Science.gov

Sample records for optical atomic magnetometry

  1. Optical Magnetometry

    NASA Astrophysics Data System (ADS)

    Budker, Dmitry; Kimball, Derek F. Jackson

    2013-03-01

    Part I. Principles and Techniques: 1. General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov and D. Budker; 2. Quantum noise in atomic magnetometers M. V. Romalis; 3. Quantum noise, squeezing, and entanglement in radio-frequency optical magnetometers K. Jensen and E. S. Polzik; 4. Mx and Mz magnetometers E. B. Alexandrov and A. K. Vershovskiy; 5. Spin-exchange-relaxation-free (serf) magnetometers I. Savukov and S. J. Seltzer; 6. Optical magnetometry with modulated light D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk and D. Budker; 7. Microfabricated atomic magnetometers S. Knappe and J. Kitching; 8. Optical magnetometry with nitrogen-vacancy centers in diamond V. M. Acosta, D. Budker, P. R. Hemmer, J. R. Maze and R. L. Walsworth; 9. Magnetometry with cold atoms W. Gawlik and J. M. Higbie; 10. Helium magnetometers R. E. Slocum, D. D. McGregor and A. W. Brown; 11. Surface coatings for atomic magnetometry S. J. Seltzer, M.-A. Bouchiat and M. V. Balabas; 12. Magnetic shielding V. V. Yashchuk, S.-K. Lee and E. Paperno; Part II. Applications: 13. Remote detection magnetometry S. M. Rochester, J. M. Higbie, B. Patton, D. Budker, R. Holzlöhner and D. Bonaccini Calia; 14. Detection of nuclear magnetic resonance with atomic magnetometers M. P. Ledbetter, I. Savukov, S. J. Seltzer and D. Budker; 15. Space magnetometry B. Patton, A. W. Brown, R. E. Slocum and E. J. Smith; 16. Detection of biomagnetic fields A. Ben-Amar Baranga, T. G. Walker and R. T. Wakai; 17. Geophysical applications M. D. Prouty, R. Johnson, I. Hrvoic and A. K. Vershovskiy; Part III. Broader Impact: 18. Tests of fundamental physics with optical magnetometers D. F. Jackson Kimball, S. K. Lamoreaux and T. E. Chupp; 19. Nuclear magnetic resonance gyroscopes E. A. Donley and J. Kitching; 20. Commercial magnetometers and their application D. C. Hovde, M. D. Prouty, I. Hrvoic and R. E. Slocum; Index.

  2. Optical atomic magnetometry for magnetic induction tomography of the heart

    NASA Astrophysics Data System (ADS)

    Deans, Cameron; Marmugi, Luca; Hussain, Sarah; Renzoni, Ferruccio

    2016-04-01

    We report on the use of radio-frequency optical atomic magnetometers for magnetic induction tomography measurements. We demonstrate the imaging of dummy targets of varying conductivities placed in the proximity of the sensor, in an unshielded environment at room-temperature and without background subtraction. The images produced by the system accurately reproduce the characteristics of the actual objects. Furthermore, we perform finite element simulations in order to assess the potential for measuring low-conductivity biological tissues with our system. Our results demonstrate the feasibility of an instrument based on optical atomic magnetometers for magnetic induction tomography imaging of biological samples, in particular for mapping anomalous conductivity in the heart.

  3. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  4. The Saga of Light-Matter Interaction and Magneto-optical Effects Applications to Atomic Magnetometry, Laser-cooled Atoms, Atomic Clocks, Geomagnetism, and Plant Bio-magnetism

    NASA Astrophysics Data System (ADS)

    Corsini, Eric P.

    The quest to expand the limited sensorial domain, in particular to bridge the inability to gauge magnetic fields near and far, has driven the fabrication of remedial tools. The interaction of ferromagnetic material with a magnetic field had been the only available technique to gauge that field for several millennium. The advent of electricity and associated classical phenomena captured in the four Maxwell equations, were a step forward. In the early 1900s, the model of quantum mechanics provided a two-way leap forward. One came from the newly understood interaction of light and matter, and more specifically the three-way coupling of photons, atoms' angular momenta, and magnetic field, which are the foundations of atomic magnetometry. The other came from magnetically sensitive quantum effects in a fabricated energy-ladder form of matter cooled to a temperature below that of the energy steps; these quantum effects gave rise to the superconducting quantum interference device (SQUID). Research using atomic magnetometers and SQUIDs has resulted in thousands of publications, text books, and conferences. The current status in each field is well described in Refs. [48,49,38,42] and all references therein. In this work we develop and investigate techniques and applications pertaining to atomic magnetometry. [Full text: eric.corsini gmail.com].

  5. Atomic Magnetometry for fetal Magnetocardiography

    NASA Astrophysics Data System (ADS)

    Sulai, Ibrahim; Walker, Thad; Wakai, Ronald

    2013-05-01

    We present results of using an array of atomic magnetometers in detecting fetal Magnetocardiograms(fMCG). The array consists of four 87-Rb atomic magnetometers operating in the spin exchange relaxation free (SERF) regime. They have a demonstrated sensitivity of 5 - 10 fT /√{ Hz } -limited by the Johnson noise of the magnetic shielding. We report measurements of fMCG on gestational ages as small as 21 weeks and describe the technical challenges and design features that make the measurements possible. We present a method for minimizing the impact of AC Stark Shifts on the magnetometer array performance by relying on diffusion to transport polarized atoms from a pumping region to an AC Stark shift free active region. This work was supported by the NIH.

  6. Multi-channel Chip-Scale Atomic Magnetometry

    NASA Astrophysics Data System (ADS)

    Alem, Orang; Sander, Tilmann; Le Blanc, John; Mhaskar, Rahul; Kitching, John; Trahms, Lutz; Knappe, Svenja

    2013-05-01

    We characterize a 25-channel microfabricated atomic magnetometry system. Each fiber-coupled sensor head contains a (1 . 5 mm) 3 Rb vapor cell and is pumped and probed with a single light beam from a diode laser. The magnetic sensitivities of all sensors range between 15 and 35 fT /√{ Hz} at 10-100 Hz. The sensors require around 70 mW of power and are optically heated through the absorption of light on the windows of the cells. The small size (< 1 cm3) of the fiber coupled, uncooled sensor heads provides great flexibility in the placement of these sensors in conformal configurations for various imaging applications. As one example, we will present measurements of magnetoencephalography (MEG) and magnetocardiography (MCG) with this system that were taken on healthy human subjects.

  7. Application of atomic magnetometry in magnetic particledetection

    SciTech Connect

    Xu, Shoujun; Donaldson, Marcus H.; Pines, Alexander; Rochester,Simon M.; Budker, Dmitry; Yashchuk, Valeriy V.

    2006-09-17

    We demonstrate the detection of magnetic particles carriedby water in a continuous flow using an atomic magnetic gradiometer.Studies on three types of magnetic particles are presented: a singlecobalt particle (diameter ~;150 mum, multi-domain), a suspension ofsuperparamagnetic magnetite particles (diameter ~;1 mum), andferromagnetic cobalt nanoparticles (diameter ~;10 nm, 120 kA/mmagnetization). Estimated detection limits are 20 mum diameter for asingle cobalt particle at a water flow rate 30 ml/min, 5x103 magnetiteparticles at 160 ml/min, and 50 pl for the specific ferromagnetic fluidat 130 ml/min. Possible applications of our method arediscussed.

  8. Nonlinear optical magnetometry with accessible in situ optical squeezing

    SciTech Connect

    Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.

    2014-11-14

    In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.

  9. Simulating narrow nonlinear resonance features for magnetometry in compact cold atom systems

    NASA Astrophysics Data System (ADS)

    Meyer, David; Robinson, Jenn; Kunz, Paul; Quraishi, Qudsia

    2015-05-01

    We are investigating cold atom magnetometry applications and have developed a numeric model of Electromagnetically Induced Absorption (EIA) and Nonlinear Magneto-Optical Rotation (NMOR) for degenerate two-level systems. While most EIA and NMOR research is done in warm vapors, cold atoms avoid Doppler broadening and better isolate the various optical pumping mechanisms involved. Our model focuses on the effect of transverse magnetic fields on both EIA and NMOR features and shows that critical points of both yield quantitative measures of the magnitude and direction of the transverse field. This dependence reveals the underlying optical pumping mechanisms and makes possible a single, in-situ measurement of the background magnetic field zero to the sub-milligauss level, reducing background fields to enhance sub-Doppler cooling and collectively-enhanced neutral-atom quantum memory lifetimes. Separately, we are pursuing experimental measurements on the relationship between EIA and NMOR in a compact cold atom apparatus. To improve the system's capabilities we are designing our next-generation atom chip to reduce system size and employ versatile geometries enabling multi-site trapping.

  10. Atomic Magnetometry in the Lab, in the Field, and in the Sky

    NASA Astrophysics Data System (ADS)

    Patton, B.; Versolato, O.; Hovde, C.; Rochester, S.; Higbie, J.; Budker, D.

    2012-12-01

    Atomic magnetometers [1] have played an important role in geophysical research ever since their advent more than fifty years ago. They have been used in near-surface magnetic surveys, aboard ionospheric sounding rockets, and have been critical in satellite missions dedicated to precise geophysical field mapping [2]. Over the past decade, renewed interest in atomic magnetometers has led to dramatically improved sensitivity in laboratory devices. The best alkali-vapor magnetometers, operating in magnetically shielded low-field environments, can now achieve sensitivities better than 1 femtotesla in a one-second measurement [3]. The precision of atomic magnetometers operating at Earth's field, on the other hand, has lagged in comparison. We will review recent efforts to achieve better sensitivity and accuracy in all-optical alkali-vapor magnetometers operating in geophysical field ranges. Advances in laser technology, antirelaxation vapor-cell coatings [4], and optical pumping techniques have resulted in better fundamental precision and dramatically reduced systematic error in these devices. The result is a new generation of compact, low-cost, and low-power sensors which are well suited for geophysical research. In addition to these developments, we will also discuss the potential for fully remote atom-based magnetic measurements [5]. This includes a proposed scheme to measure the magnetic field within the mesospheric sodium layer using existing laser guide star technology [6]. This technique would allow magnetic surveying at length and time scales heretofore inaccessible, and would yield data relevant to magnetic anomaly mapping, ionospheric physics, ocean circulation models, and lithospheric magnetization studies. [1] Budker, D., and M. Romalis (2007), Optical magnetometry, Nat. Phys., 3(4), 227-234. [2] Ravat, D., et al. (1995), Global vector and scalar Magsat magnetic anomaly maps, J. Geophys. Res.-Solid Earth, 100(B10), 20111-20136. [3] Dang, H. B., et al. (2010

  11. Femtotesla atomic magnetometry in a microfabricated vapor cell.

    PubMed

    Griffith, W Clark; Knappe, Svenja; Kitching, John

    2010-12-20

    We describe an optically pumped 87Rb magnetometer with 5 fT/Hz(1/2) sensitivity when operated in the spin-exchange relaxation free (SERF) regime. The magnetometer uses a microfabricated vapor cell consisting of a cavity etched in a 1 mm thick silicon wafer with anodically bonded Pyrex windows. The measurement volume of the magnetometer is 1 mm3, defined by the overlap region of a circularly polarized pump laser and a linearly polarized probe laser, both operated near 795 nm. Sensitivity limitations unique to the use of microfabricated cells are discussed.

  12. Magneto-optical magnetometry of individual 30 nm cobalt nanowires grown by electron beam induced deposition

    SciTech Connect

    Nikulina, E.; Idigoras, O.; Berger, A.; Vavassori, P.; Chuvilin, A.

    2012-04-02

    We show that magnetometry measurements based upon the magneto-optical Kerr effect and high resolution optical microscopy can be used as a noninvasive probe of magnetization reversal for individual nano-structures. Our measurements demonstrate single pass hysteresis loop measurements for sample sizes down to 30 nm width. A quantitative signal-to-noise ratio evaluation shows that our approach achieves an at least 3-fold improvement in sensitivity if compared to focused laser based nano-magnetometry. An analysis of the physical limits of our detection scheme enables us to estimate that measurements for structures with single digit nm widths and magnetic moments of 10{sup -16} Am{sup 2} are feasible.

  13. Excess optical quantum noise in atomic sensors

    NASA Astrophysics Data System (ADS)

    Novikova, Irina; Mikhailov, Eugeniy; Xiao, Yanhong

    2015-05-01

    Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements. We acknowledge the support from AFOSR (grant FA9550-13-1-0098), NSF (grant PHY-1308281), NBRPC(973 Program Grant 2012CB921604 and 2011CB921604), and NNSFC (Grants No. 11322436).

  14. Optical atomic magnetometer

    SciTech Connect

    Budker, Dmitry; Higbie, James; Corsini, Eric P.

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  15. Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances.

    PubMed

    Ben-Kish, A; Romalis, M V

    2010-11-01

    Atomic magnetometers have very high absolute precision and sensitivity to magnetic fields but suffer from a fundamental problem: the vectorial or tensorial interaction of light with atoms leads to "dead zones," certain orientations of the magnetic field where the magnetometer loses its sensitivity. We demonstrate a simple polarization modulation scheme that simultaneously creates coherent population trapping (CPT) in orientation and alignment, thereby eliminating dead zones. Using 87Rb in a 10 Torr buffer gas cell we measure narrow, high-contrast CPT transparency peaks for all orientations and also show the absence of systematic effects associated with nonlinear Zeeman splitting.

  16. Dead-zone-free atomic magnetometry with simultaneous excitation of orientation and alignment resonances.

    PubMed

    Ben-Kish, A; Romalis, M V

    2010-11-01

    Atomic magnetometers have very high absolute precision and sensitivity to magnetic fields but suffer from a fundamental problem: the vectorial or tensorial interaction of light with atoms leads to "dead zones," certain orientations of the magnetic field where the magnetometer loses its sensitivity. We demonstrate a simple polarization modulation scheme that simultaneously creates coherent population trapping (CPT) in orientation and alignment, thereby eliminating dead zones. Using 87Rb in a 10 Torr buffer gas cell we measure narrow, high-contrast CPT transparency peaks for all orientations and also show the absence of systematic effects associated with nonlinear Zeeman splitting. PMID:21231166

  17. Optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.

    2013-12-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  18. Optical pumping of rubidium atoms in a parahydrogen matrix

    NASA Astrophysics Data System (ADS)

    Weinstein, Jonathan; Arnott, W. Patrick; Christy, Tim; Hartzell, Chase; Kanagin, Andrew; Momose, Takamasa; Patterson, David; Upadhyay, Sunil

    2016-05-01

    Building on prior work with rubidium atoms in a cryogenic argon matrix, we have grown solid parahydrogen crystals doped with rubidium atoms. Typical rubidium densities are on the order of 1017 cm-3. We have demonstrated optical pumping of the atomic spin of the implanted rubidium atoms; the measured spin polarization signals are roughly one order of magnitude larger than what was achieved in argon matrices. The combination of high atomic densities and optical addressability make this a promising experimental platform for applications such as magnetometry and fundamental physics measurements. Spin lifetimes (T1) on the order of 1 second have been observed. Progress towards measuring coherence times (T2) will be discussed. This material is based on work supported by the National Science Foundation under Grant No. PHY 1265905.

