Science.gov

Sample records for optical assay technology

  1. SNAP Assay Technology.

    PubMed

    O'Connor, Thomas P

    2015-12-01

    The most widely used immunoassay configuration is the enzyme-linked immunosorbent assay (ELISA) because the procedure produces highly sensitive and specific results and generally is easy to use. By definition, ELISAs are immunoassays used to detect a substance (typically an antigen or antibody) in which an enzyme is attached (conjugated) to one of the reactants and an enzymatic reaction is used to amplify the signal if the substance is present. Optimized ELISAs include several steps that are performed in sequence using a defined protocol that typically includes application of sample and an enzyme-conjugated antibody or antigen to an immobilized reagent, followed by wash and enzyme reaction steps. The SNAP assay is an in-clinic device that performs each of the ELISA steps in a timed sequential fashion with little consumer interface. The components and mechanical mechanism of the assay device are described. Detailed descriptions of features of the assay, which minimize nonspecific binding and enhance the ability to read results from weak-positive samples, are given. Basic principles used in assays with fundamentally different reaction mechanisms, namely, antigen-detection, antibody-detection, and competitive assays are given. Applications of ELISA technology, which led to the development of several multianalyte SNAP tests capable of testing for up to 6 analytes using a single-sample and a single-SNAP device are described.

  2. Optical assay technology for safeguards. Quarterly report, January 1--March 31, 1992

    SciTech Connect

    Edelson, M.C.; Lee, S.C.; Lipert, R.J.; Murray, G.M.; Schuler, R.A.; Weeks, S.J.; Wang, Z.M.

    1993-05-01

    Research conducted in the Ames Laboratory Nuclear Safeguards and Security Program during the period January 1, 1992 to March 31, 1992 is reviewed. Work in applying optical spectroscopy to the demonstration of actinides and related elements in gas phase is discussed. The application of diode lasers to the measurement of an actinide (U) and the rate-{pi}earth elements by optogalvanic spectrometry is discussed.

  3. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  4. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  5. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  6. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  7. Optical Disk Technology.

    ERIC Educational Resources Information Center

    Abbott, George L.; And Others

    1987-01-01

    This special feature focuses on recent developments in optical disk technology. Nine articles discuss current trends, large scale image processing, data structures for optical disks, the use of computer simulators to create optical disks, videodisk use in training, interactive audio video systems, impacts on federal information policy, and…

  8. Polymer optical motherboard technology

    NASA Astrophysics Data System (ADS)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  9. Optical fiber hybridization assay fluorosensor

    NASA Astrophysics Data System (ADS)

    Pilevar, Saeed; Davis, Christopher C.; Hodzic, Vildana; Portugal, Frank

    1999-04-01

    The present work describes an all-fiber hybridization assay sensor that relies on the evanescent field excitation of fluorescence from surface-bound fluorophores. The evanescent field is made accessible through the use of a long adiabatically tapered single-mode fiber probe. A semiconductor laser operating at 785 nm wavelength is used in a pulsed mode to excite fluorescence in the tapered region of a fiber probe using the near-infrared fluorophore IRD 41. We have carried out real-time hybridization tests for IRD 41-labeled oligonucleotide at various probe concentrations binding to complementary oligonucleotide cross-linked to the tapered fiber surface. Short oligonucleotides (20-mer) bound to the fiber surface have been used to detect near-infrared dye labeled complementary sequences at sub-nanomolar levels. Sandwich assays with total RNA were conducted to examine the capability of the biosensor for detecting bacterial cells using rRNA as the target. The results indicate that this fluorosensor is capable of detecting H. pylori in a sandwich assay at picomolar concentrations.

  10. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  11. Optical assay for biotechnology and clinical diagnosis.

    PubMed

    Moczko, Ewa; Cauchi, Michael; Turner, Claire; Meglinski, Igor; Piletsky, Sergey

    2011-08-01

    In this paper, we present an optical diagnostic assay consisting of a mixture of environmental-sensitive fluorescent dyes combined with multivariate data analysis for quantitative and qualitative examination of biological and clinical samples. The performance of the assay is based on the analysis of spectrum of the selected fluorescent dyes with the operational principle similar to electronic nose and electronic tongue systems. This approach has been successfully applied for monitoring of growing cell cultures and identification of gastrointestinal diseases in humans.

  12. Digital Optical Circuit Technology

    NASA Technical Reports Server (NTRS)

    Dove, B. L. (Editor)

    1985-01-01

    The Proceedings for the 48th Meeting of the AGARD Avionics Panel contain the 18 papers presented a Technical Evaluation Report, and discussions that followed the presentations of papers. Seven papers were presented in the session devoted to optical bistability. Optical logic was addressed by three papers. The session on sources, modulators and demodulators presented three papers. Five papers were given in the final session on all optical systems. The purpose of this Specialists' Meeting was to present the research and development status of digital optical circuit technology and to examine its relevance in the broad context of digital processing, communication, radar, avionics and flight control systems implementation.

  13. Rewritable optical disk technologies

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2000-11-01

    The two mainstream technologies for rewritable optical data storage are based on magneto-optical (MO) and phase-change (PC) media. In both cases a focused laser beam is used to raise the temperature of the medium beyond a certain critical temperature (i.e., melting and crystallization temperatures in the case of PC, and the Curie temperature in the case of MO) for writing, erasure, and overwriting of data. The readout of information from these media relies on the change of reflectivity of the medium (PC), or the effect of the medium on the state of polarization of the laser beam (MO). The performance of these data storage systems is characterized by the storage density of the media, achievable data rates during recording and readout, longevity, reliability, and cost of the finished products. These performance criteria in turn are determined by a host of physical and technological factors, among them: (1) Wavelength of the available semiconductor laser diodes; (2) Type of optics used in shaping the laser beam and confining it to sub-micron regions (i.e., conventional optics, near-field optics, flying lasers, integrated optics, etc.); (3) Availability of one- or two- dimensional arrays of lasers and the corresponding optics; (4) Miniature magnetic heads for thermally-assisted writing (inductive) and magneto-resistive readout; (5) Adaptive optics for beam-shaping and/or polarization control; (6) Availability of low-noise media that can deliver large readout signals; (7) Advanced signal processing techniques (both optical and electronic); (8) Multi-layer recording on stacked layers of media; (9) Novel encoding/decoding schemes for efficient use of available space on the media; (10) Mass-production of flat, rigid, low-noise patterned substrates (plastic or glass); (11) Multi-level recording. We discuss the present state of the art in optical data storage, describe the potentials and pitfalls of the existing technologies, and draw conclusions about the future of this

  14. Optical fuzing technology

    NASA Astrophysics Data System (ADS)

    von der Lippe, Christian M.; Liu, J. Jiang

    2006-05-01

    Advanced optical fuze (OF) technology based on high-performance optoelectronic sensor is developed for munitions applications. The compact and robust design of the OF employed high-power vertical-cavity surface-emitting lasers (VCSELs), the metal-semiconductor-metal photodetectors, SiGe ASIC driver, miniature optics, and the corresponding electronic signal processors. Mounted on the front of the projectile, the laser transmitter sends out a highly collimated beam that is amplitude modulated with a chirped RF signal. The reflected optical signal from the target is picked up by the photoreceiver on the projectile which also has its electrical bias modulated at the same time-dependent operational frequency as the transmitted optical signal. The on-board signal processor heterodynes both transmitted and the delayed optical waveforms and generates an intermediate frequency corresponding to the time delay due to the travel time of the light. Further measurement of the mixed signals yields directly the range information of the target.

  15. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  16. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  17. Advanced optical fuzing technology

    NASA Astrophysics Data System (ADS)

    von der Lippe, Christian M.; Liu, J. Jiang

    2005-09-01

    We are developing a robust and compact photonic proximity sensor for munition applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The photonic component development exploits pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies employed in the optical fuze design are vertical cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, and miniature lenses optics. This work will culminate in a robust, fully integrated, g-hardened component design suitable for proximity fuzing applications. This compact sensor will replace costly assemblies that are based on discrete lasers, photodetectors, and bulk optics. It will be mass manufacturable and impart huge savings for such applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  18. Overview of the latest nondestructive assay technology

    SciTech Connect

    Geist, William H; Santi, Peter A; Swinhoe, Martyn T

    2009-01-01

    Nondestructive Assay (NDA) techniques are an important tool for the safeguarding of nuclear materials. NDA techniques are used by inspectors from both domestic agencies and international agencies such as the International Atomic Energy Agency as well as site level nuclear material management programs to verify that inventories of nuclear materials. This technology has been in development for over 40 years and significant improvements in detector capabilities, electronics processing and data analysis has lead to new detection capabilities and greatly improved quantification of nuclear materials. Many of the improvements over the last decade have resulted from improved computing power. This has lead to the ability to collect and analyze data in ways not possible only years ago. This poster will present some of the improvements of nondestructive assay technologies over the past several years and the implementation of these technologies in nuclear safeguards programs.

  19. Large Optics Technology.

    DTIC Science & Technology

    1986-05-22

    EEEEEEEEEEmhEE SENSEffl -2-5 12" 110111111 LLLo 111M1. 2 15 .1 111-= NATIONAL BUREAU OF S Mouopy *9sO9u TESI , C N LARGE OPTICS TECHNOLOGY FINAL...Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1981 !mw ’(’* 17 ABSTRACT The mirrors used in high energy laser systems...SCIENCES (GRADUATE) In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1982

  20. NGST Optics Technology Program

    NASA Astrophysics Data System (ADS)

    Bilbro, J. W.

    1997-12-01

    In September 1993, the Association of Universities for Research in Astronomy appointed the HST & Beyond Committee to study possible missions for the first Decades of the twenty-first century. This was undertaken at the behest of the Space Telescope Institute with support from the National Aeronautics and Space Administration. Among the recommendations of this committee, was that an IR optimized observatory of 4 meters or larger diameter be developed. With support from the Office of Space Science at NASA Headquarters, the Goddard Space Flight Center (GSFC) and the Space Telescope Science Institute (STScI) began a feasibility study for the "Next Generation Space Telescope"(NGST). This paper discusses the optics technology program which has been implemented as a part of this study. The program seeks to push the boundaries of the current state-of-the-art while at the same time maintaining rational and achievable goals. The program has two primary parts, the first involves two demonstrations to produce 1.5m diameter mirrors that have areal densities of under 15 kilograms per square meter. This program has two participants. The University of Arizona and Composite Optics Inc. The second part of the program explores alternative material materials on a smaller scale. These efforts include: Electroform nickel (Marshall Space Flight Center), Chemical Vapor Deposition Silicon Carbide (Morton International), Single Crystal Silicon (Schafer), Carbon Fiber Reinforced Silicon Carbide (IABG & SSG), Composites (Composite Optics Inc.), pyrolyzed graphite (Ultramet), reaction bonded Silicon Carbide (Xinetics). A competitively awarded contract for a half meter diameter ultra-lightweight beryllium mirror is planned for the fall of 97 and techniques for beryllium replication are in the process of being investigated. Techniques for lightweighting glass is being investigated using waterjets at Waterjet Technology Inc.

  1. Optical Computers and Space Technology

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  2. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  3. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  4. Developing optic technologies in Belarus

    NASA Astrophysics Data System (ADS)

    Rubanov, Alexander S.; Shkadarevich, Alexei P.

    2001-03-01

    In this work we give a retrospective analysis of the development of optical technologies in Belarus. In the post-war period a great scientific and technological potential has been built up in this sphere, highly skilled specialist have been trained and prestigious scientific and technical schools have appeared. Belarusian multiprofile optical industry is noticed to be capable of producing not only the materials and equipment for optical production but also optical goods of the highest level of complication. The characteristics of cosmic photoequipment, photogrammetric and cinetheodolite techniques, a variety of laser devices and optical goods for civic purposes are given as an example. The instances demonstrating the realization of unique optical projects are considered as well. High quality of Belarusian optical production makes it be much in demand in Russia, Japan, USA, Germany, France, China, Korea, Sweden, Spain, England, United Arab Emirates and other countries.

  5. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  6. Optical Storage Technology Subgroup (FIMUG)

    DTIC Science & Technology

    1990-04-01

    PROCUREMENT INSTRUMENT IDEyTiFiCAT,ON NUMBER ORGANIZATION (If applicable) US Army Corps of Engineers I 8c. ADDRESS (Citv. State, and ZIP Code) I0 SOURCE OF... Engineering , and Automation) are considered in relation to the current level of optical technology, and options for the US Army Corps of Engi- neers are... Engineer - ing, and Automation are provided in the report. Conclusions General conclusions are as follow: a. The use of optical storage technologies can

  7. Further comparison of primary hit identification by different assay technologies and effects of assay measurement variability.

    PubMed

    Wu, Xiang; Sills, Matthew A; Zhang, Ji-Hu

    2005-09-01

    High-throughput screening (HTS) has grown rapidly in the past decade, with many advances in new assay formats, detection technologies, and laboratory automation. Recently, several studies have shown that the choice of assay technology used for the screening process is particularly important and can yield quite different primary screening outcomes. However, because the screening assays in these previous studies were performed in a single-point determination, it is not clear to what extent the difference observed in the screening results between different assay technologies is attributable to inherent assay variability and day-to-day measurement variation. To address this question, a nuclear receptor coactivator recruitment assay was carried out in 2 different assay formats, namely, AlphaScreen and time-resolved fluorescence resonance energy transfer, which probed the same biochemical binding events but with different detection technologies. For each assay format, 4 independent screening runs in a typical HTS setting were completed to evaluate the run-to-run screening variability. These multiple tests with 2 assay formats allow an unambiguous comparison between the discrepancies of different assay formats and the effects of the variability of assay and screening measurements on the screening outcomes. The results provide further support that the choice of assay format or technology is a critical factor in HTS assay development.

  8. Optical Fiber Technology In Medicine

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryazard S.

    1986-01-01

    A digest of applications of optical fibre technology in biology and medicine is presented. We describe the topic from several main (according to our opinion) points of view, namely: place of optical fibre and some kinds of optoelectronic equipment among other optical biomedical apparatus, requirements imposed by biomedical environments on the construction of apparatus, possible areas of applications, main confinements of applications and further development. We present here our arbitrary understanding of directions of development of debated field. The bibliography of this problem is quoted and some works carried in this country are emphasized.

  9. Grazing Incidence Optics Technology

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Smith, W. Scott; Gubarev, Mikhail; McCracken, Jeff

    2015-01-01

    This project is to demonstrate the capability to directly fabricate lightweight, high-resolution, grazing-incidence x-ray optics using a commercially available robotic polishing machine. Typical x-ray optics production at NASA Marshall Space Flight Center (MSFC) uses a replication process in which metal mirrors are electroformed on to figured and polished mandrels from which they are later removed. The attraction of this process is that multiple copies can be made from a single master. The drawback is that the replication process limits the angular resolution that can be attained. By directly fabricating each shell, errors inherent in the replication process are removed. The principal challenge now becomes how to support the mirror shell during all aspects of fabrication, including the necessary metrology to converge on the required mirror performance specifications. This program makes use of a Zeeko seven-axis computer-controlled polishing machine (see fig. 1) and supporting fabrication, metrology, and test equipment at MSFC. The overall development plan calls for proof-of-concept demonstration with relatively thick mirror shells (5-6 mm, fig. 2) which are straightforward to support and then a transition to much thinner shells (2-3 mm), which are an order of magnitude thinner than those used for Chandra. Both glass and metal substrates are being investigated. Currently, a thick glass shell is being figured. This has enabled experience to be gained with programming and operating the polishing machine without worrying about shell distortions or breakage. It has also allowed time for more complex support mechanisms for figuring/ polishing and metrology to be designed for the more challenging thinner shells. These are now in fabrication. Figure 1: Zeeko polishing machine.

  10. A novel optical tuning technology

    NASA Astrophysics Data System (ADS)

    Miron, Nicolae

    2007-02-01

    A novel optical tuning technology based on new non-resonant interferometer (Optune interferometer) is described. This interferometer has a totally reflective layer either parallel with a partially reflective layer or tilted with a small angle, with an adjustable air gap between them. An input fiber optic collimator delivers a free space collimated beam that is incident first on the totally reflective layer at a small incidence angle. This beam bounces many times between the two reflective layers. An output fiber optic collimator collects all the beams going through the partially reflective layer making them to interfere at the entrance aperture of the output fiber. The optical configuration has no resonant frequencies. A broadband signal at the input is available at the output as a comb with even spacing. Any arbitrary wavelength can be selected by adjusting accurately the gap size. Tuning across 90 nm range could require less than 10 μm change of the gap size. Some properties of Optune interferometer are: 240 nm tuning range, no tuning holes, 0.2 ms / 100 nm tuning speed, 1 pm tuning accuracy, 0.15 nm bandwidth, 1 dB insertion loss, 45 dB contrast, 0.2 dB flatness, 0.15 dB polarization dependent loss. Optune interferometer can be used either for filtering or for generating optical wavelengths in a broad range of applications such as optical monitoring of structures (FBG and Brillouin technologies), and in optical communications. U.S. Patent No. 7,002,696 covers Optune interferometer and also optical tuning technology based on it.

  11. Basics of Videodisc and Optical Disk Technology.

    ERIC Educational Resources Information Center

    Paris, Judith

    1983-01-01

    Outlines basic videodisc and optical disk technology describing both optical and capacitance videodisc technology. Optical disk technology is defined as a mass digital image and data storage device and briefly compared with other information storage media including magnetic tape and microforms. The future of videodisc and optical disk is…

  12. A quantitative study of optical mapping surfaces by atomic force microscopy and restriction endonuclease digestion assays.

    PubMed

    Reed, J; Singer, E; Kresbach, G; Schwartz, D C

    1998-05-15

    Many new techniques in biomolecular chemistry and genomic analysis require the immobilization of molecular reagents on specially prepared surfaces. However, the process of molecular fixation often interferes with or precludes the use of standard in vitro biochemical assays. Optical mapping is an emergent technology for genomic analysis which relies on the biochemical activity of DNA fixed to silanized glass surfaces. Optical mapping surfaces have been shown to be compatible with restriction endonucleases and a variety of DNA polymerases. The essential properties of biochemically active surfaces are poorly understood in most of the current technologies which utilize molecular fixation, including optical mapping. The purpose of this study is to use the powerful technique of atomic force microscopy, in combination with informative enzymatic assays, to correlate biochemical activity with microscopic surface structure. The results presented provide meaningful insight into the effect of surface preparation on the biochemical accessibility of surface-bound molecules. Novel analysis which may facilitate the automation of optical mapping is presented.

  13. Optical technology for flight control systems

    NASA Technical Reports Server (NTRS)

    Mayanagi, M.

    1986-01-01

    Optical applications to the flight control system including optical data bus, sensors, and transducers are analyzed. Examples of optical data bus include airborne light optical fiber technology (ALOFT), F-5E, YA-7D, MIL-STD-1553 fiber optic data bus and NAL-optic data bus. This NAL-optic data bus is applied to STOL, and its characteristics are stressed. Principles and advantages of optical pulse-digital transducers are discussed.

  14. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  15. Expert system technology for nondestructive waste assay

    SciTech Connect

    Becker, G.K.; Determan, J.C.

    1998-07-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications.

  16. Optical Backplane Interconnect Technology (OBIT)

    NASA Technical Reports Server (NTRS)

    Hammer, J. M.

    1988-01-01

    We describe and analyze a novel approach to implementing an Optical Backplane Interconnect Technology (OBIT) that is capable of optically connecting any row of a 32x32 backplane array to any row of a second 32x32 array. Each backplane array is formed monolithically on a wafer. The technology is based on the use of Grating Surface Emitting (GSE) waveguides formed on a wafer containing quantum-well and separate confinement waveguide layers. These layers are used for transverse guiding, gain, modulation, detection, and for the formation of wavelength tunable distributed-Bragg reflector lasers. The required surface structures are formed photolithographically. The GSE waveguides act as efficient antennae that radiate light at angles selected by tuning the wavelength of the lasers. The same waveguides may be used as the receiving antennae when the array is used in the receiving mode. Thus, wavelength tuning is used to direct each row of the transmitting array to the desired row of the receiving array. In summary: The optical backplane array will have the following characteristics: Any row of a 32x32 GSE array may be optically connected to any row of a second 32x32 array. Only one switch decision is required to switch 32 parallel connections to any one of 32 positions. Each monolithic array can be used as both transmitter and receiver by switching the bias on the quantum-well switch-detectors. Separate transmitting and receiving structures could be provided for duplex operation. For a bit error rate of 10 sup 9 at 100-MHz data rate, a required laser power of 12 mW is calculated based on an estimated total optical loss of 40 dB.

  17. Monoclonal antibody technologies and rapid detection assays

    USDA-ARS?s Scientific Manuscript database

    Novel methodologies and screening strategies will be outlined on the use of hybridoma technology for the selection of antigen specific monoclonal antibodies. The development of immunoassays used for diagnostic detection of prions and bacterial toxins will be discussed and examples provided demonstr...

  18. Fiber-optic technology review

    SciTech Connect

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 ..mu..m and development of wavelengths multiplexers for simultaneous system operation at several wavelengths.

  19. Dynamic optical tweezers based assay for monitoring early drug resistance

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojing; Zhang, Yuquan; Min, Changjun; Zhu, Siwei; Feng, Jie; Yuan, X.-C.

    2013-06-01

    In this letter, a dynamic optical tweezers based assay is proposed and investigated for monitoring early drug resistance with Pemetrexed-resistant non-small cell lung cancer (NSCLC) cell lines. The validity and stability of the method are verified experimentally in terms of the physical parameters of the optical tweezers system. The results demonstrate that the proposed technique is more convenient and faster than traditional techniques when the capability of detecting small variations of the response of cells to a drug is maintained.

  20. Optical Technology: Interacting with Traditional Systems.

    ERIC Educational Resources Information Center

    McConnell, Karen

    1987-01-01

    Reviews optical technology products currently on the market, including their storage capacities, formats and uses, and outlines the benefits of integrating optical storage devices with online databases. A description of the HAYSTACK system is offered as a model of optical technology for library applications. A suggested reading list is provided.…

  1. Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays.

    PubMed

    Aslan, Kadir; Geddes, Chris D

    2005-12-15

    We describe an exciting assay platform technology that promises to fundamentally address two underlying physical constraints of modern assays and immunoassays, namely, assay sensitivity and rapidity. By combining the use of metal-enhanced fluorescence with low-power microwave heating, we can indeed significantly increase the sensitivity of surface assays as well as >95 % kinetically complete the assay within a few seconds. Subsequently, this new technology promises to fundamentally change the way we currently employ immunoassays in clinical medicine. This new model platform system can be potentially applied to many other important assays, such as to the clinical assessment of myoglobin, where both assay speed and sensitivity is paramount for the assessment and treatment of acute myocardial infarction. To demonstrate the utility of microwave-accelerated metal-enhanced fluorescence (MAMEF), we show that a simple protein-based assay system can be optically amplified approximately 10-fold by using silver nanostructures, while being kinetically complete in less than 20 s. This new platform approach is subsequently over 10-fold more sensitive and approximately 90 times faster than a control assay that operates both at room temperature and without the use of metal-enhanced fluorescence. Finally, we show that low-power heating by microwaves in our model system does not denature proteins, as evidenced by no protein structural changes, probed by fluorescence resonance energy transfer.

  2. Ultrasonic precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  3. IC-Compatible Technologies for Optical MEMS

    SciTech Connect

    Krygowski, T.W.; Sniegowski, J.J.

    1999-04-30

    Optical Micro Electro Mechanical Systems (Optical MEMS) Technology holds the promise of one-day producing highly integrated optical systems on a common, monolithic substrate. The choice of fabrication technology used to manufacture Optical MEMS will play a pivotal role in the size, functionality and ultimately the cost of optical Microsystems. By leveraging the technology base developed for silicon integrated circuits, large batches of routers, emitters, detectors and amplifiers will soon be fabricated for literally pennies per part. In this article we review the current status of technologies used for Optical MEMS, as well as fabrication technologies of the future, emphasizing manufacturable surface micromachining approaches to producing reliable, low-cost devices for optical communications applications.

  4. Optical technology in medicine and biology: Introduction

    NASA Astrophysics Data System (ADS)

    Burns, Stephen A.; Ediger, Marwood N.; Richards-Kortum, Rebecca R.

    1996-07-01

    This feature issue on Optical Technology in Medicine and Biology is the inaugural feature issue for a new section of Applied Optics devoted to the application of advanced optical techniques to problems in biology, medicine, and biotechnology. Although Applied Optics has always been open to research in these areas, the Optical Society's board of editors decided that the importance of this type of research merited a more prominent and focused presentation. As a result the Optical Technology division of Applied Optics was renamed the Optical Technology and Biomedical Optics division, and four new members were appointed to the Applied Optics editorial board. In addition, a call for papers was issued for an inaugural feature issue. The papers appearing in the current issue are those that were submitted in response to that call for papers and that passed the rite of peer review. The quality and breadth of the papers demonstrate the wisdom of the society's decision. We have important contributions affecting such diverse areas as biologic imaging, drug delivery, tissue optics, and laser surgery. In addition, Applied Optics has seen a sharp increase in the number of regular submissions involving biomedical optics, and the quality and breadth of these papers also bode well for the future of the publication. In addition there is already another joint Applied Optics/Journal of the Optical Society of America A Feature Issue in process, entitled Diffusing Photons in Turbid Media, scheduled for publication in January 1997. We invite you to read the papers and to participate in the future of Biomedical Optics and Optical Biotechnology by submitting manuscripts for review by your peers. We thank the OSA board of editors for this opportunity, and we encourage our colleagues to submit their papers directly to the Optical Society in the future and to share ideas and thoughts on this new area of Applied Optics.

  5. Optical technologies for intraoperative neurosurgical guidance.

    PubMed

    Valdés, Pablo A; Roberts, David W; Lu, Fa-Ke; Golby, Alexandra

    2016-03-01

    Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.

  6. Optical technologies for intraoperative neurosurgical guidance

    PubMed Central

    Valdés, Pablo A.; Roberts, David W.; Lu, Fa-Ke; Golby, Alexandra

    2016-01-01

    Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light–tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery. PMID:26926066

  7. A Review of Optical NDT Technologies

    PubMed Central

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045

  8. A review of optical NDT technologies.

    PubMed

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress.

  9. Optical Assay of Erythrocyte Function in Banked Blood

    NASA Astrophysics Data System (ADS)

    Bhaduri, Basanta; Kandel, Mikhail; Brugnara, Carlo; Tangella, Krishna; Popescu, Gabriel

    2014-09-01

    Stored red blood cells undergo numerous biochemical, structural, and functional changes, commonly referred to as storage lesion. How much these changes impede the ability of erythrocytes to perform their function and, as result, impact clinical outcomes in transfusion patients is unknown. In this study we investigate the effect of the storage on the erythrocyte membrane deformability and morphology. Using optical interferometry we imaged red blood cell (RBC) topography with nanometer sensitivity. Our time-lapse imaging quantifies membrane fluctuations at the nanometer scale, which in turn report on cell stiffness. This property directly impacts the cell's ability to transport oxygen in microvasculature. Interestingly, we found that cells which apparently maintain their normal shape (discocyte) throughout the storage period, stiffen progressively with storage time. By contrast, static parameters, such as mean cell hemoglobin content and morphology do not change during the same period. We propose that our method can be used as an effective assay for monitoring erythrocyte functionality during storage time.

  10. Digital optical tape: Technology and standardization issues

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1996-01-01

    During the coming years, digital data storage technologies will continue an aggressive growth to satisfy the user's need for higher storage capacities, higher data transfer rates and long-term archival media properties. Digital optical tape is a promising technology to satisfy these user's needs. As any emerging data storage technology, the industry faces many technological and standardization challenges. The technological challenges are great, but feasible to overcome. Although it is too early to consider formal industry standards, the optical tape industry has decided to work together by initiating prestandardization efforts that may lead in the future to formal voluntary industry standards. This paper will discuss current industry optical tape drive developments and the types of standards that will be required for the technology. The status of current industry prestandardization efforts will also be discussed.

  11. Photonics Technology Development for Optical Fuzing

    DTIC Science & Technology

    2004-12-01

    application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers ( VECSELs ...surface-emitting laser ( VECSEL ), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. This work will culminate in a...infrared spectrum. 2. HIGH-POWER VECSEL For the optical fuze, an advanced high power vertical-external-cavity surface-emitting laser ( VECSEL

  12. Enabling technologies for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  13. Advanced high-bandwidth optical fuzing technology

    NASA Astrophysics Data System (ADS)

    Liu, Jony J.; von der Lippe, Christian M.

    2005-10-01

    A robust and compact photonic proximity sensor is developed for optical fuze in munitions applications. The design of the optical fuze employed advanced optoelectronic technologies including high-power vertical-cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, SiGe ASIC driver, and miniature optics. The development combines pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories and synergizes the key optoelectronic technologies in components and system designs. This compact sensor will replace conventional costly assemblies based on discrete lasers, photodetectors, and bulky optics and provide a new capability for direct fire applications. It will be mass manufacturable in low cost and simplicity. In addition to the specific applications for gun-fired munitions, numerous civilian uses can be realized by this proximity sensor in automotive, robotics, and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  14. Technology of optical azimuth transmission

    NASA Astrophysics Data System (ADS)

    Lu, Honggang; Hu, Chunsheng; Wang, Xingshu; Gao, Yang

    2012-11-01

    It often needs transfer a reference from one place to another place in aerospace and guided missile launching. At first, principles of several typical optical azimuth transmission methods are presented. Several typical methods are introduced, such as Theodolite (including gyro-theodolite) collimation method, Camera series method, Optical apparatus for azimuth method and polarization modulated light transmission method. For these typical azimuth transmission methods, their essential theories are elaborated. Then the devices, the application fields and limitations of these typical methods' are presented. Theodolite (including gyro-theodolite) collimation method is used in the ground assembly of spacecraft. Camera series method and optical apparatus for azimuth method are used in azimuth transmission between different decks of ship. Polarization modulated light transmission method is used in azimuth transmission of rocket and guided missile. At the last, the further developments of these methods are discussed.

  15. FRET-based optical assay for monitoring riboswitch activation.

    PubMed

    Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Davidson, Molly; Narayanan, Latha; Trott, Sandra; Chushak, Yaroslav G; Stone, Morley O

    2009-05-11

    Riboswitches are regulatory RNAs located in the 5'-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.

  16. Developments in distributed optical fiber detection technology

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhu, Qianxia; You, Tianrong

    2014-12-01

    The distributed optical fiber detection technology plays an important role in many fields, such as key regional security monitoring, pipeline maintenance and communication cable protection. It is superior to the traditional detector, and has a good prospect. This paper presents an overview of various distributed optical fiber sensors. At first, some related technologies of the optical fiber detection schemes are introduced in respect of sensing distance, real-time ability, signal strength, and system complexity; and the advantages and limitations of fiber gratings sensors, reflection-based optical fiber sensors, and interference- based optical fiber sensors are discussed. Then some advanced distributed optical fiber detection systems are mentioned. And the double-loop Sagnac distributed system is improved by adding photoelectric modulators and depolarizers. In order to denoise and enhance the original signal, a spectral subtraction-likelihood ratio method is improved. The experiment results show the spatial resolution is +/-15m per kilometer. Finally, based on the development trends of optical fiber detection technology at home and abroad, development tendency and application fields are predicted.

  17. Time-resolved luminescent lateral flow assay technology.

    PubMed

    Song, Xuedong; Knotts, Michael

    2008-09-26

    We here report a detection technology that integrates highly sensitive time-resolved luminescence technique into lateral flow assay platform to achieve excellent detection performance with low cost. We have developed very bright, surface-functionalized and mono-dispersed phosphorescent nanoparticles of long lifetime under ambient conditions. The phosphorescent nanoparticles have been used to conjugate with monoclonal antibody for C-reactive protein (CRP), an inflammatory biomarker. Lateral flow immunoassay devices have been developed using the conjugate for highly sensitive detection of CRP. The CRP assay can achieve a detection sensitivity of <0.2 ngmL(-1) in serum with a linear response from 0.2 to 200 ngmL(-1) CRP. We have also developed a low cost time-resolved luminescence reader for the lateral flow immunoassay (LFIA) devices. The reader does not use expensive band pass filter and still provide very low detection background and high detection sensitivity on solid substrates such as nitrocellulose membranes. The reader can detect less than 2.5 ng phosphorescent particles captured on a nitrocellulose membrane strip with more than three orders of magnitude linear detection dynamic range. The technology should find a number of applications, ranging from clinical diagnostics, detection of chemical and biological warfare agents, to food and environmental monitoring.

  18. Mirror Technology Roadmap for Optical/IR/FIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil

    2006-01-01

    The Optics sub-committee of the Advanced Telescope and Observatory {ATO) Capability Roadmap developed an optics capability roadmap to enable planned future space telescopes. The roadmap details 4 basic technologies: cryogenic optics for IR and Far-IR missions; precision optics for optical, UV and EUV missions; grazing incidence optics for x-ray missions; and novel optics with revolutionary capabilities.

  19. Innovative technology for optical and infrared astronomy

    NASA Astrophysics Data System (ADS)

    Cunningham, Colin R.; Evans, Christopher J.; Molster, Frank; Kendrew, Sarah; Kenworthy, Matthew A.; Snik, Frans

    2012-09-01

    Advances in astronomy are often enabled by adoption of new technology. In some instances this is where the technology has been invented specifically for astronomy, but more usually it is adopted from another scientific or industrial area of application. The adoption of new technology typically occurs via one of two processes. The more usual is incremental progress by a series of small improvements, but occasionally this process is disruptive, where a new technology completely replaces an older one. One of the activities of the OPTICON Key Technology Network over the past few years has been a technology forecasting exercise. Here we report on a recent event which focused on the more radical, potentially disruptive technologies for ground-based, optical and infrared astronomy.

  20. Moving Optical Technology In-House

    DTIC Science & Technology

    1989-03-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California 0 Lfl 00P40 < RUDTIC 0% EECTF MAY 17 1989 THESIS U MOVING OPTICAL TECHNOLOGY IN- HOUSE by Bruce E...ACCESSION NO. 11. TITLE (Include Security Classification) MOWING OPTICAL TECHNOLOGY IN- HOUSE 12 PERSONAL AUTHOR(S) FAr. R~RIX F-RR 13a TYPE OF REPORT...COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP CD-ROM; CD-It4 IN- HOUSE

  1. Optical waveguide tamper sensor technology

    SciTech Connect

    Carson, R.F.; Butler, M.A.; Sinclair, M.B.

    1997-03-01

    Dielectric optical waveguides exhibit properties that are well suited to sensor applications. They have low refractive index and are transparent to a wide range of wavelengths. They can react with the surrounding environment in a variety of controllable ways. In certain sensor applications, it is advantageous to integrate the dielectric waveguide on a semiconductor substrate with active devices. In this work, we demonstrate a tamper sensor based on dielectric waveguides that connect epitaxial GaAs-GaAlAs sources and detectors. The tamper sensing function is realized by attaching particles of absorbing material with high refractive index to the surface of the waveguides. These absorbers are then attached to a lid or cover, as in an integrated circuit package or multi-chip module. The absorbers attenuate the light in the waveguides as a function of absorber interaction. In the tamper indicating mode, the absorbers are placed randomly on the waveguides, to form a unique attenuation pattern that is registered by the relative signal levels on the photodetectors. When the lid is moved, the pattern of absorbers changes, altering the photodetector signals. This dielectric waveguide arrangement is applicable to a variety of sensor functions, and specifically can be fabricated as a chemical sensor by the application of cladding layers that change their refractive index and/or optical absorption properties upon exposure to selected chemical species. An example is found in palladium claddings that are sensitive to hydrogen. A description of designs and a basic demonstration of the tamper sensing and chemical sensing functions is described herein.

  2. Retinal imaging using adaptive optics technology.

    PubMed

    Kozak, Igor

    2014-04-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started.

  3. Efficient manufacturing technology of metal optics

    NASA Astrophysics Data System (ADS)

    Zhang, Jizhen; Wu, Yanxiong; Zhang, Xin; Zhang, Liping; Wang, Lingjie; Qu, Hemeng

    2015-10-01

    The efficient manufacturing technologies greatly accelerate the development and production process. Optical components have higher precision requirements than mechanical parts. This provides great challenge for rapid manufacturing. Metallic optical system is featured high resolution, wide spectral range, light weight, compact design, low cost and short manufacturing period. Reflective mirrors and supporting structures can be made from the same material to improve athermal performance of the system. Common materials for metal mirrors in optical applications include aluminum, copper, beryllium, aluminum beryllium alloy and so on. Their physical characteristics and relative advantages are presented. Most kinds of metals have good machinability and can be manufactured by many kinds of producing methods. This makes metallic optical system saving 30%~60% cost and time than others. The manufacturing process of metal mirror is different due to its working spectral. The metal mirror can be directly manufactured by single point diamond turning. This is an outstanding technique in point of ultra-precision as well as economical manufacture of mirrors. The roughness values and form accuracy of optical surfaces after diamond turning can satisfy the quality level for applications in the near infrared and infrared range. And for visible light spectral the turning structures must be removed with a smoothing procedure in order to minimize the scatter losses. Some smoothing methods to obtain visible quality metal mirrors are given in this paper. Some new manufacturing technology, such as 3D printing, can be used for metallic optical system and several promising techniques are presented.

  4. Fiber Optic Communications Technology. A Status Report.

    ERIC Educational Resources Information Center

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  5. Advanced silicon device technologies for optical interconnects

    NASA Astrophysics Data System (ADS)

    Wosinski, Lech; Wang, Zhechao; Lou, Fei; Dai, Daoxin; Lourdudoss, Sebastian; Thylen, Lars

    2012-01-01

    Silicon photonics is an emerging technology offering novel solutions in different areas requiring highly integrated communication systems for optical networking, sensing, bio-applications and computer interconnects. Silicon photonicsbased communication has many advantages over electric wires for multiprocessor and multicore macro-chip architectures including high bandwidth data transmission, high speed and low power consumption. Following the INTEL's concept to "siliconize" photonics, silicon device technologies should be able to solve the fabrication problems for six main building blocks for realization of optical interconnects: light generation, guiding of light including wavelength selectivity, light modulation for signal encoding, detection, low cost assembly including optical connecting of the devices to the real world and finally the electronic control systems.

  6. Photonics technology development for optical fuzing.

    SciTech Connect

    Liu, J.J.; Geib, Kent Martin; von der Lippe, C.M.; Peake, Gregory Merwin; Serkland, Darwin Keith; Keeler, Gordon Arthur; Mar, Alan

    2005-07-01

    This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.

  7. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  8. Fiber optic sensors in the laser optical engineering technology laboratories at the Oregon Institute of Technology

    NASA Astrophysics Data System (ADS)

    Corones, John C.; Pierce, Robert M.

    1995-04-01

    Optical fibers are finding increasing application in feedback and control systems, medical, industrial, illumination and imaging applications, discrete, as well as distributed sensors and networks. In addition to a course in optical fiber principles and components, a fiber optic systems and applications course designed for both electronics and optical engineering technology students has been created at the Oregon Institute of Technology, in the Laser Optical Engineering Technology (LOET) Department. The systems and applications course is designed to illustrate the benefits of using fibers in communications and sensing, as well as to provide hands-on exposure to concepts of test, measurement, and calibration of fiber-optic components and instrumentation. In the laboratories of both courses, optical fiber sensor experiments are used to teach such concepts as selection and testing of components, design and assembly of transducers, system integration, testing, characterization, and optimization. These two mandatory courses provide an excellent introduction to optical fiber technology and applications. The courses exist primarily due to an NSF-OIT grant, however, companies have made significant contributions of hardware to the program. As a result, over $350 K of fiber optics components and instrumentation now are available for senior-students' use, to develop unique, year-long projects.

  9. Recent advances of optical amplification technology

    NASA Astrophysics Data System (ADS)

    Miura, Jutaro

    2017-01-01

    The proliferation of a Colorless and Directionless and Contentionless (CD and C) architecture in metro core networks is rising up ever-greater demands on optical amplifiers to be smaller and higher integration. we overview recent advances in optical amplifier technologies, multiple EDFA arrays for compensating loss of a multicast switch and switchable gain EDFAs supporting a wide range of fiber-span loss distributions in the network and focus on the embedded passive component and pump laser in the amplifiers. We will also focus on the pluggable small form factor EDFA amplifies optical signals to enable long Hybrid Fiber Coaxial (HFC) links and amplifier for CFP-DCO/CFP2-ACO transceiver. Finally, we will discuss the feasibility of L-band amplifier and distribution Raman amplifier in a short-haul systems to realize a requisite optical signal to noise ratio (OSNR) to support high bit rate transmission beyond 100G and high capacity transmission.

  10. Art + technology in optics educational outreach programs

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.

    2007-09-01

    In the modern era, art and technology have been at opposite ends of the spectrum of human study. Artists tend to be non-technical and technologists tend not to be artistic. While this is a broad generalization, it is rare to find an artist teaching science or an engineer teaching art. However, if we think back several centuries, it was very common for great artists to be at the forefront of technology. The prime example being the great Leonardo Di Vinci. Over the past several years, the optics educational outreach programs of the Optics Institute of Southern California (OISC) have incorporated using art and artists to help teach optics and related science. The original use of this was with material from the General Atomics Education Foundation, Color My World, which has been used in a number of settings. Recently, the OISC has partnered with the UC Irvine Beall Center for Art + Technology to provide Family Day Event presentations that use the themes of current Art + Technology exhibits to help attendees learn and understand more about the fundamental science through the art. The two main concepts here are that artists are using science and technology as the basis for their art, also sometimes making some social statements; and the technologists are using the art to make the science more accessible and interesting to the general pubic. This paper weaves a path from the original OISC uses of art to the recent work at UC Irvine.

  11. Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays.

    PubMed

    Hart, Traver; Zhao, Alice; Garg, Ankit; Bolusani, Swetha; Marcotte, Edward M

    2009-10-28

    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFkappaB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFalpha, and interferon), and we demonstrate scalability by printing a chip with approximately 4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.

  12. Enzyme activity assays within microstructured optical fibers enabled by automated alignment

    PubMed Central

    Warren-Smith, Stephen C.; Nie, Guiying; Schartner, Erik P.; Salamonsen, Lois A.; Monro, Tanya M.

    2012-01-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women’s health. PMID:23243579

  13. Optical scatter imaging: a microscopic modality for the rapid morphological assay of living cells

    NASA Astrophysics Data System (ADS)

    Boustany, Nada N.

    2007-02-01

    Tumors derived from epithelial cells comprise the majority of human tumors and their growth results from the accumulation of multiple mutations affecting cellular processes critical for tissue homeostasis, including cell proliferation and cell death. To understand these processes and address the complexity of cancer cell function, multiple cellular responses to different experimental conditions and specific genetic mutations must be analyzed. Fundamental to this endeavor is the development of rapid cellular assays in genetically defined cells, and in particular, the development of optical imaging methods that allow dynamic observation and real-time monitoring of cellular processes. In this context, we are developing an optical scatter imaging technology that is intended to bridge the gap between light and electron microscopy by rapidly providing morphometric information about the relative size and shape of non-spherical organelles, with sub-wavelength resolution. Our goal is to complement current microscopy techniques used to study cells in-vitro, especially in long-term time-lapse studies of living cells, where exogenous labels can be toxic, and electron microscopy will destroy the sample. The optical measurements are based on Fourier spatial filtering in a standard microscope, and could ultimately be incorporated into existing high-throughput diagnostic platforms for cancer cell research and histopathology of neoplastic tissue arrays. Using an engineered epithelial cell model of tumor formation, we are currently studying how organelle structure and function are altered by defined genetic mutations affecting the propensity for cell death and oncogenic potential, and by environmental conditions promoting tumor growth. This talk will describe our optical scatter imaging technology and present results from our studies on apoptosis, and the function of BCL-2 family proteins.

