group to understand the data requirements for ray data and recommend a standard file format. The working group included representatives from software companies supplying the analysis and design tools, source measurement companies providing metrology, source manufacturers creating the data and users from the design community. Within one year the working group proposed a file format which was recently approved by the IES for publication as TM-25. This paper will discuss the process used to define the proposed format, highlight some of the significant decisions leading to the format and list the data to be included in the first version of the standard.

  2. Design of EPON far-end equipment based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    Now, most favors fiber access is mainly the EPON fiber access system. Inheriting from the low cost of Ethernet, usability and bandwidth of optical network, EPON technology is one of the best technologies in fiber access and is adopted by the carriers all over the world widely. According to the scheme analysis to FTTH fan-end equipment, hardware design of ONU is proposed in this paper. The FTTH far-end equipment software design deference modulation design concept, it divides the software designment into 5 function modules: the module of low-layer driver, the module of system management, the module of master/slave communication, and the module of main/Standby switch and the module of command line. The software flow of the host computer is also analyzed. Finally, test is made for Ethernet service performance of FTTH far-end equipment, E1 service performance and the optical path protection switching, and so on. The results of test indicates that all the items are accordance with technical request of far-end ONU equipment and possess good quality and fully reach the requirement of telecommunication level equipment. The far-end equipment of FTTH divides into several parts based on the function: the control module, the exchange module, the UNI interface module, the ONU module, the EPON interface module, the network management debugging module, the voice processing module, the circuit simulation module, the CATV module. In the downstream direction, under the protect condition, we design 2 optical modules. The system can set one group optical module working and another group optical module closure when it is initialized. When the optical fiber line is cut off, the LOS warning comes out. It will cause MUX to replace another group optical module, simultaneously will reset module 3701/3711 and will make it again test the distance, and will give the plug board MPC850 report through the GPIO port. During normal mode, the downstream optical signal is transformed into the electrical signal by the optical module. In the upstream direction, the upstream Ethernet data is retransmitted through the exchange chip BCM5380 to the GMII/MII in module 3701/3711, and then is transmitted to EPON port. The 2MB data are transformed the Ethernet data packet in the plug board TDM, then it's transmitted to the interface MII of the module 3701/3711. The software design of FTTH far-end equipment compiles with modulation design concept. According to the system realization duty, the software is divided into 5 function modules: low-level driver module, system management module, master/slave communication module, the man/Standby switch module and the command line module. The FTTH far-end equipment test, is mainly the Ethernet service performance test, E1 service performance test and the optical path protection switching test and so on the key specification test.

  3. A novel control software that improves the experimental workflow of scanning photostimulation experiments.

    PubMed

    Bendels, Michael H K; Beed, Prateep; Leibold, Christian; Schmitz, Dietmar; Johenning, Friedrich W

    2008-10-30

    Optical uncaging of caged compounds is a well-established method to study the functional anatomy of a brain region on the circuit level. We present an alternative approach to existing experimental setups. Using a low-magnification objective we acquire images for planning the spatial patterns of stimulation. Then high-magnification objectives are used during laser stimulation providing a laser spot between 2 microm and 20 microm size. The core of this system is a video-based control software that monitors and controls the connected devices, allows for planning of the experiment, coordinates the stimulation process and manages automatic data storage. This combines a high-resolution analysis of neuronal circuits with flexible and efficient online planning and execution of a grid of spatial stimulation patterns on a larger scale. The software offers special optical features that enable the system to achieve a maximum degree of spatial reliability. The hardware is mainly built upon standard laboratory devices and thus ideally suited to cost-effectively complement existing electrophysiological setups with a minimal amount of additional equipment. Finally, we demonstrate the performance of the system by mapping the excitatory and inhibitory connections of entorhinal cortex layer II stellate neurons and present an approach for the analysis of photo-induced synaptic responses in high spontaneous activity.

  4. NASA Tech Briefs, November 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Computer Program Recognizes Patterns in Time-Series Data; Program for User-Friendly Management of Input and Output Data Sets; Noncoherent Tracking of a Source of a Data-Modulated Signal; Software for Acquiring Image Data for PIV; Detecting Edges in Images by Use of Fuzzy Reasoning; A Timer for Synchronous Digital Systems; Prototype Parts of a Digital Beam-Forming Wide-Band Receiver; High-Voltage Droplet Dispenser; Network Extender for MIL-STD-1553 Bus; MMIC HEMT Power Amplifier for 140 to 170 GHz; Piezoelectric Diffraction-Based Optical Switches; Numerical Modeling of Nanoelectronic Devices; Organizing Diverse, Distributed Project Information; Eigensolver for a Sparse, Large Hermitian Matrix; Modified Polar-Format Software for Processing SAR Data; e-Stars Template Builder; Software for Acoustic Rendering; Functionally Graded Nanophase Beryllium/Carbon Composites; Thin Thermal-Insulation Blankets for Very High Temperatures; Prolonging Microgravity on Parabolic Airplane Flights; Device for Locking a Control Knob; Cable-Dispensing Cart; Foam Sensor Structures Would be Self-Deployable and Survive Hard Landings; Real-Gas Effects on Binary Mixing Layers; Earth-Space Link Attenuation Estimation via Ground Radar Kdp; Wedge Heat-Flux Indicators for Flash Thermography; Measuring Diffusion of Liquids by Common-Path Interferometry; Zero-Shear, Low-Disturbance Optical Delay Line; Whispering-Gallery Mode-Locked Lasers; Spatial Light Modulators as Optical Crossbar Switches; Update on EMD and Hilbert-Spectra Analysis of Time Series; Quad-Tree Visual-Calculus Analysis of Satellite Coverage; Dyakonov-Perel Effect on Spin Dephasing in n-Type GaAs; Update on Area Production in Mixing of Supercritical Fluids; and Quasi-Sun-Pointing of Spacecraft Using Radiation Pressure.

  5. Mathematical Model of the One-stage Magneto-optical Sensor Based on Faraday Effect

    NASA Astrophysics Data System (ADS)

    Babaev, O. G.; Paranin, V. D.; Sinitsin, L. I.

    2018-01-01

    The aim of this work is to refine a model of magneto-optical sensors based on Faraday’s longitudinal magneto-optical effect. The tasks of the study include computer modeling and analysis of the transfer characteristic of a single-stage magneto-optical sensor for various polarization of the input beam and non-ideal optical components. The proposed mathematical model and software make it possible to take into account the non-ideal characteristics of film polaroids observed in operation in the near infrared region and at increased temperatures. On the basis of the results of the model analysis it was found that the dependence of normalized transmission T(γ2) has periodic nature. Choosing the angle (γ 2-γ 1) makes it possible to shift the initial operation point and change the sensitivity dT/dγ 2. The influence of the input beam polarization increases with the increase of polaroid parameter deviation from ideal and shows itself as reduction of modulation depth and angular shift of the sensor conversion response.

  6. Modeling And Simulation Of Bar Code Scanners Using Computer Aided Design Software

    NASA Astrophysics Data System (ADS)

    Hellekson, Ron; Campbell, Scott

    1988-06-01

    Many optical systems have demanding requirements to package the system in a small 3 dimensional space. The use of computer graphic tools can be a tremendous aid to the designer in analyzing the optical problems created by smaller and less costly systems. The Spectra Physics grocery store bar code scanner employs an especially complex 3 dimensional scan pattern to read bar code labels. By using a specially written program which interfaces with a computer aided design system, we have simulated many of the functions of this complex optical system. In this paper we will illustrate how a recent version of the scanner has been designed. We will discuss the use of computer graphics in the design process including interactive tweaking of the scan pattern, analysis of collected light, analysis of the scan pattern density, and analysis of the manufacturing tolerances used to build the scanner.

  7. Opto-thermal analysis of a lightweighted mirror for solar telescope.

    PubMed

    Banyal, Ravinder K; Ravindra, B; Chatterjee, S

    2013-03-25

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.

  8. Non Contacting Evaluation of Strains and Cracking Using Optical and Infrared Imaging Techniques

    DTIC Science & Technology

    1988-08-22

    Compatible Zenith Z-386 microcomputer with plotter II. 3-D Motion Measurinq System 1. Complete OPTOTRAK three dimensional digitizing system. System includes...acquisition unit - 16 single ended analog input channels 3. Data Analysis Package software (KINEPLOT) 4. Extra OPTOTRAK Camera (max 224 per system

  9. Interferometric analysis of polishing surface with a petal tool

    NASA Astrophysics Data System (ADS)

    Salas-Sánchez, Alfonso; Leal-Cabrera, Irce; Percino Zacarias, Elizabeth; Granados-Agustín, Fermín S.

    2011-09-01

    In this work, we describe a phase shift interferometric monitoring of polishing processes produced by a petal tool over a spherical surface to obtain a parabolic surface. In the process, we used a commercial polishing machine; the purpose of this work is to have control of polishing time. To achieve this analysis, we used a Fizeau interferometer of ZYGO Company for optical shop testing, and the Durango software from Diffraction International Company. For data acquisition, simulation and evaluation of optical surfaces, we start polishing process with a spherical surface with 15.46 cm of diameter; a 59.9 cm of radius curvature and, with f/# 1.9.

  10. The Nature of the Enigmatic 10-Minute Accreting Binary System ES CET

    NASA Technical Reports Server (NTRS)

    Steeghs, Daniel

    2005-01-01

    ES Cet is one of the most compact binary systems known with an orbital period of only 10.3 minutes. Our allocated observations with the XMM-Newton X-ray satellite were performed in January and July 2004, with the data being delivered to the PI in August 2004. Preliminary results were presented by the PI in September 2004 and January 2005. We have also secured supporting optical observations of ES Ceti using the Magellan telescopes (November 2004). The team is currently performing a thorough and final analysis of the X-ray, UV and optical data sets with the latest XMM pipeline software and our own analysis packages.

  11. Current And Future Directions Of Lens Design Software

    NASA Astrophysics Data System (ADS)

    Gustafson, Darryl E.

    1983-10-01

    The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.

  12. Orion Optical Navigation Progress Toward Exploration Mission 1

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher N.; Saley, David

    2018-01-01

    Optical navigation of human spacecraft was proposed on Gemini and implemented successfully on Apollo as a means of autonomously operating the vehicle in the event of lost communication with controllers on Earth. The Orion emergency return system utilizing optical navigation has matured in design over the last several years, and is currently undergoing the final implementation and test phase in preparation for Exploration Mission 1 (EM-1) in 2019. The software development is past its Critical Design Review, and is progressing through test and certification for human rating. The filter architecture uses a square-root-free UDU covariance factorization. Linear Covariance Analysis (LinCov) was used to analyze the measurement models and the measurement error models on a representative EM-1 trajectory. The Orion EM-1 flight camera was calibrated at the Johnson Space Center (JSC) electro-optics lab. To permanently stake the focal length of the camera a 500 mm focal length refractive collimator was used. Two Engineering Design Unit (EDU) cameras and an EDU star tracker were used for a live-sky test in Denver. In-space imagery with high-fidelity truth metadata is rare so these live-sky tests provide one of the closest real-world analogs to operational use. A hardware-in-the-loop test rig was developed in the Johnson Space Center Electro-Optics Lab to exercise the OpNav system prior to integrated testing on the Orion vehicle. The software is verified with synthetic images. Several hundred off-nominal images are also used to analyze robustness and fault detection in the software. These include effects such as stray light, excess radiation damage, and specular reflections, and are used to help verify the tuning parameters chosen for the algorithms such as earth atmosphere bias, minimum pixel intensity, and star detection thresholds.

  13. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and couplingmore » corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.« less

  14. Optics Program Simplifies Analysis and Design

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Engineers at Goddard Space Flight Center partnered with software experts at Mide Technology Corporation, of Medford, Massachusetts, through a Small Business Innovation Research (SBIR) contract to design the Disturbance-Optics-Controls-Structures (DOCS) Toolbox, a software suite for performing integrated modeling for multidisciplinary analysis and design. The DOCS Toolbox integrates various discipline models into a coupled process math model that can then predict system performance as a function of subsystem design parameters. The system can be optimized for performance; design parameters can be traded; parameter uncertainties can be propagated through the math model to develop error bounds on system predictions; and the model can be updated, based on component, subsystem, or system level data. The Toolbox also allows the definition of process parameters as explicit functions of the coupled model and includes a number of functions that analyze the coupled system model and provide for redesign. The product is being sold commercially by Nightsky Systems Inc., of Raleigh, North Carolina, a spinoff company that was formed by Mide specifically to market the DOCS Toolbox. Commercial applications include use by any contractors developing large space-based optical systems, including Lockheed Martin Corporation, The Boeing Company, and Northrup Grumman Corporation, as well as companies providing technical audit services, like General Dynamics Corporation

  15. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    NASA Astrophysics Data System (ADS)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  16. The optical design and simulation of the collimated solar simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Tao

    2018-01-01

    The solar simulator is a lighting device that can simulate the solar radiation. It has been widely used in the testing of solar cells, satellite space environment simulation and ground experiment, test and calibration precision of solar sensor. The solar simulator mainly consisted of short—arc xenon lamp, ellipsoidal reflectors, a group of optical integrator, field stop, aspheric folding mirror and collimating reflector. In this paper, the solar simulator's optical system basic size are given by calculation. Then the system is optically modeled with the Lighttools software, and the simulation analysis on solar simulator using the Monte Carlo ray -tracing technique is conducted. Finally, the simulation results are given quantitatively by diagrammatic form. The rationality of the design is verified on the basis of theory.

  17. Parallel Ray Tracing Using the Message Passing Interface

    DTIC Science & Technology

    2007-09-01

    software is available for lens design and for general optical systems modeling. It tends to be designed to run on a single processor and can be very...Cameron, Senior Member, IEEE Abstract—Ray-tracing software is available for lens design and for general optical systems modeling. It tends to be designed to...National Aeronautics and Space Administration (NASA), optical ray tracing, parallel computing, parallel pro- cessing, prime numbers, ray tracing

  18. Application of the device based on chirping of optical impulses for management of software-defined networks in dynamic mode

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Khasansin, Vadim R.; Andrianova, Anna V.; Yantilina, Liliya Z.; Vinogradov, Sergey L.

    2016-03-01

    The analysis of the influence of the physical layer concepts in optical networks on the performance of the whole network. It is concluded that the relevance of the search for new means of transmitting information on a physical level. It is proposed to use an optical chirp overhead transmission between controllers SDN. This article is devoted to research of a creation opportunity of optical neural switchboards controlled in addition by submitted optical radiation. It is supposed, that the managing radiation changes a parameter of refraction of optical environment of the device, and with it and length of a wave of information radiation. For the control by last is used multibeam interferometer. The brief estimation of technical aspects of construction of the device is carried out. The principle of using the device to an extensive network. Simulation of network performance parameters.

  19. Near-Infrared Neuroimaging with NinPy

    PubMed Central

    Strangman, Gary E.; Zhang, Quan; Zeffiro, Thomas

    2009-01-01

    There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling, and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain function, (ii) the key computational requirements to support NIN experiments, (iii) our collection of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html. PMID:19543449

  20. Analysis of Photogrammetry Data from ISIM Mockup, June 1, 2007

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Hill, Mike

    2007-01-01

    During ground testing of the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST), the ISIM Optics group plans to use a Photogrammetry Measurement System for cryogenic calibration of specific target points on the ISIM composite structure and Science Instrument optical benches and other GSE equipment. This testing will occur in the Space Environmental Systems (SES) chamber at Goddard Space Flight Center. Close range photogrammetry is a 3 dimensional metrology system using triangulation to locate custom targets in 3 coordinates via a collection of digital photographs taken from various locations and orientations. These photos are connected using coded targets, special targets that are recognized by the software and can thus correlate the images to provide a 3 dimensional map of the targets, and scaled via well calibrated scale bars. Photogrammetry solves for the camera location and coordinates of the targets simultaneously through the bundling procedure contained in the V-STARS software.

  1. Training the Next Generation in Space Situational Awareness Research

    NASA Astrophysics Data System (ADS)

    Colpo, D.; Reddy, V.; Arora, S.; Tucker, S.; Jeffries, L.; May, D.; Bronson, R.; Hunten, E.

    Traditional academic SSA research has relied on commercial off the shelf (COTS) systems for collecting metric and lightcurve data. COTS systems have several advantages over a custom built system including cost, easy integration, technical support and short deployment timescales. We at the University of Arizona took an alternative approach to develop a sensor system for space object characterization. Five engineering students designed and built two 0.6-meter F/4 electro-optical (EO) systems for collecting lightcurve and spectral data. All the design and fabrication work was carried out over the course of two semesters as part f their senior design project that is mandatory for the completion of their bachelors in engineering degree. The students designed over 200 individual parts using three-dimensional modeling software (SolidWorks), and conducted detailed optical design analysis using raytracing software (ZEMAX), with oversight and advice from faculty sponsor and Starizona, a local small business in Tucson. The components of the design were verified by test, analysis, inspection, or demonstration, per the process that the University of Arizona requires for each of its design projects. Methods to complete this project include mechanical FEA, optical testing methods (Foucault Knife Edge Test and Couder Mask Test), tests to verify the function of the thermometers, and a final pointing model test. A surprise outcome of our exercise is that the entire cost of the design and fabrication of these two EO systems was significantly lower than a COTS alternative. With careful planning and coordination we were also able to reduce to the deployment times to those for a commercial system. Our experience shows that development of hardware and software for SSA research could be accomplished in an academic environment that would enable the training of the next generation with active support from local small businesses.

  2. High-accuracy Aspheric X-ray Mirror Metrology Using Software Configurable Optical Test System/deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Run; Su, Peng; Burge, James H.

    The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1 nm<1 nm root-mean-square accuracy for the surface measurement with low-order term included.

  3. Software for Optical Archive and Retrieval (SOAR) user's guide, version 4.2

    NASA Technical Reports Server (NTRS)

    Davis, Charles

    1991-01-01

    The optical disk is an emerging technology. Because it is not a magnetic medium, it offers a number of distinct advantages over the established form of storage, advantages that make it extremely attractive. They are as follows: (1) the ability to store much more data within the same space; (2) the random access characteristics of the Write Once Read Many optical disk; (3) a much longer life than that of traditional storage media; and (4) much greater data access rate. Software for Optical Archive and Retrieval (SOAR) user's guide is presented.

  4. An image-processing software package: UU and Fig for optical metrology applications

    NASA Astrophysics Data System (ADS)

    Chen, Lujie

    2013-06-01

    Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.

  5. NASA Tech Briefs, September 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Improving Thermomechanical Properties of SiC/SiC Composites; Aerogel/Particle Composites for Thermoelectric Devices; Patches for Repairing Ceramics and Ceramic- Matrix Composites; Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings; An Alternative for Emergency Preemption of Traffic Lights; Vehicle Transponder for Preemption of Traffic Lights; Automated Announcements of Approaching Emergency Vehicles; Intersection Monitor for Traffic-Light-Preemption System; Full-Duplex Digital Communication on a Single Laser Beam; Stabilizing Microwave Frequency of a Photonic Oscillator; Microwave Oscillators Based on Nonlinear WGM Resonators; Pointing Reference Scheme for Free-Space Optical Communications Systems; High-Level Performance Modeling of SAR Systems; Spectral Analysis Tool 6.2 for Windows; Multi-Platform Avionics Simulator; Silicon-Based Optical Modulator with Ferroelectric Layer; Multiplexing Transducers Based on Tunnel-Diode Oscillators; Scheduling with Automated Resolution of Conflicts; Symbolic Constraint Maintenance Grid; Discerning Trends in Performance Across Multiple Events; Magnetic Field Solver; Computing for Aiming a Spaceborne Bistatic- Radar Transmitter; 4-Vinyl-1,3-Dioxolane-2-One as an Additive for Li-Ion Cells; Probabilistic Prediction of Lifetimes of Ceramic Parts; STRANAL-PMC Version 2.0; Micromechanics and Piezo Enhancements of HyperSizer; Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses; Tilt/Tip/Piston Manipulator with Base-Mounted Actuators; Measurement of Model Noise in a Hard-Wall Wind Tunnel; Loci-STREAM Version 0.9; The Synergistic Engineering Environment; Reconfigurable Software for Controlling Formation Flying; More About the Tetrahedral Unstructured Software System; Computing Flows Using Chimera and Unstructured Grids; Avoiding Obstructions in Aiming a High-Gain Antenna; Analyzing Aeroelastic Stability of a Tilt-Rotor Aircraft; Tracking Positions and Attitudes of Mars Rovers; Stochastic Evolutionary Algorithms for Planning Robot Paths; Compressible Flow Toolbox; Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines; General Flow-Solver Code for Turbomachinery Applications; Code for Multiblock CFD and Heat-Transfer Computations; Rotating-Pump Design Code; Covering a Crucible with Metal Containing Channels; Repairing Fractured Bones by Use of Bioabsorbable Composites; Kalman Filter for Calibrating a Telescope Focal Plane; Electronic Absolute Cartesian Autocollimator; Fiber-Optic Gratings for Lidar Measurements of Water Vapor; Simulating Responses of Gravitational-Wave Instrumentation; SOFTC: A Software Correlator for VLBI; Progress in Computational Simulation of Earthquakes; Database of Properties of Meteors; Computing Spacecraft Solar-Cell Damage by Charged Particles; Thermal Model of a Current-Carrying Wire in a Vacuum; Program for Analyzing Flows in a Complex Network; Program Predicts Performance of Optical Parametric Oscillators; Processing TES Level-1B Data; Automated Camera Calibration; Tracking the Martian CO2 Polar Ice Caps in Infrared Images; Processing TES Level-2 Data; SmaggIce Version 1.8; Solving the Swath Segment Selection Problem; The Spatial Standard Observer; Less-Complex Method of Classifying MPSK; Improvement in Recursive Hierarchical Segmentation of Data; Using Heaps in Recursive Hierarchical Segmentation of Data; Tool for Statistical Analysis and Display of Landing Sites; Automated Assignment of Proposals to Reviewers; Array-Pattern-Match Compiler for Opportunistic Data Analysis; Pre-Processor for Compression of Multispectral Image Data; Compressing Image Data While Limiting the Effects of Data Losses; Flight Operations Analysis Tool; Improvement in Visual Target Tracking for a Mobile Robot; Software for Simulating Air Traffic; Automated Vectorization of Decision-Based Algorithms; Grayscale Optical Correlator Workbench; "One-Stop Shopping" for Ocean Remote-Sensing and Model Data; State Analysis Database Tool; Generating CAHV and CAHVOmages with Shadows in ROAMS; Improving UDP/IP Transmission Without Increasing Congestion; FORTRAN Versions of Reformulated HFGMC Codes; Program for Editing Spacecraft Command Sequences; Flight-Tested Prototype of BEAM Software; Mission Scenario Development Workbench; Marsviewer; Tool for Analysis and Reduction of Scientific Data; ASPEN Version 3.0; Secure Display of Space-Exploration Images; Digital Front End for Wide-Band VLBI Science Receiver; Multifunctional Tanks for Spacecraft; Lightweight, Segmented, Mostly Silicon Telescope Mirror; Assistant for Analyzing Tropical-Rain-Mapping Radar Data; and Anion-Intercalating Cathodes for High-Energy- Density Cells.

  6. Experimental Analysis of Diffraction Effects from a Segmented MEMS Deformable Mirror for a Closed Loop Adaptive Optics System

    DTIC Science & Technology

    2010-06-01

    different approaches were used to model MEMS OM as a grating in Zemax software. First, a 2D grating was directly modeled as a combination of two ID...method of modeling ~IEMS DM in Zemax was implemented by combining two ID gratings. Due to the fact that ZEl\\’IAX allows to easily use ID physical...optics shows thc far field diffractioll pattcrn, which in Zemax geometrical model shows up as distinct spots. each one corresponding to a specific

  7. [Design of flat field holographic concave grating for near-infrared spectrophotometer].

    PubMed

    Xiang, Xian-Yi; Wen, Zhi-Yu

    2008-07-01

    Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.

  8. Binary-mask generation for diffractive optical elements using microcomputers.

    PubMed

    O'Shea, D C; Beletic, J W; Poutous, M

    1993-05-10

    A new technique for generation of binary masks for the fabrication of diffractive optical elements is investigated. This technique, which uses commercially available desktop-publishing hardware and software in conjunction with a standard photoreduction camera, is much faster and less expensive thanhe conventional methods. The short turnaround time and low cost should give researchers a much greater degree of flexibility in the field of binary optics and enable wider application of diffractive-optics technology. Techniques for generating optical elements by using standard software packages that produce PostScript output are described. An evaluation of the dimensional fidelity of the mask reproduction from design to its realization in photoresist is presented.

  9. Illumination analysis of LAPAN's IR micro bolometer

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; Andi M., T.

    2016-10-01

    We have since 2 years ago been doing a research in term of an IR Micrometer Bolometer which aims to fulfill our office, LAPAN, desire to put it as one of payloads into LAPAN's next micro satellite project, either at LAPAN A4 or at LAPAN A5. Due to the lack of experience on the subject, everything had been initiated by spectral radiance analysis adjusted by catastrophes sources in Indonesia, mainly wild fire (forest fire) and active volcano. Based on the result of the appropriate spectral radiance wavelength, 3.8 - 4 μm, and field of view (FOV), we, then, went through the further analysis, optical analysis. Focusing in illumination matter, the process was done by using Zemax software. Optical pass Interference and Stray light were two things that become our concern throughout the work. They could also be an evaluation of the performance optimization of illumination analysis of our optical design. The results, graphs, show that our design performance is close diffraction limited and the image blur of the geometrical produced by Lapan's IR Micro Bolometer lenses is in the pixel area range. Therefore, our optical design performance is relatively good and will produce image with high quality. In this paper, the Illumination analysis and process of LAPAN's Infra Red (IR) Micro Bolometer is presented.

  10. Pandora Operation and Analysis Software

    NASA Technical Reports Server (NTRS)

    Herman, Jay; Cede, Alexander; Abuhassan, Nader

    2012-01-01

    Pandora Operation and Analysis Software controls the Pandora Sun- and sky-pointing optical head and built-in filter wheels (neutral density, UV bandpass, polarization filters, and opaque). The software also controls the attached spectrometer exposure time and thermoelectric cooler to maintain the spectrometer temperature to within 1 C. All functions are available through a GUI so as to be easily accessible by the user. The data are automatically stored on a miniature computer (netbook) for automatic download to a designated server at user defined intervals (once per day, once per week, etc.), or to a USB external device. An additional software component reduces the raw data (spectrometer counts) to preliminary scientific products for quick-view purposes. The Pandora systems are built from off-the-shelf commercial parts and from mechanical parts machined using electronic machine shop drawings. The Pandora spectrometer system is designed to look at the Sun (tracking to within 0.1 ), or to look at the sky at any zenith or azimuth angle, to gather information about the amount of trace gases or aerosols that are present.

  11. Analysis methods for polarization state and energy transmission of rays propagating in optical systems

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Qiangsheng; Cen, Zhaofeng; Li, Xiaotong

    2010-11-01

    Polarization state of only completely polarized light can be analyzed by some software, ZEMAX for example. Based on principles of geometrical optics, novel descriptions of the light with different polarization state are provided in this paper. Differential calculus is well used for saving the polarization state and amplitudes of sampling rays when ray tracing. The polarization state changes are analyzed in terms of several typical circumstances, such as Brewster incidence, total reflection. Natural light and partially polarized light are discussed as an important aspect. Further more, a computing method including composition and decomposition of sampling rays at each surface is also set up to analyze the energy transmission of the rays for optical systems. Adopting these analysis methods mentioned, not only the polarization state changes of the incident rays can be obtained, but also the energy distributions can be calculated. Since the energy distributions are obtained, the surface with the most energy loss will be found in the optical system. The energy value and polarization state of light reaching the image surface will also be available. These analysis methods are very helpful for designing or analyzing optical systems, such as analyzing the energy of stray light in high power optical systems, researching the influences of optical surfaces to rays' polarization state in polarization imaging systems and so on.

  12. M.S.L.A.P. Modular Spectral Line Analysis Program documentation

    NASA Technical Reports Server (NTRS)

    Joseph, Charles L.; Jenkins, Edward B.

    1991-01-01

    MSLAP is a software for analyzing spectra, providing the basic structure to identify spectral features, to make quantitative measurements of this features, and to store the measurements for convenient access. MSLAP can be used to measure not only the zeroth moment (equivalent width) of a profile, but also the first and second moments. Optical depths and the corresponding column densities across the profile can be measured as well for sufficiently high resolution data. The software was developed for an interactive, graphical analysis where the computer carries most of the computational and data organizational burden and the investigator is responsible only for all judgement decisions. It employs sophisticated statistical techniques for determining the best polynomial fit to the continuum and for calculating the uncertainties.

  13. Development and Implementation of a Generic Analysis Template for Structural-Thermal-Optical-Performance Modeling

    NASA Technical Reports Server (NTRS)

    Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad

    2016-01-01

    Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.

  14. Development and implementation of a generic analysis template for structural-thermal-optical-performance modeling

    NASA Astrophysics Data System (ADS)

    Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad

    2016-09-01

    Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.

  15. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  16. Comparison of Fiber Optic Strain Demodulation Implementations

    NASA Technical Reports Server (NTRS)

    Quach, Cuong C.; Vazquez, Sixto L.

    2005-01-01

    NASA Langley Research Center is developing instrumentation based upon principles of Optical Frequency-Domain Reflectometry (OFDR) for the provision of large-scale, dense distribution of strain sensors using fiber optics embedded with Bragg gratings. Fiber Optic Bragg Grating technology enables the distribution of thousands of sensors immune to moisture and electromagnetic interference with negligible weight penalty. At Langley, this technology provides a key component for research and development relevant to comprehensive aerospace vehicle structural health monitoring. A prototype system is under development that includes hardware and software necessary for the acquisition of data from an optical network and conversion of the data into strain measurements. This report documents the steps taken to verify the software that implements the algorithm for calculating the fiber strain. Brief descriptions of the strain measurement system and the test article are given. The scope of this report is the verification of software implementations as compared to a reference model. The algorithm will be detailed along with comparison results.

  17. Software-centric View on OVMS for LBT

    NASA Astrophysics Data System (ADS)

    Trowitzsch, J.; Borelli, J.; Pott, J.; Kürster, M.

    2012-09-01

    The performance of infrared interferometry (IF) and adaptive optics (AO) strongly depends on the mitigation and correction of telescope vibrations. Therefore, at the Large Binocular Telescope (LBT) the OVMS, the Optical Path Difference and Vibration Monitoring System, is being installed. It is meant to ensure suitable conditions for adaptive optics and interferometry. The vibration information is collected from accelerometers that are distributed over the optical elements of the LBT. The collected vibration measurements are converted into tip-tilt and optical path difference data. That data is utilized in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers, LINC-NIRVANA and LBTI. Within the OVMS the software part is responsibility of the LINC-NIRVANA team at MPIA Heidelberg. It comprises the software for the real-time data acquisition from the accelerometers as well as the related telemetry interface and the vibration monitoring quick look tools. The basic design ideas, implementation details and special features are explained here.

  18. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  19. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  20. Performance Analysis of Triple Asymmetrical Optical Micro Ring Resonator with 2 × 2 Input-Output Bus Waveguide

    NASA Astrophysics Data System (ADS)

    Ranjan, Suman; Mandal, Sanjoy

    2017-12-01

    Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.

  1. Performance Analysis of Triple Asymmetrical Optical Micro Ring Resonator with 2 × 2 Input-Output Bus Waveguide

    NASA Astrophysics Data System (ADS)

    Ranjan, Suman; Mandal, Sanjoy

    2018-02-01

    Modeling of triple asymmetrical optical micro ring resonator (TAOMRR) in z-domain with 2 × 2 input-output system with detailed design of its waveguide configuration using finite-difference time-domain (FDTD) method is presented. Transfer function in z-domain using delay-line signal processing technique of the proposed TAOMRR is determined for different input and output ports. The frequency response analysis is carried out using MATLAB software. Group delay and dispersion characteristics are also determined in MATLAB. The electric field analysis is done using FDTD. The method proposes a new methodology to design and draw multiple configurations of coupled ring resonators having multiple in and out ports. Various important parameters such as coupling coefficients and FSR are also determined.

  2. A scalable correlator for multichannel diffuse correlation spectroscopy.

    PubMed

    Stapels, Christopher J; Kolodziejski, Noah J; McAdams, Daniel; Podolsky, Matthew J; Fernandez, Daniel E; Farkas, Dana; Christian, James F

    2016-02-01

    Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.

  3. A high-speed, large-capacity, 'jukebox' optical disk system

    NASA Technical Reports Server (NTRS)

    Ammon, G. J.; Calabria, J. A.; Thomas, D. T.

    1985-01-01

    Two optical disk 'jukebox' mass storage systems which provide access to any data in a store of 10 to the 13th bits (1250G bytes) within six seconds have been developed. The optical disk jukebox system is divided into two units, including a hardware/software controller and a disk drive. The controller provides flexibility and adaptability, through a ROM-based microcode-driven data processor and a ROM-based software-driven control processor. The cartridge storage module contains 125 optical disks housed in protective cartridges. Attention is given to a conceptual view of the disk drive unit, the NASA optical disk system, the NASA database management system configuration, the NASA optical disk system interface, and an open systems interconnect reference model.

  4. Development of a New Optical Measuring Set-Up

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, I. P.; Parinov, I. A.

    2018-06-01

    The paper proposes a description of the developed optical measuring set-up for the contactless recording and processing of measurement results for small spatial (linear and angular) displacements of control surfaces based on the use of laser technologies and optical interference methods. The proposed set-up is designed to solve all the arising measurement tasks in the study of the physical and mechanical properties of new materials and in the process of diagnosing the state of structural materials by acoustic active methods of nondestructive testing. The structure of the set-up, its constituent parts are described, and the features of construction and functioning during measurements are discussed. New technical solutions for the implementation of the components of the set-up under consideration are obtained. The purpose and description of the original specialized software, used to perform a priori analysis of measurement results, are present, while performing measurements, for a posteriori analysis of measurement results. Moreover, the influences of internal and external disturbance effects on the measurement results and correcting measurement results directly in their implementation are determined. The technical solutions, used in the set-up, are protected by the patents of the Russian Federation for inventions, and software is protected by the certificates of state registration of computer programs. The proposed set-up is intended for use in instrumentation, mechanical engineering, shipbuilding, aviation, energy sector, etc.

  5. Open-source framework for documentation of scientific software written on MATLAB-compatible programming languages

    NASA Astrophysics Data System (ADS)

    Konnik, Mikhail V.; Welsh, James

    2012-09-01

    Numerical simulators for adaptive optics systems have become an essential tool for the research and development of the future advanced astronomical instruments. However, growing software code of the numerical simulator makes it difficult to continue to support the code itself. The problem of adequate documentation of the astronomical software for adaptive optics simulators may complicate the development since the documentation must contain up-to-date schemes and mathematical descriptions implemented in the software code. Although most modern programming environments like MATLAB or Octave have in-built documentation abilities, they are often insufficient for the description of a typical adaptive optics simulator code. This paper describes a general cross-platform framework for the documentation of scientific software using open-source tools such as LATEX, mercurial, Doxygen, and Perl. Using the Perl script that translates M-files MATLAB comments into C-like, one can use Doxygen to generate and update the documentation for the scientific source code. The documentation generated by this framework contains the current code description with mathematical formulas, images, and bibliographical references. A detailed description of the framework components is presented as well as the guidelines for the framework deployment. Examples of the code documentation for the scripts and functions of a MATLAB-based adaptive optics simulator are provided.

  6. Enhanced optical security by using information carrier digital screening

    NASA Astrophysics Data System (ADS)

    Koltai, Ferenc; Adam, Bence

    2004-06-01

    Jura has developed different security features based on Information Carrier Digital Screening. Substance of such features is that a non-visible secondary image is encoded in a visible primary image. The encoded image will be visible only by using a decoding device. One of such developments is JURA's Invisible Personal Information (IPI) is widely used in high security documents, where personal data of the document holder are encoded in the screen of the document holder's photography and they can be decoded by using an optical decoding device. In order to make document verification fully automated, enhance security and eliminate human factors, digital version of IPI, the D-IPI was developed. A special 2D-barcode structure was designed, which contains sufficient quantity of encoded digital information and can be embedded into the photo. Other part of Digital-IPI is the reading software, that is able to retrieve the encoded information with high reliability. The reading software developed with a specific 2D structure is providing the possibility of a forensic analysis. Such analysis will discover all kind of manipulations -- globally, if the photography was simply changed and selectively, if only part of the photography was manipulated. Digital IPI is a good example how benefits of digital technology can be exploited by using optical security and how technology for optical security can be converted into digital technology. The D-IPI process is compatible with all current personalization printers and materials (polycarbonate, PVC, security papers, Teslin-foils, etc.) and can provide any document with enhanced security and tamper-resistance.

  7. [Development of a software standardizing optical density with operation settings related to several limitations].