  19. NONLINEAR ATOM OPTICS

    SciTech Connect

    T. MILONNI; G. CSANAK; ET AL

    1999-07-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project objectives were to explore theoretically various aspects of nonlinear atom optics effects in cold-atom waves and traps. During the project a major development occurred the observation, by as many as a dozen experimental groups, of Bose-Einstein condensation (BEC) in cold-atom traps. This stimulated us to focus our attention on those aspects of nonlinear atom optics relating to BEC, in addition to continuing our work on a nonequilibrium formalism for dealing with the interaction of an electromagnetic field with multi-level atomic systems, allowing for macroscopic coherence effects such as BEC. Studies of several problems in BEC physics have been completed or are near completion, including the suggested use of external electric fields to modify the nature of the interatomic interaction in cold-atom traps; properties of two-phase condensates; and molecular loss processes associated with BEC experiments involving a so-called Feshbach resonance.

  20. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  1. Two-photon imaging of a magneto-fluorescent indicator for 3D optical magnetometry.

    PubMed

    Lee, Hohjai; Brinks, Daan; Cohen, Adam E

    2015-10-19

    We developed an optical method to visualize the three-dimensional distribution of magnetic field strength around magnetic microstructures. We show that the two-photon-excited fluorescence of a chained donor-bridge-acceptor compound, phenanthrene-(CH2)12-O-(CH2)2-N,N-dimethylaniline, is sensitive to ambient magnetic field strength. A test structure is immersed in a solution of the magneto-fluorescent indicator and a custom two-photon microscope maps the fluorescence of this compound. The decay kinetics of the electronic excited state provide a measure of magnetic field that is insensitive to photobleaching, indicator concentration, or local variations in optical excitation or collection efficiency. PMID:26480460

  2. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modern radio-optical methods in quantum magnetometry

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Evgenii B.; Vershovskii, Anton K.

    2009-06-01

    This paper is an extension of a part of the talk delivered under the more general title "Narrow spectral lines in fundamental metrology: state of the art, prospects, and problems"' at the session of the 90th anniversary of Physics-Uspekhi. The talk reviewed past developments and the current status of the metrology of length, frequency/time, and magnetic fields. The measurement of these quantities currently relies on the high stability of energies of standard transitions between metastable atomic states. Because of space restrictions in the journal, all metrology topics other than the title one were omitted in the present review.

  3. Magnetometry of single ferromagnetic nanoparticles using magneto-optical indicator films with spatial amplification

    SciTech Connect

    Balk, Andrew L.; Hangarter, Carlos; Stavis, Samuel M.; Unguris, John

    2015-03-16

    We present a magneto-optical technique to spatially amplify and image fringe fields from single ferromagnetic nanorods. The fringe fields nucleate magnetic domains in a low-coercivity, perpendicularly magnetized indicator film, which are expanded by an applied out-of-plane field from the nanoscale to the microscale for measurement with polar Kerr microscopy. The nucleation location and therefore magnetic orientation of the sample nanorod are detected as spatially dependent field biases in locally measured hysteresis loops of the indicator film. We first discuss our method to fabricate the high-sensitivity indicator film with low energy argon ion irradiation. We then present a map of the amplified signal produced from a single nanorod as measured by the indicator film and compare it with a simultaneously obtained, unamplified fringe field map. The comparison demonstrates the advantage of the amplification mechanism and the capability of the technique to be performed with single-spot magneto-optical Kerr effect magnetometers. Our signal-to-noise ratio determines a minimum measureable particle diameter of tens of nanometers for typical transition metals. We finally use our method to obtain hysteresis loops from multiple nanorods in parallel. Our technique is unperturbed by applied in-plane fields for magnetic manipulation of nanoparticles, is robust against many common noise sources, and is applicable in a variety of test environments. We conclude with a discussion of the future optimization and application of our indicator film technique.

  4. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Simin, D.; Soltamov, V. A.; Poshakinskiy, A. V.; Anisimov, A. N.; Babunts, R. A.; Tolmachev, D. O.; Mokhov, E. N.; Trupke, M.; Tarasenko, S. A.; Sperlich, A.; Baranov, P. G.; Dyakonov, V.; Astakhov, G. V.

    2016-07-01

    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28SiC) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3 /2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100 nT /√{Hz } within a volume of 3 ×10-7m m3 at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3 , the projection noise limit is below 100 fT /√{Hz } .

  5. Optical nanofibres and neutral atoms

    NASA Astrophysics Data System (ADS)

    Nieddu, Thomas; Gokhroo, Vandna; Chormaic, Síle Nic

    2016-05-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed and, recently, several schemes to implement optical memories have been proposed. We also discuss some possible directions where this research field may head, in particular, in relation to the use of optical nanofibres that can support higher-order modes with an associated orbital angular momentum.

  6. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Goldmann, W. H.; Galneder, R.; Ludwig, M.; Xu, W.; Adamson, E. D.; Wang, N.; Ezzell, R. M.; Ingber, D. E. (Principal Investigator)

    1998-01-01

    We have investigated a mouse F9 embryonic carcinoma cell line, in which both vinculin genes were inactivated by homologous recombination, that exhibits defective adhesion and spreading [Coll et al. (1995) Proc. Natl. Acad. Sci. USA 92, 9161-9165]. Using a magnetometer and RGD-coated magnetic microbeads, we measured the local effect of loss and replacement of vinculin on mechanical force transfer across integrins. Vinculin-deficient F9Vin(-/-) cells showed a 21% difference in relative stiffness compared to wild-type cells. This was restored to near wild-type levels after transfection and constitutive expression of increasing amounts of vinculin into F9Vin(-/-) cells. In contrast, the transfection of vinculin constructs deficient in amino acids 1-288 (containing the talin- and alpha-actinin-binding site) or substituting tyrosine for phenylalanine (phosphorylation site, amino acid 822) in F9Vin(-/-) cells resulted in partial restoration of stiffness. Using atomic force microscopy to map the relative elasticity of entire F9 cells by 128 x 128 (n = 16,384) force scans, we observed a correlation with magnetometer measurements. These findings suggest that vinculin may promote cell adhesions and spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, thereby affecting the elastic properties of the cell.

  7. Scanning Cryogenic Magnetometry with a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Lev, Benjamin; Straquadine, Joshua; Yang, Fan

    2016-05-01

    Microscopy techniques co-opted from nonlinear optics and high energy physics have complemented solid-state probes in elucidating exotic order manifest in condensed matter systems. We present a novel scanning magnetometer which adds the techniques of ultracold atomic physics to the condensed matter toolbox. Our device, the Scanning Quantum CRyogenic Atom Microscope (SQCRAMscope) uses a one-dimensional Bose-Einstein condensate of 87 Rb to image magnetic and electric fields near surfaces between room and cryogenic temperatures, and allows for rapid sample changes while retaining UHV compatibility for atomic experiments. We present our characterization of the spatial resolution and magnetic field sensitivity of the device, and discuss the advantages and applications of this magnetometry technique. In particular, we will discuss our plans for performing local transport measurements in technologically relevant materials such as Fe-based superconductors and topological insulators.

  8. Optics and interferometry with atoms and molecules

    SciTech Connect

    Cronin, Alexander D.; Schmiedmayer, Joerg; Pritchard, David E.

    2009-07-15

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review the basic tools for coherent atom optics are described including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the application of atom interferometers are reviewed. These are grouped in three categories: (i) fundamental quantum science, (ii) precision metrology, and (iii) atomic and molecular physics. Although some experiments with Bose-Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e., phenomena where each single atom interferes with itself.

  9. All-optical vector atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Zhivun, Elena; Patton, Brian; Hovde, Chris; Budker, Dmitry

    2014-05-01

    Alkali-vapor magnetometers are among the most precise magnetic sensors today, reaching sensitivities on the scale of fT/√{Hz}. In general, alkali-vapor magnetometers operating in finite fields can only measure the scalar magnitude of the field (not its direction or projection). In this work we demonstrate an all-optical vector cesium magnetometer with 0 . 2pT /√{Hz} sensitivity to the field magnitude and 4mrad /√{Hz} angular precision in the field direction. Although this can be accomplished by applying orthogonal magnetic fields to the sensor and measuring the change in Larmor frequency, in our sensor we employ the vector light shift induced by orthogonal laser beams to achieve the same effect. We will present results from such a sensor operating in a 10 mG magnetic field and discuss its applications to fundamental physics experiments and remote magnetometry.

  10. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    Atom optics has been a highly active field of research with many scientific breakthroughs over the past two decades, largely due to successful advances in laser technology, microfabrication techniques, and the development of laser cooling and trapping of neutral atoms. This dissertation details several atom optics experiments with the motivation to develop tools and techniques for precision atom wave interferometry. It provides background information about atom optics and the fundamentals behind laser cooling and trapping, including basic techniques for cold gas thermometry and absorptive detection of atoms. A brief overview of magnetic trapping and guiding in tight wire-based traps is also provided before the experimental details are presented. We developed a novel laser source of 780 nm light using frequency-doubled 1560 nm fiber amplifier. This laser system provided up to a Watt of tunable frequency stabilized light for two Rb laser cooling and trapping experiments. One system generates Bose-Einstein condensates in an optical trap while the second is based on atom chip magnetic traps. The atom chip system, detailed in this thesis, was designed and built to develop the tools necessary for transport and loading large numbers of cold atoms and explore the potential for guided atom interferometry. Techniques and results from this experiment are presented, including an efficient magnetic transport and loading method to deliver cold atom to atom chip traps. We also developed a modeling tool for the magnetic fields formed by coiled wire geometries, as well as planar wire patterns. These models helped us design traps and determine adiabatic transportation of cold atoms between macro-scale traps and micro-traps formed on atom chips. Having achieved near unity transfer efficiency, we demonstrated that this approach promises to be a consistent method for loading large numbers of atoms into micro-traps. Furthermore, we discuss an in situ imaging technique to investigate

  11. Integration of light and atom optics on an atom chip

    NASA Astrophysics Data System (ADS)

    Wilzbach, Marco; Domokos, Peter; Fernholz, Thomas; Folman, Ron; Groth, Sönke; Haase, Albrecht; Hock, Christian; Horak, Peter; Klappauf, Bruce; Schwarz, Michael; Schmiedmayer, Jörg

    2004-05-01

    The whole business of quantum computing with neutral atoms requires accurate preparation and control of their quantum states. The envisioned procedure of preparing and operating an atom chip quantum processor involves two main tools at all its stages: quasi-static electro-magnetic fields to provide taylored potentials for trapping and guiding atomic qubits and light optical elements for initialisation, gate operation and read-out. Our vision is to implement microoptics directly on the atom chip. A large scale quantum processor will probably involve microscale structures such as waveguides or photonic crystals. As a final goal even the light sources themselves (diode lasers) might be integrated on the chip. The miniaturisation of optical elements already is a rapidly growing field driven by the telecommunication boom. We hope to adapt these techniques to develope an atom optical toolbox for Quantum Information Processing. Our first experiments aim at the detection of few or even single atoms in miniaturized traps using optical fibres. Two single mode fibres will be mounted on an atom chip with a small gap between the facets. Light that is sent through the fibres will be absorbed by the atoms leading to a decreased output intensity. In order to enhance the coupling between light and atom, the two fibres should form a cavity. Each time an atom enters the cavity, the output intensity will decrease. Here we present our ongoing experiments, where we try to build a fibre cavity on a chip serving as a single atom detector. The concepts will be introduced, theoretical estimates for expectable signals will be presented and first setups will be shown. Beyond this we will discuss future perspectives of this technology.

  12. Trapping Rydberg Atoms in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Anderson, Sarah E.

    2012-06-01

    Optical lattice traps for Rydberg atoms are of interest in advanced science and in practical applications. After a brief discussion of these areas of interest, I will review some basics of optical Rydberg-atom trapping. The trapping potential experienced by a Rydberg atom in an optical lattice is given by the spatial average of the free-electron ponderomotive energy weighted by the Rydberg electron's probability distribution. I will then present experimental results on the trapping of ^85Rb Rydberg atoms in a one-dimensional ponderomotive optical lattice (wavelength 1064 nm). The principal methods employed to study the lattice performance are microwave spectroscopy, which is used to measure the lattice's trapping efficiency, and photo-ionization, which is used to measure the dwell time of the atoms in the lattice. I have achieved a 90% trapping efficiency for ^85Rb 50S atoms by inverting the lattice immediately after laser excitation of ground-state atoms into Rydberg states. I have characterized the dwell time of the atoms in the lattice using photo-ionization of 50D5/2 atoms. In continued work, I have explored the dependence of the Rydberg-atom trapping potential on the angular portion of the atomic wavefunction. Distinct angular states exhibit different trapping behavior in the optical lattice, depending on how their wavefunctions are oriented relative to the lattice planes. Specifically, I have measured the lattice potential depth of sublevels of ^85Rb nD atoms (50<=n<=65) in a one-dimensional optical lattice with a transverse DC electric field. The trapping behavior varies substantially for the various angular sublevels, in agreement with theory. The talk will conclude with an outlook into planned experiments.

  13. Design for an optical cw atom laser

    PubMed Central

    Ashkin, Arthur

    2004-01-01

    A new type of optical cw atom laser design is proposed that should operate at high intensity and high coherence and possibly record low temperatures. It is based on an “optical-shepherd” technique, in which far-off-resonance blue-detuned swept sheet laser beams are used to make new types of high-density traps, atom waveguides, and other components for achieving very efficient Bose–Einstein condensation and cw atom laser operation. A shepherd-enhanced trap is proposed that should be superior to conventional magneto-optic traps for the initial collection of molasses-cooled atoms. A type of dark-spot optical trap is devised that can cool large numbers of atoms to polarization-gradient temperatures at densities limited only by three-body collisional loss. A scheme is designed to use shepherd beams to capture and recycle essentially all of the escaped atoms in evaporative cooling, thereby increasing the condensate output by several orders of magnitude. Condensate atoms are stored in a shepherd trap, protected from absorbing light, under effectively zero-gravity conditions, and coupled out directly into an optical waveguide. Many experiments and devices may be possible with this cw atom laser. PMID:15302937

  14. Magneto-optical trap for thulium atoms

    SciTech Connect

    Sukachev, D.; Sokolov, A.; Chebakov, K.; Akimov, A.; Kanorsky, S.; Kolachevsky, N.; Sorokin, V.