  14. Modeling error in experimental assays using the bootstrap principle: Understanding discrepancies between assays using different dispensing technologies

    PubMed Central

    Hanson, Sonya M.; Ekins, Sean; Chodera, John D.

    2015-01-01

    All experimental assay data contains error, but the magnitude, type, and primary origin of this error is often not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how deceptively simple operations—such as the creation of a dilution series with a robotic liquid handler—can significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques, we review an example of how the choice of dispensing technology can impact assay measurements, and show how large contributions to discrepancies between assays can be easily understood and potentially corrected for. These simple modeling techniques—illustrated with an accompanying IPython notebook—can allow modelers to understand the expected error and bias in experimental datasets, and even help experimentalists design assays to more effectively reach accuracy and imprecision goals. PMID:26678597

  15. Modeling error in experimental assays using the bootstrap principle: understanding discrepancies between assays using different dispensing technologies.

    PubMed

    Hanson, Sonya M; Ekins, Sean; Chodera, John D

    2015-12-01

    All experimental assay data contains error, but the magnitude, type, and primary origin of this error is often not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how deceptively simple operations--such as the creation of a dilution series with a robotic liquid handler--can significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques, we review an example of how the choice of dispensing technology can impact assay measurements, and show how large contributions to discrepancies between assays can be easily understood and potentially corrected for. These simple modeling techniques--illustrated with an accompanying IPython notebook--can allow modelers to understand the expected error and bias in experimental datasets, and even help experimentalists design assays to more effectively reach accuracy and imprecision goals.

  16. Modeling error in experimental assays using the bootstrap principle: understanding discrepancies between assays using different dispensing technologies

    NASA Astrophysics Data System (ADS)

    Hanson, Sonya M.; Ekins, Sean; Chodera, John D.

    2015-12-01

    All experimental assay data contains error, but the magnitude, type, and primary origin of this error is often not obvious. Here, we describe a simple set of assay modeling techniques based on the bootstrap principle that allow sources of error and bias to be simulated and propagated into assay results. We demonstrate how deceptively simple operations—such as the creation of a dilution series with a robotic liquid handler—can significantly amplify imprecision and even contribute substantially to bias. To illustrate these techniques, we review an example of how the choice of dispensing technology can impact assay measurements, and show how large contributions to discrepancies between assays can be easily understood and potentially corrected for. These simple modeling techniques—illustrated with an accompanying IPython notebook—can allow modelers to understand the expected error and bias in experimental datasets, and even help experimentalists design assays to more effectively reach accuracy and imprecision goals.

  17. Fabricating binary optics: An overview of binary optics process technology

    NASA Technical Reports Server (NTRS)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  18. Nanostructured detector technologies for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Welser, Roger E.; Puri, Yash R.; Dhar, Nibir K.; Polla, Dennis L.; Wijewarnasuriya, Priyalal; Dubey, Madan

    2014-05-01

    Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.

  19. Optical Tracking Technology in Stereotactic Radiation Therapy

    SciTech Connect

    Wagner, Thomas H. . E-mail: thomas.wagner@orhs.org; Meeks, Sanford L.; Bova, Frank J.; Friedman, William A.; Willoughby, Twyla R.; Kupelian, Patrick A.; Tome, Wolfgang

    2007-07-01

    The last decade has seen the introduction of advanced technologies that have enabled much more precise application of therapeutic radiation. These relatively new technologies include multileaf collimators, 3-dimensional conformal radiotherapy planning, and intensity modulated radiotherapy in radiotherapy. Therapeutic dose distributions have become more conformal to volumes of disease, sometimes utilizing sharp dose gradients to deliver high doses to target volumes while sparing nearby radiosensitive structures. Thus, accurate patient positioning has become even more important, so that the treatment delivered to the patient matches the virtual treatment plan in the computer treatment planning system. Optical and image-guided radiation therapy systems offer the potential to improve the precision of patient treatment by providing a more robust fiducial system than is typically used in conventional radiotherapy. The ability to accurately position internal targets relative to the linac isocenter and to provide real-time patient tracking theoretically enables significant reductions in the amount of normal tissue irradiated. This report reviews the concepts, technology, and clinical applications of optical tracking systems currently in use for stereotactic radiation therapy. Applications of radiotherapy optical tracking technology to respiratory gating and the monitoring of implanted fiducial markers are also discussed.

  20. New technology for large optical telescopes

    NASA Astrophysics Data System (ADS)

    de Jonge, M. J.

    1983-05-01

    A recurrent topic arising in the discussions about new generation large optical telescopes is related to the economic advantages of lightweight reflector surfaces. A description is given of new technologies which might be suited for the construction of lightweight telescopes of low cost. One technology involves the use of sandwich structures, which include aluminum layers, separated by aluminum honeycomb layers. The availability of these structures, which have been developed for aircraft manufacture, has led various groups to study the feasibility of a use of sandwich materials for the manufacture of highly accurate reflecting surfaces, as required for millimeter and submillimeter wave telescopes. The results of these studies are discussed.

  1. Developments in precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Fess, Edward; Bechtold, Mike; Wolfs, Frank; Bechtold, Rob

    2013-09-01

    Optical systems that utilize complex optical geometries such as aspheres and freeform optics require precise control through the manufacturing process. As the preparatory stage for polishing, this is especially true for grinding. The quality of the grinding process can greatly influence the polishing process and the resultant finished product. OptiPro has performed extensive development work in evaluating components of a precision grinding machine to determine how they influence the overall manufacturing process. For example, spindle technology has a strong effect on how a grinding machine will perform. Through metrology techniques that measure the vibration characteristics of a machine and measurements of grinding forces with a dynamometer, OptiPro has also developed a detailed knowledge of how the machine can influence the grinding process. One of the outcomes of this work has led OptiPro to develop an ultrasonic head for their grinding platform to aid in reducing grinding forces. Initial results show a reduction in force by ~50%.

  2. Optical Technologies for UV Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    1993-01-01

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  3. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-12-09

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  4. Optics & Materials Science & Technology (OMST) Organization at LLNL

    SciTech Connect

    Suratwala; Tayyab; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2016-11-30

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  5. Photonics technology development for optical fuzing

    NASA Astrophysics Data System (ADS)

    Geib, K. M.; Serkland, D. K.; Keeler, G. A.; Peake, G. M.; Mar, A.; von der Lippe, C. M.; Liu, J. J.

    2005-09-01

    This paper describes the photonic component development taking place at Sandia National Laboratories, ARDEC and the Army Research Laboratory in support of an effort to develop a robust, compact, and affordable photonic proximity sensor for munitions fuzing applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The technologies under investigation for the optical fuze design covered in this paper are vertical-cavity surface-emitting lasers (VCSELs), vertical-external-cavity surface-emitting lasers (VECSELs), integrated resonant-cavity photodetectors (RCPDs), and refractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  6. Optical coating technology for the EUV

    NASA Technical Reports Server (NTRS)

    Osantowski, J. F.; Keski-Kuha, R. A. M.; Herzig, H.; Toft, A. R.; Gum, J. S.; Fleetwood, C. M.

    1991-01-01

    Advances in optical coating and materials technology are one of the key motivators for the development of missions such as the Far Ultraviolet Spectroscopic Explorer recently selected by NASA for an Explorer class mission in the mid 1990's. The performance of a range of candidate coatings are reviewed for normal-incidence and glancing-incidence applications, and attention is given to strengths and problem areas for their use in space. The importance of recent developments in multilayer films, chemical-vapor deposited SiC (CVD-SiC) mirrors, and SiC films are discussed in the context of EUV instrumentation design. For example, the choice of optical coatings is a design driver for the selection of the average glancing angle for the FUSE telescope, and impacts efficiency, short-wavelength cut-off, and physical size.

  7. Assay for optical determination of biogenic amines using microtiterplates

    NASA Astrophysics Data System (ADS)

    Nedeljko, Polona; Turel, Matejka; Lobnik, Aleksandra

    2013-05-01

    Direct determination of catecholamine noradreanaline (NOR) is presented using o-phthaldialdehyde (OPA) as an indicator reagent. The fluorescent assay in which OPA forms with NOR a fluorescent complex (OPA-NOR) can be monitored at neutral, physiological conditions (pH 7) and performed in microtiterplates. The determination of NOR is optimal in the concentration range from 4.0×10-7 to 1.0×10-5 M and limit of detection is 4.0×10-7 M. The OPA-NOR complex maximum intensity is reached within 5 minutes. Dopamine and adrenaline could not be determined using the same approach.

  8. Emerging Technologies and Generic Assays for the Detection of Anti-Drug Antibodies.

    PubMed

    Partridge, Michael A; Purushothama, Shobha; Elango, Chinnasamy; Lu, Yanmei

    2016-01-01

    Anti-drug antibodies induced by biologic therapeutics often impact drug pharmacokinetics, pharmacodynamics response, clinical efficacy, and patient safety. It is critical to assess the immunogenicity risk of potential biotherapeutics in producing neutralizing and nonneutralizing anti-drug antibodies, especially in clinical phases of drug development. Different assay methodologies have been used to detect all anti-drug antibodies, including ELISA, radioimmunoassay, surface plasmon resonance, and electrochemiluminescence-based technologies. The most commonly used method is a bridging assay, performed in an ELISA or on the Meso Scale Discovery platform. In this report, we aim to review the emerging new assay technologies that can complement or address challenges associated with the bridging assay format in screening and confirmation of ADAs. We also summarize generic anti-drug antibody assays that do not require drug-specific reagents for nonclinical studies. These generic assays significantly reduce assay development efforts and, therefore, shorten the assay readiness timeline.

  9. Emerging Technologies and Generic Assays for the Detection of Anti-Drug Antibodies

    PubMed Central

    Elango, Chinnasamy

    2016-01-01

    Anti-drug antibodies induced by biologic therapeutics often impact drug pharmacokinetics, pharmacodynamics response, clinical efficacy, and patient safety. It is critical to assess the immunogenicity risk of potential biotherapeutics in producing neutralizing and nonneutralizing anti-drug antibodies, especially in clinical phases of drug development. Different assay methodologies have been used to detect all anti-drug antibodies, including ELISA, radioimmunoassay, surface plasmon resonance, and electrochemiluminescence-based technologies. The most commonly used method is a bridging assay, performed in an ELISA or on the Meso Scale Discovery platform. In this report, we aim to review the emerging new assay technologies that can complement or address challenges associated with the bridging assay format in screening and confirmation of ADAs. We also summarize generic anti-drug antibody assays that do not require drug-specific reagents for nonclinical studies. These generic assays significantly reduce assay development efforts and, therefore, shorten the assay readiness timeline. PMID:27556048

  10. A brief examination of optical tagging technologies.

    SciTech Connect

    Ackermann, Mark R.; Cahill, Paul A. (Aspecular Optics, Dayton, OH); Drummond, Timothy J.; Wilcoxon, Jess Patrick

    2003-07-01

    Presented within this report are the results of a brief examination of optical tagging technologies funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. The work was performed during the summer months of 2002 with total funding of $65k. The intent of the project was to briefly examine a broad range of approaches to optical tagging concentrating on the wavelength range between ultraviolet (UV) and the short wavelength infrared (SWIR, {lambda} < 2{micro}m). Tagging approaches considered include such things as simple combinations of reflective and absorptive materials closely spaced in wavelength to give a high contrast over a short range of wavelengths, rare-earth oxides in transparent binders to produce a narrow absorption line hyperspectral tag, and fluorescing materials such as phosphors, dies and chemically precipitated particles. One technical approach examined in slightly greater detail was the use of fluorescing nano particles of metals and semiconductor materials. The idea was to embed such nano particles in an oily film or transparent paint binder. When pumped with a SWIR laser such as that produced by laser diodes at {lambda}=1.54{micro}m, the particles would fluoresce at slightly longer wavelengths, thereby giving a unique signal. While it is believed that optical tags are important for military, intelligence and even law enforcement applications, as a business area, tags do not appear to represent a high on return investment. Other government agencies frequently shop for existing or mature tag technologies but rarely are interested enough to pay for development of an untried technical approach. It was hoped that through a relatively small investment of laboratory R&D funds, enough technologies could be identified that a potential customers requirements could be met with a minimum of additional development work. Only time will tell if this proves to be correct.

  11. Ion Implanted Gaas Integrated Optics Fabrication Technology

    NASA Astrophysics Data System (ADS)

    Mentzer, M. A.; Hunsperger, R. G.; Bartko, J.; Zavada, J. M.; Jenkinson, H. A.

    1985-01-01

    Ion implantation of semiconductor materials is a fabrication technique that offers a number of distinct advantages for the formation of guided-wave components and microelectronic devices. Implanted damage and dopants produce optical and electronic changes that can be utilized for sensing and signal processing applications. GaAs is a very attractive material for optical fabrication since it is transparent out to the far infrared. It can be used to fabricate optical waveguides, directional couplers, EO modulators, and detectors, as well as other guided wave structures. The presence of free carriers in GaAs lowers the refractive index from that of the pure semiconductor material. This depression of the refractive index is primarily due to the negative contribution of the free carrier plasma to the dielectric constant of the semiconductor. Bombardment of n-type GaAs by protons creates damage sites near the surface of the crystal structure where free carriers are trapped. This "free carrier compensated" region in the GaAs has a higher refractive index than the bulk region. If the compensated region is sufficiently thick and has a refractive index which is sufficiently larger than that of the bulk n-type region, an optical waveguide is formed. In this paper, a description of ion implantation techniques for the fabrication of both planar and channel integrated optical structures in GaAs is presented, and is related to the selection of ion species, implant energy and fluence, and to the physical processes involved. Lithographic technology and masking techniques are discussed for achieving a particular desired implant profile. Finally, the results of a set of ion implantation experiments are presented.

  12. Fiber Optic Microsensor for Receptor-Based Assays

    DTIC Science & Technology

    1988-09-01

    yield B-PE B-phycoerythrin 545 575 2,410,000 0.98 R-PE R-phycoerythrin 565 578 11960,000 0.68 CPC C- phycocyanine 620 650 1,690,000 0.51 A-PC...efficient transfer occurred for unit magnification. Figure 3 shows the optical design. Evaluation of the instrument was done with both A- phycocyanine ...A-PC) and C- phycocyanine (C-PC) filter sets and dyes, the LED being the same for both. The first test was to measure the excitation power delivered

  13. Advanced optical technologies for space exploration

    NASA Astrophysics Data System (ADS)

    Clark, Natalie

    2007-09-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems

  14. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  15. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2011-10-01

    05-1-0363 TITLE: Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer PRINCIPAL INVESTIGATOR...and Molecularly Specific Optical Screening Technologies for Breast Cancer Duke University Durham, NC 27705 Nirmala Ramanujam The goal of this...proposal is to harness the power of light to create “miniature and molecularly specific optical technologies” for breast cancer diagnosis and

  16. Recent progress on planar lightwave circuit technology for optical communication

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi

    2009-11-01

    Silica waveguide planar lightwave circuit (PLC) technology is very useful for fabricating compact and high performance optical devices for optical communication. Wavelength multiplexers and optical switches for ROADM and OXC are still being developed to improve performance further. New devices for an advanced modulation format can also be fabricated with PLC technology.

  17. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  18. Si photonics technology for future optical interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Xuezhe; Krishnamoorthy, Ashok V.

    2011-12-01

    Scaling of computing systems require ultra-efficient interconnects with large bandwidth density. Silicon photonics offers a disruptive solution with advantages in reach, energy efficiency and bandwidth density. We review our progress in developing building blocks for ultra-efficient WDM silicon photonic links. Employing microsolder based hybrid integration with low parasitics and high density, we optimize photonic devices on SOI platforms and VLSI circuits on more advanced bulk CMOS technology nodes independently. Progressively, we successfully demonstrated single channel hybrid silicon photonic transceivers at 5 Gbps and 10 Gbps, and 80 Gbps arrayed WDM silicon photonic transceiver using reverse biased depletion ring modulators and Ge waveguide photo detectors. Record-high energy efficiency of less than 100fJ/bit and 385 fJ/bit were achieved for the hybrid integrated transmitter and receiver, respectively. Waveguide grating based optical proximity couplers were developed with low loss and large optical bandwidth to enable multi-layer intra/inter-chip optical interconnects. Thermal engineering of WDM devices by selective substrate removal, together with WDM link using synthetic wavelength comb, we significantly improved the device tuning efficiency and reduced the tuning range. Using these innovative techniques, two orders of magnitude tuning power reduction was achieved. And tuning cost of only a few 10s of fJ/bit is expected for high data rate WDM silicon photonic links.

  19. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  20. Grinding technologies of small optical element molds

    NASA Astrophysics Data System (ADS)

    Katsuki, Masahide; Urushibata, Kazunori

    2003-05-01

    The high-precision grinding technology is making contribution in every field, which is especially remarkable in the optics-related field. Lenses for digital camera and projector, which are mass-produced, for instance, are molded by the injection molding machine and glass molding-press machine. Concerning materials of high-precision molds, nickel alloy is mainly used in plastic-molding. And brittle material such as tungsten carbide and ceramic is used in glass-molding because the molding temperature is generally high. High-precision machining of nickel alloy is possible with a single-crystal diamond tool. Brittle material is ground by means of a diamond wheel, etc. Glass is being widely used for the lenses and other optical elements due to its favorable characteristics and life. As a result, needs for advancement of the high-precision grinding technology are being heightened. In grinding of small, fine and complex profiles, consideration for wheel truing and wear is a key point. Also, as many optical mold products are convex, mold profile is mainly concave. Especially, grinding of a small-aperture mold with small radius of curvature is difficult. In other words, a wheel whose diameter is larger than the radius of curvature of a mold to be ground cannot be used, and use of a small-diameter wheel is required inevitably. Influence of wheel wear and wheel diameter input errors at creation of grinding program becomes large. To eliminate such errors, a cycle of grinding, measurement and compensation grinding is normally repeated in mold machining until the target accuracy is obtained. Recently, needs for molding optical elements of small body of non-revolution such as prism and cylinder lens are on the increase, in addition to the body of revolution including lens. As one example, we introduce the compensation grinding and its results when grinding molds for an extremely small-aperture lens used for optical communication and a cylindrical lens array used for semi

  1. Fluidic Force Discrimination Assays: A New Technology for Tetrodotoxin Detection

    PubMed Central

    Yakes, Betsy Jean; Etheridge, Stacey M.; Mulvaney, Shawn P.; Tamanaha, Cy R.

    2010-01-01

    Tetrodotoxin (TTX) is a low molecular weight (~319 Da) neurotoxin found in a number of animal species, including pufferfish. Protection from toxin tainted food stuffs requires rapid, sensitive, and specific diagnostic tests. An emerging technique for the detection of both proteins and nucleic acids is Fluidic Force Discrimination (FFD) assays. This simple and rapid method typically uses a sandwich immunoassay format labeled with micrometer-diameter beads and has the novel capability of removing nonspecifically attached beads under controlled, fluidic conditions. This technique allows for near real-time, multiplexed analysis at levels of detection that exceed many of the conventional transduction methods (e.g., ELISAs). In addition, the large linear dynamic range afforded by FFD should decrease the need to perform multiple sample dilutions, a common challenge for food testing. By applying FFD assays to an inhibition immunoassay platform specific for TTX and transduction via low magnification microscopy, levels of detection of ~15 ng/mL and linear dynamic ranges of 4 to 5 orders of magnitude were achieved. The results from these studies on the first small molecule FFD assay, along with the impact to detection of seafood toxins, will be discussed in this manuscript. PMID:20411115

  2. Assay validation and technology transfer: problems and solutions.

    PubMed

    Okamoto, Masahiko

    2014-01-01

    In the industry of fine chemicals, including pharmaceutical and agricultural chemicals, analytical tests are performed by production departments or contract research organizations at some stage in the research and development of products. These external organizations are required to maintain the capabilities to perform analytical tests using methods that are equivalent to or better than those specified by analytical method validation. For this reason, transfer of analytical procedures to an alternative site becomes necessary. In this review, the relationship between transfer of analytical procedures and assay validation is introduced, focusing on analytical procedures that include HPLC.

  3. Functional assay using lectin gene targeting technologies (over-expression).

    PubMed

    Nonaka, Motohiro; Kawasaki, Toshisuke

    2014-01-01

    Function of lectin depends on its amino acid sequence of carbohydrate-recognition domain (CRD), conformation, and extracellular/intracellular localization. Altering lectin gene expression by over-expression or knockdown is a powerful tool for analyzing its cellular function. Here, we describe a method of lectin gene over-expression, taking a C-type lectin, mannan-binding protein (MBP), as an example. Carbohydrate-binding ability of MBP, its subcellular localization, and functional co-localization with ligand glycoprotein are assayed comparing with an inactive mutant MBP.

  4. Broadband access technology for passive optical network

    NASA Astrophysics Data System (ADS)

    Chi, Sien; Yeh, Chien-Hung; Chow, Chi-Wai

    2009-01-01

    We will introduce four related topics about fiber access network technologies for PONs. First, an upstream signal powerequalizer is proposed and designed using a FP-LD in optical line terminal applied to the TDM-PON, and a 20dB dynamic upstream power range from -5 to -25dBm having a 1.7dB maximal power variation is retrieved. The fiber-fault protection is also an important issue for PON. We investigate a simple and cost-effective TDM/WDM PON system with self-protected function. Next, using RSOA-based colorless WDM-PON is also demonstrated. We propose a costeffective CW light source into RSOA for 2.5Gb/s upstream in WDM-PON together with self-healing mechanism against fiber fault. Finally, we investigate a 4Gb/s OFDM-QAM for both upstream and downstream traffic in long-reach WDM/TDM PON system under 100km transmission without dispersion compensation. As a result, we believe that these key access technologies are emerging and useful for the next generation broadband FTTH networks.

  5. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  6. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  7. Application of optical interconnect technology at Lawrence Livermore National Laboratory

    SciTech Connect

    Haigh, R.E.; Lowry, M.E.; McCammon, K.; Hills, R.; Mitchell, R.; Sweider, D.

    1995-08-10

    Optical interconnects will be required to meet the information bandwidth requirements of future communication and computing applications. At Lawrence Livermore National Laboratory, the authors are involved in applying optical interconnect technologies in two distinct application areas: Multi-Gigabit/sec Computer Backplanes and Gigabit/sec Wide Area Networking using Wavelength Division Multiplexing. In this paper, the authors discuss their efforts to integrate optical interconnect technologies into prototype computing and communication systems.

  8. A simple and reliable assay for detecting specific nucleotide sequences in plants using optical thin-film biosensor chips.

    PubMed

    Bai, Su-Lan; Zhong, Xiaobo; Ma, Ligeng; Zheng, Wenjie; Fan, Liu-Min; Wei, Ning; Deng, Xing Wang

    2007-01-01

    Here we report the adaptation and optimization of an efficient, accurate and inexpensive assay that employs custom-designed silicon-based optical thin-film biosensor chips to detect unique transgenes in genetically modified (GM) crops and SNP markers in model plant genomes. Briefly, aldehyde-attached sequence-specific single-stranded oligonucleotide probes are arrayed and covalently attached to a hydrazine-derivatized biosensor chip surface. Unique DNA sequences (or genes) are detected by hybridizing biotinylated PCR amplicons of the DNA sequences to probes on the chip surface. In the SNP assay, target sequences (PCR amplicons) are hybridized in the presence of a mixture of biotinylated detector probes and a thermostable DNA ligase. Only perfect matches between the probe and target sequences, but not those with even a single nucleotide mismatch, can be covalently fixed on the chip surface. In both cases, the presence of specific target sequences is signified by a color change on the chip surface (gold to blue/purple) after brief incubation with an anti-biotin IgG horseradish peroxidase (HRP) to generate a precipitable product from an HRP substrate. Highly sensitive and accurate identification of PCR targets can be completed within 30 min. This assay is extremely robust, exhibits high sensitivity and specificity, and is flexible from low to high throughput and very economical. This technology can be customized for any nucleotide sequence-based identification assay and widely applied in crop breeding, trait mapping, and other work requiring positive detection of specific nucleotide sequences.

  9. Development of optical fiber technology in Poland 2015

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2015-12-01

    The paper is a digest of works presented during the XVIth National Symposium on Optical Fibres and Their Applications. The Symposium is organized since 1976. OFTA 2015 was organized by Optical Fibre Laboratory of the Faculty of Chemistry at University of Maria Curie Skłodowska, and Institute of Electronics and Information Technology of Lublin University of Technology, in Nałęczów on 22-25 September 2015. The meeting has gathered around 120 participants who presented 85 research and technical papers. The Symposium organized every 18 months is a good portrait of optical fibre technology development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. Topical tracks of the Symposium were: optical and photonic materials, technology of classical, tailored and structural photonic optical fibres, light propagation physics in optical fibres, passive and active optical fibre components, optical fibre sensors, passive and active optical fibre networks, optical fibre amplifiers and lasers, optical fibre network issues: modulation, architectures, economy, etc.

  10. Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution

    PubMed Central

    Carter, Ashley R.; Seol, Yeonee; Perkins, Thomas T.

    2009-01-01

    The most commonly used optical-trapping assays are coupled to surfaces, yet such assays lack atomic-scale (∼0.1 nm) spatial resolution due to drift between the surface and trap. We used active stabilization techniques to minimize surface motion to 0.1 nm in three dimensions and decrease multiple types of trap laser noise (pointing, intensity, mode, and polarization). As a result, we achieved nearly the thermal limit (<0.05 nm) of bead detection over a broad range of trap stiffness (kT = 0.05–0.5 pN/nm) and frequency (Δf = 0.03–100 Hz). We next demonstrated sensitivity to one-basepair (0.34-nm) steps along DNA in a surface-coupled assay at moderate force (6 pN). Moreover, basepair stability was achieved immediately after substantial (3.4 pN) changes in force. Active intensity stabilization also led to enhanced force precision (∼0.01%) that resolved 0.1-pN force-induced changes in DNA hairpin unfolding dynamics. This work brings the benefit of atomic-scale resolution, currently limited to dual-beam trapping assays, along with enhanced force precision to the widely used, surface-coupled optical-trapping assay. PMID:19348774

  11. Technology review of flight crucial flight control systems (application of optical technology)

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The survey covers the various optical elements that are considered in a fly-by-light flight control system including optical sensors and transducers, optical data links, so-called optical actuators, and optical/electro-optical processing. It also addresses airframe installation, maintenance, and repair issues. Rather than an in-depth treatment of optical technology, the survey concentrates on technology readiness and the potential advantages/disadvantages of applying the technology. The information was assembled from open literature, personal interviews, and responses to a questionnaire distributed specifically for this survey. Not all of the information obtained was consistent, particularly with respect to technology readiness. The synthesis of information into the perception of the state-of-technology is presented.

  12. Opportunities in Application Design Using Optical Technology.

    ERIC Educational Resources Information Center

    Bowers, Richard A.

    1987-01-01

    Discusses the capabilities of optical data disk systems to merge different types of media, and the need to incorporate these capabilities into new information products. Guidelines for creating a profitable optical data disk product are outlined. (CLB)

  13. Smart Structures with Fibre-Optic Technologies

    SciTech Connect

    Del Grosso, Andrea; Zangani, Donato; Messervey, Thomas

    2008-07-08

    A number of smart structures have been proposed, and some of them realized, to reduce the effect that seismic motions induce on the structure themselves. In particular, active and semi-active control devices have been studied for being applied to buildings and bridges in seismic prone regions. The heart of the application for these devices consists of a network of sensors and computational nodes that produces the input to the actuating mechanisms. Despite the initial enthusiasm for these developments, only a few practical applications involving active devices have been implemented to-date, the main reason residing in questions concerning the reliability of active systems over time. Nevertheless, the allocation of sensory systems and computational intelligence in structures subjected to earthquakes can provide very important information on the real structural behavior, provide self-diagnosis functions after events, and allow for reliability estimates of critical components. The paper reviews several recently developed sensory devices and diagnostic algorithms that may be applied to existing structures or embedded in new ones for the above purpose. Special emphasis will be given to fibre optic technology and its applications.

  14. Telemetric Technologies for the Assay of Gene Expression

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Bamsey, Matthew; Berinstain, Alain; Neron, Philip; Graham, Thomas; Ferl, Robert

    Telemetric data collection has been widely used in spaceflight applications where human participation is limited (orbital mission payloads) or unfeasible (planetary landers, satellites, and probes). The transmission of digital data from electronic sensors of typical environmental parameters, growth patterns and physical properties of materials is routine telemetry, and even the collection and transmission of deep space images is a standard tool of astrophysics. But telemetric imaging for current biological payloads has thus far been limited to the collection of standard white-light photography that is largely confined to reporting the surface characteristics of the specimens involved. Advances in imaging technologies that facilitate the collection of a variety of light wavelengths will expand the science return on biological payloads to include evaluations of the molecular genetic response of organisms to the spaceflight or extraterrestrial environment, with minimal or no human intervention. Advanced imaging technology in combination with biologically engineered sensor organisms can create a system that can report via telemetry on the patterns of gene expression required to adapt to a novel environment. The utilization of genetically engineered plants as biosensors has made elegant strides in the recent years, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. Moreover, molecular responses to gravitational vectors have been elegantly analyzed with fluorescent tools. Green Fluorescence Protein (GFP) and other fluorophores have made it possible for analyses of gene expression and biological responses to occur telemetrically, with the information potentially delivered to the investigator over large distances as simple, preprocessed fluorescence images. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wish to develop both the plants

  15. Promising New Assays and Technologies for the Diagnosis and Management of Infectious Diseases

    PubMed Central

    Mitsuma, S. F.; Mansour, M. K.; Dekker, J. P.; Kim, J.; Rahman, M. Z.; Tweed-Kent, A.; Schuetz, P.

    2013-01-01

    In the first decade of the 21st century, we have seen the completion of the human genome project and marked progress in the human microbiome project. The vast amount of data generated from these efforts combined with advances in molecular and biomedical technologies have led to the development of a multitude of assays and technologies that may be useful in the diagnosis and management of infectious diseases. Here, we identify several new assays and technologies that have recently come into clinical use or have potential for clinical use in the near future. The scope of this review is broad and includes topics such as the serum marker procalcitonin, gene expression profiling, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and nucleic acid aptamers. Principles that underlie each assay or technology, their clinical applications, and potential strengths and limitations are addressed. PMID:23223587

  16. An optical assay of the transport activity of ClC-7.

    PubMed

    Zanardi, Ilaria; Zifarelli, Giovanni; Pusch, Michael

    2013-01-01

    Osteoporosis, characterized by excessive osteoclast mediated bone resorption, affects millions of people worldwide representing a major public health problem. ClC-7 is a chloride-proton exchanger localized in lysosomes and in the resorption lacuna in osteoclasts where it is essential for bone resorption. Thus, drugs targeted at ClC-7 have been proposed for ameliorating osteoporosis. However, functional assays suited for high throughput screening (HTS) of ClC-7 function are lacking. Here we describe two complementary variants of purely optical assays of the transport activity of ClC-7, redirected to the plasma membrane employing a genetically encoded fluorescent Cl⁻/pH indicator fused to the ClC-7 protein. These simple and robust functional assays of ClC-7 transport are well-suited to be applied in HTS of small-molecule inhibitors and may help to develop drugs suited for the treatment of osteoporosis.

  17. Optical Parametric Technology for Methane Measurements

    NASA Technical Reports Server (NTRS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  18. Optical parametric technology for methane measurements

    NASA Astrophysics Data System (ADS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-09-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  19. Rural Communities and Optical Information Technologies: Optical Disks Move Rural America Closer to the Information Mainstream.

    ERIC Educational Resources Information Center

    Remington, David Gray

    Optical disk technologies now offer a way to move large, complex, remote computer databases from the large urban areas to rural users. Recently, the Optical Information Systems (OIS) Conference provided an opportunity to discuss the use of this new technology for a variety of innovative applications; for example, "The State Education…

  20. Rural Communities and Optical Information Technologies: Optical Disks Move Rural America Closer to the Information Mainstream.

    ERIC Educational Resources Information Center

    Remington, David Gray

    Optical disk technologies now offer a way to move large, complex, remote computer databases from the large urban areas to rural users. Recently, the Optical Information Systems (OIS) Conference provided an opportunity to discuss the use of this new technology for a variety of innovative applications; for example, "The State Education…

  1. Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms.

    PubMed

    Petryayeva, Eleonora; Algar, W Russ

    2013-09-17

    Paper-based assays are a promising diagnostic format for point-of-care applications, field deployment, and other low-resource settings. To date, the majority of efforts to integrate nanomaterials with paper-based assays have utilized gold nanoparticles. Here, we show that semiconductor quantum dots (QDs), in combination with Förster resonance energy transfer (FRET), are also suitable nanomaterials for developing paper-based assays. Paper fibers were chemically modified with thiol ligands to immobilize CdSeS/ZnS QDs, the QDs were self-assembled with dye-labeled peptides to generate efficient FRET, and steady-state and fluorescence lifetime imaging microscopy (FLIM) were used for characterization. Peptides were selected as substrates for three different proteases and a series of kinetic assays for proteolytic activity was carried out, including multiplexed assays and pro-enzyme activation assays. Quantitative results were obtained within 5-60 min at levels as low as 1-2 nM of protease. These assays were possible using simple optical readout platforms that did not negate the low cost, ease of use, and overall accessibility advantages of paper-based assays. A violet light-emitting diode (LED) excitation source and color imaging with either a digital camera, consumer webcam, or smartphone camera were sufficient for analysis on the basis of a red/green color intensity ratio. At most, a universal serial bus (USB) connection to a computer was required and the instrumentation cost orders of magnitude less than that typically utilized for in vitro bioanalyses with QDs. This work demonstrates that QDs are valuable probes for developing a new generation of paper-based diagnostics.

  2. Optical Sensor Technology Development and Deployment

    SciTech Connect

    B. G. Parker

    2005-01-24

    The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

  3. Assay optimisation and technology transfer for multi-site immuno-monitoring in vaccine trials.

    PubMed

    Smith, Steven G; Harris, Stephanie A; Satti, Iman; Bryan, Donna; Walker, K Barry; Dockrell, Hazel M; McShane, Helen; Ho, Mei Mei

    2017-01-01

    Cellular immunological assays are important tools for the monitoring of responses to T-cell-inducing vaccine candidates. As these bioassays are often technically complex and require considerable experience, careful technology transfer between laboratories is critical if high quality, reproducible data that allows comparison between sites, is to be generated. The aim of this study, funded by the European Union Framework Program 7-funded TRANSVAC project, was to optimise Standard Operating Procedures and the technology transfer process to maximise the reproducibility of three bioassays for interferon-gamma responses: enzyme-linked immunosorbent assay (ELISA), ex-vivo enzyme-linked immunospot and intracellular cytokine staining. We found that the initial variability in results generated across three different laboratories reduced following a combination of Standard Operating Procedure harmonisation and the undertaking of side-by-side training sessions in which assay operators performed each assay in the presence of an assay 'lead' operator. Mean inter-site coefficients of variance reduced following this training session when compared with the pre-training values, most notably for the ELISA assay. There was a trend for increased inter-site variability at lower response magnitudes for the ELISA and intracellular cytokine staining assays. In conclusion, we recommend that on-site operator training is an essential component of the assay technology transfer process and combined with harmonised Standard Operating Procedures will improve the quality, reproducibility and comparability of data produced across different laboratories. These data may be helpful in ongoing discussions of the potential risk/benefit of centralised immunological assay strategies for large clinical trials versus decentralised units.

  4. Night vision and electro-optics technology transfer, 1972 - 1981

    NASA Astrophysics Data System (ADS)

    Fulton, R. W.; Mason, G. F.

    1981-09-01

    The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.

  5. [Protein biomarker measurement and simple/rapid diagnostics with supersensitive and multiplex assay, MUSTag technology].

    PubMed

    Shibasaki, Futoshi; Morizane, Yoshihito; Makisaka, Noriko

    2009-11-01

    Recently, we face the rapid progression of an aging population, and so the importance of preventive medicine is growing. We would all like to pursue a healthy life during old age through effective treatment on the basis of the early detection of diseases. In this situation, we have developed MUSTag (Multiple Simultaneous Tag) assay technology through an innovative modification of the immuno-PCR method for the super-sensitive and multiplex detection of target biomarkers. In MUSTag technology, each different oligo-tag simultaneously detects multiplex protein targets with extremely high-level sensitivity (more than 10 fg(10(-15) g)/ml) in a dose-dependent manner by qRT-PCR (maximum: 3 plexes). Herein we report our recent results of multiple cytokine assays or disease-specific biomarker assays using MUSTag technology, and, further, clinical results from patients with cancer, ischemic brain, or heart attack, who need a prompt and predictive diagnosis for adequate treatment.

  6. DNA detection assay based on fluorescence quenching of rhodamine B by gold nanoparticles: The optical mechanisms

    NASA Astrophysics Data System (ADS)

    Pylaev, T. E.; Volkova, E. K.; Kochubey, V. I.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2013-12-01

    The different ability of single- and double-stranded oligonucleotides to stabilize gold nanoparticles (GNPs) in solution has recently been used to design several label-free hybridization assays on the basis of optical changes associated with GNP aggregation. DNA hybridization can be detected through changes in dye fluorescence quenching by GNPs. Here we examine the mechanisms behind a fluorescent DNA assay for model systems containing DNA oligonucleotides, 15-nm GNPs, and Rhodamine B (RB). There was a direct correlation between complete disappearance of fluorescence and complete adsorption of all RB molecules on nonaggregated GNPs, as revealed by an analysis of the colloids' supernatant liquids. We show that both the inner filter effect and the quenching of the dye owing to its adsorption on GNPs contribute to the observed changes in fluorescence intensity. Therefore, both factors should be properly adjusted to optimize the assay sensitivity. In particular, the low detection limit of the fluorescent DNA assay lies in the range 30-100 pM, which is close to the data reported previously for colorimetric and dynamic light scattering DNA assays.

  7. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    DTIC Science & Technology

    2016-07-07

    AFRL-AFOSR-JP-TR-2016-0059 Optical material researches for frontier optical ceramics and visible fiber laser technologies Yasushi Fujimoto Osaka...07-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Optical material researches for frontier...are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY

  8. Applications of optical fibres at Lublin University of Technology

    NASA Astrophysics Data System (ADS)

    Kacejko, Piotr; Wójcik, Waldemar

    2015-12-01

    The article contains a brief history and present days of research and education in application of optical fibres at Lublin University of Technology. It also presents the potential of research groups working at the University.

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, PCB DETECTION TECHNOLOGY, HYBRIZYME DELFIA TM ASSAY

    EPA Science Inventory

    The DELFIA PCB Assay is a solid-phase time-resolved fluoroimmunoassay based on the sequential addition of sample extract and europium-labeled PCB tracer to a monoclonal antibody reagent specific for PCBs. In this assay, the antibody reagent and sample extract are added to a strip...

  10. A-7 Airborne Light Optical Fiber Technology (ALOFT) Demonstration Project

    DTIC Science & Technology

    1977-02-03

    differentl foom Report) 15 UPLEMENTARY NOTES Il. K<EY’ WORDS (Continue on reverse side if nec.saary and Identity by block number) Fiber opticsI...and weapon-delivery system, electrical interface . page 5 2. Summary LCC results for A-7 alternative configurations ... 10 3. Side -by- side comparison... Side -by- side comparison, fiber-optic and electrical cables ... 12 INTROI)UCTION The Airborne Light Optical Fiber Technology (AL.OFT) demonstration was

  11. ROADM architectures and technologies for agile optical networks

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2007-02-01

    We review the different optoelectronic component and module technologies that have been developed for use in ROADM subsystems, and describe their principles of operation, designs, features, advantages, and challenges. We also describe the various needs for reconfigurable optical add/drop switching in agile optical networks. For each network need, we present the different ROADM subsystem architecture options with their pros and cons, and describe the optoelectronic technologies supporting each architecture.

  12. Planning for optical disk technology with digital cartography.

    USGS Publications Warehouse

    Light, D.L.

    1986-01-01

    A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980s has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis will be placed on determining USGS mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.-from Author

  13. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  14. Information Providers and Videodisc/Optical Disk Technology.

    ERIC Educational Resources Information Center

    Galloway, Emily; Paris, Judith

    1983-01-01

    Explores the possibilities of using videodisc and optical disk technology as publishing media, highlighting the videodisc as an educational tool and visual supplement to online databases, digital database publishing on videodisc, optical disks for electronic document and image delivery systems, and costs associated with videodisc design and…

  15. Space technology and the optical sciences.

    PubMed

    Yates, H W

    1982-01-15

    The earth-orbiting satellites and the deep-space probes have provided for the optical sciences platforms from which to study the earth, the solar system, and the universe with truly revolutionary capability. For the terrestrial sciences the orbiting platforms for optical measurements in both low and geostationary orbits have given us a view of our planet and a global coverage never before possible. For the astronomical applications of optical instruments that "cataract of the telescopic eye," the atmosphere of the earth has been left behind and through proximity, including actual contact, we now have resolution and spectral coverage limited only by money and motive.

  16. Automotive Fiber Optic Technology: Application Issues

    NASA Astrophysics Data System (ADS)

    Miller, Gregory D.

    1989-02-01

    Function content in automobiles has been projected to increase throughout the '90s. Accordingly, electromagnetic compatibility will become increasingly difficult to attain with all-conductor-based data transmission. The need for alternatives such as fiber optics is assumed. This paper discusses the issues to be addressed when using fiber optics in automotive data transmission applications. Connectors, packaging and data transmission subsystem impact are covered.

  17. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  18. Ultra-stable optical amplifier technologies for dynamic optical switching networks

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Tsang, K. S.; Man, R.; Puttnam, B. J.; Awaji, Y.; Wada, N.

    2015-01-01

    High-capacity fiber-optic communications are promising technologies to satisfy people's continuously growing demands for bandwidth hungry data services. Multi-wavelength optical circuit switching (OCS) technology is already widely deployed, however, with the limited number of transceivers equipped at each optical node and other constraints, the number of lightpaths which can be established and employed simultaneously in an optical network is restricted. This reduces the utilization efficiency of wavelength resources. Comparing to OCS, dynamic optical switching systems such as optical packet switching (OPS) offer higher efficiency in terms of wavelength resource utilization and have the potential to share more of the wavelength resources on fiber-links between larger numbers of users simultaneously. In such networks, bursty input signals or changes in traffic density may cause optical power surges that can damage optical components or impose gain transients on the signals that impair signal quality. A common approach for reducing gain transients is to employ electrical automatic gain control (AGC) or optical gain-clamping by optical feedback (OFB). AGC may be limited by the speed of the feedback circuit and result in additional transients. Meanwhile OFB can clamp the gain of power varying optical signals without transient but can introduce amplitude fluctuations caused by relaxation oscillations in the lasing cavity for large input power fluctuations. We propose and demonstrate a novel scheme for suppressing the power transients and the relaxation oscillations. This scheme can be utilized in optical amplifiers even if the optical feedback is employed.

  19. NIF optical materials and fabrication technologies: an overview

    NASA Astrophysics Data System (ADS)

    Campbell, John H.; Hawley-Fedder, Ruth A.; Stolz, Christopher J.; Menapace, Joseph A.; Borden, Michael R.; Whitman, Pamela K.; Yu, June; Runkel, Michael J.; Riley, Michael O.; Feit, Michael D.; Hackel, Richard P.

    2004-05-01

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  20. NIF Optical Materials and Fabrication Technologies: An Overview

    SciTech Connect

    Campbell, J H; Hawley-Fedder, R; Stolz, C J; Menapace, J A; Borden, M R; Whitman, P; Yu, J; Runkel, M; Riley, M; Feit, M; Hackel, R

    2004-02-23

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 {micro}m to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  1. The Business and Technology of Electronic and Optical Publishing.

    ERIC Educational Resources Information Center

    Schwerin, Julie B.