    PubMed

    Tu, Xiao-Ming; Zhang, Zuo-Heng; Wan, Cheng; Zheng, Yu; Xu, Jin-Mei; Zhang, Yuan-Yuan; Luo, Jian-Ping; Wu, Hai-Wei

    2012-12-01

    To develop a software that can be used to standardize optical density to normalize the procedures and results of standardization in order to effectively solve several problems generated during standardization of in-direct ELISA results. The software was designed based on the I-STOD method with operation settings to solve the problems that one might encounter during the standardization. Matlab GUI was used as a tool for the development. The software was tested with the results of the detection of sera of persons from schistosomiasis japonica endemic areas. I-STOD V1.0 (WINDOWS XP/WIN 7, 0.5 GB) was successfully developed to standardize optical density. A serial of serum samples from schistosomiasis japonica endemic areas were used to examine the operational effects of I-STOD V1.0 software. The results indicated that the software successfully overcame several problems including reliability of standard curve, applicable scope of samples and determination of dilution for samples outside the scope, so that I-STOD was performed more conveniently and the results of standardization were more consistent. I-STOD V1.0 is a professional software based on I-STOD. It can be easily operated and can effectively standardize the testing results of in-direct ELISA.

  8. Air-borne shape measurement of parabolic trough collector fields

    NASA Astrophysics Data System (ADS)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  9. Integrated analysis of large space systems

    NASA Technical Reports Server (NTRS)

    Young, J. P.

    1980-01-01

    Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.

  10. Detailed analysis of complex single molecule FRET data with the software MASH

    NASA Astrophysics Data System (ADS)

    Hadzic, Mélodie C. A. S.; Kowerko, Danny; Börner, Richard; Zelger-Paulus, Susann; Sigel, Roland K. O.

    2016-04-01

    The processing and analysis of surface-immobilized single molecule FRET (Förster resonance energy transfer) data follows systematic steps (e.g. single molecule localization, clearance of different sources of noise, selection of the conformational and kinetic model, etc.) that require a solid knowledge in optics, photophysics, signal processing and statistics. The present proceeding aims at standardizing and facilitating procedures for single molecule detection by guiding the reader through an optimization protocol for a particular experimental data set. Relevant features were determined from single molecule movies (SMM) imaging Cy3- and Cy5-labeled Sc.ai5γ group II intron molecules synthetically recreated, to test the performances of four different detection algorithms. Up to 120 different parameterizations per method were routinely evaluated to finally establish an optimum detection procedure. The present protocol is adaptable to any movie displaying surface-immobilized molecules, and can be easily reproduced with our home-written software MASH (multifunctional analysis software for heterogeneous data) and script routines (both available in the download section of www.chem.uzh.ch/rna).

  11. Electro-optic Mach-Zehnder Interferometer based Optical Digital Magnitude Comparator and 1's Complement Calculator

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Raghuwanshi, Sanjeev Kumar

    2016-06-01

    The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.

  12. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  13. Rapid Software-Based Design and Optical Transient Liquid Molding of Microparticles.

    PubMed

    Wu, Chueh-Yu; Owsley, Keegan; Di Carlo, Dino

    2015-12-22

    Microparticles with complex 3D shape and composition are produced using a novel fabrication method, optical transient liquid molding, in which a 2D light pattern exposes a photopolymer precursor stream shaped along the flow axis by software-aided inertial flow engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Platform-Independent Cirrus and Spectralis Thickness Measurements in Eyes with Diabetic Macular Edema Using Fully Automated Software

    PubMed Central

    Willoughby, Alex S.; Chiu, Stephanie J.; Silverman, Rachel K.; Farsiu, Sina; Bailey, Clare; Wiley, Henry E.; Ferris, Frederick L.; Jaffe, Glenn J.

    2017-01-01

    Purpose We determine whether the automated segmentation software, Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can measure, in a platform-independent manner, retinal thickness on Cirrus and Spectralis spectral domain optical coherence tomography (SD-OCT) images in eyes with diabetic macular edema (DME) under treatment in a clinical trial. Methods Automatic segmentation software was used to segment the internal limiting membrane (ILM), inner retinal pigment epithelium (RPE), and Bruch's membrane (BM) in SD-OCT images acquired by Cirrus and Spectralis commercial systems, from the same eye, on the same day during a clinical interventional DME trial. Mean retinal thickness differences were compared across commercial and DOCTRAP platforms using intraclass correlation (ICC) and Bland-Altman plots. Results The mean 1 mm central subfield thickness difference (standard error [SE]) comparing segmentation of Spectralis images with DOCTRAP versus HEYEX was 0.7 (0.3) μm (0.2 pixels). The corresponding values comparing segmentation of Cirrus images with DOCTRAP versus Cirrus software was 2.2 (0.7) μm. The mean 1 mm central subfield thickness difference (SE) comparing segmentation of Cirrus and Spectralis scan pairs with DOCTRAP using BM as the outer retinal boundary was −2.3 (0.9) μm compared to 2.8 (0.9) μm with inner RPE as the outer boundary. Conclusions DOCTRAP segmentation of Cirrus and Spectralis images produces validated thickness measurements that are very similar to each other, and very similar to the values generated by the corresponding commercial software in eyes with treated DME. Translational Relevance This software enables automatic total retinal thickness measurements across two OCT platforms, a process that is impractical to perform manually. PMID:28180033

  15. “Diagnosis by Behavioral Observation” Home-Videosomnography – A Rigorous Ethnographic Approach to Sleep of Children with Neurodevelopmental Conditions

    PubMed Central

    Ipsiroglu, Osman S.; Hung, Yi-Hsuan Amy; Chan, Forson; Ross, Michelle L.; Veer, Dorothee; Soo, Sonja; Ho, Gloria; Berger, Mai; McAllister, Graham; Garn, Heinrich; Kloesch, Gerhard; Barbosa, Adriano Vilela; Stockler, Sylvia; McKellin, William; Vatikiotis-Bateson, Eric

    2015-01-01

    Introduction: Advanced video technology is available for sleep-laboratories. However, low-cost equipment for screening in the home setting has not been identified and tested, nor has a methodology for analysis of video recordings been suggested. Methods: We investigated different combinations of hardware/software for home-videosomnography (HVS) and established a process for qualitative and quantitative analysis of HVS-recordings. A case vignette (HVS analysis for a 5.5-year-old girl with major insomnia and several co-morbidities) demonstrates how methodological considerations were addressed and how HVS added value to clinical assessment. Results: We suggest an “ideal set of hardware/software” that is reliable, affordable (∼$500) and portable (=2.8 kg) to conduct non-invasive HVS, which allows time-lapse analyses. The equipment consists of a net-book, a camera with infrared optics, and a video capture device. (1) We present an HVS-analysis protocol consisting of three steps of analysis at varying replay speeds: (a) basic overview and classification at 16× normal speed; (b) second viewing and detailed descriptions at 4–8× normal speed, and (c) viewing, listening, and in-depth descriptions at real-time speed. (2) We also present a custom software program that facilitates video analysis and note-taking (Annotator©), and Optical Flow software that automatically quantifies movement for internal quality control of the HVS-recording. The case vignette demonstrates how the HVS-recordings revealed the dimension of insomnia caused by restless legs syndrome, and illustrated the cascade of symptoms, challenging behaviors, and resulting medications. Conclusion: The strategy of using HVS, although requiring validation and reliability testing, opens the floor for a new “observational sleep medicine,” which has been useful in describing discomfort-related behavioral movement patterns in patients with communication difficulties presenting with challenging/disruptive sleep/wake behaviors. PMID:25852578

  16. Optomechanical integrated simulation of Mars medium resolution lens with large field of view

    NASA Astrophysics Data System (ADS)

    Yang, Wenqiang; Xu, Guangzhou; Yang, Jianfeng; Sun, Yi

    2017-10-01

    The lens of Mars detector is exposed to solar radiation and space temperature for long periods of time during orbit, so that the ambient temperature of the optical system is in a dynamic state. The optical and mechanical change caused by heat will lead to camera's visual axis drift and the wavefront distortion. The surface distortion of the optical lens includes the displacement of the rigid body and the distortion of the surface shape. This paper used the calculation method based on the integrated optomechanical analysis, to explore the impact of thermodynamic load on image quality. Through the analysis software, established a simulation model of the lens structure. The shape distribution and the surface characterization parameters of the lens in some temperature ranges were analyzed and compared. the PV / RMS value, deformation cloud of the lens surface and quality evaluation of imaging was achieved. This simulation has been successfully measured the lens surface shape and shape distribution under the load which is difficult to measure on the experimental conditions. The integrated simulation method of the optical machine can obtain the change of the optical parameters brought by the temperature load. It shows that the application of Integrated analysis has play an important role in guiding the designing the lens.

  17. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    NASA Astrophysics Data System (ADS)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  18. Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media

    PubMed Central

    Ren, Shenghan; Chen, Xueli; Wang, Hailong; Qu, Xiaochao; Wang, Ge; Liang, Jimin; Tian, Jie

    2013-01-01

    The study of light propagation in turbid media has attracted extensive attention in the field of biomedical optical molecular imaging. In this paper, we present a software platform for the simulation of light propagation in turbid media named the “Molecular Optical Simulation Environment (MOSE)”. Based on the gold standard of the Monte Carlo method, MOSE simulates light propagation both in tissues with complicated structures and through free-space. In particular, MOSE synthesizes realistic data for bioluminescence tomography (BLT), fluorescence molecular tomography (FMT), and diffuse optical tomography (DOT). The user-friendly interface and powerful visualization tools facilitate data analysis and system evaluation. As a major measure for resource sharing and reproducible research, MOSE aims to provide freeware for research and educational institutions, which can be downloaded at http://www.mosetm.net. PMID:23577215

  19. Ultra high energy resolution focusing monochromator for inelastic X-ray scattering spectrometer

    DOE PAGES

    Suvorov, Alexey; Cunsolo, Alessandro; Chubar, Oleg; ...

    2015-11-25

    Further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the “Synchrotron Radiation Workshop” software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. We show that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

  20. Possibilities for retracing of copyright violations on current video game consoles by optical disk analysis

    NASA Astrophysics Data System (ADS)

    Irmler, Frank; Creutzburg, Reiner

    2014-02-01

    This paper deals with the possibilities of retracing copyright violations on current video game consoles (e.g. Microsoft Xbox, Sony PlayStation, ...) by studying the corresponding optical storage media DVD and Blu-ray. The possibilities of forensic investigation of DVD and Blu-ray Discs are presented. It is shown which information can be read by using freeware and commercial software for forensic examination. A detailed analysis is given on the visualization of hidden content and the possibility to find out information about the burning hardware used for writing on the optical discs. In connection with a forensic analysis of the Windows registry of a suspects PC a detailed overview of the crime scene for forged DVD and Blu-ray Discs can be obtained. Optical discs are examined under forensic aspects and the obtained results are implemented into automatic analysis scripts for the commercial forensics program EnCase Forensic. It is shown that for the optical storage media a possibility of identification of the drive used for writing can be obtained. In particular Blu-ray Discs contain the serial number of the burner. These and other findings were incorporated into the creation of various EnCase scripts for the professional forensic investigation with EnCase Forensic. Furthermore, a detailed flowchart for a forensic investigation of copyright infringement was developed.

  1. Stray light suppression of optical and mechanical system for telescope detection

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ma, Wenli

    2013-09-01

    During telescope detection, there is atmosphere overflow and other stray light affecting the system which leads to background disturbance. Thus reduce the detection capability of the system. So it is very necessary to design mechanical structure to suppress the stray light for the telescope detection system. It can both improve the signal-to-noise and contrast of the object. This paper designs the optical and mechanical structure of the 400mm telescope. And then the main baffle, baffle vane, field stop and coating technology are used to eliminate the effect of stray light on the optical and mechanical system. Finally, software is used to analyze and simulate stray light on the whole optical and mechanical system. Using PST as the evaluating standard, separate and integrated analysis of the suppressing effect of main baffle, baffle vane and field aperture is completed. And also get the results of PST before and after eliminating the stray light. Meanwhile, the results of stray light analysis can be used to guide the design of the optical and mechanical structure. The analysis results demonstrate that reasonable optical and mechanical structure and stray light suppression measure can highly reduce the PST and also improve the detection capability of the telescope system, and the designed outside baffle, inside baffle, vanes and coating technique etc. can decrease the PST approximately 1 to 3 level.

  2. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Experimental measurements on transverse vibration characteristics of piezoceramic rectangular plates by optical methods

    NASA Astrophysics Data System (ADS)

    Ma, Chien-Ching; Lin, Hsien-Yang

    2005-09-01

    This study provides two non-contact optical techniques to investigate the transverse vibration characteristics of piezoceramic rectangular plates in resonance. These methods, including the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are full-field measurement for AF-ESPI and point-wise displacement measurement for LDV, respectively. The edges of these piezoceramic rectangular plates may either be fixed or free. Both resonant frequencies and mode shapes of vibrating piezoceramic plates can be obtained simultaneously by AF-ESPI. Excellent quality of the interferometric fringe patterns for the mode shapes is obtained. In the LDV system, a built-in dynamic signal analyzer (DSA) composed of DSA software and a plug-in waveform generator board can provide the piezoceramic plates with the swept-sine excitation signal, whose gain at corresponding frequencies is analyzed by the DSA software. The peaks appeared in the frequency response curve are resonant frequencies. In addition to these optical methods, the numerical computation based on the finite element analysis is used to verify the experimental results. Good agreements of the mode shapes and resonant frequencies are obtained for experimental and numerical results.

  4. Protocol independent transmission method in software defined optical network

    NASA Astrophysics Data System (ADS)

    Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng

    2016-10-01

    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.

  5. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy.

    PubMed

    Barabas, Federico M; Masullo, Luciano A; Stefani, Fernando D

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  6. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy

    NASA Astrophysics Data System (ADS)

    Barabas, Federico M.; Masullo, Luciano A.; Stefani, Fernando D.

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  7. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    NASA Astrophysics Data System (ADS)

    Staderini, Enrico Maria; Castellano, Alfredo

    1986-02-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.

  8. Burst switching without guard interval in all-optical software-define star intra-data center network

    NASA Astrophysics Data System (ADS)

    Ji, Philip N.; Wang, Ting

    2014-02-01

    Optical switching has been introduced in intra-data center networks (DCNs) to increase capacity and to reduce power consumption. Recently we proposed a star MIMO OFDM-based all-optical DCN with burst switching and software-defined networking. Here, we introduce the control procedure for the star DCN in detail for the first time. The timing, signaling, and operation are described for each step to achieve efficient bandwidth resource utilization. Furthermore, the guidelines for the burst assembling period selection that allows burst switching without guard interval are discussed. The star all-optical DCN offers flexible and efficient control for next-generation data center application.

  9. Developing and Evaluating an Interactive Multimedia Instructional Tool: Learning Outcomes and User Experiences of Optometry Students

    ERIC Educational Resources Information Center

    Wang, Ling

    2008-01-01

    This study developed an interactive multimedia-based software program for Optics instruction, which was expected to overcome the imperfection of traditional optical labs. The researcher evaluated the effectiveness of the program through an experimental study that compared the learning outcomes of the students who used and did not use the software.…

  10. The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter.

    PubMed

    Donnelly, William

    2008-11-01

    To present a commercially available software tool for creating eye models to assist the development of ophthalmic optics and instrumentation, simulate ailments or surgery-induced changes, explore vision research questions, and provide assistance to clinicians in planning treatment or analyzing clinical outcomes. A commercially available eye modeling system was developed, the Advanced Human Eye Model (AHEM). Two mainstream optical software engines, ZEMAX (ZEMAX Development Corp) and ASAP (Breault Research Organization), were used to construct a similar software eye model and compared. The method of using the AHEM is described and various eye modeling scenarios are created. These scenarios consist of retinal imaging of targets and sources; optimization capability; spectacles, contact lens, and intraocular lens insertion and correction; Zernike surface deformation on the cornea; cataract simulation and scattering; a gradient index lens; a binocular mode; a retinal implant; system import/export; and ray path exploration. Similarity of the two different optical software engines showed validity to the mechanism of the AHEM. Metrics and graphical data are generated from the various modeling scenarios particular to their input specifications. The AHEM is a user-friendly commercially available software tool from Breault Research Organization, which can assist the design of ophthalmic optics and instrumentation, simulate ailments or refractive surgery-induced changes, answer vision research questions, or assist clinicians in planning treatment or analyzing clinical outcomes.

  11. 10 GHz Standing-Wave Coplanar Stripline on LiNbO3 Crystal for Radio to Optical-Wave Conversion

    NASA Astrophysics Data System (ADS)

    Darwis, F.; Wijayanto, Y. N.; Setiawan, A.; Mahmudin, D.; Rahman, A. N.; Daud, P.

    2018-04-01

    Recently, X-band radar systems are used widely for surveillance and navigation applications. Especially in archipelago or maritime country, the surveillance/navigation radar systems are required to monitoring critical areas and managing marine traffic. Accurate detection and fast analysis should be improved furthermore to provide security and safety condition. Therefore, several radar systems should be installed in many places to coverage the critical areas within radar networks. The radar network can be connected using optical fibers since it has extremely low propagation loss with optical-wave to carry-out the radar-wave. One important component in the scenario is a radio to optical-wave conversion component. In this paper, we report a 10 GHz radio to optical-wave conversion component using standing-wave coplanar stripline (CPS) on LiNbO3 optical crystal as the substrate. The standing-wave CPS electrodes with narrow slot are arranged in an array structure. An optical waveguide is located close to the narrow slot. The CPS electrodes were analysed using electromagnetic analysis software for 10 GHz operational frequency. Responses for slot width and electrode length variation are reported. As results, return loss of -14.580 dB and -19.517 dB are obtained for single and array CPS electrodes respectively. Optimization of the designed radio to optical-wave conversion devices was also done.

  12. Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Dennis L.

    2016-05-01

    This paper discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements.qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts.

  13. The LBT real-time based control software to mitigate and compensate vibrations

    NASA Astrophysics Data System (ADS)

    Borelli, J.; Trowitzsch, J.; Brix, M.; Kürster, M.; Gässler, W.; Bertram, T.; Briegel, F.

    2010-07-01

    The Large Binocular Telescope (LBT) uses two 8.4 meters active primary mirrors and two adaptive secondary mirrors on the same mounting to take advantage of its interferometric capabilities. Both applications, interferometry and AO, are sensitive to vibrations. Several measurement campaigns have been carried out at the LBT and their results strongly indicate that a vibration monitoring system is required to improve the performance of LINC-NIRVANA, LBTI, and ARGOS, the laser guided ground layer adaptive optic system. Currently, a control software for mitigation and compensation of the vibrations is being designed. A complex set of algorithms collects real-time vibration data, archiving it for further analysis, and in parallel, generating the tip-tilt and optical path difference (OPD) data for the control loop of the instruments. A real-time data acquisition device equipped with embedded real-time Linux is used in our systems. A set of quick-look tools is currently under development in order to verify if the conditions at the telescope are suitable for interferometric/adaptive observations.

  14. Automated system for the on-line monitoring of powder blending processes using near-infrared spectroscopy. Part I. System development and control.

    PubMed

    Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K

    1996-03-01

    An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.

  15. piscope - A Python based software package for the analysis of volcanic SO2 emissions using UV SO2 cameras

    NASA Astrophysics Data System (ADS)

    Gliss, Jonas; Stebel, Kerstin; Kylling, Arve; Solvejg Dinger, Anna; Sihler, Holger; Sudbø, Aasmund

    2017-04-01

    UV SO2 cameras have become a common method for monitoring SO2 emission rates from volcanoes. Scattered solar UV radiation is measured in two wavelength windows, typically around 310 nm and 330 nm (distinct / weak SO2 absorption) using interference filters. The data analysis comprises the retrieval of plume background intensities (to calculate plume optical densities), the camera calibration (to convert optical densities into SO2 column densities) and the retrieval of gas velocities within the plume as well as the retrieval of plume distances. SO2 emission rates are then typically retrieved along a projected plume cross section, for instance a straight line perpendicular to the plume propagation direction. Today, for most of the required analysis steps, several alternatives exist due to ongoing developments and improvements related to the measurement technique. We present piscope, a cross platform, open source software toolbox for the analysis of UV SO2 camera data. The code is written in the Python programming language and emerged from the idea of a common analysis platform incorporating a selection of the most prevalent methods found in literature. piscope includes several routines for plume background retrievals, routines for cell and DOAS based camera calibration including two individual methods to identify the DOAS field of view (shape and position) within the camera images. Gas velocities can be retrieved either based on an optical flow analysis or using signal cross correlation. A correction for signal dilution (due to atmospheric scattering) can be performed based on topographic features in the images. The latter requires distance retrievals to the topographic features used for the correction. These distances can be retrieved automatically on a pixel base using intersections of individual pixel viewing directions with the local topography. The main features of piscope are presented based on dataset recorded at Mt. Etna, Italy in September 2015.

  16. Fine pointing control for free-space optical communication

    NASA Technical Reports Server (NTRS)

    Portillo, A. A.; Ortiz, G. G.; Racho, C.

    2000-01-01

    Free-Space Optical Communications requires precise, stable laser pointing to maintain operating conditions. This paper also describes the software and hardware implementation of Fine Pointing Control based on the Optical Communications Demonstrator architecture.

  17. Optical Design of Telescopes and other Reflective Systems using SLIDERS

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.

    2007-01-01

    Optical design tools are presented to provide automatic generation of reflective optical systems for design studies and educational use. The tools are graphical in nature and use an interactive slider interface with freely available optical design software, OSLO EDU. Operation of the sliders provides input to adjust first-order and other system parameters (e.g. focal length), while appropriate system construction parameters are automatically updated to correct aberrations. Graphical output is also presented in real-time (e.g. a lens drawing) to provide the opportunity for a truly visual approach to optical design. Available systems include two- three- and four-mirror telescopes, relays, and afocal systems, either rotationally symmetric or having just a plane of symmetry. Demonstrations are presented, including a brief discussion of interfacing optical design software to MATLAB, and general research opportunities at NASA.

  18. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    NASA Astrophysics Data System (ADS)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  19. Microstructural and optical properties of CdS nanoparticles synthesized by sol gel method

    NASA Astrophysics Data System (ADS)

    Mahdi, Hadeel Salih; Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    Semiconductor nanoparticles of CdS are of great interest for both fundamental research and industrial development due to their unique size-dependent optical and electronic properties and their exciting utilization in the fields of light-emitting diode, electro-chemical cells, laser, hydrogen producing catalyst, biological label. We present a scheme to measure the optical properties of CdS nanoparticles The peaks were indexed by powder-x software. The XRD pattern analysis showed that CdS composition was found to have hexagonal structure with well crystalline nature. the surface morphology and the composition of the samples were investigated by SEM (JEOL, japan). The image shows the presence of large spherical aggregates of smaller individual nanoparticles of various sizes for pure cds. to check the chemical composition of the material, energy dispersive X-ray (EDX) spectroscopic analysis was also performed which further confirmed the presence of cd and s ions in the matrix. The optical absorption spectra of CdS sample was recorded by uv-vis spectrophotometer in the range of 200 to 800 nm.

  20. The EOSDIS software challenge

    NASA Astrophysics Data System (ADS)

    Jaworski, Allan

    1993-08-01

    The Earth Observing System (EOS) Data and Information System (EOSDIS) will serve as a major resource for the earth science community, supporting both command and control of complex instruments onboard the EOS spacecraft and the archiving, distribution, and analysis of data. The scale of EOSDIS and the volume of multidisciplinary research to be conducted using EOSDIS resources will produce unparalleled needs for technology transparency, data integration, and system interoperability. The scale of this effort far outscopes any previous scientific data system in its breadth or operational and performance needs. Modern hardware technology can meet the EOSDIS technical challenge. Multiprocessing speeds of many giga-flops are being realized by modern computers. Online storage disk, optical disk, and videocassette libraries with storage capacities of many terabytes are now commercially available. Radio frequency and fiber optics communications networks with gigabit rates are demonstrable today. It remains, of course, to perform the system engineering to establish the requirements, architectures, and designs that will implement the EOSDIS systems. Software technology, however, has not enjoyed the price/performance advances of hardware. Although we have learned to engineer hardware systems which have several orders of magnitude greater complexity and performance than those built in the 1960's, we have not made comparable progress in dramatically reducing the cost of software development. This lack of progress may significantly reduce our capabilities to achieve economically the types of highly interoperable, responsive, integraded, and productive environments which are needed by the earth science community. This paper describes some of the EOSDIS software requirements and current activities in the software community which are applicable to meeting the EOSDIS challenge. Some of these areas include intelligent user interfaces, software reuse libraries, and domain engineering. Also included are discussions of applicable standards in the areas of operating systems interfaces, user interfaces, communications interfaces, data transport, and science algorithm support, and their role in supporting the software development process.

  1. Software on diffractive optics and computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Doskolovich, Leonid L.; Golub, Michael A.; Kazanskiy, Nikolay L.; Khramov, Alexander G.; Pavelyev, Vladimir S.; Seraphimovich, P. G.; Soifer, Victor A.; Volotovskiy, S. G.

    1995-01-01

    The `Quick-DOE' software for an IBM PC-compatible computer is aimed at calculating the masks of diffractive optical elements (DOEs) and computer generated holograms, computer simulation of DOEs, and for executing a number of auxiliary functions. In particular, among the auxiliary functions are the file format conversions, mask visualization on display from a file, implementation of fast Fourier transforms, and arranging and preparation of composite images for the output on a photoplotter. The software is aimed for use by opticians, DOE designers, and the programmers dealing with the development of the program for DOE computation.

  2. Optical sensor for real-time weld defect detection

    NASA Astrophysics Data System (ADS)

    Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.

    2002-04-01

    In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.

  3. Designing a Small-Sized Engineering Model of Solar EUV Telescopr for a Korean Satellite

    NASA Astrophysics Data System (ADS)

    Han, Jung-Hoon; Jang, Min-Hwan; Kim, Sang-Joon

    2001-11-01

    For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sized engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV solar telescope was designed to observe the sun at 584.3Å (He¥°) and 629.7Å (O¥´). The optical system is an f/8 Ritchey-Chrètien, and the effective diameter and focal length are 80§® and 640§®, respectively. The He¥°and O¥´ filters are loaded in a filter wheel. In the detection part, the MCP (MicroChannel Plate) type is Z-stack, and the channel-to-diameter ratio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.

  4. Optimization study on the primary mirror lightweighting of a remote sensing instrument

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; Huang, Bo-Kai; You, Zhen-Ting; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-07-01

    Remote sensing instrument (RSI) is used to take images for ground surface observation, which will be exposed to high vacuum, high temperature difference, gravity, 15 g-force and random vibration conditions and other harsh environments during operation. While designing a RSI optical system, not only the optical quality but also the strength of mechanical structure we should be considered. As a result, an optimization method is adopted to solve this engineering problem. In the study, a ZERODUR® mirror with a diameter of 466 mm has been chosen as the model and the optimization has been executed by combining the computer-aided design, finite element analysis, and parameter optimization software. The optimization is aimed to obtain the most lightweight mirror with maintaining structural rigidity and good optical quality. Finally, the optimum optical mirror with a lightweight ratio of 0.55 is attained successfully.

  5. An Overview of U.S. Trends in Educational Software Design.

    ERIC Educational Resources Information Center

    Colvin, Linda B.

    1989-01-01

    Describes trends in educational software design in the United States for elementary and secondary education. Highlights include user-friendly software; learner control; interfacing the computer with other media, including television, telecommunications networks, and optical disk technology; microworlds; graphics; word processing; database…

  6. Optical Quality, Threshold Target Identification and Military Target Task Performance After Advanced Keratorefractive Surgery

    DTIC Science & Technology

    2010-05-01

    PRK vs . LASIK ) will no longer randomized but rather the patient a...commercial workstation & software. Analysis will determine the effect on visual performance of the different treatments (WFO PRK vs . WFO LASIK vs . WFG PRK ...Overall objective. To determine the effect of two types of wavefront modalities (WFG vs . WFO) and two types of refractive surgery ( PRK vs . LASIK )

  7. Design and Construction of a Field Capable Snapshot Hyperspectral Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Arik, Glenda H.

    2005-01-01

    The computed-tomography imaging spectrometer (CTIS) is a device which captures the spatial and spectral content of a rapidly evolving same in a single image frame. The most recent CTIS design is optically all reflective and uses as its dispersive device a stated the-art reflective computer generated hologram (CGH). This project focuses on the instrument's transition from laboratory to field. This design will enable the CTIS to withstand a harsh desert environment. The system is modeled in optical design software using a tolerance analysis. The tolerances guide the design of the athermal mount and component parts. The parts are assembled into a working mount shell where the performance of the mounts is tested for thermal integrity. An interferometric analysis of the reflective CGH is also performed.

  8. Holography as a tool for widespread industrial applications: analysis and comments

    NASA Astrophysics Data System (ADS)

    Smigielski, Paul

    1991-10-01

    During the last national meeting of the Holographic Club of the French Optical Society held at SAUMUR, 22-23 November 1990, on `Vibration analysis with the help of holographic and associated methods,' more than 80% of attendees were industrialists. Some scientists who specialized in coherent optics said that it is not necessary to be an optician to use holography in the industry. That means that veritable progress has been achieved since the discovery of holographic interferometry in 1965. But, on the other hand, too few industrialists use holographic techniques. This paper critically examines the evolution of holographic interferometry through concrete examples and shows that hopes of industrial uses of holography are more credible today than yesterday because of new developments expected in hardwares (lasers, recording materials, etc.) and softwares.

  9. Remotely Monitored Sealing Array Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support activemore » tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less

  10. Beam collimation and focusing and error analysis of LD and fiber coupling system based on ZEMAX

    NASA Astrophysics Data System (ADS)

    Qiao, Lvlin; Zhou, Dejian; Xiao, Lei

    2017-10-01

    Laser diodde has many advantages, such as high efficiency, small volume, low cost and easy integration, so it is widely used. Because of its poor beam quality, the application of semiconductor laser has also been seriously hampered. In view of the poor beam quality, the ZEMAX optical design software is used to simulate the far field characteristics of the semiconductor laser beam, and the coupling module of the semiconductor laser and the optical fiber is designed and optimized. And the beam is coupled into the fiber core diameter d=200µm, the numerical aperture NA=0.22 optical fiber, the output power can reach 95%. Finally, the influence of the three docking errors on the coupling efficiency during the installation process is analyzed.

  11. NFIRAOS beamsplitters subsystems optomechanical design

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Nash, Reston; Boucher, Marc-André; Martin, Olivier; Buteau-Vaillancourt, Louis; Châteauneuf, François; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Véran, Jean-Pierre

    2016-07-01

    The early-light facility adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). The science beam splitter changer mechanism and the visible light beam splitter are subsystems of NFIRAOS. This paper presents the opto-mechanical design of the NFIRAOS beam splitters subsystems (NBS). In addition to the modal and the structural analyses, the beam splitters surface deformations are computed considering the environmental constraints during operation. Surface deformations are fit to Zernike polynomials using SigFit software. Rigid body motion as well as residual RMS and peak-to-valley surface deformations are calculated. Finally, deformed surfaces are exported to Zemax to evaluate the transmitted and reflected wave front error. The simulation results of this integrated opto-mechanical analysis have shown compliance with all optical requirements.

  12. Optical CAD Utilization for the Design and Testing of a LED Streetlamp.

    PubMed

    Jafrancesco, David; Mercatelli, Luca; Fontani, Daniela; Sansoni, Paola

    2017-08-24

    The design and testing of LED lamps are vital steps toward broader use of LED lighting for outdoor illumination and traffic signalling. The characteristics of LED sources, in combination with the need to limit light pollution and power consumption, require a precise optical design. In particular, in every step of the process, it is important to closely compare theoretical or simulated results with measured data (obtained from a prototype). This work examines the various possibilities for using an optical CAD (Lambda Research TracePro ) to design and check a LED lamp for outdoor use. This analysis includes the simulations and testing on a prototype as an example; data acquired by measurement are inserted into the same simulation software, making it easy to compare theoretical and actual results.

  13. Software system design for the non-null digital Moiré interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Hao, Qun; Hu, Yao; Wang, Shaopu; Li, Tengfei; Li, Lin

    2016-11-01

    Aspheric optical components are an indispensable part of modern optics systems. With the development of aspheric optical elements fabrication technique, high-precision figure error test method of aspheric surfaces is a quite urgent issue now. We proposed a digital Moiré interferometer technique (DMIT) based on partial compensation principle for aspheric and freeform surface measurement. Different from traditional interferometer, DMIT consists of a real and a virtual interferometer. The virtual interferometer is simulated with Zemax software to perform phase-shifting and alignment. We can get the results by a series of calculation with the real interferogram and virtual interferograms generated by computer. DMIT requires a specific, reliable software system to ensure its normal work. Image acquisition and data processing are two important parts in this system. And it is also a challenge to realize the connection between the real and virtual interferometer. In this paper, we present a software system design for DMIT with friendly user interface and robust data processing features, enabling us to acquire the figure error of the measured asphere. We choose Visual C++ as the software development platform and control the ideal interferometer by using hybrid programming with Zemax. After image acquisition and data transmission, the system calls image processing algorithms written with Matlab to calculate the figure error of the measured asphere. We test the software system experimentally. In the experiment, we realize the measurement of an aspheric surface and prove the feasibility of the software system.

  14. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  15. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  16. Stress strain modelling and analysis of a piezo-coated optical fibre sensor

    NASA Astrophysics Data System (ADS)

    Al-Raweshidy, H.; Ali, H.; Obayya, S. S. A.; Langley, R.; Batchelor, J.

    2005-02-01

    A finite element model, using commercially available software, is presented to simulate the piezoelectrically induced stresses and strains in an optical fibre to be used as antenna. These stresses and strains are generated by a layer of piezoelectric polymer deposited on the cladding of a short fibre sample. The theoretical basis for the work is briefly explained and the modelling process is emphasised. Two types of fibre are investigated - circular fibre and D-fibre, and the results compared, analysed and discussed. It is shown that in the D-fibre, the stress and displacement increased by 1.46 and 115 times, respectively, in comparison with the circular fibre.

  17. Optical multichannel monitoring of skin blood pulsations for cardiovascular assessment

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Ozols, Maris

    2004-07-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for cardiovascular assessment. The multichannel PPG concept has been developed and clinically verified in this work. Simultaneous data flow from several body locations allows to study the heartbeat pulse wave propagation in real time and to evaluate the vascular resistance. Portable two- and four-channel PPG monitoring devices and special software have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions.

  18. Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey

    2018-02-01

    We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.

  19. Analysis by NASA's VESGEN Software of Vascular Branching in the Human Retina with a Ground-Based Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vyas, Ruchi J.; Raghunandan, Sneha; Vu, Amanda C.; Zanello, Susana B.; Ploutz-Snyder, Robert; Taibbi, Giovanni; Vizzeri, Gianmarco

    2016-01-01

    Significant risks for visual impairment were discovered recently in astronauts following spaceflight, especially after long-duration missions.1 We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal vasculature that precede visual and other ocular impairments. We therefore are analyzing retinal vessels in healthy subjects with NASA's VESsel GENeration Analysis (VESGEN) software2 before and after head-down tilt (HDT), a ground-based microgravity analog For our preliminary study of masked images, two groups of venous trees with and without small veins (G=7) were clearly identified by VESGEN analysis. Upon completing all images and unmasking the subject status of pre- and post- HDT, we will determine whether differences in the presence or absence of small veins are important correlates, and perhaps reliable predictors, of other ocular and physiological adaptations to prolonged HDT and microgravity. Greater peripapillary retinal thickening was measured following 70-day HDT bed rest than 14-day HDT bed rest, suggesting that time of HDT may increase the amount of optic disc swelling.3 Spectralis OCT detected retinal nerve fiber layer thickening post HDT, without clinical signs of optic disc edema. Such changes may have resulted from HDT-induced cephalad fluid shifts. Clinical methods for examining adaptive microvascular remodeling in the retina to microgravity space flight are currently not established.

  20. Performance evaluation of time-aware enhanced software defined networking (TeSDN) for elastic data center optical interconnection.

    PubMed

    Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Li, Hui; Lin, Yi; Li, Gang; Han, Jianrui; Lee, Young; Ma, Teng

    2014-07-28

    Data center interconnection with elastic optical networks is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. We previously implemented enhanced software defined networking over elastic optical network for data center application [Opt. Express 21, 26990 (2013)]. On the basis of it, this study extends to consider the time-aware data center service scheduling with elastic service time and service bandwidth according to the various time sensitivity requirements. A novel time-aware enhanced software defined networking (TeSDN) architecture for elastic data center optical interconnection has been proposed in this paper, by introducing a time-aware resources scheduling (TaRS) scheme. The TeSDN can accommodate the data center services with required QoS considering the time dimensionality, and enhance cross stratum optimization of application and elastic optical network stratums resources based on spectrum elasticity, application elasticity and time elasticity. The overall feasibility and efficiency of the proposed architecture is experimentally verified on our OpenFlow-based testbed. The performance of TaRS scheme under heavy traffic load scenario is also quantitatively evaluated based on TeSDN architecture in terms of blocking probability and resource occupation rate.

  1. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking.

    PubMed

    Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo

    2016-07-25

    Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.