    2010-07-15

    Thulium atoms are trapped in a magneto-optical trap using a strong transition at 410 nm with a small branching ratio. We trap up to 7x10{sup 4} atoms at a temperature of 0.8(2) mK after deceleration in a 40-cm-long Zeeman slower. Optical leaks from the cooling cycle influence the lifetime of atoms in the magneto-optical trap which varies between 0.3 and 1.5 s in our experiments. The lower limit for the leaking rate from the upper cooling level is measured to be 22(6) s{sup -1}. The repumping laser transferring the atomic population out of the F=3 hyperfine ground-state sublevel gives a 30% increase for the lifetime and the number of atoms in the trap.

  15. ''Atomic Optics'': Nonimaging Optics on the Nanoscale

    SciTech Connect

    Roland Winston Joseph O'Gallagher

    2005-01-15

    This is the final report for a one year close out extension of our basic research program that was established at the University of Chicago more than sixteen years ago to explore and develop the optical sub-discipline that has come to be known as ''nonimaging optics''. This program has been extremely fruitful, having both broadened the range of formalism available for workers in this field and led to the discovery of many new families of optical devices. These devices and techniques have applications wherever the efficient transport and transformation of light distributions are important, in particular in illumination, fiber optics, collection and concentration of sunlight, and the detection of faint light signals in physics and astrophysics. Over the past thirty years, Nonimaging Optics (Welford and Winston, 1989) has brought a fresh approach to the analysis of many problems in classical macro-scale optics. Through the application of phase-space concepts, statistical methods, thermodynamic arguments, etc., many previously established performance limits were able to be broken and many technical surprises with exciting practical applications were discovered. The most recent three-year phase of our long-term continuing program ended in late 2002 and emphasized extending our work in geometrical optics and expanding it to include some interesting questions in physical optics as well as in the new field of statistical optics. This report presents a survey of the basic history and concepts of nonimaging optics and reviews highlights and significant accomplishments over the past fifteen years. This is followed by a more detailed summary of recent research directions and accomplishments during the last three years. This most recent phase was marked by the broadening in scope to include a separate project involving a collaboration with an industrial partner, Science Applications International Corporation (SAIC). This effort was proposed and approved in 1998 and was

  16. An all-optical vector atomic magnetometer for fundamental physics applications

    NASA Astrophysics Data System (ADS)

    Wurm, David; Mateos, Ignacio; Zhivun, Elena; Patton, Brian; Fierlinger, Peter; Beck, Douglas; Budker, Dmitry

    2014-05-01

    We have developed a laboratory prototype of a compact all-optical vector magnetometer. Due to their high precision and absolute accuracy, atomic magnetometers are crucial sensors in fundamental physics experiments which require extremely stable magnetic fields (e.g., neutron EDM searches). This all-optical sensor will allow high-resolution measurements of the magnitude and direction of a magnetic field without perturbing the magnetic environment. Moreover, its absolute accuracy makes it calibration-free, an advantage in space applications (e.g., space-based gravitational-wave detection). Magnetometry in precision experiments or space applications also demands long-term stability and well-understood noise characteristics at frequencies below 10-4 Hz. We have characterized the low-frequency noise floor of this sensor and will discuss methods to improve its long-time performance.

  17. Supercooling of Atoms in an Optical Resonator.

    PubMed

    Xu, Minghui; Jäger, Simon B; Schütz, S; Cooper, J; Morigi, Giovanna; Holland, M J

    2016-04-15

    We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when atomic dipoles are synchronized in the regime of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force leading to potentially very low temperatures. The ultimate temperature limits are determined by a modified atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth. The cooling rate is enhanced by the superradiant emission into the cavity mode allowing reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.

  18. Supercooling of Atoms in an Optical Resonator

    NASA Astrophysics Data System (ADS)

    Xu, Minghui; Jäger, Simon; Schütz, Stefan; Cooper, John; Morigi, Giovanna; Holland, Murray

    2016-05-01

    We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when atomic dipoles are synchronized in the regime of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force leading to potentially very low temperatures. The ultimate temperature limits are determined by a modified atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth. The cooling rate is enhanced by the superradiant emission into the cavity mode allowing reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.

  19. Supercooling of Atoms in an Optical Resonator

    NASA Astrophysics Data System (ADS)

    Xu, Minghui; Jäger, Simon B.; Schütz, S.; Cooper, J.; Morigi, Giovanna; Holland, M. J.

    2016-04-01

    We investigate laser cooling of an ensemble of atoms in an optical cavity. We demonstrate that when atomic dipoles are synchronized in the regime of steady-state superradiance, the motion of the atoms may be subject to a giant frictional force leading to potentially very low temperatures. The ultimate temperature limits are determined by a modified atomic linewidth, which can be orders of magnitude smaller than the cavity linewidth. The cooling rate is enhanced by the superradiant emission into the cavity mode allowing reasonable cooling rates even for dipolar transitions with ultranarrow linewidth.

  20. Environment Assisted Precision Magnetometry

    NASA Astrophysics Data System (ADS)

    Cappellaro, P.; Goldstein, G.; Maze, J. R.; Jiang, L.; Hodges, J. S.; Sorensen, A. S.; Lukin, M. D.

    2010-03-01

    We describe a method to enhance the sensitivity of magnetometry and achieve nearly Heisenberg-limited precision measurement using a novel class of entangled states. An individual qubit is used to sense the dynamics of surrounding ancillary qubits, which are in turn affected by the external field to be measured. The resulting sensitivity enhancement is determined by the number of ancillas strongly coupled to the sensor qubit, it does not depend on the exact values of the couplings (allowing to use disordered systems), and is resilient to decoherence. As a specific example we consider electronic spins in the solid-state, where the ancillary system is associated with the surrounding spin bath. The conventional approach has been to consider these spins only as a source of decoherence and to adopt decoupling scheme to mitigate their effects. Here we describe novel control techniques that transform the environment spins into a resource used to amplify the sensor spin response to weak external perturbations, while maintaining the beneficial effects of dynamical decoupling sequences. We discuss specific applications to improve magnetic sensing with diamond nano-crystals, using one Nitrogen-Vacancy center spin coupled to Nitrogen electronic spins.

  1. Committee on Atomic, Molecular and Optical Sciences

    SciTech Connect

    Lancaster, James

    2015-06-30

    The Committee on Atomic, Molecular, and Optical Sciences (CAMOS) is a standing activity of the National Research Council (NRC) that operates under the auspices of the Board on Physics and Astronomy. CAMOS is one of five standing committees of the BPA that are charged with assisting it in achieving its goals—monitoring the health of physics and astronomy, identifying important new developments at the scientific forefronts, fostering interactions with other fields, strengthening connections to technology, facilitating effective service to the nation, and enhancing education in physics. CAMOS provides these capabilities for the atomic, molecular and optical (AMO) sciences.

  2. Ultra-Cold Atoms on Optical Lattices

    ERIC Educational Resources Information Center

    Ghosh, Parag

    2009-01-01

    The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…

  3. Steerable optical tweezers for ultracold atom studies.

    PubMed

    Roberts, K O; McKellar, T; Fekete, J; Rakonjac, A; Deb, A B; Kjærgaard, N

    2014-04-01

    We report on the implementation of an optical tweezer system for controlled transport of ultracold atoms along a narrow, static confinement channel. The tweezer system is based on high-efficiency acousto-optic deflectors and offers two-dimensional control over beam position. This opens up the possibility for tracking the transport channel when shuttling atomic clouds along it, forestalling atom spilling. Multiple clouds can be tracked independently by time-shared tweezer beams addressing individual sites in the channel. The deflectors are controlled using a multichannel direct digital synthesizer, which receives instructions on a submicrosecond time scale from a field-programmable gate array. Using the tweezer system, we demonstrate sequential binary splitting of an ultracold 87Rb cloud into 2(5) clouds.

  4. Cold atoms in a rotating optical lattice

    NASA Astrophysics Data System (ADS)

    Foot, Christopher J.

    2009-05-01

    We have demonstrated a novel experimental arrangement which can rotate a two-dimensional optical lattice at frequencies up to several kilohertz. Our arrangement also allows the periodicity of the optical lattice to be varied dynamically, producing a 2D ``accordion lattice'' [1]. The angles of the laser beams are controlled by acousto-optic deflectors and this allows smooth changes with little heating of the trapped cold (rubidium) atoms. We have loaded a BEC into lattices with periodicities ranging from 1.8μm to 18μm, observing the collapse and revival of the diffraction orders of the condensate over a large range of lattice parameters as recently reported by a group in NIST [2]. We have also imaged atoms in situ in a 2D lattice over a range of lattice periodicities. Ultracold atoms in a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, i.e. the Hamiltonian of the atoms in the rotating frame resembles that of a charged particle in a strong magnetic field. In the future, we plan to use this to investigate a range of phenomena such as the analogue of the fractional quantum Hall effect. [4pt] [1] R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot, ``Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms,'' Opt. Express 16, 16977-16983 (2008) [0pt] [2] J. H. Huckans, I. B. Spielman, B. Laburthe Tolra, W. D. Phillips, and J. V. Porto, Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice, arXiv:0901.1386v1

  5. Atom optics with standing wave fields

    NASA Astrophysics Data System (ADS)

    Cohen, Jayson Leonard

    2000-08-01

    detailed can be applied effectively, as intended from the outset, to other problems in atom optics.

  6. Atomic Fermi gases in optical lattices

    SciTech Connect

    Modugno, G.; De Mirandes, E.; Ferlando, F.; Ott, H.; Roati, G.; Inguscio, M.

    2005-05-05

    We report on the first experiments with atomic Fermi gases in optical lattices. We have studied the properties of non interacting fermions and of an interacting boson-fermion mixture in a 1D lattice in presence of additional linear or harmonic potentials. These systems have allowed to study for the first time the fundamental quantum transport properties of a perfect crystal and to confirm the role of interactions in real crystals. We have found that the combination of Fermi gases and optical lattices can also have important applications, such as high-resolution force sensing.

  7. Trapping Rydberg Atoms in an Optical Lattice

    SciTech Connect

    Anderson, S. E.; Younge, K. C.; Raithel, G.

    2011-12-23

    Rubidium Rydberg atoms are laser excited and subsequently trapped in a one-dimensional optical lattice (wavelength 1064 nm). Efficient trapping is achieved by a lattice inversion immediately after laser excitation using an electro-optic technique. The trapping efficiency is probed via analysis of the trap-induced shift of the two-photon microwave transition 50S{yields}51S. The inversion technique allows us to reach a trapping efficiency of 90%. The dependence of the efficiency on the timing of the lattice inversion and on the trap laser power is studied. The dwell time of 50D{sub 5/2} Rydberg atoms in the lattice is analyzed using lattice-induced photoionization.

  8. Optical probing of cold trapped atoms

    NASA Technical Reports Server (NTRS)

    Fox, R. W.; Gilbert, S. L.; Hollberg, L.; Marquardt, J. H.; Robinson, H. G.

    1993-01-01

    Transitions between excited states of laser-cooled and laser-trapped rubidium and cesium atoms are probed by use of fiber and diode lasers. High-resolution Doppler-free spectra are detected by observation of the absorption and fluorescence of light from the intermediate level of two-step cascade systems. The optical double-resonance spectra show Autler-Townes splitting in the weak probe limit and more complicated spectra for a strongly coupled three-level system.

  9. Blackbody radiation shifts in optical atomic clocks.

    PubMed

    Safronova, Marianna; Kozlov, Mikhail; Clark, Charles

    2012-03-01

    A review of recent theoretical calculations of blackbody radiation (BBR) shifts in optical atomic clocks is presented. We summarize previous results for monovalent ions that were obtained by a relativistic all-order single-double method, where all single and double excitations of the Dirac- Fock wave function are included to all orders of perturbation theory. A recently developed method for accurate calculations of BBR shifts in divalent atoms is then presented. This approach combines the relativistic all-order method and the configuration interaction method, which provides for accurate treatment of correlation corrections in atoms with two valence electrons. Calculations of the BBR shifts in B+, Al+, and In+ have enabled us to reduce the present fractional uncertainties in the frequencies of their clock transitions as measured at room temperature: to 4 × 10-19 for Al+ and 10-18 for B+ and In+. These uncertainties approach recent estimates of the limits of precision of currently proposed optical atomic clocks. We discuss directions of future theoretical developments for reducing clock uncertainties resulting from blackbody radiation shifts.

  10. Blackbody radiation shifts in optical atomic clocks.

    PubMed

    Safronova, Marianna; Kozlov, Mikhail; Clark, Charles

    2012-03-01

    A review of recent theoretical calculations of blackbody radiation (BBR) shifts in optical atomic clocks is presented. We summarize previous results for monovalent ions that were obtained by a relativistic all-order single-double method, where all single and double excitations of the Dirac- Fock wave function are included to all orders of perturbation theory. A recently developed method for accurate calculations of BBR shifts in divalent atoms is then presented. This approach combines the relativistic all-order method and the configuration interaction method, which provides for accurate treatment of correlation corrections in atoms with two valence electrons. Calculations of the BBR shifts in B+, Al+, and In+ have enabled us to reduce the present fractional uncertainties in the frequencies of their clock transitions as measured at room temperature: to 4 × 10-19 for Al+ and 10-18 for B+ and In+. These uncertainties approach recent estimates of the limits of precision of currently proposed optical atomic clocks. We discuss directions of future theoretical developments for reducing clock uncertainties resulting from blackbody radiation shifts. PMID:22481777

  11. Magnetometry with mesospheric sodium

    PubMed Central

    Higbie, James M.; Rochester, Simon M.; Patton, Brian; Holzlöhner, Ronald; Bonaccini Calia, Domenico; Budker, Dmitry

    2011-01-01

    Measurement of magnetic fields on the few 100-km length scale is significant for many geophysical applications including mapping of crustal magnetism and ocean circulation measurements, yet available techniques for such measurements are very expensive or of limited accuracy. We propose a method for remote detection of magnetic fields using the naturally occurring atomic sodium-rich layer in the mesosphere and existing high-power lasers developed for laser guide star applications. The proposed method offers a dramatic reduction in cost and opens the way to large-scale, parallel magnetic mapping and monitoring for atmospheric science, navigation, and geophysics. PMID:21321235

  12. Single spin magnetometry with nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Chisholm, Nicholas Edward Kennedy

    The nitrogen-vacancy (NV) center in diamond is a solid-state point defect with an electronic spin that has accessible quantum mechanical properties. At room temperature, the electronic ground state sub-levels of the NV center can be initialized and read out using optical pumping, as well as coherently controlled using microwave frequency fields. This thesis focuses on using the spin state of the NV center for highly-sensitive magnetometry under ambient conditions. In particular, when the diamond surface is properly prepared, we demonstrate that NV centers can be used to measure the magnetic fluctuations stemming from individual molecules and ions attached or adsorbed to the surface. This thesis begins by introducing the physical and electronic structure of the NV center at room temperature, followed by the fundamental measurements that allow us to use the NV center as a sensitive magnetometer. Combining our sensitive NV center magnetometer with techniques from chemistry and atomic force microscopy (AFM), we demonstrate the all-optical detection of a single-molecule electron spin at room temperature. Finally, we discuss the time-resolved detection of individual electron spins adsorbing onto the surface of nano-diamonds. By extending our techniques to nano-diamonds, we move closer towards textit{in vitro} magnetic field sensing that could be pivotal for better disease diagnosis and drug development.