    1988-01-01

    The first of a two-part series on the emergence of CD-ROM in the online publishing industry introduces the business and technology aspects of electronic and optical publishing. The development of CD-ROM products and differences between CD-ROM and online in the areas of technology, content, and marketing are discussed. (MES)

  2. Fiber Optics (Optical Waveguides) Technology - Potential Application in the DCS.

    DTIC Science & Technology

    1981-02-01

    between areas ti,,t have high voltage differences , a safety hazard to the personnel can also occur. The use of fiber optics cormunicL, 4ans cable can...entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Review relevance 5 years from submission date. 19 KEY WORDS (Cnntinue oil reverse...placed much farther apart. It provides electrical isolation, even between high voltage areas, because the transmission medium is an electrical insulator

  3. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  4. Optical coherent technologies in next generation access networks

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Katsumi; Tsukamoto, Katsutoshi

    2012-01-01

    This paper reviews optical coherent technologies in next generation access networks with the use of radio over fiber (RoF), which offer key enabling technologies of wired and wireless integrated and/or converged broadband access networks to accommodate rapidly widespread cloud computing services. We describe technical issues on conventional RoF based on subcarrier modulation (SCM) and their countermeasures. Two examples of RoF access networks with optical coherent technologies to solve the technical issues are introduced; a video distribution system with FM conversion and wired and wireless integrated wide-area access network with photonic up- and down-conversion.

  5. Meeting evolving technology education challenges in photonics and optics

    NASA Astrophysics Data System (ADS)

    Woodward, William R.

    2012-10-01

    The rapid evolution of technology places great challenges on educators and employers to train and certify personnel in these technologies in a timely way. A cooperative effort between international standards organizations and the Electronics Technicians Association, International (ETA) is pioneering a new approach to meet the challenges of evolving technology education in the areas of photonics and optics. ETA recently introduced two optics certifications and two photonics certifications. Each of these certifications contains multiple knowledge and hands-on examinations that were developed specifically to meet the needs of industry.

  6. Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology

    DTIC Science & Technology

    2016-06-14

    AFRL-AFOSR-JP-TR-2016-0065 Ultrafast Optics - Vector Cavity Lasers: Physics and Technology Dingyuan Tang NANYANG TECHNOLOGICAL UNIVERSITY Final... Physics and Technology 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1-4096 5c.  PROGRAM ELEMENT NUMBER 61102F 6.  AUTHOR(S) Dingyuan Tang 5d...AOARD Grant FA2386-13-1-4096 “Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology” Name of Principal Investigator: A/Prof. Tang

  7. Ultrafast Optics - Vector Cavity Lasers: Physics and Technology

    DTIC Science & Technology

    2016-06-14

    AFRL-AFOSR-JP-TR-2016-0065 Ultrafast Optics - Vector Cavity Lasers: Physics and Technology Dingyuan Tang NANYANG TECHNOLOGICAL UNIVERSITY Final... Physics and Technology 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1-4096 5c.  PROGRAM ELEMENT NUMBER 61102F 6.  AUTHOR(S) Dingyuan Tang 5d...AOARD Grant FA2386-13-1-4096 “Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology” Name of Principal Investigator: A/Prof. Tang

  8. Application of expert system technology to nondestructive waste assay - initial prototype model

    SciTech Connect

    Becker, G.K.; Determan, J.C.

    1997-11-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs.

  9. Emerging technology in fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Dyott, Richard B.

    1991-03-01

    Some recent innovations in interferoinetric fiber optic sensors include special fibers new components and sensor systems. Many of the concepts have precedents in microwaves. 1. GENERAL PRINCIPLES The application of optical fibers to sensors is diffuse compared with their application to optical communications which is essentially focused on the single problem of how to get information from A to B. A fiber sensor is viable when it can do something not possible with better than more cheaply than any existing method. The probability of the emergence of a new sensor depends on the length of time that a need for the sensor and the possibility of meeting that need have co-existed regardless of whether the need or the possibility has appeared first. 2. TYPES OF SENSOR Fiber sensors can be divided into: a) Multimode fiber sensors which depend on amplitude effects b) Single mode (single path) fiber sensors which depend on phase effects. Since multimode fiber has existed for many decades the emergence of a new multimode sensor depends mostly on the discovery of a new need for such a sensor. On the other hand single mode/single path (i. e. polarization maintaining) fiber is relatively new and so is still being applied to existing needs. This is particularly so of recent innovations in fibers and components. SPIE Vol. 1396 Applications of Optical Engineering Proceedings of OE/Midwest ''90 / 709

  10. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  11. SNP genotyping using TaqMan technology: the CYP2D6*17 assay conundrum.

    PubMed

    Gaedigk, Andrea; Freeman, Natalie; Hartshorne, Toinette; Riffel, Amanda K; Irwin, David; Bishop, Jeffrey R; Stein, Mark A; Newcorn, Jeffrey H; Jaime, Lazara Karelia Montané; Cherner, Mariana; Leeder, J Steven

    2015-03-19

    CYP2D6 contributes to the metabolism of many clinically used drugs and is increasingly tested to individualize drug therapy. The CYP2D6 gene is challenging to genotype due to the highly complex nature of its gene locus. TaqMan technology is widely used in the clinical and research settings for genotype analysis due to assay reliability, low cost, and the availability of commercially available assays. The assay identifying 1023C>T (rs28371706) defining a reduced function (CYP2D6*17) and several nonfunctional alleles, produced a small number of unexpected diplotype calls in three independent sets of samples, i.e. calls suggested the presence of a CYP2D6*4 subvariant containing 1023C>T. Gene resequencing did not reveal any unknown SNPs in the primer or probe binding sites in any of the samples, but all affected samples featured a trio of SNPs on their CYP2D6*4 allele between one of the PCR primer and probe binding sites. While the phenomenon was ultimately overcome by an alternate assay utilizing a PCR primer excluding the SNP trio, the mechanism causing this phenomenon remains elusive. This rare and unexpected event underscores the importance of assay validation in samples representing a variety of genotypes, but also vigilance of assay performance in highly polymorphic genes such as CYP2D6.

  12. X ray optics for science and technology

    NASA Astrophysics Data System (ADS)

    Attwood, David T.

    1993-12-01

    The University of California has conducted research on soft x-ray physics, optics and applications thereof to the physical and life sciences. With support from the Air Force Office of Scientific Research, the University was able to develop a student research and training program. In combination with support from the DOE and, more recently, DOD's Advanced Research Projects Agency (ARPA), a world leadership research group has been established, the Center for X-ray Optics (CXRO), which holds the world's record for highest resolution soft x-ray microscopy (300 A); maintains leadership in biomicroscopy and spatially resolved materials studies; produces reflective optics in the soft x-ray and extreme ultraviolet (EUV), which are among the best in the world; participates in an EUV lithography program which will permit the future industrial evolution from visible and ultraviolet microchip patterning to EUV nanochip production; and offers one of the nation's strongest programs for student training in the emerging fields of nanostructures fabrication for materials science, quantum electronics, and biomicroscopy. A recent review article from 'Physics Today' (August 1992), which highlights some of these activities, is attached, along with the most recent annual report submitted to AFOSR, as well as other materials relevant to the AFOSR program.

  13. MPACVD processing technologies for planar integrated optics

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Boudreau, Robert A.; Bowen, Terry P.

    1998-06-01

    Optical circuits based on low-loss glass waveguide are the practical and promising approaches to integrate different functional components for optical communication system. Microwave plasma assisted chemical vapor deposition produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. A microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer thus deposited on the substrates with reasonable high growth rate. Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The main emphasis has been on optimizing the deposition parameters and reproducibility. An uniform, low-loss film can be made by properly balancing the precursor flows. The refractive index of deposited film can also be controlled by adjusting the flow ratio of SiCl4 and GeCl4 bubblers. Deposited films was characterized by prism coupler, loss measurement, residual stress, and composition analysis. The resulted refractive index step can be varied between 1.46 to 1.60. Waveguide can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on mask layer. Core layer was remove by the plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma etch. Etch rate of 3000-4000 angstrom/min has been achieved by using ICP compared to typical etch rate of 200-300 angstrom/min by using conventional RIE.

  14. Optical diagnosis of mammary ductal carcinoma using advanced optical technology

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, Shuangmu; Wang, Chuan; Chen, Jianxin

    2015-02-01

    Clinical imaging techniques for diagnosing breast cancer mainly include X-ray mammography, ultrasound, and magnetic resonance imaging (MRI), which have respective drawbacks. Multiphoton microscopy (MPM) has become a potentially attractive optical technique to bridge the current gap in clinical utility. In this paper, MPM was used to image normal and ductal cancerous breast tissues, based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). Our results showed that MPM has the ability to exhibit the microstructure of normal breast tissue, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) lesions at the molecular level comparable to histopathology. These findings indicate that, with integration of MPM into currently accepted clinical imaging system, it has the potential to make a real-time histological diagnosis of mammary ductal carcinoma in vivo.

  15. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  16. Adaptive optics technology for high-resolution retinal imaging.

    PubMed

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2012-12-27

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.

  17. Towards non-invasive 3D hepatotoxicity assays with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard J.; Koulovasilopoulos, Andreas; Treskes, Philipp; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre O.

    2015-03-01

    Three-dimensional tissue-engineered models are increasingly recognised as more physiologically-relevant than standard 2D cell culture for pre-clinical drug toxicity testing. However, many types of conventional toxicity assays are incompatible with dense 3D tissues. This study investigated the use of optical coherence phase microscopy (OCPM) as a novel approach to assess cell death in 3D tissue culture. For 3D micro-spheroid formation Human hepatic C3A cells were encapsulated in hyaluronic acid gels and cultured in 100μl MEME/10%FBS in 96-well plates. After spheroid formation the 3D liver constructs were exposed to acetaminophen on culture day 8. Acetaminophen hepatotoxicity in 3D cultures was evaluated using standard biochemical assays. An inverted OCPM in common path configuration was developed with a Callisto OCT engine (Thorlabs), centred at 930nm and a custom scanning head. Intensity data were used to perform in-depth microstructural imaging. In addition, phase fluctuations were measured by collecting several successive B scans at the same location, and statistics on the first time derivative of the phase, i.e. time fluctuations, were analysed over the acquisition time interval to retrieve overall cell viability. OCPM intensity (cell cluster size) and phase fluctuation statistics were directly compared with biochemical assays. In this study, we investigated optical coherence phase tomography to assess cell death in a 3d liver model after exposure to a prototypical hepatotoxin, acetaminophen. We showed that OCPM has the potential to assess noninvasively and label-free drug toxicity in 3D tissue models.

  18. Enabling advanced mirror blank design through modern optical fabrication technology

    NASA Astrophysics Data System (ADS)

    Wilson, Timothy J.; Genberg, Victor L.

    1994-02-01

    Mirror blanks used in high-reliability optical systems for airborne and spaceborne applications have many requirements in terms of weight, stiffness and moment of inertia, as well as mounting and gravitational influences. Lightweight and ultra-lightweight mirror blank design techniques have been enhanced by recent technological developments in mirror blank fabrication and optical figuring. This paper briefly reviews traditional mirror blank design considerations in light of new fabrication technologies such as abrasive water jet machining of mirror cores and ion figuring of optical surfaces. The impact of these new technologies on mirror blank design is also discussed, as well as new design and analytical techniques using NASTRAN. Actual production data using these techniques are presented.

  19. Bloch FDTD simulation of slow optical wave resonance cavity in optical storage technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Lin, Zhaohua; Cai, Lihua

    2013-08-01

    Long chain series resonance cavity is suitable for transferring slow optical wave, which can be served as the basic device for optical storage technology. Micro-ring resonator is one kind of such a long chain structure, which is considered to be the basic component of optical integrated circuit and optical computer in the future. The discrete energy level has the potential to distinguish digital optical data. The optical delay characteristics make such a device possible to store the information for some time. The advantage of this device is that it has the potential to construct an optical storage device in small geometrical dimension and could use mature semiconductor manufacture capability to lower the design and manufacturing expenses. Many experimental results have proved a lot of material and geometrical coefficients are very important for such an optical delay device. New theory method is needed to calculate the periodical energy transfer and time delay characteristics, which can be compared with experimental result. The Bloch FDTD is presented for analysis of such a new optical device, based on the optical Bloch energy band theory. The energy band characteristics of micro-ring periodical optical waveguide device is discussed used that analytical method. This precise calculated method could be served as a useful tool for design the structure of such resonance cavity to achieve desired slow optical wave transfer performance.

  20. Nonlinear Optics Technology, Area 1: FWM (Four Wave Mixing) Technology

    DTIC Science & Technology

    1986-09-22

    41 0 u Q)Co o 0 0. >1- o 0 41 -A $4 P4 38 paths to insure a high degree of copolarization at the Na cell. Turning mirrors (M) were visible dielectric...or MAXBRIte coated Zerodur substrate optics with twentieth wave or better surface figures. A 50-50 beamsplitter (BSl) served to generate the two pump...retroreflecting mirror . The signal beam, which essentially constituted a very bright glint, was split off of the pump leg by a beamsplitter and directed to a

  1. Study on microvisualizing assay of delivered drug infiltration using 2-color optical coherence dosigraphy

    NASA Astrophysics Data System (ADS)

    Nakamichi, Yu; Saeki, Souichi; Saito, Takashi; Hiro, Takafumi; Matsuzaki, Masunori

    2009-02-01

    Recently, clinical treatments applying drug delivery system (DDS) have been being developed. However, it is quite difficult to in vivo diagnose spatiotemporal distribution of drug infiltration, so the validation study should be too insufficient to progress the DDS development. In this study, we propose a visualizing assay of DDS, namely 2-Color Optical Coherence Dosigraphy (2C-OCD). 2C-OCD is based on optical coherence tomography using two waveband "2-Color" light sources having different optical absorbance of drug. This can simultaneously provide microscale tomographic images of scatterer density and drug concentration. In order to evaluate the efficacy of this technique, this was applied to drug-diffusion phenomena in microchannel and lipidrich plaques of rabbit with drug administration, respectively. As a result of diffusion experiment, it was confirmed that 2C-OCD can visualize a cross-sectional map of drug concentration, with spatial resolution 5 micro m × 10 μm and accuracy plus-minus 13.0 μM. In ex vivo animal experiment, the enhancement of absorptivity could be observed inside lipidrich plaques, in which DDS drug could be therein uptaken by drug administration. The absorption maps corresponding to drug concentration were calculated, comparing with their histological images. Consequently, they had good coincidence with histological examinations, therefore, it was concluded that 2C-OCD could visualize drug infiltration in biological tissue with almost the same spatial resolution as OCT system.

  2. Optical Nanofluidic Piston: Assay for Dynamic Force-Compression of Single Confined Polymer Chains

    NASA Astrophysics Data System (ADS)

    Khorshid, Ahmed; Zimny, Philip; Macos, Patrick; Massarelli, Geremia; Tétreault-La Roche, David; Reisner, Walter

    2014-03-01

    While single-molecule approaches now have a long-history in polymer physics, past methodology has a key limitation : it is not currently possible to apply well-defined forces to a precise number of chains in a well-defined volume. To this end,we have developed a nanofluidic assay for the study of DNA compression in vitro, the optical nanofluidic piston. The optical nanofluidic piston is a nanofluidic analog of a macroscopic piston-cylinder apparatus based on a nanosphere (``the piston'') optically trapped inside a 200-400nm nanochannel with embedded barrier (the ``cylinder''). The nanofluidic piston enables quantification of force required to compress single or multiple chains within a defined volume. We present combined fluorescence and force-measurements for the compression of T4 DNA under a variety of compression rates. Surprisingly, we find that compression occurs on a force-scale roughly 100x higher than that predicted by equilibrium theories, suggesting that the DNA is present in highly entangled states during the compression. Moreover, we observe that compression at high rates induces a ``shock-wave'' of high-polymer concentration near the bead, suggesting that our setup can quantitatively access novel non-equilibrium polymer phenomena.

  3. Parallel optics technology assessment for the versatile link project

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Rivera, R.; Prosser, A.; /Fermilab

    2011-01-01

    This poster describes the assessment of commercially available and prototype parallel optics modules for possible use as back end components for the Versatile Link common project. The assessment covers SNAP12 transmitter and receiver modules as well as optical engine technologies in dense packaging options. Tests were performed using vendor evaluation boards (SNAP12) as well as custom evaluation boards (optical engines). The measurements obtained were used to compare the performance of these components with single channel SFP+ components operating at a transmission wavelength of 850 nm over multimode fibers.

  4. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    ODell, S. L.; Jones, W. D.; Smith, W. S.; Ramsey, B. D.; Engelhaupt, D.

    2000-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high-strength electroformed nickel alloys. In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  5. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    Odell, S. L.; Jones, W. D.; Smith, W. S.; Ramsey, B. D.

    1999-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high-strength electroformed nickel alloys. In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  6. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Smith, W. S.; Engelhaupt, D.

    2000-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high- strength electroformed nickel alloys, In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  7. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Smith, W. S.; Engelhaupt, D.

    2000-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high- strength electroformed nickel alloys, In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  8. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    Odell, S. L.; Jones, W. D.; Smith, W. S.; Ramsey, B. D.

    1999-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high-strength electroformed nickel alloys. In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  9. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    ODell, S. L.; Jones, W. D.; Smith, W. S.; Ramsey, B. D.; Engelhaupt, D.

    2000-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high-strength electroformed nickel alloys. In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  10. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOEpatents

    Ackermann, Mark R.; Diels, Jean-Claude M.

    2007-06-26

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  11. An Assay System for Point-of-Care Diagnosis of Tuberculosis using Commercially Manufactured PCB Technology.

    PubMed

    Evans, Daniel; Papadimitriou, Konstantinos I; Greathead, Louise; Vasilakis, Nikolaos; Pantelidis, Panagiotis; Kelleher, Peter; Morgan, Hywel; Prodromakis, Themistoklis

    2017-04-06

    Rapid advances in clinical technologies, detection sensitivity and analytical throughput have delivered a significant expansion in our knowledge of prognostic and diagnostic biomarkers in many common infectious diseases, such as Tuberculosis (TB). During the last decade, a significant number of approaches to TB diagnosis have been attempted at Point-of-Care (PoC), exploiting a large variation of techniques and materials. In this work, we describe an electronics-based Enzyme-Linked ImmunoSorbent Assay (eELISA), using a Lab-on-a-Printed Circuit Board (LoPCB) approach, for TB diagnosis based on cytokine detection. The test relies upon an electrochemical (amperometric) assay, comprising a high-precision bioinstrumentation board and amperometric sensors, produced exclusively using standard PCB manufacturing processes. Electrochemical detection uses standard Au and Ag electrodes together with a bespoke, low-power, multichannel, portable data-acquisition system. We demonstrate high-performance assay chemistry performed at microfluidic volumes on Au pads directly at the PCB surface with improved limit of detection (~10 pg/mL) over standard colorimetric ELISA methods. The assay has also been implemented in plasma, showing the utility of the system for medical applications. This work is a significant step towards the development of a low-cost, portable, high-precision diagnostic and monitoring technology, which once combined with appropriate PCB-based microfluidic networks will provide complete LoPCB platforms.

  12. Recent Advances in Fiber Optic Coupler Technology

    NASA Astrophysics Data System (ADS)

    Corke, Michael; Sweeney, Kevin L.; Schmidt, Kevin M.

    1987-01-01

    The performance requirements and device specifications of single mode couplers have been changing rapidly in recent years. This paper reviews the present state of the art in this technology and introduces new device concepts which rely on the fuse-taper technology in their fabrication process. Details will be given of the fabrication and application of single mode wavelength division multiplexers which have an insertion loss below 0.5 dB and have a 20 dB isolation over a 30 nm operating wavelength range. Wavelength division multiplexers with a narrow wavelength separation, <5 nm, will also be described in terms of their fabrication and application. Details of the utilization and performance of concatenated wavelength division multiplexers as filters for uni- and bi-directional communication will also be presented. Finally, techniques for reducing the wavelength sensitivity of the coupling ratio in single mode couplers will be discussed which result in the development of a broad band coupler, BBC.

  13. American Society of Clinical Oncology Technology Assessment: chemotherapy sensitivity and resistance assays.

    PubMed

    Schrag, Deborah; Garewal, Harinder S; Burstein, Harold J; Samson, David J; Von Hoff, Daniel D; Somerfield, Mark R

    2004-09-01

    To develop a technology assessment of chemotherapy sensitivity and resistance assays in order to define the role of these tests in routine oncology practice. The American Society of Clinical Oncology (ASCO) established a Working Group to develop the technology assessment. The Working Group collaborated with the Blue Cross and Blue Shield Association (BCBSA) Technology Evaluation Center. The Working Group developed independent criteria for selecting articles for inclusion in the ASCO assessment, and developed a structured data abstraction tool to facilitate review of selected manuscripts. One Working Group member and an ASCO staff member independently reviewed the 1,139 abstracts identified by the BCBSA comprehensive literature search, and by an updated literature search performed by ASCO using the BCBSA search strategy (1966 to January 2004). Of the 12 articles included in this technology assessment, eight were identified by the original BCBSA systematic review, one was provided by industry, and three were identified by the ASCO updated literature review. Review of the literature does not identify any CSRAs for which the evidence base is sufficient to support use in oncology practice. The use of chemotherapy sensitivity and resistance assays to select chemotherapeutic agents for individual patients is not recommended outside of the clinical trial setting. Oncologists should make chemotherapy treatment recommendations on the basis of published reports of clinical trials and a patient's health status and treatment preferences. Because the in vitro analytic strategy has potential importance, participation in clinical trials evaluating these technologies remains a priority.

  14. Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment

    SciTech Connect

    G. Becker; M. Connolly; M. McIlwain

    1999-02-01

    The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types.

  15. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  16. Optical Refrigeration for Dramatically Improved Cryogenic Technology

    DTIC Science & Technology

    2015-01-24

    I .,   Sheik-­‐ Bahae ,  M.,   “Cryogenic   Optical  Refrigeration”  Advances  in...Melgaard,  S.  D.,   Seletskiy,  D.  V.,  Epstein,  R.   I .,  Alden,  J.  V.,  Sheik-­‐ Bahae ,  M.,  Proceedings  of...eds.  R.   I .  Epstein,  D.  V.  Seletskiy  &  M.  Sheik-­‐ Bahae ),  9000,  p   900002-­‐1,  2014.   [MSB07

  17. New Optical Imaging Technologies for Bladder Cancer: Considerations and Perspectives

    PubMed Central

    Liu, Jen-Jane; Droller, Michael J.; Liao, Joseph C.

    2014-01-01

    Purpose Bladder cancer presents as a spectrum of different diatheses. Accurate assessment for individualized treatment depends on initial diagnostic accuracy. Detection relies on white light cystoscopy accuracy and comprehensiveness. Aside from invasiveness and potential risks, white light cystoscopy shortcomings include difficult flat lesion detection, precise tumor delineation to enable complete resection, inflammation and malignancy differentiation, and grade and stage determination. Each shortcoming depends on surgeon ability and experience with the technology available for visualization and resection. Fluorescence cystoscopy/photodynamic diagnosis, narrow band imaging, confocal laser endomicroscopy and optical coherence tomography address the limitations and have in vivo feasibility. They detect suspicious lesions (photodynamic diagnosis and narrow band imaging) and further characterize lesions (optical coherence tomography and confocal laser endomicroscopy). We analyzed the added value of each technology beyond white light cystoscopy and evaluated their maturity to alter the cancer course. Materials and Methods Detailed PubMed® searches were done using the terms “fluorescence cystoscopy,” “photodynamic diagnosis,” “narrow band imaging,” “optical coherence tomography” and “confocal laser endomicroscopy” with “optical imaging,” “bladder cancer” and “urothelial carcinoma.” Diagnostic accuracy reports and all prospective studies were selected for analysis. We explored technological principles, preclinical and clinical evidence supporting nonmuscle invasive bladder cancer detection and characterization, and whether improved sensitivity vs specificity translates into improved correlation of diagnostic accuracy with recurrence and progression. Emerging preclinical technologies with potential application were reviewed. Results Photodynamic diagnosis and narrow band imaging improve nonmuscle invasive bladder cancer detection, including

  18. Developing enabling optics finishing technologies for the National Ignition Facility

    SciTech Connect

    Aikens, D.M.; Rich, L.; Bajuk, D.; Slomba, A.

    1998-01-08

    Lawrence Livermore National Laboratory is in the process of constructing the National Ignition Facility, a half million square foot facility which will house a 192 beam laser system capable of generating the 2 million joules of ultraviolet light energy necessary to achieve fusion ignition with inertial targets by 2004. More than 7,000 meter class optics will need to be manufactured by LLNL`s industrial partners to construct the laser system. The components will be manufactured starting in 1998 and will be finished by 2003. In 1994 it became clear through a series of funded cost studies that, in order to fabricate such an unprecedented number of large precision optics in so short a time for the lowest possible cost, new technologies would need to be developed and new factories constructed based on those technologies. At that time, LLNL embarked on an ambitious optics finishing technology development program costing more than $6M over 3 years to develop these technologies, working with three suppliers of large precision optics. While each development program centered upon the specialties and often proprietary technologies already existing in the suppliers facility, many of the technologies required for manufacturing large precision optics at the lowest cost possible are common to two and in some cases all three efforts. Since many of the developments achieved during this program stemmed from intellectual property and trade secrets at the vendors, the program cannot be described completely in a public forum. Nevertheless, many non-proprietary advances were made during this program which the vendors are willing to share with the greater community. This presentation will describe the manufacturing process in a general sense which is used by all three of the companies under contract; Zygo Corporation, Tinsley Laboratories, and Eastman Kodak. In each of the principle process steps of shaping, grinding, polishing, figuring, and metrology, development highlights will be

  19. Integrated optical sensing technologies on Si

    NASA Astrophysics Data System (ADS)

    Helmy, Amr S.; Abolghasem, P.; Ramanan, J.; Kang, D.; Logan, D.

    2015-01-01

    An effective approach to achieve efficient phase matching for second order nonlinearities, in multilayer structures will be discussed. It uses dispersion engineering in Bragg reflection waveguides to harness parametric processes in conjunction with concomitant dispersion and birefringence engineering in active devices. This technology enables novel coherent light sources using frequency conversion in a self-pumped chip form factor. These sources can also provide continuous coverage of spectral regions, which are not accessible by other technologies including quantum cascade lasers. This approach has been recently demonstrated in multi-layer Silicon-Oxy-Nitride (SiON) waveguides. Harnessing χ(2) in SiON offers a route for integration of broadband infrared sources using frequency mixing with opto-fluidics. Different approaches for implementing opto-fluidic structures on Si will be discussed, where the root cause of enhancing the retrieved Raman and infrared signals in these structures will be explained. Recent progress in using this approach to study different nanostructures and biological molecules will be presented.

  20. Recent developments in optical neuromodulation technologies.

    PubMed

    Kos, Aron; Loohuis, Nikkie F Olde; Glennon, Jeffrey C; Celikel, Tansu; Martens, Gerard J M; Tiesinga, Paul H; Aschrafi, Armaz

    2013-02-01

    The emergence of optogenetics technology facilitated widespread applications for interrogation of complex neural networks, such as activation of specific axonal pathways, previously found impossible with electrical stimulation. Consequently, within the short period of its application in neuroscience research, optogenetics has led to findings of significant importance both during normal brain function as well as in disease. Moreover, the optimization of optogenetics for in vivo studies has allowed the control of certain behavioral responses such as motility, reflex, and sensory responses, as well as more complex emotional and cognitive behaviors such as decision-making, reward seeking, and social behavior in freely moving animals. These studies have produced a wide variety of animal models that have resulted in fundamental findings and enhanced our understanding of the neural networks associated with behavior. The increasing number of opsins available for this technique enabled even broader regulation of neuronal activity. These advancements highlight the potential of this technique for future treatment of human diseases. Here, we provide an overview of the recent developments in the field of optogenetics technology that are relevant for a better understanding of several neuropsychiatric and neurodegenerative disorders and may pave the way for future therapeutic interventions.

  1. RF Photonic Technology in Optical Fiber Links

    NASA Astrophysics Data System (ADS)

    Chang, William S. C.

    2007-06-01

    List of contributors; Introduction and preface; 1. Figures of merit and performance analysis of photonic microwave links Charles Cox and William S. C. Chang; 2. RF subcarrier links in local access networks Xiaolin Lu; 3. Analog modulation of semiconductor lasers Joachim Piprek and John E. Bowers; 4. LiNbO3 external modulators and their use in high performance analog links Gary E. Betts; 5. Broadband traveling wave modulators in LiNbO3 Marta M. Howerton and William K. Burns; 6. Multiple quantum well electroabsorption modulators for RF photonic links William S. C. Chang; 7. Polymer modulators for RF photonics Timothy Van Eck; 8. Photodiodes for high performance analog links P. K. L. Yu and Ming C. Wu; 9. Opto-electronic oscillators X. Steve Yao; 10. Photonic link techniques for microwave frequency conversion Stephen A. Pappert, Roger Helkey and Ronald T. Logan Jr; 11. Antenna-coupled millimeter-wave electro-optical modulators William B. Bridges; 12. System design and performance of wideband photonic phased array antennas Greg L. Tangonan, Willie Ng, Daniel Yap and Ron Stephens; Acknowledgements; References; Index.

  2. Optical Disc Technology and the Cooperative Television Library.

    ERIC Educational Resources Information Center

    Kranch, Douglas

    1989-01-01

    Discusses the feasibility of individual television film libraries combining film holdings onto optical disks and developing networks that would allow online searching of, access to, and transmission of video images. It is concluded that recent advances in technology would support fast and cost effective image retrieval with no loss in video…

  3. Status of optical disk standards and copy protection technology

    NASA Astrophysics Data System (ADS)

    Chen, Di

    2000-07-01

    Optical data storage is now well into the second decade of continuing market and technology expansion. Media removability, which is the main attribute of this technology, presented the optical recording industry with unmatched opportunities and also new challenges. On the one hand, data interchange between the media and drives from different sources becomes a major concern, which can only be solved if international standards for all optical recording disk/cartridge are available. Many standards organizations, with the help of world wide industrial support, took up the challenge, and numerous international standards were established which are now being adapted. On the other hand, copy protection technology must be developed to prevent illegal copying and distribution of contents using this removable media. This need is accentuated by the proliferation of low cost CD and now DVD disks replication means and the availability of recordable and rewritable CD and DVD devices. This paper provides an update of the brief summary of the current status of the international optical disk standards published earlier and a brief review of the copy protection technology.

  4. Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…

  5. Laser Electro-Optic Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary considerations in the organization, operation, and evaluation of a laser electro-optic technology program. An occupational description and program content are presented. A curriculum framework specifies the exact course title, course number, levels of instruction, major course content, laboratory activities,…

  6. Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…

  7. Laser Electro-Optic Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary considerations in the organization, operation, and evaluation of a laser electro-optic technology program. An occupational description and program content are presented. A curriculum framework specifies the exact course title, course number, levels of instruction, major course content, laboratory activities,…

  8. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  9. Optical detectors for GaAs MMIC integration - Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  10. Optics and communication technology major of physics undergraduate degree at King Mongkut's Institute of Technology Ladkrabang

    NASA Astrophysics Data System (ADS)

    Buranasiri, Prathan

    2014-09-01

    A physics undergraduate degree major in optics and communication technology has been offered at King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand. There are nine required three credit hour courses including two laboratory courses plus a number of selections in optics and communication based technology courses. For independent thinking and industrial working skills, nine credit hours of research project, practical training or overseas studies are included for selection in the final semester. Students are encouraged to participate in international conferences and professional organizations. Recently the program, with support from SPIE and OSA, has organized its first international conference on photonic solutions 2013 (ICPS 2013).

  11. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor.

    PubMed

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-11

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based 'cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Development of a new catalase activity assay for biological samples using optical CUPRAC sensor

    NASA Astrophysics Data System (ADS)

    Bekdeşer, Burcu; Özyürek, Mustafa; Güçlü, Kubilay; Alkan, Fulya Üstün; Apak, Reşat

    2014-11-01

    A novel catalase activity assay was developed for biological samples (liver and kidney tissue homogenates) using a rapid and low-cost optical sensor-based ‘cupric reducing antioxidant capacity' (CUPRAC) method. The reagent, copper(II)-neocuproine (Cu(II)-Nc) complex, was immobilized onto a cation-exchanger film of Nafion, and the absorbance changes associated with the formation of the highly-colored Cu(I)-Nc chelate as a result of reaction with hydrogen peroxide (H2O2) was measured at 450 nm. When catalase was absent, H2O2 produced the CUPRAC chromophore, whereas catalase, being an effective H2O2 scavenger, completely annihilated the CUPRAC signal due to H2O2. Thus, the CUPRAC absorbance due to H2O2 oxidation concomitant with Cu(I)-Nc formation decreased proportionally with catalase. The developed sensor gave a linear response over a wide concentration range of H2O2 (0.68-78.6 μM). This optical sensor-based method applicable to tissue homogenates proved to be efficient for low hydrogen peroxide concentrations (physiological and nontoxic levels) to which the widely used UV method is not accurately responsive. Thus, conventional problems of the UV method arising from relatively low sensitivity and selectivity, and absorbance disturbance due to gaseous oxygen evolution were overcome. The catalase findings of the proposed method for tissue homogenates were statistically alike with those of HPLC.

  13. The 1994 Fiber Optic Sensors for Aerospace Technology (FOSAT) Workshop

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert (Compiler); Adamovsky, Grigory (Compiler); Tuma, Meg (Compiler); Beheim, Glenn (Compiler); Sotomayor, Jorge (Compiler)

    1995-01-01

    The NASA Lewis Research Center conducted a workshop on fiber optic technology on October 18-20, 1994. The workshop objective was to discuss the future direction of fiber optics and optical sensor research, especially in the aerospace arena. The workshop was separated into four sections: (1) a Systems Section which dealt specifically with top level overall architectures for the aircraft and engine; (2) a Subsystems Section considered the parts and pieces that made up the subsystems of the overall systems; (3) a Sensor/Actuators section considered the status of research on passive optical sensors and optical powered actuators; and (4) Components Section which addressed the interconnects for the optical systems (e.g., optical connectors, optical fibers, etc.). This report contains the minutes of the discussion on the workshop, both in each section and in the plenary sessions. The slides used by a limited number of presenters are also included as presented. No attempt was made to homogenize this report. The view of most of the attendees was: (1) the government must do a better job of disseminating technical information in a more timely fashion; (2) enough work has been done on the components, and system level architecture definition must dictate what work should be done on components; (3) a Photonics Steering Committee should be formed to coordinate the efforts of government and industry in the photonics area, to make sure that programs complimented each other and that technology transferred from one program was used in other programs to the best advantage of the government and industry.

  14. Miniaturization of mitotic index cell-based assay using "wall-less" plate technology.

    PubMed

    Le Guezennec, Xavier; Phong, Mark; Nor, Liyana; Kim, Namyong

    2014-03-01

    The use of microscopic imaging for the accurate assessment of cells in mitosis is hampered by the round morphology of mitotic cells, which renders them poorly adherent and highly susceptible to loss during the washing stage of cell-based assays. Here, to circumvent these limitations, we make use of DropArray, a recent technology that allows high retention of weakly adherent cells and suspension cells. DropArray offers the competitive advantage of maintaining the classic high throughput format of microtiter plates while reducing classic microwell volume by up to 90% by using a drop format. Here, we present a mitotic index cell-based assay using the mitosis marker phospho histone H3 at serine 10 on a DropArray 384-well plate format. Dose-response curve analysis of the mitotic index assay with an antimitotic drug (docetaxel) on DropArray is presented that shows an effective dosage compared to previous established results similar to those obtained with conventional microtiter plates. The mitotic index assay with DropArray showed a Z-factor >0.6. Our results validate DropArray as a suitable platform for high throughput screening for compounds affecting mitosis or the cell cycle.

  15. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  16. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  17. Critical Review of Noninvasive Optical Technologies for Wound Imaging

    PubMed Central

    Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha

    2016-01-01

    Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254

  18. The use of cold plasma technology to reduce carryover in screening assays.

    PubMed

    Akhlaq, Mohammed; Rosethorne, Elizabeth M; Sattikar, Afrah; Kent, Toby C

    2013-08-01

    The accurate transfer of biological reagents represents a fundamental step in the drug screening process, and the elimination of carryover is critical for the generation of accurate measurements of biological activity. The introduction of automated liquid robotics into screening laboratories has transformed the drug screening process, enabling accurate and reproducible transfer of liquids to become a high-throughput activity, but has also introduced a new challenge for drug discoverers: to establish screening workflows that limit analyte carryover for the generation of high-quality screening data. The widespread use of pipetting tips on automated liquid handlers often necessitates the use of optimized wash protocols for removing contaminants and frequently requires the use and disposal of large quantities of organic solvents. Furthermore, many chemical and biological reagents are recalcitrant to removal from pipetting tips by treatment with organic solvents. The use of cold atmospheric plasma technology provides an alternative approach for removal of contaminants and offers many advantages over traditional decontamination protocols commonly used during biological screening. This report describes the evaluation of a cold plasma tip-cleaning system for reducing carryover in a range of biological screening assays requiring the transfer of low molecular weight compound, nucleic acid, and bacterial liquid transfers. The validation of this technology for biological screening assays is presented, and the impact of this technology for screening workflows is discussed.

  19. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests.

    PubMed

    Van Dorst, Bieke; Brivio, Monica; Van Der Sar, Elfried; Blom, Marko; Reuvekamp, Simon; Tanzi, Simone; Groenhuis, Roelf; Adojutelegan, Adewole; Lous, Erik-Jan; Frederix, Filip; Stuyver, Lieven J

    2016-04-15

    In this manuscript, a microfluidic detection module, which allows a sensitive readout of biological assays in point-of-care (POC) tests, is presented. The proposed detection module consists of a microfluidic flow cell with an integrated Complementary Metal-Oxide-Semiconductor (CMOS)-based single photon counting optical sensor. Due to the integrated sensor-based readout, the detection module could be implemented as the core technology in stand-alone POC tests, for use in mobile or rural settings. The performance of the detection module was demonstrated in three assays: a peptide, a protein and an antibody detection assay. The antibody detection assay with readout in the detection module proved to be 7-fold more sensitive that the traditional colorimetric plate-based ELISA. The protein and peptide assay showed a lower limit of detection (LLOD) of 200 fM and 460 fM respectively. Results demonstrate that the sensitivity of the immunoassays is comparable with lab-based immunoassays and at least equal or better than current mainstream POC devices. This sensitive readout holds the potential to develop POC tests, which are able to detect low concentrations of biomarkers. This will broaden the diagnostic capabilities at the clinician's office and at patient's home, where currently only the less sensitive lateral flow and dipstick POC tests are implemented.

  20. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field

  1. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  2. Label-free and amplified quantitation of proteins in complex mixtures using diffractive optics technology.

    PubMed

    Cleverley, Steve; Chen, Irene; Houle, Jean-François

    2010-01-15

    Immunoaffinity approaches remain invaluable tools for characterization and quantitation of biopolymers. Their application in separation science is often limited due to the challenges of immunoassay development. Typical end-point immunoassays require time consuming and labor-intensive approaches for optimization. Real-time label-free analysis using diffractive optics technology (dot) helps guide a very effective iterative process for rapid immunoassay development. Both label-free and amplified approaches can be used throughout feasibility testing and ultimately in the final assay, providing a robust platform for biopolymer analysis over a very broad dynamic range. We demonstrate the use of dot in rapidly developing assays for quantitating (1) human IgG in complex media, (2) a fusion protein in production media and (3) protein A contamination in purified immunoglobulin preparations. 2009 Elsevier B.V. All rights reserved.

  3. Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2015-01-01

    Advancement of Miniature Optic Gas Sensor (MOGS) Probe Technology" project will investigate newly developed optic gas sensors delivered from a Small Business Innovative Research (SBIR) Phase II effort. A ventilation test rig will be designed and fabricated to test the sensors while integrated with a Suited Manikin Test Apparatus (SMTA). Once the sensors are integrated, a series of test points will be completed to verify that the sensors can withstand Advanced Suit Portable Life Support System (PLSS) environments and associated human metabolic profiles for changes in pressure and levels of Oxygen (ppO2), carbon dioxide (ppCO2), and humidity (ppH2O).

  4. Development of manufacturing technologies for hard optical ceramic materials

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott; Cahill, Mike; Wolfs, Frank

    2014-05-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, or PCA can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Premature tool wear or tool loading during the grinding process is a common result of these tough mechanical properties. Another challenge is the requirement to create geometries that conform to the platforms they reside in, but still achieve optical window tolerances for wavefront. These shapes can be complex and require new technologies to control sub aperture finishing techniques in a deterministic fashion. In this paper we will present three technologies developed at OptiPro Systems to address the challenges associated with these materials and complex geometries. The technologies presented will show how Ultrasonic grinding can reduce grinding load by up to 50%, UltraForm Finishing (UFF) and UltraSmooth Finishing (USF) technologies can accurately figure and finish these shapes, and how all of them can be controlled deterministically, with utilizing metrology feedback, by a new Computer Aided Manufacturing (CAM) software package developed by OptiPro called ProSurf.

  5. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  6. NASA funding opportunities for optical fabrication and testing technology development

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  7. Interview: stabilization of biological assays: conventional versus new technology. Interview by Lauren Constable.

    PubMed

    Burrows, Miles

    2013-12-01

    Miles Burrows speaks to Lauren Constable, Head of Commissioning Following completion of his PhD in Chemistry at Cardiff University (UK), Miles Burrows started his career at Amersham Biosciences (UK), predominately researching fluorescent reagents and the labeling of biological compounds. Following the acquisition of Amersham by GE Healthcare (UK), Burrows took on the role of R&D Technology Manager, leading a multifunctional team of chemists, biologists and industrial design engineers through new product introduction, research and product care projects. During this period, Burrows oversaw the launch of a custom assay stabilization service based on the well-established technology as used in GE Healthcare's Ready-To-Go™ product range. Since 2012 Burrows has been the Global Product Manager for custom molecular biology and fluorescent reagents for GE Healthcare Life Sciences.

  8. Ultrafast optical imaging technology: principles and applications of emerging methods

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Gao, Liang; Goda, Keisuke

    2016-09-01

    High-speed optical imaging is an indispensable technology for blur-free observation of fast transient dynamics in virtually all areas including science, industry, defense, energy, and medicine. High temporal resolution is particularly important for microscopy as even a slow event appears to occur "fast" in a small field of view. Unfortunately, the shutter speed and frame rate of conventional cameras based on electronic image sensors are significantly constrained by their electrical operation and limited storage. Over the recent years, several unique and unconventional approaches to high-speed optical imaging have been reported to circumvent these technical challenges and achieve a frame rate and shutter speed far beyond what can be reached with the conventional image sensors. In this article, we review the concepts and principles of such ultrafast optical imaging methods, compare their advantages and disadvantages, and discuss an entirely new class of applications that are possible using them.

  9. Quantum optics: science and technology in a new light.

    PubMed

    Walmsley, I A

    2015-05-01

    Light facilitates exploration of quantum phenomena that illuminate the basic properties of nature and also enables radical new technologies based on these phenomena. The critical features of quantum light that underpin the opportunities for discovery and application are exceptionally low noise and strong correlations. Rapid progress in both science and technology has been stimulated by adopting components developed for optical telecommunications and networking, such as highly efficient detectors, integrated photonic circuits, and waveguide- or nanostructure-based nonlinear optical devices. These provide the means to generate new quantum states of light and matter of unprecedented scale, containing many photons with quantum correlations across space and time. Notably, networks with only several tens of photons are already beyond what can be efficiently analyzed by current computers. Copyright © 2015, American Association for the Advancement of Science.

  10. A homogeneous and multiplexed immunoassay for high-throughput screening using fluorometric microvolume assay technology.