  2. MAMA User Guide v2.0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaschen, Brian Keith; Bloch, Jeffrey Joseph; Porter, Reid

    Morphological signatures of bulk SNM materials have significant promise, but these potential signatures are not fully utilized. This document describes software tools, collectively called the MAMA (Morphological Analysis for Material Attribution) software that can help provide robust and accurate quantification of morphological features in bulk material microscopy images (Optical, SEM). Although many of the specific tools are not unique to Mama, the software package has been designed specifically for nuclear material morphological analysis, and is at a point where it can be easily adapted (by Los Alamos or by collaborators) in response to new, different, or changing forensics needs. Themore » current release of the MAMA software only includes the image quantification, descriptions, and annotation functionality. Only limited information on a sample, its pedigree, and its chemistry are recorded inside this part of the software. This was decision based on initial feedback and the fact that there are several analytical chemistry databases being developed within the community. Currently MAMA is a standalone program that can export quantification results in a basic text format that can be imported into other programs such as Excel and Access. There is also a basic report generating feature that produces HTML formatted pages of the same information. We will be working with collaborators to provide better integration of MAMA into their particular systems, databases and workflows.« less

  3. Receptivity of Librarians to Optical Information Technologies and Products.

    ERIC Educational Resources Information Center

    Eaton, Nancy

    1986-01-01

    Examines factors which may affect the receptivity of librarians to the use of optical disk technologies, including hardware and software issues, the content of currently available databases, and the integration of optical technologies into existing library services. (CLB)

  4. Information Technology: A Survey from the Perspective of Higher Education.

    ERIC Educational Resources Information Center

    Van Houweling, Douglas E.

    1986-01-01

    Survey of the history and current development of information technology covers hardware (economies of scale, communications technology, magnetic and optical forms of storage), and the evolution of systems software ("tool" software, applications software, and nonprocedural languages). The effect of new computer technologies on human…

  5. Optical coherence tomography – current and future applications

    PubMed Central

    Adhi, Mehreen; Duker, Jay S.

    2013-01-01

    Purpose of review Optical coherence tomography (OCT) has revolutionized the clinical practice of ophthalmology. It is a noninvasive imaging technique that provides high-resolution, cross-sectional images of the retina, retinal nerve fiber layer and the optic nerve head. This review discusses the present applications of the commercially available spectral-domain OCT (SD-OCT) systems in the diagnosis and management of retinal diseases, with particular emphasis on choroidal imaging. Future directions of OCT technology and their potential clinical uses are discussed. Recent findings Analysis of the choroidal thickness in healthy eyes and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies has been successfully achieved using SD-OCT devices with software improvements. Future OCT innovations such as longer-wavelength OCT systems including the swept-source technology, along with Doppler OCT and en-face imaging, may improve the detection of subtle microstructural changes in chorioretinal diseases by improving imaging of the choroid. Summary Advances in OCT technology provide for better understanding of pathogenesis, improved monitoring of progression and assistance in quantifying response to treatment modalities in diseases of the posterior segment of the eye. Further improvements in both hardware and software technologies should further advance the clinician’s ability to assess and manage chorioretinal diseases. PMID:23429598

  6. NeuroPG: open source software for optical pattern generation and data acquisition

    PubMed Central

    Avants, Benjamin W.; Murphy, Daniel B.; Dapello, Joel A.; Robinson, Jacob T.

    2015-01-01

    Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience—NeuroPG—that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes. PMID:25784873

  7. Ring Image Analyzer

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  8. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging

    PubMed Central

    Entenberg, David; Wyckoff, Jeffrey; Gligorijevic, Bojana; Roussos, Evanthia T; Verkhusha, Vladislav V; Pollard, Jeffrey W; Condeelis, John

    2014-01-01

    Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via ‘over-clocking’ of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in ~24 h. PMID:21959234

  9. Corneal modeling for analysis of photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Della Vecchia, Michael A.; Lamkin-Kennard, Kathleen

    1997-05-01

    Procedurally, excimer photorefractive keratectomy is based on the refractive correction of composite spherical and cylindrical ophthalmic errors of the entire eye. These refractive errors are inputted for correction at the corneal plane and for the properly controlled duration and location of laser energy. Topography is usually taken to correspondingly monitor spherical and cylindrical corneorefractive errors. While a corneal topographer provides surface morphologic information, the keratorefractive photoablation is based on the patient's spherical and cylindrical spectacle correction. Topography is at present not directly part of the procedural deterministic parameters. Examination of how corneal curvature at each of the keratometric reference loci affect the shape of the resultant corneal photoablated surface may enhance the accuracy of the desired correction. The objective of this study was to develop a methodology to utilize corneal topography for construction of models depicting pre- and post-operative keratomorphology for analysis of photorefractive keratectomy. Multiple types of models were developed then recreated in optical design software for examination of focal lengths and other optical characteristics. The corneal models were developed using data extracted from the TMS I corneal modeling system (Computed Anatomy, New York, NY). The TMS I does not allow for manipulation of data or differentiation of pre- and post-operative surfaces within its platform, thus models needed to be created for analysis. The data were imported into Matlab where 3D models, surface meshes, and contour plots were created. The data used to generate the models were pre- and post-operative curvatures, heights from the corneal apes, and x-y positions at 6400 locations on the corneal surface. Outlying non-contributory points were eliminated through statistical operations. Pre- and post- operative models were analyzed to obtain the resultant changes in the corneal surfaces during PRK. A sensitivity analysis of the corneal topography system was also performed. Ray tracings were performed using the height data and the optical design software Zemax (Focus Software, Inc., Tucson, AZ). Examining pre- and post-operative values of corneal surfaces may further the understanding of how areas of the cornea contribute toward desired visual correction. Gross resultant power across the corneal surface is used in PRK, however, understanding the contribution of each point to the average power may have important implications and prove to be significant for achieving projected surgical results.

  10. Random fluctuations of optical signal path delay in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kral, L.; Prochazka, I.; Hamal, K.

    2006-09-01

    Atmospheric turbulence induces random delay fluctuations to any optical signal transmitted through the air. These fluctuations can influence for example the measurement precision of laser rangefinders. We have found an appropriate theoretical model based on geometrical optics that allows us to predict the amplitude of the random delay fluctuations for different observing conditions. We have successfully proved the applicability of this model by a series of experiments, directly determining the amplitude of the turbulence-induced pulse delay fluctuations by analysis of a high precision laser ranging data. Moreover, we have also shown that a standard theoretical approach based on diffractive propagation of light through inhomogeneous media and implemented using the GLAD software is not suitable for modeling of the optical signal delay fluctuations caused by the atmosphere. These models based on diffractive propagation predict the turbulence-induced optical path length fluctuations of the order of micrometers, whereas the fluctuations predicted by the geometrical optics model (in agreement with our experimental data) are generally larger by two orders of magnitude, i.e. in the submillimeter range. The reason of this discrepancy is a subject to discussion.

  11. Experimental demonstration of bandwidth on demand (BoD) provisioning based on time scheduling in software-defined multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Li, Yajie; Wang, Xinbo; Chen, Bowen; Zhang, Jie

    2016-09-01

    A hierarchical software-defined networking (SDN) control architecture is designed for multi-domain optical networks with the Open Daylight (ODL) controller. The OpenFlow-based Control Virtual Network Interface (CVNI) protocol is deployed between the network orchestrator and the domain controllers. Then, a dynamic bandwidth on demand (BoD) provisioning solution is proposed based on time scheduling in software-defined multi-domain optical networks (SD-MDON). Shared Risk Link Groups (SRLG)-disjoint routing schemes are adopted to separate each tenant for reliability. The SD-MDON testbed is built based on the proposed hierarchical control architecture. Then the proposed time scheduling-based BoD (Ts-BoD) solution is experimentally demonstrated on the testbed. The performance of the Ts-BoD solution is evaluated with respect to blocking probability, resource utilization, and lightpath setup latency.

  12. GLOBECOM '84 - Global Telecommunications Conference, Atlanta, GA, November 26-29, 1984, Conference Record. Volume 1

    NASA Astrophysics Data System (ADS)

    The subjects discussed are related to LSI/VLSI based subscriber transmission and customer access for the Integrated Services Digital Network (ISDN), special applications of fiber optics, ISDN and competitive telecommunication services, technical preparations for the Geostationary-Satellite Orbit Conference, high-capacity statistical switching fabrics, networking and distributed systems software, adaptive arrays and cancelers, synchronization and tracking, speech processing, advances in communication terminals, full-color videotex, and a performance analysis of protocols. Advances in data communications are considered along with transmission network plans and progress, direct broadcast satellite systems, packet radio system aspects, radio-new and developing technologies and applications, the management of software quality, and Open Systems Interconnection (OSI) aspects of telematic services. Attention is given to personal computers and OSI, the role of software reliability measurement in information systems, and an active array antenna for the next-generation direct broadcast satellite.

  13. Spectrophotometers for plutonium monitoring in HB-line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lascola, R. J.; O'Rourke, P. E.; Kyser, E. A.

    2016-02-12

    This report describes the equipment, control software, calibrations for total plutonium and plutonium oxidation state, and qualification studies for the instrument. It also provides a detailed description of the uncertainty analysis, which includes source terms associated with plutonium calibration standards, instrument drift, and inter-instrument variability. Also included are work instructions for instrument, flow cell, and optical fiber setup, work instructions for routine maintenance, and drawings and schematic diagrams.

  14. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 4; Overview and Introduction of Matlab Based Toolkits used to Interface with Optical Design Software

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part four of a series on the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written in Matlab, which interface with optical design software (CodeV, OSLO, and Zemax) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  15. Optics derotator servo control system for SONG Telescope

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Ren, Changzhi; Ye, Yu

    2012-09-01

    The Stellar Oscillations Network Group (SONG) is an initiative which aims at designing and building a groundbased network of 1m telescopes dedicated to the study of phenomena occurring in the time domain. Chinese standard node of SONG is an Alt-Az Telescope of F/37 with 1m diameter. Optics derotator control system of SONG telescope adopts the development model of "Industrial Computer + UMAC Motion Controller + Servo Motor".1 Industrial computer is the core processing part of the motion control, motion control card(UMAC) is in charge of the details on the motion control, Servo amplifier accepts the control commands from UMAC, and drives the servo motor. The position feedback information comes from the encoder, to form a closed loop control system. This paper describes in detail hardware design and software design for the optics derotator servo control system. In terms of hardware design, the principle, structure, and control algorithm of servo system based on optics derotator are analyzed and explored. In terms of software design, the paper proposes the architecture of the system software based on Object-Oriented Programming.

  16. Optical modeling activities for NASA's James Webb Space Telescope (JWST): IV. Overview and introduction of MATLAB based toolkits used to interface with optical design software

    NASA Astrophysics Data System (ADS)

    Howard, Joseph M.

    2007-09-01

    This paper is part four of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written for use in MATLAB to interface with optical design software (CODE V, OSLO, and ZEMAX) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  17. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  18. [MODIS Investigation

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1998-01-01

    The objectives of the last six months were: Continue analysis of Hawaii Ocean Time-series (HOT) bio-optical mooring data, Recover instrumentation from JGOFS cruises in the Southern Ocean and analyze data Maintain documentation of MOCEAN algorithms and software for use by MOCEAN and GLI teams Continue chemostat experiments on the relationship of fluorescence quantum yield to environmental factors. Continue to develop and expand browser-based information system for in situ bio-optical data Work Analysis of Field Data from Hawaii We are continuing to analyze bio-optical data collected at the Hawaii Ocean Time Series mooring. The HOT bio-optical mooring was recovered in May 1998. After retrieving the data, the sensor package was serviced and redeployed. We now have over 18 months of data. These are being analyzed as part of a larger study of mesoscale processes at this JGOFS time series site. We have had some failures in the data logger which have affected the fluorescence channels. These are being repaired. We also had an instrument housing failure, and minor modifications have been made to avoid subsequent problems. In addition, Ricardo Letelier is funded as part of the SeaWiFS calibrator/validation effort (through a subcontract from the University of Hawaii, Dr. John Porter), and he is collecting bio-optical and fluorescence data as part of the HOT activity.

  19. Stochastic analysis of 1D and 2D surface topography of x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Tyurina, Anastasia Y.; Tyurin, Yury N.; Yashchuk, Valeriy V.

    2017-08-01

    The design and evaluation of the expected performance of new optical systems requires sophisticated and reliable information about the surface topography for planned optical elements before they are fabricated. The problem is especially complex in the case of x-ray optics, particularly for the X-ray Surveyor under development and other missions. Modern x-ray source facilities are reliant upon the availability of optics with unprecedented quality (surface slope accuracy < 0.1μrad). The high angular resolution and throughput of future x-ray space observatories requires hundreds of square meters of high quality optics. The uniqueness of the optics and limited number of proficient vendors makes the fabrication extremely time consuming and expensive, mostly due to the limitations in accuracy and measurement rate of metrology used in fabrication. We discuss improvements in metrology efficiency via comprehensive statistical analysis of a compact volume of metrology data. The data is considered stochastic and a new statistical model called Invertible Time Invariant Linear Filter (InTILF) is developed now for 2D surface profiles to provide compact description of the 2D data additionally to 1D data treated so far. The model captures faint patterns in the data and serves as a quality metric and feedback to polishing processes, avoiding high resolution metrology measurements over the entire optical surface. The modeling, implemented in our Beatmark software, allows simulating metrology data for optics made by the same vendor and technology. The forecast data is vital for reliable specification for optical fabrication, to be exactly adequate for the required system performance.

  20. Ka-Band Link Study and Analysis for a Mars Hybrid RF/Optical Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Zeleznikar, Daniel J.; Nappier, Jennifer M.; Downey, Joseph A.

    2014-01-01

    The integrated radio and optical communications (iROC) project at the NASA Glenn Research Center (GRC) is investigating the feasibility of a hybrid RF and optical communication subsystem for future deep space missions. The hybrid communications subsystem enables the advancement of optical communications while simultaneously mitigating the risk of infusion by combining an experimental optical transmitter and telescope with a reliable Ka-band RF transmitter and antenna. The iROC communications subsystem seeks to maximize the total data return over the course of a potential 2-year mission in Mars orbit beginning in 2021. Although optical communication by itself offers potential for greater data return over RF, the reliable Ka-band link is also being designed for high data return capability in this hybrid system. A daily analysis of the RF link budget over the 2-year span is performed to optimize and provide detailed estimates of the RF data return. In particular, the bandwidth dependence of these data return estimates is analyzed for candidate waveforms. In this effort, a data return modeling tool was created to analyze candidate RF modulation and coding schemes with respect to their spectral efficiency, amplifier output power back-off, required digital to analog conversion (DAC) sampling rates, and support by ground receivers. A set of RF waveforms is recommended for use on the iROC platform.

  1. Optical fiber dispersion characterization study

    NASA Technical Reports Server (NTRS)

    Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.

    1979-01-01

    The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.

  2. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  3. Improving the Multi-Wavelength Capability of Chandra Large Programs

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio

    2017-09-01

    In order to fully exploit the joint Chandra/JWST/HST ventures to detect faint sources, we urgently need an advanced matching algorithm between optical/NIR and X-ray catalogs/images. This will be of paramount importance in bridging the gap between upcoming optical/NIR facilities (JWST) and later X-ray ones (Athena, Lynx). We propose to develop an advanced and automated tool to improve the identification of Chandra X-ray counterparts detected in deep optical/NIR fields based on T-PHOT, a software widely used in the community. The developed code will include more than 20 years in advancements of X-ray data analysis and will be released to the public. Finally, we will release an updated catalog of X-ray sources in the CANDELS regions: a leap forward in our endeavor of charting the Universe.

  4. Optically buffered Jones-matrix-based multifunctional optical coherence tomography with polarization mode dispersion correction

    PubMed Central

    Hong, Young-Joo; Makita, Shuichi; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2014-01-01

    Polarization mode dispersion (PMD) degrades the performance of Jones-matrix-based polarization-sensitive multifunctional optical coherence tomography (JM-OCT). The problem is specially acute for optically buffered JM-OCT, because the long fiber in the optical buffering module induces a large amount of PMD. This paper aims at presenting a method to correct the effect of PMD in JM-OCT. We first mathematically model the PMD in JM-OCT and then derive a method to correct the PMD. This method is a combination of simple hardware modification and subsequent software correction. The hardware modification is introduction of two polarizers which transform the PMD into global complex modulation of Jones matrix. Subsequently, the software correction demodulates the global modulation. The method is validated with an experimentally obtained point spread function with a mirror sample, as well as by in vivo measurement of a human retina. PMID:25657888

  5. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  6. User manual of the CATSS system (version 1.0) communication analysis tool for space station

    NASA Technical Reports Server (NTRS)

    Tsang, C. S.; Su, Y. T.; Lindsey, W. C.

    1983-01-01

    The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.

  7. Analysis by NASA's VESGEN Software of Retinal Blood Vessels Before and After 70-Day Bed Rest: A Retrospective Study

    NASA Technical Reports Server (NTRS)

    Raghunandan, Sneha; Vyas, Ruchi J.; Vizzeri, Gianmarco; Taibbi, Giovanni; Zanello, Susana B.; Ploutz-Snyder, Robert; Parsons-Wingerter, Patricia A.

    2016-01-01

    Significant risks for visual impairment associated with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. Impairments include decreased near visual acuity, posterior globe flattening, choroidal folds, optic disc edema and cotton wool spots. We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal blood vessels that precede development of visual and other ocular impairments. Potential contributions of retinal vascular remodeling to VIIP etiology are therefore being investigated by NASAs innovative VESsel GENeration Analysis (VESGEN) software for two studies: (1) head-down tilt in human subjects before and after 70 days of bed rest, and (2) U.S. crew members before and after ISS missions. VESGEN analysis in previous research supported by the US National Institutes of Health identified surprising new opportunities to regenerate retinal vessels during early-stage, potentially reversible progression of the visually impairing and blinding disease, diabetic retinopathy.

  8. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  9. Making software get along: integrating optical and mechanical design programs

    NASA Astrophysics Data System (ADS)

    Shackelford, Christie J.; Chinnock, Randal B.

    2001-03-01

    As modern optomechanical engineers, we have the good fortune of having very sophisticated software programs available to us. The current optical design, mechanical design, industrial design, and CAM programs are very powerful tools with some very desirable features. However, no one program can do everything necessary to complete an entire optomechanical system design. Each program has a unique set of features and benefits, and typically two or mo re will be used during the product development process. At a minimum, an optical design program and a mechanical CAD package will be employed. As we strive for efficient, cost-effective, and rapid progress in our development projects, we must use these programs to their full advantage, while keeping redundant tasks to a minimum. Together, these programs offer the promise of a `seamless' flow of data from concept all the way to the download of part designs directly to the machine shop for fabrication. In reality, transferring data from one software package to the next is often frustrating. Overcoming these problems takes some know-how, a bit of creativity, and a lot of persistence. This paper describes a complex optomechanical development effort in which a variety of software tools were used from the concept stage to prototyping. It will describe what software was used for each major design task, how we learned to use them together to best advantage, and how we overcame the frustrations of software that didn't get along.

  10. Computer-Controlled Cylindrical Polishing Process for Development of Grazing Incidence Optics for Hard X-Ray Region

    NASA Technical Reports Server (NTRS)

    Khan, Gufran Sayeed; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    The presentation includes grazing incidence X-ray optics, motivation and challenges, mid spatial frequency generation in cylindrical polishing, design considerations for polishing lap, simulation studies and experimental results, future scope, and summary. Topics include current status of replication optics technology, cylindrical polishing process using large size polishing lap, non-conformance of polishin lap to the optics, development of software and polishing machine, deterministic prediction of polishing, polishing experiment under optimum conditions, and polishing experiment based on known error profile. Future plans include determination of non-uniformity in the polishing lap compliance, development of a polishing sequence based on a known error profile of the specimen, software for generating a mandrel polishing sequence, design an development of a flexible polishing lap, and computer controlled localized polishing process.

  11. Structural characterization and DFT study of a new optical crystal: 2-amino-3-methylpyridinium-3,5-dinitrobenzoate

    NASA Astrophysics Data System (ADS)

    Sathya, K.; Dhamodharan, P.; Dhandapani, M.

    2018-05-01

    A new proton transfer complex was synthesized by the reaction between 2-amino-3-methyl pyridine with 3,5-dinitro benzoic acid in methanol solvent at room temperature. Chemical composition and stoichiometry of the synthesized complex 2-amino-3-methylpyridinium 3,5-dinitrobenzoate (AMPDB) were verified by CHN analysis. The AMPDB crystals were subjected to FT-IR spectral analysis to confirm the functional groups in the compound. UV-Vis-NIR spectral studies revealed that the AMPDB has a large optical transparency window. Single crystal XRD analysis reveals that AMPDB belongs to a monoclinic system with P21/c space group. NMR spectroscopic data indicate the exact carbon skeleton and hydrogen environment in the molecular structure of AMPDB. The thermal stability of the compound was investigated by thermogravimetry (TG). Computational studies such as optimisation of molecular geometry, natural bond analysis (NBO), Mulliken population analysis and HOMO-LUMO analysis were performed using Gaussian 09 software by B3LYP method at 6-311 G(d p) basis set. The first order hyperpolarizability (β) value is 37 times greater than that of urea. The optical nonlinearities of AMPDB have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. Hirshfeld analysis indicate O⋯H/H⋯O interactions are the superior interactions confirming intensive hydrogen bond net work.

  12. De-optical-line-terminal hybrid access-aggregation optical network for time-sensitive services based on software-defined networking orchestration

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yang, Hui; Xiao, Hongyun; Yu, Ao; He, Linkuan; Zhang, Jie; Li, Zhen; Du, Yi

    2017-11-01

    With the increase in varieties of services in network, time-sensitive services (TSSs) appear and bring forward an impending need for delay performance. Ultralow-latency communication has become one of the important development goals for many scenarios in the coming 5G era (e.g., robotics and driverless cars). However, the conventional methods, which decrease delay by promoting the available resources and the network transmission speed, have limited effect; a new breakthrough for ultralow-latency communication is necessary. We propose a de-optical-line-terminal (De-OLT) hybrid access-aggregation optical network (DAON) for TSS based on software-defined networking (SDN) orchestration. In this network, low-latency all-optical communication based on optical burst switching can be achieved by removing OLT. For supporting this network and guaranteeing the quality of service for TSSs, we design SDN-driven control method and service provision method. Numerical results demonstrate the proposed DAON promotes network service efficiency and avoids traffic congestion.

  13. Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young

    2015-11-30

    Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.

  14. Center for Space Telemetering and Telecommunications Systems, New Mexico State University

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; DeLeon, Phillip; Borah, Deva; Lyman, Ray

    2002-01-01

    This viewgraph presentation gives an overview of the Center for Space Telemetering and Telecommunications Systems activities at New Mexico State University. Presentations cover the following topics: (1) small satellite communications, including nanosatellite radio and virtual satellite development; (2) modulation and detection studies, including details on smooth phase interpolated keying (SPIK) spectra and highlights of an adaptive turbo multiuser detector; (3) decoupled approaches to nonlinear ISI compensation; (4) space internet testing; (4) optical communication; (5) Linux-based receiver for lightweight optical communications without a laser in space, including software design, performance analysis, and the receiver algorithm; (6) carrier tracking hardware; and (7) subband transforms for adaptive direct sequence spread spectrum receivers.

  15. Optical non-invasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spīgulis, Jānis

    2005-08-01

    Time resolved detection and analysis of the skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. The single- and multi-channel PPG concepts are discussed in this work. Simultaneous data flow from several body locations allows one to study the heartbeat pulse wave propagation in real time and evaluate the vascular resistance. Portable single-, dual- and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The clinical studies confirmed their potential in the monitoring of heart arrhythmias, drug tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions.

  16. Optical noninvasive monitoring of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis

    2005-04-01

    Time-resolved detection and analysis of skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. Single- and multiple-channel PPG concepts are discussed. Simultaneous data flow from several locations on the human body allows us to study heartbeat pulse-wave propagation in real time and to evaluate vascular resistance. Portable single-, dual-, and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The prototype devices have been clinically studied, and their potential for monitoring heart arrhythmias, drug-efficiency tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions has been confirmed.

  17. Implementation of a Wavefront-Sensing Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce; Aronstein, David

    2013-01-01

    A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.

  18. Synergy of Optical and SAR Data for Mapping and Monitoring Mangroves

    NASA Astrophysics Data System (ADS)

    Monzon, A. K.; Reyes, S. R.; Veridiano, R. K.; Tumaneng, R.; De Alban, J. D.

    2016-06-01

    Quantitative information on mangrove cover extents is essential in producing relevant resource management plans and conservation strategies. In the Philippines, mangrove rehabilitation was made a priority in relation to disaster risk response and mitigation following the calamities in the coastal communities during typhoon Haiyan/Yolanda; hence, baseline information on the extent of remaining mangrove cover was essential for effective site interventions. Although mangrove cover maps for the country already exists, analysis of mangrove cover changes were limited to the application of fixed annual deforestation rates due to the challenge of acquiring consistent temporal cloud-free optical satellite data over large landscapes. This study presents an initial analysis of SAR and optical imagery combined with field-based observations for detecting mangrove cover extent and changes through a straightforward graphical approach. The analysis is part of a larger study evaluating the synergistic use of time-series L-band SAR and optical data for mapping and monitoring of mangroves. Image segmentation was implemented on the 25-meter ALOS/PALSAR image mosaics, in which the generated objects were subjected to statistical analysis using the software R. In combination with selected Landsat bands, the class statistics from the image bands were used to generate decision trees and thresholds for the hierarchical image classification. The results were compared with global mangrove cover dataset and validated using collected ground truth data. This study developed an integrated replicable approach for analyzing future radar and optical datasets, essential in national level mangrove cover change monitoring and assessment for long-term conservation targets and strategies.

  19. Simulation of Laser Induced Thermal Damage in Nd:YVO4 Crystals

    NASA Astrophysics Data System (ADS)

    Nagi, Richie

    Neodymium-doped yttrium orthovanadate (Nd:YVO4) is a commonly used gain medium in Diode Pumped Solid State (DPSS) lasers, but high heat loading of Nd:YVO4 at high pump powers (≥ 5 W) leads to thermal distortions and crystal fracture, which limits the utility of Nd:YVO 4 for high power applications. In this thesis, a Nd:YVO4 crystal suffered thermal damage during experiments for investigating the optical gain characteristics of the crystal. This thesis examines the thermal damage mechanisms in detail. Principally, laser induced melting, as well as laser induced thermal stress fracture were studied, all in the absence of stimulated emission in the crystal. The optical system for coupling the pump laser light into the crystal was first simulated in Zemax, an optical design software, and the simulations were then compared to the experimental coupling efficiency results, which were found to be in agreement. The simulations for the laser coupling system were then used in conjunction with LASCAD, a finite element analysis software, to obtain the temperatures inside the crystal, as a function of optical power coupled into the crystal. The temperature simulations were then compared to the experimental results, which were in excellent agreement, and the temperature simulations were then generalized to other crystal geometries and Nd doping levels. Zemax and LASCAD were also used to simulate the thermal stress in the crystal as a function of the coupled optical power, and the simulations were compared to experiments, both of which were found to be in agreement. The thermal stress simulations were then generalized to different crystal geometries and Nd doping levels as well.

  20. Software use cases to elicit the software requirements analysis within the ASTRI project

    NASA Astrophysics Data System (ADS)

    Conforti, Vito; Antolini, Elisa; Bonnoli, Giacomo; Bruno, Pietro; Bulgarelli, Andrea; Capalbi, Milvia; Fioretti, Valentina; Fugazza, Dino; Gardiol, Daniele; Grillo, Alessandro; Leto, Giuseppe; Lombardi, Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaguti, Giuseppe; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Schwarz, Joseph; Scuderi, Salvatore; Tanci, Claudio; Tosti, Gino; Trifoglio, Massimo; Vercellone, Stefano; Zanmar Sanchez, Ricardo

    2016-07-01

    The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF "M.G. Fracastoro" Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered common agreement about system requirements, defined the normal and alternative course of events, understood better the business process, and defined the system test to ensure that the delivered software works properly. We present a summary of the ASTRI SST-2M prototype use cases, and how the lessons learned can be exploited for the ASTRI mini-array proposed for the CTA Observatory.

  1. Handbook Of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  2. Instrument control software development process for the multi-star AO system ARGOS

    NASA Astrophysics Data System (ADS)

    Kulas, M.; Barl, L.; Borelli, J. L.; Gässler, W.; Rabien, S.

    2012-09-01

    The ARGOS project (Advanced Rayleigh guided Ground layer adaptive Optics System) will upgrade the Large Binocular Telescope (LBT) with an AO System consisting of six Rayleigh laser guide stars. This adaptive optics system integrates several control loops and many different components like lasers, calibration swing arms and slope computers that are dispersed throughout the telescope. The purpose of the instrument control software (ICS) is running this AO system and providing convenient client interfaces to the instruments and the control loops. The challenges for the ARGOS ICS are the development of a distributed and safety-critical software system with no defects in a short time, the creation of huge and complex software programs with a maintainable code base, the delivery of software components with the desired functionality and the support of geographically distributed project partners. To tackle these difficult tasks, the ARGOS software engineers reuse existing software like the novel middleware from LINC-NIRVANA, an instrument for the LBT, provide many tests at different functional levels like unit tests and regression tests, agree about code and architecture style and deliver software incrementally while closely collaborating with the project partners. Many ARGOS ICS components are already successfully in use in the laboratories for testing ARGOS control loops.

  3. The Design and Analysis of Electrically Large Custom-Shaped Reflector Antennas

    DTIC Science & Technology

    2013-06-01

    GEO) satellite data are imported into STK and plotted to visualize the regions of the sky that the spherical reflector must have line of sight for...Magnetic Conductor PO Physical Optics STK Systems Tool Kit TE Transverse Electric xvii Acronym Definition TLE Two Line Element TM Transverse Magnetic...study for the spherical reflector, Systems Tool Kit ( STK ) software from Analytical Graphics Inc. (AGI) is used. In completing the cross-shaped

  4. Information Center Help Desk

    DTIC Science & Technology

    1991-09-01

    listed is made. Many factors beyond what is included in the short list of features go into making that decision. Data on optical disk drives, scanners and...support existed due to lack of hardware or software. To do this analysis the IC responses were studied in relationship to the following three issues...each based on the developed criteria. No weighting factors in terms of relative importance of each criteria can be applied in this environment. As

  5. Optical functional performance of the osteo-odonto-keratoprosthesis.

    PubMed

    Lee, Richard M H; Ong, Gek L; Lam, Fook Chang; White, Joy; Crook, David; Liu, Christopher S C; Hull, Chris C

    2014-10-01

    The aim of this study was to evaluate optical and visual functional performance of the osteo-odonto-keratoprosthesis (OOKP). Optical design and analysis was performed with customized optical design software. Nine patients with implanted OOKP devices and 9 age-matched control patients were assessed. Contrast sensitivity was assessed and glare effect was measured with a brightness acuity test. All OOKP patients underwent kinetic Goldmann perimetry and wavefront aberrometry and completed the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). Optical analysis showed that the optical cylinder is near diffraction-limited. A reduction in median visual acuity (VA) with increasing glare settings was observed from 0.04 logMAR (without glare) to 0.20 logMAR (with glare at "high" setting) and significantly reduced statistically when compared with the control group at all levels of glare (P < 0.05). Contrast sensitivity was significantly reduced when compared with age-matched controls at medium and high spatial frequencies (P < 0.05). Median Goldmann perimetry was 65 degrees (interquartile range, 64-74 degrees; V-4e isopters) and 69 degrees excluding 2 glaucomatous subjects. Several vision-related NEI VFQ-25 subscales correlated significantly with VA at various brightness acuity test levels and contrast sensitivity at medium spatial frequencies, including dependency, general vision, near activities and distance activities. The OOKP optical cylinder provides patients with a good level of VA that is significantly reduced by glare. We have shown in vivo that updates to the optical cylinder design have improved the patient's field of view. Reduction of glare and refinement of cylinder alignment methods may further improve visual function and patient satisfaction.

  6. Pyrolaser Operating System

    NASA Technical Reports Server (NTRS)

    Roberts, Floyd E., III

    1994-01-01

    Software provides for control and acquisition of data from optical pyrometer. There are six individual programs in PYROLASER package. Provides quick and easy way to set up, control, and program standard Pyrolaser. Temperature and emisivity measurements either collected as if Pyrolaser in manual operating mode or displayed on real-time strip charts and stored in standard spreadsheet format for posttest analysis. Shell supplied to allow macros, which are test-specific, added to system easily. Written using Labview software for use on Macintosh-series computers running System 6.0.3 or later, Sun Sparc-series computers running Open-Windows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatible computers running Microsoft Windows 3.1 or later.

  7. OCEAN-PC and a distributed network for ocean data

    NASA Technical Reports Server (NTRS)

    Mclain, Douglas R.

    1992-01-01

    The Intergovernmental Oceanographic Commission (IOC) wishes to develop an integrated software package for oceanographic data entry and access in developing countries. The software, called 'OCEAN-PC', would run on low cost PC microcomputers and would encourage and standardize: (1) entry of local ocean observations; (2) quality control of the local data; (3) merging local data with historical data; (4) improved display and analysis of the merged data; and (5) international data exchange. OCEAN-PC will link existing MS-DOS oceanographic programs and data sets with table-driven format conversions. Since many ocean data sets are now being distributed on optical discs (Compact Discs - Read Only Memory, CD-ROM, Mass et al. 1987), OCEAN-PC will emphasize access to CD-ROMs.

  8. [Application of AOTF in spectral analysis. 1. Hardware and software designs for the self-constructed visible AOTF spectrophotometer].

    PubMed

    He, Jia-yao; Peng, Rong-fei; Zhang, Zhan-xia

    2002-02-01

    A self-constructed visible spectrophotometer using an acousto-optic tunable filter(AOTF) as a dispersing element is described. Two different AOTFs (one from The Institute for Silicate (Shanghai, China) and the other from Brimrose(USA)) are tested. The software written with visual C++ and operated on a Window98 platform is an applied program with dual database and multi-windows. Four independent windows, namely scanning, quantitative, calibration and result are incorporated. The Fourier self-deconvolution algorithm is also incorporated to improve the spectral resolution. The wavelengths are calibrated using the polynomial curve fitting method. The spectra and calibration curves of soluble aniline blue and phenol red are presented to show the feasibility of the constructed spectrophotometer.

  9. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering.

    PubMed

    Fang, Joyce; Savransky, Dmitry

    2016-08-01

    Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation.

  10. Extracting the Data From the LCM vk4 Formatted Output File

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.

    These are slides about extracting the data from the LCM vk4 formatted output file. The following is covered: vk4 file produced by Keyence VK Software, custom analysis, no off the shelf way to read the file, reading the binary data in a vk4 file, various offsets in decimal lines, finding the height image data, directly in MATLAB, binary output beginning of height image data, color image information, color image binary data, color image decimal and binary data, MATLAB code to read vk4 file (choose a file, read the file, compute offsets, read optical image, laser optical image, read and computemore » laser intensity image, read height image, timing, display height image, display laser intensity image, display RGB laser optical images, display RGB optical images, display beginning data and save images to workspace, gamma correction subroutine), reading intensity form the vk4 file, linear in the low range, linear in the high range, gamma correction for vk4 files, computing the gamma intensity correction, observations.« less

  11. Compensating the aberrations of actual optical systems by means of a nonaxisymmetric retouching of the surface.

    NASA Astrophysics Data System (ADS)

    Gan, M. A.; Ustinov, S. I.; Starkov, A. A.

    1993-08-01

    A theory, methods, and software are developed for the automated calculation of the retouching profile in order to compensate axisymmetric and nonaxisymmetric aberrations that are caused by errors in the fabrication of high-resolution optical systems. The retouching profile is calculated on the basis of interferograms recorded within the field of view of the objective. The software makes it possible to estimate the effectiveness of the retouching on the basis of optophysical image-quality criteria.

  12. Passive device based on plastic optical fibers to determine the indices of refraction of liquids.

    PubMed

    Zubia, J; Garitaonaindía, G; Arrúe, J

    2000-02-20

    We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.

  13. Realizing software longevity over a system's lifetime

    NASA Astrophysics Data System (ADS)

    Lanclos, Kyle; Deich, William T. S.; Kibrick, Robert I.; Allen, Steven L.; Gates, John

    2010-07-01

    A successful instrument or telescope will measure its productive lifetime in decades; over that period, the technology behind the control hardware and software will evolve, and be replaced on a per-component basis. These new components must successfully integrate with the old, and the difficulty of that integration depends strongly on the design decisions made over the course of the facility's history. The same decisions impact the ultimate success of each upgrade, as measured in terms of observing efficiency and maintenance cost. We offer a case study of these critical design decisions, analyzing the layers of software deployed for instruments under the care of UCO/Lick Observatory, including recent upgrades to the Low Resolution Imaging Spectrometer (LRIS) at Keck Observatory in Hawaii, as well as the Kast spectrograph, Lick Adaptive Optics system, and Hamilton spectrograph, all at Lick Observatory's Shane 3-meter Telescope at Mt. Hamilton. These issues play directly into design considerations for the software intended for use at the next generation of telescopes, such as the Thirty Meter Telescope. We conduct our analysis with the future of observational astronomy infrastructure firmly in mind.