  13. Dynamics and Coherence of Cold Atoms in Atom Optics Billiards

    NASA Astrophysics Data System (ADS)

    Grunzweig, Tzahi

    This thesis describes basic experimental research of dynamics and loss of hyperfine-states-coherence of ultra-cold atoms in atom-optics billiards. Ultra-cold atoms trapped in an optical-dipole trap and prepared in a coherent superposition of their hyperfine split ground-states, decohere as they interact with the environment. Here we realized microwave spectroscopy as a tool to study dynamics of ensembles of trapped atoms, with a controlled environment. First, we demonstrated that under the special conditions of a dark optical trap, Ramsey spectroscopy can be interpreted as Loschmidt echo (or fidelity), which is a measure of evolution of hyperfine coherence as a function of time. The detuning of the trapping laser is used to change the "perturbation", which causes a decay in the Ramsey fringe contrast. However, revivals of fringe contrast are observed in contrast to the predictions of random matrix theory. We suggest these system specific revivals originate from dynamical resonances in the fidelity. To minimize inhomogeneous effects we used a microwave echo spectroscopy technique. We measured the coherence properties of the system under different perturbation strengths. Two different regimes were observed: First, a perturbative regime in which the decay of echo coherence is non-monotonic and partial revivals of coherence were observed. These revivals are more pronounced in traps with mixed dynamics as compared to traps where the dynamics is fully chaotic. Next, for stronger perturbations, the decay becomes monotonic and independent of the strength of the perturbation. In this regime no clear distinction can be made between chaotic traps and traps with mixed dynamics. Next, by using compensating techniques to minimize the inherent trap perturbations, and application of artificial, tailored perturbations we showed that the decay of coherence is closely related to the symmetry properties of the perturbations. We considered two generic perturbations: speckle

  14. Nonadiabatic quantum chaos in atom optics

    NASA Astrophysics Data System (ADS)

    Prants, S. V.

    2012-07-01

    Coherent dynamics of atomic matter waves in a standing-wave laser field is studied. In the dressed-state picture, wave packets of ballistic two-level atoms propagate simultaneously in two optical potentials. The probability to make a transition from one potential to another one is maximal when centroids of wave packets cross the field nodes and is given by a simple formula with the single exponent, the Landau-Zener parameter κ. If κ ≫ 1, the motion is essentially adiabatic. If κ ≪ 1, it is (almost) resonant and periodic. If κ ≃ 1, atom makes nonadiabatic transitions with a splitting of its wave packet at each node and strong complexification of the wave function as compared to the two other cases. This effect is referred as nonadiabatic quantum chaos. Proliferation of wave packets at κ ≃ 1 is shown to be connected closely with chaotic center-of-mass motion in the semiclassical theory of point-like atoms with positive values of the maximal Lyapunov exponent. The quantum-classical correspondence established is justified by the fact that the Landau-Zener parameter κ specifies the regime of the semiclassical dynamical chaos in the map simulating chaotic center-of-mass motion. Manifestations of nonadiabatic quantum chaos are found in the behavior of the momentum and position probabilities.

  15. Laser threshold magnetometry

    NASA Astrophysics Data System (ADS)

    Jeske, Jan; Cole, Jared H.; Greentree, Andrew D.

    2016-01-01

    We propose a new type of sensor, which uses diamond containing the optically active nitrogen-vacancy (NV-) centres as a laser medium. The magnetometer can be operated at room-temperature and generates light that can be readily fibre coupled, thereby permitting use in industrial applications and remote sensing. By combining laser pumping with a radio-frequency Rabi-drive field, an external magnetic field changes the fluorescence of the NV- centres. We use this change in fluorescence level to push the laser above threshold, turning it on with an intensity controlled by the external magnetic field, which provides a coherent amplification of the readout signal with very high contrast. This mechanism is qualitatively different from conventional NV--based magnetometers which use fluorescence measurements, based on incoherent photon emission. We term our approach laser threshold magnetometer (LTM). We predict that an NV--based LTM with a volume of 1 mm3 can achieve shot-noise limited dc sensitivity of 1.86 fT /\\sqrt{{{Hz}}} and ac sensitivity of 3.97 fT /\\sqrt{{{Hz}}}.

  16. Cooling trapped atoms in optical resonators.

    PubMed

    Zippilli, Stefano; Morigi, Giovanna

    2005-09-30

    We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency. PMID:16241649

  17. Optical interfacing single molecules with atomic vapor

    NASA Astrophysics Data System (ADS)

    Siyushev, Petr; Stein, Guilherme; Wrachtrup, Jörg; Gerhardt, Ilja

    2013-05-01

    Organic molecules at liquid Helium temperatures can constitute high-brightness and narrow-band single photon sources. Thus, they might form an important building block for quantum information processing. A number of quantum optical experiments were conducted with single photon sources based on single molecules. It was shown that it is possible to spectrally detune the molecules, and optical interaction between several molecules could be shown. Another important ingredient for quantum information processing is the implementation of quantum memory. Atomic vapors do not only allow for slowing down light, but also for its storage and can be used as an efficient quantum memory. In the past it was impossible to utilize the high brightness of single molecules in combination with an efficient quantum memory, since the lack of spectral overlap. Here, we present spectral tuning of a single molecule to match the resonance of the sodium D-line. We reach up to 6 ×105 detected 30 MHz narrow-band single photons per second. We are able to slow down near-resonant photons from a single molecule, and simultaneous show its single photon properties. We are further able to explore the properties of atomic vapor for its use as a narrow-band filter for single molecule studies.

  18. High-sensitivity single NV magnetometry by spin-to-charge state mapping

    NASA Astrophysics Data System (ADS)

    Jaskula, Jean-Christophe; Shields, Brendan; Bauch, Erik; Lukin, Mikhail; Walsworth, Ronald; Trifonov, Alexei

    2015-05-01

    Nitrogen-Vacancy (NV) centers in diamond are atom-like quantum system in a solid state matrix whom its structure allows optical readout of the electronic spin. However, the optimal duration of optical readout is limited by a singlet state lifetime making single shot spin readout out of reach. On the other side, the NV center charge state readout can be extremely efficient (up to 99% fidelity) by using excitation at 594 nm. We will present a new method of spin readout utilizing a spin-depending photoionization process to map the electronic spin state of the NV onto the its charge state. Moreover, pre-selection on the charged state allows to minimize data acquisition time. This scheme improves single NV AC magnetometry by a factor of 5 and will benefit other single NV center experiments as well.

  19. A virtual slit for atom optics and nanolithography

    NASA Astrophysics Data System (ADS)

    Chu, A. P.; Berggren, K. K.; Johnson, K. S.; Prentiss, M. G.

    1996-06-01

    We propose a simple `virtual slit' for atoms based on the position- and velocity-dependent optical pumping of atoms into an undetected internal state. We show how this slit can be used as a nanometre scale, high-contrast tool for atom lithography as well as a subrecoil collimator for atomic beams.

  20. Probing Atomic Dynamics and Structures Using Optical Patterns

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2015-05-01

    Pattern formation is a widely studied phenomenon that can provide fundamental insights into nonlinear systems. Emergent patterns in cold atoms are of particular interest in condensed matter physics and quantum information science because one can relate optical patterns to spatial structures in the atoms. In our experimental system, we study multimode optical patterns generated from a sample of cold, thermal atoms. We observe this nonlinear optical phenomenon at record low input powers due to the highly nonlinear nature of the spatial bunching of atoms in an optical lattice. We present a detailed study of the dynamics of these bunched atoms during optical pattern formation. We show how small changes in the atomic density distribution affect the symmetry of the generated patterns as well as the nature of the nonlinearity that describes the light-atom interaction. We gratefully acknowledge the financial support of the National Science Foundation through Grant #PHY-1206040.

  1. Optical Dipole Trap for Ultracold Atoms Loaded from Dark SPOT

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Li, Zhonghao; Ji, Zhonghua; Yuan, Jinpeng; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2016-10-01

    In this work, we load a 1070 nm crossed optical dipole trap (ODT) from a 133Cs dark spontaneous emission optical trap. Obvious improvements in the loading rate and atomic lifetime are demonstrated, comparing with the values of the atoms which are loaded directly from a normal magneto-optical trap. We analyze the atomic number as a function of time in the ODT's loading and holding processes based on the constant density and the constant volume approximations, respectively. We also demonstrate that the atomic temperature in holding process is related to the atomic collision, which consists of two-body collision and background gas induced collision. Finally the relationship between atomic collision and optical trap depth is measured and analyzed. The atomic loading way we present can be easily expanded to other species to obtain an atomic sample with large number and high density.

  2. Atomic physics and quantum optics using superconducting circuits.

    PubMed

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  3. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  4. On-chip optical trapping for atomic applications

    NASA Astrophysics Data System (ADS)

    Perez, Maximillian A.; Salim, Evan; Farkas, Daniel; Duggan, Janet; Ivory, Megan; Anderson, Dana

    2014-09-01

    To simplify applications that rely on optical trapping of cold and ultracold atoms, ColdQuanta is developing techniques to incorporate miniature optical components onto in-vacuum atom chips. The result is a hybrid atom chip that combines an in-vacuum micro-optical bench for optical control with an atom chip for magnetic control. Placing optical components on a chip inside of the vacuum system produces a compact system that can be targeted to specific experiments, in this case the generation of optical lattices. Applications that can benefit from this technology include timekeeping, inertial sensing, gravimetry, quantum information, and emulation of quantum many-body systems. ColdQuanta's GlasSi atom chip technology incorporates glass windows in the plane of a silicon atom chip. In conjunction with the in-vacuum micro-optical bench, optical lattices can be generated within a few hundred microns of an atom chip window through which single atomic lattice sites can be imaged with sub-micron spatial resolution. The result is a quantum gas microscope that allows optical lattices to be studied at the level of single lattice sites. Similar to what ColdQuanta has achieved with magneto-optical traps (MOTs) in its miniMOT system and with Bose- Einstein condensates (BECs) in its RuBECi(R) system, ColdQuanta seeks to apply the on-chip optical bench technology to studies of optical lattices in a commercially available, turnkey system. These techniques are currently being considered for lattice experiments in NASA's Cold Atom Laboratory (CAL) slated for flight on the International Space Station.

  5. Magnetometry with nitrogen-vacancy defects in diamond.

    PubMed

    Rondin, L; Tetienne, J-P; Hingant, T; Roch, J-F; Maletinsky, P; Jacques, V

    2014-05-01

    The isolated electronic spin system of the nitrogen-vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of 'NV magnetometry'. It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.

  6. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  7. Magnetoencephalography with Optically Pumped Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Schwindt, Peter; Colombo, Anthony; Jau, Yuan-Yu; Carter, Tony; Berry, Christopher; Young, Amber; McKay, Jim; Weisend, Michael

    2015-05-01

    We are working to develop a 36-channel array of optically pumped atomic magnetometers (AMs) to perform magnetoencephalography (MEG) with the goal of localizing magnetic sources within the human brain. The 36-channel array will consist of nine 4-channel sensor modules where the channels within each sensor will be spaced by 18 mm and each sensor will cover a 40 mm by 40 mm area of the head. In a previous 4-channel AM prototype, we demonstrated the measurement of evoked responses in both the auditory and somatosensory cortexes. This prototype had a 5 fT/Hz1/2 sensitivity. In the current version of the AM under development we are maintaining the previous sensitivity while implementing several improvements, including increasing the bandwidth from 20 Hz to more than 100 Hz, reducing the separation of the active volume of the AM from exterior of the sensor from 25 mm to 10 mm or less, and reducing the active sensor volume by a factor >10 to ~15 mm3. We will present results on the performance of our most recent AM prototype and progress toward developing a complete MEG system including a person-sized magnetic shield to provide a low-noise magnetic environment for MEG measurements.

  8. Suspension of Atoms Using Optical Pulses, and Application to Gravimetry

    SciTech Connect

    Hughes, K. J.; Burke, J. H. T.; Sackett, C. A.

    2009-04-17

    Atoms from a {sup 87}Rb condensate are suspended against gravity using repeated reflections from a pulsed optical standing wave. Up to 100 reflections are observed, yielding suspension times of over 100 ms. The local gravitational acceleration can be determined from the pulse rate required to achieve suspension. Further, a gravitationally sensitive atom interferometer was implemented using the suspended atoms. This technique could potentially provide a precision measurement of gravity without requiring the atoms to fall a large distance.

  9. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  10. Multiphoton Raman Atom Optics with Frequency-Swept Adiabatic Passage

    NASA Astrophysics Data System (ADS)

    Kotru, Krish; Butts, David; Kinast, Joseph; Stoner, Richard

    2016-05-01

    Light-pulse atom interferometry is a promising candidate for future inertial navigators, gravitational wave detectors, and measurements of fundamental physical constants. The sensitivity of this technique, however, is often limited by the small momentum separations created between interfering atom wave packets (typically ~ 2 ℏk) . We address this issue using light-pulse atom optics derived from stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP). In experiments, these Raman ARP atom optics have generated up to 30 ℏk photon recoil momenta in an acceleration-sensitive atom interferometer, thereby enhancing the phase shift per unit acceleration by a factor of 15. Since this approach forgoes evaporative cooling and velocity selection, it could enable large-area atom interferometry at higher data rates, while also lowering the atom shot-noise-limited measurement uncertainty.

  11. Atomic-scale confinement of resonant optical fields.

    PubMed

    Kern, Johannes; Grossmann, Swen; Tarakina, Nadezda V; Häckel, Tim; Emmerling, Monika; Kamp, Martin; Huang, Jer-Shing; Biagioni, Paolo; Prangsma, Jord C; Hecht, Bert

    2012-11-14

    In the presence of matter, there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding resonant intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically defined gaps reaching below 0.5 nm. The existence of atomically confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and antisymmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically resolved spectroscopic imaging, deeply nonlinear optics, ultrasensing, cavity optomechanics, as well as for the realization of novel quantum-optical devices. PMID:22984927

  12. Dynamics of an all-optical atomic spin gyroscope.

    PubMed

    Fang, Jiancheng; Wan, Shuangai; Yuan, Heng

    2013-10-20

    We present the transfer function of an all-optical atomic spin gyroscope through a series of differential equations and validate the transfer function by experimental test. A transfer function is the basis for further control system design. We build the differential equations based on a complete set of Bloch equations describing the all-optical atomic spin gyroscope, and obtain the transfer function through application of the Laplace transformation to these differential equations. Moreover, we experimentally validate the transfer function in an all-optical Cs-Xe129 atomic spin gyroscope through a series of step responses. This transfer function is convenient for analysis of the form of control system required. Furthermore, it is available for the design of the control system specifically to improve the performance of all-optical atomic spin gyroscopes.