    PubMed

    Swartzman, E E; Miraglia, S J; Mellentin-Michelotti, J; Evangelista, L; Yuan, P M

    1999-07-01

    We have developed a simple, homogeneous bead-based immunoassay for use with fluorometric microvolume assay technology (FMAT). The FLISA (fluorescence-linked immunosorbent assay) can be easily adapted from existing immunoassays, is comparable to traditional ELISAs with respect to linear dynamic range and sensitivity, and can be readily performed in 96- and 384-well plates. Additionally, the FLISA utilizes 100-fold less primary antibody than the conventional immunoassay. The scanner uses a helium/neon laser to image and measure bead-bound fluorescence while the background fluorescence is ignored. Consequently, no wash steps are required to remove unbound antibody, ligand, and fluorophore. Furthermore, the instrument is capable of detecting two different fluorescent dyes, allowing for multiplexed assays based on color. Fluorescent bead-based immunoassays were developed for the cytokines IL-6 and IL-8, and their use in both one-color and two-color FLISAs is demonstrated. Although no wash steps were employed, the FLISA was able to accurately measure the concentrations of IL-6 and IL-8 in the growth media of cytokine-stimulated HUVEC cells. In addition, a simulated high-throughput two-color FLISA positively identified those wells in a 384-well plate that contained different amounts of IL-6 and/or IL-8 peptide. The homogeneous, multiplex and multiplate format of the FLISA reduces hands-on time and reagent usage, and is therefore ideally suited for high-throughput screening.

  11. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2006-10-01

    modeling of the heat dissipation effects of compact LEDs on tissue samples, selection of multiwavelength compact light sources, calculating bandwidth...Opto Technology also designs custom chip on board assemblies with single and multiple wavelengths of UV , Visible and IR LED die (365 – 940 nm...reflectance with high signal to noise for optical properties typical of tissue in the UV -VIS. We have furthermore investigated the potential use of LEDs as

  12. Progress Toward Demonstrating a High Performance Optical Tape Recording Technology

    NASA Technical Reports Server (NTRS)

    Oakley, W. S.

    1996-01-01

    This paper discusses the technology developments achieved during the first year of a program to develop a high performance digital optical tape recording device using a solid state, diode pumped, frequency doubled green laser source. The goal is to demonstrate, within two years, useful read/write data transfer rates to at least 100 megabytes per second and a user capacity of up to one terabyte per cartridge implemented in a system using a '3480' style mono-reel tape cartridge.

  13. Green multicast grooming based on optical bypass technology

    NASA Astrophysics Data System (ADS)

    Hou, Weigang; Guo, Lei; Cao, Jiannong; Wu, Jingjing; Hao, Liyuan

    2011-03-01

    With the network traffic increasing, the energy consumption of network equipments is growing greatly. Under the background of serious greenhouse effect, the excessive energy consumption has become a major barrier of developing the future information society. For this reason, the issue of saving energy followed by the grooming and optical bypass technology has become particularly important. In this paper, in order to perform the energy-saving for multicast demands, we present the multicast grooming policies and also develop a new auxiliary graph to support the multicast routing in green optical network. Based on the proposed auxiliary graph, a novel Multicast Green Grooming (MGG) approach by using the energy-efficient optical bypass technology and the effective grooming policy combination is proposed to reduce the occupied energy-consuming equipments that mainly include the core router ports, optical transceivers and amplifiers. Simulation results show that, compared to the traditional approach, MGG not only can obtain the lower blocking probability but also is able to save significant energy.

  14. Lab-on-fiber technology: toward multifunctional optical nanoprobes.

    PubMed

    Consales, Marco; Ricciardi, Armando; Crescitelli, Alessio; Esposito, Emanuela; Cutolo, Antonello; Cusano, Andrea

    2012-04-24

    We propose a reliable fabrication process enabling the integration of dielectric and metallic nanostructures on the tip of optical fibers, thus representing a further step in the "lab-on-fiber" technology roadmap. The proposed fabrication procedure involves conventional deposition and nanopatterning techniques, typically used for planar devices, but here adapted to directly operate on optical fiber tip. Following this approach, we demonstrate a first technological platform based on the integration onto the optical fiber tip of two-dimensional hybrid metallo-dielectric nanostructures supporting localized surface plasmon resonances. By means of experimental measurements and full-wave numerical simulations, we characterize these resonant phenomena and investigate the underlying physics. We show that resonances can be easily tuned by acting on the physical and geometrical parameters of the structure. Moreover, with a view toward possible applications, we present some preliminary results demonstrating how the proposed device can work effectively as an optical probe for label-free chemical and biological sensing as well as a microphone for acoustic wave detection.

  15. New materials technology for latching electro-optic devices

    NASA Astrophysics Data System (ADS)

    Hood, Patrick J.; Mastrangelo, John C.; Chen, Shaw H.

    1999-04-01

    This paper presents the current status of a new class of liquid crystal material being developed for latching electrooptic applications. This new material has the unique property of being electrooptic and fully latching. That is, in one state, the material has the properties of a conventional liquid crystal, capable of being aligned with either an electric or magnetic field; in its other state, it is an optical quality solid that maintains the molecular alignment set while in the fluid state. Experiments have shown that current materials can be switched on the order of milliseconds, as is the case with conventional nematic liquid crystals. In the solid state, the electric field can be removed with no change to the previously set optical properties because the molecular alignment is frozen in place, which should last for an extended period of time. In addition, the material exhibits broad temperature stability in the solid state, enabling devices to be developed that operate from cryogenic temperatures to 80 degrees C without the use of a temperature controller. This new material is ideally suited for applications where the size and mechanical robustness of an electrooptic device is desired, along with the latching capability of optomechanical devices. This materials technology alone will currently not meet high-speed switch requirements. However, this technology can be integrated with other state-of-the-art high-speed materials to provide a high-speed latching device. Devices currently under investigation using this materials include optical switches, optical attenuators and tunable filters.

  16. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  17. Novel concepts and technologies for manufacturing optical microdevices

    NASA Astrophysics Data System (ADS)

    Ehrfeld, Wolfgang; Bauer, Hans-Dieter; Drews, Dietrich; Lacher, Manfred

    1998-08-01

    The development and fabrication of micro-optical devices are of increasing importance in the field of data- and telecommunication networks capable of transmitting multimedia signals with high bit rates. Miniature optical sensors such as spectrometers and interferometers are another example for rapidly growing markets with a wide range of applications in biotechnology, chemistry, pharmacy, environmental technology, and automation, to namely only the most obvious. Various technologies are used for the development and fabrication of such devices. However, the success of the resulting product heavily depends on its price. Therefore, the techniques for the manufacture of micro-optical devices are at least as important as the product itself. In this presentation fabrication concepts and technologies will be discussed. By fabrication we naturally mean more than the production of a master that allows mass-production of the product. Among the criteria are also the pros and cons of the material to be used, automated assembly aspects, the compatibility with existing components or systems etc.

  18. Lasers and electro-optic technology in natural resource management

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1991-03-01

    As pressure on our limited land base continues to increase managers of public lands must have more accurate information within a shorter time to make logical defensible decisions which are acceptable to the public. Remote sensing technology provides many tools required to gather much of the information used by decision makers. Some of the most important remote sensing tools are based on laser and electro-optical technology. This paper provides an overview of some applications of laser and electro-optical devices by managers of natural resources. It is important for workers in other fields to be aware of the problems and needs of resource managers as it is important for resource managers to be knowledgeable about developments in technical areas. Sharing information will promote opportunities to develop new tools and improve the effectiveness and efficiency of management. Personal knowledge and literature searches provide examples. While the variety of uses in somewhat limited their importance is increasing as managers and analysts become more accustomed to using products of this technology. Lasers and electro-optical instruments will continue to be a very important part of our data collection process. 2. 0

  19. Super-linear optical modulator technologies for optical broadband access network: development and potential

    NASA Astrophysics Data System (ADS)

    Dingel, Benjamin B.; Madabhushi, Rangaraj; Madamopoulos, Nicholas

    2005-10-01

    Linearized optical intensity modulator is recognized as one of the building blocks in any analog fiber-optics links systems such as subcarrier multiplexing (SCM) systems, ultra-dense CATV, Radio-over-Fiber (RoF) communications, and other platform access systems. For more than 30 years, the quest for highly linearized optical modulator with SFDR > 130 dB-Hz 2/3 represents a major, on-going technology goal. This invited paper has three-fold objective namely: (1) provide comprehensive overview of the numerous existing linearized optical intensity modulators, (2) introduce a classification of these linearized modulators, and (3) present recent development of new, super-linear (SFDR = 130-140 dB-Hz 2/3) modulator which the authors pioneered. Other features of this new modulator are simple setup, high tolerance and low-cost. Performance results are presented via numerical simulation, its potential applications and limitations are also discussed.

  20. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy1

    PubMed Central

    Fujimoto, James G; Pitris, Costas; Boppart, Stephen A; Brezinski, Mark E

    2000-01-01

    Abstract Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging technology for medical diagnostics because unlike conventional histopathology which requires removal of a tissue specimen and processing for microscopic examination, OCT can provide images of tissue in situ and in real time. OCT can be used where standard excisional biopsy is hazardous or impossible, to reduce sampling errors associated with excisional biopsy, and to guide interventional procedures. In this paper, we review OCT technology and describe its potential biomedical and clinical applications. PMID:10933065

  1. Coherent DWDM technology for high speed optical communications

    NASA Astrophysics Data System (ADS)

    Saunders, Ross

    2011-10-01

    The introduction of coherent digital optical transmission enables a new generation of high speed optical data transport and fiber impairment mitigation. An initial implementation of 40 Gb/s coherent systems using Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) is already being installed in carrier networks. New systems running at 100 Gb/s DP-QPSK data rate are in development and early technology lab and field trial phase. Significant investment in the 100 Gb/s ecosystem (optical components, ASICs, transponders and systems) bodes well for commercial application in 2012 and beyond. Following in the footsteps of other telecommunications fields such as wireless and DSL, we can expect coherent optical transmission to evolve from QPSK to higher order modulations schemes such as Mary PSK and/or QAM. This will be an interesting area of research in coming years and poses significant challenges in terms of electro-optic, DSP, ADC/DAC design and fiber nonlinearity mitigation to reach practical implementation ready for real network deployments.

  2. Undersea fiber optic technology for the offshore community

    SciTech Connect

    Mariano, J.J.

    1994-12-31

    The explosive growth in demand for global communications has been met by a rapid evolution in the undersea fiber-optic technology, which in just a few years has become the predominant method of communication across the world`s oceans and seas. As the scope of applications has become broader, the technology has become more diverse, and now comprises a range of products capable of providing economical, reliable service in any subsea environment, from ocean depths to coastal lagoons. In this paper, the authors discuss how undersea lightwave technology is being applied to meet the communication and production control needs of the offshore oil and gas industry. They discuss the trends and technology developments that are changing the economics of undersea fiber-optic communication networks, as well as synergies in the offshore industry. They consider various applications for the industry and means of enhancing the profitability of platform operations through reduced downtime, reduced operating cost, and enhanced safety. Finally, they discuss extensions to exploratory drilling and land-based operations.

  3. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  4. 3D optical measuring technologies and systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2005-06-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100 % noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, RADAR, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  5. 3D optical measuring technologies for dimensional inspection

    NASA Astrophysics Data System (ADS)

    Chugui, Yu V.

    2005-01-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability takes a noncontact inspection of geometrical parameters of their components. For this tasks we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFILE, and technologies for non-contact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic system COMPLEX for noncontact inspection of geometrical parameters of running freight car wheel pairs. The performances of these systems and the results of the industrial testing at atomic and railway companies are presented.

  6. Application of one multimode fiber optical sensor in optical tomography technology

    NASA Astrophysics Data System (ADS)

    Shi, Zhiwei; Li, Yang; Zhou, Hua; Zeng, Yanhua

    2003-09-01

    Optical tomography technique is very important in changing conventional techniques for the development of imaging science. It will be applied widely in the fields of biomedical imaging, material structure analyzing and blurry martial target distinguishing etc. In this paper, we introduce the application of a multimode optical fiber sensor in tomography technology. Optic fiber with polished terminations requires the incident ray within a certain angle, so it usually causes deficiency of the light power entered into the optical fiber and diffuse the emergent ray, so polished terminations make it difficult to receive and detect the emergent rays. In order to solve the two problems above, a sphere lens is designed for one termination and a cylinder lens is designed for the other termination. This paper uses mathematics to analyze the relationship between the sphere lens radius, the cylinder lens radius, refractive index of the optical fiber. The relationship between the scanning angles and the numbers of the numbers of the received optical fiber is researched in the air medium, and the designing method for the sphere lens and the cylinder lens are present.

  7. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  8. A load identification sensor based on distributed fiber optic technology

    NASA Astrophysics Data System (ADS)

    Ciminello, M.; Bettini, P.; Ameduri, S.; Nicoli, S.; Concilio, A.; Sala, G.

    2017-04-01

    The manufacturing and the preliminary numerical and experimental testing results of a fiber optic based sensor, able to recognize different load paths, are herein presented. This device is conceived to identify load directions by strain detection along a circumferential geometry. A demonstrator is realized by manufacturing a circular shaped, flexible glass/epoxy laminate hosting the sensible elements. Three loops of optical fiber, laying at different quotes along its thickness, are there integrated. The sensor system is supposed to be bonded on the structural element and then able to follow its deformations under load. The working principle is based on the comparison of the strain paths detected at each fiber optic loop at homologous positions. Rayleigh backscattering optical technology is implemented to measure high spatial resolution strains. A finite element model is used to simulate the sensor behavior and assess its optimal configuration. A preliminary experimental campaign and a numerical correlation are performed to evaluate sensor performance considering in-plane and bending loads.

  9. Instrument technology for remote-surface exploration, prospecting and assaying, part 2

    NASA Technical Reports Server (NTRS)

    Brereton, R. G.

    1977-01-01

    The capability to specify new instrument/mechanism technology needs, for effective remote surface exploration, prospecting and assaying (EPA), requires first, an understanding of the functions or major elements of such a task, and second an understanding of the scientific instruments and support mechanisms that may be involved. An analog or task model was developed from which the various functions, operational procedures, scientific instruments, and support mechanisms for an automated mission could be derived. The task model led to the definition of nine major functions or categories of discrete operational elements that may have to be accomplished on a mission of this type. Each major function may stand alone as an element of an EPA mission, but more probably a major function will require the support of other functions, so they are inter-related.

  10. Ultrasensitive detection in optically dense physiological media: applications to fast reliable biological assays

    NASA Astrophysics Data System (ADS)

    Matveeva, Evgenia G.; Gryczynski, Ignacy; Berndt, Klaus W.; Lakowicz, Joseph R.; Goldys, Ewa; Gryczynski, Zygmunt

    2006-02-01

    We present a novel approach for performing fluorescence immunoassay in serum and whole blood using fluorescently labeled anti-rabbit IgG. This approach, which is based on Surface Plasmon-Coupled Emission (SPCE), provides increased sensitivity and substantial background reduction due to exclusive selection of the signal from the fluorophores located near a bio-affinity surface. Effective coupling range for SPCE is only couple of hundred nanometers from the metallic surface. Excited fluorophores outside the coupling layer do not contribute to SPCE, and their free-space emission is not transmitted through the opaque metallic film into the glass substrate. An antigen (rabbit IgG) was adsorbed to a slide covered with a thin silver metal layer, and the SPCE signal from the fluorophore-labeled anti-rabbit antibody, binding to the immobilized antigen, was detected. The effect of the sample matrix (buffer, human serum, or human whole blood) on the end-point immunoassay SPCE signal is discussed. The kinetics of binding could be monitored directly in whole blood or serum. The results showed that human serum and human whole blood attenuate the SPCE end-point signal and the immunoassay kinetic signal only approximately 2- and 3-fold, respectively (compared to buffer), resulting in signals that are easily detectable even in whole blood. The high optical absorption of the hemoglobin can be tolerated because only fluorophores within a couple of hundred nanometers from the metallic film contribute to SPCE. Both glass and plastic slides can be used for SPCE-based assays. We believe that SPCE has the potential of becoming a powerful approach for performing immunoassays based on surface-bound analytes or antibodies for many biomarkers directly in dense samples such as whole blood, without any need for washing steps.

  11. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    PubMed Central

    Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.

    2008-01-01

    Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control. PMID:27879874

  12. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  13. Artificial apposition compound eye fabricated by micro-optics technology.

    PubMed

    Duparré, Jacques; Dannberg, Peter; Schreiber, Peter; Bräuer, Andreas; Tünnermann, Andreas

    2004-08-01

    By exploring micro-optical design principles and technology, we have developed an artificial apposition compound eye. The overall thickness of the imaging system is only 320 microm, the diagonal field of view is 21 degrees, and the f-number is 2.6. The monolithic device consists of an UV-replicated microlens array upon a thin silica substrate with a pinhole array in a metal layer on the back side. The pitch of the pinholes differs from that of the lens array to provide individual viewing angle for each channel. Theoretical limitations of resolution and sensitivity are discussed as well as fabrication issues and compared with experimental results. A method to generate nontransparent walls between optical channels to prevent cross talk is proposed.

  14. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  15. Health information management using optical storage technology: case studies.

    PubMed

    Kohn, D

    1992-05-01

    All the health care facilities examined in the case studies addressed several important organizational issues before and during the installation of their systems. All the facilities examined employee commitment. The prudent managers considered how easily their employees adapt to changes in their jobs and work environment. They considered how enthusiastic cooperation can be fostered in the creation of a liberated and reengineered office. This was determined not only by each individual's reaction to change, but also by the health care facility's track record with other system installations. For example, document image, diagnostic image, and coded data processing systems allow the integration of divergent health care information systems within complex institutions. Unfortunately, many institutions are currently struggling with how to create an information management architecture that will integrate their mature systems, such as their patient care and financial systems. Information managers must realize that if optical storage technology-based systems are used in a strategic and planned fashion, these systems can act as focal points for systems integration, not as promises to further confuse the issue. Another issue that needed attention in all the examples was the work environment. The managers considered how the work environment was going to affect the ability to integrate optical image and data systems into the institution. For example, many of these medical centers have created alliances with clinics, HMOs, and large corporate users of medical services. This created a demand for all or part of the health information outside the confines of the original institution. Since the work environment is composed of a handful of factors such as merged medical services, as many work environment factors as possible were addressed before application of the optical storage technology solution in the institutions. And finally, the third critical issue was the organization of work

  16. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    NASA Astrophysics Data System (ADS)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    Neural engineering, itself an 'emerging interdisciplinary research area' [1] has undergone a sea change over the past few years with the emergence of exciting new optical technologies for monitoring, stimulating, inhibiting and, more generally, modulating neural activity. To a large extent, this change is driven by the realization of the promise and complementary strengths that emerging photo-stimulation tools offer to add to the neural engineer's toolbox, which has been almost exclusively based on electrical stimulation technologies. Notably, photo-stimulation is non-contact, can in some cases be genetically targeted to specific cell populations, can achieve high spatial specificity (cellular or even sub-cellular) in two or three dimensions, and opens up the possibility of large-scale spatial-temporal patterned stimulation. It also offers a seamless solution to the problem of cross-talk generated by simultaneous electrical stimulation and recording. As in other biomedical optics phenomena [2], photo-stimulation includes multiple possible modes of interaction between light and the target neurons, including a variety of photo-physical and photo-bio-chemical effects with various intrinsic components or exogenous 'sensitizers' which can be loaded into the tissue or genetically expressed. Early isolated reports of neural excitation with light date back to the late 19th century [3] and to Arvanitaki and Chalazonitis' work five decades ago [4]; however, the mechanism by which these and other direct photo-stimulation, inhibition and modulation events [5-7] took place is yet unclear, as is their short- and long-term safety profile. Photo-chemical photolysis of covalently 'caged' neurotransmitters [8, 9] has been widely used in cellular neuroscience research for three decades, including for exciting or inhibiting neural activity, and for mapping neural circuits. Technological developments now allow neurotransmitters to be uncaged with exquisite spatial specificity (down to

  17. Comparative Analysis of Dynamic Cell Viability, Migration and Invasion Assessments by Novel Real-Time Technology and Classic Endpoint Assays

    PubMed Central

    Limame, Ridha; Wouters, An; Pauwels, Bea; Fransen, Erik; Peeters, Marc; Lardon, Filip; De Wever, Olivier; Pauwels, Patrick

    2012-01-01

    Background Cell viability and motility comprise ubiquitous mechanisms involved in a variety of (patho)biological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions. Methodology/Principal Findings Dynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB) assay in a series of four cell concentrations, yielding fair to good correlations (Spearman's Rho 0.688 to 0.964). Cytotoxic action by paclitaxel (0–100 nM) correlated well with SRB (Rho>0.95) with similar IC50 values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90) and optical density (OD) measurement of extracted dye (Rho>0.95). Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95). Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method. Conclusions/Significance The xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on different

  18. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays.

    PubMed

    Limame, Ridha; Wouters, An; Pauwels, Bea; Fransen, Erik; Peeters, Marc; Lardon, Filip; De Wever, Olivier; Pauwels, Patrick

    2012-01-01

    Cell viability and motility comprise ubiquitous mechanisms involved in a variety of (patho)biological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions. Dynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB) assay in a series of four cell concentrations, yielding fair to good correlations (Spearman's Rho 0.688 to 0.964). Cytotoxic action by paclitaxel (0-100 nM) correlated well with SRB (Rho>0.95) with similar IC(50) values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90) and optical density (OD) measurement of extracted dye (Rho>0.95). Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95). Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method. The xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on different platforms applying only adapted matrix surface densities. The increased

  19. The AXAF technology program: The optical flats tests

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.

    1984-01-01

    The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.

  20. Novel multiterabit optical router based on hybrid switching technologies

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zeng, QingJi; Ouyang, Yong; Liu, Jimin; Luo, Xuan; Huang, Xuejun

    2002-07-01

    Internet backbone network is undergoing a large-scale transformation from the current complex, static and multi-layer electronic-based architecture to the emerging simplified, and dynamic and one-layer photonic-based architecture. The explosive growth in the Internet, multi-media services, and IP router links are demanding the next generation Internet that can accommodate the entire traffic in a cost-effective manner. There is a consensus in current industries that IP over WDM integration technologies will be viable for the next generation of the optical Internet where the simplified flat network architecture can facilitate the networking performance and the networking management. In this paper, we firstly propose a novel node architecture-Terabit Optical Router (TOR) for building the next generation optical Internet and analyses each key function unit of TOR including multi-granularity electrical-optical hybrid switching fabrics, unified control plane unit and so on. Secondly, we give the unified routing definition of multi-layer in TOR and present control plane software structure with emphasis on multi-layer routing issues. Thirdly we describe our cost vs. performance analysis for various application of TOR. According to our calculation, we can get a cost reduction of more than 60 percent by using the TOR. Finally, we reach conclusions that TORs rather than OBS/OPS-based optical routers or big fat router, a cost effective multi-granularity switching and routing technique, are feasible to build the next generation Internet in the coming 5-10 years.

  1. Thin film technologies for optoelectronic components in fiber optic communication

    NASA Astrophysics Data System (ADS)

    Perinati, Agostino

    1998-02-01

    'The Asian Routes Towards the Global Information Society' and 'Towards a Strategic Planning for the Global Information Society' will be the forum themes of 'Asia Telecom 97' and 'Telecom Interactice 97' events respectively, to be held by the International Telecommunication Union (ITU) in order to further telecommunication development around the world. International telecommunications network affects our life by keeping us in touch, bringing us world news and underpinning the global economy. Global tele-economy, global information infrastructure, global information society terms are more and more used to indicate the evolution towards an information- driven world where the access to information, communication and technologies is essential to the economic and social development in every country. Telecommunication industry can strongly contribute to this evolution together with broadcasting and computer industry, and fiber optic communications are expected to continue to grow up and share a relevant part of the total telecom market. In 1995 telecom market shown a 3.8 percent worldwide investment growth reaching a 545 billion value. According to 'Kessler Marketing Intelligence (KMI) Corp.' analysis of fiberoptics and multimedia market the amount of cabled fiber installed in U.S. will be around 11 million fiber-km in 1997 and 15 million fiber-km are predicted in the year 2000. Between 1995 and 1998 the undersea industry is estimated to deal with 13.9 billion as additional undersea cable systems investment in the global telecom network. In China beside satellite telecom stations and digital microwave systems 22 fiber optic backbones have been realized and another 23 systems are expected to be built in the Ninth Five-Year National Plan (1996 to approximately 2000) with a total length of nearly 30,000 sheat-km. The study, Fiber and Fiberoptic Cable Markets in China, recently released by KMI Corp. shows that fiber optic cable installation by MPT and other network operators

  2. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review

    PubMed Central

    Campbell, K.; Rawn, D.F.K.; Niedzwiadek, B.; Elliott, C.T.

    2011-01-01

    This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area. PMID:21623494

  3. Reusable Cryogenic Tank VHM Using Fiber Optic Distributed Sensing Technology

    NASA Technical Reports Server (NTRS)

    Bodan-Sanders, Patricia; Bouvier, Carl

    1998-01-01

    The reusable oxygen and hydrogen tanks are key systems for both the X-33 (sub-scale, sub-orbital technology demonstrator) and the commercial Reusable Launch Vehicle (RLV). The backbone of the X-33 Reusable Cryogenic Tank Vehicle Health Management (VHM) system lies in the optical network of distributed strain temperature and hydrogen sensors. This network of fiber sensors will create a global strain and temperature map for monitoring the health of the tank structure, cryogenic insulation, and Thermal Protection System. Lockheed Martin (Sanders and LMMSS) and NASA Langley have developed this sensor technology for the X-33 and have addressed several technical issues such as fiber bonding and laser performance in this harsh environment.

  4. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable,...

  5. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  6. Realization of FDDI optical bypass switches using surface micromachining technology

    NASA Astrophysics Data System (ADS)

    Lee, Shi-sheng; Lin, Lih-Yuan; Wu, Ming C.

    1995-09-01

    We report a novel fiber data distribution interface (FDDI) optical bypass switch using the surface-micromachining technology. In this design, all of the switches' components are made of polysilicon films and are monolithically patterned. The switch consists of four multimode optical fibers and a two-sided mirror sitting vertically on the top of a sliding plate which can be driven by an integrated micro-actuator. The gap between two in-line fibers are minimized to reduce insertion loss without using any lense. The total insertion loss of the switch has been measured to be 2.8 dB for the CROSS state and 3.1 dB for the BAR state with a LED source operates at 1.3 micrometers wavelegnth. The cross-talk between two states is measured to be 26.1 dB. The insertion loss and cross-talk can be improved further using different designs. Using this approach, the size, weight, and cost of current FDDI bypass switches can be dramatically reduced. Furthermore, the micromachined FDDI bypass switches are potentially integrable with the optical sources/detectors and controlling electronics.

  7. Impressing technology of optical Bragg's gratings on planar optical sol-gel waveguides

    NASA Astrophysics Data System (ADS)

    Pustelny, T.; Zielonka, I.; Tyszkiewicz, C.; Karasiński, P.; Pustelny, B.

    2006-06-01

    The aim of the presented investigations was to develop a technique of producing Bragg's grating couplers on planar waveguides. Waveguides are obtained by means of the sol-gel technology. The introduction of a light beam into the structure of the waveguide is in the case of planar or strip optical systems always an essential technical problem, requiring simple and reproducible solutions without extending excessively the waveguide structure. The paper presents a technology of producing grating couplers by impressing the pattern of the network while forming the planar waveguide structure applying the sol-gel method. Some remarks concerning the sol-gel technology are also presented. The results of investigations on grating couplers obtained in such a way have been discussed, too. Attention has been drawn to the possibility of using such structures in optoelectronic sensors, particularly gas sensors, including sensors of water vapour as well as toxic gases.

  8. Polymer waveguide technology: optical connectivity for small form factor applications

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    Planar polymer waveguides provide opportunities for small form factor distribution of laser light for communication, energy transfer and triggering devices used in the field of optically initiated arming, safing, fusing and firing. The two primary methods or classes of polymer waveguide technology use photolithographic processes both mask and maskless techniques. A waveguide is a device that controls the propagation of an electromagnetic wave so that the wave is forced to follow a path defined by the physical structure of the guide. Fabrication takes the form of both a ridge technology (ridge or trench formed by an embossing or etching method) and the second fabrication technique and the subject of this paper is termed Diffusion Technology [1]. This method includes the formation of a high refractive index waveguide by monomer diffusion into the light-exposed guide forming region with no mechanical or chemical etching contact. An essential process feature here is the photomask-defined light exposure of a mobile monomer waveguide forming region in a polymer matrix that converts the monomer to a polymer. The process of continued monomer diffusion into the surrounding guide imaged region increases the density. The addition of other laminated monomer/polymer diffusing layers with the typical three-plus layer configuration is completely photopolymerized after diffusion is complete. The essential steps include a light induced imaging reaction, a total polymerization light fixing for the entire film, and final cure, all using pre-coated dry materials without waveguide side wall contact. Light and molecular diffusion determine the guide walls [1]. This paper will provide testing results and information on the state of polymer waveguides, the methods of fabrication and the general conditions that these waveguides can operate under. The use of polymer waveguides for connectivity has sufficiently advanced, is practical and available for consideration in near term application

  9. New technologies for fluid dynamics experiments and optical diagnostics

    NASA Astrophysics Data System (ADS)

    Orlov, Sergei S.

    2008-12-01

    Modern technologies offer new opportunities for experimentalists in a wide variety of research areas including hydrodynamics. A significant improvement in precision, dynamic range, reproducibility, motion control accuracy, data acquisition rate and information capacity of the experimental datasets over the current state-of-the-art are possible using new approaches and techniques, which may bring the quality of experiments to a new level of standards. Application of these new technologies in experimental diagnostics can help bridge the current quality gap between the observations and the large-scale computational fluid dynamics simulations allowing direct and unambiguous comparison of the data and the modeling results, which is crucial for the code validation. One of the new technologies which is described in this paper is ultra-high performance digital holographic data storage. The state-of-the-art motion control, electronics and optical imaging allow for realization of turbulent flows with very high Reynolds number (>107) in a relatively small laboratory-scale form-factor and quantification of their properties with extremely high spatio-temporal resolutions and bandwidth. Digital holographic technology can provide complete three-dimensional mapping of the flow velocity and density fields at high data rates (over 1000 fps) over large spatial area (~50 cm) with high spatial (1-10 μm) and temporal (better than a few nanoseconds) resolutions and, therefore, can provide extremely accurate quantitative description of the fluid flows, including those of multiphase and unsteady conditions. These unique experimental and metrological capabilities enable the studies of spatial and temporal properties of the transport of momentum, angular momentum and energy, and the identification of scaling, invariants and statistical properties of the complex multiphase and unsteady turbulent flows. The technology can be applied for investigations of a large variety of hydrodynamic

  10. The first FDA marketing authorizations of next-generation sequencing technology and tests: challenges, solutions and impact for future assays.

    PubMed

    Bijwaard, Karen; Dickey, Jennifer S; Kelm, Kellie; Težak, Živana

    2015-01-01

    The rapid emergence and clinical translation of novel high-throughput sequencing technologies created a need to clarify the regulatory pathway for the evaluation and authorization of these unique technologies. Recently, the US FDA authorized for marketing four next generation sequencing (NGS)-based diagnostic devices which consisted of two heritable disease-specific assays, library preparation reagents and a NGS platform that are intended for human germline targeted sequencing from whole blood. These first authorizations can serve as a case study in how different types of NGS-based technology are reviewed by the FDA. In this manuscript we describe challenges associated with the evaluation of these novel technologies and provide an overview of what was reviewed. Besides making validated NGS-based devices available for in vitro diagnostic use, these first authorizations create a regulatory path for similar future instruments and assays.

  11. Are Optical Gas Imaging Technologies Effective For Methane Leak Detection?

    PubMed

    Ravikumar, Arvind P; Wang, Jingfan; Brandt, Adam R

    2017-01-03

    Concerns over mitigating methane leakage from the natural gas system have become ever more prominent in recent years. Recently, the U.S. Environmental Protection Agency proposed regulations requiring use of optical gas imaging (OGI) technologies to identify and repair leaks. In this work, we develop an open-source predictive model to accurately simulate the most common OGI technology, passive infrared (IR) imaging. The model accurately reproduces IR images of controlled methane release field experiments as well as reported minimum detection limits. We show that imaging distance is the most important parameter affecting IR detection effectiveness. In a simulated well-site, over 80% of emissions can be detected from an imaging distance of 10 m. Also, the presence of "superemitters" greatly enhance the effectiveness of IR leak detection. The minimum detectable limits of this technology can be used to selectively target "superemitters", thereby providing a method for approximate leak-rate quantification. In addition, model results show that imaging backdrop controls IR imaging effectiveness: land-based detection against sky or low-emissivity backgrounds have higher detection efficiency compared to aerial measurements. Finally, we show that minimum IR detection thresholds can be significantly lower for gas compositions that include a significant fraction nonmethane hydrocarbons.

  12. Label-free cell-based assays with optical biosensors in drug discovery.

    PubMed

    Fang, Ye

    2006-10-01

    Once viewed solely as a tool for low throughput and kinetic analysis of biomolecular interactions, optical biosensors are gaining widespread uses in drug discovery because of recent advances in instrumentation and experimental design. These advances have expanded the capabilities of optical biosensors to meet the needs at many points in the drug discovery process. Concurrent shifts in drug discovery paradigms have seen the growing use of whole cell systems for drug screens, thus creating both a need in drug discovery and a solution in optical biosensors. This article reviews important advances in optical biosensor instrumentation, and highlights the potential of optical biosensors for drug discovery with an emphasis on whole cell sensing in both high throughput and high content fashions.

  13. Determination of methyl parathion in water and its removal on zirconia using optical enzyme assay.

    PubMed

    Deshpande, Kanchanmala; Mishra, Rupesh K; Bhand, Sunil

    2011-07-01

    A simple, miniaturized microplate chemiluminescence assay for determination of methyl parathion (MP) was developed in 384-microwell plates. Zirconia (ZrO(2)) was added in microwell for adsorption of acetylcholinesterase (AChE). The developed assay is based on inhibition of AChE by MP. A good dynamic range 0.008-1,000 ng/mL was obtained for MP with limit of detection 0.008 ng/mL. Intrabatch and interbatch reproducibility for miniaturized assay was obtained with % RSD up to 3.07 and 5.66, respectively. In 384 well plate formats, 70 samples were simultaneously analyzed within 20 min with assay volume of 41.5 μL. The application of developed assay was extended for MP remediation. Column containing ZrO(2) was utilized for remediation where MP was selectively adsorbed. Under optimized condition, adsorption of MP on ZrO(2) was found to be 98-99% with 2-h contact time in real water samples. Adsorption of MP on ZrO(2) column followed by quantification using developed bioassay provides a novel approach to monitor remediation. The applicability of assay was successfully extended for determination of MP in water samples after removal through ZrO(2).

  14. An optical biosensor assay for rapid dual detection of Botulinum neurotoxins A and E.

    PubMed

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Mazuet, Christelle; Popoff, Michel R; Blanchard, Marie-Pierre; Seagar, Michael; El Far, Oussama

    2015-12-09

    The enzymatic activity of the pathogenic botulinum neurotoxins type A and E (BoNT/A and E) leads to potentially lethal paralytic symptoms in humans and their prompt detection is of crucial importance. A chip assay based on Surface Plasmon Resonance monitoring of the cleavage products is a simple method that we have previously established to detect BoNT/A activity. We have now developed a similar format assay to measure BoNT/E activity. A monoclonal antibody specifically recognizing SNAP25 cleaved by BoNT/E was generated and used to measure the appearance of the neo-epitope following injection of BoNT/E over SNAP-25 immobilized on a chip. This assay detects BoNT/E activity at 1 LD50/ml within minutes and linear dose-responses curves were obtained using a multiplexed biosensor. A threshold of 0.01 LD50/ml was achieved after 5 h of cleavage. This assay is 10-fold more sensitive than the in vivo assay for direct detection of BoNT/E in serum samples. The SNAP25 chip assay is able to discriminate in an automated manner the presence of BoNT/E, BoNT/A or a combination of both toxins.

  15. An optical biosensor assay for rapid dual detection of Botulinum neurotoxins A and E

    PubMed Central

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Mazuet, Christelle; Popoff, Michel R.; Blanchard, Marie-Pierre; Seagar, Michael; El Far, Oussama

    2015-01-01

    The enzymatic activity of the pathogenic botulinum neurotoxins type A and E (BoNT/A and E) leads to potentially lethal paralytic symptoms in humans and their prompt detection is of crucial importance. A chip assay based on Surface Plasmon Resonance monitoring of the cleavage products is a simple method that we have previously established to detect BoNT/A activity. We have now developed a similar format assay to measure BoNT/E activity. A monoclonal antibody specifically recognizing SNAP25 cleaved by BoNT/E was generated and used to measure the appearance of the neo-epitope following injection of BoNT/E over SNAP-25 immobilized on a chip. This assay detects BoNT/E activity at 1 LD50/ml within minutes and linear dose-responses curves were obtained using a multiplexed biosensor. A threshold of 0.01 LD50/ml was achieved after 5 h of cleavage. This assay is 10-fold more sensitive than the in vivo assay for direct detection of BoNT/E in serum samples. The SNAP25 chip assay is able to discriminate in an automated manner the presence of BoNT/E, BoNT/A or a combination of both toxins. PMID:26648139

  16. Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Morohashi, Isao; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2015-02-01

    Coherent terahertz signal transmission with multilevel modulation and demodulation is demonstrated using an optical sub-harmonic IQ mixer (SHIQM), which consists of optical components in advanced optical fiber communication technologies. An optical-frequency-comb-employed signal generator is capable of vector modulation as well as frequency tunability. Digital signal processing (DSP) adopted from the recently developed optical digital coherent communication can easily demodulate multi-level modulated terahertz signals by using electrical heterodyning for intermediate-frequency (IF) down conversion. This technique is applicable for mobile backhauling in the next-generation mobile communication technology directly connected to an optical fiber network as a high-speed wireless transmission link.

  17. A mutagen-testing assay based on heterogeneity in diameter and integrated optical density of mammalian cell colonies.

    PubMed Central

    Dairkee, S H; Glaser, D A

    1984-01-01

    We investigated the effects of the well-known mutagenic agents ethyl methanesulfonate (EtMes), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), and ICR-191 on colonies of the Chinese hamster ovary line CHO cultured on a semisolid substrate. These agents induced heterogeneity in diameter and integrated optical density of colonies as determined by computer-assisted photography and subsequent analysis of the images of the colonies. When CHO colonies were exposed to agents such as urethane that are not known to be mutagenic in mammalian systems or to activation-requiring mutagens such as cyclophosphamide, there was no noticeable effect on the distribution of colony diameter and volume. Similarly, nonmutagenic agents such as dimethyl sulfoxide (Me2SO) also did not induce heterogeneity in colony diameter and integrated optical density. Our observations recommend the use of agar-grown mammalian cell colonies for predictive testing of chemical mutagens and carcinogens in a simple, in vitro mammalian cell assay. This assay system, unlike other mammalian cell culture assays, allows detection and measurement of the simultaneous effects of chemical mutagens on several genetic and non-genetic targets and, thus, may emulate more closely the potential hazards of these agents in vivo. PMID:6585791

  18. Development of Proton Exchange Technology in the ISSP—Optical Waveguides in Electro-Optical Crystals

    NASA Astrophysics Data System (ADS)

    Kuneva, Mariana

    2010-01-01

    The contribution of the team working in the field of integrated optics in the Institute of Solid State Physics to the development of proton exchange technology is discussed. Some modifications of its parameters (new proton sources) and steps (two-step exchange separated by annealing, for example) are pointed out in respect of their effect on the waveguide properties of proton-exchanged layers. The spectroscopic methods used for phase content characterization of waveguides obtained are also described. These include infrared absorption and reflection spectrometry, X-ray photoelectron spectroscopy, mode spectroscopy and micro & waveguide Raman spectroscopy.

  19. Standoff detection of explosives: a challenging approach for optical technologies

    NASA Astrophysics Data System (ADS)

    Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.

    2011-06-01

    Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.

  20. Broadband optical concentration technology based on grating side-coupling

    NASA Astrophysics Data System (ADS)

    Lu, Luyun; Wang, Kaiwei

    2014-08-01

    Though the technology of grating side-coupling is often applied in fields, such as coupling of light of single wavelength or narrow waveband, pump of fiber laser, integration of optical waveguide, its application for broadband coupling of visible spectrum is rarely studied. Sunlight can concentrate and output at the edge of waveguides by integrating sub-wavelength gratings with waveguides, making it a novel solar concentrator. In this paper, we simulated different grating structures with the finite-difference time-domain solution software (FDTD) to obtain the optimal structure design, since different grating structures feature different diffractive efficiencies. The result demonstrates that the structures mentioned above all feature good diffractive efficiencies in broadband wavelength, among which the blazing grating reaches the largest efficiency, namely 48.8%.This kind of sub-wavelength gratings feature integration of small size, which makes it promising in absorption of solar energy, such as lumination, photovoltaic cell, space melting, etc.

  1. Review of intraoperative optical coherence tomography: technology and applications [Invited

    PubMed Central

    Carrasco-Zevallos, Oscar M.; Viehland, Christian; Keller, Brenton; Draelos, Mark; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.

    2017-01-01

    During microsurgery, en face imaging of the surgical field through the operating microscope limits the surgeon’s depth perception and visualization of instruments and sub-surface anatomy. Surgical procedures outside microsurgery, such as breast tumor resections, may also benefit from visualization of the sub-surface tissue structures. The widespread clinical adoption of optical coherence tomography (OCT) in ophthalmology and its growing prominence in other fields, such as cancer imaging, has motivated the development of intraoperative OCT for real-time tomographic visualization of surgical interventions. This article reviews key technological developments in intraoperative OCT and their applications in human surgery. We focus on handheld OCT probes, microscope-integrated OCT systems, and OCT-guided laser treatment platforms designed for intraoperative use. Moreover, we discuss intraoperative OCT adjuncts and processing techniques currently under development to optimize the surgical feedback derivable from OCT data. Lastly, we survey salient clinical studies of intraoperative OCT for human surgery. PMID:28663853

  2. Endoscopic optical coherence tomography: technologies and clinical applications [Invited

    PubMed Central

    Gora, Michalina J.; Suter, Melissa J.; Tearney, Guillermo J.; Li, Xingde

    2017-01-01

    In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed. PMID:28663882

  3. Optical fiber cabling technologies for flexible access network

    NASA Astrophysics Data System (ADS)

    Tanji, Hisashi

    2008-07-01

    Fiber-to-the-home (FTTH) outside plant infrastructure should be so designed and constructed as to flexibly deal with increasing subscribers and system evolution to be expected in the future, taking minimization of total cost (CAPEX and OPEX) into consideration. With this in mind, fiber access architectures are reviewed and key technologies on optical fiber and cable for supporting flexible access network are presented. Low loss over wide wavelength (low water peak) and bend-insensitive single mode fiber is a future proof solution. Enhanced separable ribbon facilitates mid-span access to individual fibers in a cable installed, improving fiber utilizing efficiency and flexibility of distribution design. It also contributes to an excellent low PMD characteristic which could be required for video RF overlay system or high capacity long reach metro-access convergence network in the future. Bend-insensitive fiber based cabling technique including field installable connector greatly improves fiber/cable handling in installation and maintenance work.

  4. Endoscopic optical coherence tomography: technologies and clinical applications [Invited].

    PubMed

    Gora, Michalina J; Suter, Melissa J; Tearney, Guillermo J; Li, Xingde

    2017-05-01

    In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.

  5. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  6. A High-Throughput Screening Assay for NKCC1 Cotransporter Using Nonradioactive Rubidium Flux Technology.