  14. EBEX: A Balloon-Borne Telescope for Measuring Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel

    2015-05-01

    EBEX is a long-duration balloon-borne (LDB) telescope designed to probe polarization signals in the cosmic microwave background (CMB). It is designed to measure or place an upper limit on the inflationary B-mode signal, a signal predicted by inflationary theories to be imprinted on the CMB by gravitational waves, to detect the effects of gravitational lensing on the polarization of the CMB, and to characterize polarized Galactic foreground emission. The payload consists of a pointed gondola that houses the optics, polarimetry, detectors and detector readout systems, as well as the pointing sensors, control motors, telemetry sytems, and data acquisition and flight control computers. Polarimetry is achieved with a rotating half-wave plate and wire grid polarizer. The detectors are sensitive to frequency bands centered on 150, 250, and 410 GHz. EBEX was flown in 2009 from New Mexico as a full system test, and then flown again in December 2012 / January 2013 over Antarctica in a long-duration flight to collect scientific data. In the instrumentation part of this thesis we discuss the pointing sensors and attitude determination algorithms. We also describe the real-time map making software, "QuickLook", that was custom-designed for EBEX. We devote special attention to the design and construction of the primary pointing sensors, the star cameras, and their custom-designed flight software package, "STARS" (the Star Tracking Attitude Reconstruction Software). In the analysis part of this thesis we describe the current status of the post-flight analysis procedure. We discuss the data structures used in analysis and the pipeline stages related to attitude determination and map making. We also discuss a custom-designed software framework called "LEAP" (the LDB EBEX Analysis Pipeline) that supports most of the analysis pipeline stages.

  15. Geometric errors in 3D optical metrology systems

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Nafis, Chris

    2008-08-01

    The field of 3D optical metrology has seen significant growth in the commercial market in recent years. The methods of using structured light to obtain 3D range data is well documented in the literature, and continues to be an area of development in universities. However, the step between getting 3D data, and getting geometrically correct 3D data that can be used for metrology is not nearly as well developed. Mechanical metrology systems such as CMMs have long established standard means of verifying the geometric accuracies of their systems. Both local and volumentric measurments are characterized on such system using tooling balls, grid plates, and ball bars. This paper will explore the tools needed to characterize and calibrate an optical metrology system, and discuss the nature of the geometric errors often found in such systems, and suggest what may be a viable standard method of doing characterization of 3D optical systems. Finally, we will present a tradeoff analysis of ways to correct geometric errors in an optical systems considering what can be gained by hardware methods versus software corrections.

  16. NASA Tech Briefs, July 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics: Optoelectronic Sensor System for Guidance in Docking; Hybrid Piezoelectric/Fiber-Optic Sensor Sheets; Multisensor Arrays for Greater Reliability and Accuracy; Integrated-Optic Oxygen Sensors; Ka-Band Autonomous Formation Flying Sensor; CMOS VLSI Active-Pixel Sensor for Tracking; Lightweight, Self-Deploying Foam Antenna Structures; Electrically Small Microstrip Quarter-Wave Monopole Antennas; A 2-to-28-MHz Phase-Locked Loop; Portable Electromyograph; Open-Source Software for Modeling of Nanoelectronic Devices; Software for Generating Strip Maps from SAR Data; Calibration Software for use with Jurassicprok; Software for Probabilistic Risk Reduction; Software Processes SAR Motion-Measurement Data; Improved Method of Purifying Carbon Nanotubes; Patterned Growth of Carbon Nanotubes or Nanofibers; Lightweight, Rack-Mountable Composite Cold Plate/Shelves; SiC-Based Miniature High-Temperature Cantilever Anemometer; Inlet Housing for a Partial-Admission Turbine; Lightweight Thermoformed Structural Components and Optics; Growing High-Quality InAs Quantum Dots for Infrared Lasers; Selected Papers on Protoplanetary Disks; Module for Oxygenating Water without Generating Bubbles; Coastal Research Imaging Spectrometer; Rapid Switching and Modulation by use of Coupled VCSELs; Laser-Induced-Fluorescence Photogrammetry and Videogrammetry; Laboratory Apparatus Generates Dual-Species Cold Atomic Beam; Laser Ablation of Materials for Propulsion of Spacecraft; Small Active Radiation Monitor; Hybrid Image-Plane/Stereo Manipulation; Partitioning a Gridded Rectangle into Smaller Rectangles; Digital Radar-Signal Processors Implemented in FPGAs; Part 1 of a Computational Study of a Drop-Laden Mixing Layer; and Some Improvements in Signal-Conditioning Circuits.

  17. Detecting Motion from a Moving Platform; Phase 1: Biomimetic Vision Sensor

    DTIC Science & Technology

    2011-11-01

    optical design software, Zemax , was used to explore various optical configurations that led to the optical front-ends of the hardware prototypes...and a Truly Curved Surface 4.2. Modeling and Simulation Simulations were performed using both Zemax and MATLAB. In particular, the various...tradeoffs for light propagation through the front-end optics were investigated by simulating with Zemax , then building the physical optics for the best

  18. Subaperture metrology technologies extend capabilities in optics manufacturing

    NASA Astrophysics Data System (ADS)

    Tricard, Marc; Forbes, Greg; Murphy, Paul

    2005-10-01

    Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.

  19. Photothermal technique in cell microscopy studies

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey

    1995-01-01

    Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.

  20. RAPTOR-scan: Identifying and Tracking Objects Through Thousands of Sky Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidoff, Sherri; Wozniak, Przemyslaw

    2004-09-28

    The RAPTOR-scan system mines data for optical transients associated with gamma-ray bursts and is used to create a catalog for the RAPTOR telescope system. RAPTOR-scan can detect and track individual astronomical objects across data sets containing millions of observed points.Accurately identifying a real object over many optical images (clustering the individual appearances) is necessary in order to analyze object light curves. To achieve this, RAPTOR telescope observations are sent in real time to a database. Each morning, a program based on the DBSCAN algorithm clusters the observations and labels each one with an object identifier. Once clustering is complete, themore » analysis program may be used to query the database and produce light curves, maps of the sky field, or other informative displays.Although RAPTOR-scan was designed for the RAPTOR optical telescope system, it is a general tool designed to identify objects in a collection of astronomical data and facilitate quick data analysis. RAPTOR-scan will be released as free software under the GNU General Public License.« less

  1. Optical Storage System For Small Software Package Distribution

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Paul J.

    1985-04-01

    This paper describes an optical mass storage system being developed for extremely low cost distribution of small software packages. The structure of the media, design of the optical playback system, and some aspects of mastering and media production are discussed. This read only system is designed solely for the purpose of down loading code in a spooling fashion from the media to the host machine. The media is configured as a plastic card with dimensions 85 mm x 12 mm x 2mm. Each data region on a card is a rectangle 1.33 mm x 59.4 mm which carries up to 64 KB of user data. Cost estimates for production are 0.06 per card for the media and 38.00 for the playback device. The mastering process for the production tooling uses photolithography techniques and can provide production tooling within a few hours of software release. The playback mechanism is rugged and small, and does not require the use of any electromechanical servos.

  2. Method for measuring anterior chamber volume by image analysis

    NASA Astrophysics Data System (ADS)

    Zhai, Gaoshou; Zhang, Junhong; Wang, Ruichang; Wang, Bingsong; Wang, Ningli

    2007-12-01

    Anterior chamber volume (ACV) is very important for an oculist to make rational pathological diagnosis as to patients who have some optic diseases such as glaucoma and etc., yet it is always difficult to be measured accurately. In this paper, a method is devised to measure anterior chamber volumes based on JPEG-formatted image files that have been transformed from medical images using the anterior-chamber optical coherence tomographer (AC-OCT) and corresponding image-processing software. The corresponding algorithms for image analysis and ACV calculation are implemented in VC++ and a series of anterior chamber images of typical patients are analyzed, while anterior chamber volumes are calculated and are verified that they are in accord with clinical observation. It shows that the measurement method is effective and feasible and it has potential to improve accuracy of ACV calculation. Meanwhile, some measures should be taken to simplify the handcraft preprocess working as to images.

  3. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    NASA Astrophysics Data System (ADS)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2010-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.

  4. GOATS - Orbitology Component

    NASA Technical Reports Server (NTRS)

    Haber, Benjamin M.; Green, Joseph J.

    2010-01-01

    The GOATS Orbitology Component software was developed to specifically address the concerns presented by orbit analysis tools that are often written as stand-alone applications. These applications do not easily interface with standard JPL first-principles analysis tools, and have a steep learning curve due to their complicated nature. This toolset is written as a series of MATLAB functions, allowing seamless integration into existing JPL optical systems engineering modeling and analysis modules. The functions are completely open, and allow for advanced users to delve into and modify the underlying physics being modeled. Additionally, this software module fills an analysis gap, allowing for quick, high-level mission analysis trades without the need for detailed and complicated orbit analysis using commercial stand-alone tools. This software consists of a series of MATLAB functions to provide for geometric orbit-related analysis. This includes propagation of orbits to varying levels of generalization. In the simplest case, geosynchronous orbits can be modeled by specifying a subset of three orbit elements. The next case is a circular orbit, which can be specified by a subset of four orbit elements. The most general case is an arbitrary elliptical orbit specified by all six orbit elements. These orbits are all solved geometrically, under the basic problem of an object in circular (or elliptical) orbit around a rotating spheroid. The orbit functions output time series ground tracks, which serve as the basis for more detailed orbit analysis. This software module also includes functions to track the positions of the Sun, Moon, and arbitrary celestial bodies specified by right ascension and declination. Also included are functions to calculate line-of-sight geometries to ground-based targets, angular rotations and decompositions, and other line-of-site calculations. The toolset allows for the rapid execution of orbit trade studies at the level of detail required for the early stage of mission concept development.

  5. Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network

    NASA Astrophysics Data System (ADS)

    Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng

    2017-10-01

    Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.

  6. ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance

    PubMed Central

    Hng, Keng Imm; Dormann, Dirk

    2013-01-01

    Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017

  7. Structural, optical and electrical properties of WO3-Ag nanocomposites for the electro-optical devices

    NASA Astrophysics Data System (ADS)

    Najafi-Ashtiani, Hamed; Bahari, Ali; Gholipour, Samira; Hoseinzadeh, Siamak

    2018-01-01

    The composites of tungsten trioxide and silver are synthesized by sodium tungstate and silver nitrate precursors. The structural properties of composite coatings are studied by FTIR, XRD, and XPS. The FTIR analysis of synthesized composite powder corroborated the bonds between tungsten and oxygen elements in WO3 molecules. Furthermore, the XRD spectra show crystalline nature while particle size analysis that is investigated by X-powder software shows average particle size of 24 and 25 nm for samples. The structural analyses show that the addition of silver dopant does not change the stoichiometry of tungsten trioxide and only increase the size of the aggregation in the films. Furthermore, these films have an average approximate roughness of about 10.7, 13.1 and 14.2 nm for sample 1, 2 and 3, respectively. The real and imaginative parts of permittivity are investigated using LCR meter in the frequency range 1 Hz-10 GHz. The optical spectra of composite coatings are characterized in the 300-900 nm wavelength range and the calculation of optical band gaps of them exhibited the directly allowed transition with the values of 3.8 and 3.85 eV. From UV-visible spectroscopy studies, the absorption coefficient of the composite thin films is determined to be of the order of 105 cm- 1 and the obtained refraction and extinction indexes indicated normal dispersive coatings. Due to their optical and electrical properties, the synthesized composite material is a promising candidate for use in electro-optical applicants.

  8. Effects of large vessel on temperature distribution based on photothermal coupling interaction model

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Zhang, Xiyang; Li, Zuoran; Li, Hui

    2016-10-01

    This paper is based on the finite element analysis method for studying effects of large blood vessel on temperature based on photothermal coupling interaction model, and it couples the physical field of optical transmission with the physical field of heat transfer in biological tissue by using COMSOL Multiphysics 4.4 software. The results demonstrate the cooling effect of large blood vessel, which can be potential application for the treatment of liver tumors.

  9. An automated digital data collection and analysis system for the Charpy Impact Tester

    NASA Technical Reports Server (NTRS)

    Kohne, Glenn S.; Spiegel, F. Xavier

    1994-01-01

    The standard Charpy Impact Tester has been modified by the addition of a system of hardware and software to improve the accuracy and consistency of measurements made during specimen fracturing experiments. An optical disc, light source, and detector generate signals that indicate the pendulum position as a function of time. These signals are used by a computer to calculate the velocity and kinetic energy of the pendulum as a function of its position.

  10. Three Dimensional Optical Coherence Tomography Imaging: Advantages and Advances

    PubMed Central

    Gabriele, Michelle L; Wollstein, Gadi; Ishikawa, Hiroshi; Xu, Juan; Kim, Jongsick; Kagemann, Larry; Folio, Lindsey S; Schuman, Joel S.

    2010-01-01

    Three dimensional (3D) ophthalmic imaging using optical coherence tomography (OCT) has revolutionized assessment of the eye, the retina in particular. Recent technological improvements have made the acquisition of 3D-OCT datasets feasible. However, while volumetric data can improve disease diagnosis and follow-up, novel image analysis techniques are now necessary in order to process the dense 3D-OCT dataset. Fundamental software improvements include methods for correcting subject eye motion, segmenting structures or volumes of interest, extracting relevant data post hoc and signal averaging to improve delineation of retinal layers. In addition, innovative methods for image display, such as C-mode sectioning, provide a unique viewing perspective and may improve interpretation of OCT images of pathologic structures. While all of these methods are being developed, most remain in an immature state. This review describes the current status of 3D-OCT scanning and interpretation, and discusses the need for standardization of clinical protocols as well as the potential benefits of 3D-OCT scanning that could come when software methods for fully exploiting these rich data sets are available clinically. The implications of new image analysis approaches include improved reproducibility of measurements garnered from 3D-OCT, which may then help improve disease discrimination and progression detection. In addition, 3D-OCT offers the potential for preoperative surgical planning and intraoperative surgical guidance. PMID:20542136

  11. Data analysis-based autonomic bandwidth adjustment in software defined multi-vendor optical transport networks.

    PubMed

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Jing, Ruiquan

    2017-11-27

    Network operators generally provide dedicated lightpaths for customers to meet the demand for high-quality transmission. Considering the variation of traffic load, customers usually rent peak bandwidth that exceeds the practical average traffic requirement. In this case, bandwidth provisioning is unmetered and customers have to pay according to peak bandwidth. Supposing that network operators could keep track of traffic load and allocate bandwidth dynamically, bandwidth can be provided as a metered service and customers would pay for the bandwidth that they actually use. To achieve cost-effective bandwidth provisioning, this paper proposes an autonomic bandwidth adjustment scheme based on data analysis of traffic load. The scheme is implemented in a software defined networking (SDN) controller and is demonstrated in the field trial of multi-vendor optical transport networks. The field trial shows that the proposed scheme can track traffic load and realize autonomic bandwidth adjustment. In addition, a simulation experiment is conducted to evaluate the performance of the proposed scheme. We also investigate the impact of different parameters on autonomic bandwidth adjustment. Simulation results show that the step size and adjustment period have significant influences on bandwidth savings and packet loss. A small value of step size and adjustment period can bring more benefits by tracking traffic variation with high accuracy. For network operators, the scheme can serve as technical support of realizing bandwidth as metered service in the future.

  12. Freeform Optics: current challenges for future serial production

    NASA Astrophysics Data System (ADS)

    Schindler, C.; Köhler, T.; Roth, E.

    2017-10-01

    One of the major developments in optics industry recently is the commercial manufacturing of freeform surfaces for optical mid- and high performance systems. The loss of limitation on rotational symmetry enables completely new optical design solutions - but causes completely new challenges for the manufacturer too. Adapting the serial production from radial-symmetric to freeform optics cannot be done just by the extension of machine capabilities and software for every process step. New solutions for conventional optics productions or completely new process chains are necessary.

  13. Injection molding lens metrology using software configurable optical test system

    NASA Astrophysics Data System (ADS)

    Zhan, Cheng; Cheng, Dewen; Wang, Shanshan; Wang, Yongtian

    2016-10-01

    Optical plastic lens produced by injection molding machine possesses numerous advantages of light quality, impact resistance, low cost, etc. The measuring methods in the optical shop are mainly interferometry, profile meter. However, these instruments are not only expensive, but also difficult to alignment. The software configurable optical test system (SCOTS) is based on the geometry of the fringe refection and phase measuring deflectometry method (PMD), which can be used to measure large diameter mirror, aspheric and freeform surface rapidly, robustly, and accurately. In addition to the conventional phase shifting method, we propose another data collection method called as dots matrix projection. We also use the Zernike polynomials to correct the camera distortion. This polynomials fitting mapping distortion method has not only simple operation, but also high conversion precision. We simulate this test system to measure the concave surface using CODE V and MATLAB. The simulation results show that the dots matrix projection method has high accuracy and SCOTS has important significance for on-line detection in optical shop.

  14. Research on distributed optical fiber sensing data processing method based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  15. A statistical method for determining the dimensions, tolerances and specification of optics for the Laser Megajoule facility (LMJ)

    NASA Astrophysics Data System (ADS)

    Denis, Vincent

    2008-09-01

    This paper presents a statistical method for determining the dimensions, tolerance and specifications of components for the Laser MegaJoule (LMJ). Numerous constraints inherent to a large facility require specific tolerances: the huge number of optical components; the interdependence of these components between the beams of same bundle; angular multiplexing for the amplifier section; distinct operating modes between the alignment and firing phases; the definition and use of alignment software in the place of classic optimization. This method provides greater flexibility to determine the positioning and manufacturing specifications of the optical components. Given the enormous power of the Laser MegaJoule (over 18 kJ in the infrared and 9 kJ in the ultraviolet), one of the major risks is damage the optical mounts and pollution of the installation by mechanical ablation. This method enables estimation of the beam occultation probabilities and quantification of the risks for the facility. All the simulations were run using the ZEMAX-EE optical design software.

  16. The Potential Role of Drexon LaserCards in Optical Publishing.

    ERIC Educational Resources Information Center

    Schwerin, Julie B.

    1985-01-01

    Describes Drexon LaserCard (credit card size format holding two megabytes of digital data that can be recorded at factory or by information distributors) as a viable option to rotating optical media for distribution of computer software, technical manuals, periodicals, and other document applications, and projects its future in optical publishing.…

  17. Preliminary design of the HARMONI science software

    NASA Astrophysics Data System (ADS)

    Piqueras, Laure; Jarno, Aurelien; Pécontal-Rousset, Arlette; Loupias, Magali; Richard, Johan; Schwartz, Noah; Fusco, Thierry; Sauvage, Jean-François; Neichel, Benoît; Correia, Carlos M.

    2016-08-01

    This paper introduces the science software of HARMONI. The Instrument Numerical Model simulates the instrument from the optical point of view and provides synthetic exposures simulating detector readouts from data-cubes containing astrophysical scenes. The Data Reduction Software converts raw-data frames into a fully calibrated, scientifically usable data cube. We present the functionalities and the preliminary design of this software, describe some of the methods and algorithms used and highlight the challenges that we will have to face.

  18. Prediction of accommodative optical response in prepresbyopic patients using ultrasound biomicroscopy

    PubMed Central

    Ramasubramanian, Viswanathan; Glasser, Adrian

    2015-01-01

    PURPOSE To determine whether relatively low-resolution ultrasound biomicroscopy (UBM) can predict the accommodative optical response in prepresbyopic eyes as well as in a previous study of young phakic subjects, despite lower accommodative amplitudes. SETTING College of Optometry, University of Houston, Houston, USA. DESIGN Observational cross-sectional study. METHODS Static accommodative optical response was measured with infrared photorefraction and an autorefractor (WR-5100K) in subjects aged 36 to 46 years. A 35 MHz UBM device (Vumax, Sonomed Escalon) was used to image the left eye, while the right eye viewed accommodative stimuli. Custom-developed Matlab image-analysis software was used to perform automated analysis of UBM images to measure the ocular biometry parameters. The accommodative optical response was predicted from biometry parameters using linear regression, 95% confidence intervals (CIs), and 95% prediction intervals. RESULTS The study evaluated 25 subjects. Per-diopter (D) accommodative changes in anterior chamber depth (ACD), lens thickness, anterior and posterior lens radii of curvature, and anterior segment length were similar to previous values from young subjects. The standard deviations (SDs) of accommodative optical response predicted from linear regressions for UBM-measured biometry parameters were ACD, 0.15 D; lens thickness, 0.25 D; anterior lens radii of curvature, 0.09 D; posterior lens radii of curvature, 0.37 D; and anterior segment length, 0.42 D. CONCLUSIONS Ultrasound biomicroscopy parameters can, on average, predict accommodative optical response with SDs of less than 0.55 D using linear regressions and 95% CIs. Ultrasound biomicroscopy can be used to visualize and quantify accommodative biometric changes and predict accommodative optical response in prepresbyopic eyes. PMID:26049831

  19. High Frequency Active Auroral Research Program (HAARP) imager. Final report, 29 August 1991-29 August 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lance, C.; Eather, R.

    1993-09-30

    A low-light-level monochromatic imaging system was designed and fabricated which was optimized to detect and record optical emissions associated with high-power rf heating of the ionosphere. The instrument is capable of detecting very low intensities, of the order of 1 Rayleigh, from typical ionospheric atomic and molecular emissions. This is achieved through co-adding of ON images during heater pulses and subtraction of OFF (background) images between pulses. Images can be displayed and analyzed in real time and stored in optical disc for later analysis. Full image processing software is provided which was customized for this application and uses menu ormore » mouse user interaction.« less

  20. Development of the ASTRI heliostat

    NASA Astrophysics Data System (ADS)

    Coventry, Joe; Arjomandi, Maziar; Barry, John; Blanco, Manuel; Burgess, Greg; Campbell, Jonathan; Connor, Phil; Emes, Matthew; Fairman, Philip; Farrant, David; Ghanadi, Farzin; Grigoriev, Victor; Hall, Colin; Koltun, Paul; Lewis, David; Martin, Scott; Nathan, Graham; Pye, John; Qiu, Ang; Stuart, Wayne; Tang, Youhong; Venn, Felix; Yu, Jeremy

    2016-05-01

    The Australian Solar Thermal Research Initiative (ASTRI) aims to develop a high optical quality heliostat with target cost - manufactured, installed and operational - of 90 AUD/m2. Three different heliostat design concepts are described, each with features identified during a prior scoping study as having the potential to contribute to cost reduction compared to the current state-of-the-art. The three concepts which are being developed will be down-selected to a single concept for testing in late 2016. The heliostat concept development work is supported by technology development streams, developing novel sandwich panel mirror facet structures, analysing and testing wind loads on heliostats in both stow and operation positions, and developing new heliostat field layouts and software tools for optical analysis of heliostats design concepts.

  1. Real time 3D scanner: investigations and results

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik; Pflug, Leopold

    1993-12-01

    This article presents a concept of reconstruction of 3-D objects using non-invasive and touch loss techniques. The principle of this method is to display parallel interference optical fringes on an object and then to record the object under two angles of view. According to an appropriated treatment one reconstructs the 3-D object even when the object has no symmetrical plan. The 3-D surface data is available immediately in digital form for computer- visualization and for analysis software tools. The optical set-up for recording the 3-D object, the 3-D data extraction and treatment, as well as the reconstruction of the 3-D object are reported and commented on. This application is dedicated for reconstructive/cosmetic surgery, CAD, animation and research purposes.

  2. GLOBECOM '86 - Global Telecommunications Conference, Houston, TX, Dec. 1-4, 1986, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Papers are presented on local area networks; formal methods for communication protocols; computer simulation of communication systems; spread spectrum and coded communications; tropical radio propagation; VLSI for communications; strategies for increasing software productivity; multiple access communications; advanced communication satellite technologies; and spread spectrum systems. Topics discussed include Space Station communication and tracking development and design; transmission networks; modulation; data communications; computer network protocols and performance; and coding and synchronization. Consideration is given to free space optical communications systems; VSAT communication networks; network topology design; advances in adaptive filtering echo cancellation and adaptive equalization; advanced signal processing for satellite communications; the elements, design, and analysis of fiber-optic networks; and advances in digital microwave systems.

  3. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  4. The coating design of phase-shifting reflector array with high reflectance and specified reflection phase shifts for static Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanni; Zhang, Hui; Wang, Yijun

    2016-02-01

    The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.

  5. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    PubMed

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  6. Low cost paths to binary optics

    NASA Technical Reports Server (NTRS)

    Nelson, Arthur; Domash, Lawrence

    1993-01-01

    Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.

  7. Reflection of a polarized light cone

    NASA Astrophysics Data System (ADS)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  8. Three-dimensional modeling of light rays on the surface of a slanted lenticular array for autostereoscopic displays.

    PubMed

    Jung, Sung-Min; Kang, In-Byeong

    2013-08-10

    In this paper, we developed an optical model describing the behavior of light at the surface of a slanted lenticular array for autostereoscopic displays in three dimensions and simulated the optical characteristics of autostereoscopic displays using the Monte Carlo method under actual design conditions. The behavior of light is analyzed by light rays for selected inclination and azimuthal angles; numerical aberrations and conditions of total internal reflection for the lenticular array were found. The intensity and the three-dimensional crosstalk distributions calculated from our model coincide very well with those from conventional design software, and our model shows highly enhanced calculation speed that is 67 times faster than that of the conventional software. From the results, we think that the optical model is very useful for predicting the optical characteristics of autostereoscopic displays with enhanced calculation speed.

  9. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical network

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-03-01

    The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.

  10. DOC II 32-bit digital optical computer: optoelectronic hardware and software

    NASA Astrophysics Data System (ADS)

    Stone, Richard V.; Zeise, Frederick F.; Guilfoyle, Peter S.

    1991-12-01

    This paper describes current electronic hardware subsystems and software code which support OptiComp's 32-bit general purpose digital optical computer (DOC II). The reader is referred to earlier papers presented in this section for a thorough discussion of theory and application regarding DOC II. The primary optoelectronic subsystems include the drive electronics for the multichannel acousto-optic modulators, the avalanche photodiode amplifier, as well as threshold circuitry, and the memory subsystems. This device utilizes a single optical Boolean vector matrix multiplier and its VME based host controller interface in performing various higher level primitives. OptiComp Corporation wishes to acknowledge the financial support of the Office of Naval Research, the National Aeronautics and Space Administration, the Rome Air Development Center, and the Strategic Defense Initiative Office for the funding of this program under contracts N00014-87-C-0077, N00014-89-C-0266 and N00014-89-C- 0225.

  11. Physics education through computational tools: the case of geometrical and physical optics

    NASA Astrophysics Data System (ADS)

    Rodríguez, Y.; Santana, A.; Mendoza, L. M.

    2013-09-01

    Recently, with the development of more powerful and accurate computational tools, the inclusion of new didactic materials in the classroom is known to have increased. However, the form in which these materials can be used to enhance the learning process is still under debate. Many different methodologies have been suggested for constructing new relevant curricular material and, among them, just-in-time teaching (JiTT) has arisen as an effective and successful way to improve the content of classes. In this paper, we will show the implemented pedagogic strategies for the courses of geometrical and optical physics for students of optometry. Thus, the use of the GeoGebra software for the geometrical optics class and the employment of new in-house software for the physical optics class created using the high-level programming language Python is shown with the corresponding activities developed for each of these applets.

  12. Application of Novel Software Algorithms to Spectral-Domain Optical Coherence Tomography for Automated Detection of Diabetic Retinopathy.

    PubMed

    Adhi, Mehreen; Semy, Salim K; Stein, David W; Potter, Daniel M; Kuklinski, Walter S; Sleeper, Harry A; Duker, Jay S; Waheed, Nadia K

    2016-05-01

    To present novel software algorithms applied to spectral-domain optical coherence tomography (SD-OCT) for automated detection of diabetic retinopathy (DR). Thirty-one diabetic patients (44 eyes) and 18 healthy, nondiabetic controls (20 eyes) who underwent volumetric SD-OCT imaging and fundus photography were retrospectively identified. A retina specialist independently graded DR stage. Trained automated software generated a retinal thickness score signifying macular edema and a cluster score signifying microaneurysms and/or hard exudates for each volumetric SD-OCT. Of 44 diabetic eyes, 38 had DR and six eyes did not have DR. Leave-one-out cross-validation using a linear discriminant at missed detection/false alarm ratio of 3.00 computed software sensitivity and specificity of 92% and 69%, respectively, for DR detection when compared to clinical assessment. Novel software algorithms applied to commercially available SD-OCT can successfully detect DR and may have potential as a viable screening tool for DR in future. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:410-417.]. Copyright 2016, SLACK Incorporated.

  13. Analysis on influence of installation error of off-axis three-mirror optical system on imaging line-of-sight

    NASA Astrophysics Data System (ADS)

    Gao, Lingyu; Li, Xinghua; Guo, Qianrui; Quan, Jing; Hu, Zhengyue; Su, Zhikun; Zhang, Dong; Liu, Peilu; Li, Haopeng

    2018-01-01

    The internal structure of off-axis three-mirror system is commonly complex. The mirror installation error in assembly always affects the imaging line-of-sight and further degrades the image quality. Due to the complexity of the optical path in off-axis three-mirror optical system, the straightforward theoretical analysis on the variations of imaging line-of-sight is extremely difficult. In order to simplify the theoretical analysis, an equivalent single-mirror system is proposed and presented in this paper. In addition, the mathematical model of single-mirror system is established and the accurate expressions of imaging coordinate are derived. Utilizing the simulation software ZEMAX, off-axis three-mirror model and single-mirror model are both established. By adjusting the position of mirror and simulating the line-of-sight rotation of optical system, the variations of imaging coordinates are clearly observed. The final simulation results include: in off-axis three-mirror system, the varying sensitivity of the imaging coordinate to the rotation of line-of-sight is approximately 30 um/″; in single-mirror system, the varying sensitivity of the imaging coordinate to the rotation of line-of-sight is 31.5 um/″. Compared to the simulation results of the off-axis three-mirror model, the 5% relative error of single-mirror model analysis highly satisfies the requirement of equivalent analysis and also verifies its validity. This paper presents a new method to analyze the installation error of the mirror in the off-axis three-mirror system influencing on the imaging line-of-sight. Moreover, the off-axis three-mirror model is totally equivalent to the single-mirror model in theoretical analysis.

  14. Control software and electronics architecture design in the framework of the E-ELT instrumentation

    NASA Astrophysics Data System (ADS)

    Di Marcantonio, P.; Coretti, I.; Cirami, R.; Comari, M.; Santin, P.; Pucillo, M.

    2010-07-01

    During the last years the European Southern Observatory (ESO), in collaboration with other European astronomical institutes, has started several feasibility studies for the E-ELT (European-Extremely Large Telescope) instrumentation and post-focal adaptive optics. The goal is to create a flexible suite of instruments to deal with the wide variety of scientific questions astronomers would like to see solved in the coming decades. In this framework INAF-Astronomical Observatory of Trieste (INAF-AOTs) is currently responsible of carrying out the analysis and the preliminary study of the architecture of the electronics and control software of three instruments: CODEX (control software and electronics) and OPTIMOS-EVE/OPTIMOS-DIORAMAS (control software). To cope with the increased complexity and new requirements for stability, precision, real-time latency and communications among sub-systems imposed by these instruments, new solutions have been investigated by our group. In this paper we present the proposed software and electronics architecture based on a distributed common framework centered on the Component/Container model that uses OPC Unified Architecture as a standard layer to communicate with COTS components of three different vendors. We describe three working prototypes that have been set-up in our laboratory and discuss their performances, integration complexity and ease of deployment.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prof. P. Somasundaran

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analyticalmore » ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.« less

  16. How to Choose a Media Retrieval System.

    ERIC Educational Resources Information Center

    Huber, Joe

    1995-01-01

    Provides guidelines for schools choosing a media retrieval system. Topics include broadband, baseband, coaxial cable, or fiber optic decisions; the control network; selecting scheduling software; presentation software; device control; control from the classroom; and a comparison of systems offered by five companies. (LRW)

  17. Digital Equipment Corporation's CRDOM Software and Database Publications.

    ERIC Educational Resources Information Center

    Adams, Michael Q.

    1986-01-01

    Acquaints information professionals with Digital Equipment Corporation's compact optical disk read-only-memory (CDROM) search and retrieval software and growing library of CDROM database publications (COMPENDEX, Chemical Abstracts Services). Highlights include MicroBASIS, boolean operators, range operators, word and phrase searching, proximity…

  18. Generic trending and analysis system

    NASA Technical Reports Server (NTRS)

    Keehan, Lori; Reese, Jay

    1994-01-01

    The Generic Trending and Analysis System (GTAS) is a generic spacecraft performance monitoring tool developed by NASA Code 511 and Loral Aerosys. It is designed to facilitate quick anomaly resolution and trend analysis. Traditionally, the job of off-line analysis has been performed using hardware and software systems developed for real-time spacecraft contacts; then, the systems were supplemented with a collection of tools developed by Flight Operations Team (FOT) members. Since the number of upcoming missions is increasing, NASA can no longer afford to operate in this manner. GTAS improves control center productivity and effectiveness because it provides a generic solution across multiple missions. Thus, GTAS eliminates the need for each individual mission to develop duplicate capabilities. It also allows for more sophisticated tools to be developed because it draws resources from several projects. In addition, the GTAS software system incorporates commercial off-the-shelf tools software (COTS) packages and reuses components of other NASA-developed systems wherever possible. GTAS has incorporated lessons learned from previous missions by involving the users early in the development process. GTAS users took a proactive role in requirements analysis, design, development, and testing. Because of user involvement, several special tools were designed and are now being developed. GTAS users expressed considerable interest in facilitating data collection for long term trending and analysis. As a result, GTAS provides easy access to large volumes of processed telemetry data directly in the control center. The GTAS archival and retrieval capabilities are supported by the integration of optical disk technology and a COTS relational database management system.

  19. Optical granulometric analysis of sedimentary deposits by color segmentation-based software: OPTGRAN-CS

    NASA Astrophysics Data System (ADS)

    Chávez, G. Moreno; Sarocchi, D.; Santana, E. Arce; Borselli, L.

    2015-12-01

    The study of grain size distribution is fundamental for understanding sedimentological environments. Through these analyses, clast erosion, transport and deposition processes can be interpreted and modeled. However, grain size distribution analysis can be difficult in some outcrops due to the number and complexity of the arrangement of clasts and matrix and their physical size. Despite various technological advances, it is almost impossible to get the full grain size distribution (blocks to sand grain size) with a single method or instrument of analysis. For this reason development in this area continues to be fundamental. In recent years, various methods of particle size analysis by automatic image processing have been developed, due to their potential advantages with respect to classical ones; speed and final detailed content of information (virtually for each analyzed particle). In this framework, we have developed a novel algorithm and software for grain size distribution analysis, based on color image segmentation using an entropy-controlled quadratic Markov measure field algorithm and the Rosiwal method for counting intersections between clast and linear transects in the images. We test the novel algorithm in different sedimentary deposit types from 14 varieties of sedimentological environments. The results of the new algorithm were compared with grain counts performed manually by the same Rosiwal methods applied by experts. The new algorithm has the same accuracy as a classical manual count process, but the application of this innovative methodology is much easier and dramatically less time-consuming. The final productivity of the new software for analysis of clasts deposits after recording field outcrop images can be increased significantly.

  20. Reliability improvement methods for sapphire fiber temperature sensors

    NASA Astrophysics Data System (ADS)

    Schietinger, C.; Adams, B.

    1991-08-01

    Mechanical, optical, electrical, and software design improvements can be brought to bear in the enhancement of fiber-optic sapphire-fiber temperature measurement tool reliability in harsh environments. The optical fiber thermometry (OFT) equipment discussed is used in numerous process industries and generally involves a sapphire sensor, an optical transmission cable, and a microprocessor-based signal analyzer. OFT technology incorporating sensors for corrosive environments, hybrid sensors, and two-wavelength measurements, are discussed.

  1. Software for simulation of a computed tomography imaging spectrometer using optical design software

    NASA Astrophysics Data System (ADS)

    Spuhler, Peter T.; Willer, Mark R.; Volin, Curtis E.; Descour, Michael R.; Dereniak, Eustace L.

    2000-11-01

    Our Imaging Spectrometer Simulation Software known under the name Eikon should improve and speed up the design of a Computed Tomography Imaging Spectrometer (CTIS). Eikon uses existing raytracing software to simulate a virtual instrument. Eikon enables designers to virtually run through the design, calibration and data acquisition, saving significant cost and time when designing an instrument. We anticipate that Eikon simulations will improve future designs of CTIS by allowing engineers to explore more instrument options.