  13. Highly nonlocal optical nonlinearities in atoms trapped near a waveguide

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim; Grisins, Pjotrs; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon

    2016-05-01

    Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.

  14. Cold Atom Source Containing Multiple Magneto-Optical Traps

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute

    2007-01-01

    An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.

  15. An efficient magneto-optical trap of metastable krypton atoms.

    PubMed

    Cheng, C-F; Jiang, W; Yang, G-M; Sun, Y-R; Pan, H; Gao, Y; Liu, A-W; Hu, S-M

    2010-12-01

    We report a magneto-optical trap of metastable krypton atoms with a trap loading rate of 3×10(11) atoms/s and a trap capture efficiency of 3×10(-5). The system starts with an atomic beam of metastable krypton produced in a liquid-nitrogen cooled, radio-frequency driven discharge. The metastable beam flux emerging from the discharge is 1.5×10(14) atoms/s/sr. The flux in the forward direction is enhanced by a factor of 156 with transverse laser cooling. The atoms are then slowed inside a Zeeman slower before captured by a magneto-optic trap. The trap efficiency can be further improved, possibly to the 10(-2) level, by gas recirculation. Such an atom trap is useful in trace analysis applications where available sample size is limited.

  16. Generation and detection of atomic spin entanglement in optical lattices

    NASA Astrophysics Data System (ADS)

    Dai, Han-Ning; Yang, Bing; Reingruber, Andreas; Xu, Xiao-Fan; Jiang, Xiao; Chen, Yu-Ao; Yuan, Zhen-Sheng; Pan, Jian-Wei

    2016-08-01

    Ultracold atoms in optical lattices hold promise for the creation of entangled states for quantum technologies. Here we report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Using a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated with near-unity fidelities by microwave pulses. The spin entanglement of the two atoms in the double wells of the superlattice is generated via the dynamical evolution governed by spin superexchange. By monitoring the collisional atom loss with in situ absorption imaging we measure the spin correlations of the atoms inside the double wells and obtain a lower bound on the entanglement fidelity of 0.79 +/- 0.06, and a violation of a Bell's inequality S = 2.21 +/- 0.08.

  17. Compact Magneto-optical Trap for Rubidium Atoms

    SciTech Connect

    Chapovsky, P.L.

    2005-05-01

    The characteristics of a magneto-optical trap (MOT) using small-diameter cooling laser beams are considered. Trapping and cooling of Rb atoms from the surrounding gas of warm atoms takes place in the trap. A compact (140 {mu}m) and stable atomic cloud is obtained with a density of 7 x 10{sup 10} cm{sup -3}, which is three orders of magnitude higher than the density of the surrounding gas.

  18. Gold coated nano gratings for atom optics

    NASA Astrophysics Data System (ADS)

    Lonij, Vincent; Perreault, John; Kornilov, Oleg; Cronin, Alex

    2007-06-01

    The Van der Waals (VdW) interaction between neutral atoms is important to the dynamics of mechanical systems on nanometer scales. We used diffraction of sodium atoms from nano gratings to measure the Van der Waals potentials for atoms and different surfaces with improved precision. Atoms passing through the grating acquire an additional phase shift due to the attractive potential between the atoms and the grating bars, causing the diffraction pattern to be modified [1]. Previous measurements reported the VdW coefficient for sodium atoms and a silicon-nitride(SiNx) surface [2]. In our experiment we used a SiNx grating coated with a 2 nm layer of gold and we were able to measure a 40% increase in the VdW coefficient due to the gold. We also improved precision by combing results from the sodium diffraction experiment with results from a diffraction experiment with helium atoms on the same gratings. [1] R. E. Grisenti, W. Schollkopf, J. P. Toennies, G. C. Hegerfeldt, and T. Kohler. Phys. Rev. Lett., 83(9):1755, 1999. [2] J. D. Perreault, A. D. Cronin, and T. A. Savas. Phys. Rev. A, 71(5):053612, 2005.

  19. Quantum Trapping of Atoms in Optical Molasses.

    NASA Astrophysics Data System (ADS)

    Takusagawa, Kimie

    1992-10-01

    The force acting on a two-level atom in a low -intensity standing laser wave is calculated. On account of this force, atoms can be trapped at the loops (antinodes) of the field. By quantizing the atomic motion near the bottom of the sinusoidal potential, we have studied the atomic behavior when they are trapped in bound states as well as when they are in the free state. Laser cooling of neutral atoms was first suggested by T. Hansh and A. Schawlow in 1975. The principle involves the Doppler effect in a detuned laser beam. The absorption rate of a photon depends on the apparent frequency of the photon that is shifted omega v/c from omega, where omega is the frequency of the laser, v is the velocity of the atom, and c is the velocity of light. For a single laser beam detuned slightly below an atomic resonance frequency, the apparent frequency for atoms moving toward the laser is closer to resonance, which causes a higher absorption rate. And these atoms lose momentum when they absorb a photon from the beam. The velocity of atoms can be decreased from 10^5 cm/sec, the velocity they have when they escape from an oven, to 10^2 cm/sec (about 1mK) by a laser beam. For further cooling, counterpropagating beams are necessary. In this study we propose a new mechanism for supercooling, that is, cooling well below the Doppler cooling limit. Within a standing laser wave there exists a force called a "dipole force", which has a sinusoidal spatial dependence. Once atoms are trapped by the potential, their motion around the minimum of the potential well is that of a simple harmonic oscillator. Restricting our attention to the two lowest quantized states, we calculate transition rates between free states and bound states, from which the average residence times in the bound states can be obtained. This first quantum treatment of an atom trapped in the sinusoidal potential is restricted to the one-dimensional case. Generalization to higher dimensions is left for future research.

  20. Resolved Atomic Interaction Sidebands in an Optical Clock Transition

    SciTech Connect

    Bishof, M.; Lin, Y.; Swallows, M. D.; Ye, J.; Rey, A. M.; Gorshkov, A. V.

    2011-06-24

    We report the observation of resolved atomic interaction sidebands (ISB) in the {sup 87}Sr optical clock transition when atoms at microkelvin temperatures are confined in a two-dimensional optical lattice. The ISB are a manifestation of the strong interactions that occur between atoms confined in a quasi-one-dimensional geometry and disappear when the confinement is relaxed along one dimension. The emergence of ISB is linked to the recently observed suppression of collisional frequency shifts. At the current temperatures, the ISB can be resolved but are broad. At lower temperatures, ISB are predicted to be substantially narrower and useful spectroscopic tools in strongly interacting alkaline-earth gases.

  1. Ejection of atoms by laser produced optical breakdown plasma

    SciTech Connect

    Wang, M.R.; Meng, H.C.

    1981-06-01

    High-power CO/sub 2/ laser radiation has been used to study the optical breakdown plasma on various solid targets (NaCl, KBr, ZnSe, and Ge). The breakdown threshold for irreversible changes of the optical characteristics was determined as well as the evaporation threshold of Na atoms from NaCl samples by CO/sub 2/ laser irradiation; the latter value was about 2.8 x 10/sup 7/ W/cm/sup 2/. The time profiles of the ejected Na atoms and the propagation of the atoms in front of the sample was measured with the laser fluorescence method.

  2. Selective optical pumping process in Doppler-broadened atoms

    SciTech Connect

    Liu Shuangqiang; Zhang Yundong; Fan Daikun; Wu Hao; Yuan Ping

    2011-04-10

    By solving the optical Bloch equations with the rate-equation approximation, we calculate the time dependence of the magnetic sublevel populations of Doppler-broadened atoms. With an increase of the left-circularly polarized pump intensity, the population fraction of a certain sublevel of the excited state almost reaches 0.3, resulting in anisotropy in the excited state, which is important to the optical filter based on circular birefringence and dichroism. Furthermore, numerical results show that the real saturation pump intensity for the moving atoms is much larger than that for the resting atoms.

  3. Editorial . Quantum fluctuations and coherence in optical and atomic structures

    NASA Astrophysics Data System (ADS)

    Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna

    2003-03-01

    From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics

  4. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    NASA Astrophysics Data System (ADS)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  5. Studies of Ultracold Strontium Atoms in an Optical Dipole Trap

    NASA Astrophysics Data System (ADS)

    Traverso, A. J.; Martinez de Escobar, Y. N.; Mickelson, P. G.; Killian, T. C.

    2008-05-01

    We survey recent experiments with ultracold strontium performed in our group. Trapping and cooling occurs in three stages: successive magneto-optical traps (MOTs) operating on 461 nm and 689 nm transitions of strontium, respectively, are loaded to cool atoms to a temperature of 1 μK. Finally, atoms are loaded into a far-off-resonance optical dipole trap (ODT). We examine the loading characteristics, thermalization, and lifetime of atoms held within the ODT. We also perform spectroscopy of atoms held within the ODT. During laser cooling, we are able to manipulate the energy levels of the atoms and shelve them into metastable states using 707 nm and 3 μm lasers. These experiments reveal interesting physics of ultracold strontium.

  6. Veselago lensing with ultracold atoms in an optical lattice.

    PubMed

    Leder, Martin; Grossert, Christopher; Weitz, Martin

    2014-01-01

    Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman π-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications.

  7. Editorial: Focus on Atom Optics and its Applications

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.

    2010-06-01

    Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of single atoms, potentially allowing solid state devices to be built atom by atom; some of which would be applicable in future quantum information processing devices. Selective manipulation of individual atoms also enables trace analysis of extremely rare isotopes. Additionally, sources of neutral atoms with high brightness are being developed and, if combined with photo ionization, even novel focused ion beam sources are within reach. Ultracold chemistry is fertilized by atomic techniques, when reactions of chemical constituents are investigated between ions, atoms, molecules, trapped or aligned in designed fields and cooled to ultra-low temperatures such that the reaction kinetics can be studied in a completely state-resolved manner. Focus on Atom Optics and its Applications Contents Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant F Sorrentino, Y-H Lien, G Rosi, L Cacciapuoti, M Prevedelli and G M Tino A single-atom detector integrated on an atom chip: fabrication, characterization and application D Heine, W Rohringer, D Fischer, M Wilzbach, T Raub, S Loziczky, XiYuan Liu, S Groth, B Hessmo and J Schmiedmayer Interaction of a propagating guided matter wave with a localized potential G L Gattobigio, A

  8. Focusing Light Beams To Improve Atomic-Vapor Optical Buffers

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy

    2010-01-01

    Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.

  9. Scanning Cryogenic Magnetometry with a 1D Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Straquadine, Joshua; Yang, Fan; Lev, Benjamin

    We present a novel scanning probe magnetometer suitable for cryogenic studies, in which the probe is a Bose-Einstein condensate of 87Rb. The system is designed for rapid sample changes and operation between 35 K and room temperature while remaining compatible with the UHV requirements of ultracold atom experiments. We demonstrate a spatial resolution (FWHM) of 2.6 μm and a repeatability of 1.9 +/- 1.0 nT. We also show that the system is operating close to the fundamental measurement limits set by photon shot noise and atom shot noise. Our scanning quantum cryogenic atom microscope is suitable for fundamental studies of transport and magnetism in condensed matter systems such as high-temperature superconductors and topological insulators. We discuss the advantages and applications of this magnetometry technique.

  10. Slow metastable atomic hydrogen beam by optical pumping

    NASA Astrophysics Data System (ADS)

    Harvey, K. C.

    1982-05-01

    A beam source of atomic hydrogen is described which produces metastable atoms in the 2S1/2 state by optical pumping. A beam flux of 1016 atoms/s is generated in the ground state. The atoms in the beam pass in front of a lamp producing Lyman-β (1026 Å) radiation, where some of them are excited to the 3P level and cascade with a branching ratio of 12% to the 2S1/2 state. The number of metastable atoms produced is measured by quenching them with an electric field and detecting the emitted Lyman-α (1216 Å) radiation. Beams of 106 metastable atoms/s were obtained. Using the Bethe-Lamb theory for the quenching process, a metastable beam effective temperature of 100 K was measured.

  11. All-optical vector atomic magnetometer.

    PubMed

    Patton, B; Zhivun, E; Hovde, D C; Budker, D

    2014-07-01

    We demonstrate an all-optical magnetometer capable of measuring the magnitude and direction of a magnetic field using nonlinear magneto-optical rotation in cesium vapor. Vector capability is added by effective modulation of the field along orthogonal axes and subsequent demodulation of the magnetic-resonance frequency. This modulation is provided by the ac Stark shift induced by circularly polarized laser beams. The sensor exhibits a demonstrated rms noise floor of ∼65  fT/√[Hz] in measurement of the field magnitude and 0.5  mrad/√[Hz] in the field direction; elimination of technical noise would improve these sensitivities to 12  fT/√[Hz] and 10  μrad/√[Hz], respectively. Applications for this all-optical vector magnetometer would include magnetically sensitive fundamental physics experiments, such as the search for a permanent electric dipole moment of the neutron. PMID:25032923

  12. All-Optical Vector Atomic Magnetometer

    NASA Astrophysics Data System (ADS)

    Patton, B.; Zhivun, E.; Hovde, D. C.; Budker, D.

    2014-07-01

    We demonstrate an all-optical magnetometer capable of measuring the magnitude and direction of a magnetic field using nonlinear magneto-optical rotation in cesium vapor. Vector capability is added by effective modulation of the field along orthogonal axes and subsequent demodulation of the magnetic-resonance frequency. This modulation is provided by the ac Stark shift induced by circularly polarized laser beams. The sensor exhibits a demonstrated rms noise floor of ˜65 fT/√Hz in measurement of the field magnitude and 0.5 mrad /√Hz in the field direction; elimination of technical noise would improve these sensitivities to 12 fT /√Hz and 10 μrad /√Hz , respectively. Applications for this all-optical vector magnetometer would include magnetically sensitive fundamental physics experiments, such as the search for a permanent electric dipole moment of the neutron.

  13. All-optical vector atomic magnetometer.

    PubMed

    Patton, B; Zhivun, E; Hovde, D C; Budker, D

    2014-07-01

    We demonstrate an all-optical magnetometer capable of measuring the magnitude and direction of a magnetic field using nonlinear magneto-optical rotation in cesium vapor. Vector capability is added by effective modulation of the field along orthogonal axes and subsequent demodulation of the magnetic-resonance frequency. This modulation is provided by the ac Stark shift induced by circularly polarized laser beams. The sensor exhibits a demonstrated rms noise floor of ∼65  fT/√[Hz] in measurement of the field magnitude and 0.5  mrad/√[Hz] in the field direction; elimination of technical noise would improve these sensitivities to 12  fT/√[Hz] and 10  μrad/√[Hz], respectively. Applications for this all-optical vector magnetometer would include magnetically sensitive fundamental physics experiments, such as the search for a permanent electric dipole moment of the neutron.