    PubMed

    Gill, Sikander; Gill, Rajwant; Wen, Yang; Enderle, Thilo; Roth, Doris; Liang, Dong

    A high-throughput screening (HTS) assay was developed for cotransporter, NKCC1, which is a potential target for the treatment of diverse disorders. This nonradioactive rubidium flux assay coupled with ion channel reader series provides a working screen for this target expressed in human embryonic kidney (HEK) cell line. An eightfold window of detection was achieved with the optimized assay. This new functional assay offered a robust working model for NKCC1 in determining reliable and concordant rank orders of the test compounds supporting its sensitivity and specificity. The robustness of manual assay indicated by Z' of 0.9 qualified its amenability to automation. The Z' of 0.7 was displayed by automated assay employed in high-throughput screening of compound libraries against this target. Being electrically neutral, the NKCC1 screening is difficult to achieve by both manual and automated electrophysiological techniques. These techniques, although considered gold standard, suffer from their inherent problems of being too slow to be in high-throughput format and with high running costs. In addition to being a functional assay for NKCC1, it is nontoxic as compared with thallium flux assay, which is prone to generate high number of false-positive/false-negative rates because of its innate fluorescence issues.

  7. SNP genotyping using TaqMan® technology: the CYP2D6*17 assay conundrum

    PubMed Central

    Gaedigk, Andrea; Freeman, Natalie; Hartshorne, Toinette; Riffel, Amanda K.; Irwin, David; Bishop, Jeffrey R.; Stein, Mark A.; Newcorn, Jeffrey H.; Jaime, Lazara Karelia Montané; Cherner, Mariana; Leeder, J. Steven

    2015-01-01

    CYP2D6 contributes to the metabolism of many clinically used drugs and is increasingly tested to individualize drug therapy. The CYP2D6 gene is challenging to genotype due to the highly complex nature of its gene locus. TaqMan® technology is widely used in the clinical and research settings for genotype analysis due to assay reliability, low cost, and the availability of commercially available assays. The assay identifying 1023C>T (rs28371706) defining a reduced function (CYP2D6*17) and several nonfunctional alleles, produced a small number of unexpected diplotype calls in three independent sets of samples, i.e. calls suggested the presence of a CYP2D6*4 subvariant containing 1023C>T. Gene resequencing did not reveal any unknown SNPs in the primer or probe binding sites in any of the samples, but all affected samples featured a trio of SNPs on their CYP2D6*4 allele between one of the PCR primer and probe binding sites. While the phenomenon was ultimately overcome by an alternate assay utilizing a PCR primer excluding the SNP trio, the mechanism causing this phenomenon remains elusive. This rare and unexpected event underscores the importance of assay validation in samples representing a variety of genotypes, but also vigilance of assay performance in highly polymorphic genes such as CYP2D6. PMID:25788121

  8. Mixed Waste Focus Area/Characterization Monitoring Sensor Technology Nondestructive Waste Assay Capability Evaluation Project End-User Summary Report

    SciTech Connect

    G. K. Becker; M. E. McIlwain; M. J. Connolly

    1998-11-01

    The Mixed Waste Focus Area (MWFA) in conjunction with the Characterization Monitoring and Sensor Technology (CMST) crosscut program identified the need to objectively evaluate the capability of nondestructive waste assay (NDA) technologies. This was done because of a general lack of NDA technology performance data with respect to a representative cross section of waste form configurations comprising the Department of Energy (DOE) contact-handled alpha contaminated [e.g., transuranic (TRU) waste]. The overall objective of the Capability Evaluation Project (CEP) was to establish a known and unbiased NDA data and information base that can be used to support end-user decisions with regards to technology system selection and to support technology development organizations in identifying technology system deficiencies. The primary performance parameters evaluated in the CEP were measurement bias and relative precision. The performance of a given NDA technology is a direct function of the attributes represented by the waste matrix configuration. Such attributes include matrix density, matrix elemental composition, radionuclidic composition, radionuclide mass loading, and the spatial variation of these components. Analyzing the manner in which bias and precision vary as a function of test sample attribute and NDA technology provides a foundation for deriving performance capability and limitation statements and determines which waste matrix attributes, or combinations of attributes, are compatible or incompatible with existing technologies. The CEP achieved the stated end-user objective. The data indicate that the nondestructive waste assay systems evaluated have a definite capability to perform assay of contact-handled TRU waste packaged in 55-gallon drums. There is, however, a performance envelope where this capability exists, an area near the envelope boundaries where it is questionable, and a realm outside the envelope where the technologies do not perform. Therefore

  9. An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules

    PubMed Central

    Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne

    2014-01-01

    Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments. PMID:24633799

  10. An improved optical tweezers assay for measuring the force generation of single kinesin molecules.

    PubMed

    Nicholas, Matthew P; Rao, Lu; Gennerich, Arne

    2014-01-01

    Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments.

  11. The Over-Selling of Fiber Optics? Cable Planning for Educational Technology.

    ERIC Educational Resources Information Center

    Kovacs, Robert E.

    1993-01-01

    Describes fiber optic cables and coaxial cables and considers when each would be appropriate for educational technology. Single mode versus multimode fiber optics are explained, advantages and disadvantages of each type of cable are discussed, and guidelines for choosing fiber optic cables and coaxial cables are offered. (LRW)

  12. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a... described in U.S. Patent No. 7,020,354: Intensity Modulated Fiber Optic Pressure Sensor, Navy Case No....

  13. 75 FR 34988 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a.... Patent No. 7,149,374: Fiber Optic Pressure Sensor, Navy Case No. 84,557.//U.S. Patent No....

  14. Optical memory system technology. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.

  15. The Over-Selling of Fiber Optics? Cable Planning for Educational Technology.

    ERIC Educational Resources Information Center

    Kovacs, Robert E.

    1993-01-01

    Describes fiber optic cables and coaxial cables and considers when each would be appropriate for educational technology. Single mode versus multimode fiber optics are explained, advantages and disadvantages of each type of cable are discussed, and guidelines for choosing fiber optic cables and coaxial cables are offered. (LRW)

  16. Kodak Optical Disk and Microfilm Technologies Carve Niches in Specific Applications.

    ERIC Educational Resources Information Center

    Gallenberger, John; Batterton, John

    1989-01-01

    Describes the Eastman Kodak Company's microfilm and optical disk technologies and their applications. Topics discussed include WORM technology; retrieval needs and cost effective archival storage needs; engineering applications; jukeboxes; optical storage options; systems for use with mainframes and microcomputers; and possible future…

  17. Overview of Mirror Technology Development for Large Lightweight Space-Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Smith, W. Scott; Stahl, H. P.; Rose, M. Frank (Technical Monitor)

    2000-01-01

    The Space Optics Manufacturing Technology Center of Marshall Space Flight Center is involved in the development of lightweight optics for spacebased'systems. The NGST and other future NASA programs require large aperture space-based instruments. This paper reviews the technologies under development for NGST including discussions of the environmental testing of candidate segment for the NGST primary mirror.

  18. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  19. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  20. Multiplex Assay for Simultaneous Detection of Mycoplasma genitalium and Macrolide Resistance Using PlexZyme and PlexPrime Technology

    PubMed Central

    Tabrizi, Sepehr N.; Tan, Lit Y.; Walker, Samantha; Twin, Jimmy; Poljak, Marin; Bradshaw, Catriona S.; Fairley, Christopher K.; Bissessor, Melanie; Mokany, Elisa; Todd, Alison V.; Garland, Suzanne M.

    2016-01-01

    Mycoplasma genitalium is a cause of non-gonoccocal urethritis (NGU) in men and cervicitis and pelvic inflammatory disease in women. Recent international data also indicated that the first line treatment, 1 gram stat azithromycin therapy, for M. genitalium is becoming less effective, with the corresponding emergence of macrolide resistant strains. Increasing failure rates of azithromycin for M. genitalium has significant implications for the presumptive treatment of NGU and international clinical treatment guidelines. Assays able to predict macrolide resistance along with detection of M. genitalium will be useful to enable appropriate selection of antimicrobials to which the organism is susceptible and facilitate high levels of rapid cure. One such assay recently developed is the MG 23S assay, which employs novel PlexZyme™ and PlexPrime™ technology. It is a multiplex assay for detection of M. genitalium and 5 mutations associated with macrolide resistance. The assay was evaluated in 400 samples from 254 (186 males and 68 females) consecutively infected participants, undergoing tests of cure. Using the MG 23S assay, 83% (331/440) of samples were positive, with 56% of positives carrying a macrolide resistance mutation. Comparison of the MG 23S assay to a reference qPCR method for M. genitalium detection and high resolution melt analysis (HRMA) and sequencing for detection of macrolide resistance mutations, resulted in a sensitivity and specificity for M. genitalium detection and for macrolide resistance of 99.1/98.5% and 97.4/100%, respectively. The MG 23S assay provides a considerable advantage in clinical settings through combined diagnosis and detection of macrolide resistance. PMID:27271704

  1. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Shively, John E.; Li, Lin

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  2. Assay for Arf GTP-binding Proteins | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Laboratory of Cellular and Molecular Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize an antibody-based proteomics assay.

  3. Rapid and Specific Drug Quality Testing Assay for Artemisinin and Its Derivatives Using a Luminescent Reaction and Novel Microfluidic Technology

    PubMed Central

    Ho, Nga T.; Desai, Darash; Zaman, Muhammad H.

    2015-01-01

    Globally, it is estimated that about 10–30% of pharmaceuticals are of poor quality. Poor-quality drugs lead to long-term drug resistance, create morbidity, and strain the financial structure of the health system. The current technologies for substandard drug detection either are too expensive for low-resource regions or only provide qualitative results. To address the current limitations with point-of-care technologies, we have developed an affordable and robust assay to quantify the amount of active pharmaceutical ingredients (APIs) to test product quality. Our novel assay consists of two parts: detection reagent (probe) and a microfluidic testing platform. As antimalarials are of high importance in the global fight against malaria and are often substandard, they are chosen as the model to validate our assay. As a proof-of-concept, we have tested the assay with artesunate pure and substandard samples (Arsuamoon tablets) from Africa and compared with the conventional 96-well plate with spectrophotometer to demonstrate the quantitative efficacy and performance of our system. PMID:25897061

  4. Rapid and specific drug quality testing assay for artemisinin and its derivatives using a luminescent reaction and novel microfluidic technology.

    PubMed

    Ho, Nga T; Desai, Darash; Zaman, Muhammad H

    2015-06-01

    Globally, it is estimated that about 10-30% of pharmaceuticals are of poor quality. Poor-quality drugs lead to long-term drug resistance, create morbidity, and strain the financial structure of the health system. The current technologies for substandard drug detection either are too expensive for low-resource regions or only provide qualitative results. To address the current limitations with point-of-care technologies, we have developed an affordable and robust assay to quantify the amount of active pharmaceutical ingredients (APIs) to test product quality. Our novel assay consists of two parts: detection reagent (probe) and a microfluidic testing platform. As antimalarials are of high importance in the global fight against malaria and are often substandard, they are chosen as the model to validate our assay. As a proof-of-concept, we have tested the assay with artesunate pure and substandard samples (Arsuamoon tablets) from Africa and compared with the conventional 96-well plate with spectrophotometer to demonstrate the quantitative efficacy and performance of our system. © The American Society of Tropical Medicine and Hygiene.

  5. Spectral-domain optical coherence phase microscopy for label-free multiplexed protein microarray assay.

    PubMed

    Joo, Chulmin; Ozkumur, Emre; Unlü, M Selim; Boer, Johannes F de

    2009-10-15

    Quantitative measurement of affinities and kinetics of various biomolecular interactions such as protein-protein, protein-DNA and receptor-ligand is central to our understanding of basic molecular and cellular functions and is useful for therapeutic evaluation. Here, we describe a laser-scanning quantitative imaging method, referred to as spectral-domain optical coherence phase microscopy, as an optical platform for label-free detection of biomolecular interactions. The instrument is based on a confocal interferometric microscope that enables depth-resolved quantitative phase measurements on sensor surface with high spatial resolution and phase stability. We demonstrate picogram per square millimeter surface mass sensitivity, and show its sensing capability by presenting static and dynamic detection of multiplexed protein microarray as immobilized antigens capture their corresponding antibodies.

  6. Angle-of-arrival reception for optical wireless location technology.

    PubMed

    Arafa, Ahmed; Dalmiya, Sumant; Klukas, Richard; Holzman, Jonathan F

    2015-03-23

    An optical wireless location (OWL) system is introduced for indoor positioning. The OWL system makes use of a mobile photoreceiver that facilitates triangulation by measuring angle-of-arrival (AOA) bearings from LEDs in an optical beacon grid. The photoreceiver has three photodiodes (PDs), arranged in a corner-cube, to facilitate differential photocurrent sensing of the incident light AOA, by way of azimuthal ϕ and polar θ angles. The AOA error for indoor positioning is characterized empirically. Optical AOA positioning is shown to have a fundamental advantage over known optical received signal strength (RSS) positioning, as AOA estimation is insensitive to power and alignment imbalances of the optical beacon grid. The OWL system is built, and a performance comparison is carried out between optical AOA and RSS positioning. It is shown that optical AOA positioning can achieve a mean 3-D positioning error of only 5 cm. Experimental design and future prospects of optical AOA positioning are discussed.

  7. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters.

  8. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  9. Summary of the Flight Technology Improvement Workshop. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Spaceborne instrumentation technology deficiencies are summarized. Recommendations are given for technology development, improvements in existing technology, and policy changes needed to facilitate the use of improved technology. Optical radiometric instruments, attitude control, and electromechanical and power subsystems are considered.

  10. Magneto-optical disk drive technology using multiple fiber-coupled flying optical heads. Part I. System design and performance.

    PubMed

    Wilde, J P; Heanue, J F; Tselikov, A A; Hurst, J E

    2001-02-10

    A novel flying-optical-head data storage technology is described. It is based on a micro-optical recording head that contains a silicon micromachined torsional mirror for high-bandwidth track following. Multiple heads and disks are contained in a Winchester-style rotating disk drive. Single-mode optical fibers provide light delivery to and from the heads. Both polarization-maintaining and low-birefringence fiber systems have been implemented for magneto-optical (MO) recording. A fixed optics module containing a laser diode, MO detection optics, and a 1 x N fiber bundle switch has been developed as an integral part of this new recording architecture. A 5.25-in. (13.33-cm), half-height prototype drive design and its performance are presented.

  11. Martian Superoxide and Peroxide O2 Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications.

    PubMed

    Georgiou, Christos D; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Konstantinos; Papapostolou, Ioannis; Quinn, Richard C; McKay, Christopher P; Sun, Henry J

    2016-02-01

    This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2 and their quantification by an O2 electrode based on the stoichiometry of the involved reactions. The intermediate product O₂˙⁻ from the hydrolysis of metal superoxides is converted by cytochrome c to O2 and by superoxide dismutase (SOD) to ½ mol O2 and ½ mol H2O2, which is then converted by catalase (CAT) to ½ mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to ½ mol O2 by CAT. The assay method was validated in a sealed sample chamber by using a liquid-phase Clark-type O2 electrode with known concentrations of O₂˙⁻ and H2O2, and commercial metal superoxide and peroxide mixed with Mars analog Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, when using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(-3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by γ radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, which demonstrates the suitability of these enzymes for planetary missions, for example, on Mars or Europa.

  12. Martian Superoxide and Peroxide O2 Release (OR) Assay: A New Technology for Terrestrial and Planetary Applications

    NASA Technical Reports Server (NTRS)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Grintzalis, Kontantinos; Papapostolou, Ioannis; Quinn, Richard C.; McKay, Christopher P.; Sun, Henry J.

    2015-01-01

    This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2, and their quantification by an O2 electrode based on the stoichiometry of the involved reactions: The intermediate product O2 from the hydrolysis of metal superoxides is converted by cytochrome c to O2, and also by superoxide dismutase (SOD) to 1/2 mol O2 and 1/2 mol H2O2, which is then converted by catalase (CAT) to 1/2 mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to 1/2 mol O2 by CAT. The assay-method was validated in a sealed sample chamber using a liquid-phase Clark-type O2 electrode with known concentrations of O2 and H2O2, and with commercial metal superoxide and peroxide mixed with Mars analogue Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(exp. -3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by gamma-radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, demonstrating the suitability of these enzymes for planetary missions, e.g., in Mars or Europa.

  13. The simulation of turbulence effect based on the technology of optical wavefront control

    NASA Astrophysics Data System (ADS)

    Zhao, Hongming; Fei, Jindong; Du, Huijie; Yu, Hong; Du, Jian; Hu, Xinqi; Dong, Bing

    2013-09-01

    In the process of high-resolution astronomical observation and space optical mapping, the wavefront aberrations caused by atmosphere turbulence effect lead to reduced resolution of optical imaging sensor. Firstly, on the base of influence of atmosphere turbulence effect for the optical observation system, this paper investigates and analyses the development and technical characteristics of deformable mirror, which is the key device of optical wavefront control technology. In this part, the paper describes the basic principles of wavefront control and measurement using the current production line of deformable mirror, including micro-electromechanical systems (MEMS) deformable mirror which is one of the most promising technology for wavefront modulation and Shack-Hartmann wavefront sensors. Secondly, a new method based on the technology of optical wavefront control and the data of optical path difference (OPD) for simulating the effect of optical transmission induced by turbulence is presented in this paper. The modeling and characteristics of atmosphere turbulence effect applied for optical imagery detector of astronomical observation and space optical mapping has been obtained. Finally, based on the theory model of atmosphere turbulence effects and digital simulation results, a preliminary experiment was done and the results verify the feasibility of the new method. The OPD data corresponding to optical propagation effect through turbulent atmosphere can be achieved by the calculation based on the method of ray-tracing and principle of physical optics. It is a common practice to decompose aberrated wavefronts in series over the Zernike polynomials. These data will be applied to the drive and control of the deformable mirror. This kind of simulation method can be applied to simulate the optical distortions effect, such as the dithering and excursion of light spot, in the space based earth observation with the influence of turbulent atmosphere. With the help of the

  14. Fiber optic sensor technology - An opportunity for smart aerospace structures

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Rogowski, R. S.; Claus, R. O.

    1988-01-01

    Fiber optic sensors provide the opportunity for fabricating materials with internal sensors which can serve as lifetime health monitors, analogous to a central nervous system. The embedded fiber optic sensors can be interrogated by various techniques to measure internal strain, temperature, pressure, acoustic waves and other parameters indicative of structural integrity. Experiments have been conducted with composite samples with embedded sensors to measure strain using optical time domain reflectometry, modal interference and an optical phase locked loop. Fiber optic sensors have been developed to detect acoustic emission and impact damage and have been demonstrated for cure monitoring. These sensors have the potential for lifetime monitoring of structural properties, providing real time nondestructive evaluation.

  15. Rapid micro-optical prototyping technology for fabricating optical interconnection modules at the MCM and PCB level

    NASA Astrophysics Data System (ADS)

    Debaes, C.; Vervaeke, M.; Van Erps, J.; Desmet, L.; Ottevaere, H.; Gomez, V.; Vynck, P.; Van Overmeire, S.; Ishii, Y.; Hermanne, A.; Thienpont, H.

    2006-10-01

    One of the remaining challenges to solve the interconnection bottlenecks at the Printed Circuit Board (PCB) and Multi-Chip-Module (MCM) level, is to adequately replace the galvanic interconnects with high-performance, low-cost, compact and reliable micro-photonic alternatives. At our labs of the Vrije Universiteit Brussel we are therefore optimizing and deploying a rapid micro-optical prototyping technology for micro-optical interconnect modules, which we call Deep Proton Writing (DPW). An advantage of the DPW process is that it can create steep micro-optical surfaces, micro-holes, micro-lenses and alignment features in one irradation step. Hence, relative accuracies are very well controlled. In this report, we will address more specifically the following components, made each with the DPW technology: 1) out-of-plane couplers for optical wave-guides embedded in PCB, 2) peripheral fiber ribbons and two dimensional single- and multimode fiber connectors for high-speed parallel optical connections, and 3) intra-MCM level optical interconnections via free-space optical modules. We will give special attention to the optical tolerancing and the opto-mechanical integration of components in their packages. We use both a sensitivity analysis to misalignment errors and Monte-Carlo simulations. It is our aim to investigate the whole component integration chain from the optoelectronic device packaging to the micro-opto-mechanical assembly of the interconnect module.

  16. Peroxidase-encapsulated cyclodextrin nanosponge immunoconjugates as a signal enhancement tool in optical and electrochemical assays.

    PubMed

    Wajs, Ewelina; Caldera, Fabrizio; Trotta, Francesco; Fragoso, Alex

    2014-01-21

    Cyclodextrin nanosponges bearing carboxylate groups have been prepared by crosslinking β-cyclodextrin with pyromellitic dianhydride to form a carboxylic acid terminated nanoporous material. The surface of the particles was covalently modified with an anti-IgG antibody and then loaded with horseradish peroxidase. The structures of unmodified and protein modified nanosponge particles were investigated by Raman spectroscopy and imaging methods. Confocal microscopy indicates that the antibody is located in the outside of the particle while HRP is encapsulated in the inner part. The possibility to use these modified nanosponges as a signal enhancement tool in enzyme-linked colorimetric and electrochemical assays was evaluated using a sandwich format comprising immobilised gliadin as an antigen, a target anti-gliadin antibody and an anti-IgG antibody conjugated to the enzyme-loaded nanosponge immunoconjugates.

  17. Developing optofluidic technology through the fusion of microfluidics and optics.

    PubMed

    Psaltis, Demetri; Quake, Stephen R; Yang, Changhuei

    2006-07-27

    We describe devices in which optics and fluidics are used synergistically to synthesize novel functionalities. Fluidic replacement or modification leads to reconfigurable optical systems, whereas the implementation of optics through the microfluidic toolkit gives highly compact and integrated devices. We categorize optofluidics according to three broad categories of interactions: fluid-solid interfaces, purely fluidic interfaces and colloidal suspensions. We describe examples of optofluidic devices in each category.

  18. Atmospheric Turbulence Measurements in Support of Adaptive Optics Technology

    DTIC Science & Technology

    1989-03-01

    RADC D. Stebbins Optical Cn2 profile#2 AFGL E. Murphy Optical scintillometer (r0 ) NPS D. Walter Optical scintillometer (80 ) AFWL J. Davidson - 9...stratosphere ( Walters and Kunkel, 1981). The ALLCAT (i.e., HICAT, MEDCAT, etc.) program of the late 1960’s focused primarily on large scale turbulence...radar", C.W. Fairall, RISO National Laboratory (Denmark), Aug. 6, 1986. "Turbulence measurements with Doppler profilers", D.W. Thomson, Naval

  19. Single-mode tapered optical fiber loop immunosensor II: assay of anti-cholera toxin immunoglobulins

    NASA Astrophysics Data System (ADS)

    Marks, Robert S.; Hale, Zoe M.; Levine, Myron M.; Lowe, C. R.; Payne, Frank P.

    1994-07-01

    An evanescent wave immunoassay for cholera antitoxin immunoglobulins was performed using a single mode tapered optical fiber loop sensor. The transducer was silanized with 3- glycidoxypropyltrimethoxysilane and chemically modified to link covalently either cholera toxin B subunit or a synthetic peptide derived from it, CTP3. The sensor was exposed to seral fluids, obtained from human volunteers having been exposed to live virulent Vibrio cholerae 01 and shown to produce rice-water stools. Other toxins of interest, such as Clostridium botulinum toxin A, have been tested on similar systems. The bound unlabelled immunoglobulins were then exposed to a mixture of FITC-anti-IgG and TRITC-anti-IgA, without requirement for a separation step. The emanating fluorescent emissions of fluorescein and rhodamine, excited by the input laser light, were coupled back into the guided mode of the tapered fiber, and used to determine the concentrations of the complementary antigens.

  20. Coherent optical component technologies for WDM transmission systems

    NASA Astrophysics Data System (ADS)

    Mino, S.; Murata, K.; Saida, T.; Ogawa, I.

    2011-01-01

    We review our recent progress toward 100 Gbps and beyond, focusing on integrated optical devices. Topics include our recently developed integrated optical front-ends for 100 Gbps PDM-QPSK based on multi-channel micro collimator optics and hermetically sealed O/E converters, and PLC-LiNbO3 hybrid optical modulators for 100 Gbps PDM-QPSK. We also describe our recent work on exceeding 100 Gbps, including 64 QAM modulators, modulation-level-selectable modulators, and high-speed digital-analog converter ICs for future multi-level transmissions.

  1. Gas Optics Applicable to Free Electron Laser Technology

    DTIC Science & Technology

    1989-10-23

    near-field of the wiggler . This requires uiconventional optics because of the flux densities involved. A solution to this problem is the use of gas...optics, which show great tolerance to very high power densities, in place of solid optics near the wiggler . Gas optics can be thought of as weak lenses...ratio (tilt and focus corrected) measurement was about 0.7 at a flow Red of about 1000. It is suspected that the Strehl ratio is actually higher due to

  2. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  3. Development of an optical surface plasmon resonance biosensor assay for (fluoro)quinolones in egg, fish, and poultry meat.

    PubMed

    Huet, A-C; Charlier, C; Singh, G; Godefroy, S Benrejeb; Leivo, J; Vehniäinen, M; Nielen, M W F; Weigel, S; Delahaut, Ph

    2008-08-15

    The aim of this study was to develop an optical biosensor inhibition immunoassay, based on the surface plasmon resonance (SPR) principle, for use as a screening test for 13 (fluoro)quinolones, including flumequine, used as veterinary drugs in food-producing animals. For this, we immobilised various quinolone derivatives on the sensor chip and tested binding of a range of different antibodies (polyclonal and one engineered antibody) in the presence and absence of free (fluoro)quinolones. The main challenge was to detect flumequine in an assay giving good results for the other compounds. One antigen-antibody combination proved satisfactory: polyclonal antibodies raised against a dual immunogen and, on the sensor chip, a fluoroquinolone derivative. It was the first time that this concept of the bi-active antibody was described in the literature. The assay, optimised for detection in three matrices (poultry muscle, fish, and egg), was tested on incurred samples prepared by liquid extraction followed by two washing steps. This rapid, simple method proved adequate for detecting at least 13 (fluoro)quinolones at concentrations below established maximum residue levels (MRLs). The reference molecule norfloxacin could be detected in the range of 0.1-10 microg kg(-1) in extracts of egg and poultry meat and in the range of 0.1-100 microg kg(-1) in extracts of fish. The determined midpoints of these calibration curves were about 1, 1.5 and 3 microg kg(-1) in poultry meat, egg and fish, respectively.

  4. Evaluation of emerging parallel optical link technology for high energy physics

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

    2012-01-01

    Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

  5. Large core plastic planar optical splitter fabricated by 3D printing technology

    NASA Astrophysics Data System (ADS)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  6. Optics Technologies for LUVOIR & HabEx: Polarization & Mirror Count

    NASA Astrophysics Data System (ADS)

    Breckinridge, James B.

    2017-01-01

    We show that polarization aberrations and mirror count will limit the optical system performance of LUVOIR and HabEx and thus both their exoplanet science yield and their UV science. In addition we show how increased mirror count reduces optical system transmittance and increases cost in large aperture telescopes. We make the observation that orthogonally polarized light does not interfere to form an intensity image. We show how the two polarization aberrations (diattenuation & and retardance) distort the system PSF, decrease transmittance, and increase the unwanted background above that predicted using scalar models. An optical system corrected for geometric path difference errors is a necessary but not sufficient condition for the perfect image formation needed to directly image terrestrial exoplanets. Geometric (trigonometric) path difference errors are controlled using adaptive optics (tip-tilt & wavefront), active metrology and precision pointing. However, image quality is also determined by several physical optics factors: diffraction, polarization, partial coherence, and chromatism all of which degrade image quality and are not corrected through the control of geometric path difference. The source of physical optics errors lies in the opto-mechanical packaging of optical elements, masks, stops and the thin film coatings needed to obtain high transmittance. Adaptive optics corrects wavefront errors described by geometric or optical path length errors but not those wavefront errors introduced by physical optics. We show that for large telescopes each reflection costs over $100 million to increase the collecting area in order to recover lost SNR. Examples will be shown. The LUVOIR and HabEx systems will need fewer optical surfaces than current systems

  7. High-speed optical packet processing technologies based on novel optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Takenouchi, Hirokazu; Takahashi, Ryo; Takahata, Kiyoto; Nakahara, Tatsushi; Suzuki, Hiroyuki

    2004-10-01

    To cope with the explosive growth of IP traffic, we must increase both the link capacity between nodes and the node throughput. These requirements have stimulated research on photonic networks that use optical technologies. Optical packet switching (OPS) is an attractive solution because it maximizes the use of the network bandwidth. The key functions in achieving such networks include synchronization, label processing, compression/decompression, regeneration, and buffering for high-speed asynchronous optical packets. However, it is impractical to implement such functions by using all-optical approaches. We have proposed a new optoelectronic system composed of a packet-by-packet optical clock-pulse generator (OCG), an all-optical serial-to-parallel converter (SPC), a photonic parallel-to-serial converter (PSC), and CMOS circuitry. The OCG provides a single optical pulse synchronized with the incoming packet, and the SPC carries out a parallel conversion of the incoming packet. The parallel converted data are processed in the smart CMOS circuit, and reconstructed into an optical packet by the photonic PSC. Our system makes it possible to carry out various functions for high-speed asynchronous optical packets. This paper reviews our recent work on high-speed optical packet processing technologies such as buffering, packet compression/decompression, and label swapping, which are key technologies for constructing future OPS networks.

  8. Performance comparison of the BioSys optical assay and the violet red bile agar method for detecting coliforms in food products.

    PubMed

    Firstenberg-Eden, Ruth; Foti, Debra; McDougal, Susan; Beck, Stephen

    2004-12-01

    Coliform counts in a variety of foods, including dairy products (raw milk, pasteurized milk, yogurt, butter, and ice cream), meats (pork sausage, ground beef, and raw chicken), raw eggs, and chocolate, were performed by the rapid automated BioSys optical assay and the conventional method with violet red bile agar (VRBA). The standard deviation (SD) among five replicate counts for the optical assay was similar to or better than that obtained with VRBA plates for all foods tested. The average SD for all foods tested was 0.21 for the optical assay and 0.30 for the VRBA plates. At very low concentrations of coliforms (1 to 10 CFU/ml for liquid products and 10 to 100 CFU/g for solid samples), the average SDs were 0.26 and 0.47, respectively. The optical assay was less susceptible to interference by noncoliform organisms. In naturally contaminated samples, bacteria such as Serratia liquefaciens, Pantoea spp., Vibrio fluvialis, Aeromonas hydrophilia, and Pseudomonas spp. formed typical colonies in VRBA, resulting in false-positive results or a need to verify colonies in brilliant green lactose broth. The optical assay appeared to be more selective than the VRBA conventional method, detecting fewer noncoliforms. There was close agreement in test results between the two methods, as indicated by correlation coefficients of 0.92 to 0.99 obtained for the regression analysis of the two methods. In most cases both methods distinguished accurately between positive samples containing coliforms and negative controls. All products tested using the automated BioSys Optical Assay for coliforms yielded results more quickly (typically 10 to 12 h) than did those tested with the conventional VRBA method (24 to 72 h with confirmation).

  9. Cell-based optical assay for amyloid β-induced neuronal cell dysfunction using femtosecond-pulsed laser

    NASA Astrophysics Data System (ADS)

    Lee, Seunghee; Yoon, Jonghee; Choi, Chulhee

    2015-03-01

    Amyloid β-protein (Aβ) is known as a key molecule related to the pathogenesis of Alzheimer's disease (AD). Over time, the amyloid cascade disrupts essential function of mitochondria including Ca2+ homeostasis and reactive oxygen species (ROS) regulation, and eventually leads to neuronal cell death. However, there have been no methods that analyze and measure neuronal dysfuction in pathologic conditions quantitatively. Here, we suggest a cell-based optical assay to investigate neuronal function in AD using femtosecond-pulsed laser stimulation. We observed that laser stimulation on primary rat hippocampal neurons for a few microseconds induced intracellular Ca2+ level increases or produced intracellular ROS which was a primary cause of neuronal cell death depending on delivered energy. Although Aβ treatment alone had little effect on the neuronal morphologies and networks in a few hours, Aβ-treated neurons showed delayed Ca2+ increasing pattern and were more vulnerable to laser-induced cell death compared to normal neurons. Our results collectively indicate that femtosecond laser stimulation can be a useful tool to study neuronal dysfuction related to AD pathologies. We anticipate this optical method to enable studies in the early progression of neuronal impairments and the quantitative evaluation of drug effects on neurons in neurodegenerative diseases, including AD and Parkinson's disease in a preclinical study.

  10. Preparation and optical scattering characterization of gold nanorods and their application to a dot-immunogold assay

    NASA Astrophysics Data System (ADS)

    Alekseeva, Anna V.; Bogatyrev, Vladimir A.; Dykman, Lev A.; Khlebtsov, Boris N.; Trachuk, Lyubov A.; Melnikov, Andrei G.; Khlebtsov, Nikolai G.

    2005-10-01

    We describe optical monitoring of the synthesis of gold nanorods (NRs) based on seed-mediated growth in the presence of the soft surfactant template cetyltrimethyilammonium bromide. To separate NRs from spheres and surfactants we fractionated samples in the density gradient of glycerol. The optical properties of NRs were characterized by extinction and differential light-scattering spectra (at 90°, 450-800 nm) and by the depolarization light-scattering ratio, I_vh/I_vv, measured at 90° with a helium-neon laser. Theoretical spectra and the I_vh/I_vv ratios were calculated by the T-matrix method as applied to randomly oriented NRs, which were modeled by right-circular cylinders with semispherical ends. The simulated data were fitted to experimental observations by use of particle length and width as adjustable parameters, which were close to the data yielded by transmission electron microscopy. The sensitivity of the long-wavelength resonance of NRs to the dielectric surroundings was examined both experimentally and theoretically by comparison of the extinction spectra of NRs in water and in a 25% glycerol solution. Finally, we discuss the application of NR-protein A conjugates to a dot-immunogold assay with the example of biospecific staining of human IgG molecules adsorbed onto small membrane spots.

  11. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  12. Broadband Optical Access Technologies to Converge towards a Broadband Society in Europe

    NASA Astrophysics Data System (ADS)

    Coudreuse, Jean-Pierre; Pautonnier, Sophie; Lavillonnière, Eric; Didierjean, Sylvain; Hilt, Benoît; Kida, Toshimichi; Oshima, Kazuyoshi

    This paper provides insights on the status of broadband optical access market and technologies in Europe and on the expected trends for the next generation optical access networks. The final target for most operators, cities or any other player is of course FTTH (Fibre To The Home) deployment although we can expect intermediate steps with copper or wireless technologies. Among the two candidate architectures for FTTH, PON (Passive Optical Network) is by far the most attractive and cost effective solution. We also demonstrate that Ethernet based optical access network is very adequate to all-IP networks without any incidence on the level of quality of service. Finally, we provide feedback from a FTTH pilot network in Colmar (France) based on Gigabit Ethernet PON technology. The interest of this pilot lies on the level of functionality required for broadband optical access networks but also on the development of new home network configurations.

  13. Intravascular Optical Imaging Technology for Investigating the Coronary Artery

    PubMed Central

    Suter, Melissa J.; Nadkarni, Seemantini K.; Weisz, Giora; Tanaka, Atsushi; Jaffer, Farouc A.; Bouma, Brett E.; Tearney, Guillermo J.

    2012-01-01

    There is an ever-increasing demand for new imaging methods that can provide additional information about the coronary wall to better characterize and stratify high-risk plaques, and to guide interventional and pharmacologic management of patients with coronary artery disease. While there are a number of imaging modalities that facilitate the assessment of coronary artery pathology, this review paper focuses on intravascular optical imaging modalities that provide information on the microstructural, compositional, biochemical, biomechanical, and molecular features of coronary lesions and stents. The optical imaging modalities discussed include angioscopy, optical coherence tomography, polarization sensitive-optical coherence tomography, laser speckle imaging, near-infrared spectroscopy, time-resolved laser induced fluorescence spectroscopy, Raman spectroscopy, and near-infrared fluorescence molecular imaging. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in the evaluation of the coronary artery in the future. PMID:21920342

  14. Characterization of Drug Effect on Leukemia Cells Through Single Cell Assay With Optical Tweezers and Dielectrophoresis.

    PubMed

    Hou, Jundi; Luo, Tao; Ng, Ka Lam; Leung, Anskar Y H; Liang, Raymond; Sun, Dong

    2016-12-01

    One of the greatest challenges in acute myeloid leukemia (AML) treatment is preventing relapse. Leukemia cells can hide in bone marrow niche or vascular niche. Hence, many chemical drugs cannot kill these cells. To characterize migration and adhesion properties of leukemia cells in specific niches, CXCR4/SDF- 1α signal pathway has been widely used for investigation. AMD3100 is treated as one of the most common chemical drugs that can inhibit this signal. In the current study, we particularly investigate the effect of AMD3100 on the adhesion property of leukemia cells on stromal cells by using engineering tools, namely, optical tweezers (OT) and dielectrophoresis (DEP), to probe single cell property. AMD3100 not only inhibits the CXCR4/SDF- 1α signal pathway but also reduces gene expression of CXCR4 and VLA-4 on leukemia cells. The drug also softens leukemia cells. This work provides a new way to investigate cell behavior under drug treatment. The use of combined engineering tools will benefit drug discovery and assessment for leukemia treatment.

  15. Exabits/s integrated photonic interconnection technology for flexible data-centric optical networks

    NASA Astrophysics Data System (ADS)

    Binh, Le N.; Tao, Thomas W.; Ning, Gordon L.

    2016-03-01

    Optical networking is evolving from classical service-provider base data-center centric (DCC) internetworking environment with massive capacity, hence demanding novel optical switching and interconnecting technologies. The traditional telecom networks are under a flattening transformation to meet challenges from DCC networks for massive capacity serving in order of multi-Pb/s. We present proposed distributed and concentric data center based networks and the essential optical interconnection technologies, from the photonic kernels to electronic and optoelectronic server clusters, in both passive and active structures. Optical switching devices and integrated matrices are proposed composing of tunable (bandwidth and center wavelength) optical filters and switches as well as resonant microring modulators (μRM)(switching and spectral demux/mux) for multi-wavelength flexible-bandwidth optical channels of aggregate capacity reaching Ebps. The design principles and some experimental results are also reported.

  16. Research on testing system for optical surface based on polarizing coherent technology

    NASA Astrophysics Data System (ADS)

    Huang, De-wei; Wang, Min; Wang, Fen

    2016-09-01

    The optical surface deviation of the lens can directly affect the quality of the optical system. In order to improve efficiency and accuracy of optical surface detection, an on-line testing system for optical surface based on polarizing coherent technology is designed and developed. No lying walls are required for the lens. In other words, they can be checked out the deviation of radius of curvature and astigmatism online. Based on the Tyman-Green interference light path, the system joins the polarization interference measuring technology. This paper makes a theoretical derivation and ZEMAX software simulation on the light path, sets up the experimental light path of the system. At last, comparison on image of Tyman-Green interference technology, the contrast of interference fringe image is improved significantly after joining polarizing coherent technology. And background noise and stray light are significantly reduced. It provides the foundation for improving the precision of image processing.

  17. Navigation and Elctro-Optic Sensor Integration Technology for Fusion of Imagery and Digital Mapping Products

    DTIC Science & Technology

    1999-08-01

    Electro - Optic Sensor Integration Technology (NEOSIT) software application. The design is highly modular and based on COTS tools to facilitate integration with sensors, navigation and digital data sources already installed on different host

  18. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology.

    PubMed

    Hu, Bo; Guo, Jing; Xu, Ying; Wei, Hua; Zhao, Guojie; Guan, Yifu

    2017-08-01

    Rapid and accurate detection of microRNAs in biological systems is of great importance. Here, we report the development of a visual colorimetric assay which possesses the high amplification capabilities and high selectivity of the rolling circle amplification (RCA) method and the simplicity and convenience of gold nanoparticles used as a signal indicator. The designed padlock probe recognizes the target miRNA and is circularized, and then acts as the template to extend the target miRNA into a long single-stranded nucleotide chain of many tandem repeats of nucleotide sequences. Next, the RCA product is hybridized with oligonucleotides tagged onto gold nanoparticles. This interaction leads to the aggregation of gold nanoparticles, and the color of the system changes from wine red to dark blue according to the abundance of miRNA. A linear correlation between fluorescence and target oligonucleotide content was obtained in the range 0.3-300 pM, along with a detection limit of 0.13 pM (n = 7) and a RSD of 3.9% (30 pM, n = 9). The present approach provides a simple, rapid, and accurate visual colorimetric assay that allows sensitive biodetection and bioanalysis of DNA and RNA nucleotides of interest in biologically important samples. Graphical abstract The colorimetric assay system for analyzing target oligonucleotides.

  19. Analytical performance of a sensitive assay for cardiac troponin I with loci technology.

    PubMed

    Arrebola, M M; Lillo, J A; Diez De Los Ríos, M J; Rodríguez, M; Dayaldasani, A; Yahyaoui, R; Pérez, V

    2010-08-01

    To confirm the analytical performance of the Dimension Vista LOCI troponin I assay (cTnI). Limit of blank (LoB), limit of detection (LoD), limit of quantitation (LoQ) with a 10% coefficient of variation (CV), linearity, precision, method comparison, and 99th percentile upper reference limits (URL) were analyzed. Endogenous analytes and rheumatoid factor (RF) were tested for assay interference. The 99th percentile was 0.022 microg/L (CV=14%) and the LoQ was 0.036 microg/L. The ratio of 10% CV concentration to 99th percentile was 1.63. Linearity extended from 0 to 44.36 microg/L. The method comparison equation was Dimension(R) Vista=0.94 (Dimension RxL)+0.00 microg/L with bias at low levels. No interference was detected. This study shows acceptable performance characteristics of the LOCI cTnI assay on Dimension Vista to diagnosis and risk stratification of patients with acute coronary syndrome symptoms. 2010. Published by Elsevier Inc.

  20. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  1. Design of an All-Optical Network Based on LCoS Technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  2. Next generation ligand binding assays-review of emerging technologies' capabilities to enhance throughput and multiplexing.

    PubMed

    Mora, Johanna; Given Chunyk, Allison; Dysinger, Mark; Purushothama, Shobha; Ricks, Claude; Osterlund, Karolina; Theobald, Valerie

    2014-11-01

    The purpose of this manuscript is to provide a summary of the evaluation done by the Throughput and Multiplexing subteam on five emerging technologies: Single molecule array (Simoa™), Optimiser™, CyTOF® (Mass cytometry), SQIDLite™, and iLite™. Most of the information is presented with a minimum amount of published data and much is based on discussions with users and the vendor, to help provide the reader with an unbiased assessment of where the subteam sees each technology fitting best in the bioanalysis of large molecules. The evaluation focuses on technologies with advantages in throughput and multiplexing, but is wide enough to capture their strengths in other areas. While all platforms may be suited to support bioanalysis in the discovery space, because of their emergent nature, only Optimiser and SQIDLite are currently ready to be used in the regulated space. With the exception of Optimiser, each instrument/technology requires an up-front investment from the bioanalytical lab that will need justification during capital budget discussions. Ultimately, the platform choice should be driven by the quality of data, project needs, and the intended use of the data generated. In a time- and resource-constrained environment, it is not possible to evaluate all emergent technologies available in the market; we hope that this review gives the reader some of the information needed to decide which technology he/she may want to consider evaluating to support their drug development program in comparison to the options they already have in their hands.

  3. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  4. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology

    NASA Astrophysics Data System (ADS)

    Bache, Michael; Bosco, Filippo G.; Brøgger, Anna L.; Frøhling, Kasper B.; Sonne Alstrøm, Tommy; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-01

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  5. Nanomechanical recognition of prognostic biomarker suPAR with DVD-ROM optical technology.