  2. Demonstration of theoretical and experimental simulations in fiber optics course

    NASA Astrophysics Data System (ADS)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  3. Visible in camouflage of military engineering application

    NASA Astrophysics Data System (ADS)

    Pu, Huan; Kang, Qing; Chen, Shanjing; Wang, Zhenggang

    2016-03-01

    Our traditional methods of disguise shortcomings, using optical material combined with traditional methods to improve the efficiency of camouflage in disguise. Present lack of effective camouflage effect evaluation system, it refers to Matlab software for optical phase camouflage effect evaluation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, M; Kim, T; Kang, S

    Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attachingmore » FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by the Industrial R&D program of MOTIE/KEIT. [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  5. Independent Orbiter Assessment (IOA): Analysis of the guidance, navigation, and control subsystem

    NASA Technical Reports Server (NTRS)

    Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Hiott, J. M.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Guidance, Navigation, and Control (GNC) Subsystem hardware are documented. The function of the GNC hardware is to respond to guidance, navigation, and control software commands to effect vehicle control and to provide sensor and controller data to GNC software. Some of the GNC hardware for which failure modes analysis was performed includes: hand controllers; Rudder Pedal Transducer Assembly (RPTA); Speed Brake Thrust Controller (SBTC); Inertial Measurement Unit (IMU); Star Tracker (ST); Crew Optical Alignment Site (COAS); Air Data Transducer Assembly (ADTA); Rate Gyro Assemblies; Accelerometer Assembly (AA); Aerosurface Servo Amplifier (ASA); and Ascent Thrust Vector Control (ATVC). The IOA analysis process utilized available GNC hardware drawings, workbooks, specifications, schematics, and systems briefs for defining hardware assemblies, components, and circuits. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  6. Three-dimensional image study on the vascular structure after angiopoietin-1 transduction in isolated mouse pancreatic islets

    NASA Astrophysics Data System (ADS)

    He, Jing; Su, Dongming; Trucco, Massimo

    2008-02-01

    Angiopoietin-1 (Ang-1) is essential for remodeling the primitive vascular plexus during embryonic development and for reducing plasma leakage in inflammation of adult vasculature. However, the role for Ang-1 in maintenance of vascular stability in isolated pancreatic islets is not fully understood. In this study, we compared the difference of vascular morphology between Ang-1 treated (n=5) and control mouse islets (n=5) using both two- and three-dimensional optical image analysis. Isolated mouse islets were transduced with Ang-1 or Lac Z (control) vector at 37°C for 16 hours. Islets were incubated with both rat anti-CD31 antibody and rabbit anti-insulin antibody followed by incubation with Rhodamine-conjugated goat anti-rat IgG and Alexa-488 conjugated goat anti-rabbit IgG. Islets were viewed under a Nikon confocal microscope. Serial optical section images were captured and reconstructed using Nikon EZ-C1 software. Individual two-D and reconstructed three-D images were analyzed using MetaMorph Image Analysis software. Islet vascular density was determined. In two-D images, there was no significant difference of vascular density between the two groups. The vascular morphology didn't show any obvious differences in two-D images either. However, in the three-D images, we found higher vascular density and more vascular branches in the Ang-1 transducted islets and vascular dilation in control group. In conclusion, using three-D image analysis, Ang-1 displayed functions in maintenance of vascular stability and in stimulating growth of vascular branches in isolated mouse pancreatic islets. In order to study further the regeneration of different cell contents in the spherical pancreatic islet, three-D image analysis is an effective method to approach this goal.

  7. LSST active optics system software architecture

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine J.; Chandrasekharan, Srinivasan; Lotz, Paul; Xin, Bo; Claver, Charles; Angeli, George; Sebag, Jacques; Dubois-Felsmann, Gregory P.

    2016-08-01

    The Large Synoptic Survey Telescope (LSST) is an 8-meter class wide-field telescope now under construction on Cerro Pachon, near La Serena, Chile. This ground-based telescope is designed to conduct a decade-long time domain survey of the optical sky. In order to achieve the LSST scientific goals, the telescope requires delivering seeing limited image quality over the 3.5 degree field-of-view. Like many telescopes, LSST will use an Active Optics System (AOS) to correct in near real-time the system aberrations primarily introduced by gravity and temperature gradients. The LSST AOS uses a combination of 4 curvature wavefront sensors (CWS) located on the outside of the LSST field-of-view. The information coming from the 4 CWS is combined to calculate the appropriate corrections to be sent to the 3 different mirrors composing LSST. The AOS software incorporates a wavefront sensor estimation pipeline (WEP) and an active optics control system (AOCS). The WEP estimates the wavefront residual error from the CWS images. The AOCS determines the correction to be sent to the different degrees of freedom every 30 seconds. In this paper, we describe the design and implementation of the AOS. More particularly, we will focus on the software architecture as well as the AOS interactions with the various subsystems within LSST.

  8. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project

    NASA Astrophysics Data System (ADS)

    Polydorides, Nick; Lionheart, William R. B.

    2002-12-01

    The objective of the Electrical Impedance and Diffuse Optical Reconstruction Software project is to develop freely available software that can be used to reconstruct electrical or optical material properties from boundary measurements. Nonlinear and ill posed problems such as electrical impedance and optical tomography are typically approached using a finite element model for the forward calculations and a regularized nonlinear solver for obtaining a unique and stable inverse solution. Most of the commercially available finite element programs are unsuitable for solving these problems because of their conventional inefficient way of calculating the Jacobian, and their lack of accurate electrode modelling. A complete package for the two-dimensional EIT problem was officially released by Vauhkonen et al at the second half of 2000. However most industrial and medical electrical imaging problems are fundamentally three-dimensional. To assist the development we have developed and released a free toolkit of Matlab routines which can be employed to solve the forward and inverse EIT problems in three dimensions based on the complete electrode model along with some basic visualization utilities, in the hope that it will stimulate further development. We also include a derivation of the formula for the Jacobian (or sensitivity) matrix based on the complete electrode model.

  9. Optical Coherence Tomography Angiography to Distinguish Changes of Choroidal Neovascularization after Anti-VEGF Therapy: Monthly Loading Dose versus Pro Re Nata Regimen.

    PubMed

    Miere, Alexandra; Oubraham, Hassiba; Amoroso, Francesca; Butori, Pauline; Astroz, Polina; Semoun, Oudy; Bruyere, Elsa; Pedinielli, Alexandre; Addou-Regnard, Manar; Jung, Camille; Cohen, Salomon Y; Souied, Eric H

    2018-01-01

    To compare the qualitative and quantitative choroidal neovascularization (CNV) changes after antivascular endothelial growth factor (anti-VEGF) therapy in treatment-naïve and treated eyes with age-related macular degeneration (AMD) using optical coherence tomography angiography (OCTA). Consecutive patients with neovascular AMD underwent multimodal imaging, including OCTA (AngioPlex, CIRRUS HD-OCT model 5000; Carl Zeiss Meditec, Inc., Dublin, OH) at baseline and at three monthly follow-up visits. Treatment-naive AMD patients undergoing anti-VEGF loading phase were included in group A, while treated patients were included in group B. Qualitative and quantitative OCTA analyses were performed on outer retina to choriocapillaris (ORCC) slab. CNV size was measured using a free image analysis software (ImageJ, open-source imaging processing software, 2.0.0). Twenty-five eyes of 25 patients were enrolled in our study (mean age 78.32 ± 6.8 years): 13 treatment-naïve eyes in group A and 12 treated eyes in group B. While qualitative analysis revealed no significant differences from baseline to follow-up in the two groups, quantitative analysis showed in group A a significant decrease in lesion area ( P = 0.023); in group B, no significant change in the lesion area was observed during anti-VEGF therapy ( P = 0.93). Treatment-naïve and treated eyes with CNV secondary to neovascular AMD respond differently to anti-VEGF therapy. This should be taken into account when using OCTA for CNV follow-up or planning therapeutic strategies.

  10. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  11. Incidence and Outcomes of Optical Zone Enlargement and Recentration After Previous Myopic LASIK by Topography-Guided Custom Ablation.

    PubMed

    Reinstein, Dan Z; Archer, Timothy J; Carp, Glenn I; Stuart, Alastair J; Rowe, Elizabeth L; Nesbit, Andrew; Moore, Tara

    2018-02-01

    To report the incidence, visual and refractive outcomes, optical zone enlargement, and recentration using topography-guided CRS-Master TOSCA II software with the MEL 80 excimer laser (Carl Zeiss Meditec AG, Jena, Germany) after primary myopic laser refractive surgery. Retrospective analysis of 73 eyes (40 patients) with complaints of night vision disturbances due to either a decentration or small optical zone following a primary myopic laser refractive surgery procedure using the MEL 80 laser. Multiple ATLAS topography scans were imported into the CRS-Master software for topography-guided ablation planning. The topography-guided re-treatment procedure was performed as either a LASIK flap lift, a new LASIK flap, a side cut only, or photorefractive keratectomy. Axial curvature maps were analyzed using a fixed grid and set of concentric circles superimposed to measure the topographic optical zone diameter and centration. Follow-up was 12 months. The incidence of use in the population of myopic treatments during the study period was 0.79% (73 of 9,249). The optical zone diameter was increased by 11% from a mean of 5.65 to 6.32 mm, with a maximum change of 2 mm in one case. Topographic decentration was reduced by 64% from a mean of 0.58 to 0.21 mm. There was a 44% reduction in spherical aberration, 53% reduction in coma, and 39% reduction in total higher order aberrations. A subjective improvement in night vision symptoms was reported by 93%. Regarding efficacy, 82% of eyes reached 20/20 and 100% reached 20/32 (preoperative CDVA was 20/20 or better in 90%). Regarding safety, no eyes lost two lines of CDVA and 27% gained one line. Regarding predictability, 71% of re-treatments were within ±0.50 diopters. Topography-guided ablation was effective in enlarging the optical zone, recentering the optical zone, and reducing higher order aberrations. Topography-guided custom ablation appears to be an effective method for re-treatment procedures of symptomatic patients after myopic LASIK. [J Refract Surg. 2018;34(2):121-130.]. Copyright 2018, SLACK Incorporated.

  12. Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Smirnova, Z. N.

    2015-05-01

    Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.

  13. Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy

    PubMed Central

    Weigert, Martin; Bundschuh, Sebastian T.

    2018-01-01

    Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879

  14. Optical Coherence Tomography in the UK Biobank Study - Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies.

    PubMed

    Keane, Pearse A; Grossi, Carlota M; Foster, Paul J; Yang, Qi; Reisman, Charles A; Chan, Kinpui; Peto, Tunde; Thomas, Dhanes; Patel, Praveen J

    2016-01-01

    To describe an approach to the use of optical coherence tomography (OCT) imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness. In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available "spectral domain" OCT device (3D OCT-1000, Topcon). Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL). This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion. 67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days. We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging.

  15. Optical Coherence Tomography in the UK Biobank Study – Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies

    PubMed Central

    Grossi, Carlota M.; Foster, Paul J.; Yang, Qi; Reisman, Charles A.; Chan, Kinpui; Peto, Tunde; Thomas, Dhanes; Patel, Praveen J.

    2016-01-01

    Purpose To describe an approach to the use of optical coherence tomography (OCT) imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness. Methods In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available “spectral domain” OCT device (3D OCT-1000, Topcon). Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL). This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion. Results 67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days. Conclusions We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging. PMID:27716837

  16. Control Program for an Optical-Calibration Robot

    NASA Technical Reports Server (NTRS)

    Johnston, Albert

    2005-01-01

    A computer program provides semiautomatic control of a moveable robot used to perform optical calibration of video-camera-based optoelectronic sensor systems that will be used to guide automated rendezvous maneuvers of spacecraft. The function of the robot is to move a target and hold it at specified positions. With the help of limit switches, the software first centers or finds the target. Then the target is moved to a starting position. Thereafter, with the help of an intuitive graphical user interface, an operator types in coordinates of specified positions, and the software responds by commanding the robot to move the target to the positions. The software has capabilities for correcting errors and for recording data from the guidance-sensor system being calibrated. The software can also command that the target be moved in a predetermined sequence of motions between specified positions and can be run in an advanced control mode in which, among other things, the target can be moved beyond the limits set by the limit switches.

  17. Estimation of water quality parameters of inland and coastal waters with the use of a toolkit for processing of remote sensing data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less

  18. Grayscale Optical Correlator Workbench

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Zhou, Hanying; Chao, Tien-Hsin

    2006-01-01

    Grayscale Optical Correlator Workbench (GOCWB) is a computer program for use in automatic target recognition (ATR). GOCWB performs ATR with an accurate simulation of a hardware grayscale optical correlator (GOC). This simulation is performed to test filters that are created in GOCWB. Thus, GOCWB can be used as a stand-alone ATR software tool or in combination with GOC hardware for building (target training), testing, and optimization of filters. The software is divided into three main parts, denoted filter, testing, and training. The training part is used for assembling training images as input to a filter. The filter part is used for combining training images into a filter and optimizing that filter. The testing part is used for testing new filters and for general simulation of GOC output. The current version of GOCWB relies on the mathematical software tools from MATLAB binaries for performing matrix operations and fast Fourier transforms. Optimization of filters is based on an algorithm, known as OT-MACH, in which variables specified by the user are parameterized and the best filter is selected on the basis of an average result for correct identification of targets in multiple test images.

  19. Dynamic routing and spectrum assignment based on multilayer virtual topology and ant colony optimization in elastic software-defined optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-07-01

    Elastic software-defined optical networks greatly improve the flexibility of the optical switching network while it has brought challenges to the routing and spectrum assignment (RSA). A multilayer virtual topology model is proposed to solve RSA problems. Two RSA algorithms based on the virtual topology are proposed, which are the ant colony optimization (ACO) algorithm of minimum consecutiveness loss and the ACO algorithm of maximum spectrum consecutiveness. Due to the computing power of the control layer in the software-defined network, the routing algorithm avoids the frequent link-state information between routers. Based on the effect of the spectrum consecutiveness loss on the pheromone in the ACO, the path and spectrum of the minimal impact on the network are selected for the service request. The proposed algorithms have been compared with other algorithms. The results show that the proposed algorithms can reduce the blocking rate by at least 5% and perform better in spectrum efficiency. Moreover, the proposed algorithms can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness.

  20. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  1. Raptor -- Mining the Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  2. Navigation and Elctro-Optic Sensor Integration Technology for Fusion of Imagery and Digital Mapping Products

    DTIC Science & Technology

    1999-08-01

    Electro - Optic Sensor Integration Technology (NEOSIT) software application. The design is highly modular and based on COTS tools to facilitate integration with sensors, navigation and digital data sources already installed on different host

  3. Digital holographic microscopy combined with optical tweezers

    NASA Astrophysics Data System (ADS)

    Cardenas, Nelson; Yu, Lingfeng; Mohanty, Samarendra K.

    2011-02-01

    While optical tweezers have been widely used for the manipulation and organization of microscopic objects in three dimensions, observing the manipulated objects along axial direction has been quite challenging. In order to visualize organization and orientation of objects along axial direction, we report development of a Digital holographic microscopy combined with optical tweezers. Digital holography is achieved by use of a modified Mach-Zehnder interferometer with digital recording of interference pattern of the reference and sample laser beams by use of a single CCD camera. In this method, quantitative phase information is retrieved dynamically with high temporal resolution, only limited by frame rate of the CCD. Digital focusing, phase-unwrapping as well as online analysis and display of the quantitative phase images was performed on a software developed on LabView platform. Since phase changes observed in DHOT is very sensitive to optical thickness of trapped volume, estimation of number of particles trapped in the axial direction as well as orientation of non-spherical objects could be achieved with high precision. Since in diseases such as malaria and diabetics, change in refractive index of red blood cells occurs, this system can be employed to map such disease-specific changes in biological samples upon immobilization with optical tweezers.

  4. Strain of optic-fiber/giant magnetostrictive film structure in magnetic field by finite element analysis

    NASA Astrophysics Data System (ADS)

    Hu, Jiafei; Pan, Mengchun; Xin, Jianguang; Chen, Dixiang

    2008-12-01

    The magnetostrictive transducer is the most important part of the optic-fiber magnetic field sensor, and the optic-fiber/giant magnetostrictive(GMS) film coupled structure is a novel coupling form of the magnetostrictive transducer. Always we analyze the coupled structure based on the entire coupled structure being sputtered GMS material without tail-fibers. In practical application, the coupled structure has tail-fibers without films at two ends. When the entire coupled structure is immersed in the detected magnetic field, the detected magnetic field causes the GMS film strain then causing optic-fiber strain. This strain transmission process is different from it in the coupled structure entirely with GMS films without tail-fibers. The strain transmission relationship can be calculated theoretically in the coupled structure without tail-fibers, but it's complicated to theoretically calculate the strain transmission relationship in the coupled structure with tail-fibers. After large numbers of calculations and analyses by ANSYS software, we figure out some relationships of the two strain transmission processes in the respective structures and the stress distribution in the tail-fibers. These results are helpful to the practical application of the optic-fiber/ GMS film coupled structure.

  5. Design of polarized infrared athermal telephoto objective for penetrating the fog

    NASA Astrophysics Data System (ADS)

    Gao, Duorui; Fu, Qiang; Zhao, Zhao; Zhao, Bin; Zhong, Lijun; Zhan, Juntong

    2014-11-01

    Polarized infrared imaging technology is a new detection technique which own the ability of spying through the fog, highlighting the target and recognizing the forgeries, these characters make it a good advantage of increasing the work distance in the fog. Compared to the traditional infrared imaging method, polarized infrared imaging can identify the background and target easily, that is the most distinguishing feature of polarized infrared imaging technology. Owning to the large refractive index of the infrared material, temperature change will bring defocus seriously, athermal infrared objective is necessarily. On the other hand, athermal objective has large total length, and hard to be integrated for their huge volume. However telephoto objective has the character of small volume and short total length. The paper introduce a method of polarized and athermal infrared telephoto objective which can spy the fog. First assign the optical power of the fore group and the rear group on the basis of the principle of telephoto objective, the power of the fore group is positive and the rear group is negative; then distribute the optical power within each group to realize the ability of athermalization, finally computer-aided software is used to correct aberration. In order to prove the feasibility of the scheme, an athermal optical system was designed by virtue of ZEMAX software which works at 8~12 µm, the focal length of 150mm, F number is 2, and total length of the telephoto objective is 120mm. The environment temperature analysis shows that the optical system have stable imaging quality, MTF is close to diffraction limit. This telephoto objective is available for infrared polarized imaging.

  6. Enhanced autocompensating quantum cryptography system.

    PubMed

    Bethune, Donald S; Navarro, Martha; Risk, William P

    2002-03-20

    We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors, and performs privacy amplification over a local area network. The all-fiber-optic arrangement provides stable, efficient, and high-contrast routing of the photons. The low-bit error rate leads to high error-correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice's station to allow them to be distinguished from backscattered noise photons is also described.

  7. Delivery of Nano-Tethered Therapies to Brain Metastases of Primary Breast Cancer Using a Cellular Trojan Horse

    DTIC Science & Technology

    2015-10-01

    tomography images. The CT image densities in Hounsfield units (HU) of the brain were translated into corresponding optical properties (absorption...derived the Hounsfield units and optical properties of brain tissues such as white/gray matter. 13-15 The segmentation software generated an optical map...treatment protocol. Head CT image densities (in Hounsfield Units /HU) are segmented and translated into optical properties of the brain tissue

  8. Development of a near-infrared spectroscopy instrument for applications in urology.

    PubMed

    Macnab, Andrew J; Stothers, Lynn

    2008-10-01

    Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.

  9. Label-free tissue scanner for colorectal cancer screening

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of "unstained" biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on "quantitative phase imaging," which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the "nanoscale" tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an "intrinsic marker" for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  10. Interferometric analysis computer code for the infrared atmospheric sounding interferometer (IASI) fourier transform spectrometer (FTS)

    NASA Astrophysics Data System (ADS)

    Labate, Demetrio; Pieri, Silvano; Pili, Paolo

    1994-09-01

    The Interferometric Analysis Computer Code is a program developed to evaluate the performances of Fourier Transform Spectrometers. It has been carried out in the frame of the IASI program. It is a stand-alone code which can use as input the optical system data set up by an optical design software. The interference phenomenon is evaluated using the optical data of both interferometer arms by means of real ray-tracing. The mathematical model used to obtain the output signal is based on the concept that, for a monochromatic source, this signal is quite similar to an ideal sine. This allows to calculate three functions describing the difference between the ideal interferogram and the simulated one. These represent the average level of the output irradiance, the modulation and the phase of the oscillating terms as a function of the Optical Path Difference. These functions are quite smooth and then easily representable by fitting. Therefore in order to have a good representation of them it is sufficient a number of points much smaller than those necessary to represent correctly an interferogram. Then a great advantage in terms of computation time is obtained, especially when many signals have to be added to simulate the effect of a detector covering a quite large field of view. Furthermore, the possibility to input in the optical data files different kinds of manufacturing or assembly errors allows to estimate the sensitivity of the optical components respect to these aspects. This makes possible the calculation of an exhaustive tolerance budget.

  11. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    NASA Astrophysics Data System (ADS)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  12. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  13. JTAG-based remote configuration of FPGAs over optical fibers

    DOE PAGES

    Deng, B.; Xu, H.; Liu, C.; ...

    2015-01-28

    In this study, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.

  14. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    PubMed

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  15. A novel anti-piracy optical disk with photochromic diarylethene

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Cao, Guoqiang; Huang, Zhen; Wang, Shenqian; Zou, Daowen

    2005-09-01

    Diarylethene is one of photochromic material with many advantages and one of the most promising recording materials for huge optical data storage. Diarylethene has two forms, which can be converted to each other by laser beams of different wavelength. The material has been researched for rewritable optical disks. Volatile data storage is one of its properties, which was always considered as an obstacle to utility. Many researches have been done for combating the obstacle for a long time. In fact, volatile data storage is very useful for anti-piracy optical data storage. Piracy is a social and economical problem. One technology of anti-piracy optical data storage is to limit readout of the data recorded in the material by encryption software. By the development of computer technologies, this kind of software is more and more easily cracked. Using photochromic diarylethene as the optical recording material, the signals of the data recorded in the material are degraded when it is read, and readout of the data is limited. Because the method uses hardware to realize anti-piracy, it is impossible cracked. In this paper, we will introduce this usage of the material. Some experiments are presented for proving its feasibility.

  16. Simulation of fiber optic liquid level sensor demodulation system

    NASA Astrophysics Data System (ADS)

    Yi, Cong-qin; Luo, Yun; Zhang, Zheng-ping

    Measuring liquid level with high accuracy is an urgent requirement. This paper mainly focus on the demodulation system of fiber-optic liquid level sensor based on Fabry-Perot cavity, design and simulate the demodulation system by the single-chip simulation software.

  17. Analysis and classification of normal and pathological skin tissue spectra using neural networks

    NASA Astrophysics Data System (ADS)

    Bruch, Reinhard F.; Afanasyeva, Natalia I.; Gummuluri, Satyashree

    2000-07-01

    An innovative spectroscopic diagnostic method has been developed for investigation of different regions of normal human skin tissue, as well as cancerous and precancerous conditions in vivo, ex vivo and in vitro. This new method is a combination of fiber-optical evanescent wave Fourier Transform infrared (FEW-FTIR) spectroscopy and fiber optic techniques using low-loss, highly flexible and nontoxic fiber optical sensors. The FEW-FTIR technique is nondestructive and very sensitive to changes of vibrational spectra in the IR region without heating and staining and thus altering the skin tissue. A special software package was developed for the treatment of the spectra. This package includes a database, programs for data preparation and presentation, and neural networks for classification of disease states. An unsupervised neural competitive learning neural network is implemented for skin cancer diagnosis. In this study, we have investigated and classified skin tissue in the range of 1400 to 1800 cm-1 using these programs. The results of our surface analysis of skin tissue are discussed in terms of molecular structural similarities and differences as well as in terms of different skin states represented by eleven different skin spectra classes.

  18. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A Small Business Innovation Research (SBIR) contract resulted in a series of commercially available lasers, which have application in fiber optic communications, difference frequency generation, fiber optic sensing and general laboratory use. Developed under a Small Business Innovation Research (SBIR) contract, the Phase Doppler Particles Analyzer is a non-disruptive, highly accurate laser-based method of determining particle size, number density, trajectory, turbulence and other information about particles passing through a measurement probe volume. The system consists of an optical transmitter and receiver, signal processor and computer with data acquisition and analysis software. A variety of systems are offered for applications including spray characterization for paint, and agricultural and other sprays. The Microsizer, a related product, is used in medical equipment manufacturing and analysis of contained flows. High frequency components and subsystems produced by Millitech Corporation are marketed for both research and commercial use. These systems, which operate in the upper portion of the millimeter wave, resulted from a number of Small Business Innovation Research (SBIR) projects. By developing very high performance mixers and multipliers, the company has advanced the state of the art in sensitive receiver technology. Components are used in receivers and transceivers for monitoring chlorine monoxides, ozone, in plasma characterization and in material properties characterization.

  19. Optical metrology at the Optical Sciences Center: an historical review

    NASA Astrophysics Data System (ADS)

    Creath, Katherine; Parks, Robert E.

    2014-10-01

    The Optical Sciences Center (OSC) begun as a graduate-level applied optics teaching institution to support the US space effort. The making of optics representative of those used in other space programs was deemed essential. This led to the need for optical metrology: at first Hartmann tests, but almost immediately to interferometric tests using the newly invented HeNe laser. Not only were new types of interferometers needed, but the whole infrastructure that went with testing, fringe location methods, aberration removal software and contour map generation to aid the opticians during polishing needed to be developed. Over the last half century more rapid and precise methods of interferogram data reduction, surface roughness measurement, and methods of instrument calibration to separate errors from those in the optic have been pioneered at OSC. Other areas of research included null lens design and the writing of lens design software that led into the design of computer generated holograms for asphere testing. More recently work has been done on the reduction of speckle noise in interferograms, methods to test large convex aspheres, and a return to slope measuring tests to increase the dynamic range of the types of aspheric surfaces amenable to optical testing including free-form surfaces. This paper documents the history of the development of optical testing projects at OSC and highlights the contributions some of the individuals associated with new methods of testing and the infrastructure needed to support the testing. We conclude with comments about the future trends optical metrology.

  20. Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Adam; Mayton, Mark; Rolland, Jannick

    2016-03-29

    Project 1: We have created a 3D optical research and design software platform for simulation and optimization, geared toward asymmetric, folded optical systems and new, enabling freeform surfaces. The software, Eikonal+, targets both institutional researchers and leading optical surface fabricators. With a modular design and the source code available to the development team at the University of Rochester, custom modules can be created for specific research interests and is accelerating the work on freeform optics currently being carried out at the Institute of Optics. With a research-based optical design environment, the fabrication, assembly, and testing industries can anticipate, innovate, andmore » retool for the future of optical systems. Targeted proposals for science and innovation in freeform optics spanning design to fabrication, assembly, and testing can proceed with a level of technical transparency that has been unachievable in this field since the 1960’s, when optics design code was commercialized and became unavailable to the research community for competitive reasons. Project 2: The University of Rochester Laboratory for Laser Energetics (LLE) with personnel from Flint Creek Resources (FCR) collaborated to develop technologies for the reclamation and reuse of cerium oxide based slurries intended for the polishing of optical components. The pilot process was evaluated and modifications were made to improve the collection of spent glass polish, to improve the efficiency and capacity of the recycling equipment, and to expand the customer base. A portable, self-contained system was developed and fabricated to recycle glass polishing compounds where the spent materials are produced.« less

  1. Development of advanced seal verification

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kosten, Susan E.; Abushagur, Mustafa A.

    1992-01-01

    The purpose of this research is to develop a technique to monitor and insure seal integrity with a sensor that has no active elements to burn-out during a long duration activity, such as a leakage test or especially during a mission in space. The original concept proposed is that by implementing fiber optic sensors, changes in the integrity of a seal can be monitored in real time and at no time should the optical fiber sensor fail. The electrical components which provide optical excitation and detection through the fiber are not part of the seal; hence, if these electrical components fail, they can be easily changed without breaking the seal. The optical connections required for the concept to work does present a functional problem to work out. The utility of the optical fiber sensor for seal monitoring should be general enough that the degradation of a seal can be determined before catastrophic failure occurs and appropriate action taken. Two parallel efforts were performed in determining the feasibility of using optical fiber sensors for seal verification. In one study, research on interferometric measurements of the mechanical response of the optical fiber sensors to seal integrity was studied. In a second study, the implementation of the optical fiber to a typical vacuum chamber was implemented and feasibility studies on microbend experiments in the vacuum chamber were performed. Also, an attempt was made to quantify the amount of pressure actually being applied to the optical fiber using finite element analysis software by Algor.

  2. Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: A first principles study

    NASA Astrophysics Data System (ADS)

    Sharma, Deepa; Jaggi, Neena

    2017-07-01

    This paper presents a first principles study on the effect of co-doping on various optical spectra of a zigzag single-walled carbon nanotube (SWCNT). Optical spectra of a pristine SWCNT, SWCNT co-doped with Aluminum (Al) & Phosphorus (P) and another one co-doped with Al, P and Nitrogen (N) have been calculated using density functional theory (DFT).The theory has been implemented using the Cambridge sequential total energy package (CASTEP) code available as a userfriendly module with the software 'Material Studio'. Polarized and unpolarized light as well as light through polycrystalline media have been considered. The dependence of various spectra on the status of incident light presents a clear evidence of anisotropicity in the optical properties. Analysis of the simulated spectra involves calculation and comparison of different optical properties like dielectric function, reflectivity, refractive index, conductivity and loss function for the pristine and co-doped SWCNTs. Noticeable variations are observed in the optical properties on simultaneously doping the SWCNT with Al and P and then further introducing N atom into the structure so that it can be concluded that co-doping (simultaneous doping with different combinations of dopants) can be evolved as a novel and effective tool for tailoring the optical properties of SWCNTs as per the requirements while designing an optical device. It will prove to be highly significant for effective designing of SWCNT based sensitive optical devices for a variety of technological applications.

  3. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism

    PubMed Central

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15–213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer. PMID:22163519

  4. NASA Tech Briefs, October 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Insect-Inspired Optical-Flow Navigation Sensors; Chemical Sensors Based on Optical Ring Resonators; A Broad-Band Phase-Contrast Wave-Front Sensor; Progress in Insect-Inspired Optical Navigation Sensors; Portable Airborne Laser System Measures Forest-Canopy Height; Deployable Wide-Aperture Array Antennas; Faster Evolution of More Multifunctional Logic Circuits; Video-Camera-Based Position-Measuring System; N-Type delta Doping of High-Purity Silicon Imaging Arrays; Avionics System Architecture Tool; Updated Chemical Kinetics and Sensitivity Analysis Code; Predicting Flutter and Forced Response in Turbomachinery; Upgrades of Two Computer Codes for Analysis of Turbomachinery; Program Facilitates CMMI Appraisals; Grid Visualization Tool; Program Computes Sound Pressures at Rocket Launches; Solar-System Ephemeris Toolbox; Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras; Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating; Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts; Making Activated Carbon for Storing Gas; System Regulates the Water Contents of Fuel-Cell Streams; Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig; Modifications of Fabrication of Vibratory Microgyroscopes; Chamber for Growing and Observing Fungi; Electroporation System for Sterilizing Water; Thermoelectric Air/Soil Energy-Harvesting Device; Flexible Metal-Fabric Radiators; Actuated Hybrid Mirror Telescope; Optical Design of an Optical Communications Terminal; Algorithm for Identifying Erroneous Rain-Gauge Readings; Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads; Lightweight Thermal Insulation for a Liquid-Oxygen Tank; Stellar Gyroscope for Determining Attitude of a Spacecraft; and Lifting Mechanism for the Mars Explorer Rover.

  5. Semi-automated sorting using holographic optical tweezers remotely controlled by eye/hand tracking camera

    NASA Astrophysics Data System (ADS)

    Tomori, Zoltan; Keša, Peter; Nikorovič, Matej; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    We proposed the improved control software for the holographic optical tweezers (HOT) proper for simple semi-automated sorting. The controller receives data from both the human interface sensors and the HOT microscope camera and processes them. As a result, the new positions of active laser traps are calculated, packed into the network format and sent to the remote HOT. Using the photo-polymerization technique, we created a sorting container consisting of two parallel horizontal walls where one wall contains "gates" representing a place where the trapped particle enters into the container. The positions of particles and gates are obtained by image analysis technique which can be exploited to achieve the higher level of automation. Sorting is documented on computer game simulation and the real experiment.

  6. High-Power Microwave Transmission and Mode Conversion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less

  7. LCoS-SLM technology based on Digital Electro-optics Platform and using in dynamic optics for application development

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Wei; Wang, Chen; Lyu, Bo-Han; Chu, Chen-Hsien

    2017-08-01

    Digital Electro-optics Platform is the main concept of Jasper Display Corp. (JDC) to develop various applications. These applications are based on our X-on-Silicon technologies, for example, X-on-Silicon technologies could be used on Liquid Crystal on Silicon (LCoS), Micro Light-Emitting Diode on Silicon (μLEDoS), Organic Light-Emitting Diode on Silicon (OLEDoS), and Cell on Silicon (CELLoS), etc. LCoS technology is applied to Spatial Light Modulator (SLM), Dynamic Optics, Wavelength Selective Switch (WSS), Holographic Display, Microscopy, Bio-tech, 3D Printing and Adaptive Optics, etc. In addition, μLEDoS technology is applied to Augmented Reality (AR), Head Up Display (HUD), Head-mounted Display (HMD), and Wearable Devices. Liquid Crystal on Silicon - Spatial Light Modulator (LCoSSLM) based on JDC's On-Silicon technology for both amplitude and phase modulation, have an expanding role in several optical areas where light control on a pixel-by-pixel basis is critical for optimum system performance. Combination of the advantage of hardware and software, we can establish a "dynamic optics" for the above applications or more. Moreover, through the software operation, we can control the light more flexible and easily as programmable light processor.

  8. VETA-I x ray test analysis

    NASA Technical Reports Server (NTRS)

    Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

    1992-01-01

    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

  9. Towards noncontact skin melanoma selection by multispectral imaging analysis.

    PubMed

    Kuzmina, Ilona; Diebele, Ilze; Jakovels, Dainis; Spigulis, Janis; Valeine, Lauma; Kapostinsh, Janis; Berzina, Anna

    2011-06-01

    A clinical trial comprising 334 pigmented and vascular lesions has been performed in three Riga clinics by means of multispectral imaging analysis. The imaging system Nuance 2.4 (CRi) and self-developed software for mapping of the main skin chromophores were used. Specific features were observed and analyzed for malignant skin melanomas: notably higher absorbance (especially as the difference of optical density relative to the healthy skin), uneven chromophore distribution over the lesion area, and the possibility to select the "melanoma areas" in the correlation graphs of chromophores. The obtained results indicate clinical potential of this technology for noncontact selection of melanoma from other pigmented and vascular skin lesions.

  10. Paint and Shoot

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through an initial SBIR contract with Langley Research Center, Stress Photonics, Inc. was able to successfully market their thermal strain measurement device, known as the Delta Therm 1000. The company was able to further its research on structural integrity analysis by signing another contract with Langley, this time a STTR contract, to develop its polariscope stress technology. Their commercial polariscope, the GFP 1000, involves a single rotating optical element and a digital camera for full-field image acquisition. The digital camera allows automated data to be acquired quickly and efficiently. Software analysis presents the data in an easy to interpret image format, depicting the magnitude of the shear strains and the directions of the principal strains.

  11. March of the Starbugs: Configuring Fiber-bearing Robots on the UK-Schmidt Optical Plane

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.; Vuong, M.; Satorre, C.; Hong, S. E.; Shortridge, K.; Goodwin, M.; Kuehn, K.

    2015-09-01

    The TAIPAN instrument, currently being developed for the Australian Astronomical Observatory's UK Schmidt telescope at Siding Spring Observatory, makes use of the AAO's Starbug technology to deploy 150 science fibers to target positions on the optical plane. This paper describes the software system for controlling and deploying the fiber-bearing Starbug robots. The TAIPAN software is responsible for allocating each Starbug to its next target position based on its current position and the distribution of targets, finding a collision-free path for each Starbug, and then simultaneously controlling the Starbug hardware in a closed loop, with a metrology camera used to determine the position of each Starbug in the field during reconfiguration. The software is written in C++ and Java and employs a DRAMA middleware layer (Farrell et al. 1995).

  12. Nasendoscopy: an analysis of measurement uncertainties.

    PubMed

    Gilleard, Onur; Sommerlad, Brian; Sell, Debbie; Ghanem, Ali; Birch, Malcolm

    2013-05-01

    Objective : The purpose of this study was to analyze the optical characteristics of two different nasendoscopes used to assess velopharyngeal insufficiency and to quantify the measurement uncertainties that will occur in a typical set of clinical data. Design : The magnification and barrel distortion associated with nasendoscopy was estimated by using computer software to analyze the apparent dimensions of a spatially calibrated test object at varying object-lens distances. In addition, a method of semiquantitative analysis of velopharyngeal closure using nasendoscopy and computer software is described. To calculate the reliability of this method, 10 nasendoscopy examinations were analyzed two times by three separate operators. The measure of intraoperator and interoperator agreement was evaluated using Pearson's r correlation coefficient. Results : Over an object lens distance of 9 mm, magnification caused the visualized dimensions of the test object to increase by 80%. In addition, dimensions of objects visualized in the far-peripheral field of the nasendoscopic examinations appeared approximately 40% smaller than those visualized in the central field. Using computer software to analyze velopharyngeal closure, the mean correlation coefficient for intrarater reliability was .94 and for interrater reliability was .90. Conclusion : Using a custom-designed apparatus, the effect object-lens distance has on the magnification of nasendoscopic images has been quantified. Barrel distortion has also been quantified and was found to be independent of object-lens distance. Using computer software to analyze clinical images, the intraoperator and interoperator correlation appears to show that ratio-metric measurements are reliable.

  13. Effect of Software Version on the Accuracy of an Intraoral Scanning Device.

    PubMed

    Haddadi, Yasser; Bahrami, Golnosh; Isidor, Flemming

    2018-04-06

    To investigate the impact of software version on the accuracy of an intraoral scanning device. A master tooth was scanned with a high-precision optical scanner and then 10 times with a CEREC Omnicam scanner with software versions 4.4.0 and 4.4.4. Discrepancies were measured using quality control software. Mean deviation for 4.4.0 was 36.2 ± 35 μm and for 4.4.4 was 20.7 ± 14.2 μm (P ≤ .001). Software version has a significant impact on the accuracy of an intraoral scanner. It is important that researchers also publish the software version of scanners when publishing their findings.