  14. Atom optics simulator of lattice transport phenomena

    NASA Astrophysics Data System (ADS)

    An, Fangzhao; Meier, Eric; Gadway, Bryce

    2016-05-01

    We report on a novel scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight binding models that can be simulated, we demonstrate that this technique allows for a local and time-dependent control over all system parameters, and additionally allows for single-site resolved detection of atomic populations. We demonstrate full control over site-to-site off-diagonal tunneling elements (amplitude and phase) and diagonal site-energies, through the observation of continuous time quantum walks, Bloch oscillations, and negative tunneling. These capabilities open up new prospects in the experimental study of disordered and topological systems.

  15. Micro-resonators coupled to atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Kitching, John

    2010-03-01

    Recently there has been a convergence of ideas between the fields of solid-state and atomic physics -- examples range from using atoms for quantum simulation of condensed-matter Hamiltonians to physically coupling atoms with solid-state devices such as micro-resonators. In this talk, we discuss an experimental proposal involving an array of cooled microcantilevers coupled to a sample of ultracold atoms trapped near a microfabricated surface [1]. The cantilevers allow individual lattice site addressing for atomic state control and readout, and potentially may be useful in optical lattice quantum computation schemes. Assuming resonators can be cooled to their vibrational ground state, we describe the implementation of a two-qubit controlled-NOT gate with atomic internal states and the motional states of the resonators, along with a protocol for entangling two or more cantilevers on the atom chip using the trapped atoms as an intermediary. Although similar experiments could be carried out with magnetic microchip traps, the optical confinement scheme we consider may exhibit reduced near-field magnetic noise and decoherence. Prospects for using this system for tests of quantum mechanics at macroscopic scales or quantum information processing will be discussed. [4pt] [1] A. Geraci and J. Kitching, Phys. Rev. A 80, 032317 (2009)

  16. Committee on Atomic, Molecular, and Optical Sciences (CAMOS)

    SciTech Connect

    Not Available

    1992-01-01

    The Committee on Atomic, Molecular and Optical Sciences (CAMOS) of the National Research Council (NRC) is charged with monitoring the health of the field of atomic, molecular, and optical (AMO) science in the United States. Accordingly, the Committee identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the CAMOS to meet its charge. This progress report presents a review of CAMOS activities from February 1, 1992 to January 31, 1993. This report also includes the status of activities associated with the CAMOS study on the field that is being conducted by the Panel on the Future of Atomic, Molecular, and Optical Sciences (FAMOS).

  17. Editorial: Focus on Atom Optics and its Applications

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.

    2010-06-01

    Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of single atoms, potentially allowing solid state devices to be built atom by atom; some of which would be applicable in future quantum information processing devices. Selective manipulation of individual atoms also enables trace analysis of extremely rare isotopes. Additionally, sources of neutral atoms with high brightness are being developed and, if combined with photo ionization, even novel focused ion beam sources are within reach. Ultracold chemistry is fertilized by atomic techniques, when reactions of chemical constituents are investigated between ions, atoms, molecules, trapped or aligned in designed fields and cooled to ultra-low temperatures such that the reaction kinetics can be studied in a completely state-resolved manner. Focus on Atom Optics and its Applications Contents Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant F Sorrentino, Y-H Lien, G Rosi, L Cacciapuoti, M Prevedelli and G M Tino A single-atom detector integrated on an atom chip: fabrication, characterization and application D Heine, W Rohringer, D Fischer, M Wilzbach, T Raub, S Loziczky, XiYuan Liu, S Groth, B Hessmo and J Schmiedmayer Interaction of a propagating guided matter wave with a localized potential G L Gattobigio, A

  18. A magneto-optical trap for radioactive atoms

    NASA Astrophysics Data System (ADS)

    Mariotti, E.; Khanbekyan, K.; Marinelli, C.; Marmugi, L.; Moi, L.; Corradi, L.; Dainelli, A.; Calabrese, R.; Mazzocca, G.; Tomassetti, L.; Minguzzi, P.

    2013-03-01

    This paper presents the recent results of the TrapRad/Francium collaboration whose final aim is the measurement of the Atomic Parity Non-Conservation effect (APNC) in Francium atoms stored in a Magneto - Optical Trap (MOT) built at the Laboratori Nazionali di Legnaro (LNL) of the National Institute for Nuclear Physics (INFN). Current developments and new strategies to enhance the trapping efficiency of Francium isotopes and to detect new spectroscopic features are reported.

  19. Evaluation of atomic constants for optical radiation, volume 1

    NASA Technical Reports Server (NTRS)

    Kylstra, C. D.; Schneider, R. J.

    1974-01-01

    Atomic constants for optical radiation are discussed which include transition probabilities, line strengths, and oscillator strengths for both dipole and quadrupole transitions, as well as the associated matrix elements needed for line broadening calculations. Atomic constants were computed for a wide selection of elements and lines. An existing computer program was used, with modifications to include, in an approximate manner, the effect of equivalent electrons, and to enable reordering and restructuring of the output for publication. This program is suitable for fast, low cost computation of the optical constants, using the Coulomb approximation formalism for LS coupling.

  20. Generating and probing entangled states for optical atomic clocks

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2016-05-01

    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  1. Clock Shifts of Optical Transitions in Ultracold Atomic Gases

    SciTech Connect

    Yu Zhenhua; Pethick, C. J.

    2010-01-08

    We calculate the shift, due to interatomic interactions, of an optical transition in an atomic Fermi gas trapped in an optical lattice, as in recent experiments of Campbell et al.[Science 324, 360 (2009)]. Using a pseudospin formalism to describe the density matrix of atoms, we derive a Bloch equation which incorporates both spatial inhomogeneity of the probe laser field and interatomic interactions. Expressions are given for the frequency shift as a function of pulse duration, detuning of the probe laser, and the spatial dependence of the electric field of the probe beam. In the low temperature semiclassical regime, we find that the magnitude of the shift is proportional to the temperature.

  2. Localisation of atomic populations in the optical radiation field

    SciTech Connect

    Efremova, E A; Gordeev, M Yu; Rozhdestvensky, Yu V

    2014-10-31

    The possibility of two-dimensional spatial localisation of atomic populations under the influence of the travelling wave fields in the tripod-configuration of quantum states is studied for the first time. Three travelling waves propagating in the same plane at an angle of 120° to each other form a system of standing waves under the influence of which atomic populations are localised. The size of the region of spatial localisation of the populations, in principle, can be hundredths of a wavelength of optical radiation. (quantum optics)

  3. Super-resolution microscopy of single atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Alberti, Andrea; Robens, Carsten; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter

    2016-05-01

    We report on image processing techniques and experimental procedures to determine the lattice-site positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in super-resolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This allows us to demonstrate super-resolution of the atoms’ position in closely packed ensembles where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with sub-pixel resolution from fluorescence images of single atoms, and we give a mathematical foundation thereof. We also discuss discretized image sampling in pixel detectors and provide a quantitative model of noise sources in electron multiplying CCD cameras. The techniques developed here are not only beneficial to neutral atom experiments, but could also be employed to improve the localization precision of trapped ions for ultra precise force sensing.

  4. Entanglement of Atomic Qubits Using an Optical Frequency Comb

    SciTech Connect

    Hayes, D.; Matsukevich, D. N.; Maunz, P.; Hucul, D.; Quraishi, Q.; Olmschenk, S.; Campbell, W.; Mizrahi, J.; Senko, C.; Monroe, C.

    2010-04-09

    We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.

  5. Entanglement of atomic qubits using an optical frequency comb.

    PubMed

    Hayes, D; Matsukevich, D N; Maunz, P; Hucul, D; Quraishi, Q; Olmschenk, S; Campbell, W; Mizrahi, J; Senko, C; Monroe, C

    2010-04-01

    We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.

  6. Investigating Cold Atom Transport in Optical Lattices and Ratchets

    NASA Astrophysics Data System (ADS)

    Zhong, Shan; Clements, Ethan; Pollock, Zach; Rapp, Anthony; Ross, Preston; Hachtel, Andrew; Bali, Samir

    2015-05-01

    We experimentally investigate cold atom transport in optical lattices and ratchets in an undergraduate setting using home-built laser and imaging systems. It is well-known that the transport properties exhibited in these situations by ultracold atoms depart from the usual framework of Boltzmann-Gibbs statistical mechanics. We describe methods to quantify these departures by tracking the atomic momentum and spatial distribution, and measuring the ``dwell time'' and ``crossover time,'' respectively, in a particular well and between wells. We gratefully acknowledge funding from Miami University Physics Department.

  7. Optical response of alkali metal atoms confined in nanoporous glass

    SciTech Connect

    Burchianti, A; Marinelli, C; Mariotti, E; Bogi, A; Marmugi, L; Giomi, S; Maccari, M; Veronesi, S; Moi, L

    2014-03-28

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  8. Atomic processes in optically thin plasmas

    NASA Astrophysics Data System (ADS)

    Kaastra, Jelle S.

    2015-08-01

    The Universe contains a broad range of plasmas with quite different properties depending on distinct physical processes. In this contribution I will give an overview of recent developments in modeling such plasmas with a focus on X-ray emission and absorption. Despite the fact that such plasmas have been investigated already for decades, and that overall there is a good understanding of the basic processes, there are still areas where improvements have to be made that are important for the analysis of astrophysical plasmas. I will present recent work on the update of atomic parameters in the codes that describe the emission from collisional plasmas, where older approximations are being replaced now by more accurate data. Further I discuss the development of models for photo-ionized plasmas in the context of outflows around supermassive black holes and models for charge transfer that are needed for analyzing the data from the upcoming ASTRO-H satellite.

  9. Laser action of optically pumped atomic titanium vapor

    NASA Astrophysics Data System (ADS)

    Ninomiya, H.; Hirata, K.

    1989-09-01

    Laser action has been observed on the titanium 551.4 nm, 3D0(1)-F2, transition. A nitrogen laser is used to produce the titanium vapor by irradiating a metal plate, and the titanium atoms are optically pumped by another nitrogen laser.

  10. Fiber-Optical Switch Controlled by a Single Atom

    NASA Astrophysics Data System (ADS)

    O'Shea, Danny; Junge, Christian; Volz, Jürgen; Rauschenbeutel, Arno

    2013-11-01

    We demonstrate highly efficient switching of optical signals between two optical fibers controlled by a single atom. The key element of our experiment is a whispering-gallery-mode bottle microresonator, which is coupled to a single atom and interfaced by two tapered fiber couplers. This system reaches the strong coupling regime of cavity quantum electrodynamics, leading to a vacuum Rabi splitting in the excitation spectrum. We systematically investigate the switching efficiency of our system, i.e., the probability that the fiber-optical switch redirects the light into the desired output. We obtain a large redirection efficiency reaching a raw fidelity of more than 60% without postselection. Moreover, by measuring the second-order correlation functions of the output fields, we show that our switch exhibits a photon-number-dependent routing capability.

  11. Optical Frequency Standards Based on Neutral Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Helmcke, Juergen

    The current status and prospects of optical frequency standards based on neutral atomic and molecular absorbers are reviewed. Special attention is given to an optical frequency standard based on cold Ca atoms which are interrogated with a pulsed excitation scheme leading to resolved line structures with a quality factor Q > 10^12. The optical frequency was measured by comparison with PTB's primary clock to be νCa = 455 986 240 494.13 kHz with a total relative uncertainty of 2.5 x10^-13. After a recent recommendation of the International Committee of Weights and Measures (CIPM), this frequency standard now represents one of the most accurate realizations of the length unit.

  12. Superfluorescence from optically trapped calcium atoms

    NASA Astrophysics Data System (ADS)

    Kumarakrishnan, A.; Han, X. L.

    1998-11-01

    We have studied superfluorescence (SF) under highly unfavorable conditions of rapid collisional and radiative distribution in a Doppler-broadened medium. Nanosecond SF pulses at 5.5 μm were generated on the Ca 4s4p 1P1-3d4s 1D2 transition from a column of calcium vapor buffered with Ar by optically pumping the 4s2 1S0-4s4p 1P1 transition. The Rabi frequency associated with the intense pump pulse prevents the occurrence of SF while the pump laser is on. As a result, the predicted scaling laws that describe the properties of SF in a transversely excited system, such as peak heights, pulse widths, and delay times, are shown to apply in our situation in which the conditions resemble swept excitation. The delay times were found to be in agreement with a fully quantum mechanical calculation which describes the initiation of SF. Measurements of the densities of the three levels, the absolute SF photon yield, and the spatial distribution of the excited states indicate that the system has a quantum yield of unity. The SF intensity increases with an increase in Ar pressure due to collisional redistribution until the collisional dephasing rate inhibits SF. The conditions describing the transition of SF to amplified spontaneous emission allow us to measure the collisional broadening rate for the SF transition.

  13. Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas

    SciTech Connect

    Romalis, M. V.

    2010-12-10

    Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N{sub 2}, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N{sub 2}. Such spin-exchange polarization transfer from optically thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-nondemolition spin measurements, and ultrasensitive magnetometry.

  14. Light scattering by ultracold atoms in an optical lattice

    SciTech Connect

    Rist, Stefan; Menotti, Chiara; Morigi, Giovanna

    2010-01-15

    We investigate theoretically light scattering of photons by ultracold atoms in an optical lattice in the linear regime. A full quantum theory for the atom-photon interactions is developed as a function of the atomic state in the lattice along the Mott-insulator-superfluid phase transition, and the photonic-scattering cross section is evaluated as a function of the energy and of the direction of emission. The predictions of this theory are compared with the theoretical results of a recent work on Bragg scattering in time-of-flight measurements [A.M. Rey et al., Phys. Rev. A 72, 023407 (2005)]. We show that, when performing Bragg spectroscopy with light scattering, the photon recoil gives rise to an additional atomic site-to-site hopping, which can interfere with ordinary tunneling of matter waves and can significantly affect the photonic-scattering cross section.

  15. Prospects for atomic magnetometers employing hollow core optical fibre

    NASA Astrophysics Data System (ADS)

    Ironside, C. N.; Seunarine, K.; Tandoi, G.; Luiten, A. N.

    2011-07-01

    Presently, among the most demanding applications for highly sensitive magnetometers are Magnetocardiography (MCG) and Magnetoencephalography (MEG), where sensitivities of around 1pT.Hz-1/2 and 1fT.Hz-1/2 are required. Cryogenic Superconducting Quantum Interference Devices (SQUIDs) are currently used as the magnetometers. However, there has been some recent work on replacing these devices with magnetometers based on atomic spectroscopy and operating at room temperature. There are demonstrations of MCG and MEG signals measured using atomic spectroscopy These atomic magnetometers are based on chip-scale microfabricated components. In this paper we discuss the prospects of using photonic crystal optical fibres or hollow core fibres (HCFs) loaded with Rb vapour in atomic magnetometer systems. We also consider new components for magnetometers based on mode-locked semiconductor lasers for measuring magnetic field via coherent population trapping (CPT) in Rb loaded HCFs.

  16. Counting Atoms Using Interaction Blockade in an Optical Superlattice

    SciTech Connect

    Cheinet, P.; Trotzky, S.; Schnorrberger, U.; Moreno-Cardoner, M.; Foelling, S.; Bloch, I.; Feld, M.