    PubMed

    Bache, Michael; Bosco, Filippo G; Brøgger, Anna L; Frøhling, Kasper B; Alstrøm, Tommy Sonne; Hwu, En-Te; Chen, Ching-Hsiu; Eugen-Olsen, Jesper; Hwang, Ing-Shouh; Boisen, Anja

    2013-11-08

    In this work the use of a high-throughput nanomechanical detection system based on a DVD-ROM optical drive and cantilever sensors is presented for the detection of urokinase plasminogen activator receptor inflammatory biomarker (uPAR). Several large scale studies have linked elevated levels of soluble uPAR (suPAR) to infectious diseases, such as HIV, and certain types of cancer. Using hundreds of cantilevers and a DVD-based platform, cantilever deflection response from antibody-antigen recognition is investigated as a function of suPAR concentration. The goal is to provide a cheap and portable detection platform which can carry valuable prognostic information. In order to optimize the cantilever response the antibody immobilization and unspecific binding are initially characterized using quartz crystal microbalance technology. Also, the choice of antibody is explored in order to generate the largest surface stress on the cantilevers, thus increasing the signal. Using optimized experimental conditions the lowest detectable suPAR concentration is currently around 5 nM. The results reveal promising research strategies for the implementation of specific biochemical assays in a portable and high-throughput microsensor-based detection platform.

  6. Technological status and future challenges of deep space optical communication

    NASA Technical Reports Server (NTRS)

    Lesh, James R.

    1987-01-01

    An account is given of the concepts, techniques, and system design features that may be used to realize an optical communications link for future planetary missions. Such a spacecraft subsystem would encompass a 10-30 cm aperture optical telescope for both transmitting and receiving. Uplink from a laser, in the form of pulsed ranging signals or command information, will be extracted by a tracking detector; downlink data, as well as detected ranging pulses, will be properly formatted and used to modulate the downlink laser. The optical receiving station may be either on the ground or in earth orbit.

  7. Thermal Infrared Imaging Spectrometer - An advanced optics technology instrument

    NASA Technical Reports Server (NTRS)

    Mahoney, Colin; Labaw, Clayton; Sobel, Harold; Kahle, Anne

    1990-01-01

    Through the use of a special optical filter, the Thermal Infrared Imaging Spectrometer, an airborne multispectral IR imaging instrument operating in the thermal emission region (7.5-14 microns), will achieve signal-to-noise ratios greater than 600 with ambient temperature optics. This instrument will be used to do compositional surface mapping of the terrain, and will refine the ability to categorize rock families and types by providing much higher spectral resolution in the emission region than was previously available. Details of the optical system, the detector, the cooler system, and the support electronics are described.

  8. Living Brain Optical Imaging: Technology, Methods and Applications

    PubMed Central

    Tsytsarev, Vassiliy; Bernardelli, Chad; Maslov, Konstantin I.

    2017-01-01

    Within the last few decades, optical imaging methods have yielded revolutionary results when applied to all parts of the central nervous system. The purpose of this review is to analyze research possibilities and limitations of several novel imaging techniques and show some of the most interesting achievements obtained by these methods. Here we covered intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, near-infrared spectroscopy and some other techniques. All of them are mainly applicable for experimental neuroscience but some of them also suitable for the clinical studies. PMID:28251038

  9. A novel microRNA assay with optical detection and enzyme-free DNA circuits

    NASA Astrophysics Data System (ADS)

    Liao, Yuhui; Zhou, Xiaoming

    2014-09-01

    MicroRNAs (miRNAs) participate in the significant processes of life course, can be used as quantificational biomarkers for cellular level researches and related diseases. Conventional methods of miRNAs' quantitative detection are obsessed with low sensitivity, time and labour consuming. Otherwise, the emerging miRNAs detection approaches are mostly exposed to the expensive equipment demands and the professional operation, remains at the stage of laboratory and concept demonstration phase. Herein, we designed a novel miRNAs detection platform that based on enzyme-free DNA circuits and electrochemical luminescence (ECL). MicroRNA21 was chosen as the ideal analyte of this platform. The whole process consists of enzyme-free DNA circuits and ECL signal giving-out steps, achieves advantages of operating in constant temperature condition, without the participation of the enzyme, preferable sensitivity and specificity. Through this approach, the sensitivity achieved at 10pM. It is indicated that this miRNAs detection platform possesses potentials to be an innovation of miRNA detection technologies in routine tests. Benefits of the high penetration of ECL in well-equipped medical establishment, this approach could greatly lessen the obstacles in process of popularization and possess excellent prospects of practical application.

  10. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  11. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  12. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  13. Simulating semiconductor structures for next-generation optical inspection technologies

    NASA Astrophysics Data System (ADS)

    Golani, Ori; Dolev, Ido; Pond, James; Niegemann, Jens

    2016-02-01

    We present a technique for optimizing advanced optical imaging methods for nanoscale structures, such as those encountered in the inspection of cutting-edge semiconductor devices. The optimization flow is divided to two parts: simulating light-structure interaction using the finite-difference time-domain (FDTD) method and simulating the optical imaging system by means of its optical transfer function. As a case study, FDTD is used to simulate 10-nm silicon line-space and static random-access memory patterns, with irregular structural protrusions and silicon-oxide particles as defects of interest. An ultraviolet scanning-spot optical microscope is used to detect these defects, and the optimization flow is used to find the optimal imaging mode for detection.

  14. Optical Disk Technology for Large Scale Mass Storage.

    DTIC Science & Technology

    1985-12-01

    rules. It is sufficient to say that the various encoding techniques provide the system’s designer with several advantages. 8. . . .-. ERROR MANAGEMENT ...characterize due to its variable nature. It is not the *intention to dismiss the characterization of the hardware and software for *error management ...system designer. The most difficult step in managing the error budget in an optical disk 2 *system is otingahigh quality media. An optical disk

  15. Multi-modal miniaturized microscope: successful merger of optical, MEMS, and electronic technologies

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Tomasz S.; Rogers, Jeremy D.; Rahman, Mohammed; Christenson, Todd C.; Gaalema, Stephen; Dereniak, Eustace L.; Richards-Kortum, Rebecca; Descour, Michael R.

    2005-12-01

    The multi-modal miniature microscope (4M) device for early cancer detection is based on micro-optical table (MOT) platform which accommodates on a chip: optical, micro-mechanical, and electronic components. The MOT is a zeroalignment optical-system concept developed for a wide variety of opto-mechanical instruments. In practical terms this concept translates into assembly errors that are smaller than the tolerances on the performance of the optical system. This paper discusses all major system elements: optical system, custom high speed CMOS detector and comb drive actuator. It also points to mutual relations between different technologies. The hybrid sol-gel lenses, their fabrication and assembling techniques, optical system parameters, and various operation modes are also discussed. A particularly interesting mode is a structured illumination technique that delivers confocal-imaging capabilities and may be used for optical sectioning. Structured illumination is produced with LIGA fabricated actuator scanning in resonance and reconstructed using sine approximation algorithm.

  16. Multi terabits/s optical access transport technologies

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey

    2016-02-01

    Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.

  17. Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings.

    PubMed

    Bandara, Aloka B; Zuo, Ziwei; Ramachandran, Siddharth; Ritter, Alfred; Heflin, James R; Inzana, Thomas J

    2015-08-15

    Methicillin-resistance among Staphylococcus species is a major health problem in hospitals, communities, and animals. There is a need for culture-free diagnostic assays that can be carried out rapidly, and maintain a high degree of sensitivity and specificity. To address this need an ionic self-assembled multilayer (ISAM) film was deposited on the surface of a long-period grating (LPG) optical fiber by immersion alternately in poly-allylamine hydrochloride and in poly-1-[p-(3'-carboxy-4'-hydroxyphenylazo) benzenesulfonamido]-1,2-ethandiyl (PCBS), resulting in terminal carboxyl groups on the LPG-ISAM. The terminal carboxyl groups were covalently conjugated to monoclonal antibodies (MAb) specific to penicillin-binding-protein 2a of methicillin resistant (MR) staphylococci. After exposure of the LPG-ISAM to 10(2) colony forming units (CFU)/ml of MR S. aureus (MRSA) for 50 min., light transmission was reduced by 19.7%. In contrast, after exposure to 10(6) CFU/ml of methicillin-sensitive S. aureus (MSSA) attenuation of light transmission was less than 1.8%. Exposure of the LPG-ISAM to extracts of liver, lungs, or spleen from mice infected with MRSA attenuated light transmission by 11.7-73.5%. In contrast, exposure of the biosensor to extracts from MSSA-infected mice resulted in 5.6% or less attenuation of light transmission. When the sensor was tested with 36 strains of MR staphylococci, 15 strains of methicillin-sensitive staphylococci, 10 strains of heterologous genera (all at 10(4) CFU/ml), or tissue samples from mice infected with MRSA, there was complete agreement between MR and non-MR bacteria determined by antibiotic susceptibility testing and the biosensor assay when the cutoff value for attenuation of light transmission was 6.3%. Thus, the biosensor described has the potential to detect MR staphylococci in clinical samples with a high degree of sensitivity and specificity.

  18. Technologies for optical networking in Nx160-Gbit/s DWDM networks

    NASA Astrophysics Data System (ADS)

    Ramos, Francisco; Schulze, Karsten; Martinez, Jose Manuel; Marti, Javier; Llorente, Roberto; Clavero, Raquel

    2003-08-01

    Future multi-terabit/s optical core networks require optical technologies capable of managing ultra-high bit rate OTDM/DWDM (optical time division multiplexing/dense wavelength division multiplexing) channels at 160 Gbit/s or higher bit rates. The key functionalities in ultra-high speed network nodes are all-optical wavelength conversion, 3R-regeneration and demultiplexing of OTDM signals. Advanced optical networking techniques (optical add-drop multiplexing and optical routing) are studied in simulations and their performance evaluated considering 160 Gbit/s OTDM/DWDM channels. Performance comparison results for both OADM (optical add-drop multiplexer) and OXC (optical cross-connect) node networking functionalities are shown considering different technologies: semiconductor-optical-amplifier-based symmetric Mach-Zehnder interferometers (SOA-MZI) for wavelength conversion, signal regeneration and demultiplexing, electroabsorption-modulator-based demultiplexers, and wavelength converters based on four-wave mixing in dispersion-shifted fiber. The simulation results show that the SOA-MZI is a promising technology for all-optical signal processing in network nodes mainly due to its signal regeneration capability. At ultra-high bit rates, however, the relaxation time of SOAs considerably limits the operation. A solution to mitigate this problem is to use a differential scheme at the input of the device. Error-free wavelength conversion, signal regeneration and demultiplexing of 160 Gbit/s OTDM signals employing a SOA-MZI with a differential scheme is demonstrated by means of simulations. Furthermore, the parameters of this architecture are optimized to obtain the best performance for each optical networking functionality in OADM and OXC network nodes.

  19. Libraries in the Information Age: Where Are the Microcomputer and Laser Optical Disc Technologies Taking Us?

    ERIC Educational Resources Information Center

    Chen, Ching-chih

    1986-01-01

    This discussion of information technology and its impact on library operations and services emphasizes the development of microcomputer and laser optical disc technologies. Libraries' earlier responses to bibliographic utilities, online databases, and online public access catalogs are described, and future directions for library services are…

  20. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Over the past two decades, fiber optics has emerged as a highly practical and cost-efficient communications technology. Its competitiveness vis-a-vis other transmission media, especially satellite, has become a critical question. This report studies the likely evolution and application of fiber optic networks in the United States to the end of the century. The outlook for the technology of fiber systems is assessed and forecast, scenarios of the evolution of fiber optic network development are constructed, and costs to provide service are determined and examined parametrically as a function of network size and traffic carried. Volume 1 consists of the Executive Summary. Volume 2 focuses on fiber optic technology and long distance fiber optic networks. Volume 3 develops a traffic and financial model of a nationwide long distance transmission network. Among the study's most important conclusions are: revenue requirements per circuit for LATA-to-LATA fiber optic links are less than one cent per call minute; multiplex equipment, which is likely to be required in any competing system, is the largest contributor to circuit costs; the potential capacity of fiber optic cable is very large and as yet undefined; and fiber optic transmission combined with other network optimization schemes can lead to even lower costs than those identified in this study.

  1. Tolerancing the LITE optical system. [Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.

    1989-01-01

    This paper describes the optical system used in the Lidar In-Space Technology Experiment (LITE) and presents the results of a study designed to generate a tolerance budget for the LITE, using the combination of manual and Monte Carlo tolerancing techniques utilizing the SYNOPSYS optical analysis program. The tolerance budget derived for LITE, including the contributions of both the fabrication and the alignment of the optical-path elements, are presented. It is shown that the nature of the design allows for typical optical shop tolerances of about 5 mils of despace and decenter, 0.1 deg of tilt, and about 5 fringes of surface figure error.

  2. Research on fabrication of aspheres at the Center of Optics Technology (University of Applied Science in Aalen); Techical Digest

    NASA Astrophysics Data System (ADS)

    Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas

    2005-05-01

    The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics & Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.

  3. The study of optical fiber communication technology for space optical remote sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yu, Sheng-quan; Zhang, Xiao-hong; Zhang, Rong-hui; Ma, Jian-hua

    2012-11-01

    The latest trends of Space Optical Remote Sensing are high-resolution, multispectral, and wide swath detecting. High-speed digital image data transmission will be more important for remote sensing. At present, the data output interface of Space Optical Remote Sensing, after performing the image data compression and formatting, transfers the image data to data storage unit of the Spacecraft through LVDS circuit cables. But this method is not recommended for high-speed digital image data transmission. This type of image data transmission, called source synchronization, has the low performance for high-speed digital signal. Besides, it is difficult for cable installing and system testing in limited space of vehicle. To resolve these issues as above, this paper describes a high-speed interconnection device for Space Optical Remote Sensing with Spacecraft. To meet its objectives, this device is comprised of Virtex-5 FPGA with embedded high-speed series and power-efficient transceiver, fiber-optic transceiver module, the unit of fiber-optic connection and single mode optical fiber. The special communication protocol is performed for image data transferring system. The unit of fiber-optic connection with high reliability and flexibility is provided for transferring high-speed serial data with optical fiber. It is evident that this method provides many advantages for Space Optical Remote Sensing: 1. Improving the speed of image data transferring of Space Optical Remote Sensing; 2. Enhancing the reliability and safety of image data transferring; 3. Space Optical Remote Sensing will be reduced significantly in size and in weight; 4. System installing and system testing for Space Optical Remote Sensing will become easier.

  4. Rapid detection of abrin in foods with an up-converting phosphor technology-based lateral flow assay

    PubMed Central

    Liu, Xiao; Zhao, Yong; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Zhang, Pingping; Qiu, Jingfu; Yang, Ruifu; Zhou, Lei

    2016-01-01

    Abrin is a natural plant toxin found in the seeds of Abrus precatorius. It may be used for food poisoning or bioterrorism, seriously endangering public health. In this study, a reliable method for the rapid detection of abrin in foods was developed, based on an up-converting phosphor technology-based lateral flow assay (abrin-UPT-LFA). Nine high-affinity monoclonal antibodies (mAbs) against abrin were prepared, and the optimum mAbs (mAb-6F4 and mAb-10E11) were selected for use in the assay in double-antibody-sandwich mode. The assay was confirmed to be specific for abrin, with a detection sensitivity of 0.1 ng mL−1 for standard abrin solutions. Good linearity was observed for abrin quantitation from 0.1 to 1000 ng mL−1 (r = 0.9983). During the analysis of various abrin-spiked food samples, the assay showed strong sample tolerance and a satisfactory limit of detection for abrin (0.5–10 ng g−1 for solid and powdered samples; 0.30–0.43 ng mL−1 for liquid samples). The analysis of suspected food samples, from sample treatment to result feed-back, could be completed by non-professionals within 20 min. Therefore, the abrin-UPT-LFA is a rapid, sensitive, and reliable method for the on-site detection of abrin in foods. PMID:27703269

  5. Optical technologies for communication satellite applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1986

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul (Editor)

    1986-01-01

    The present conference considers topics encompassing the fields of satellite communications technology, optical subsystems, transmitters and receivers, subsystems for pointing and tracking, onboard processing- and component-related technologies, fiber-optic distribution networks, and reliability-related considerations. Attention is given to lightwave technology in microwave systems, the status of CO2 laser technology and homodyne receiver concepts for communication satellite optical links, laser Doppler measurement techniques for spacecraft, fiber-optic gyros for space applications, integrated acoustooptic device modules for communication, signal processing and computing, radiation-hardened optoelectronic components, and radiation effects on fiber-optics.

  6. Optical technologies for communication satellite applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1986

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul (Editor)

    1986-01-01

    The present conference considers topics encompassing the fields of satellite communications technology, optical subsystems, transmitters and receivers, subsystems for pointing and tracking, onboard processing- and component-related technologies, fiber-optic distribution networks, and reliability-related considerations. Attention is given to lightwave technology in microwave systems, the status of CO2 laser technology and homodyne receiver concepts for communication satellite optical links, laser Doppler measurement techniques for spacecraft, fiber-optic gyros for space applications, integrated acoustooptic device modules for communication, signal processing and computing, radiation-hardened optoelectronic components, and radiation effects on fiber-optics.

  7. Hybrid Ground Station Technology for RF and Optical Communication Links

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  8. Hybrid Ground Station Technology for RF and Optical Communication Links

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  9. RAPID OPTICAL SCREEN TOOL (ROST™) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    In August 1994, a demonstration of cone penetrometer-mounted sensor technologies took place to evaluate their effectiveness in sampling and analyzing the physical and chemical characteristics of subsurface soil at hazardous waste sites. The effectiveness of each technology was ev...

  10. RAPID OPTICAL SCREEN TOOL (ROST™) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    In August 1994, a demonstration of cone penetrometer-mounted sensor technologies took place to evaluate their effectiveness in sampling and analyzing the physical and chemical characteristics of subsurface soil at hazardous waste sites. The effectiveness of each technology was ev...

  11. Optically controlled phased-array technology for space communication systems

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Bhasin, Kul B.

    1988-01-01

    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.

  12. Optical microsensors for pesticides identification based on porous silicon technology.

    PubMed

    Rotiroti, Lucia; De Stefano, Luca; Rendina, Ivo; Moretti, Luigi; Rossi, Andrea Mario; Piccolo, Alessandro

    2005-04-15

    A simple and low cost optical sensor, based on porous silicon nanotechnology, has been used to detect and quantify the presence of atrazine pesticide in water and humic acid solutions. In both cases, a well defined optical signal variation can be registered, even at low concentration as 1 ppm. The phenomenon can be ascribed to the capillary infiltration of liquid into the pores, which changes the average refractive index of the structure. Due to the resonant cavity enhanced operation of the proposed sensors, very low detection limits can be reached.

  13. Silicon technology compatible photonic molecules for compact optical signal processing

    SciTech Connect

    Barea, Luis A. M. Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.

    2013-11-11

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (Q{sub T}), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high Q{sub T}. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ∼55 GHz.

  14. Interactive educational technologies as a method of communicative competency development of optical and fiber optic communication systems specialists

    NASA Astrophysics Data System (ADS)

    Matveeva, Tatiana U.; Osadchiy, Igor S.; Husnutdinova, Marina N.

    2017-04-01

    The article examines the process of formation of communicative competencies of optic and fiber optic communication systems specialists; the role of communicative competencies is examined in the structure of professionally important skills, together with the contents of professional activity. The stages of empirical research into formation of communicative competencies have been presented, and the values of statistical reliability of data have been provided. The model of formation of communicative competency using interactive technology has been developed based on the research done, and main stages of model implementation and motives of formation of communicative competency have been highlighted. A scheme of "Communicative competence as a base of future success" training session has been suggested as one of the basic interactive technologies. Main components of education that are used during the stages of the training cycle have been examined. The statistical data on the effectiveness of use of interactive educational technologies has been presented; it allowed development of communicative competency of specialists in the field of optical and fiber optic communication system.

  15. International Perspective on the Application of Non-Destructive Assay Technology Platforms for Sentencing and Disposal of Radioactive Waste - 12113

    SciTech Connect

    Simpson, A.P.; Clapham, M.J.

    2012-07-01

    Over the past decade, major technology improvements have been introduced in the field of Non-Destructive Assay (NDA) for the management and disposal of radioactive waste in compliance with an evolving regulatory structure. For example in the United States, various NDA technologies have been successfully developed to meet the stringent characterization requirements of the Department of Energy. The use of this instrumentation, combined with the compliant operational processes and expertise levels that have emerged in parallel, have enabled over 75,000 m{sup 3} (or in excess of 145,000 containers) of contact and remote handled transuranic (TRU) waste to be sentenced to date to the Waste Isolation Pilot Plant from 10 different consignor sites. Many of these techniques have applicability that transcends national borders and can be used for common characterization challenges in waste sentencing and disposal on an international basis. Applicable waste streams could include LLW, ILW, TRU and HLW. There are specific design aspects of assay equipment that must be tailored to meet the applicable regulatory requirements for detection and quantification of a set of nuclides of interest to a prescribed limit of detection and measurement uncertainty. Each host nation will have specific challenges in the form of matrix types and processes, availability of historical information, needs for portable versus fixed instruments and the requirement to measure all containers versus assay of a representative sample. Furthermore, the practice of load management (combining smaller packages into a larger package designed to meet the overall waste acceptance criteria for the bulk container) may not have universal acceptability. An evaluation has been performed on a sample of the most successful technologies that have recently emerged to understand their applicability in other countries. Two types of instrumentation 'suite' are considered for measurements on drums and larger boxes / crates: (i

  16. Development and single laboratory validation of an optical biosensor assay for tetrodotoxin detection as a tool to combat emerging risks in European seafood.

    PubMed

    Campbell, Katrina; Barnes, Paul; Haughey, Simon A; Higgins, Cowan; Kawatsu, Kentaro; Vasconcelos, Vitor; Elliott, Christopher T

    2013-09-01

    Tetrodotoxin (TTX) is a potent neurotoxin emerging in European waters due to increasing ocean temperatures. Its detection in seafood is currently performed as a consequence of using the Association of Analytical Communities (AOAC) mouse bioassay (MBA) for paralytic shellfish poisoning (PSP) toxins, but TTX is not monitored routinely in Europe. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. An AOAC-accredited high-performance liquid chromatography (HPLC) method has now been accepted by the European Union as a first action screening method for PSP toxins to replace the MBA. However, this AOAC HPLC method is not capable of detecting TTX, so this potent toxin would be undetected; thereby, a separate method of analysis is required. Surface plasmon resonance (SPR) optical biosensor technology has been proven as a potential alternative screening method to detect PSP toxins in seafood. The addition of a similar SPR inhibition assay for TTX would complement the PSP assay in removing the MBA. The present report describes the development and single laboratory validation in accordance with AOAC and IUPAC guidelines of an SPR method to be used as a rapid screening tool to detect TTX in the sea snail Charonia lampas lampas, a species which has been implicated in 2008 in the first case of human TTX poisoning in Europe. As no current regulatory limits are set for TTX in Europe, single laboratory validation was undertaken using those for PSP toxins at 800 μg/kg. The decision limit (CCα) was 100 μg/kg, with the detection capability (CCβ) found to be ≤200 μg/kg. Repeatability and reproducibility were assessed at 200, 400, and 800 μg/kg and showed relative standard deviations of 8.3, 3.8, and 5.4% and 7.8, 8.3, and 3.7% for both parameters at each level, respectively. At these three respective levels, the recovery of the assay

  17. Novel application of luciferase assay for the in vitro functional assessment of KAL1 variants in three females with septo-optic dysplasia (SOD)

    PubMed Central

    McCabe, Mark J.; Hu, Youli; Gregory, Louise C.; Gaston-Massuet, Carles; Alatzoglou, Kyriaki S.; Saldanha, José W.; Gualtieri, Angelica; Thankamony, Ajay; Hughes, Ieuan; Townshend, Sharron; Martinez-Barbera, Juan-Pedro; Bouloux, Pierre-Marc; Dattani, Mehul T.

    2015-01-01

    KAL1 is implicated in 5% of Kallmann syndrome cases, a disorder which genotypically overlaps with septo-optic dysplasia (SOD). To date, a reporter-based assay to assess the functional consequences of KAL1 mutations is lacking. We aimed to develop a luciferase assay for novel application to functional assessment of rare KAL1 mutations detected in a screen of 422 patients with SOD. Quantitative analysis was performed using L6-myoblasts stably expressing FGFR1, transfected with a luciferase-reporter vector containing elements of the FGF-responsive osteocalcin promoter. The two variants assayed [p.K185N, p.P291T], were detected in three females with SOD (presenting with optic nerve hypoplasia, midline and pituitary defects). Our novel assay revealed significant decreases in transcriptional activity [p.K185N: 21% (p < 0.01); p.P291T: 40% (p < 0.001)]. Our luciferase-reporter assay, developed for assessment of KAL1 mutations, determined that two variants in females with hypopituitarism/SOD are loss-of-function; demonstrating that this assay is suitable for quantitative assessment of mutations in this gene. PMID:26375424

  18. Competitive inhibition assay for the detection of progesterone in dairy milk using a fiber optic SPR biosensor.

    PubMed

    Daems, D; Lu, J; Delport, F; Mariën, N; Orbie, L; Aernouts, B; Adriaens, I; Huybrechts, T; Saeys, W; Spasic, D; Lammertyn, J

    2017-01-15

    Analytical methods that are often used for the quantification of progesterone in bovine milk include immunoassays and chromatographic techniques. Depending on the selected method, the main disadvantages are the cost, time-to-result, labor intensity and usability as an automated at-line device. This paper reports for the first time on a robust and practical method to quantify small molecules, such as progesterone, in complex biological samples using an automated fiber optic surface plasmon resonance (FO-SPR) biosensor. A FO-SPR competitive inhibition assay was developed to determine biologically relevant concentrations of progesterone in bovine milk (1-10 ng/mL), after optimizing the immobilization of progesterone-bovine serum albumin (P4-BSA) conjugate, the specific detection with anti-progesterone antibody and the signal amplification with goat anti-mouse gold nanoparticles (GAM-Au NPs). The progesterone was detected in a bovine milk sample with minimal sample preparation, namely ½ dilution of the sample. Furthermore, the developed bioassay was benchmarked against a commercially available ELISA, showing excellent agreement (R(2) = 0.95). Therefore, it is concluded that the automated FO-SPR platform can combine the advantages of the different existing methods for quantification of progesterone: sensitivity, accuracy, cost, time-to-result and ease-of-use. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2010-10-01

    aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) was successfully used to differentiate cancerous cells from normal with fluorescence ...contrast agents, specifically aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) and NBDG, for the molecular detection of breast cancer. 15...saturation, total hemoglobin content, reduction-oxidation ratio) and extrinsic sources of optical contrast (specifically aminolevulinic acid (ALA

  20. Optical solitons with DWDM technology and four-wave mixing

    NASA Astrophysics Data System (ADS)

    Ekici, Mehmet; Zhou, Qin; Sonmezoglu, Abdullah; Moshokoa, Seithuti P.; Ullah, Malik Zaka; Biswas, Anjan; Belic, Milivoj

    2017-07-01

    This paper obtains bright and singular optical soliton solutions to DWDM system in presence of four-wave mixing. The extended trial function scheme is adopted. The two types of nonlinear media studied are Kerr law and parabolic law. There are other types of waves that appears as a byproduct to this scheme.

  1. Application of fiber optic sensing technology in anchor monitoring

    NASA Astrophysics Data System (ADS)

    Liang, Lei; Jiang, Desheng; Sun, Dongya

    2000-05-01

    Prestressed steel anchors are widely adopted in the stabilization of rock slope engineering. To ensure the safety of the stabilization system, reliable monitoring techniques should be used to evaluate the operating state of the anchorage system. Fiber optical sensors can achieve the distribution detection of strain along the whole length of the optical fiber. Therefore it will be very suitable to embed optical fiber in motar, esp. concrete to perform strain measurement as well as crack detection. This paper reports the development of a simple intensity modulated fiber optic sensor for detecting internal cracks of concrete structures. This sensor is embedded in a 1-meter-long concrete beam and its reliability and feasibility tests were conducted by loading this beam to failure. Experiments for the embedded sensor show that incipience and propagation of concrete cracks can be well displayed by light intensity meter and the sensor can endure large deformation before it cracks and the maximum concrete crack width endured by the sensor can reach 5 mm.

  2. Functional analysis of synthetic DELLA domain peptides and bioactive gibberellin assay using surface plasmon resonance technology.

    PubMed

    Zhao, Zhuoya; Xing, Zenan; Zhou, Min; Chen, Yi; Li, Chenzhong; Wang, Ruozhong; Xu, Wenzhong; Ma, Mi

    2015-11-01

    DELLA proteins and phytohormone gibberellin act together to control convergence point of plant development. A gibberellin-bound nuclear receptor that interacts with the N-terminal domain of DELLA proteins is required for gibberellin induced degradation of DELLA proteins. N-terminal DELLA domain includes two conserved motifs: DELLA and VHYNP. However, their respective functions remain unclear. Meanwhile, the identification and detection of several bioactive gibberellins from the more than 100 gibberellin metabolites are overwhelmingly difficult for their similar structures. Using in vitro biochemical approach, our work demonstrates for the first time that the synthetic GAI N-terminal DELLA domain peptides have similar bioactive function as the expressed protein to interact with AtGID1a receptor. Furthermore, our results reveal that DELLA motif is vitally important region and DELLA segment is essentially required region to recognize AtGID1a receptor. Finally, based on bioactive GA-dependent of the interaction between AtGID1a and DELLA protein, we generated a new method that could identify and detect bioactive GAs accurately and rapidly with surface plasmon resonance assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Emerging electro-optical technologies for defense applications

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Ronda; Ser, W.; Er, Meng H.; Chan, Philip

    1999-11-01

    Technological breakthroughs in the field of imaging and non- imaging sensor sand the related signal processors helped the military users to achieve 'force multiplication'. Present day 'smart-weapon systems' are being converted to 'brilliant-weapon systems' to bridge the gap until the most potent new 'fourth generation systems' come on line based on nanotechnology. The recent military tactics have evolved to take advantage of ever improving technologies to improve the quality and performance over time. The drive behind these technologies is to get a first-pass-mission-success against the target with negligible collateral damage, protecting property and the lives of non-combatants. These technologies revolve around getting target information, detection, designation, guidance, aim-point selection, and mission accomplishment. The effectiveness of these technologies is amply demonstrated during recent wars. This paper brings out the emerging trends in visible/IR/radar smart-sensors and the related signal processing technologies that lead to brilliant guided weapon systems. The purpose of this paper is to give an overview to the readers about futuristic systems. This paper also addresses various system configurations including sensor-fusion.

  4. Leveraging costs and reducing risk in the development of optics manufacturing technological thrusts

    NASA Astrophysics Data System (ADS)

    Potts, Joe

    1992-01-01

    The Army Manufacturing Technology (MANTECH) program has exerted a strong and lasting influence on the U.S. defense industrial base for more than 25 years. The defense industrial base can be described as the aggregate ability to provide the manufacturing technology, research, development, and resources necessary to produce defense material. The Army's MANTECH program is designed to develop manufacturing thrusts (such as optics) that will result in the development of new and improved manufacturing processes. The Joint Logistics Commanders' assessment of the precision optics industrial base emphasized the need to modernize optics fabrication techniques and equipment. As a result of the study, the American Precision Optics Manufacturers Association (APOMA), the Department of the Army, and several academic institutions have collaborated to establish and support the Center for Optics Manufacturing (COM) at the University of Rochester. Through this successful collaboration of knowledge and resources, participants are able to leverage and reduce the cost, risk, and difficulty of developing new automated optics manufacturing systems and supporting technologies. The optics manufacturing thrust is now in its second year and support from industrial, academic, and government participants continues to increase.

  5. Review of ultra-high density optical storage technologies for big data center

    NASA Astrophysics Data System (ADS)

    Hao, Ruan; Liu, Jie

    2016-10-01

    In big data center, optical storage technologies have many advantages, such as energy saving and long lifetime. However, how to improve the storage density of optical storage is still a huge challenge. Maybe the multilayer optical storage technology is the good candidate for big data center in the years to come. Due to the number of layers is primarily limited by transmission of each layer, the largest capacities of the multilayer disc are around 1 TB/disc and 10 TB/ cartridge. Holographic data storage (HDS) is a volumetric approach, but its storage capacity is also strictly limited by the diffractive nature of light. For a holographic disc with total thickness of 1.5mm, its potential capacities are not more than 4TB/disc and 40TB/ cartridge. In recent years, the development of super resolution optical storage technology has attracted more attentions. Super-resolution photoinduction-inhibition nanolithography (SPIN) technology with 9 nm feature size and 52nm two-line resolution was reported 3 years ago. However, turning this exciting principle into a real storage system is a huge challenge. It can be expected that in the future, the capacities of 10TB/disc and 100TB/cartridge can be achieved. More importantly, due to breaking the diffraction limit of light, SPIN technology will open the door to improve the optical storage capacity steadily to meet the need of the developing big data center.

  6. Silicon photonic switch technology for optical networks in telecom and datacom areas

    NASA Astrophysics Data System (ADS)

    Nakamura, Shigeru; Yanagimachi, Shigeyuki; Takeshita, Hitoshi; Tajima, Akio

    2017-01-01

    As a promising platform technology for optical switches, silicon photonics is recently attracting much attention. In this paper, we demonstrate compact 8 × 8 silicon photonic switch modules with low loss, low polarization sensitivity, and low cross-talk properties. An optical circuit including 152 thermo-optical switch elements and spot size converters were formed within a silicon chip size of 12 mm × 14 mm. The developed module where a silicon photonic chip was assembled with a fiber array showed about 6-dB average excess optical loss, including optical coupling loss, on all 64 paths of the 8 × 8 optical switch. Measured polarization dependent loss was about 0.6 dB on average over 64 paths and cross-talk was less than -35 dB. These optical switch modules are intended for applying to ROADMs in telecom optical networks, but, the port count extensibility using multiple compact modules and the faster switching capability of the optical switch are also useful for datacenter applications where hybrid network scheme with electronic packet switches and optical circuit switches is intensively investigated.

  7. Development of optical biosensor technologies for cardiac troponin recognition.

    PubMed

    Abdolrahim, Mojgan; Rabiee, Mohammad; Alhosseini, Sanaz Naghavi; Tahriri, Mohammadreza; Yazdanpanah, Sara; Tayebi, Lobat

    2015-09-15

    Acute myocardial infarction (AMI) is the leading cause of death among cardiovascular diseases. Among the numerous attempts to develop coronary marker concepts into clinical strategies, cardiac troponin is known as a specific marker for coronary events. The cardiac troponin concentration level in blood has been shown to rise rapidly for 4-10 days after onset of AMI, making it an attractive approach for a long diagnosis window for detection. The extremely low clinical sensing range of cardiac troponin levels consequently makes the methods of detection highly sensitive. In this review, by taking into consideration optical methods applied for cardiac troponin detection, we discuss the most commonly used methods of optical immunosensing and provide an overview of the various diagnostic cardiac troponin immunosensors that have been employed for determination of cardiac troponin over the last several years.

  8. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    SciTech Connect

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  9. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2009-10-01

    fluorescence has a unique excitation and emission. In the previous year, aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) was successfully used...focuses on using contrast agents, specifically aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) and NBDG, for the molecular detection of...and extrinsic sources of optical contrast (specifically aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) and 2-[N-(7-nitrobenz-2-oxa-1,3

  10. Optical thin-film technology: past, present, future

    NASA Astrophysics Data System (ADS)

    Strickland, William P.

    1990-12-01

    The evolution of the vacuum coating industry is reviewed. Vacuum science progressed slowly until the late nineteenth century due to an incomplete understanding of vacuum and lack of applications. Edison's invention of the light bulb launched the vacuum industry and increased developmentof improved vacuum systems. The thin film optical coating industry arose from the needs of the German and U.S. military efforts during World War II. The author presents his experience in thin film coating from 1939 to the present.

  11. Miniature and Molecularly Specific Optical Screening Technologies for Breast Cancer

    DTIC Science & Technology

    2008-10-01

    specifically aminolevulinic acid ( ALA ) induced protoporphyrin IX (PpIX) and NBDG, for the molecular detection of breast cancer. 15. SUBJECT TERMS...saturation, total hemoglobin content, reduction-oxidation ratio) and extrinsic sources of optical contrast (specifically aminolevulinic acid ( ALA ...tissues excised from approximately 25 patients undergoing breast cancer surgery (years 4- 5 ). B. Summary of accomplishments in year 1 In year 1, we have

  12. Electro-Optics and Millimeter-Wave Technology in Japan.

    DTIC Science & Technology

    1987-05-01

    has an input sensitivity of -20 dB. e 6 GHz static divide by 4 prescaler will be commercially available by late 1986. # R&D continues on a dynamic ...Electro-Optics Center Aeronautical Laboratories Dr. Ken J. Ando Mr. Mitchell B. Mellen Defense Advanced Research B-K Dynamics , Inc. Pro.iect Agency...Product Systems (MIPS) which makes personal computers and automation systems, and the Mecatronics Group which makes printers and 3.5 inch disks. One half

  13. Designing national IP/MPLS networks with flexgrid optical technology.

    PubMed

    Velasco, Luis; Wright, Paul; Lord, Andrew; Junyent, Gabriel

    2013-02-11

    We propose a two-step procedure to design flexgrid-based national networks. Locations are first partitioned into a set of metro areas interconnected through a flexgrid optical network. The problem is modeled as a Mixed Integer Linear Programming (ILP). Next, each network is designed separately. Optimal results show a future large (>200 nodes) flexgrid core network inter-connecting small (~10 nodes) metro regions.

  14. X-Ray Optics for Science and Technology

    DTIC Science & Technology

    1993-12-22

    x - ray optics, x - ray lasers and synchrotron radiation. • NEW OPPORTUNITIES "AT SOFT - X - RAY WAVELENGTHS...possible to build the soft - x - ray equivalent of an early Lawrence Berkeley Laboratory and professor in residence in visible-light microscope. Materials...b: Soft - x - ray (24 A) image of a radial test pattern showing 300-A gold features. (Courtesy of Werner Meyer-Ilse, Lawrence Berkeley

  15. Advanced optical 3D scanners using DMD technology

    NASA Astrophysics Data System (ADS)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  16. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  17. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    PubMed

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  18. Development of a Sensitive and Specific Serological Assay Based on Luminex Technology for Detection of Antibodies to Zaire Ebola Virus.

    PubMed

    Ayouba, Ahidjo; Touré, Abdoulaye; Butel, Christelle; Keita, Alpha Kabinet; Binetruy, Florian; Sow, Mamadou S; Foulongne, Vincent; Delaporte, Eric; Peeters, Martine

    2017-01-01

    The recent Zaire Ebola virus (EBOV) outbreak in West Africa illustrates clearly the need for additional studies with humans and animals to elucidate the ecology of Ebola viruses (EBVs). In this study, we developed a serological assay based on the Luminex technology. Nine recombinant proteins representing different viral regions (nucleoprotein [NP], 40-kDa viral protein [VP40], and glycoprotein [GP]) from four of the five EBV lineages were used. Samples from 94 survivors of the EBOV outbreak in Guinea and negative samples from 108 patients in France were used to calculate test performance for EBOV detection and cross-reaction with other Ebola virus lineages. For EBOV antibody detection, sensitivities of 95.7%, 96.8%, and 92.5% and specificities of 94.4%, 95.4%, and 96.3% for NP, GP, and VP40, respectively, were observed. All EBOV-negative samples that presented a reaction, except for one, interacted with a single antigen, whereas almost all samples from EBOV survivors were simultaneously reactive with NP and GP (90/94) or with NP, GP, and VP40 (87/94). Considering as positive for past EBOV infection only samples that reacted with EBOV NP and GP, sensitivity was 95.7% and specificity increased to 99.1%. Comparing results with commercial EBOV NP and GP enzyme-linked immunosorbent assays (ELISAs; Alpha Diagnostic, San Antonio, TX), lower sensitivity (92.5%) and high specificity (100%) were observed with the same positivity criteria. Samples from EBOV survivors cross-reacted with GP from Sudan Ebola virus (GP-SUDV) (81.9%), GP from Bundibugyo Ebola virus (GP-BDBV) (51.1%), GP from Reston Ebola virus (GP-RESTV) (9.6%), VP40-SUDV (76.6%), and VP40-BDBV (38.3%). Overall, we developed a sensitive and specific high-throughput serological assay, and defined an algorithm, for epidemiological surveys with humans. Copyright © 2016 American Society for Microbiology.

  19. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    PubMed Central

    Chang, Xuefeng; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  20. Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology

    NASA Astrophysics Data System (ADS)

    Kress, B.; Meyrueis, P.

    2000-10-01

    Diffractive optical elements (DOEs) are becoming more and more widely used in a braod range of fields, including telecommunications, optical computing, consumer electronics, laser material processing and the biomedical sciences, to manipulate light through micro-optical systems. In order to get the most out of such DOEs, knowledge of the design process, fabrication, packaging in a particular system, and operation is required. Digital Diffractive Optics discusses in detail the design and simulation of DOEs, before considering the main fabrication techniques. The increasingly important CAD/CAM tool requirements for the production of DOEs are covered, and a chapter is devoted to the crucial area of systematic fabrication error compensation. Finally, the integration and use of DOEs in a number of different systems, including various opto-electronic and opto-mechanical systems, are discussed. Digital Diffractive Optics will be of great interest to all those involved in the fields of optical engineering and photonics. It presents a clear view of the whole process, from design to fabrication and application, without overstressing the, often complex, mathematics, and will thus be accessible to postgraduate students and those entering the field, as well as more experienced engineers and scientists.

  1. Efficacy of beta-glucuronidase assay for identification of Escherichia coli by the defined-substrate technology.

    PubMed Central

    Rice, E W; Allen, M J; Edberg, S C

    1990-01-01

    In 1976, Kilian and Bulow described the association of beta-glucuronidase with the genus Escherichia (97% positive) and suggested that a beta-glucuronidase assay would be a useful identification test. Since that report, papers about the sensitivity and specificity of this enzyme for the identification of Escherichia coli from clinical sources, food, seawater, potable-water supplies, and various environmental sources have appeared. A study was undertaken to determine the efficacy and specificity of the defined-substrate technology beta-glucuronidase (Colilert) assay for the identification of this species from fecal samples. A total of 460 human, 105 cow, and 55 horse E. coli isolates were tested. Results showed 95.5% beta-glucuronidase-positive isolates in 24 h and 99.5% positive after 28 h of incubation. Only one E. coli isolate was negative. There were no significant differences in the percentage of beta-glucuronidase-positive isolates among the human or animal isolates. There were no non-E. coli isolates that were positive. All subjects carried beta-glucuronidase-positive E. coli. PMID:2187409

  2. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at the Marshall Space Flight Center (MSFC), is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a Fresnel lens. Weighing much less than conventional optics, Fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  3. Microgel photonics and lab on fiber technology for advanced label-free fiber optic nanoprobes

    NASA Astrophysics Data System (ADS)

    Giaquinto, M.; Micco, A.; Aliberti, A.; Ricciardi, A.; Ruvo, M.; Cutolo, A.; Cusano, A.

    2016-05-01

    We experimentally demonstrate a novel optical fiber label free optrode platform resulting from the integration between two rapidly emerging technologies such as Lab-on-Fiber Technology (LOFT) and Microgel Photonics (MPs). The device consists of a microgel (MG) layer painted on a metallic slabs supporting plasmonic resonances, directly integrated on the optical fiber tip. A molecular binding event induces significant changes in the MG layer thickness (and consequently in its 'equivalent' refractive index) resulting in an evident wavelength shift of the resonant feature. As a case of study, glucose-responsive MGs have been synthesized by incorporating into the gel matrix boronic acid moieties, whose interaction with glucose rules the driving forces for gel swelling. Our results pave the way for new technological routes aimed to develop advanced label free fiber optic nanoprobes.