  14. PPM Receiver Implemented in Software

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A computer program has been written as a tool for developing optical pulse-position- modulation (PPM) receivers in which photodetector outputs are fed to analog-to-digital converters (ADCs) and all subsequent signal processing is performed digitally. The program can be used, for example, to simulate an all-digital version of the PPM receiver described in Parallel Processing of Broad-Band PPM Signals (NPO-40711), which appears elsewhere in this issue of NASA Tech Briefs. The program can also be translated into a design for digital PPM receiver hardware. The most notable innovation embodied in the software and the underlying PPM-reception concept is a digital processing subsystem that performs synchronization of PPM time slots, even though the digital processing is, itself, asynchronous in the sense that no attempt is made to synchronize it with the incoming optical signal a priori and there is no feedback to analog signal processing subsystems or ADCs. Functions performed by the software receiver include time-slot synchronization, symbol synchronization, coding preprocessing, and diagnostic functions. The program is written in the MATLAB and Simulink software system. The software receiver is highly parameterized and, hence, programmable: for example, slot- and symbol-synchronization filters have programmable bandwidths.

  15. Performance of mid infrared spectroscopy in skin cancer cell type identification

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2017-02-01

    Marker free optical spectroscopy is a powerful tool for the rapid inspection of pathologically suspicious skin lesions and the non-invasive detection of early skin tumors. This goal can be reached by the combination of signal localization and the spectroscopical detection of chemical cell signatures. We here present the development and application of mid infrared spectroscopy (midIR) for the analysis of skin tumor cell types and three dimensional tissue phantoms towards the application of midIR spectroscopy for fast and reliable skin diagnostics. We developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional skin cancer phantoms. The cell systems were characterized with different systems in the midIR range up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially melanoma cells. Special attention and algorithm training was required for closely related mesenchymal cell types as dedifferentiated melanoma cells and fibroblasts. Proof of concept experiments with mixtures of in vivo fluorescence labelled skin cell types allowed the test of the new algorithms performance for the identification of specific cell types. The intense training of the software systems with various samples resulted in a increased sensitivity and specificity of the combined midIR and software system. These data highlight the potential of midIR spectroscopy as sensitive and specific future optical biopsy technology.

  16. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography.

    PubMed

    Grewal, Dilraj S; Tanna, Angelo P

    2013-03-01

    With the rapid adoption of spectral domain optical coherence tomography (SDOCT) in clinical practice and the recent advances in software technology, there is a need for a review of the literature on glaucoma detection and progression analysis algorithms designed for the commercially available instruments. Peripapillary retinal nerve fiber layer (RNFL) thickness and macular thickness, including segmental macular thickness calculation algorithms, have been demonstrated to be repeatable and reproducible, and have a high degree of diagnostic sensitivity and specificity in discriminating between healthy and glaucomatous eyes across the glaucoma continuum. Newer software capabilities such as glaucoma progression detection algorithms provide an objective analysis of longitudinally obtained structural data that enhances our ability to detect glaucomatous progression. RNFL measurements obtained with SDOCT appear more sensitive than time domain OCT (TDOCT) for glaucoma progression detection; however, agreement with the assessments of visual field progression is poor. Over the last few years, several studies have been performed to assess the diagnostic performance of SDOCT structural imaging and its validity in assessing glaucoma progression. Most evidence suggests that SDOCT performs similarly to TDOCT for glaucoma diagnosis; however, SDOCT may be superior for the detection of early stage disease. With respect to progression detection, SDOCT represents an important technological advance because of its improved resolution and repeatability. Advancements in RNFL thickness quantification, segmental macular thickness calculation and progression detection algorithms, when used correctly, may help to improve our ability to diagnose and manage glaucoma.

  17. Retinal health information and notification system (RHINO)

    NASA Astrophysics Data System (ADS)

    Dashtbozorg, Behdad; Zhang, Jiong; Abbasi-Sureshjani, Samaneh; Huang, Fan; ter Haar Romeny, Bart M.

    2017-03-01

    The retinal vasculature is the only part of the blood circulation system that can be observed non-invasively using fundus cameras. Changes in the dynamic properties of retinal blood vessels are associated with many systemic and vascular diseases, such as hypertension, coronary heart disease and diabetes. The assessment of the characteristics of the retinal vascular network provides important information for an early diagnosis and prognosis of many systemic and vascular diseases. The manual analysis of the retinal vessels and measurement of quantitative biomarkers in large-scale screening programs is a tedious task, time-consuming and costly. This paper describes a reliable, automated, and efficient retinal health information and notification system (acronym RHINO) which can extract a wealth of geometric biomarkers in large volumes of fundus images. The fully automated software presented in this paper includes vessel enhancement and segmentation, artery/vein classification, optic disc, fovea, and vessel junction detection, and bifurcation/crossing discrimination. Pipelining these tools allows the assessment of several quantitative vascular biomarkers: width, curvature, bifurcation geometry features and fractal dimension. The brain-inspired algorithms outperform most of the state-of-the-art techniques. Moreover, several annotation tools are implemented in RHINO for the manual labeling of arteries and veins, marking optic disc and fovea, and delineating vessel centerlines. The validation phase is ongoing and the software is currently being used for the analysis of retinal images from the Maastricht study (the Netherlands) which includes over 10,000 subjects (healthy and diabetic) with a broad spectrum of clinical measurements

  18. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  19. Integrated optical 3D digital imaging based on DSP scheme

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  20. Automatic landslide detection from LiDAR DTM derivatives by geographic-object-based image analysis based on open-source software

    NASA Astrophysics Data System (ADS)

    Knevels, Raphael; Leopold, Philip; Petschko, Helene

    2017-04-01

    With high-resolution airborne Light Detection and Ranging (LiDAR) data more commonly available, many studies have been performed to facilitate the detailed information on the earth surface and to analyse its limitation. Specifically in the field of natural hazards, digital terrain models (DTM) have been used to map hazardous processes such as landslides mainly by visual interpretation of LiDAR DTM derivatives. However, new approaches are striving towards automatic detection of landslides to speed up the process of generating landslide inventories. These studies usually use a combination of optical imagery and terrain data, and are designed in commercial software packages such as ESRI ArcGIS, Definiens eCognition, or MathWorks MATLAB. The objective of this study was to investigate the potential of open-source software for automatic landslide detection based only on high-resolution LiDAR DTM derivatives in a study area within the federal state of Burgenland, Austria. The study area is very prone to landslides which have been mapped with different methodologies in recent years. The free development environment R was used to integrate open-source geographic information system (GIS) software, such as SAGA (System for Automated Geoscientific Analyses), GRASS (Geographic Resources Analysis Support System), or TauDEM (Terrain Analysis Using Digital Elevation Models). The implemented geographic-object-based image analysis (GEOBIA) consisted of (1) derivation of land surface parameters, such as slope, surface roughness, curvature, or flow direction, (2) finding optimal scale parameter by the use of an objective function, (3) multi-scale segmentation, (4) classification of landslide parts (main scarp, body, flanks) by k-mean thresholding, (5) assessment of the classification performance using a pre-existing landslide inventory, and (6) post-processing analysis for the further use in landslide inventories. The results of the developed open-source approach demonstrated good success rates to objectively detect landslides in high-resolution topography data by GEOBIA.

  1. Space Imagery Enhancement Investigations; Software for Processing Middle Atmosphere Data

    DTIC Science & Technology

    2011-12-19

    SUPPLEMENTARY NOTES 14. ABSTRACT This report summarizes work related to optical superresolution for the ideal incoherent 1D spread function...optical superresolution , incoherent image eigensystem, image registration, multi-frame image reconstruction, deconvolution 16. SECURITY... Superresolution -Related Investigations ............................................................................. 1 2.2.1 Eigensystem Formulations

  2. Teach Your Computer to Read: Scanners and Optical Character Recognition.

    ERIC Educational Resources Information Center

    Marsden, Jim

    1993-01-01

    Desktop scanners can be used with a software technology called optical character recognition (OCR) to convert the text on virtually any paper document into an electronic form. OCR offers educators new flexibility in incorporating text into tests, lesson plans, and other materials. (MLF)

  3. Correction of the wavefront using the irradiance transport equation

    NASA Astrophysics Data System (ADS)

    García, M.; Granados, F.; Cornejo, A.

    2008-07-01

    The correction of the wavefront in optical systems implies the use of wavefront sensors, software, and auxiliary optical systems. We propose evaluated the wavefront using the fact that the wavefront and its intensity are related in the mathematical expression the irradiance transport equation (ITE)

  4. The effect of the menstrual cycle on the optic nerve head analysis of migrainous women.

    PubMed

    Yucel, Iclal; Akar, Munire; Durukan, A; Akar, Yusuf; Taskin, Omur; Dora, Babur; Yilmaz, Nurgul

    2005-03-01

    To determine the effect of the menstrual cycle on the optic nerve head topographic analysis of normally menstruating migrainous women. Randomly selected one eye of 44 migrainous and 49 healthy control women with regular menstrual cycles were included in the study. All subjects underwent complete ocular examination. Optic nervehead topographic analysis were performed using a confocal scanning laser ophthalmoscope, HRT II (Heidelberg Retinal Tomograph II, software version 1.6;Heidelberg Engineering, Heidelberg, Germany). They were repeated for two times during the menstrual cycle: in follicular phase (7th to 10th day of the cycle) and in the luteal phase (days 3 to 4 before the menstrual bleeding). Serum estradiol, progesterone, and luteinizing hormone measurements were repeated at each menstrual phase. The mean age of migrainous and control subjects were 31.5 + 5.1 years and 33.4 +/- 3.7 years, respectively (P > 0.05). Their mean disc areas were 2.26 +/- 0.46 mm(2) and 1.95 +/- 0.39 mm(2), respectively(P < 0.05). Control subjects did not demonstrate any difference in the disc topography (P > 0.05). The parameter rim volume decreased, while the parameters cup volume and cup shape measure increased significantly in the luteal phase of the migrainous women (all P values <0.05). Mean intraocular pressure of the migrainous women decreased significantly in luteal phase (P < 0.05). Significant differences exist in the optic rim and cup parameters during the menstrual cycle of the migrainous women. Further clinical trials on ocular blood flow changes during the menstrual cycle of the migrainous women may highlight the role of sex steroids in the optic nerve head of the migrainous women.

  5. Fiber optic interferometry for industrial process monitoring and control applications

    NASA Astrophysics Data System (ADS)

    Marcus, Michael A.

    2002-02-01

    Over the past few years we have been developing applications for a high-resolution (sub-micron accuracy) fiber optic coupled dual Michelson interferometer-based instrument. It is being utilized in a variety of applications including monitoring liquid layer thickness uniformity on coating hoppers, film base thickness uniformity measurement, digital camera focus assessment, optical cell path length assessment and imager and wafer surface profile mapping. The instrument includes both coherent and non-coherent light sources, custom application dependent optical probes and sample interfaces, a Michelson interferometer, custom electronics, a Pentium-based PC with data acquisition cards and LabWindows CVI or LabView based application specific software. This paper describes the development evolution of this instrument platform and applications highlighting robust instrument design, hardware, software, and user interfaces development. The talk concludes with a discussion of a new high-speed instrument configuration, which can be utilized for high speed surface profiling and as an on-line web thickness gauge.

  6. Software-based evaluation of toric IOL orientation in a multicenter clinical study.

    PubMed

    Kasthurirangan, Sanjeev; Feuchter, Lucas; Smith, Pamela; Nixon, Donald

    2014-12-01

    To evaluate the rotational stability of a new one-piece hydrophobic acrylic toric intraocular lens (IOL) using a custom-developed software for analysis of slit-lamp photographs. In a prospective, multicenter study, 174 eyes were implanted with the TECNIS Toric IOL (Abbott Medical Optics, Inc., Santa Ana, CA). A custom-developed software was used to analyze high-resolution slit-lamp photographs of 156 eyes taken at day 1 (baseline) and 1, 3, and 6 months postoperatively. The software uses iris and sclera landmarks to align the baseline image and later images for comparison. Validation of software was performed through repeated analyses of protractor images rotated from 0.1° to 10.0° and randomly selected photographs of 20 eyes. Software validation showed precision (repeatability plus reproducibility variation) of 0.02° using protractor images and 2.22° using slit-lamp photographs. Good quality slit-lamp images and clear landmarks were necessary for precise measurements. At 6 months, 94.2% of eyes had 5° or less change in IOL orientation versus baseline; only 2 eyes (1.4%) had axis shift greater than 30°. Most eyes were within 5° or less of rotation between 1 and 3 months (92.9%) and 3 and 6 months (94.1%). Mean absolute axis change (± standard deviation) from 1 day to 6 months was 2.70° ± 5.51°. The new custom software was precise and quick in analyzing slit-lamp photographs to determine postoperative toric IOL rotation. Copyright 2014, SLACK Incorporated.

  7. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Steven

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robustmore » principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.« less

  8. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST): V. Operational Alignment Updates

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Ha, Kong Q.; Shiri, Ron; Smith, J. Scott; Mosier, Gary; Muheim, Danniella

    2008-01-01

    This paper is part five of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory, and the fourth introduced the software toolkits used to perform much of the optical analysis for JWST. The work here models observatory operations by simulating line-of-sight image motion and alignment drifts over a two-week period. Alignment updates are then simulated using wavefront sensing and control processes to calculate and perform the corrections. A single model environment in Matlab is used for evaluating the predicted performance of the observatory during these operations.

  9. Optical Coherence Tomography as a Biomarker for Diagnosis, Progression, and Prognosis of Neurodegenerative Diseases

    PubMed Central

    Otin, Sofia; Fuertes, Maria I.; Vilades, Elisa; Gracia, Hector; Ara, Jose R.; Alarcia, Raquel; Polo, Vicente; Larrosa, Jose M.; Pablo, Luis E.

    2016-01-01

    Neurodegenerative diseases present a current challenge for accurate diagnosis and for providing precise prognostic information. Developing imaging biomarkers for multiple sclerosis (MS), Parkinson disease (PD), and Alzheimer's disease (AD) will improve the clinical management of these patients and may be useful for monitoring treatment effectiveness. Recent research using optical coherence tomography (OCT) has demonstrated that parameters provided by this technology may be used as potential biomarkers for MS, PD, and AD. Retinal thinning has been observed in these patients and new segmentation software for the analysis of the different retinal layers may provide accurate information on disease progression and prognosis. In this review we analyze the application of retinal evaluation using OCT technology to provide better understanding of the possible role of the retinal layers thickness as biomarker for the detection of these neurodegenerative pathologies. Current OCT analysis of the retinal nerve fiber layer and, specially, the ganglion cell layer thickness may be considered as a good biomarker for disease diagnosis, severity, and progression. PMID:27840739

  10. A photonic circuit for complementary frequency shifting, in-phase quadrature/single sideband modulation and frequency multiplication: analysis and integration feasibility

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hu, Jianqi; Nikkhah, Hamdam; Hall, Trevor

    2017-08-01

    A novel photonic integrated circuit architecture for implementing orthogonal frequency division multiplexing by means of photonic generation of phase-correlated sub-carriers is proposed. The circuit can also be used for implementing complex modulation, frequency up-conversion of the electrical signal to the optical domain and frequency multiplication. The principles of operation of the circuit are expounded using transmission matrices and the predictions of the analysis are verified by computer simulation using an industry-standard software tool. Non-ideal scenarios that may affect the correct function of the circuit are taken into consideration and quantified. The discussion of integration feasibility is illustrated by a photonic integrated circuit that has been fabricated using 'library' components and which features most of the elements of the proposed circuit architecture. The circuit is found to be practical and may be fabricated in any material platform that offers a linear electro-optic modulator such as organic or ferroelectric thin films hybridized with silicon photonics.

  11. Measuring solar induced chlorophyll fluorescence (SIF) in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Kornfeld, A.; Stutz, J.; Berry, J. A.

    2016-12-01

    Measurement of solar induced chlorophyll fluorescence (SIF) has, in our hands, been fraught with missteps and puzzling problems. Here we describe lessons we have learned and the resulting novel system recently installed in the Amazon rainforest near Manaus, Brazil. The system is designed to measure light from 740 - 780 nm, enabling us to compare SIF computed from Fraunhofer lines in an optically transparent band of the atmosphere (745 - 759 nm) with SIF computed using the telluric O2A band (760 - 770 nm). Fraunhofer line analysis requires high optical resolution (better than 0.2 nm) to detect the relatively narrow lines, but we discovered that fiber-optic diffraction-grating spectrometers are sensitive to very small inhomogeneities in the lighting. Errors resulting from this autocorrelated but random noise were similar in magnitude to the SIF signal itself. Optical diffusers reduce this problem, leading to our final design: a sealed cylinder, dubbed Rotaprism, in which a rotatable prism selects whether light from upward- or downward-looking windows enters an axially-placed optical fiber. Cosine-correcting opal glass covering the windows not only solves the noise issue but also makes the measurements correspond to photon flux. Rotaprism also maximizes the amount of light reaching the spectrometer - maximizing the signal:noise ratio - by avoiding the need for lossy optical switches and fiber splitters. Rotaprism is driven by a pneumatic actuator that is controlled by electronic valves attached to a pressurized N2 source. The gas exhausts into the temperature-controlled spectrometer enclosure to help purge the optics. Finally, custom software provides fault-tolerant control and data acquisition, ensuring that measurements continue with little or no intervention at the remote field site despite unreliable power. Analysis of initial data demonstrates the advantage of Fraunhofer line SIF analysis: due to the atmosphere transparency in this band, the results are more robust in the face of changeable cloud cover than is the O2A band analysis. We expect to continue collecting data for several seasons in order to investigate how inter- and intra-annual changes in SIF correlate with other changes in plant ecophysiology.

  12. Predictive spectroscopy and chemical imaging based on novel optical systems

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew Paul

    1998-10-01

    This thesis describes two futuristic optical systems designed to surpass contemporary spectroscopic methods for predictive spectroscopy and chemical imaging. These systems are advantageous to current techniques in a number of ways including lower cost, enhanced portability, shorter analysis time, and improved S/N. First, a novel optical approach to predicting chemical and physical properties based on principal component analysis (PCA) is proposed and evaluated. A regression vector produced by PCA is designed into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog detector signal directly proportional to the chemical/physical property for which the regression vector was designed. Second, a novel optical system is described which takes a single-shot approach to chemical imaging with high spectroscopic resolution using a dimension-reduction fiber-optic array. Images are focused onto a two- dimensional matrix of optical fibers which are drawn into a linear distal array with specific ordering. The distal end is imaged with a spectrograph equipped with an ICCD camera for spectral analysis. Software is used to extract the spatial/spectral information contained in the ICCD images and deconvolute them into wave length-specific reconstructed images or position-specific spectra which span a multi-wavelength space. This thesis includes a description of the fabrication of two dimension-reduction arrays as well as an evaluation of the system for spatial and spectral resolution, throughput, image brightness, resolving power, depth of focus, and channel cross-talk. PCA is performed on the images by treating rows of the ICCD images as spectra and plotting the scores of each PC as a function of reconstruction position. In addition, iterative target transformation factor analysis (ITTFA) is performed on the spectroscopic images to generate ``true'' chemical maps of samples. Univariate zero-order images, univariate first-order spectroscopic images, bivariate first-order spectroscopic images, and multivariate first-order spectroscopic images of the temporal development of laser-induced plumes are presented and interpreted. Reconstructed chemical images generated using bivariate and trivariate wavelength techniques, bimodal and trimodal PCA methods, and bimodal and trimodal ITTFA approaches are also included.

  13. EVALUATION OF PATCHY ATROPHY SECONDARY TO HIGH MYOPIA BY SEMIAUTOMATED SOFTWARE FOR FUNDUS AUTOFLUORESCENCE ANALYSIS.

    PubMed

    Miere, Alexandra; Capuano, Vittorio; Serra, Rita; Jung, Camille; Souied, Eric; Querques, Giuseppe

    2017-05-31

    To evaluate the progression of patchy atrophy in high myopia using semiautomated software for fundus autofluorescence (FAF) analysis. The medical records and multimodal imaging of 21 consecutive highly myopic patients with macular chorioretinal patchy atrophy (PA) were retrospectively analyzed. All patients underwent repeated fundus autofluorescence and spectral domain optical coherence tomography over at least 12 months. Color fundus photography was also performed in a subset of patients. Total atrophy area was measured on FAF images using Region Finder semiautomated software embedded in Spectralis (Heidelberg Engineering, Heidelberg, Germany) at baseline and during follow-up visits. Region Finder was compared with manually measured PA on FAF images. Twenty-two eyes of 21 patients (14 women, 7 men; mean age 62.8 + 13.0 years, range 32-84 years) were included. Mean PA area using Region Finder was 2.77 ± 2.91 SD mm at baseline, 3.12 ± 2.68 mm at Month 6, 3.43 ± 2.68 mm at Month 12, and 3.73 ± 2.74 mm at Month 18 (overall P < 0.005); this accounts for PA progression rate of 0.821 mm/year. Atrophy progression was significantly greater among eyes with larger PA compared with smaller baseline PA at Months 6, 12, and 18. There was no statistically significant difference between semiautomated Region Finder PA area and manually measured PA area on FAF images. Fundus autofluorescence analysis by Region Finder semiautomated software provides accurate measurements of lesion area and allows us to quantify the progression of PA in high myopia. In our series, PA enlarged significantly over at least 12 months, and its progression seemed to be related to the lesion size at baseline.

  14. A measuring tool for tree-rings analysis

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg; Kanatjev, Alexander; Kasatkina, Elena

    2013-04-01

    A special tool has been created for the annual tree-ring widths measurement and analysis. It consists of professional scanner, computer system and software. This created complex in many aspects does not yield the similar systems (LINTAB, WinDENDRO), but in comparison to manual measurement systems, it offers a number of advantages: productivity gain, possibility of archiving the results of the measurements at any stage of the processing, operator comfort. It has been developed a new software, allowing processing of samples of different types (cores, saw cuts), including those which is difficult to process, having got a complex wood structure (inhomogeneity of growing in different directions, missed, light and false rings etc.). This software can analyze pictures made with optical scanners, analog or digital cameras. The complex software program was created on programming language C++, being compatible with modern operating systems like Windows X. Annual ring widths are measured along paths traced interactively. These paths can have any orientation and can be created so that ring widths are measured perpendicular to ring boundaries. A graphic of ring-widths in function of the year is displayed on a screen during the analysis and it can be used for visual and numerical cross-dating and comparison with other series or master-chronologies. Ring widths are saved to the text files in a special format, and those files are converted to the format accepted for data conservation in the International Tree-Ring Data Bank. The created complex is universal in application that will allow its use for decision of the different problems in biology and ecology. With help of this complex it has been reconstructed a long-term juniper (1328-2004) and pine (1445-2005) tree-ring chronologies on the base of samples collected at Kola Peninsula (northwestern Russia).

  15. Soft optics in intelligent optical networks

    NASA Astrophysics Data System (ADS)

    Shue, Chikong; Cao, Yang

    2001-10-01

    In addition to the recent advances in Hard-optics that pushes the optical transmission speed, distance, wave density and optical switching capacity, Soft-optics provides the necessary intelligence and control software that reduces operational costs, increase efficiency, and enhances revenue generating services by automating optimal optical circuit placement and restoration, and enabling value-added new services like Optical VPN. This paper describes the advances in 1) Overall Hard-optics and Soft-optics 2) Layered hierarchy of Soft-optics 3) Component of Soft-optics, including hard-optics drivers, Management Soft-optics, Routing Soft-optics and System Soft-optics 4) Key component of Routing and System Soft-optics, namely optical routing and signaling (including UNI/NNI and GMPLS signaling). In summary, the soft-optics on a new generation of OXC's enables Intelligent Optical Networks to provide just-in-time service delivery and fast restoration, and real-time capacity management that eliminates stranded bandwidth. It reduces operational costs and provides new revenue opportunities.

  16. ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror

    NASA Astrophysics Data System (ADS)

    Yang, De-Hua; Shao, Liang

    2008-09-01

    The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.

  17. Interactive Fringe Analysis System: Applications To Moire Contourogram And Interferogram

    NASA Astrophysics Data System (ADS)

    Yatagai, T.; Idesawa, M.; Yamaashi, Y.; Suzuki, M.

    1982-10-01

    A general purpose fringe pattern processing facility was developed in order to analyze moire photographs used for scoliosis diagnoses and interferometric patterns in optical shops. A TV camera reads a fringe profile to be analyzed, and peaks of the fringe are detected by a microcomputer. Fringe peak correction and fringe order determination are performed with the man-machine interactive software developed. A light pen facility and an image digitizer are employed for interaction. In the case of two-dimensional fringe analysis, we analyze independently analysis lines parallel to each other and a reference line perpendicular to the parallel analysis lines. Fringe orders of parallel analysis lines are uniquely determined by using the fringe order of the reference line. Some results of analysis of moire contourograms, interferometric testing of silicon wafers, and holographic measurement of thermal deformation are presented.

  18. Combinatorial preparation and characterization of thin-film multilayer electro-optical devices.

    PubMed

    Neuber, Christian; Bäte, Markus; Thelakkat, Mukundan; Schmidt, Hans-Werner; Hänsel, Helmut; Zettl, Heiko; Krausch, Georg

    2007-07-01

    In this article we present a setup for the combinatorial vapor deposition of thin-film multilayer devices as well as methods for the fast and efficient analytic screening of the libraries obtained. The preparation setup is based on a commercially available evaporation chamber equipped with various evaporation sources for both organic and metallic materials. The combinatorial approach is realized by the combination of a rotation stage for the substrate, a five-mask sampler, and an additional mask whose position can be deliberately varied along one axis during the evaporation process. The latter is used to evaporate linear as well as step gradients by continuous or stepwise movement of a shutter mask. The mask sampler allows to define the sectors of the library and to evaporate more complex structures, e.g., an electrode layout. Finally, the simultaneous evaporation of two or more materials enables us to produce layers of varying composition ratio in general and doped materials, in particular. For the control of the evaporation process we have developed an automation software, which is particularly helpful for complex library designs and which grants excellent repeatability of experiments. Efficient and fast characterization of the obtained libraries is realized by (i) a purely optical setup and (ii) an electro-optical setup. (i) The UV/vis reader FLASHScan 530 permits to map out the UV/vis absorbance or fluorescence of the whole library. The UV/vis absorbance is primarily used to determine layer thicknesses and to confirm thickness uniformity across larger regions. The fluorescence measurements are used to determine the composition of layers containing fluorescent dyes. (ii) For a detailed short- and long-term electro-optical analysis we have developed an automated measurement system, which allows the characterization of 8x8 optoelectronic devices and to study their degradation behavior. Both solar cells and organic light-emitting diodes can be tested. Finally, we have developed a data analysis software to extract characteristic values from the huge amount of data and with this facilitate the finding of systematic dependencies.

  19. Digital optical correlator x-ray telescope alignment monitoring system

    NASA Astrophysics Data System (ADS)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  20. HelioScan: a software framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and extendibility.

    PubMed

    Langer, Dominik; van 't Hoff, Marcel; Keller, Andreas J; Nagaraja, Chetan; Pfäffli, Oliver A; Göldi, Maurice; Kasper, Hansjörg; Helmchen, Fritjof

    2013-04-30

    Intravital microscopy such as in vivo imaging of brain dynamics is often performed with custom-built microscope setups controlled by custom-written software to meet specific requirements. Continuous technological advancement in the field has created a need for new control software that is flexible enough to support the biological researcher with innovative imaging techniques and provide the developer with a solid platform for quickly and easily implementing new extensions. Here, we introduce HelioScan, a software package written in LabVIEW, as a platform serving this dual role. HelioScan is designed as a collection of components that can be flexibly assembled into microscope control software tailored to the particular hardware and functionality requirements. Moreover, HelioScan provides a software framework, within which new functionality can be implemented in a quick and structured manner. A specific HelioScan application assembles at run-time from individual software components, based on user-definable configuration files. Due to its component-based architecture, HelioScan can exploit synergies of multiple developers working in parallel on different components in a community effort. We exemplify the capabilities and versatility of HelioScan by demonstrating several in vivo brain imaging modes, including camera-based intrinsic optical signal imaging for functional mapping of cortical areas, standard two-photon laser-scanning microscopy using galvanometric mirrors, and high-speed in vivo two-photon calcium imaging using either acousto-optic deflectors or a resonant scanner. We recommend HelioScan as a convenient software framework for the in vivo imaging community. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  2. Interactive Retinal Blood Flow Analysis of the Macular Region

    PubMed Central

    Tian, Jing; Somfai, Gábor Márk; Campagnoli, Thalmon R.; Smiddy, William E.; Debuc, Delia Cabrera

    2015-01-01

    The study of retinal hemodynamics plays an important role to understand the onset and progression of diabetic retinopathy which is a leading cause of blindness in American adults. In this work, we developed an interactive retinal analysis tool to quantitatively measure the blood flow velocity (BFV) and blood flow rate (BFR) in the macular region using the Retinal Function Imager (RFI-3005, Optical Imaging, Rehovot, Israel). By employing a high definition stroboscopic fundus camera, the RFI device is able to assess retinal blood flow characteristics in vivo even in the capillaries. However, the measurements of BFV using a user-guided vessel segmentation tool may induce significant inter-observer differences and BFR is not provided in the built-in software. In this work, we have developed an interactive tool to assess the retinal BFV as well as BFR in the macular region. Optical coherence tomography (OCT) data from commercially available devices were registered with the RFI image to locate the fovea accurately. The boundaries of the vessels were delineated on a motion contrast enhanced image and BFV was computed by maximizing the cross-correlation of pixel intensities in a ratio video. Furthermore, we were able to calculate the BFR in absolute values (μl/s) which other currently available devices targeting the retinal microcirculation are not yet capable of. Experiments were conducted on 122 vessels from 5 healthy and 5 mild non-proliferative diabetic retinopathy (NPDR) subjects. The Pearson's correlation of the vessel diameter measurements between our method and manual labeling on 40 vessels was 0.984. The intraclass correlation (ICC) of BFV between our proposed method and built-in software were 0.924 and 0.830 for vessels from healthy and NPDR subjects, respectively. The coefficient of variation between repeated sessions was reduced significantly from 22.5% in the RFI built-in software to 15.9% in our proposed method (p<0.001). PMID:26569349

  3. NASA Tech Briefs, October 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester; Flight Test of an Intelligent Flight-Control System; Slat Heater Boxes for Thermal Vacuum Testing; System for Testing Thermal Insulation of Pipes; Electrical-Impedance-Based Ice-Thickness Gauges; Simulation System for Training in Laparoscopic Surgery; Flasher Powered by Photovoltaic Cells and Ultracapacitors; Improved Autoassociative Neural Networks; Toroidal-Core Microinductors Biased by Permanent Magnets; Using Correlated Photons to Suppress Background Noise; Atmospheric-Fade-Tolerant Tracking and Pointing in Wireless Optical Communication; Curved Focal-Plane Arrays Using Back-Illuminated High-Purity Photodetectors; Software for Displaying Data from Planetary Rovers; Software for Refining or Coarsening Computational Grids; Software for Diagnosis of Multiple Coordinated Spacecraft; Software Helps Retrieve Information Relevant to the User; Software for Simulating a Complex Robot; Software for Planning Scientific Activities on Mars; Software for Training in Pre-College Mathematics; Switching and Rectification in Carbon-Nanotube Junctions; Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers; Environmentally Safer, Less Toxic Fire-Extinguishing Agents; Multiaxial Temperature- and Time-Dependent Failure Model; Cloverleaf Vibratory Microgyroscope with Integrated Post; Single-Vector Calibration of Wind-Tunnel Force Balances; Microgyroscope with Vibrating Post as Rotation Transducer; Continuous Tuning and Calibration of Vibratory Gyroscopes; Compact, Pneumatically Actuated Filter Shuttle; Improved Bearingless Switched-Reluctance Motor; Fluorescent Quantum Dots for Biological Labeling; Growing Three-Dimensional Corneal Tissue in a Bioreactor; Scanning Tunneling Optical Resonance Microscopy; The Micro-Arcsecond Metrology Testbed; Detecting Moving Targets by Use of Soliton Resonances; and Finite-Element Methods for Real-Time Simulation of Surgery.

  4. Semi-automated software to measure luminal and stromal areas of choroid in optical coherence tomographic images.

    PubMed

    Sonoda, Shozo; Sakamoto, Taiji; Kakiuchi, Naoko; Shiihara, Hideki; Sakoguchi, Tomonori; Tomita, Masatoshi; Yamashita, Takehiro; Uchino, Eisuke

    2018-03-01

    To determine the capabilities of "EyeGround" software in measuring the choroidal cross sectional areas in optical coherence tomographic (OCT) images. Cross sectional, prospective study. The cross-sectional area of the subfoveal choroid within a 1500 µm diameter circle centered on the fovea was measured both with and without using the EyeGround software in the OCT images. The differences between the evaluation times and the results of the measurements were compared. The inter-rater, intra-rater, inter-method agreements were determined. Fifty-one eyes of 51 healthy subjects were studied: 24 men and 27 women with an average age of 35.0 ± 8.8 years. The time for analyzing a single image was significantly shorter with the software at 3.2±1.1 min than without the software at 12.1±5.1 min (P <0.001). The inter-method correlation efficient for the measurements of the whole choroid was high [0.989, 95% CI (0.981-0.994)]. With the software, the inter-rater correlation efficient was significantly high [0.997, 95% CI (0.995-0.999)], and the intra-rater correlation efficient was also significantly high [0.999, 95% CI (0.999-1.0)]. The EyeGround software can measure the choroidal area in the OCT cross sectional images with good reproducibility and in a significantly shorter times. It can be a valuable tool for analyzing the choroid.

  5. Study of optical design of Blu-ray pickup head system with a liquid crystal element.

    PubMed

    Fang, Yi-Chin; Yen, Chih-Ta; Hsu, Jui-Hsin

    2014-10-10

    This paper proposes a newly developed optical design and an active compensation method for a Blu-ray pickup head system with a liquid crystal (LC) element. Different from traditional pickup lens design, this new optical design delivers performance as good as the conventional one but has more room for tolerance control, which plays a role in antishaking devices, such as portable Blu-ray players. A hole-pattern electrode and LC optics with external voltage input were employed to generate a symmetric nonuniform electrical field in the LC layer that directs LC molecules into the appropriate gradient refractive index distribution, resulting in the convergence or divergence of specific light beams. LC optics deliver fast and, most importantly, active compensation through optical design when errors occur. Simulations and tolerance analysis were conducted using Code V software, including various tolerance analyses, such as defocus, tilt, and decenter, and their related compensations. Two distinct Blu-ray pickup head system designs were examined in this study. In traditional Blu-ray pickup head system designs, the aperture stop is always set on objective lenses. In the study, the aperture stop is on the LC lens as a newly developed lens. The results revealed that an optical design with aperture stop set on the LC lens as an active compensation device successfully eliminated up to 57% of coma aberration compared with traditional optical designs so that this pickup head lens design will have more space for tolerance control.

  6. Evaluation of a New Software Version of the RTVue Optical Coherence Tomograph for Image Segmentation and Detection of Glaucoma in High Myopia.

    PubMed

    Holló, Gábor; Shu-Wei, Hsu; Naghizadeh, Farzaneh

    2016-06-01

    To compare the current (6.3) and a novel software version (6.12) of the RTVue-100 optical coherence tomograph (RTVue-OCT) for ganglion cell complex (GCC) and retinal nerve fiber layer thickness (RNFLT) image segmentation and detection of glaucoma in high myopia. RNFLT and GCC scans were acquired with software version 6.3 of the RTVue-OCT on 51 highly myopic eyes (spherical refractive error ≤-6.0 D) of 51 patients, and were analyzed with both the software versions. Twenty-two eyes were nonglaucomatous, 13 were ocular hypertensive and 16 eyes had glaucoma. No difference was seen for any RNFLT, and average GCC parameter between the software versions (paired t test, P≥0.084). Global loss volume was significantly lower (more normal) with version 6.12 than with version 6.3 (Wilcoxon signed-rank test, P<0.001). The percentage agreement (κ) between the clinical (normal and ocular hypertensive vs. glaucoma) and the software-provided classifications (normal and borderline vs. outside normal limits) were 0.3219 and 0.4442 for average RNFLT, and 0.2926 and 0.4977 for average GCC with versions 1 and 2, respectively (McNemar symmetry test, P≥0.289). No difference in average RNFLT and GCC classification (McNemar symmetry test, P≥0.727) and the number of eyes with at least 1 segmentation error (P≥0.109) was found between the software versions, respectively. Although GCC segmentation was improved with software version 6.12 compared with the current version in highly myopic eyes, this did not result in a significant change of the average RNFLT and GCC values, and did not significantly improve the software-provided classification for glaucoma.

  7. Analysis of live cell images: Methods, tools and opportunities.

    PubMed

    Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens

    2017-02-15

    Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits. Copyright © 2017. Published by Elsevier Inc.

  8. Report for 2012 from the Bordeaux IVS Analysis Center

    NASA Technical Reports Server (NTRS)

    Charlot, Patrick; Bellanger, Antoine; Bouffet, Romuald; Bourda, Geraldine; Collioud, Arnaud; Baudry, Alain

    2013-01-01

    This report summarizes the activities of the Bordeaux IVS Analysis Center during the year 2012. The work focused on (i) regular analysis of the IVS-R1 and IVS-R4 sessions with the GINS software package; (ii) systematic VLBI imaging of the RDV sessions and calculation of the corresponding source structure index and compactness values; (iii) investigation of the correlation between astrometric position instabilities and source structure variations; and (iv) continuation of our VLBI observational program to identify optically-bright radio sources suitable for the link with the future Gaia frame. Also of importance is the 11th European VLBI Network Symposium, which we organized last October in Bordeaux and which drew much attention from the European and International VLBI communities.