    2008-08-29

    We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to the Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid and Mott insulating regime of {sup 87}Rb.

  17. Magic-wavelength optical traps for Rydberg atoms

    SciTech Connect

    Zhang, S.; Saffman, M.; Robicheaux, F.

    2011-10-15

    We propose blue-detuned optical traps that are suitable for trapping of both ground-state and Rydberg excited atoms. The addition of a background compensation field or a suitable choice of the trap geometry provides a magic trapping condition for ground-state and Rydberg atoms at the trap center. Deviations from the magic condition at finite temperature are calculated. Designs that achieve less than 200-kHz differential trap shift between Cs ground states and 125s Rydberg states for 10 {mu}K Cs atoms are presented. Consideration of the trapping potential and photoionization rates suggests that these traps will be useful for quantum-information experiments with atomic qubits.

  18. Dynamical phase interferometry of cold atoms in optical lattices

    SciTech Connect

    London, Uri; Gat, Omri

    2011-12-15

    We study the propagation of cold-atom wave packets in an interferometer with a Mach-Zehnder topology based on the dynamical phase of Bloch oscillation in a weakly forced optical lattice with a narrow potential barrier that functions as a cold-atom wave-packet splitter. We calculate analytically the atomic wave function, and show that the expected number of atoms in the two outputs of the interferometer oscillates rapidly as a function of the angle between the potential barrier and the forcing direction with period proportional to the external potential difference across a lattice spacing divided by the lattice band energy scale. The interferometer can be used as a high-precision force probe whose principle of operation is different from current interferometers based on the overall position of Bloch oscillating wave packets.

  19. Committee on Atomic, Molecular, and Optical Sciences (CAMOS)

    SciTech Connect

    Not Available

    1992-01-01

    The Committee on Atomic, Molecular, and Optical Sciences is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences -- National Research Council. The atomic, molecular, and optical (AMO) sciences represent a broad and diverse field in which much of the research is carried out by small groups. These groups generally have not operated in concert with each other and, prior to the establishment of CAMOS, there was no single committee or organization that accepted the responsibility of monitoring the continuing development and assessing the general public health of the field as a whole. CAMOS has accepted this responsibility and currently provides a focus for the AMO community that is unique and essential. The membership of CAMOS is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include atomic physics, molecular science, and optics. A special effort has been made to include a balanced representation from the three subfields. (A roster is attached.) CAMOS has conducted a number of studies related to the health of atomic and molecular science and is well prepared to response to requests for studies on specific issues. This report brief reviews the committee work of progress.

  20. Weak Interaction Measurements with Optically Trapped Radioactive Atoms

    SciTech Connect

    Vieira, D.J.; Crane, S.G.; Guckert, R.; Zhao, X.; Brice, S.J.; Goldschmidt, A.; Hime, A.; Tupa, D.

    1999-07-16

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to apply the latest in magneto-optical and pure magnetic trapping technology to concentrate, cool, confine, and polarize radioactive atoms for precise electroweak interaction measurements. In particular, the authors have concentrated their efforts on the trapping of {sup 82}Rb for a parity-violating, beta-asymmetry measurement. Progress has been made in successfully trapping of up to 6 million {sup 82}Rb(t{sub 1/2}=75s) atoms in a magneto-optical trap coupled to a mass separator. This represents a two order of magnitude improvement in the number trapped radioactive atoms over all previous work. They have also measured the atomic hyperfine structure of {sup 82}Rb and demonstrated the MOT-to-MOT transfer and accumulation of atoms in a second trap. Finally, they have constructed and tested a time-orbiting-potential magnetic trap that will serve as a rotating beacon of spin-polarized nuclei and a beta-telescope detection system. Prototype experiments are now underway with the initial goal of making a 1% measurements of the beta-asymmetry parameter A which would match the world's best measurements.

  1. Atomic and molecular data for optical stellar spectroscopy

    NASA Astrophysics Data System (ADS)

    Heiter, U.; Lind, K.; Asplund, M.; Barklem, P. S.; Bergemann, M.; Magrini, L.; Masseron, T.; Mikolaitis, Š.; Pickering, J. C.; Ruffoni, M. P.

    2015-05-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2-10 m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre. We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 105 stars.

  2. Gain and lasing of optically pumped metastable rare gas atoms

    NASA Astrophysics Data System (ADS)

    Han, Jiande; Heaven, Michael C.

    2012-11-01

    Optically pumped atomic gas lasers are currently being developed in several laboratories. The objective is to construct high-powered lasers that also exhibit excellent beam quality. This is achieved by using the gas laser medium to phase combine the outputs from multiple solid state lasers. To date, the focus has been on optically pumped alkali vapor lasers. Considerable progress has been made, but there are technical challenges associated with the reactivity of the metal atoms. Rare gas atoms (Rg) excited to the np5(n+1)s 3P2 configuration are metastable and have spectral properties that are closely similar to those of the alkali metals. In principle, optically pumped lasers could be constructed using excitation of the np5(n+1)p <-- np5(n+1)s transitions. We have demonstrated this potential by observing gain and lasing for optically pumped Ne*, Ar*, Kr* and Xe*. Three-level lasing schemes were used, with He or Ar as the collisional energy transfer agent that established the population inversion. These laser systems have the advantage using inert reagents that are gases at room temperature.

  3. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    NASA Astrophysics Data System (ADS)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  4. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    SciTech Connect

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P.

    2006-01-15

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  5. All-optical reconstruction of atomic ground-state population

    NASA Astrophysics Data System (ADS)

    London, P.; Firstenberg, O.; Shuker, M.; Ron, A.

    2010-04-01

    The population distribution within the ground state of an atomic ensemble is of great significance in a variety of quantum-optics processes. We present a method to reconstruct the detailed population distribution from a set of absorption measurements with various frequencies and polarizations, by utilizing the differences between the dipole matrix elements of the probed transitions. The technique is experimentally implemented on a thermal rubidium vapor, demonstrating a population-based analysis in two optical-pumping examples. The results are used to verify and calibrate an elaborated numerical model, and the limitations of the reconstruction scheme, which result from the symmetry properties of the dipole matrix elements, are discussed.

  6. Four-channel optically pumped atomic magnetometer for magnetoencephalography.

    PubMed

    Colombo, Anthony P; Carter, Tony R; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N; Dagel, Amber L; Schwindt, Peter D D

    2016-07-11

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization.

  7. Four-channel optically pumped atomic magnetometer for magnetoencephalography.

    PubMed

    Colombo, Anthony P; Carter, Tony R; Borna, Amir; Jau, Yuan-Yu; Johnson, Cort N; Dagel, Amber L; Schwindt, Peter D D

    2016-07-11

    We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization. PMID:27410816

  8. Collisional shifts in optical-lattice atom clocks

    SciTech Connect

    Band, Y. B.; Vardi, A.

    2006-09-15

    We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of {pi} between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts.

  9. Accurate Optical Lattice Clock with {sup 87}Sr Atoms

    SciTech Connect

    Le Targat, Rodolphe; Baillard, Xavier; Fouche, Mathilde; Brusch, Anders; Tcherbakoff, Olivier; Rovera, Giovanni D.; Lemonde, Pierre

    2006-09-29

    We report a frequency measurement of the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition of {sup 87}Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2x10{sup -13}, i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.

  10. Optical detection of the quantization of collective atomic motion.

    PubMed

    Brahms, Nathan; Botter, Thierry; Schreppler, Sydney; Brooks, Daniel W C; Stamper-Kurn, Dan M

    2012-03-30

    We directly measure the quantized collective motion of a gas of thousands of ultracold atoms, coupled to light in a high-finesse optical cavity. We detect strong asymmetries, as high as 3:1, in the intensity of light scattered into low- and high-energy motional sidebands. Owing to high cavity-atom cooperativity, the optical output of the cavity contains a spectroscopic record of the energy exchanged between light and motion, directly quantifying the heat deposited by a quantum position measurement's backaction. Such backaction selectively causes the phonon occupation of the observed collective modes to increase with the measurement rate. These results, in addition to providing a method for calibrating the motion of low-occupation mechanical systems, offer new possibilities for investigating collective modes of degenerate gases and for diagnosing optomechanical measurement backaction.

  11. Optical microcavity: sensing down to single molecules and atoms.

    PubMed

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  12. Dynamical entanglement purification using chains of atoms and optical cavities

    SciTech Connect

    Gonta, Denis; Loock, Peter van

    2011-10-15

    In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.

  13. Optical dipole trapping of radium atoms for EDM search

    NASA Astrophysics Data System (ADS)

    Trimble, W. L.; Sulai, I. A.; Parker, R. H.; Bailey, K.; Greene, J. P.; Holt, R. J.; Korsch, W.; Lu, Z.-T.; Mueller, P.; O'Connor, T. P.; Singh, J.

    2010-03-01

    We are developing an EDM search based on laser-cooled and trapped Ra-225 (half-life = 15 d) atoms. Due to octupole deformation of the nucleus, Ra-225 is predicted to be 2-3 orders of magnitude more sensitive to T-violating interactions than Hg-199, which currently sets the most stringent limits in the nuclear sector. Recently, we have succeeded in transferring Ra-226 atoms from a MOT into an optical dipole trap formed by a fiber laser beam at 1550 nm. For the EDM measurement, the cold atoms will be moved into the neighboring vacuum chamber inside magnetic shields where a pair of electrodes apply a 10 kV cm-1electric field. This work is supported by DOE, Office of Nuclear Physics under contract No. DE-AC02-06CH11357.

  14. Electromagnetically induced optical anisotropy of an ultracold atomic medium

    NASA Astrophysics Data System (ADS)

    Datsyuk, V. M.; Sokolov, I. M.; Kupriyanov, D. V.; Havey, M. D.

    2008-03-01

    We consider radiative transport in ultracold atomic systems under conditions of electromagnetically induced transparency. We calculate the macroscopic susceptibility and scattering tensors of the light and show that essential anisotropic optical properties such as dichroism and birefringence naturally appear. In such a case, light propagation through a spatially nonhomogeneous atomic cloud is considered for an arbitrary direction of the probe light. We determine the polarization properties of the coherently transmitted probe light as well as the polarization dependence of light incoherently scattered in an arbitrary direction. Both the steady state regime and time-dependent case are discussed. Concrete calculations are performed for the case of an inhomogeneous and ultracold sample of R87b atoms.

  15. Modifying atom-surface interactions with optical fields

    NASA Astrophysics Data System (ADS)

    Perreault, John D.; Bhattacharya, M.; Lonij, Vincent P. A.; Cronin, Alexander D.

    2008-04-01

    The ability to control matter on the nanometer scale is greatly influenced by the van der Waals (vdW) interaction. Therefore, understanding and manipulating the vdW interaction is of interest to the fields of nanotechnology and atom optics. We show that near-resonant light can significantly modify atom-surface vdW interactions in the nonretarded regime. A theory based on quantized electromagnetic fields is used to calculate (1) the ordinary vdW interaction, (2) corrections to the ordinary vdW interaction due to thermal radiation, and (3) modifications to the ordinary vdW interaction that result from monochromatic (laser) radiation. Near-resonant laser light with an intensity of 5W/cm2 is predicted to double the vdW interaction strength for sodium atoms, and possible experiments to detect this effect are discussed.

  16. SLAC All Access: Atomic, Molecular and Optical Science Instrument

    ScienceCinema

    Bozek, John

    2016-07-12

    John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.

  17. SLAC All Access: Atomic, Molecular and Optical Science Instrument

    SciTech Connect

    Bozek, John

    2013-11-05

    John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.

  18. An elementary quantum network of single atoms in optical cavities.

    PubMed

    Ritter, Stephan; Nölleke, Christian; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Joerg; Rempe, Gerhard

    2012-04-11

    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.

  19. Optical lattice clock with atoms confined in a shallow trap

    SciTech Connect

    Lemonde, Pierre; Wolf, Peter

    2005-09-15

    We study the trap depth requirement for the realization of an optical clock using atoms confined in a lattice. We show that site-to-site tunneling leads to a residual sensitivity to the atom dynamics hence requiring large depths [(50-100)E{sub r} for Sr] to avoid any frequency shift or line broadening of the atomic transition at the 10{sup -17}-10{sup -18} level. Such large depths and the corresponding laser power may, however, lead to difficulties (e.g., higher-order light shifts, two-photon ionization, technical difficulties) and therefore one would like to operate the clock in much shallower traps. To circumvent this problem we propose the use of an accelerated lattice. Acceleration lifts the degeneracy between adjacents potential wells which strongly inhibits tunneling. We show that using the Earth's gravity, much shallower traps (down to 5E{sub r} for Sr) can be used for the same accuracy goal.

  20. Editorial . Quantum fluctuations and coherence in optical and atomic structures

    NASA Astrophysics Data System (ADS)

    Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna

    2003-03-01

    From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics

  1. Cold collisions of atomic hydrogen with antihydrogen atoms: An optical potential approach

    SciTech Connect

    Zygelman, B.; Saenz, Alejandro; Froelich, P.; Jonsell, S.

    2004-04-01

    We present a theory that describes the interaction of hydrogen atoms with antihydrogen at subkelvin temperatures. The formalism includes a nonlocal complex optical potential, whose imaginary component describes the breakup of the H-H-bar complex into positronium and protonium fragments. Using ab inito methods, we construct the imaginary part of the optical potential and calculate the cross sections for fragmentation in ultracold collisions of H and H-bar. We find a 35% reduction in the value of the scattering length from that obtained in the Born-Oppenheimer approximation. We estimate the lifetimes for quasibound states of this complex to fragment into a protonium-positronium pair.

  2. Quantum Hall physics with cold atoms in cylindrical optical lattices

    NASA Astrophysics Data System (ADS)

    Łåcki, Mateusz; Pichler, Hannes; Sterdyniak, Antoine; Lyras, Andreas; Lembessis, Vassilis E.; Al-Dossary, Omar; Budich, Jan Carl; Zoller, Peter

    2016-01-01

    We propose and study various realizations of a Hofstadter-Hubbard model on a cylinder geometry with fermionic cold atoms in optical lattices. The cylindrical optical lattice is created by copropagating Laguerre-Gauss beams, i.e., light beams carrying orbital angular momentum. By strong focusing of the light beams we create a real-space optical lattice in the form of rings, which are offset in energy. A second set of Laguerre-Gauss beams then induces a Raman-hopping between these rings, imprinting phases corresponding to a synthetic magnetic field (artificial gauge field). In addition, by rotating the lattice potential, we achieve a slowly varying flux through the hole of the cylinder, which allows us to probe the Hall response of the system as a realization of Laughlin's thought experiment. We study how in the presence of interactions fractional quantum Hall physics could be observed in this setup.