  4. Sol-gel technologies in thin film fabrication for integrated optics lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Almeida, Rui M.; Vasconcelos, H. C.

    1997-07-01

    There is a strong need for the development of cheap component technologies for optical functions such as switching, demultiplexing and amplification. Silica-on- silicon integrated optics using sol-gel processing is probably the best technology for such low cost applications. This review focuses on the sol-gel based thin film fabrication technologies for integrated optics (IO) lasers and amplifiers, using Nd3+ and Er3+ as the active species. Special emphasis is given to the work performed under the European Union sponsored projects NODES (ESPRIT) and CAPITAL (ACTS), in particular to the processing and characterization of Nd3+ and Er3+-doped silica-titania planar waveguides for IO lasers and amplifiers.

  5. Strategic planning of developing automatic optical inspection (AOI) technologies in Taiwan

    NASA Astrophysics Data System (ADS)

    Fan, K. C.; Hsu, C.

    2005-01-01

    In most domestic hi-tech industries in Taiwan, the automatic optical inspection (AOI) equipment is mostly imported. In view of the required specifications, AOI consists of the integration of mechanical-electrical-optical-information technologies. In the past two decades, traditional industries have lost their competitiveness due to the low profit rate. It is possible to promote a new AOI industry in Taiwan through the integration of its strong background in mechatronic technology in positioning stages with the optical image processing techniques. The market requirements are huge not only in domestic need but also in global need. This is the main reason to promote the AOI research for the coming years in Taiwan. Focused industrial applications will be in IC, PCB, LCD, communication, and MEMS parts. This paper will analyze the domestic and global AOI equipment market, summarize the necessary fish bone technology diagrams, survey the actual industrial needs, and propose the strategic plan to be promoted in Taiwan.

  6. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects.

    PubMed

    Kappel, Andreas; Keller, Andreas

    2017-05-01

    microRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression in eukaryotes. Their differential abundance is indicative or even causative for a variety of pathological processes including cancer or cardiovascular disorders. Due to their important biological function, miRNAs represent a promising class of novel biomarkers that may be used to diagnose life-threatening diseases, and to monitor disease progression. Further, they may guide treatment selection or dosage of drugs. miRNAs from blood or derived fractions are particularly interesting candidates for routine laboratory applications, as they can be measured in most clinical laboratories already today. This assures a good accessibility of respective tests. Albeit their great potential, miRNA-based diagnostic tests have not made their way yet into the clinical routine, and hence no standardized workflows have been established to measure miRNAs for patients' benefit. In this review we summarize the detection technologies and workflow options that exist to measure miRNAs, and we describe the advantages and disadvantages of each of these options. Moreover, we also provide a perspective on data analysis aspects that are vital for translation of raw data into actionable diagnostic test results.

  7. Technology Development of Stratified Volume Diffractive Optics for Waveguide Coupling

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.

    2000-01-01

    Stratified Volume Diffractive Optical Elements (SVDOE) appear to be viable as high-efficiency waveguide couplers. Preliminary design studies were conducted under this task to provide initial device parameters for evaluation. However, these designs should be revisited prior to fabrication of a device for testing. The emphasis of this task has been development and implementation of fabrication procedures necessary for SVDOE'S, namely alignment of grating layers, Including offsets, to within required tolerances. Progress in this area Indicates that the alignment technique chosen is viable and tolerances have been reached that allow reasonable performance ranges. Approaches have been identified to improve alignment tolerances even further.

  8. Optical screening of oral cancer: technology for emerging markets.

    PubMed

    Naik, Sarif Kumar; Gupta, Lalit; Mittal, Chetan; Balakrishnan, Srinivasan; Rath, Satish Prasad; Santhosh, C; Pai, Keerthilatha M

    2007-01-01

    Oral cancer is the sixth most common cancer in the world. It is one of the most prevalent cancers in the developing countries of South Asia accounting for one third of the world burden. Sixty percent of the cancers are advanced by the time they are detected. Two methods of optical spectroscopy for detection of oral cancer have been discussed here. These methods are simple, easy to handle and non-invasive. The evaluation of the data is done automatically using pattern recognition techniques, making the screening subjective.

  9. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  10. Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley

    2016-10-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.

  11. Emerging fiber optic endomicroscopy technologies towards noninvasive real-time visualization of histology in situ

    NASA Astrophysics Data System (ADS)

    Xi, Jiefeng; Zhang, Yuying; Huo, Li; Chen, Yongping; Jabbour, Toufic; Li, Ming-Jun; Li, Xingde

    2010-09-01

    This paper reviews our recent developments of ultrathin fiber-optic endomicroscopy technologies for transforming high-resolution noninvasive optical imaging techniques to in vivo and clinical applications such as early disease detection and guidance of interventions. Specifically we describe an all-fiber-optic scanning endomicroscopy technology, which miniaturizes a conventional bench-top scanning laser microscope down to a flexible fiber-optic probe of a small footprint (i.e. ~2-2.5 mm in diameter), capable of performing two-photon fluorescence and second harmonic generation microscopy in real time. This technology aims to enable realtime visualization of histology in situ without the need for tissue removal. We will also present a balloon OCT endoscopy technology which permits high-resolution 3D imaging of the entire esophagus for detection of neoplasia, guidance of biopsy and assessment of therapeutic outcome. In addition we will discuss the development of functional polymeric fluorescent nanocapsules, which use only FAD approved materials and potentially enable fast track clinical translation of optical molecular imaging and targeted therapy.

  12. Wide field of view adaptive optical system for lightweight deployable telescope technologies

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.; Cermak, Michael A.; Friedman, Edward J.

    2003-02-01

    A NASA research contract (NAS1-00116) was awarded to Ball Aerospace & Technologies Corp. in January 2000 to study wide field-of-view adaptive optical systems. These systems will be required on future high resolution Earth remote sensing systems that employ large, flexible, lightweight, deployed primary mirrors. The deformations from these primary mirrors will introduce aberrations into the optical system, which must be removed by corrective optics. For economic reasons, these remote sensing systems must have a large field-of-view (a few degrees). Unlike ground-based adaptive optical systems, which have a negligible field-of-view, the adaptive optics on these space-based remote sensing systems will be required to correct for the deformations in the primary mirror over the entire field-of-view. A new error function, which is an enhancement to conventional adaptive optics, for wide field-of-view optical systems will be introduced. This paper will present the goals of the NASA research project and its progress. The initial phase of this research project is a demonstration of the wide field-of-view adaptive optics theory. A breadboard has been designed and built for this purpose. The design and assembly of the breadboard will be presented, along with the final results for this phase of the research project. Finally, this paper will show the applicability of wide field-of-view adaptive optics to space-based astronomical systems.

  13. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  14. Research and validation of key measurement technologies of large aperture optical elements

    NASA Astrophysics Data System (ADS)

    Guo, Renhui; Chen, Lei; Jiang, Chao; Cao, Hui; Zhang, Huiqin; Zhou, Binbin; Song, Le

    2015-07-01

    A lot of optical components with large aperture are employed in high-power solid-state laser driver. These optical components are with high requirement on the surface shape, optical homogeneity and stress distribution. In order to test these parameters, different types of interferometers, surface profilers and stress meters from different manufacturers are needed. But the problem is the products from different manufacturers may provide different test results. To solve the problem, the research and verification of the key measurement technologies of large aperture optical components are carried out in this paper. The absolute flatness and optical homogeneity measurement methods are analyzed. And the test results of different interferometric software are compared. The test results from different surface profilers and stress meters are also compared. The consistency and reliability of different test software are obtained with the comparing results, which will guide users to select a suitable product.

  15. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  16. Evaluation of emerging parallel optical link technology for high energy physics

    NASA Astrophysics Data System (ADS)

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.

    2012-01-01

    Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN. This work was supported by the U.S. Department of Energy, operated by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  17. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-04-13

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest.

  18. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  19. Required technologies for a lunar optical UV-IR synthesis array

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1992-01-01

    A Lunar Optical UV-IR Synthesis Array (LOUISA) proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. LOUISA needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for LOUISA operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  20. Reliability of MEMS deformable mirror technology used in adaptive optics imaging systems

    NASA Astrophysics Data System (ADS)

    Hartzell, Allyson L.; Cornelissen, Steven A.; Bierden, Paul A.; Lam, Charlie V.; Davis, Daniel F.

    2010-02-01

    Deformable mirror (DM) technology based on microelectromechanical systems (MEMS) technology produced by Boston Micromachines Corporation has been demonstrated to be an enabling component in a variety of adaptive optics applications such as high contrast imaging in astronomy, multi object adaptive optics, free-space laser communication, and microscopy. Many of these applications require DMs with thousands of actuators operating at frame rates up to 10 kHz for many years requiring sufficient device reliability to avoid device failures. In this paper we present improvements in MEMS deformable mirrors for reliability along with test data and device lifetime prediction that show trillions of actuator-cycles can be achieved without failures.

  1. AlGaInN diode-laser technology for optical clocks and atom interferometry

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Stanczyk, S.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Targowski, G.; Carson, C.; Stothard, D.; McKnight, L. J.

    2017-02-01

    Optical clocks have demonstrated an improvement in temporal accuracy of several orders of magnitude over existing time standards based on caesium. Such systems hold great promise in many industrial sectors including financial time stamping, GPS-free navigation and network synchronisation. Such systems require a number of sophisticated lasers in a compact and reliable format for use outside of a laboratory environment, suitable for commercialisation and user transportation. Of particular interest, is emerging AlGaInN laser diode technology that has the potential to provide practical solutions for next generation optical clock technology.

  2. Micro-optics: enabling technology for illumination shaping in optical lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2014-03-01

    Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.

  3. Waveguide and packaging technology for optical backplanes and hybrid electrical-optical circuit boards

    NASA Astrophysics Data System (ADS)

    Schröder, H.; Bauer, J.; Ebling, F.; Franke, M.; Beier, A.; Demmer, P.; Süllau, W.; Kostelnik, J.; Mödinger, R.; Pfeiffer, K.; Ostrzinski, U.; Griese, E.

    2006-02-01

    Due to ever-faster processor clock speeds, there is a rising need for increased bandwidth to transfer large amounts of data, noise-free, within computer and telecommunications systems. A related requirement is the demand for high bit-rate, short-haul links. Here, optical transmission paths are a viable alternative to high-frequency electrical interconnections, whereby layers with integrated waveguides are particularly suitable. The reasons for this include that a higher connection density can be achieved and the power dissipation, as well as interference from electromagnetic radiation, are significantly lower. The article presents general considerations and the results of research conducted by the German BMBF Project NeGIT, into the manufacture of circuit boards with embedded polymer optical waveguides. The electrical-optical boards were fabricated using precise photolithographic processes and standard lamination methods. They possess the thermal stability necessary for manufacturing processes and operational conditions, in terms of both bond strength and the stability of the optical properties. As part of this project, a design of an optical coupling in the daughter card and board backplane interfaces was developed and is presented as the centerpiece of this study.

  4. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  5. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  6. Ultra-High Capacity Networking Enabled By Optical Technologies

    DTIC Science & Technology

    2003-08-01

    available component that monolithically integrated the EAM (electro absorption modulator). Liquid crystal switch (dynamic) To band or wavelength...Ratovelomanana, A. Enard, G. Glastre, D. Rondi, R. Blondeau “Wavelength conversion by optimized monolithic integrated Mach-Zehnder interferometer,” IEEE...been integrated by various groups. In order to fabricate these devices, both monolithic and hybrid technologies have been used. The first

  7. New dichromated gelatin technologies for diffraction optical element fabrication

    NASA Astrophysics Data System (ADS)

    Vigovsky, Yury N.; Malov, Alexander N.; Malov, Sergey N.; Feshchenko, Valeriy S.; Konop, Sergey P.

    1998-01-01

    The hologram recording mechanism in the dichromated gelatin layers are discussed. A new technologies are described for red rainbow hologram recording in the photographic emulsion and selfdeveloped dichromated gelatin--glycerol layers. A new method is suggested and experimentally approbated for relief plastic replica of the rainbow hologram fabrication based on the tanning developed or bleached photographic emulsion. This method is modification of the old photographic `bromoil' process. Some aspects of the noncoherent hologram coping on the dichromated gelatin films are discussed too.

  8. Technology Assessment: Optical Communications, Signal Processors, and Radiation Effects.

    DTIC Science & Technology

    1982-01-07

    involve the ubiquitous helix . In the twystron design study at Varian Associates, the broadband properties of the helix are combined with the power handling...Circuits 79 4. Manufacturing Methods and Technology 81 C. Thermionic Engineering 81 D. The $1,500 TWT 82 1. Overview 82 2. The $1,500 TWT 83 3...interest to MILSATCOM system designers; one of them, the 60 GHz coupled-cavity TWT program at Hughes Aircraft Company, HAC, has delivered an acceptable er

  9. Design and performance analysis of a bio-optical sub-assembly for diffuse optical technologies

    NASA Astrophysics Data System (ADS)

    Jeong, Je-Myung; Park, Kyoungsu; Kim, Sehwan

    2014-11-01

    This paper presents a compact, multi-wavelength, and high-frequency-response light source named the bio-optical sub-assembly (BiOSA). The BiOSA is used to measure the absorption and the reduced scattering coefficients from diffuse optics-based biomedical systems. It is equipped with six laser diodes and one optical fiber with a 400- μm diameter core. Simulations can be used to determine the design parameters and to confirm the feasibility of the BiOSA. The evaluation results indicate that the coupling efficiency of the fabricated BiOSA is 80 ˜ 85%, and the frequency response is up to 3.38 GHz.

  10. Optical RAM-enabled cache memory and optical routing for chip multiprocessors: technologies and architectures

    NASA Astrophysics Data System (ADS)

    Pleros, Nikos; Maniotis, Pavlos; Alexoudi, Theonitsa; Fitsios, Dimitris; Vagionas, Christos; Papaioannou, Sotiris; Vyrsokinos, K.; Kanellos, George T.

    2014-03-01

    The processor-memory performance gap, commonly referred to as "Memory Wall" problem, owes to the speed mismatch between processor and electronic RAM clock frequencies, forcing current Chip Multiprocessor (CMP) configurations to consume more than 50% of the chip real-estate for caching purposes. In this article, we present our recent work spanning from Si-based integrated optical RAM cell architectures up to complete optical cache memory architectures for Chip Multiprocessor configurations. Moreover, we discuss on e/o router subsystems with up to Tb/s routing capacity for cache interconnection purposes within CMP configurations, currently pursued within the FP7 PhoxTrot project.

  11. Biodeterioration of optical glass induced by lubricants used in optical instruments technology.

    PubMed

    Bartosik, Magdalena; Zakowska, Zofia; Cedzińska, Krystyna; Rozniakowski, Kazimierz

    2010-01-01

    The process of biodeterioration of optical glass was studied after being induced by an auxiliary material (lubricant 4CKP) used in the production of optical instruments. It was determined that the lubricant can initiate growth of conidia of Aspergillus niger fungus. Acid spawn metabolites cause deterioration of the glass surface. Measurements of laser light beam transmittance through the glass plate and the AAS chemical analysis method of the post-culture fluid allowed to determine that glass with a high SiO2 content is most resistant to corrosion caused by the growth of A. niger fungi spawn.

  12. Workshop Proceedings: Optical Systems Technology for Space Astrophysics in the 21st Century, volume 3

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A. (Editor)

    1992-01-01

    A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities.

  13. Intellectual parachute and balloon systems based on fiber optic technologies

    NASA Astrophysics Data System (ADS)

    Nikolaev, Alexander M.; Nikolaev, Pavel M.; Nikolaev, Yuri M.; Morozov, Oleg G.; Zastela, Mikhail Yu.; Morozov, Gennady A.

    2014-04-01

    For any parachute system, it is important to predict the opening forces it will experience in order to make a safe and economic choice of materials to be used. Developed fiber optic sensors on two twisted fibers with the locked ends and variable twisting step have been used for creation of intellectual knots of perspective vehicles, in particular, parachute canopies and slings. We decided to change our measuring procedure from measuring of transmitted power or its Raleigh scattering in different ends of twisted fibers onto Brillouin scattering characterization. For this situation we offered the kind of method of frequency variation to get the information about the frequency shift and Q-factor of the Brillouin scattering in each sensor.

  14. Bridge continuous deformation measurement technology based on fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  15. Optical sensors for application in intelligent food-packaging technology

    NASA Astrophysics Data System (ADS)

    McEvoy, Aisling K.; Von Bueltzingsloewen, Christoph; McDonagh, Colette M.; MacCraith, Brian D.; Klimant, Ingo; Wolfbeis, Otto S.

    2003-03-01

    Modified Atmosphere Packaged (MAP) food employs a protective gas mixture, which normally contains selected amounts of carbon dioxide (CO2) and oxygen (O2), in order to extend the shelf life of food. Conventional MAP analysis of package integrity involves destructive sampling of packages followed by carbon dioxide and oxygen detection. For quality control reasons, as well as to enhance food safety, the concept of optical on-pack sensors for monitoring the gas composition of the MAP package at different stages of the distribution process is very attractive. The objective of this work was to develop printable formulations of oxygen and carbon dioxide sensors for use in food packaging. Oxygen sensing is achieved by detecting the degree of quenching of a fluorescent ruthenium complex entrapped in a sol-gel matrix. In particular, a measurement technique based on the quenching of the fluorescence decay time, phase fluorometric detection, is employed. A scheme for detecting CO2 has been developed which is compatible with the oxygen detection scheme. It is fluorescence-based and uses the pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) indicator dye encapsulated in an organically modified silica (ORMOSIL) glass matrix. Dual Luminophore Referencing (DLR) has been employed as an internal referencing scheme, which provides many of the advantages of lifetime-based fluorometric methods. Oxygen cross-sensitivity was minimised by encapsulating the reference luminophore in dense sol-gel microspheres. The sensor performance compared well with standard methods for both oxygen and carbon dioxide detection. The results of preliminary on-pack print trials are presented and a preliminary design of an integrated dual gas optical read-out device is discussed.

  16. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  17. Comparison of the Luminex xTAG RVP Fast assay and the Idaho Technology FilmArray RP assay for detection of respiratory viruses in pediatric patients at a cancer hospital.

    PubMed

    Babady, N Esther; Mead, Peter; Stiles, Jeffrey; Brennan, Carrie; Li, Haijing; Shuptar, Susan; Stratton, Charles W; Tang, Yi-Wei; Kamboj, Mini

    2012-07-01

    Respiratory viruses are increasingly recognized as serious causes of morbidity and mortality in immunocompromised patients. The rapid and sensitive detection of respiratory viruses is essential for the early diagnosis and administration of appropriate antiviral therapy, as well as for the effective implementation of infection control measures. We compared the performance of two commercial assays, xTAG RVP Fast (Luminex Diagnostics, Toronto, Canada) and FilmArray RVP (FA RVP; Idaho Technology, Salt Lake City, UT), in pediatric patients at Memorial Sloan-Kettering Cancer Center. These assays detect the following viruses: respiratory syncytial virus; influenza A and B viruses; parainfluenza viruses 1, 2, 3, and 4; human metapneumovirus; adenovirus; enterovirus-rhinovirus; coronaviruses NL63, HKU1, 229E, and OC43; and bocavirus. We tested a total of 358 respiratory specimens from 173 pediatric patients previously tested by direct fluorescence assay (DFA) and viral culture. The overall detection rate (number of positive specimens/total specimens) for viruses tested by all methods was 24% for DFA/culture, 45% for xTAG RVP Fast, and 51% for FA RVP. The agreement between the two multiplex assays was 84.5%, and the difference in detection rate was statistically significant (P < 0.0001). Overall, the FA RVP assay was more sensitive than the xTAG RVP Fast assay and had a turnaround time of approximately 1 h. The sensitivity, simplicity, and random-access platform make FA RVP an excellent choice for laboratory on-demand service with low to medium volume.

  18. Update on the SKA Offset Optics Design for the U.S. Technology Development Project

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Cortes-Medellin, German; Baker, Lynn

    2011-01-01

    The U.S. design concept for the Square Kilometre Array (SKA) program is based on utilizing a large number of small-diameter dish antennas in the 12 to 15 meter diameter range. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. The latest considerations for selecting both the optics and feed design are presented.

  19. High-Throughput Optical Interconnect Technology for Future On-Board Digital Processors

    DTIC Science & Technology

    2005-07-13

    of-concept demonstration based on a digital processor prototype enabled to assess the suitability and practicality of these technologies from an...HIGH-THROUGHPUT OPTICAL INTERCONNECT TECHNOLOGY FOR FUTURE ON-BOARD DIGITAL PROCESSORS Michel SOTOM (1), Norbert VENET (1), Pierre AUBRY (1...avenue E. Belin, 31401 Toulouse Cedex 4, France ABSTRACT : Digital processing is expected to take place in many satellite payload sub-systems

  20. Update on the SKA Offset Optics Design for the U.S. Technology Development Project

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Cortes-Medellin, German; Baker, Lynn

    2011-01-01

    The U.S. design concept for the Square Kilometre Array (SKA) program is based on utilizing a large number of small-diameter dish antennas in the 12 to 15 meter diameter range. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. The latest considerations for selecting both the optics and feed design are presented.

  1. Determination of folate in infant formula and adult/pediatric nutritional formula by optical biosensor assay: First Action 2011.05.

    PubMed

    Indyk, Harvey; Dowell, Dawn

    2012-01-01

    After a review of data from a single-laboratory validation (SLV) study published in the International Dairy Journal 21, 783-789 (2011), a method for folate in infant formula and adult/pediatric nutritional formula was submitted for consideration of adoption by AOAC as an automated assay that is rapid and simple. The method uses an optical biosensor assay to quantitate total folate content in milk and milk-based pediatric and adult nutritional products. The assay uses folate binding protein and a functionalized sensor surface. The SLV showed an instrumental LOD of 0.1 ng/mL (equivalent to 2.5 microg/100 g for a typical infant formula). The method detection limit was 6.5 microg/100 g with a repeatability of 3.48% and an intermediate reproducibility of 4.63% RSD.

  2. Quantitation of IgE and carcinoembryonic antigen (CEA) by optical beam deflection (OBD) measurement of dot-immunobinding assay patterns visualized by an ELISA technique.

    PubMed

    Matsuzawa, S; Kimura, H; Tu, C Y; Kitamori, T; Sawada, T

    1993-05-05

    Dot-immunobinding assays of IgE and CEA were performed by a conventional dot-ELISA technique with diaminobenzidine staining, and the quantitative results were compared by densitometry and a new, spectroscopic, optical beam deflection (OBD) method using the same membrane. It was possible with the OBD method to detect quantities of these substances at least ten times smaller than with densitometry. Better intra-assay reproducibility for IgE and CEA measurements was obtained by the OBD method. The measurable ranges of the OBD method was broader than that of densitometry, because dark bands caused OBD in proportion to their color densities. When the dot-immunobinding assay with OBD measurement for CEA was also compared with a microtube ELISA using biotin-avidin conjugates, the sensitivities and reproducibilities of the two methods were found to be similar, with a correlation coefficient of 0.991.

  3. Evaluation of Multiple Immunoassay Technology Platforms to Select the Anti-Drug Antibody Assay Exhibiting the Most Appropriate Drug and Target Tolerance

    PubMed Central

    Collet-Brose, Justine

    2016-01-01

    The aim of this study was, at the assay development stage and thus with an appropriate degree of rigor, to select the most appropriate technology platform and sample pretreatment procedure for a clinical ADA assay. Thus, ELISA, MSD, Gyrolab, and AlphaLISA immunoassay platforms were evaluated in association with target depletion and acid dissociation sample pretreatment steps. An acid dissociation step successfully improved the drug tolerance for all 4 technology platforms and the required drug tolerance was achieved with the Gyrolab and MSD platforms. The target tolerance was shown to be better for the ELISA format, where an acid dissociation treatment step alone was sufficient to achieve the desired target tolerance. However, inclusion of a target depletion step in conjunction with the acid treatment raised the target tolerance to the desired level for all of the technologies. A higher sensitivity was observed for the MSD and Gyrolab assays and the ELISA, MSD, and Gyrolab all displayed acceptable interdonor variability. This study highlights the usefulness of evaluating the performance of different assay platforms at an early stage in the assay development process to aid in the selection of the best fit-for-purpose technology platform and sample pretreatment steps. PMID:27243038

  4. Planar optical integrated circuits based on UV-patternable sol-gel technology

    NASA Astrophysics Data System (ADS)

    Sabattie, Jean-Marc; MacCraith, Brian D.; Mongey, Karen; Charmet, Jerome; O'Dwyer, Kieran; Pez, Mathias M.; Quentel, Francois; Thierry, Dean

    2003-03-01

    Planar lightwave circuits (PLCs) made from photo-patternable sol-gel materials are attracting considerable R&D interest. This is due to the advantages they offer for applications in optical telecommunications and their compatibility with existing silicon technology process equipment. In particular, the ability to produce devices compatible with silica optical fibres using a straightforward, environmentally friendly, photolithographic process is very attractive. The approach is now well-established in the literature and typically involves the incorporation of an acrylate moiety in the sol-gel precursor mixture, thereby providing a photo-polymerisability function. In this work, we report on the fabrication of passive optical components and devices designed for datacomms applications using visible diode lasers or the 1st telecom window. Silica-based sol-gel waveguides have been integrated in an opto-electronic multichip module (OE-MCM) demonstrator for optical interconnect applications. We have fabricated an 8-channel transmitter module for parallel optical interconnects (POI) based on 2 sub-modules: (a) an optical interface sub-assembly based on photo-patterned sol-gel optical waveguides, and (b) an optoelectronic component sub-module comprising an array of VCSELs. We describe here the fabrication, characterization and performance of the optical components and a POI Transmitter chip.

  5. A rapid and automated fiber optic-based biosensor assay for the detection of Salmonella in spent irrigation water used in the sprouting of sprout seeds.

    PubMed

    Kramer, Marianne F; Lim, Daniel V

    2004-01-01

    Recent outbreaks of foodborne illness have been linked to the consumption of contaminated sprouts. The spent irrigation water used to irrigate sprouts can carry many microorganisms, including pathogenic strains of Escherichia coli and Salmonella enterica. These pathogens are believed to originate from the seeds. The U.S. Food and Drug Administration recommends that sprout producers conduct microbiological testing of spent irrigation water from each production lot at least 48 h after seeds have germinated. Microbial analysis for the detection of Salmonella is labor-intensive and takes days to complete. A rapid and automated fiber-optic biosensor assay for the detection of Salmonella in sprout rinse water was developed in this study. Alfalfa seeds contaminated with various concentrations of Salmonella Typhimurium were sprouted. The spent irrigation water was assayed 67 h after alfalfa seed germination with the RAPTOR (Research International, Monroe, Wash.), an automated fiber optic-based detector. Salmonella Typhimurium could be positively identified in spent irrigation water when seeds were contaminated with 50 CFU/g. Viable Salmonella Typhimurium cells were also recovered from the waveguides after the assay. This biosensor assay system has the potential to be directly connected to water lines within the sprout-processing facility and to operate automatically, requiring manual labor only for preventative maintenance. Therefore, the presence of Salmonella Typhimurium in spent irrigation water could be continuously and rapidly detected 3 to 5 days before the completion of the sprouting process.

  6. Enabling Technologies for Direct Detection Optical Phase Modulation Formats

    NASA Astrophysics Data System (ADS)

    Xu, Xian

    Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK

  7. Optical waveguide technology and its application in head-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2012-06-01

    Applying optical waveguide technology to head mounted display (HMD) solutions has the key goal of providing the user with improved tactical situational awareness by providing information and imagery in an easy to use form which also maintains compatibility with current night vision devices and also enables the integration of future night vision devices. The benefits of waveguide technology in HMDs have seen a number of alternative waveguide display technologies and configurations emerge for Head mounted Display applications. BAE System's presented one such technology in 2009 [1] and this is now in production for a range of Helmet Mounted Display products. This paper outlines the key design drivers for aviators Helmet Mounted Displays, provides an update of holographic Optical Waveguide Technology and its maturation into compact, lightweight Helmet Mounted Displays products for aviation and non-aviation applications. Waveguide displays have proved too be a radical enabling technology which allows higher performance display devices solutions to be created in a revolutionary way. It has also provided the user with see through daylight readable displays, offering the combination of very large eye box and excellent real world transmission in a compact format. Holographic Optical Waveguide is an optical technology which reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. BAE Systems has exploited this technology in the Q-SightTM family of scalable Helmet Mounted Displays; allowing the addition of capability as it is required in a flexible, low-cost way The basic monocular Q-SightTM architecture has been extended to offer wide field of view, monochrome and full colour HMD solution for rotary wing, fast jet and solider system applications. In its basic form Q-SightTM now offers plug

  8. Mexican Infrared-Optical New Technology Telescope: The TIM project

    NASA Astrophysics Data System (ADS)

    Salas, L.

    1998-11-01

    The scientific goals for TIM are an image quality of 0.25", consistent with the seeing at our site, optimization for the infrared as many scientific programs are going in that region of the spectrum, a M1 diameter in excess of 6.5 meters and a field of view limited to 10 arc minutes. Practical reasons, such as the limited funding available and the requirement of mexican financial agencies that the telescope should be built and installed in Mexico, lead us to decide for a segmented telescope, with a single secondary mirror, a single cassegrain focus and a light high stifness tubular structure. ALthough we are still working on the conceptual design of the telescope, there are some concepts that we are pursuing. The optical desing (M1+M2) is Ritchey-Cretien type with an hyperbolic primary 7.8 m od F/1.5 and a 0.9 m diameter f/15 secondary mirror. This will give a plate scale of 1.7 "/mm. This is 0.03 "/pix in direct mode, enough for AO goals. As for direct imaging, a factor of 5 reduction with 20 cm diam optical components would be able to produce 5' fields on a 2048, 20 microns type detector with 0.17"/pix. This implies that, with the use of auxiliary optics which is a common need for each particular instrument anyway, a wide variety of needs can be accomodated with a single secondary mirror. Choping for infrared observations would however introduce a additional cost in the secondary mirror. Alternatively the use of cold tertiary choping mirror is currently under study. The M1+M2 design currently aquires d80 of 0.17" in a 5' field without correction and 1" in a 10' field, that would require a field correcting lens. The M1 mirror will be segmented into 19 1.8 m diameter segments. There are 4 kinds of segments, the central, which we have kept to provide a reference for phasing, 6 more segments for the first ring and 12 in the outer ring, of two different kinds. The spacing between the segments is 5 mm, enough to reduce the inter-segment thermal background to half a

  9. Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

    NASA Technical Reports Server (NTRS)

    Pouch, John

    2004-01-01

    A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.

  10. Advanced optical sensing and processing technologies for the distributed control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, G. M.; Fraser, J. C.

    1991-01-01

    The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.

  11. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  12. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in laser/electro-optics technology. During the project, a task force of teachers from the area schools and the college…

  13. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in laser/electro-optics technology. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

  14. Development of Generalizable Educational Programs in Laser/Electro-Optics Technology: Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    The purpose of the Laser/Electro-Optics Technology (LEOT) Project was to establish a pilot educational program, develop a flexible curriculum, prepare and test instructional materials, transport the curriculum and instructional materials into other educational institutions by establishing relevant LEOT programs wherever they are needed, and to…

  15. Nonlinear Optics Technology. Phase 3. Volume 2. Phase Conjugated Optical Communication Link

    DTIC Science & Technology

    1991-01-12

    periscope; I = 1 cm photodiode; PS =position sensing photodiode; RA -- transponder aperture; c -- camera; SM =steering mirrors; 4W = sodium vapor/ four wave...conjugation, four wave mixing, coherent detecti automatic racking and pointing, holographlc correction, mod 19 ABSTRACT ILollniue on reverse if...km four wave mixing (FWM) PC optical comm link propagating through the atmosphere was demonstrated and characterized over a range of atmospheric

  16. Logical optical line terminal technologies towards flexible and highly reliable metro- and access-integrated networks

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoru; Sato, Takehiro; Yamanaka, Naoaki

    2017-01-01

    In this paper, flexible and highly reliable metro and access integrated networks with network virtualization and software defined networking technologies will be presented. Logical optical line terminal (L-OLT) technologies and active optical distribution networks (ODNs) are the key to introduce flexibility and high reliability into the metro and access integrated networks. In the Elastic Lambda Aggregation Network (EλAN) project which was started in 2012, a concept of the programmable optical line terminal (P-OLT) has been proposed. A role of the P-OLT is providing multiple network services that have different protocols and quality of service requirements by single OLT box. Accommodated services will be Internet access, mobile front-haul/back-haul, data-center access, and leased line. L-OLTs are configured within the P-OLT box to support the functions required for each network service. Multiple P-OLTs and programmable optical network units (P-ONUs) are connected by the active ODN. Optical access paths which have flexible capacity are set on the ODN to provide network services from L-OLT to logical ONUs (L-ONUs). The L-OLT to L-ONU path on the active ODN provides a logical connection. Therefore, introducing virtualization technologies becomes possible. One example is moving an L-OLT from one P-OLT to another P-OLT like a virtual machine. This movement is called L-OLT migration. The L-OLT migration provides flexible and reliable network functions such as energy saving by aggregating L-OLTs to a limited number of P-OLTs, and network wide optical access path restoration. Other L-OLT virtualization technologies and experimental results will be also discussed in the paper.

  17. Videodisc and Optical Digital Disk Technologies and Their Applications in Libraries. A Report to the Council on Library Resources.

    ERIC Educational Resources Information Center

    Information Systems Consultants, Inc., Washington, DC.

    This report examines the potential impact of optical media--videodiscs, compact audio discs, and optical disks, tapes, and cards--in library related applications. A detailed consideration of the technology includes discussion of the underlying principles, the various forms in which the technology is marketed, production methods and costs, and the…

  18. Implantable optogenetic device with CMOS IC technology for simultaneous optical measurement and stimulation

    NASA Astrophysics Data System (ADS)

    Haruta, Makito; Kamiyama, Naoya; Nakajima, Shun; Motoyama, Mayumi; Kawahara, Mamiko; Ohta, Yasumi; Yamasaki, Atsushi; Takehara, Hiroaki; Noda, Toshihiko; Sasagawa, Kiyotaka; Ishikawa, Yasuyuki; Tokuda, Takashi; Hashimoto, Hitoshi; Ohta, Jun

    2017-05-01

    In this study, we have developed an implantable optogenetic device that can measure and stimulate neurons by an optical method based on CMOS IC technology. The device consist of a blue LED array for optically patterned stimulation, a CMOS image sensor for acquiring brain surface image, and eight green LEDs surrounding the CMOS image sensor for illumination. The blue LED array is placed on the CMOS image sensor. We implanted the device in the brain of a genetically modified mouse and successfully demonstrated the stimulation of neurons optically and simultaneously acquire intrinsic optical images of the brain surface using the image sensor. The integrated device can be used for simultaneously measuring and controlling neuronal activities in a living animal, which is important for the artificial control of brain functions.

  19. Comparison of modified Thrombelastograph and Plateletworks whole blood assays to optical platelet aggregation for monitoring reversal of clopidogrel inhibition in elective surgery patients.

    PubMed

    Craft, Robert M; Chavez, Jack J; Snider, Carolyn C; Muenchen, Robert A; Carroll, Roger C

    2005-06-01

    Clinically monitoring recovery from clopidogrel and nonsteroidal anti-inflammatory drug (NSAID) inhibition requires whole blood assays corresponding to a standard methodology such as platelet-rich plasma aggregation monitored optically (OPA). We compared OPA, using an ED 50 dose of adenosine diphosphate activation, with 2 whole blood assays, Plateletworks (PWA) and modified Thrombelastograph (TEG). Two sets of assays were performed on 43 surgery patients while on clopidogrel and off clopidogrel to determine the reversal of absolute and relative inhibition. The modified TEG had Spearman correlations with OPA for absolute (rho = .424; P = .006) and relative inhibition (rho = .742; P < .0001). PWA correlations with OPA gave absolute (rho = .28; P = .08) and relative inhibition (rho = .46; P = .004) values. Bland-Altman analysis indicated agreement of both tests with OPA, showing constant biases of about 18% and some dependency on mean magnitude error. Cohen effect size thresholds defined nonresponders as < 7.7% clopidogrel inhibition relative to baseline recovery of full platelet function. Apparent nonresponse to clopidogrel or lack of platelet recovery did not correlate with statin or NSAID therapies. These PWA and modified TEG whole blood assays could prove useful for monitoring the reversal of clopidogrel and NSAID inhibition before surgery. More important, these assays done at baseline and after beginning clopidogrel therapy could monitor the effectiveness for the individual patients with cardiovascular disease and help identify the need for alternative therapies.

  20. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  1. Improved plastic molding technology for magneto-optical disk substrate

    NASA Astrophysics Data System (ADS)

    Galic, George J.

    1991-03-01

    A patented new injection-molding technology which already has been coninercially licensed nonexclusively to worldleading plastic magnetooptical (MO) mediamakers gives very high moldpacking pressures (needed for maximum microsurface replication) without high birefringence (minimized by reducing constrictiveness during fill) even with high viscosity plastics. I . " STATFMENT OF ThE PROBLIM" FOB ERASABLE OPTICALDI 5K MOLDINQ Al though gl ass and new cross 1 inkabl e p1 as t i cs are cont ending wi th polycarbonate and other injection moldable thermoplastics for this new market polycarbonate has prevailed as " first generation" erasable media substrate (although product life considerations may require added barrier coat to the MO coating stacks thereof). If performance of all these substrate contenders were equal the injection moldable thermoplastics will be preferred due to lowest cost and most automatable production If molded thermoplastics don''t ultimately win out a main reason will have been that these disk products require a long narrow mold cavity to be filled by the thermoplastic of choice then packed at double the pressures used for digital audio compact disks (CDs) in order to force the molten thermoplastic against the staner microsurface until detailed microreplication is assured yet only very low moldedin stresses can be tolerated (typically 1/2 to 1/5 those of audio CDs) 1. 1 Fillrelated Molding Problems M-O disks typically are 130am or 86nin in diameter and as molded thickness of a single

  2. Optically pumped VECSELs: review of technology and progress

    NASA Astrophysics Data System (ADS)

    Guina, M.; Rantamäki, A.; Härkönen, A.

    2017-09-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) are the most versatile laser sources, combining unique features such as wide spectral coverage, ultrashort pulse operation, low noise properties, high output power, high brightness and compact form-factor. This paper reviews the recent technological developments of VECSELs in connection with the new milestones that continue to pave the way towards their use in numerous applications. Significant attention is devoted to the fabrication of VECSEL gain mirrors in challenging wavelength regions, especially at the yellow and red wavelengths. The reviewed fabrication approaches address wafer-bonded VECSEL structures as well as the use of hybrid mirror structures. Moreover, a comprehensive summary of VECSEL characterization methods is presented; the discussion covers different stages of VECSEL development and different operation regimes, pointing out specific characterization techniques for each of them. Finally, several emerging applications are discussed, with emphasis on the unique application objectives that VECSELs render possible, for example in atom and molecular physics, dermatology and spectroscopy.

  3. Quantum plasmonics for next-generation optical and sensing technologies

    NASA Astrophysics Data System (ADS)

    Moaied, Modjtaba; Ostrikov, Kostya (Ken)

    2015-12-01

    Classical plasmonics has mostly focused on structures characterized by large dimension, for which the quantummechanical effects have nearly no impact. However, recent advances in technology, especially on miniaturized plasmonics devices at nanoscale, have made it possible to imagine experimental applications of plasmons where the quantum nature of free charge carriers play an important role. Therefore, it is necessary to use quantum mechanics to model the transport of charge carriers in solid state plasma nanostructures. Here, a non-local quantum model of permittivity is presented by applying the Wigner equation with collision term in the kinetic theory of solid state plasmas where the dominant electron scattering mechanism is the electron-lattice collisions. The surface plasmon resonance of ultra-small nanoparticles is investigated using this non-local quantum permittivity and its dispersion relation is obtained. The successful application of this theory in ultra-small plasmonics structures such as surface plasmon polariton waveguides, doped semiconductors, graphene, the metamaterials composed of alternating layers of metal and dielectric, and the quantum droplets is anticipated.

  4. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    NASA Astrophysics Data System (ADS)

    Rajpal, Shivika; Goyal, Rakesh

    2017-03-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  5. Research progress in the key device and technology for fiber optic sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Sun, Qizhen; Lu, Ping; Xia, Li; Sima, Chaotan

    2016-03-01

    The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) techniques similar to the fiber communication passive optical network (PON), is proposed. The network topology scheme of a hybrid TDM/WDM/FDM (frequency division multiplexing) three-dimension fiber optic sensing system for achieving ultra-large capacity, long distance, and high resolution sensing performance is performed and analyzed. As the most important device of the FOSN, several kinds of light source are developed, including the wideband multi-wavelength fiber laser operating at C band, switchable and tunable 2 μm multi-wavelength fiber lasers, ultra-fast mode-locked fiber laser, as well as the optical wideband chaos source, which have very good application prospects in the FOSN. Meanwhile, intelligent management techniques for the FOSN including wideband spectrum demodulation of the sensing signals and real-time fault monitoring of fiber links are presented. Moreover, several typical applications of the FOSN are also discussed, such as the fiber optic gas sensing network, fiber optic acoustic sensing network, and strain/dynamic strain sensing network.

  6. Development of a Generic Anti-PEG Antibody Assay Using BioScale's Acoustic Membrane MicroParticle Technology.

    PubMed

    Dong, Huijin; Mora, Johanna R; Brockus, Catherine; Chilewski, Shannon D; Dodge, Robert; Merrifield, Colin; Dickerson, W Matthew; DeSilva, Binodh

    2015-11-01

    Immunogenicity testing for PEGylated biotherapeutics should include methods to detect both anti-protein and anti-PEG antibodies (anti-PEG). Although some methods have been published for the detection of anti-PEG antibodies, the information is incomplete and, in some cases, reagents used (such as Tween-20) are known to interfere with detection. This rapid communication describes the use of BioScale's Acoustic Membrane MicroParticle (AMMP®) technology using the ViBE® Workstation to measure anti-PEG antibodies in human serum samples. Briefly, a sample spiked with monoclonal human IgG anti-PEG antibody is diluted in buffer and incubated with paramagnetic beads coated with linear chain mPEG to capture anti-PEG antibodies. The complex is then captured on an acoustic membrane coated with Protein A. The change in mass on the membrane caused by the binding of the complex to the membrane results in a signal proportional to the mass of anti-PEG antibodies. The data indicate that an assay with a sensitivity of less than 1000 ng/mL for IgG is achievable. This level of sensitivity is better than current published reports on IgG anti-PEG antibody detection.

  7. Development of a real-time multiplex RSV detection assay for difficult respiratory samples, using ultrasone waves and MNAzyme technology.

    PubMed

    Nauwelaers, David; Vijgen, Leen; Atkinson, Claire; Todd, Alison; Geretti, Anna Maria; Van Ranst, Marc; Stuyver, Lieven

    2009-11-01

    Elderly infected with Human Respiratory Syncytial Virus (RSV) often bear low viral loads that stay below the detection limits of commercial assays. A more sensitive detection of RSV infections can improve patient management, guide containment strategies, and possibly prevent morbidity and mortality among populations most severely affected by RSV. To test the sensitivity for RSV detection by using an alternative extraction method in combination with a new amplification procedure. Nasopharyngeal washes and sputum samples (n=78) form clinical cases, and broncheo-alveolar lavages (n=27) from an experimental RSV rat model were obtained. An ultrasone-based RNA extraction method was combined with a multi-component Nucleic Acid enzymes (MNAzyme) amplification procedure for simultaneous detection of RSV-A, RSV-B, and an Internal Extraction control IEC. Compared to standard real-time PCR technology, this method resulted in an increased detection sensitivity, ranging from 0.9 to 4.93 log (average 2.05+/-1.01) for RSV-A and 0.76 to 4.28 log (average 1.30+/-0.92) for RSV-B. An ultrasone-based extraction method with MNAzyme amplification resulted in improved detection of RSV in different respiratory samples, including sputum. This generic method for nucleic acid extraction should be readily applicable for any other respiratory pathogen.