  9. Electro-optical system for gunshot detection: analysis, concept, and performance

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Madura, H.; Trzaskawka, P.; Bieszczad, G.; Sosnowski, T.

    2011-08-01

    The paper discusses technical possibilities to build an effective electro-optical sensor unit for sniper detection using infrared cameras. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. At first, the analysis was presented of three distinguished phases of sniper activity: before, during and after the shot. On the basis of experimental data the parameters defining the relevant sniper signatures were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets and the descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. The analyzed infrared systems were simulated using NVTherm software. The calculations for several cameras, equipped with different lenses and detector types were performed. The simulation of detection ranges was performed for the selected scenarios of sniper detection tasks. After the analysis of simulation results, the technical specifications of infrared sniper detection system were discussed, required to provide assumed detection range. Finally the infrared camera setup was proposed which can detected sniper from 1000 meters range.

  10. Software-defined optical network for metro-scale geographically distributed data centers.

    PubMed

    Samadi, Payman; Wen, Ke; Xu, Junjie; Bergman, Keren

    2016-05-30

    The emergence of cloud computing and big data has rapidly increased the deployment of small and mid-sized data centers. Enterprises and cloud providers require an agile network among these data centers to empower application reliability and flexible scalability. We present a software-defined inter data center network to enable on-demand scale out of data centers on a metro-scale optical network. The architecture consists of a combined space/wavelength switching platform and a Software-Defined Networking (SDN) control plane equipped with a wavelength and routing assignment module. It enables establishing transparent and bandwidth-selective connections from L2/L3 switches, on-demand. The architecture is evaluated in a testbed consisting of 3 data centers, 5-25 km apart. We successfully demonstrated end-to-end bulk data transfer and Virtual Machine (VM) migrations across data centers with less than 100 ms connection setup time and close to full link capacity utilization.

  11. Okayama optical polarimetry and spectroscopy system (OOPS) II. Network-transparent control software.

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Kurakami, T.; Shimizu, Y.; Yutani, M.

    Control system of the OOPS (Okayama Optical Polarimetry and Spectroscopy system) is designed to integrate several instruments whose controllers are distributed over a network; the OOPS instrument, a CCD camera and data acquisition unit, the 91 cm telescope, an autoguider, a weather monitor, and an image display tool SAOimage. With the help of message-based communication, the control processes cooperate with related processes to perform an astronomical observation under supervising control by a scheduler process. A logger process collects status data of all the instruments to distribute them to related processes upon request. Software structure of each process is described.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delcamp, E.; Lagarde, B.; Polack, F.

    Though optimization softwares are commonly used in visible optical design, none seems to exist for soft X-ray optics. It is shown here that optimization techniques can be applied with some advantages to X-UV monochromator design. A merit function, suitable for minimizing the aberrations is proposed, and the general method of computation is described. Samples of the software inputs and outputs are presented, and compared to reference data. As an example of application to soft X-ray monochromator design, the optimization of the soft X-ray monochromator of the ESRF microscopy beamline is presented. Good agreement between the predicted resolution of a modifiedmore » PGM monochromator and experimental measurements is reported.« less

  13. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    PubMed

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Role of IAC in large space systems thermal analysis

    NASA Technical Reports Server (NTRS)

    Jones, G. K.; Skladany, J. T.; Young, J. P.

    1982-01-01

    Computer analysis programs to evaluate critical coupling effects that can significantly influence spacecraft system performance are described. These coupling effects arise from the varied parameters of the spacecraft systems, environments, and forcing functions associated with disciplines such as thermal, structures, and controls. Adverse effects can be expected to significantly impact system design aspects such as structural integrity, controllability, and mission performance. One such needed design analysis capability is a software system that can integrate individual discipline computer codes into a highly user-oriented/interactive-graphics-based analysis capability. The integrated analysis capability (IAC) system can be viewed as: a core framework system which serves as an integrating base whereby users can readily add desired analysis modules and as a self-contained interdisciplinary system analysis capability having a specific set of fully integrated multidisciplinary analysis programs that deal with the coupling of thermal, structures, controls, antenna radiation performance, and instrument optical performance disciplines.

  15. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    NASA Technical Reports Server (NTRS)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  16. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density profiles to guide the melting process. The combination of these data allow us to analyze melt head performance, minimize outer-to-inner fraction contamination and avoid melt head flooding. The WAIS Melt Monitor system allows the collection of real-time, sub-annual microparticle and electrical conductivity data while producing and storing enough sample for traditional Coulter-Counter particle measurements as well long term acid leaching of bioactive metals (e.g., Fe, Co, Cd, Cu, Zn) prior to chemical analysis.

  17. Scientific Data Analysis and Software Support: Geodynamics

    NASA Technical Reports Server (NTRS)

    Klosko, Steven; Sanchez, B. (Technical Monitor)

    2000-01-01

    The support on this contract centers on development of data analysis strategies, geodynamic models, and software codes to study four-dimensional geodynamic and oceanographic processes, as well as studies and mission support for near-Earth and interplanetary satellite missions. SRE had a subcontract to maintain the optical laboratory for the LTP, where instruments such as MOLA and GLAS are developed. NVI performed work on a Raytheon laser altimetry task through a subcontract, providing data analysis and final data production for distribution to users. HBG had a subcontract for specialized digital topography analysis and map generation. Over the course of this contract, Raytheon ITSS staff have supported over 60 individual tasks. Some tasks have remained in place during this entire interval whereas others have been completed and were of shorter duration. Over the course of events, task numbers were changed to reflect changes in the character of the work or new funding sources. The description presented below will detail the technical accomplishments that have been achieved according to their science and technology areas. What will be shown is a brief overview of the progress that has been made in each of these investigative and software development areas. Raytheon ITSS staff members have received many awards for their work on this contract, including GSFC Group Achievement Awards for TOPEX Precision Orbit Determination and the Joint Gravity Model One Team. NASA JPL gave the TOPEX/POSEIDON team a medal commemorating the completion of the primary mission and a Certificate of Appreciation. Raytheon ITSS has also received a Certificate of Appreciation from GSFC for its extensive support of the Shuttle Laser Altimeter Experiment.

  18. Portable microfluidic platform for real-time, high sensitive detection and identification of trichloroethylene and other organochloride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Erik

    In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less

  19. Low-Budget, Cost-Effective OCR: Optical Character Recognition for MS-DOS Micros.

    ERIC Educational Resources Information Center

    Perez, Ernest

    1990-01-01

    Discusses optical character recognition (OCR) for use with MS-DOS microcomputers. Cost effectiveness is considered, three types of software approaches to character recognition are explained, hardware and operation requirements are described, possible library applications are discussed, future OCR developments are suggested, and a list of OCR…

  20. Optical Disc Technology for Information Management.

    ERIC Educational Resources Information Center

    Brumm, Eugenia K.

    1991-01-01

    This summary of the literature on document image processing from 1988-90 focuses on WORM (write once read many) technology and on rewritable (i.e., erasable) optical discs, and excludes CD-ROM. Highlights include vendors and products, standards, comparisons of storage media, software, legal issues, records management, indexing, and computer…

  1. Application of Tablet PCs to Lecture Demonstrations on Optical Mineralogy

    ERIC Educational Resources Information Center

    Hoisch, Thomas D.; Austin, Barbara A.; Newell, Shawn L.; Manone, Mark F.

    2010-01-01

    Learning optical mineralogy requires students to integrate a complex theory with microscope manipulations and image interpretation. To assist student learning, we performed lecture demonstrations during which digital photomicrographs were taken and delivered to students using Tablet PCs, whereupon they were imported into note-taking software and…

  2. Choosing an Optical Disc System: A Guide for Users and Resellers.

    ERIC Educational Resources Information Center

    Vane-Tempest, Stewart

    1995-01-01

    Presents a guide for selecting an optional disc system. Highlights include storage hierarchy; standards; data life cycles; security; implementing an optical jukebox system; optimizing the system; performance; quality and reliability; software; cost of online versus near-line; and growing opportunities. Sidebars provide additional information on…

  3. Optical phase plates as a creative medium for special effects in images

    NASA Astrophysics Data System (ADS)

    Shaoulov, Vesselin I.; Meyer, Catherine; Argotti, Yann; Rolland, Jannick P.

    2001-12-01

    A new paradigm and methods for special effects in images were recently proposed by artist and movie producer Steven Hylen. Based on these methods, images resembling painting may be formed using optical phase plates. The role of the mathematical and optical properties of the phase plates is studied in the development of these new art forms. Results of custom software as well as ASAP simulations are presented.

  4. A new method for the assessment of the surface topography of NiTi rotary instruments.

    PubMed

    Ferreira, F; Barbosa, I; Scelza, P; Russano, D; Neff, J; Montagnana, M; Zaccaro Scelza, M

    2017-09-01

    To describe a new method for the assessment of nanoscale alterations in the surface topography of nickel-titanium endodontic instruments using a high-resolution optical method and to verify the accuracy of the technique. Noncontact three-dimensional optical profilometry was used to evaluate defects on a size 25, .08 taper reciprocating instrument (WaveOne ® ), which was subjected to a cyclic fatigue test in a simulated root canal in a clear resin block. For the investigation, an original procedure was established for the analysis of similar areas located 3 mm from the tip of the instrument before and after canal preparation to enable the repeatability and reproducibility of the measurements with precision. All observations and analysis were taken in areas measuring 210 × 210 μm provided by the software of the equipment. The three-dimensional high-resolution image analysis showed clear alterations in the surface topography of the examined cutting blade and flute of the instrument, before and after use, with the presence of surface irregularities such as deformations, debris, grooves, cracks, steps and microcavities. Optical profilometry provided accurate qualitative nanoscale evaluation of similar surfaces before and after the fatigue test. The stability and repeatability of the technique enables a more comprehensive understanding of the effects of wear on the surface of endodontic instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Active Mirror Predictive and Requirements Verification Software (AMP-ReVS)

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.

    2012-01-01

    This software is designed to predict large active mirror performance at various stages in the fabrication lifecycle of the mirror. It was developed for 1-meter class powered mirrors for astronomical purposes, but is extensible to other geometries. The package accepts finite element model (FEM) inputs and laboratory measured data for large optical-quality mirrors with active figure control. It computes phenomenological contributions to the surface figure error using several built-in optimization techniques. These phenomena include stresses induced in the mirror by the manufacturing process and the support structure, the test procedure, high spatial frequency errors introduced by the polishing process, and other process-dependent deleterious effects due to light-weighting of the mirror. Then, depending on the maturity of the mirror, it either predicts the best surface figure error that the mirror will attain, or it verifies that the requirements for the error sources have been met once the best surface figure error has been measured. The unique feature of this software is that it ties together physical phenomenology with wavefront sensing and control techniques and various optimization methods including convex optimization, Kalman filtering, and quadratic programming to both generate predictive models and to do requirements verification. This software combines three distinct disciplines: wavefront control, predictive models based on FEM, and requirements verification using measured data in a robust, reusable code that is applicable to any large optics for ground and space telescopes. The software also includes state-of-the-art wavefront control algorithms that allow closed-loop performance to be computed. It allows for quantitative trade studies to be performed for optical systems engineering, including computing the best surface figure error under various testing and operating conditions. After the mirror manufacturing process and testing have been completed, the software package can be used to verify that the underlying requirements have been met.

  6. Observatory software for the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Vermeulen, Tom; Isani, Sidik; Withington, Kanoa; Ho, Kevin; Szeto, Kei; Murowinski, Rick

    2016-07-01

    The Canada-France-Hawaii Telescope is currently in the conceptual design phase to redevelop its facility into the new Maunakea Spectroscopic Explorer (MSE). MSE is designed to be the largest non-ELT optical/NIR astronomical telescope, and will be a fully dedicated facility for multi-object spectroscopy over a broad range of spectral resolutions. This paper outlines the software and control architecture envisioned for the new facility. The architecture will be designed around much of the existing software infrastructure currently used at CFHT as well as the latest proven opensource software. CFHT plans to minimize risk and development time by leveraging existing technology.

  7. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    NASA Astrophysics Data System (ADS)

    Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.

    2016-10-01

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.

  8. 3D imaging of cleared human skin biopsies using light-sheet microscopy: A new way to visualize in-depth skin structure.

    PubMed

    Abadie, S; Jardet, C; Colombelli, J; Chaput, B; David, A; Grolleau, J-L; Bedos, P; Lobjois, V; Descargues, P; Rouquette, J

    2018-05-01

    Human skin is composed of the superimposition of tissue layers of various thicknesses and components. Histological staining of skin sections is the benchmark approach to analyse the organization and integrity of human skin biopsies; however, this approach does not allow 3D tissue visualization. Alternatively, confocal or two-photon microscopy is an effective approach to perform fluorescent-based 3D imaging. However, owing to light scattering, these methods display limited light penetration in depth. The objectives of this study were therefore to combine optical clearing and light-sheet fluorescence microscopy (LSFM) to perform in-depth optical sectioning of 5 mm-thick human skin biopsies and generate 3D images of entire human skin biopsies. A benzyl alcohol and benzyl benzoate solution was used to successfully optically clear entire formalin fixed human skin biopsies, making them transparent. In-depth optical sectioning was performed with LSFM on the basis of tissue-autofluorescence observations. 3D image analysis of optical sections generated with LSFM was performed by using the Amira ® software. This new approach allowed us to observe in situ the different layers and compartments of human skin, such as the stratum corneum, the dermis and epidermal appendages. With this approach, we easily performed 3D reconstruction to visualise an entire human skin biopsy. Finally, we demonstrated that this method is useful to visualise and quantify histological anomalies, such as epidermal hyperplasia. The combination of optical clearing and LSFM has new applications in dermatology and dermatological research by allowing 3D visualization and analysis of whole human skin biopsies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions

    NASA Astrophysics Data System (ADS)

    Schröder, Sven; Gliech, Stefan; Duparré, Angela

    2005-10-01

    An instrumentation for total and angle-resolved scattering (ARS) at 193 and 157 nm has been developed at the Fraunhofer Institute in Jena to meet the severe requirements for scattering analysis of deep- and vacuum-ultraviolet optical components. Extremely low backscattering levels of 10^-6 for the total scattering measurements and more than 9 orders of magnitude dynamic range for ARS have been accomplished. Examples of application extend from the control of at-wavelength scattering losses of superpolished substrates with rms roughness as small as 0.1 nm to the detection of volume material scattering and the study into the scattering of multilayer coatings. In addition, software programs were developed to model the roughness-induced light scattering of substrates and thin-film coatings.

  10. Temperature control system for optical elements in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  11. Polymer multimode waveguide optical and electronic PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Selviah, David R.

    2009-02-01

    The paper describes the research in the Â#1.3 million IeMRC Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Flagship Project in which 8 companies and 3 universities carry out collaborative research and which was formed and is technically led by the author. The consortium's research is aimed at investigating a range of fabrication techniques, some established and some novel, for fabricating polymer multimode waveguides from several polymers, some formulations of which are being developed within the project. The challenge is to develop low cost waveguide manufacturing techniques compatible with commercial PCB manufacturing and to reduce their alignment cost. The project aims to take the first steps in making this hybrid optical waveguide and electrical copper track printed circuit board disruptive technology widely available by establishing and incorporating waveguide design rules into commercial PCB layout software and transferring the technology for fabricating such boards to a commercial PCB manufacturer. To focus the research the project is designing an optical waveguide backplane to tight realistic constraints, using commercial layout software with the new optical design rules, for a demonstrator into which 4 daughter cards are plugged, each carrying an aggregate of 80 Gb/s data so that each waveguide carries 10 Gb/s.

  12. Firefly: an optical lithographic system for the fabrication of holographic security labels

    NASA Astrophysics Data System (ADS)

    Calderón, Jorge; Rincón, Oscar; Amézquita, Ricardo; Pulido, Iván.; Amézquita, Sebastián.; Bernal, Andrés.; Romero, Luis; Agudelo, Viviana

    2016-03-01

    This paper introduces Firefly, an optical lithography origination system that has been developed to produce holographic masters of high quality. This mask-less lithography system has a resolution of 418 nm half-pitch, and generates holographic masters with the optical characteristics required for security applications of level 1 (visual verification), level 2 (pocket reader verification) and level 3 (forensic verification). The holographic master constitutes the main core of the manufacturing process of security holographic labels used for the authentication of products and documents worldwide. Additionally, the Firefly is equipped with a software tool that allows for the hologram design from graphic formats stored in bitmaps. The software is capable of generating and configuring basic optical effects such as animation and color, as well as effects of high complexity such as Fresnel lenses, engraves and encrypted images, among others. The Firefly technology gathers together optical lithography, digital image processing and the most advanced control systems, making possible a competitive equipment that challenges the best technologies in the industry of holographic generation around the world. In this paper, a general description of the origination system is provided as well as some examples of its capabilities.

  13. Performance evaluation of data center service localization based on virtual resource migration in software defined elastic optical network.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young

    2015-09-07

    Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.

  14. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    PubMed

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  15. Optical elements design of optical pick-up with characteristics of read-out spot for high density optical storage

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Ma, Jianshe; Liu, Lin; Pan, Longfa; Zhang, Jianyong; Lu, Junhui

    2005-09-01

    It is well known that the optical pick-up (OPU) plays a very important role in optical storage system. And the quality of OPU can be measured by the characteristics of OPU read-out spot for high density optical storage. Therefore this paper mainly designs an OPU model for high density optical storage to study the characteristics of OPU read-out spot. Firstly it analyses the optical read-out principle in OPU and contrives an optical read-out system based on the hereinbefore theory. In this step it chiefly designs the grating, splitter, collimator lens and objective lens. Secondly based on the aberrations analysis and theory involved by the splitter, the collimator lens and the optical lens, the paper uses the software CODE V to calculate the aberrations and to optimize the optical read-out system. Then the author can receive an ideal OPU read-out spot for high density optical storage and obtain the characteristics of the ideal OPU read-out spot. At the same time this paper analyses some influence factors which can directly affect the characteristics of the OPU read-out spot. Thirdly according to the up data the author practically manufactures a real optical pick-up to validate the hereinbefore designed optical read-out system. And it uses the Optical Spot Analyzer to get the image of the read-out spot. Comparing the ideal image to the actual image of the designed optical read-out system, the author finds out that the upwards analyses and design is suitable for high density storage and can be used in the actual production. And the author also receives the conclusion that the mostly influences on characteristics of OPU read-out spot for high density optical storage factors is not only the process of designing the grating, splitter, collimator lens and objective lens, but also the assembling work precision

  16. Training program developed for senior undergraduates majoring in optical communication

    NASA Astrophysics Data System (ADS)

    Cui, Sheng; Zhang, Xinliang; Ke, Changjian

    2017-08-01

    Based on the well-known simulation software VPI TransmissionMaker, a comprehensive training program for senior undergraduates majoring in optical communication and optical network technology was developed by the author after detailed study of the teaching difficult and key points in the discipline. Aiming at solving practical scientific and engineering problems, the program helped our students to develop the ability of acquiring and applying knowledge by designing optical devices, optical signal processing algorithms and optical fiber communication systems. Furthermore, innovation is inspired by introducing competition mechanism among project teams. The program was validated through four years of use and achieved good results.

  17. A Data Exchange Standard for Optical (Visible/IR) Interferometry

    NASA Astrophysics Data System (ADS)

    Pauls, T. A.; Young, J. S.; Cotton, W. D.; Monnier, J. D.

    2005-11-01

    This paper describes the OI (Optical Interferometry) Exchange Format, a standard for exchanging calibrated data from optical (visible/infrared) stellar interferometers. The standard is based on the Flexible Image Transport System (FITS) and supports the storage of optical interferometric observables, including squared visibility and closure phase-data products not included in radio interferometry standards such as UV-FITS. The format has already gained the support of most currently operating optical interferometer projects, including COAST, NPOI, IOTA, CHARA, VLTI, PTI, and the Keck Interferometer, and is endorsed by the IAU Working Group on Optical Interferometry. Software is available for reading, writing, and the merging of OI Exchange Format files.

  18. Evaluation and testing of image quality of the Space Solar Extreme Ultraviolet Telescope

    NASA Astrophysics Data System (ADS)

    Peng, Jilong; Yi, Zhong; Zhou, Shuhong; Yu, Qian; Hou, Yinlong; Wang, Shanshan

    2018-01-01

    For the space solar extreme ultraviolet telescope, the star point test can not be performed in the x-ray band (19.5nm band) as there is not light source of bright enough. In this paper, the point spread function of the optical system is calculated to evaluate the imaging performance of the telescope system. Combined with the actual processing surface error, such as small grinding head processing and magnetorheological processing, the optical design software Zemax and data analysis software Matlab are used to directly calculate the system point spread function of the space solar extreme ultraviolet telescope. Matlab codes are programmed to generate the required surface error grid data. These surface error data is loaded to the specified surface of the telescope system by using the communication technique of DDE (Dynamic Data Exchange), which is used to connect Zemax and Matlab. As the different processing methods will lead to surface error with different size, distribution and spatial frequency, the impact of imaging is also different. Therefore, the characteristics of the surface error of different machining methods are studied. Combining with its position in the optical system and simulation its influence on the image quality, it is of great significance to reasonably choose the processing technology. Additionally, we have also analyzed the relationship between the surface error and the image quality evaluation. In order to ensure the final processing of the mirror to meet the requirements of the image quality, we should choose one or several methods to evaluate the surface error according to the different spatial frequency characteristics of the surface error.

  19. Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hyuk; Jo, Jung Hyun; Choi, Jin; Moon, Hong-Kyu; Choi, Young-Jun; Yim, Hong-Suh; Park, Jang-Hyun; Park, Eun-Seo; Park, Jong-Uk

    2011-12-01

    The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory) were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking of domestic satellites and verified that optical observ! ation ti me sufficient to maintain the precise ephemeris could be acquired at the determined observatories.

  20. Design of optical transmitting antenna with enhance performance in visible light communication

    NASA Astrophysics Data System (ADS)

    Kuang, Dang; Wang, Jianping; Lu, Huimin

    2016-10-01

    An optical transmitting antenna for visible light communication(VLC) is designed in this work, in which the antenna is positioned before the light-emitting diodes (LED) source to change the lighting distribution, in order to achieve uniform received power effect. The method to design antenna is introduced into physical optical lens principle. According to the energy conservation law and Snell law, the antenna is designed via establishing energy mapping between the luminous flux emitted by a LED source with Lambertian distribution and the target plane. The coordinates of the antenna model are obtained under matrix laboratory (MATLAB). The antenna model entity is generated through three dimensional (3D) composition software AutoCAD with the coordinates of antenna. Ray-tracing software Tracepro is used to trace the ray which through antenna, and validate the irradiance maps. The uniformity of illumination and received power of the designed VLC is improved from approximately 35% to over 83%.

  1. The endothelial sample size analysis in corneal specular microscopy clinical examinations.

    PubMed

    Abib, Fernando C; Holzchuh, Ricardo; Schaefer, Artur; Schaefer, Tania; Godois, Ronialci

    2012-05-01

    To evaluate endothelial cell sample size and statistical error in corneal specular microscopy (CSM) examinations. One hundred twenty examinations were conducted with 4 types of corneal specular microscopes: 30 with each BioOptics, CSO, Konan, and Topcon corneal specular microscopes. All endothelial image data were analyzed by respective instrument software and also by the Cells Analyzer software with a method developed in our lab. A reliability degree (RD) of 95% and a relative error (RE) of 0.05 were used as cut-off values to analyze images of the counted endothelial cells called samples. The sample size mean was the number of cells evaluated on the images obtained with each device. Only examinations with RE < 0.05 were considered statistically correct and suitable for comparisons with future examinations. The Cells Analyzer software was used to calculate the RE and customized sample size for all examinations. Bio-Optics: sample size, 97 ± 22 cells; RE, 6.52 ± 0.86; only 10% of the examinations had sufficient endothelial cell quantity (RE < 0.05); customized sample size, 162 ± 34 cells. CSO: sample size, 110 ± 20 cells; RE, 5.98 ± 0.98; only 16.6% of the examinations had sufficient endothelial cell quantity (RE < 0.05); customized sample size, 157 ± 45 cells. Konan: sample size, 80 ± 27 cells; RE, 10.6 ± 3.67; none of the examinations had sufficient endothelial cell quantity (RE > 0.05); customized sample size, 336 ± 131 cells. Topcon: sample size, 87 ± 17 cells; RE, 10.1 ± 2.52; none of the examinations had sufficient endothelial cell quantity (RE > 0.05); customized sample size, 382 ± 159 cells. A very high number of CSM examinations had sample errors based on Cells Analyzer software. The endothelial sample size (examinations) needs to include more cells to be reliable and reproducible. The Cells Analyzer tutorial routine will be useful for CSM examination reliability and reproducibility.

  2. Processing LiDAR Data to Predict Natural Hazards

    NASA Technical Reports Server (NTRS)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  3. Timing characterization and analysis of the Linux-based, closed loop control computer for the Subaru Telescope laser guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Dinkins, Matthew; Colley, Stephen

    2008-07-01

    Hardware and software specialized for real time control reduce the timing jitter of executables when compared to off-the-shelf hardware and software. However, these specialized environments are costly in both money and development time. While conventional systems have a cost advantage, the jitter in these systems is much larger and potentially problematic. This study analyzes the timing characterstics of a standard Dell server running a fully featured Linux operating system to determine if such a system would be capable of meeting the timing requirements for closed loop operations. Investigations are preformed on the effectiveness of tools designed to make off-the-shelf system performance closer to specialized real time systems. The Gnu Compiler Collection (gcc) is compared to the Intel C Compiler (icc), compiler optimizations are investigated, and real-time extensions to Linux are evaluated.

  4. FVMS: A novel SiL approach on the evaluation of controllers for autonomous MAV

    NASA Astrophysics Data System (ADS)

    Sampaio, Rafael C. B.; Becker, Marcelo; Siqueira, Adriano A. G.; Freschi, Leonardo W.; Montanher, Marcelo P.

    The originality of this work is to propose a novel SiL (Software-in-the-Loop) platform using Microsoft Flight Simulator (MSFS) to assist control design regarding the stabilization problem found in © AscTec Pelican platform. Aerial Robots Team (USP/EESC/LabRoM/ART) has developed a custom C++/C# software named FVMS (Flight Variables Management System) that interfaces the communication between the virtual Pelican and the control algorithms allowing the control designer to perform fast full closed loop real time algorithms. Emulation of embedded sensors as well as the possibility to integrate OpenCV Optical Flow algorithms to a virtual downward camera makes the SiL even more reliable. More than a strictly numeric analysis, the proposed SiL platform offers an unique experience, simultaneously offering both dynamic and graphical responses. Performance of SiL algorithms is presented and discussed.

  5. Optimally analyzing and implementing of bolt fittings in steel structure based on ANSYS

    NASA Astrophysics Data System (ADS)

    Han, Na; Song, Shuangyang; Cui, Yan; Wu, Yongchun

    2018-03-01

    ANSYS simulation software for its excellent performance become outstanding one in Computer-aided Engineering (CAE) family, it is committed to the innovation of engineering simulation to help users to shorten the design process. First, a typical procedure to implement CAE was design. The framework of structural numerical analysis on ANSYS Technology was proposed. Then, A optimally analyzing and implementing of bolt fittings in beam-column join of steel structure was implemented by ANSYS, which was display the cloud chart of XY-shear stress, the cloud chart of YZ-shear stress and the cloud chart of Y component of stress. Finally, ANSYS software simulating results was compared with the measured results by the experiment. The result of ANSYS simulating and analyzing is reliable, efficient and optical. In above process, a structural performance's numerical simulating and analyzing model were explored for engineering enterprises' practice.

  6. New developments for determination of uncertainty in phase evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Sheng

    Phase evaluation exists mostly in, but not limited to, interferometric applications that utilize coherent multidimensional signals to modulate the physical quantity of interest into a nonlinear form, represented by repeating the phase modulo of 271 radians. In order to estimate the underlying physical quantity, the wrapped phase has to be unwrapped by an evaluation procedure which is usually called phase unwrapping. The procedure of phase unwrapping will obviously face the challenge of inconsistent phase, which could bring errors in phase evaluation. The main objectives of this research include addressing the problem of inconsistent phase in phase unwrapping and applications in modern optical techniques. In this research, a new phase unwrapping algorithm is developed. The creative idea of doing phase unwrapping between regions has an advantage over conventional pixel-to-pixel unwrapping methods because the unwrapping result is more consistent by using a voting mechanism based on all Zit-discontinuities hints. Furthermore, a systematic sequence of regional unwrapping is constructed in order to achieve a global consistent result. An implementation of the idea is illustrated in dct.il with step-by-step pseudo codes. The performance of the algorithm is demonstrated on real world applications. In order to solve a phase unwrapping problem which is caused by depth discontinuities in 3D shape measurement, a new absolute phase coding strategy is developed. The algorithm presented has two merits: effectively extends the coding range and preserves the measurement sensitivity. The performance of the proposed absolute coding strategy is proved by results of 3D shape measurement for objects with surface discontinuities. As a powerful tool for real world applications a universal software package, Optical Measurement and Evaluation Software (OMES), is designed for the purposes of automatic measurement and quantitative evaluation in 3D shape measurement and laser interferometry. Combined with different sensors or setups, OMES has been successfully applied in the industries, for example, GM Powertrain, Coming, and Ford Optical Lab., and used for various applications such as shape measurement, deformation/displacement measurement, strain/stress analysis, non-destructive testing, vibration/modal analysis, and biomechanics analysis.

  7. An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits

    PubMed Central

    Wang, Guangfu; Wyskiel, Daniel R; Yang, Weiguo; Wang, Yiqing; Milbern, Lana C; Lalanne, Txomin; Jiang, Xiaolong; Shen, Ying; Sun, Qian-Quan; Zhu, J Julius

    2015-01-01

    Deciphering neuronal circuitry is central to understanding brain function and dysfunction, yet it remains a daunting task. To facilitate the dissection of neuronal circuits, a process requiring functional analysis of synaptic connections and morphological identification of interconnected neurons, we present here a method for stable simultaneous octuple patch-clamp recordings. This method allows physiological analysis of synaptic interconnections among 4–8 simultaneously recorded neurons and/or 10–30 sequentially recorded neurons, and it allows anatomical identification of >85% of recorded interneurons and >99% of recorded principal neurons. We describe how to apply the method to rodent tissue slices; however, it can be used on other model organisms. We also describe the latest refinements and optimizations of mechanics, electronics, optics and software programs that are central to the realization of a combined single- and two-photon microscopy–based, optogenetics- and imaging-assisted, stable, simultaneous quadruple–viguple patch-clamp recording system. Setting up the system, from the beginning of instrument assembly and software installation to full operation, can be completed in 3–4 d. PMID:25654757

  8. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were performed. Lipid determination in foods by spectroscopic analysis of a solvent used after cold batch extraction and simulated supercritical fluid extraction monitoring were among the applications tested. The ultimate performance specifications of our instrument included full-range wavelength coverage from 1250 to 2400 nm (with random, segmented range, or continuous range wavelength access capability), real -time quantitative analysis rates in excess of 150 determinations per second, and full range (2 nm increment) scanning speeds of 200 milliseconds.

  9. Embossing of optical document security devices

    NASA Astrophysics Data System (ADS)

    Muke, Sani

    2004-06-01

    Embossing in the transparent window area of polymer banknotes, such as those seen on the Australian, New Zealand and Romanian currencies, have enormous potential for the development of novel optical security devices. The intaglio printing process can provide an efficient means for embossing of optical security structures such as micro lenses. Embossed micro lens arrays in the transparent window of a polymer banknote can be folded over a corresponding printed image array elsewhere on the note to reveal a series of moire magnified images. Analysis of samples of embossed micro lenses showed that the engraving side and impression side had a similar embossed profile. The embossed micro lens profiles were modelled using Optalix-LX commercial optical ray tracing software in order to determine the focal length of the lenses and compare with the focal length of desired embossed lenses. A fundamental understanding of how the polymer deforms during the embossing process is critical towards developing a micro lens embossing tool which can achieve the desired embossed micro lenses. This work also looks at extending the early research of the Intaglio Research Group (IRG) to better understand the embossibility of polymer substrates such as biaxially oriented polypropylene (BOPP).

  10. Local motion compensation in image sequences degraded by atmospheric turbulence: a comparative analysis of optical flow vs. block matching methods

    NASA Astrophysics Data System (ADS)

    Huebner, Claudia S.

    2016-10-01

    As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).

  11. Hydrogen bonded 2-methyl-1H-imidazol-3-ium 3,5-dinitrobenzoate 3,5-dinitrobenzoic acid, a new optical crystal: Evaluation of properties by structural, spectral, quantum chemical calculations, Z-scan and Hirshfeld studies

    NASA Astrophysics Data System (ADS)

    Sathya, K.; Dhamodharan, P.; Dhandapani, M.

    2018-03-01

    A new hydrgen bonded proton transfer complex, 2-methyl imidazolium 3, 5-dinitrobenzoate 3,5-dinitro benzoic acid (MIDB) was synthesized by the reaction between 2-methyl imidazole with 3,5-dinitro benzoic acid (1:2) in methanol solvent at room temperature. The crystals were subjected to FT-IR spectral analysis to confirm the functional groups of the new compound. Single crystal XRD analysis reveals that MIDB belongs to monoclinic system with P21/c space group. The asymmetric unit consists of one 2-methyl imidazolium cation, one 3, 5-dinitrobenzoate anion and one uncharged 3,5-dinitro benzoic acid moiety. Experimental NMR spectroscopic data and theoretically calculated NMR data correlated very well to estabilish the exact carbon skeleton and hydrogen environment in the molecular structure of MIDB. The thermal stability of the compound was investigated by thermogravimetry and differential thermal analysis (TG-DTA). Computational studies such as optimization of molecular geometry, natural bond analysis (NBO), Mulliken population analysis and HOMO-LUMO analysis were performed using Gaussian 09 software by B3LYP method at 6-31 g basis set level. The calculated first-order polarizability (β) of MIDB from computational studies is 4.1752 × 10-30 esu, which is 32 times greater than that of urea. UV-vis-NIR spectral studies revealed that the MIDB has a large optical transparency window. The optical nonlinearities of MIDB have been investigated by Z-scan technique with Hesbnd Ne laser radiation of wavelength 632.8 nm. Hirshfeld analysis indicate O⋯H/H⋯O interactions are the superior interactions confirming excessive hydrogen bond net work in the molecular structure.

  12. Waveguide design, modeling, and optimization: from photonic nanodevices to integrated photonic circuits

    NASA Astrophysics Data System (ADS)

    Bordovsky, Michal; Catrysse, Peter; Dods, Steven; Freitas, Marcio; Klein, Jackson; Kotacka, Libor; Tzolov, Velko; Uzunov, Ivan M.; Zhang, Jiazong

    2004-05-01

    We present the state of the art for commercial design and simulation software in the 'front end' of photonic circuit design. One recent advance is to extend the flexibility of the software by using more than one numerical technique on the same optical circuit. There are a number of popular and proven techniques for analysis of photonic devices. Examples of these techniques include the Beam Propagation Method (BPM), the Coupled Mode Theory (CMT), and the Finite Difference Time Domain (FDTD) method. For larger photonic circuits, it may not be practical to analyze the whole circuit by any one of these methods alone, but often some smaller part of the circuit lends itself to at least one of these standard techniques. Later the whole problem can be analyzed on a unified platform. This kind of approach can enable analysis for cases that would otherwise be cumbersome, or even impossible. We demonstrate solutions for more complex structures ranging from the sub-component layout, through the entire device characterization, to the mask layout and its editing. We also present recent advances in the above well established techniques. This includes the analysis of nano-particles, metals, and non-linear materials by FDTD, photonic crystal design and analysis, and improved models for high concentration Er/Yb co-doped glass waveguide amplifiers.

  13. Raman spectral post-processing for oral tissue discrimination – a step for an automatized diagnostic system

    PubMed Central

    Carvalho, Luis Felipe C. S.; Nogueira, Marcelo Saito; Neto, Lázaro P. M.; Bhattacharjee, Tanmoy T.; Martin, Airton A.

    2017-01-01

    Most oral injuries are diagnosed by histopathological analysis of a biopsy, which is an invasive procedure and does not give immediate results. On the other hand, Raman spectroscopy is a real time and minimally invasive analytical tool with potential for the diagnosis of diseases. The potential for diagnostics can be improved by data post-processing. Hence, this study aims to evaluate the performance of preprocessing steps and multivariate analysis methods for the classification of normal tissues and pathological oral lesion spectra. A total of 80 spectra acquired from normal and abnormal tissues using optical fiber Raman-based spectroscopy (OFRS) were subjected to PCA preprocessing in the z-scored data set, and the KNN (K-nearest neighbors), J48 (unpruned C4.5 decision tree), RBF (radial basis function), RF (random forest), and MLP (multilayer perceptron) classifiers at WEKA software (Waikato environment for knowledge analysis), after area normalization or maximum intensity normalization. Our results suggest the best classification was achieved by using maximum intensity normalization followed by MLP. Based on these results, software for automated analysis can be generated and validated using larger data sets. This would aid quick comprehension of spectroscopic data and easy diagnosis by medical practitioners in clinical settings. PMID:29188115

  14. Raman spectral post-processing for oral tissue discrimination - a step for an automatized diagnostic system.

    PubMed

    Carvalho, Luis Felipe C S; Nogueira, Marcelo Saito; Neto, Lázaro P M; Bhattacharjee, Tanmoy T; Martin, Airton A

    2017-11-01

    Most oral injuries are diagnosed by histopathological analysis of a biopsy, which is an invasive procedure and does not give immediate results. On the other hand, Raman spectroscopy is a real time and minimally invasive analytical tool with potential for the diagnosis of diseases. The potential for diagnostics can be improved by data post-processing. Hence, this study aims to evaluate the performance of preprocessing steps and multivariate analysis methods for the classification of normal tissues and pathological oral lesion spectra. A total of 80 spectra acquired from normal and abnormal tissues using optical fiber Raman-based spectroscopy (OFRS) were subjected to PCA preprocessing in the z-scored data set, and the KNN (K-nearest neighbors), J48 (unpruned C4.5 decision tree), RBF (radial basis function), RF (random forest), and MLP (multilayer perceptron) classifiers at WEKA software (Waikato environment for knowledge analysis), after area normalization or maximum intensity normalization. Our results suggest the best classification was achieved by using maximum intensity normalization followed by MLP. Based on these results, software for automated analysis can be generated and validated using larger data sets. This would aid quick comprehension of spectroscopic data and easy diagnosis by medical practitioners in clinical settings.

  15. Two-stage system based on a software-defined radio for stabilizing of optical frequency combs in long-term experiments.

    PubMed

    Cížek, Martin; Hucl, Václav; Hrabina, Jan; Smíd, Radek; Mikel, Břetislav; Lazar, Josef; Cíp, Ondřej

    2014-01-20

    A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. A stabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10(-11).

  16. Two-Stage System Based on a Software-Defined Radio for Stabilizing of Optical Frequency Combs in Long-Term Experiments

    PubMed Central

    Čížek, Martin; Hucl, Václav; Hrabina, Jan; Šmíd, Radek; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2014-01-01

    A passive optical resonator is a special sensor used for measurement of lengths on the nanometer and sub-nanometer scale. Astabilized optical frequency comb can provide an ultimate reference for measuring the wavelength of a tunable laser locked to the optical resonator. If we lock the repetition and offset frequencies of the comb to a high-grade radiofrequency (RF) oscillator its relative frequency stability is transferred from the RF to the optical frequency domain. Experiments in the field of precise length metrology of low-expansion materials are usually of long-term nature so it is required that the optical frequency comb stay in operation for an extended period of time. The optoelectronic closed-loop systems used for stabilization of combs are usually based on traditional analog electronic circuits processing signals from photodetectors. From an experimental point of view, these setups are very complicated and sensitive to ambient conditions, especially in the optical part, therefore maintaining long-time operation is not easy. The research presented in this paper deals with a novel approach based on digital signal processing and a software-defined radio. We describe digital signal processing algorithms intended for keeping the femtosecond optical comb in a long-time stable operation. This need arose during specialized experiments involving measurements of optical frequencies of tunable continuous-wave lasers. The resulting system is capable of keeping the comb in lock for an extensive period of time (8 days or more) with the relative stability better than 1.6 × 10−11. PMID:24448169

  17. The U. S. Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0um)

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea J.; King, Trude V.V.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 498 spectra of 444 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 um . The spectral resolution (Full Width Half Maximum) of the reflectance data is <= 4 nm in the visible (0.2-0.8 um) and <= 10 nm in the NIR (0.8-2.35 um). All spectra were corrected to absolute reflectance using an NIST Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from borate, carbonate, chloride, element, halide, hydroxide, nitrate, oxide, phosphate, sulfate, sulfide, sulfosalt, and the silicate (cyclosilicate, inosilicate, nesosilicate, phyllosilicate, sorosilicate, and tectosilicate) classes are represented. X-Ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses. The library and software are available as a series of U.S.G.S. Open File reports. PC user software is available to convert the binary data to ascii files (a separate U.S.G.S. open file report). Additionally, a binary data files are on line at the U.S.G.S. in Denver for anonymous ftp to users on the Internet. The library search software enables a user to search on documentation parameters as well as spectral features. The analysis system includes general spectral analysis routines, plotting packages, radiative transfer software for computing intimate mixtures, routines to derive optical constants from reflectance spectra, tools to analyze spectral features, and the capability to access imaging spectrometer data cubes for spectral analysis. Users may build customized libraries (at specific wavelengths and spectral resolution) for their own instruments using the library software. We are currently extending spectral coverage to 150 um. The libraries (original and convolved) will be made available in the future on a CD-ROM.

  18. Comparison of Optic Disc Margin Identified by Color Disc Photography and High-Speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Manassakorn, Anita; Ishikawa, Hiroshi; Kim, Jong S.; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Gabriele, Michelle L.; Sung, Kyung Rim; Mumcuoglu, Tarkan; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.

    2009-01-01

    Objective To determine the correspondence between optic disc margins evaluated using disc photography (DP) and optical coherence tomography (OCT). Methods From May 1, 2005, through November 10, 2005, 17 healthy volunteers (17 eyes) had raster scans (180 frames, 501 samplings per frame) centered on the optic disc taken with stereo-optic DP and high-speed ultrahigh-resolution OCT (hsUHR-OCT). Two image outputs were derived from the hsUHR-OCT data set: an en face hsUHR-OCT fundus image and a set of 180 frames of cross-sectional images. Three ophthalmologists independently and in a masked, randomized fashion marked the disc margin on the DP, hsUHR-OCT fundus, and cross-sectional images using custom software. Disc size (area and horizontal and vertical diameters) and location of the geometric disc center were compared among the 3 types of images. Results The hsUHR-OCT fundus image definition showed a significantly smaller disc size than the DP definition (P<.001, mixed-effects analysis). The hsUHR-OCT cross-sectional image definition showed a significantly larger disc size than the DP definition (P<.001). The geometric disc center location was similar among the 3 types of images except for the y-coordinate, which was significantly smaller in the hsUHR-OCT fundus images than in the DP images. Conclusion The optic disc margin as defined by hsUHR-OCT was significantly different than the margin defined by DP. PMID:18195219

  19. Mechanical and optical behavior of a tunable liquid lens using a variable cross section membrane: modeling results

    NASA Astrophysics Data System (ADS)

    Flores-Bustamante, Mario C.; Rosete-Aguilar, Martha; Calixto, Sergio

    2016-03-01

    A lens containing a liquid medium and having at least one elastic membrane as one of its components is known as an elastic membrane lens (EML). The elastic membrane may have a constant or variable thickness. The optical properties of the EML change by modifying the profile of its elastic membrane(s). The EML formed of elastic constant thickness membrane(s) have been studied extensively. However, EML information using elastic membrane of variable thickness is limited. In this work, we present simulation results of the mechanical and optical behavior of two EML with variable thickness membranes (convex-plane membranes). The profile of its surfaces were modified by liquid medium volume increases. The model of the convex-plane membranes, as well as the simulation of its mechanical behavior, were performed using Solidworks® software; and surface's points of the deformed elastic lens were obtained. Experimental stress-strain data, obtained from a silicone rubber simple tensile test, according to ASTM D638 norm, were used in the simulation. Algebraic expressions, (Schwarzschild formula, up to four deformation coefficients, in a cylindrical coordinate system (r, z)), of the meridional profiles of the first and second surfaces of the deformed convex-plane membranes, were obtained using the results from Solidworks® and a program in the software Mathematica®. The optical performance of the EML was obtained by simulation using the software OSLO® and the algebraic expressions obtained in Mathematica®.

  20. International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.

  1. Model-based software engineering for an optical navigation system for spacecraft

    NASA Astrophysics Data System (ADS)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2017-09-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  2. Model-based software engineering for an optical navigation system for spacecraft

    NASA Astrophysics Data System (ADS)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2018-06-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  3. Automated laser spectrofluorimeter for monitoring of myocardial metabolism

    NASA Astrophysics Data System (ADS)

    Popov, A. Yu.; Salmin, V. V.; Fursov, A. A.; Stepanenko, A. V.; Sokolovich, A. G.; Salmina, A. B.; Rebenkova, A. A.; Makarov, R. A.; Provorov, A. S.

    2006-09-01

    Methods of optical biopsy have a series of advantages before other methods of clinical diagnostics. The high accuracy of received results enables registration even small change of concentration of substances, and the opportunity of remote registration makes methods optical biopsy by an optimum means for noninvasive methods of diagnostics in medicine. The method of the fluorescent analysis allows to investigate dynamics of changes of a functional condition of organs and tissue in norm and pathologies, called by the various factors (an inflammation, ischemia, degenerative changes). Bring the results of development of expiremental setup for the laser fluorescent analysis of physiological and functional condition of various organs and tissue of organism. In expiremental setup was used pulse UF nitric laser with length of wave generation = 337 nm. For delivery of radiation to tissue, and, also, collection of a radiation of fluorescence were used various optic fiber scheme. The expiremental setup includes automated tunable monochromator and ADC, receiving a signal from photomultiplier tube. Driving of all blocks and processing of results is realize on IBM-compatible computer with the appropriate software. Was used the synchronous detecting for reducing of a background signal. Myocard at surgical introoperation by an accompanied condition of sharp ischemia was researches on these expiremental setup. Spectrofluorimetric criteria of an estimation of a condition of viscus at peritonitis were development.

  4. Quantifying the movement of multiple insects using an optical insect counter

    USDA-ARS?s Scientific Manuscript database

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...

  5. An interface for simulating radiative transfer in and around volcanic plumes with the Monte Carlo radiative transfer model McArtim

    USGS Publications Warehouse

    Kern, Christoph

    2016-03-23

    This report describes two software tools that, when used as front ends for the three-dimensional backward Monte Carlo atmospheric-radiative-transfer model (RTM) McArtim, facilitate the generation of lookup tables of volcanic-plume optical-transmittance characteristics in the ultraviolet/visible-spectral region. In particular, the differential optical depth and derivatives thereof (that is, weighting functions), with regard to a change in SO2 column density or aerosol optical thickness, can be simulated for a specific measurement geometry and a representative range of plume conditions. These tables are required for the retrieval of SO2 column density in volcanic plumes, using the simulated radiative-transfer/differential optical-absorption spectroscopic (SRT-DOAS) approach outlined by Kern and others (2012). This report, together with the software tools published online, is intended to make this sophisticated SRT-DOAS technique available to volcanologists and gas geochemists in an operational environment, without the need for an indepth treatment of the underlying principles or the low-level interface of the RTM McArtim.

  6. The design of a small flow optical sensor of particle counter

    NASA Astrophysics Data System (ADS)

    Zhan, Yongbo; zhang, Jianwei; Zeng, Jianxiong; Li, Bin; Chen, Lu

    2018-01-01

    Based on the principle of Mie scattering, we design a small flow optical sensor of particle counter. Firstly, laser illumination system was simulated and designed by ZEMAX optical design software, and the uniform light intensity of photosensitive area was obtained. The gas circuit structure was also designed according to the related theory of fluid mechanics. Then, the method of combining with MIST scattering calculation software and geometric modeling was firstly used to design spherical reflection system, on the basis of the formula of object-image distance. Finally, the test was conducted after the optical sensor placed in self-designed pre-amplification and high-speed processing circuit. The test results show that the counting efficiency of 0.3 μm gear is above 70%, 0.5 μm gear and 1.0 μm gear are both reached more than 90%, and the dispersion coefficient of each gear is very nearly the same, compared with the standard machine of Kanomax 3886 under the particle spraying flow of 2.5SCFH, 3.0SCFH, 3.5SCFH.

  7. Stability of cosmetic emulsion containing different amount of hemp oil.

    PubMed

    Kowalska, M; Ziomek, M; Żbikowska, A

    2015-08-01

    The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  8. Photonic content-addressable memory system that uses a parallel-readout optical disk

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Ashok V.; Marchand, Philippe J.; Yayla, Gökçe; Esener, Sadik C.

    1995-11-01

    We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 \\times 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.

  9. co2amp: A software program for modeling the dynamics of ultrashort pulses in optical systems with CO 2 amplifiers

    DOE PAGES

    Polyanskiy, Mikhail N.

    2015-01-01

    We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.

  10. Hard- and software problems of spaced meteor observations by optical electronics

    NASA Technical Reports Server (NTRS)

    Shafiev, R. I.; Mukhamednazarov, S.; Ataev, A. SH.

    1987-01-01

    An optical electronic facility is being used for meteor observations along with meteor radars and astronomical TV. The main parts of the facility are cameras using UM-92 optical electronic image tubes. The three cascade optical electronic image tube with magnetic focusing has a 40 mm cathode and resolution in the center of up to 30 pairs of lines/mm. The photocathode is of a multislit S-20 type. For meteor spectra observations, replica gratings of 200 and 300 lines/mm are used as the dispersive element.

  11. A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography

    NASA Astrophysics Data System (ADS)

    Pierno, L.; Dispenza, M.; Secchi, A.; Fiorello, A.; Foglietti, V.

    2008-06-01

    We have designed and fabricated a lithium niobate tunable Bragg filter patterned by electron beam lithography and etched by reactive ion etching. Devices with 1 mm, 2 mm and 4 mm length and 360 and 1080 nm Bragg period, with 5 pm V-1 tuning efficiency, have been characterized. Some applications were identified. Optical simulation based on finite element model (FEM) software showing the optical filtering curve and the coupling factor dependence on the manufacturing parameter is reported. The tuning of the filter window position is electro-optically controlled.

  12. [An Introduction to A Newly-developed "Acupuncture Needle Manipulation Training-evaluation System" Based on Optical Motion Capture Technique].

    PubMed

    Zhang, Ao; Yan, Xing-Ke; Liu, An-Guo

    2016-12-25

    In the present paper, the authors introduce a newly-developed "Acupuncture Needle Manipulation Training-evaluation System" based on optical motion capture technique. It is composed of two parts, sensor and software, and overcomes some shortages of mechanical motion capture technique. This device is able to analyze the data of operations of the pressing-hand and needle-insertion hand during acupuncture performance and its software contains personal computer (PC) version, Android version, and Internetwork Operating System (IOS) Apple version. It is competent in recording and analyzing information of any ope-rator's needling manipulations, and is quite helpful for teachers in teaching, training and examining students in clinical practice.

  13. Optical design of a novel instrument that uses the Hartmann-Shack sensor and Zernike polynomials to measure and simulate customized refraction correction surgery outcomes and patient satisfaction

    NASA Astrophysics Data System (ADS)

    Yasuoka, Fatima M. M.; Matos, Luciana; Cremasco, Antonio; Numajiri, Mirian; Marcato, Rafael; Oliveira, Otavio G.; Sabino, Luis G.; Castro N., Jarbas C.; Bagnato, Vanderlei S.; Carvalho, Luis A. V.

    2016-03-01

    An optical system that conjugates the patient's pupil to the plane of a Hartmann-Shack (HS) wavefront sensor has been simulated using optical design software. And an optical bench prototype is mounted using mechanical eye device, beam splitter, illumination system, lenses, mirrors, mirrored prism, movable mirror, wavefront sensor and camera CCD. The mechanical eye device is used to simulate aberrations of the eye. From this device the rays are emitted and travelled by the beam splitter to the optical system. Some rays fall on the camera CCD and others pass in the optical system and finally reach the sensor. The eye models based on typical in vivo eye aberrations is constructed using the optical design software Zemax. The computer-aided outcomes of each HS images for each case are acquired, and these images are processed using customized techniques. The simulated and real images for low order aberrations are compared using centroid coordinates to assure that the optical system is constructed precisely in order to match the simulated system. Afterwards a simulated version of retinal images is constructed to show how these typical eyes would perceive an optotype positioned 20 ft away. Certain personalized corrections are allowed by eye doctors based on different Zernike polynomial values and the optical images are rendered to the new parameters. Optical images of how that eye would see with or without corrections of certain aberrations are generated in order to allow which aberrations can be corrected and in which degree. The patient can then "personalize" the correction to their own satisfaction. This new approach to wavefront sensing is a promising change in paradigm towards the betterment of the patient-physician relationship.

  14. SOFIA tracking image simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Charles R.; Gross, Michael A. K.

    2016-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) tracking camera simulator is a component of the Telescope Assembly Simulator (TASim). TASim is a software simulation of the telescope optics, mounting, and control software. Currently in its fifth major version, TASim is relied upon for telescope operator training, mission planning and rehearsal, and mission control and science instrument software development and testing. TASim has recently been extended for hardware-in-the-loop operation in support of telescope and camera hardware development and control and tracking software improvements. All three SOFIA optical tracking cameras are simulated, including the Focal Plane Imager (FPI), which has recently been upgraded to the status of a science instrument that can be used on its own or in parallel with one of the seven infrared science instruments. The simulation includes tracking camera image simulation of starfields based on the UCAC4 catalog at real-time rates of 4-20 frames per second. For its role in training and planning, it is important for the tracker image simulation to provide images with a realistic appearance and response to changes in operating parameters. For its role in tracker software improvements, it is vital to have realistic signal and noise levels and precise star positions. The design of the software simulation for precise subpixel starfield rendering (including radial distortion), realistic point-spread function as a function of focus, tilt, and collimation, and streaking due to telescope motion will be described. The calibration of the simulation for light sensitivity, dark and bias signal, and noise will also be presented

  15. The simulation study on optical target laser active detection performance

    NASA Astrophysics Data System (ADS)

    Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen

    2014-12-01

    According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.

  16. Report for 2011 from the Bordeaux IVS Analysis Center

    NASA Technical Reports Server (NTRS)

    Charlot, Patrick; Bellanger, Antoine; Bourda, Geraldine; Collioud, Arnaud; Baudry, Alain

    2012-01-01

    This report summarizes the activities of the Bordeaux IVS Analysis Center during the year 2011. The work focused on (i) regular analysis of the IVS-R1 and IVS-R4 sessions with the GINS software package; (ii) systematic VLBI imaging of the RDV sessions and calculation of the corresponding source structure index and compactness values; (iii) imaging of the sources observed during the 2009 International Year of Astronomy IVS observing session; and (iv) continuation of our VLBI observational program to identify optically-bright radio sources suitable for the link with the future Gaia frame. Also of importance is the enhancement of the IVS LiveWeb site which now comprises all IVS sessions back to 2003, allowing one to search past observations for session-specific information (e.g. sources or stations).

  17. Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine.

    PubMed

    Giovenzana, Valentina; Civelli, Raffaele; Beghi, Roberto; Oberti, Roberto; Guidetti, Riccardo

    2015-11-01

    The aim of this work was to test a simplified optical prototype for a rapid estimation of the ripening parameters of white grape for Franciacorta wine directly in field. Spectral acquisition based on reflectance at four wavelengths (630, 690, 750 and 850 nm) was proposed. The integration of a simple processing algorithm in the microcontroller software would allow to visualize real time values of spectral reflectance. Non-destructive analyses were carried out on 95 grape bunches for a total of 475 berries. Samplings were performed weekly during the last ripening stages. Optical measurements were carried out both using the simplified system and a portable commercial vis/NIR spectrophotometer, as reference instrument for performance comparison. Chemometric analyses were performed in order to extract the maximum useful information from optical data. Principal component analysis (PCA) was performed for a preliminary evaluation of the data. Correlations between the optical data matrix and ripening parameters (total soluble solids content, SSC; titratable acidity, TA) were carried out using partial least square (PLS) regression for spectra and using multiple linear regression (MLR) for data from the simplified device. Classification analysis were also performed with the aim of discriminate ripe and unripe samples. PCA, MLR and classification analyses show the effectiveness of the simplified system in separating samples among different sampling dates and in discriminating ripe from unripe samples. Finally, simple equations for SSC and TA prediction were calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Nuclear and Particle Physics Simulations: The Consortium of Upper-Level Physics Software

    NASA Astrophysics Data System (ADS)

    Bigelow, Roberta; Moloney, Michael J.; Philpott, John; Rothberg, Joseph

    1995-06-01

    The Consortium for Upper Level Physics Software (CUPS) has developed a comprehensive series of Nine Book/Software packages that Wiley will publish in FY `95 and `96. CUPS is an international group of 27 physicists, all with extensive backgrounds in the research, teaching, and development of instructional software. The project is being supported by the National Science Foundation (PHY-9014548), and it has received other support from the IBM Corp., Apple Computer Corp., and George Mason University. The Simulations being developed are: Astrophysics, Classical Mechanics, Electricity & Magnetism, Modern Physics, Nuclear and Particle Physics, Quantum Mechanics, Solid State, Thermal and Statistical, and Wave and Optics.

  19. NASA Tech Briefs, October 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: Control Architecture for Robotic Agent Command and Sensing; Algorithm for Wavefront Sensing Using an Extended Scene; CO2 Sensors Based on Nanocrystalline SnO2 Doped with CuO; Improved Airborne System for Sensing Wildfires; VHF Wide-Band, Dual-Polarization Microstrip-Patch Antenna; Onboard Data Processor for Change-Detection Radar Imaging; Using LDPC Code Constraints to Aid Recovery of Symbol Timing; System for Measuring Flexing of a Large Spaceborne Structure; Integrated Formation Optical Communication and Estimation System; Making Superconducting Welds between Superconducting Wires; Method for Thermal Spraying of Coatings Using Resonant-Pulsed Combustion; Coating Reduces Ice Adhesion; Hybrid Multifoil Aerogel Thermal Insulation; SHINE Virtual Machine Model for In-flight Updates of Critical Mission Software; Mars Image Collection Mosaic Builder; Providing Internet Access to High-Resolution Mars Images; Providing Internet Access to High-Resolution Lunar Images; Expressions Module for the Satellite Orbit Analysis Program Virtual Satellite; Small-Body Extensions for the Satellite Orbit Analysis Program (SOAP); Scripting Module for the Satellite Orbit Analysis Program (SOAP); XML-Based SHINE Knowledge Base Interchange Language; Core Technical Capability Laboratory Management System; MRO SOW Daily Script; Tool for Inspecting Alignment of Twinaxial Connectors; An ATP System for Deep-Space Optical Communication; Polar Traverse Rover Instrument; Expert System Control of Plant Growth in an Enclosed Space; Detecting Phycocyanin-Pigmented Microbes in Reflected Light; DMAC and NMP as Electrolyte Additives for Li-Ion Cells; Mass Spectrometer Containing Multiple Fixed Collectors; Waveguide Harmonic Generator for the SIM; Whispering Gallery Mode Resonator with Orthogonally Reconfigurable Filter Function; Stable Calibration of Raman Lidar Water-Vapor Measurements; Bimaterial Thermal Compensators for WGM Resonators; Root Source Analysis/ValuStream[Trade Mark] - A Methodology for Identifying and Managing Risks; Ensemble: an Architecture for Mission-Operations Software; Object Recognition Using Feature-and Color-Based Methods; On-Orbit Multi-Field Wavefront Control with a Kalman Filter; and The Interplanetary Overlay Networking Protocol Accelerator.

  20. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system

    NASA Astrophysics Data System (ADS)

    Ying, Jia-ju; Chen, Yu-dan; Liu, Jie; Wu, Dong-sheng; Lu, Jun

    2016-10-01

    The maladjustment of photoelectric instrument binocular optical axis parallelism will affect the observe effect directly. A binocular optical axis parallelism digital calibration system is designed. On the basis of the principle of optical axis binocular photoelectric instrument calibration, the scheme of system is designed, and the binocular optical axis parallelism digital calibration system is realized, which include four modules: multiband parallel light tube, optical axis translation, image acquisition system and software system. According to the different characteristics of thermal infrared imager and low-light-level night viewer, different algorithms is used to localize the center of the cross reticle. And the binocular optical axis parallelism calibration is realized for calibrating low-light-level night viewer and thermal infrared imager.

  1. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    NASA Astrophysics Data System (ADS)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  2. Java-Library for the Access, Storage and Editing of Calibration Metadata of Optical Sensors

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Kresse, W.

    2016-06-01

    The standardization of the calibration of optical sensors in photogrammetry and remote sensing has been discussed for more than a decade. Projects of the German DGPF and the European EuroSDR led to the abstract International Technical Specification ISO/TS 19159-1:2014 "Calibration and validation of remote sensing imagery sensors and data - Part 1: Optical sensors". This article presents the first software interface for a read- and write-access to all metadata elements standardized in the ISO/TS 19159-1. This interface is based on an xml-schema that was automatically derived by ShapeChange from the UML-model of the Specification. The software interface serves two cases. First, the more than 300 standardized metadata elements are stored individually according to the xml-schema. Secondly, the camera manufacturers are using many administrative data that are not a part of the ISO/TS 19159-1. The new software interface provides a mechanism for input, storage, editing, and output of both types of data. Finally, an output channel towards a usual calibration protocol is provided. The interface is written in Java. The article also addresses observations made when analysing the ISO/TS 19159-1 and compiles a list of proposals for maturing the document, i.e. for an updated version of the Specification.

  3. Analysis of Photogrammetry Data from ISIM Mockup

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Hill, Mike

    2007-01-01

    During ground testing of the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST), the ISIM Optics group plans to use a Photogrammetry Measurement System for cryogenic calibration of specific target points on the ISIM composite structure and Science Instrument optical benches and other GSE equipment. This testing will occur in the Space Environmental Systems (SES) chamber at Goddard Space Flight Center. Close range photogrammetry is a 3 dimensional metrology system using triangulation to locate custom targets in 3 coordinates via a collection of digital photographs taken from various locations and orientations. These photos are connected using coded targets, special targets that are recognized by the software and can thus correlate the images to provide a 3 dimensional map of the targets, and scaled via well calibrated scale bars. Photogrammetry solves for the camera location and coordinates of the targets simultaneously through the bundling procedure contained in the V-STARS software, proprietary software owned by Geodetic Systems Inc. The primary objectives of the metrology performed on the ISIM mock-up were (1) to quantify the accuracy of the INCA3 photogrammetry camera on a representative full scale version of the ISIM structure at ambient temperature by comparing the measurements obtained with this camera to measurements using the Leica laser tracker system and (2), empirically determine the smallest increment of target position movement that can be resolved by the PG camera in the test setup, i.e., precision, or resolution. In addition, the geometrical details of the test setup defined during the mockup testing, such as target locations and camera positions, will contribute to the final design of the photogrammetry system to be used on the ISIM Flight Structure.

  4. Computerized Liquid Crystal Phase Identification by Neural Networks Analysis of Polarizing Microscopy Textures

    NASA Astrophysics Data System (ADS)

    Karaszi, Zoltan; Konya, Andrew; Dragan, Feodor; Jakli, Antal; CPIP/LCI; CS Dept. of Kent State University Collaboration

    Polarizing optical microscopy (POM) is traditionally the best-established method of studying liquid crystals, and using POM started already with Otto Lehman in 1890. An expert, who is familiar with the science of optics of anisotropic materials and typical textures of liquid crystals, can identify phases with relatively large confidence. However, for unambiguous identification usually other expensive and time-consuming experiments are needed. Replacement of the subjective and qualitative human eye-based liquid crystal texture analysis with quantitative computerized image analysis technique started only recently and were used to enhance the detection of smooth phase transitions, determine order parameter and birefringence of specific liquid crystal phases. We investigate if the computer can recognize and name the phase where the texture was taken. To judge the potential of reliable image recognition based on this procedure, we used 871 images of liquid crystal textures belonging to five main categories: Nematic, Smectic A, Smectic C, Cholesteric and Crystal, and used a Neural Network Clustering Technique included in the data mining software package in Java ``WEKA''. A neural network trained on a set of 827 LC textures classified the remaining 44 textures with 80% accuracy.

  5. Distributed and Collaborative Software Analysis

    NASA Astrophysics Data System (ADS)

    Ghezzi, Giacomo; Gall, Harald C.

    Throughout the years software engineers have come up with a myriad of specialized tools and techniques that focus on a certain type of software analysissoftware analysis such as source code analysis, co-change analysis or bug prediction. However, easy and straight forward synergies between these analyses and tools rarely exist because of their stand-alone nature, their platform dependence, their different input and output formats and the variety of data to analyze. As a consequence, distributed and collaborative software analysiscollaborative software analysis scenarios and in particular interoperability are severely limited. We describe a distributed and collaborative software analysis platform that allows for a seamless interoperability of software analysis tools across platform, geographical and organizational boundaries. We realize software analysis tools as services that can be accessed and composed over the Internet. These distributed analysis services shall be widely accessible in our incrementally augmented Software Analysis Broker software analysis broker where organizations and tool providers can register and share their tools. To allow (semi-) automatic use and composition of these tools, they are classified and mapped into a software analysis taxonomy and adhere to specific meta-models and ontologiesontologies for their category of analysis.

  6. OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments

    NASA Astrophysics Data System (ADS)

    Rebuffi, Luca; Sanchez del Rio, Manuel

    2017-08-01

    The evolution of the hardware platforms, the modernization of the software tools, the access to the codes of a large number of young people and the popularization of the open source software for scientific applications drove us to design OASYS (ORange SYnchrotron Suite), a completely new graphical environment for modelling X-ray experiments. The implemented software architecture allows to obtain not only an intuitive and very-easy-to-use graphical interface, but also provides high flexibility and rapidity for interactive simulations, making configuration changes to quickly compare multiple beamline configurations. Its purpose is to integrate in a synergetic way the most powerful calculation engines available. OASYS integrates different simulation strategies via the implementation of adequate simulation tools for X-ray Optics (e.g. ray tracing and wave optics packages). It provides a language to make them to communicate by sending and receiving encapsulated data. Python has been chosen as main programming language, because of its universality and popularity in scientific computing. The software Orange, developed at the University of Ljubljana (SLO), is the high level workflow engine that provides the interaction with the user and communication mechanisms.

  7. Design-for-manufacture of gradient-index optical systems using time-varying boundary condition diffusion

    NASA Astrophysics Data System (ADS)

    Harkrider, Curtis Jason

    2000-08-01

    The incorporation of gradient-index (GRIN) material into optical systems offers novel and practical solutions to lens design problems. However, widespread use of gradient-index optics has been limited by poor correlation between gradient-index designs and the refractive index profiles produced by ion exchange between glass and molten salt. Previously, a design-for- manufacture model was introduced that connected the design and fabrication processes through use of diffusion modeling linked with lens design software. This project extends the design-for-manufacture model into a time- varying boundary condition (TVBC) diffusion model. TVBC incorporates the time-dependent phenomenon of melt poisoning and introduces a new index profile control method, multiple-step diffusion. The ions displaced from the glass during the ion exchange fabrication process can reduce the total change in refractive index (Δn). Chemical equilibrium is used to model this melt poisoning process. Equilibrium experiments are performed in a titania silicate glass and chemically analyzed. The equilibrium model is fit to ion concentration data that is used to calculate ion exchange boundary conditions. The boundary conditions are changed purposely to control the refractive index profile in multiple-step TVBC diffusion. The glass sample is alternated between ion exchange with a molten salt bath and annealing. The time of each diffusion step can be used to exert control on the index profile. The TVBC computer model is experimentally verified and incorporated into the design- for-manufacture subroutine that runs in lens design software. The TVBC design-for-manufacture model is useful for fabrication-based tolerance analysis of gradient-index lenses and for the design of manufactureable GRIN lenses. Several optical elements are designed and fabricated using multiple-step diffusion, verifying the accuracy of the model. The strength of multiple-step diffusion process lies in its versatility. An axicon, imaging lens, and curved radial lens, all with different index profile requirements, are designed out of a single glass composition.

  8. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.

    2004-11-01

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner ismore » further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.« less

  9. Non-imaging ray-tracing for sputtering simulation with apodization

    NASA Astrophysics Data System (ADS)

    Ou, Chung-Jen

    2018-04-01

    Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.

  10. Study of Lead as a Source X-ray Radiation Protection with an Analysis Grey Level Image

    NASA Astrophysics Data System (ADS)

    Susilo; Rahma, I. N.; Mosik; Masturi

    2017-04-01

    X-ray utilization in the medical field still has a potential danger for the human. This occurs when exposure to x-ray radiation received exceeds the dose limit value. It required a radiation shielding to prevent the hazard, and lead is one of the metals usually used as x-ray radiation shield. This work aims to determine the metallic lead properties to find out of the step wedge lead radiograph image. The instruments used are the plane x-ray, digital radiography system and personal computer installed by MATLAB, while the material is step wedge lead. The image of radiograph was analysed using GUI applications on MATLAB software to determine the values of grey level from the image and the optical density of the radiograph image. The results showed the greater optical density, the higher the image contrast, and the value of optical density in the image is inversely proportional to the voltage x-ray since the value of grey level at high voltage is smaller than that of at low voltage.

  11. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinilhaq,; Widita, Rena

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less

  12. Design of apochromatic lens with large field and high definition for machine vision.

    PubMed

    Yang, Ao; Gao, Xingyu; Li, Mingfeng

    2016-08-01

    Precise machine vision detection for a large object at a finite working distance (WD) requires that the lens has a high resolution for a large field of view (FOV). In this case, the effect of a secondary spectrum on image quality is not negligible. According to the detection requirements, a high resolution apochromatic objective is designed and analyzed. The initial optical structure (IOS) is combined with three segments. Next, the secondary spectrum of the IOS is corrected by replacing glasses using the dispersion vector analysis method based on the Buchdahl dispersion equation. Other aberrations are optimized by the commercial optical design software ZEMAX by properly choosing the optimization function operands. The optimized optical structure (OOS) has an f-number (F/#) of 3.08, a FOV of φ60  mm, a WD of 240 mm, and a modulated transfer function (MTF) of all fields of more than 0.1 at 320  cycles/mm. The design requirements for a nonfluorite material apochromatic objective lens with a large field and high definition for machine vision detection have been achieved.

  13. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  14. Non-imaging ray-tracing for sputtering simulation with apodization

    NASA Astrophysics Data System (ADS)

    Ou, Chung-Jen

    2018-06-01

    Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.

  15. Metrological analysis of the human foot: 3D multisensor exploration

    NASA Astrophysics Data System (ADS)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  16. Technique for writing of fiber Bragg gratings over or near preliminary formed macro-structure defects in silica optical fibers

    NASA Astrophysics Data System (ADS)

    Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kazakov, Vadim S.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.

    2017-04-01

    This work presents method for performing precision macro-structure defects "tapers" and "up-tapers" written in conventional silica telecommunication multimode optical fibers by commercially available field fusion splicer with modified software settings and following writing fiber Bragg gratings over or near them. We developed technique for macrodefect geometry parameters estimation via analysis of photo-image performed after defect writing and displayed on fusion splicer screen. Some research results of defect geometry dependence on fusion current and fusion time values re-set in splicer program are represented that provided ability to choose their "the best" combination. Also experimental statistical researches concerned with "taper" and "up-taper" diameter stability as well as their insertion loss values during their writing under fixed corrected splicer program parameters were performed. We developed technique for FBG writing over or near macro-structure defect. Some results of spectral response measurements produced for short-length samples of multimode optical fiber with fiber Bragg gratings written over and near macro-defects prepared by using proposed technique are presented.

  17. Derivation of photometric redshifts for the 3XMM catalogue

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Corral, A.; Mountrichas, G.; Ruiz, A.; Masoura, V.; Fotopoulou, S.; Watson, M.

    2017-10-01

    We present the results from our ESA Prodex project that aims to derive photometric redshifts for the 3XMM catalogue. The 3XMM DR-6 offers the largest X-ray survey, containing 470,000 unique sources over 1000 sq. degrees. We cross-correlate the X-ray positions with optical and near-IR catalogues using Bayesian statistics. The optical catalogue used so far is the SDSS while currently we are employing the recently released PANSTARRS catalogue. In the near IR we use the Viking, VHS, UKIDS surveys and also the WISE W1 and W2 filters. The estimation of photometric redshifts is based on the TPZ software. The training sample is based on X-ray selected samples with available SDSS spectroscopy. We present here the results for the 40,000 3XMM sources with available SDSS counterparts. Our analysis provides very reliable photometric redshifts with sigma(mad)=0.05 and a fraction of outliers of 8% for the optically extended sources. We discuss the wide range of applications that are feasible using this unprecedented resource.

  18. Preparation and Characterization of Flexible Substrate Material from Phenyl-Thiophene-2-Carbaldehyde Compound.

    PubMed

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md

    2016-05-11

    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.

  19. GLOBECOM '85 - Global Telecommunications Conference, New Orleans, LA, December 2-5, 1985, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Various papers on global telecommunications are presented. The general topics addressed include: multiservice integration with optical fibers, multicompany owned telecommunication networks, softworks quality and reliability, advanced on-board processing, impact of new services and systems on operations and maintenance, analytical studies of protocols for data communication networks, topics in packet radio networking, CCITT No. 7 to support new services, document processing and communication, antenna technology and system aspects in satellite communications. Also considered are: communication systems modelling methodology, experimental integrated local area voice/data nets, spread spectrum communications, motion video at the DS-0 rate, optical and data communications, intelligent work stations, switch performance analysis, novel radio communication systems, wireless local networks, ISDN services, LAN communication protocols, user-system interface, radio propagation and performance, mobile satellite system, software for computer networks, VLSI for ISDN terminals, quality management, man-machine interfaces in switching, and local area network performance.

  20. Entangled quantum key distribution over two free-space optical links.

    PubMed

    Erven, C; Couteau, C; Laflamme, R; Weihs, G

    2008-10-13

    We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.

Top