  8. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    DTIC Science & Technology

    2016-07-07

    Japanese Journal of Applied Physics 20 (1981) L326. 15) K. Liu and M. G. Littman: Optics Letters 6 (1981) 117. 16) Y. Fujitomo, M. Murakami , J...Appl Phys 34 (1963) 2040. 19) Y. Fujimoto, T. Suzuki, R. A. M. Ochante, T. Hirayama, M. Murakami , H. Shiraga, M. Yoshida, O. Ishii and M. Yamazaki...doped silica glass fibre", S. Sugiyama, Y. Fujimoto, M. Murakami , H. Nakano, T. Sato, and H. Shiraga, Electron. Lett., Vol. 49 (2013) pp.148-149. 2

  9. Relative analytical sensitivity of donor nucleic acid amplification technology screening and diagnostic real-time polymerase chain reaction assays for detection of Zika virus RNA.

    PubMed

    Stone, Mars; Lanteri, Marion C; Bakkour, Sonia; Deng, Xutao; Galel, Susan A; Linnen, Jeffrey M; Muñoz-Jordán, Jorge L; Lanciotti, Robert S; Rios, Maria; Gallian, Pierre; Musso, Didier; Levi, José E; Sabino, Ester C; Coffey, Lark L; Busch, Michael P

    2017-03-01

    Zika virus (ZIKV) has spread rapidly in the Pacific and throughout the Americas and is associated with severe congenital and adult neurologic outcomes. Nucleic acid amplification technology (NAT) assays were developed for diagnostic applications and for blood donor screening on high-throughput NAT systems. We distributed blinded panels to compare the analytical performance of blood screening relative to diagnostic NAT assays. A 25-member, coded panel (11 half-log dilutions of a 2013 French Polynesia ZIKV isolate and 2015 Brazilian donor plasma implicated in transfusion transmission, and 3 negative controls) was sent to 11 laboratories that performed 17 assays with 2 to 12 replicates per panel member. Results were analyzed for the percentage reactivity at each dilution and by probit analysis to estimate the 50% and 95% limits of detection (LOD50 and LOD95 , respectively). Donor-screening NAT assays that process approximately 500 µL of plasma into amplification reactions were comparable in sensitivity (LOD50 and LOD95 , 2.5 and 15-18 copies/mL) and were approximately 10-fold to 100-fold more sensitive than research laboratory-developed and diagnostic reverse transcriptase-polymerase chain reaction tests that process from 10 to 30 µL of plasma per amplification. Increasing sample input volume assayed with the Centers for Disease Control and Prevention reverse transcriptase-polymerase chain reaction assays increased the LODs by 10-fold to 30-fold. Blood donor-screening ZIKV NAT assays demonstrate similar excellent sensitivities to assays currently used for screening for transfusion-transmitted viruses and are substantially more sensitive than most other laboratory-developed and diagnostic ZIKV reverse transcriptase-polymerase chain reaction assays. Enhancing sensitivities of laboratory-developed and diagnostic assays may be achievable by increasing sample input. © 2017 AABB.

  10. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.

    PubMed

    Pires, Nuno Miguel Matos; Dong, Tao; Hanke, Ulrik; Hoivik, Nils

    2014-08-21

    The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  11. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    PubMed Central

    Pires, Nuno Miguel Matos; Dong, Tao; Hanke, Ulrik; Hoivik, Nils

    2014-01-01

    The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance. PMID:25196161

  12. Technology optimization techniques for multicomponent optical band-pass filter manufacturing

    NASA Astrophysics Data System (ADS)

    Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.

    2016-04-01

    Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.

  13. Application of new electro-optic technology to Space Station Freedom data management system

    NASA Astrophysics Data System (ADS)

    Husbands, C. R.; Girard, M. M.

    1993-08-01

    A low risk design methodology to permit the local bus structures to support increased data carrying capacities and to speed messages and data flow between nodes or stations on the Space Station Freedom Data Management System in anticipation of growing requirements was evaluated and recommended. The recommended design employs a collateral fiber optic technique that follows a NATO avionic standard that is developed, tested, and available. Application of this process will permit a potential 25 fold increase in data transfer performance on the local wire bus network with a fiber optic network, maintaining the functionality of the low-speed bus and supporting all of the redundant transmission and fault detection capabilities designed into the existing system. The application of wavelength division multiplexing (WDM) technology to both the local data bus and global data bus segments of the Data Management System to support anticipated additional highspeed data transmission requirements was also examined. Techniques were examined to provide a dual wavelength implementation of the fiber optic collateral networks. This dual wavelength implementation would permit each local bus to support two simultaneous high-speed transfers on the same fiber optic bus structure and operate within the limits of the existing protocol standard. A second WDM study examined the use of spectral sliced technology to provide a fourfold increase in the Fiber Distributed Data Interface (FDDI) global bus networks without requiring modifications to the existing installed cable plant. Computer simulations presented indicated that this data rate improvement can be achieved with commercially available optical components.

  14. Application of new electro-optic technology to Space Station Freedom data management system

    NASA Technical Reports Server (NTRS)

    Husbands, C. R.; Girard, M. M.

    1993-01-01

    A low risk design methodology to permit the local bus structures to support increased data carrying capacities and to speed messages and data flow between nodes or stations on the Space Station Freedom Data Management System in anticipation of growing requirements was evaluated and recommended. The recommended design employs a collateral fiber optic technique that follows a NATO avionic standard that is developed, tested, and available. Application of this process will permit a potential 25 fold increase in data transfer performance on the local wire bus network with a fiber optic network, maintaining the functionality of the low-speed bus and supporting all of the redundant transmission and fault detection capabilities designed into the existing system. The application of wavelength division multiplexing (WDM) technology to both the local data bus and global data bus segments of the Data Management System to support anticipated additional highspeed data transmission requirements was also examined. Techniques were examined to provide a dual wavelength implementation of the fiber optic collateral networks. This dual wavelength implementation would permit each local bus to support two simultaneous high-speed transfers on the same fiber optic bus structure and operate within the limits of the existing protocol standard. A second WDM study examined the use of spectral sliced technology to provide a fourfold increase in the Fiber Distributed Data Interface (FDDI) global bus networks without requiring modifications to the existing installed cable plant. Computer simulations presented indicated that this data rate improvement can be achieved with commercially available optical components.

  15. The research of high efficient optical fiber coupling technology in space laser communication

    NASA Astrophysics Data System (ADS)

    Wang, Hao-zeng; Tong, Shou-feng; Zhang, Lei; Yang, Hong-kun

    2013-08-01

    With the development of optical fiber communications, especially the maturity of the optical amplifiers and the WDM technology, space optical communication at 1550 nm becomes a promising solution for future high speed satellite communication. Receiving technology with optical amplifiers and coupling space light into single mode fiber are key technologies in space optical communication at 1550 nm. Free-space-to-fiber coupling technique investigated in this paper is the first challenge of applying fiber communication techniques to free space optical communications. We analyzed the factors that affect the efficiency of free-space-to single-mode-fiber coupling based on mode-matching theory of electromagnetic fields. On this objective, in this paper, the theoretical analysis of the effect of atmospheric turbulence on the space light-single mode fiber coupling efficiency is discussed. On this basis, the short-distance experiment coupling space light into single mode fiber is carried out. 1. The main factors affecting the process coupling space light into single mode fiber are analyzed. This paper introduced the statistical theory of atmospheric turbulence and gave out the main turbulence parameters and meteyard based on the theory of the space light-single mode fiber coupling efficiency under ideal conditions. 2. The influence of atmospheric turbulence on the space light-single mode fiber coupling efficiency is analyzed and simulated. In the weak turbulence condition, mathematical model of the mean coupling efficiency and its fluctuation variance was given. And the fluctuation variance of coupling efficiency was simulated studied under the atmospheric conditions. The influences on the average coupling efficiency was theoretically studied, which were induced by the structure constant of atmospheric refractive index, the diameter of coupling lens and the single-mode fiber mode field radius. 3. Validating the theoretical model by a experiment under a short link coupling

  16. Advanced Technology Lunar Telescopes I. Overview and Progress Report On Ultra-Lightweight Optics

    NASA Astrophysics Data System (ADS)

    Chen, P. C.; Pitts, R. E.; Oliversen, R. J.; Stolarik, J. D.; Segal, K.; Wilson, T. L.; Lin, E. I.; Hull, J. R.; Romeo, R.; Hojaji, H.; Ma, K. B.; Chen, Q. Y.; Chu, W. K.; Chu, C. W.

    1993-12-01

    The materials and technology already exist to build fully functional steerable telescopes for use on the moon, telescopes that are cost effective, that can be deployed using existing launchers, and that can function for extended periods without human maintenance. We describe our concept of advanced technology telescopes (ATT) which combines the elements of i) ultra-lightweight precision optics and structures, ii) non-contact, electronically controlled superconductor bearings and drive mechanisms, and iii) high dynamic range radiation resistant sensors. Unlike previous transit telescope designs, the ATTs can point and track objects anywhere in the sky over the entire lunar night (or day), can be deployed in multiple unit arrays, and can be equipped with standard astronomical instruments including spectrographs, imagers, or even interferometers. We first describe the optics. Lightweight optics are crucial because they minimize the mass of the telescope assembly and its support structure and ultimately the entire payload. By using materials and fabrication technology similar to that already refined by ESA and proven for space applications, we show that it is possible to produce precision optical elements of very low areal density (< 2 kg per sq. m). The process also has much lower per unit cost compared to traditional mirror fabrication techniques. By supporting the optical elements with a class of very lightweight but stiff material already developed by NASA, a telescope assembly can be made that has essentially the minimum possible mass. Such ultra-lightweight construction makes possible astronomical payloads that can be sent to the moon using existing small and medium size rockets. The very low per unit cost permits the production and deployment of multiple units, thereby increasing the versatility and productivity of a lunar observatory while providing good redundancy. We demonstrate a proof-of-concept optical telescope assembly that has a 31 cm diameter primary

  17. Deep proton writing: a powerful rapid prototyping technology for various micro-optical components

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Debaes, Christof; Ottevaere, Heidi; Van Overmeire, Sara; Hermanne, Alex; Thienpont, Hugo

    2010-05-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical modules, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in optical interconnections and in bio-photonics. These include: high-precision 2-D fiber connectors, out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars, and fluorescence and absorption detection bio-photonics modules. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  18. Fabrication of multispectral imaging technology driven MEMS-based micro-arrayed multichannel optical filter mosaic

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua; Wang, Jiwu; Zhao, Futing

    2011-02-01

    Multispectral imaging is becoming a new powerful tool in a wide range of biological studies by adding spectral, spatial and temporal dimensions to tissue abnormity and the underlying biological processes. A standard spectral imaging setup includes two major components, a band pass selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochrome camera. Contemporary multispectral imaging technologies typically use traditional optical filters e.g., filter wheels, a generalized Lyot filter, an electrically tunable filter, multiple-band pass filters or the methods of dispersing light, e.g., optic-acoustic crystals. The instrumented systems are bulky, expensive, require multiple exposures or extensive post-processing to align up multiple images of pure spectral components. Recently a break-through technology has emerged to instrument multispectral imaging technology into handheld real-time devices using miniaturized filter mosaic containing micro-arrayed multiple channel band-pass optical filters. The filter mosaic can be directly placed near the focal plane immediately in front of the imaging sensor of an off-shelf CCD/CMOS camera, with potentially one such micro-filter covers one pixel of the imaging sensor. This paper reveals the technical details of how such a micro-arrayed multi channel optical filter is fabricated using traditional multi-film vacuum deposition and the modern micro-lithography technologies. The selection of different coating materials, their structures and effects to the adhesive forces between film and substrate, the spatial resolution, width of passing band, and the transmittance of the resulting miniaturized optical filter is discussed.

  19. International Technology Transfer of a GCLP-Compliant HIV-1 Neutralizing Antibody Assay for Human Clinical Trials

    PubMed Central

    Todd, Christopher A.; Greene, Kelli M.; Montefiori, David C.; Sarzotti-Kelsoe, Marcella

    2012-01-01

    The Collaboration for AIDS Vaccine Discovery/Comprehensive Antibody – Vaccine Immune Monitoring Consortium (CAVD/CA-VIMC) assisted an international network of laboratories in transferring a validated assay used to judge HIV-1 vaccine immunogenicity in compliance with Good Clinical Laboratory Practice (GCLP) with the goal of adding quality to the conduct of endpoint assays for Human Immunodeficiency Virus I (HIV-1) vaccine human clinical trials. Eight Regional Laboratories in the international setting (Regional Laboratories), many located in regions where the HIV-1 epidemic is most prominent, were selected to implement the standardized, GCLP-compliant Neutralizing Antibody Assay for HIV-1 in TZM-bl Cells (TZM-bl NAb Assay). Each laboratory was required to undergo initial training and implementation of the immunologic assay on-site and then perform partial assay re-validation, competency testing, and undergo formal external audits for GCLP compliance. Furthermore, using a newly established external proficiency testing program for the TZM-bl NAb Assay has allowed the Regional Laboratories to assess the comparability of assay results at their site with the results of neutralizing antibody assays performed around the world. As a result, several of the CAVD/CA-VIMC Regional Laboratories are now in the process of conducting or planning to conduct the GCLP-compliant TZM-bl NAb Assay as an indicator of vaccine immunogenicity for ongoing human clinical trials. PMID:22303476

  20. International technology transfer of a GCLP-compliant HIV-1 neutralizing antibody assay for human clinical trials.

    PubMed

    Ozaki, Daniel A; Gao, Hongmei; Todd, Christopher A; Greene, Kelli M; Montefiori, David C; Sarzotti-Kelsoe, Marcella

    2012-01-01

    The Collaboration for AIDS Vaccine Discovery/Comprehensive Antibody-Vaccine Immune Monitoring Consortium (CAVD/CA-VIMC) assisted an international network of laboratories in transferring a validated assay used to judge HIV-1 vaccine immunogenicity in compliance with Good Clinical Laboratory Practice (GCLP) with the goal of adding quality to the conduct of endpoint assays for Human Immunodeficiency Virus I (HIV-1) vaccine human clinical trials. Eight Regional Laboratories in the international setting (Regional Laboratories), many located in regions where the HIV-1 epidemic is most prominent, were selected to implement the standardized, GCLP-compliant Neutralizing Antibody Assay for HIV-1 in TZM-bl Cells (TZM-bl NAb Assay). Each laboratory was required to undergo initial training and implementation of the immunologic assay on-site and then perform partial assay re-validation, competency testing, and undergo formal external audits for GCLP compliance. Furthermore, using a newly established external proficiency testing program for the TZM-bl NAb Assay has allowed the Regional Laboratories to assess the comparability of assay results at their site with the results of neutralizing antibody assays performed around the world. As a result, several of the CAVD/CA-VIMC Regional Laboratories are now in the process of conducting or planning to conduct the GCLP-compliant TZM-bl NAb Assay as an indicator of vaccine immunogenicity for ongoing human clinical trials.

  1. Manufacturing methods and technology program for ruggedized tactical fiber optic cable

    NASA Astrophysics Data System (ADS)

    Smith, J.; Hand, C.

    1981-04-01

    This report covers manufacturing methods and technology program for ruggedized tactical fiber optic cable. The scope of this effort, as reported herein, includes the following tasks and achievements: (a) Cable process optimization -- (1) Produce trial runs of confirmatory; (2) Complete lay length samples (two lays); (3) Perform optical and mechanical tests on trial confirmatory samples; and (4) Produce samples and evaluate polyurethanes (three types). (b) Use of facilities -- (1) Operate high speed strander, Kevlar braider, and extruder at production speeds. (c) Secondary performance -- (1) Evaluate low temperature performance.

  2. Fiber in access technologies and network convergence: an opportunity for optical integration

    NASA Astrophysics Data System (ADS)

    Ghiggino, Pierpaolo C.

    2008-11-01

    Broadband networks are among the fastest growing segment in telecom. The initial and still very significant push originated with xDSL technologies and indeed a significant amount of research and development is still occurring in this field with impressive results and allowing for a remarkable use of the installed copper infrastructure way beyond its originally planned bandwidth capabilities. However it is clear that ultimately a more suitable fiber based infrastructure will be needed in order to reduce both operational and network technology costs. Such cost reduction in inevitable as the added value to end users is only related to services and these cannot be priced outside a sensible window, whilst the related bandwidth increase is much more dramatic and its huge variability must be met with little or no cost impact by the network and its operation. Fiber in access has indeed the potential to cope with a huge bandwidth demand for many years to come as its inherent bandwidth capabilities are only just tapped by current service requirements. However the whole technology supply chain must follow in line. In particular optical technology must brace itself to cope with the required much larger deployment and greater cost effectiveness, whilst at the same time deliver performance suitable to the bandwidth increase offered in the longer term by the fiber medium. This paper looks at this issues and debates the opportunities for a new class of optical devices making use of the progress in optical integration

  3. JPRS Report, Science & Technology, Japan, Optical Communications, Optronic Devices Manufacturing Technology

    DTIC Science & Technology

    2007-11-02

    to the well layer. At W = 4 /im or less, a single peak near field pattern is obtained with a drop in Ith. Over an extremely narrow width , the clad ...for the composition of the growth film and In to melt them. Usually, in the fabrication of a wafer for a Fabry-Perot laser , an InP single crystal is...Production Technology for AlGaAs/GaAs Quantum-Well Laser 31 InGaAsP/InP DFB Laser Manufacturing Process Technology 40 Planar Type InGaAs-APD

  4. Optical design of a near-infrared imaging spectropolarimeter for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Greco, Vincenzo; Cavallini, Fabio

    2013-06-01

    In designing the optics of an imaging multi-etalon spectropolarimeter as a post-focus instrument for the Advanced Technology Solar Telescope (ATST), many constraints must be considered. Among these are the large entrance pupil diameter of the telescope (4 m), the demanded large field of view (≥90 arc sec), high spectral resolving power (≥200,000), and limited field-dependent blue-shift of the instrumental profile [≤3 full width at half maximum (FWHM)], which require Fabry-Perot interferometers of large diameter (≥200 mm), lighted by highly collimated beams. This implies large optical elements and long optical paths. Moreover, to use interference pre-filters with a relatively small diameter (≤70 mm) and placed between the interferometers to reduce the inter-reflections in axial-mount, a "pupil adapter" must be included with a further increase of the optical path length. Although a multi-etalon spectropolarimeter works in quasi-monochromatic light, the Fraunhofer lines of interest cover a wide range of wavelengths (850 to 1650 nm), which demands a good chromatic aberration control. A low instrumental polarization (≤0.5%) is also required to allow a high polarimetric precision. Finally, some secondary optical paths are required to perform the initial instrumental setup and to secure the best instrumental performances. A diffraction-limited optical solution for ATST is described that fulfills all the above requirements in a relative small volume.

  5. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  6. 3D micro-optical lens scanner made by multi-wafer bonding technology

    NASA Astrophysics Data System (ADS)

    Bargiel, S.; Gorecki, C.; Barański, M.; Passilly, N.; Wiemer, M.; Jia, C.; Frömel, J.

    2013-03-01

    We present the preliminary design, construction and technology of a microoptical, millimeter-size 3-D microlens scanner, which is a key-component for a number of optical on-chip microscopes with emphasis on the architecture of confocal microscope. The construction of the device relies on the vertical integration of micromachined building blocks: top glass lid, silicon electrostatic comb-drive X-Y and Z microactuators with integrated scanning microlenses, ceramic LTCC spacer, and bottom lid with focusing microlens. All components are connected on the wafer level only by sequential anodic bonding. The technology of through wafer vias is applied to create electrical connections through a stack of wafers. More generally, the presented bonding/connection technologies are also of a great importance for the development of various silicon-based devices based on vertical integration scheme. This approach offers a space-effective integration of complex MOEMS devices and an effective integration of various heterogeneous technologies.

  7. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-09-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL-1 to 10 ng mL-1. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  8. Ethernet access network based on free-space optic deployment technology

    NASA Astrophysics Data System (ADS)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  9. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  10. Microelectro-optical devices in a 5-level polysilicon surface micromachining technology

    SciTech Connect

    Smith, J.H.; Rodgers, M.S.; Sniegowski, J.J.; Miller, S.L.; Hetherington, D.; McWhorter, P.J.; Warren, M.E.

    1998-08-01

    The authors recently reported on the development of a 5-level polysilicon surface micromachine fabrication process consisting of four levels of mechanical poly plus an electrical interconnect layer and its application to complex mechanical systems. This paper describes the application of this technology to create micro-optical systems-on-a-chip. These are demonstration systems, which show that five levels of polysilicon provide greater performance, reliability, and significantly increased functionality. This new technology makes it possible to realize levels of system complexity that have so far only existed on paper, while simultaneously adding to the robustness of many of the individual subassemblies.

  11. Fiber optic vibration sensor for high-power electric machines realized using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Igrec, Bojan; Bosiljevac, Marko; Sipus, Zvonimir; Babic, Dubravko; Rudan, Smiljko

    2016-03-01

    The objective of this work was to demonstrate a lightweight and inexpensive fiber-optic vibration sensor, built using 3D printing technology, for high-power electric machines and similar applications. The working principle is based on modulating the light intensity using a blade attached to a bendable membrane. The sensor prototype was manufactured using PolyJet Matrix technology with DM 8515 Grey 35 Polymer. The sensor shows linear response, expected bandwidth (< 150 Hz), and from our measurements we estimated the damping ratio for used polymer to be ζ ≍ 0.019. The developed prototype is simple to assemble, adjust, calibrate and repair.

  12. Enhanced environmental performance of fiber optic gyroscope by an adhesive potting technology.

    PubMed

    Chen, Jun; Ding, Nengwen; Li, Zhifeng; Wang, Wei

    2015-09-10

    An adhesive potting technology for fiber coils of a fiber optic gyroscope (FOG) is proposed. The fiber coil is immersed in liquid adhesive with superior mechanical properties. The internal air is first removed completely by vacuum pumping, and the adhesive is then evenly pressed into the fiber coil under pressure. The potted fiber core is prepared by ladder-type temperature curing and a stress-release process. With this potting technology, the vibration performance of an FOG is greatly improved and, at the same time, will not lead to degradation of its temperature performance. Using this potting technique of adhesive impregnation, the adaptability of FOGs will be enhanced.

  13. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  14. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    PubMed

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  15. Ultrastable assembly and integration technology for ground- and space-based optical systems.

    PubMed

    Ressel, Simon; Gohlke, Martin; Rauen, Dominik; Schuldt, Thilo; Kronast, Wolfgang; Mescheder, Ulrich; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2010-08-01

    Optical metrology systems crucially rely on the dimensional stability of the optical path between their individual optical components. We present in this paper a novel adhesive bonding technology for setup of quasi-monolithic systems and compare selected characteristics to the well-established state-of-the-art technique of hydroxide-catalysis bonding. It is demonstrated that within the measurement resolution of our ultraprecise custom heterodyne interferometer, both techniques achieve an equivalent passive path length and tilt stability for time scales between 0.1 mHz and 1 Hz. Furthermore, the robustness of the adhesive bonds against mechanical and thermal inputs has been tested, making this new bonding technique in particular a potential option for interferometric applications in future space missions. The integration process itself is eased by long time scales for alignment, as well as short curing times.

  16. Application of fiber optic temperature and strain sensing technology to gas hydrates

    SciTech Connect

    Ulrich, Shannon M; Madden, Megan Elwood; Rawn, Claudia J; Szymcek, Phillip; Phelps, Tommy Joe

    2008-01-01

    Gas hydrates may have a significant influence on global carbon cycles due to their large carbon storage capacity in the form of greenhouse gases and their sensitivity to small perturbations in local conditions. Characterizing existing gas hydrate and the formation of new hydrate within sediment systems and their response to small changes in temperature and pressure is imperative to understanding how this dynamic system functions. Fiber optic sensing technology offers a way to measure precisely temperature and strain in harsh environments such as the seafloor. Recent large-scale experiments using Oak Ridge National Laboratory's Seafloor Process Simulator were designed to evaluate the potential of fiber optic sensors to study the formation and dissociation of gas hydrates in 4-D within natural sediments. Results indicate that the fiber optic sensors are so sensitive to experimental perturbations (e.g. refrigeration cycles) that small changes due to hydrate formation or dissociation can be overshadowed.

  17. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    SciTech Connect

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.; Choi, Junoh; Howell, Stephen W.

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  18. Sol-gel derived optical waveguide films: technological platform for development of planar evanescent wave sensors

    NASA Astrophysics Data System (ADS)

    Karasiński, Paweł

    2015-12-01

    Plane evanescent wave sensors are being developed for over thirty years. However, their full development is somehow limited by the lack of relatively cheap and stable waveguide layers of high refractive index, low optical losses and at the same time resistance to the impact of chemical substances. The paper involves waveguide layers SiO2:TiO2 of high refractive index (˜1.81) satisfying these criteria, fabricated via sol-gel method and dip-coating technique. The parameters of the waveguide layers SiO2:TiO2 were determined using elipsometric and spectrophotometric methods. The presented waveguide layers have excellent optical properties and are suitable for the application in the planar evanescent wave sensors technology. For the best waveguide SiO2:TiO2 layers, the obtained level of optical loss was below 0.2 dB/cm.

  19. The electronic image stabilization technology research based on improved optical-flow motion vector estimation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ji, Ming; Zhang, Ying; Jiang, Wentao; Lu, Xiaoyan; Wang, Jiaoying; Yang, Heng

    2016-01-01

    The electronic image stabilization technology based on improved optical-flow motion vector estimation technique can effectively improve the non normal shift, such as jitter, rotation and so on. Firstly, the ORB features are extracted from the image, a set of regions are built on these features; Secondly, the optical-flow vector is computed in the feature regions, in order to reduce the computational complexity, the multi resolution strategy of Pyramid is used to calculate the motion vector of the frame; Finally, qualitative and quantitative analysis of the effect of the algorithm is carried out. The results show that the proposed algorithm has better stability compared with image stabilization based on the traditional optical-flow motion vector estimation method.

  20. S-BVT for next-generation optical metro networks: benefits, design, and key enabling technologies

    NASA Astrophysics Data System (ADS)

    Svaluto Moreolo, Michela; Fabrega, Josep M.; Nadal, Laia

    2017-01-01

    This work elaborates on: i) why the sliceable bandwidth variable transceiver (S-BVT) represents a key enabler for next-generation optical metro networks; ii) how it should be designed to take benefit of its capabilities and advanced features; and iii) which are the promising technologies to be adopted addressing the most relevant requirements and challenges. Specifically, S-BVT architectures based on multicarrier modulation and flexi-grid technologies, adopting cost-effective optoelectronic front-ends, enable flexible adaptation to dynamic traffic and variable path condition, targeting high capacity and scalability, while saving network resources and costs. Programmability and modularity are envisioned for integration in software-defined optical metro networks.

  1. AlGaInN laser-diode technology for optical clocks and atom interferometry

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Stanczyk, S.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Targowski, G.; Carson, C.; Stothard, D.; McKnight, L. J.

    2017-02-01

    Optical clocks have demonstrated an improvement in temporal accuracy of several orders of magnitude over existing time standards based on caesium. Such systems hold great promise in many industrial sectors including financial time stamping, GPS-free navigation and network synchronisation. Atom interferometry has proven to be a reliable method of precision gravity sensing and finds application in geological studies, including earthquake warning systems and oil exploration. Such systems require a number of sophisticated lasers in a compact and reliable format for use outside of a laboratory environment, suitable for commercialisation and user transportation. Of particular interest, is emerging AlGaInN laser diode technology that has the potential to provide practical solutions for next generation optical clock technology.

  2. Advanced optical coating technology used in the development of concentrator arrays for solar space power applications

    NASA Astrophysics Data System (ADS)

    Fulton, Michael L.; O'Neill, Mark J.

    2006-08-01

    Since 1990 thin film optical coatings have taken a prominent role in the development of highly efficient solar power concentrators for future space applications. During the initial development of this coating technology, the Boeing High Technology Center explored various ways of protecting ENTECH's DC93-500 silicone Fresnel lenses from the harsh space environment. ENTECH's mini-dome lenses focused solar energy onto small high-efficiency solar cells for generating electrical power. To protect the silicone lenses from solar UV darkening, one early approach involved a cerium-doped glass cover cemented over the lens. Unfortunately, during launch simulation shock testing the glass lens covers cracked. We next explored the deposition of a UV blocking thin film coating directly to the silicone lens surface. This was a problem of immense proportions analogous to pouring concrete on to the surface of a reservoir filled with "Jell-O." Differential in coefficient of thermal expansion between the DC93-500 silicone and the deposited dielectric optical coating had to be balanced with intrinsic stress of the optical coating materials. Ion Beam Optics' work has culminated, some fifteen years later, in the current coating technology that is being incorporated in the Stretched Lens Array SquareRigger (SLASR). SLASR is designed to replace classic flat panel solar arrays with a lighter, lower cost, and more efficient (30%) concentrator arrays for future space applications. This paper will describe the coating technology and show its performance and benefits for SLASR space power systems. Results from both ground tests and space flight tests will be presented.

  3. Night Vision and Electro-Optics Technology Transfer, 1972-1981

    DTIC Science & Technology

    1981-09-15

    Figure 3 Image Intensifier (3-Stage) ............................................ 6 Figure 4 Advanced Image Intensifier with Microchannel Plate ...report, "Night Vision and Electro-Optics Technology Transfer 1972-1981," is threefold: To illustrate, through actual case histories , the potential for...screen as did the earlier devices; however, amplification of the image is achieved through the use of a single micro-channel plate (MCP). I1

  4. Acousto-Optic Technology for Topographic Feature Extraction and Image Analysis.

    DTIC Science & Technology

    1981-03-01

    optic (A-0) technology. In addition , functional block diagrams were to be prepared for the most promising concepts and strategies for the purpose of...theoretical concepts was sufficiently advanced so that additional effort, not required in the original contract, could be undertaken. This effort involved...invariant Fourier signatures (IFS) and the method of invariant moment signatures (IMS). Because of their promise, additional algorithmic development

  5. Alenia Shm Fiber Optic Bragg Grating (Fobg) Strain Sensors Technology: Applications And Requirements

    DTIC Science & Technology

    2006-10-01

    identify the most convenient and efficient FBG surface installation procedure can be summarized describing the subsequent steps to accomplish. In the...specimen, • Preparation of the adhesive, • Alignment of the sensor on the specimen, • Placing of FBG sensor on surface, • Clamping of sensor and...pressure force , • Temperature cure of sensor, Alenia SHM Fiber Optic Bragg Grating (FOBG) Strain Sensors Technology: Applications and Requirements 7

  6. Research on the high-precision non-contact optical detection technology for banknotes

    NASA Astrophysics Data System (ADS)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  7. High-power electro-optic switch technology based on novel transparent ceramic

    NASA Astrophysics Data System (ADS)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  8. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  9. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  10. Spectrophotometric evaluation of optical performances of polarizing technologies for smart window applications

    NASA Astrophysics Data System (ADS)

    Levati, N.; Vitali, L.; Fustinoni, D.; Niro, A.

    2014-11-01

    In recent years, window-integrated solar protection systems are used and studied as a promising energy saving technology, both for cold and hot climates. In particular, smart windows, whose optical proprieties in the solar wavelength range can somehow be controlled, show interesting results, especially in reducing the air conditioning power consumption. With the improvement of nanolithography techniques as well as with the possibility of designing polarization intervals, coupled polarizing films show a good potential as a dynamic and wavelength-selective shading technology. In this paper, UV-Vis-NIR spectrophotometric measurements are carried out on two polarizing technologies, Polaroid crystalline polarizer and Wire Grid broadband polarizer, in single- and double- film layout, to evaluate their optical performances, i.e. spectral transmittance, reflectance and absorptivity. The solar radiation glazing factors, according to the standard UNI EN 410, are calculated. The measured data are also analyzed in detail to emphasize the optical peculiarities of the materials under study that do not stand out from the standard parameters, as well as the specific problems that arise in spectrophotometric evaluations of polarizing films.

  11. Unique Nanoparticle Optical Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Screening and Ranking

    EPA Science Inventory

    Nanoparticles (NPs) are novel materials having at least one dimension less than 100 nm and display unique physicochemical properties due to their nanoscale size. An emphasis has been placed on developing high throughput screening (HTS) assays to characterize and rank the toxiciti...

  12. Unique Nanoparticle Optical Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Screening and Ranking

    EPA Science Inventory

    Nanoparticles (NPs) are novel materials having at least one dimension less than 100 nm and display unique physicochemical properties due to their nanoscale size. An emphasis has been placed on developing high throughput screening (HTS) assays to characterize and rank the toxiciti...

  13. Alternative technology for fabrication of nano- or microstructured mould inserts used for optical components

    NASA Astrophysics Data System (ADS)

    Wissmann, M.; Guttmann, M.; Hartmann, M.

    2010-02-01

    For mass production of multiscale-optical components, micro- and nanostructured moulding tools are needed. Metal tools are used for hot embossing or injection moulding of microcomponents in plastics. Tools are typically produced by classical forming processes such as mechanical manufacturing e.g. turning or milling, laser manufacturing or electrical discharge machining (EDM). Microstructures with extremely tight specifications, e.g. low side wall roughness and high aspect ratios are generally made by lithographic procedures such as LIGA or DPW technology. However, these processes are unsuitable for low-cost mass production. They are limited by the exposure area and structure design. In cooperation with international partners alternative manufacturing methods of moulding tools have been developed at the Institute of Microstructure Technology (IMT). In a new replication procedure, mould inserts are fabricated using micro- and nanoscale optics. The multiscale structured prototypes, either in plastics, glass, metal or material combinations are used as sacrificial parts. Using joining technology, electroforming and EDM technology, a negative copy of a prototype is transferred into metal to be used as a moulding tool. The benefits of this replication technique are rapid and economical production of moulding tools with extremely precise micro- and nanostructures, large structured area and long tool life. Low-cost mass replication is possible with these moulding tools. In this paper, an established manufacturing chain will be presented. Multiscale and multimaterial optical prototypes e.g. out-of-plane coupler or microinterferometer were made by DPW or laser technology. The mould insert fabrication of each individual manufacturing step will be shown. The process reliability and suitability for mass production was tested by hot embossing.

  14. Aircraft corrosion and crack inspection using advanced magneto-optic imaging technology

    NASA Astrophysics Data System (ADS)

    Thome, David K.; Fitzpatrick, Gerald L.; Skaugset, Richard L.; Shih, William C.

    1996-11-01

    A next generation magneto-optic imaging system, the MOI 303, has recently been introduced with the ability to generate real-time, complete, 2D eddy current images of cracks and corrosion in aircraft. The new imaging system described features advanced, digital remote control operation and on- screen display of setup parameters for ease of use. This instrument gives the inspector the capability to more rapidly scan large surfaces areas. The magneto-optic/eddy current imaging technology has already been formally approved for inspection of surface cracking on an aircraft fuselage. The improved magneto-optic imager is now poised to aid rapid inspection for corrosion and subsurface cracking. Previous magneto-optic imaging systems required the inspector to scan the surface twice for complete inspection coverage: a second scan was necessary with the imager rotated about 90 degrees from the orientation of the first pass. However, by providing eddy current excitation simultaneously from two orthogonal directions, complete, filled-in magneto-optic images are now generated regardless of the orientation of the imager. THese images are considerably easier to interpret and evaluate. In addition, there is a synergism obtained in applying eddy current excitation simultaneously in multiple directions: better penetration is obtained and the resulting images have better signal to noise levels compared to those produced with eddy current excitation applied only in one direction. Examples of these improved images are presented.

  15. A New All-Optical Imaging Scheme based on QWIP technology

    NASA Astrophysics Data System (ADS)

    Zeng, Debing; Chen, Gang; Martini, Rainer

    2006-03-01

    Infrared imaging applications have gained increasing interest over the recent decades due to favorable light propagation, night imaging as well as chemical sensing applications. However, the scalability of the existing techniques towards high resolution in the multi-megapixel range is one of the major challenges in today's IR imaging technologies. Here we present an alternative solution using an all-optical wavelength conversion scheme. QWIP has been successfully proven their potential in IR imaging applications. Yet the fundamental conversion process from IR light to electric current has been one of the major restrictions in such system. To overcome this problem we propose the use of an all-optical conversion scheme, which utilizes an interband resonant optical NIR beam to probe the electrical population of the QW structure. In this methodology the incident MIR radiation changes the occupation of the QWs, which in turn influences the NIR transmission. Hence the irradiated MIR images can be probed by spatially resolved measurement of the NIR transmission, as has been demonstrated by Nada et al. for all-optical switching purposes. In this talk we present an implementation scheme of the all-optical QWIP readout technique together with theoretical calculations of the sensitivity of the proposed device and its temperature dependence. First experimental results will be presented also. The Authors thankfully acknowledge financial support by US Army, Picatinny Arsenal.

  16. Study on optics integrated manufacture technology based on Windows DNA-OM

    NASA Astrophysics Data System (ADS)

    Yu, Min; Yang, Li; Wang, Yong-jan

    2006-02-01

    As the shortcoming and insufficiency of CNC systems applied in optics manufacturing, a design and application based on Windows DNA-OM is presented. After introducing the prime principles and logic structures of Windows DNA-OM, a specific solution of optics integrated manufacture based on this framework is discussed in detail. In this solution, the OPC(OLE for Process Control) technology based on COM(Component Object Model) of Microsoft company is used for CNC equipment in the workshop, and this could provide a general interface for communication of hetero-structure CNC equipment of workshop and so all hetero-structure CNC can be accessed in a simple way. The experience and knowledge of optic manufacturing is stored and integrated in Windows DNA-OM Data part, this data part can guide optics manufacture. By completing this data part, an optics manufacture expert system can be realized. Then the prime characteristics of the integrated manufacture system are given. Finally this system is proved to has a good flexibility and opening, ease realizing, low cost and high feasibility.

  17. Research progress on optical wireless communication at Xi'an University of Technology

    NASA Astrophysics Data System (ADS)

    Ke, Xizheng; Yang, Lihong

    2010-10-01

    Optical Wireless Communication (OWC) adopts laser beam as the carrier to deliver the message. It combines with the advantages of Microwave Communication and Fiber Optic Communication. The key technologies of OWC system includes source coding, channel coding, laser diode modulation, auto-alignment and channel. In this paper, the research progress on OWC in Xi'an University of Technology is introduced. The research on source coding involves in baseband modulation, frequency modulation, OFDM transmission and vertical layered space-time codes. The research on channel coding includes RS codes, Turbo codes, LDPC codes and so on. And the adaptive coding method is analyzed to meet the different channel characteristics. Propagation performance of laser is studied and bit error rate (BER) is measured under various weather conditions of rainy days, snowy days, foggy days, hazy days and so on. The experiment results show that applying channel coding methods can improve the system performance of OWC, especially under rainy, snowy, foggy weather conditions, the BER after decoding is up to 10-6. Based on many years of research, the technologies of MIMO, OFDM and space-time coding are proved to be the key technologies that need to solve in OWC.

  18. Development and Evaluation of Up-Converting Phosphor Technology-Based Lateral Flow Assay for Quantitative Detection of NT-proBNP in Blood

    PubMed Central

    Hao, Qingfang; Zou, Deyong; Zhang, Xiaoli; Zhang, Liping; Li, Hongmei; Qiao, Yong; Zhao, Huansheng; Zhou, Lei

    2017-01-01

    A newly assay, up-converting phosphor technology-based lateral flow (UPT-LF) assay, was developed for rapid and quantitative detection of N-terminal fragment of B-type natriuretic peptide precursor (NT-proBNP), one of the most important serum molecular maker of heat failure, in plasma samples as a point of care testing (POCT) method for diagnosis of acute heart failure. Human plasma from 197 patients with acute heart failure and 200 healthy controls was assessed using the UPT-LF assay, in a comparison with a Roche Elecsys assay. The limit of detection of the UPT-LF assay, with a coefficient of variation (CV) of less than 15%, was 116 ng/L, which is lower than the clinical diagnosis cutoff (150 ng/mL). The linear range was 50–35,000 ng/L. The CVs were less than 10% for both UPT-LF and Roche Elecsys assays for plasma samples under different storages, demonstrating the good stability and reproducibility. There are certain linear correlations between the results of UPT-LF and Roche Elecsys assay for EDTA-K2 and heparin-anticoagulated plasma, as well as for serum samples. For UPT-LF assay, there is a significant correlation between the values derived from analysis of EDTA-K2 and heparin-anticoagulated plasma samples (R = 0.995). No statistically significant difference was found between serum and plasma samples for UPT-LF assay. Our results demonstrate that NT-proBNP levels in healthy adults are elevated with age and had a relationship with sex, and with the age increase the NT-proBNP levels of females are significantly higher than those of males (p<0.01). The UPT-LF assay has a high reproducibility, stability, sensitivity, specificity, and is consistent with Roche Elecsys assay, and therefore it could be used as a POCT method for the quantitative detection of NT-proBNP in blood for clinical diagnosis and research of acute heart failure. PMID:28151978

  19. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads.

    PubMed

    Uddin, Rokon; Burger, Robert; Donolato, Marco; Fock, Jeppe; Creagh, Michael; Hansen, Mikkel Fougt; Boisen, Anja

    2016-11-15

    We present a biosensing platform for the detection of proteins based on agglutination of aptamer coated magnetic nano- or microbeads. The assay, from sample to answer, is integrated on an automated, low-cost microfluidic disc platform. This ensures fast and reliable results due to a minimum of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25pM with the same sample-to-answer time (15min 30s) using the two differently sized beads for the two detection methods. In both cases a sample volume of only 10µl is required. The demonstrated automation, low sample-to-answer time and portability of both detection instruments as well as integration of the assay on a low-cost disc are important steps for the implementation of these as portable tools in an out-of-lab setting.

  20. The outlook of innovative optical-electronic technologies implementation in transportation

    NASA Astrophysics Data System (ADS)

    Shilina, Elena V.; Ryabichenko, Roman B.

    2005-06-01

    Information and telecommunication technologies (ITT) are already tool economic development of society and their role will grow. The first task is providing of information security of ITT that is necessary for it distribution in "information" society. The state policy of the leading world countries (USA, France, Japan, Great Britain and China) is focused on investment huge funds in innovative technologies development. Within the next 4-6 years the main fiber-optic transfer lines will have data transfer speed 40 Gbit/s, number of packed channels 60-200 that will provide effective data transfer speed 2,4-8 Tbit/s. Photonic-crystalline fibers will be promising base of new generation fiber-optic transfer lines. The market of information imaging devices and digital photo cameras will be grown in 3-5 times. Powerful lasers based on CO2 and Nd:YAG will be actively used in transport machinery construction when producing aluminum constructions of light rolling-stock. Light-emitting diodes (LEDs) will be base for energy saving and safety light sources used for vehicles and indoor lighting. For example, in the USA cost reducing for lighting will be 200 billion dollars. Implementation analysis of optic electronic photonic technologies (OPT) in ground and aerospace systems shows that they provide significant increasing of traffic safety, crew and passengers comfort with help of smart vehicles construction and non-contact dynamic monitoring both transport facilities (for example, wheel flanges) and condition of rail track (road surface), equipping vehicles with night vision equipment. Scientific-technical programs of JSC "RZD" propose application of OPT in new generation systems: axle-box units for coaches and freight cars monitoring when they are moved, track condition analysis, mechanical stress and permanent way irregularity detection, monitoring geometric parameters of aerial contact wire, car truck, rail and wheel pair roll surface, light signals automatic detection from