  3. Vector Magnetometry Using Silicon Vacancies in 4 H -SiC Under Ambient Conditions

    NASA Astrophysics Data System (ADS)

    Niethammer, Matthias; Widmann, Matthias; Lee, Sang-Yun; Stenberg, Pontus; Kordina, Olof; Ohshima, Takeshi; Son, Nguyen Tien; Janzén, Erik; Wrachtrup, Jörg

    2016-09-01

    Point defects in solids promise precise measurements of various quantities. Especially magnetic field sensing using the spin of point defects has been of great interest recently. When optical readout of spin states is used, point defects achieve optical magnetic imaging with high spatial resolution at ambient conditions. Here, we demonstrate that genuine optical vector magnetometry can be realized using the silicon vacancy in SiC, which has an uncommon S =3 /2 spin. To this end, we develop and experimentally test sensing protocols based on a reference field approach combined with multifrequency spin excitation. Our work suggests that the silicon vacancy in an industry-friendly platform, SiC, has the potential for various magnetometry applications under ambient conditions.

  4. Optimizing phase-estimation algorithms for diamond spin magnetometry

    NASA Astrophysics Data System (ADS)

    Nusran, N. M.; Dutt, M. V. Gurudev

    2014-07-01

    We present a detailed theoretical and numerical study discussing the application and optimization of phase-estimation algorithms (PEAs) to diamond spin magnetometry. We compare standard Ramsey magnetometry, the nonadaptive PEA (NAPEA), and quantum PEA (QPEA) incorporating error checking. Our results show that the NAPEA requires lower measurement fidelity, has better dynamic range, and greater consistency in sensitivity. We elucidate the importance of dynamic range to Ramsey magnetic imaging with diamond spins, and introduce the application of PEAs to time-dependent magnetometry.

  5. Nonperturbative atom-photon interactions in an optical cavity

    SciTech Connect

    Carmichael, H.J.; Tian, L.; Ren, W.

    1994-12-31

    One of the principal developments in cavity quantum electrodynamics in the last few years has been the extension of the ideas originally applied to systems of Rydberg atoms in microwave cavities to optical frequencies. As a corollary of this, more attention is being paid to quantum fluctuations and photon statistics. Another development, still in its infancy, is a move toward experiments using slowed or trapped atoms, or velocity selected beams; these methods are needed to enter the nonperturbative (strong dipole coupling) regime for one atom where there are experiments on subtle quantum-statistical effects go carry out. In this chapter we solve a number of theoretical problems related to these themes. Although the focus of the work is on optical systems, most of what we do is also relevant at microwave frequencies. We emphasize quantum fluctuations and photon statistics, and we try always to separate the quantum physics from those aspects of the physics that are understandable in classical terms. On the whole we only pay attention to the nonperturbative regime of cavity quantum electrodynamics where the dipole coupling strength is larger than the dissipation rates. 59 refs., 14 figs.

  6. Atmospheric turbulence optical model (ATOM) based on fractal theory

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Scoggins, Jim; Carroll, Marvin P.

    1994-06-01

    An Atmospheric Turbulence Optical Model (ATOM) is presented that used cellular automata (CA) rules as the basis for modeling synthetic phase sheets. This method allows image fracture, scintillation and blur to be correctly models using the principle of convolution with a complex kernel derived from CA rules interaction. The model takes into account the changing distribution of turbules from micro-turbule domination at low altitudes to macro-domination at high altitudes. The wavelength of propagating images (such as a coherent laser beam) and the range are taken into account. The ATOM model is written in standard FORTRAN 77 and enables high-speed in-line calculation of atmospheric effects to be performed without resorting to computationally intensive solutions of Navier Stokes equations or Cn2 profiles.

  7. Spin Gradient Thermometry for Ultracold Atoms in Optical Lattices

    SciTech Connect

    Weld, David M.; Medley, Patrick; Miyake, Hirokazu; Hucul, David; Pritchard, David E.; Ketterle, Wolfgang

    2009-12-11

    We demonstrate spin gradient thermometry, a new general method of measuring the temperature of ultracold atoms in optical lattices. We realize a mixture of spins separated by a magnetic field gradient. Measurement of the width of the transition layer between the two spin domains serves as a new method of thermometry which is observed to work over a broad range of lattice depths and temperatures, including in the Mott insulator regime. We demonstrate the thermometry using ultracold rubidium atoms, and suggest that interesting spin physics can be realized in this system. The lowest measured temperature is 1 nK, indicating that the system has reached the quantum regime, where insulating shells are separated by superfluid layers.

  8. Controllable 3D atomic Brownian motor in optical lattices

    NASA Astrophysics Data System (ADS)

    Dion, C. M.; Sjölund, P.; Petra, S. J. H.; Jonsell, S.; Nylén, M.; Sanchez-Palencia, L.; Kastberg, A.

    2008-06-01

    We study a Brownian motor, based on cold atoms in optical lattices, where atomic motion can be induced in a controlled manner in an arbitrary direction, by rectification of isotropic random fluctuations. In contrast with ratchet mechanisms, our Brownian motor operates in a potential that is spatially and temporally symmetric, in apparent contradiction to the Curie principle. Simulations, based on the Fokker-Planck equation, allow us to gain knowledge on the qualitative behaviour of our Brownian motor. Studies of Brownian motors, and in particular ones with unique control properties, are of fundamental interest because of the role they play in protein motors and their potential applications in nanotechnology. In particular, our system opens the way to the study of quantum Brownian motors.

  9. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    PubMed Central

    Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738

  10. Progress towards magnetometry with nitrogen-vacancy ensembles in diamond

    NASA Astrophysics Data System (ADS)

    Acosta, Victor; Bauch, Erik; Ledbetter, Micah; Budker, Dmitry

    2009-05-01

    Optical magnetometers based on spin-precession in alkali-vapor cells can measure magnetic felds with great precision and without cryogenics, however spin-altering collisions limit the sensitivity of small sensors [1]. Paramagnetic impurities in diamond, on the other hand, are a promising system for mm- and μm-scale magnetometers, because diamond has a high Debye temperature (TD =2230 K) and ^12C has zero nuclear spin, which translates into long spin coherence times (approaching 1 ms [2]) at room temperature. Diamond is also optically transparent over a wide range of wavelengths and is chemically inert. Nitrogen-Vacancy (NV) centers have a spin-triplet ground state and convenient optical transitions, allowing for efficient optical pumping and magnetic detection. Recently, single NV-centers were used for nm-scale magnetometry. Here we discuss progress towards the development of a high-density NV-ensemble magnetometer. The spin-projection noise-limited sensitivity is estimated to be at or below the fT/Hz level for mm-scale devices [3]. [1] D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007). [2] T. Gaebel et. al., Nat. Phys. 2, 408 (2006). [3] J. M. Taylor et. al., Nat. Phys. 4, 810 (2008).

  11. Effective Dirac dynamics of ultracold atoms in bichromatic optical lattices

    SciTech Connect

    Witthaut, D.; Salger, T.; Kling, S.; Grossert, C.; Weitz, M.

    2011-09-15

    We study the dynamics of ultracold atoms in tailored bichromatic optical lattices. By tuning the lattice parameters, one can readily engineer the band structure and realize a Dirac point, i.e., a true crossing of two Bloch bands. The dynamics in the vicinity of such a crossing is described by the one-dimensional Dirac equation, which is rigorously shown beyond the tight-binding approximation. Within this framework we analyze the effects of an external potential and demonstrate numerically that it is possible to demonstrate Klein tunneling with current experimental setups.

  12. Tunneling behavior of ultracold atoms in optical traps

    NASA Astrophysics Data System (ADS)

    Wang, Binglu; Ma, Yanhua; Shen, Man; Li, Hong

    2016-07-01

    We investigate the tunneling of ultracold atoms in optical traps by using the path-integral method. We obtain the decay rate for tunneling out of a single-well and discuss how the rate is affected by the level splitting caused by the presence of a second adjacent well. Our calculations show that the transition through the potential barrier can be divided into three regions: the quantum tunneling region, the thermally assisted region and the thermal activation region. The tunneling process is found to be a second-order transition. We also show that level splitting due to tunneling can increase the tunneling rate.

  13. Measurements of optical Feshbach resonances of 174Yb atoms

    NASA Astrophysics Data System (ADS)

    Kim, Min-Seok; Lee, Jeongwon; Lee, Jae Hoon; Shin, Y.; Mun, Jongchul

    2016-10-01

    We present measurements of the optical Feshbach resonances (OFRs) of 174Yb atoms for the intercombination transition. We measure the photoassociation (PA) spectra of a pure 174Yb Bose-Einstein condensate (BEC) and determine the dependence of OFRs on PA laser intensities and frequencies for four least-bound vibrational levels near the intercombination transition. We confirm that our measurements are consistent with the temporal decay of a BEC subjected to a PA beam in the vicinity of the fourth vibrational level from the dissociation limit.

  14. Rapid characterization of fuel atomizers using an optical patternator

    SciTech Connect

    Sankar, S.V.; Maher, K.E.; Robart, D.M.; Bachalo, W.D.

    1999-07-01

    Planar laser scattering (PLS) and planar laser-induced fluorescence (PLIF) techniques are currently being used for rapid characterization of fuel sprays associated with gas turbine atomizers, diesel injectors, and automotive fuel injectors. These techniques can be used for qualitative, quantitative, and rapid measurement of fuel mass, spray geometry, and Sauter mean diameters in various sprays. The spatial distribution of the fuel mass can be inferred directly from the PLIF image, and the Sauter mean diameter can be measured by simultaneously recording the PLIF and PLS images and then rationing the two. A spray characterization system incorporating the PLS and/or PLIF techniques has been loosely termed an optical patternator, and in this study, it has been used to characterize both steady and pulsed sprays. The results obtained with the optical patternator have been directly validated using a phase Doppler particle analyzer (PDPA).

  15. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.

    PubMed

    Taichenachev, A V; Yudin, V I; Ovsiannikov, V D; Pal'chikov, V G

    2006-10-27

    The light-induced frequency shift due to hyperpolarizability (i.e., terms of second-order in intensity) is studied for a forbidden optical transition, J = 0 --> J = 0. A simple universal dependence on the field ellipticity is obtained. This result allows minimization of the second-order light shift with respect to the field polarization for optical lattices operating at a magic wavelength (at which the first-order shift vanishes). We show the possibility for the existence of a magic elliptical polarization, for which the second-order frequency shift vanishes. The optimal polarization of the lattice field can be either linear, circular, or magic elliptical. The obtained results could improve the accuracy of lattice-based atomic clocks.

  16. Quantum engineering of atomic phase shifts in optical clocks

    NASA Astrophysics Data System (ADS)

    Zanon-Willette, T.; Almonacil, S.; de Clercq, E.; Ludlow, A. D.; Arimondo, E.

    2014-11-01

    Quantum engineering of time-separated Raman laser pulses in three-level systems is presented to produce an ultranarrow optical transition in bosonic alkali-earth clocks free from light shifts and with a significantly reduced sensitivity to laser parameter fluctuations. Based on a quantum artificial complex wave-function analytical model and supported by a full density-matrix simulation including a possible residual effect of spontaneous emission from the intermediate state, atomic phase shifts associated with Ramsey and hyper-Ramsey two-photon spectroscopy in optical clocks are derived. Various common-mode Raman frequency detunings are found in which the frequency shifts from off-resonant states are canceled, while their uncertainties at the 10-18 level of accuracy are strongly reduced.

  17. Tunable rubidium excited state Voigt atomic optical filter.

    PubMed

    Yin, Longfei; Luo, Bin; Xiong, Junyu; Guo, Hong

    2016-03-21

    A tunable rubidium excited state Voigt atomic optical filter working at optical communication wavelength (1.5 μm) is realized. The filter achieves a peak transmittance of 57.6% with a double-peak structure, in which each one has a bandwidth of 600 MHz. Benefiting from the Voigt type structure, the magnetic field of the filter can be tuned from 0 to 1600 gauss, and a peak transmittance tunability of 1.6 GHz can thus be realized. Different from the excited state Faraday type filter, the pump efficiency in the Voigt filter is affected a lot by the pump polarization. Measured absorption results of the pump laser and transmittances of the signal laser both prove that the vertical linear polarization pumping is the most efficient in the Voigt filter. PMID:27136803

  18. High sensitivity ancilla assisted nanoscale DC magnetometry

    NASA Astrophysics Data System (ADS)

    Liu, Yixiang; Ajoy, Ashok; Marseglia, Luca; Saha, Kasturi; Cappellaro, Paola

    2016-05-01

    Sensing slowly varying magnetic fields are particularly relevant to many real world scenarios, where the signals of interest are DC or close to static. Nitrogen Vacancy (NV) centers in diamond are a versatile platform for such DC magnetometry on nanometer length scales. Using NV centers, the standard technique for measuring DC magnetic fields is via the Ramsey protocol, where sensitivities can approach better than 1 μ T/vHz, but are limited by the sensor fast dephasing time T2*. In this work we instead present a method of sensing DC magnetic fields that is intrinsically limited by the much longer T2 coherence time. The method exploits a strongly-coupled ancillary nuclear spin to achieve high DC field sensitivities potentially exceeding that of the Ramsey method. In addition, through this method we sense the perpendicular component of the DC magnetic field, which in conjunction with the parallel component sensed by the Ramsey method provides a valuable tool for vector DC magnetometry at the nanoscale.

  19. Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock

    SciTech Connect

    Chang, D.E.; Lukin, M.D.; Ye Jun

    2004-02-01

    Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock transition frequency. These interactions are mediated by the dipole fields associated with the optically excited atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appropriately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.

  20. Raman q-plates for Singular Atom Optics

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-05-01

    We use a coherent two-photon Raman interaction as the atom-optic equivalent of a birefringent optical q-plate to facilitate spin-to-orbital angular momentum conversion in a pseudo-spin-1/2 BEC. A q-plate is a waveplate with a fixed retardance but a spatially varying fast axis orientation angle. We derive the time evolution operator for the system and compare it to a Jones matrix for an optical waveplate to show that in our Raman q-plate, the equivalent orientation of the fast axis is described by the relative phase of the Raman beams and the retardance is determined by the pulse area. The charge of the Raman q-plate is determined by the orbital angular momentum of the Raman beams, and the beams contain umbilic C-point polarization singularities which are imprinted into the condensate as spin singularities: lemons, stars, spirals, and saddles. By tuning the optical beam parameters, we can create a full-Bloch BEC, which is a coreless vortex that contains every possible superposition of two spin states, that is, it covers the Bloch sphere.

  1. Gain and Lasing of Optically Pumped Metastable Rare Gas Atoms

    NASA Astrophysics Data System (ADS)

    Han, Jiande; Heaven, Michael C.

    2012-06-01

    In recent years there have been concerted efforts to develop high energy diode-pumped alkali vapor lasers (DPAL). These hybrid gas phase / solid state laser systems offer possibilities for constructing high-powered lasers that have high beam quality. DPAL's utilize excitation of the alkali metal 2P3/2 ← 2S1/2 transition, followed by collisional relaxation and lasing on the 2P1/2 → 2S1/2 line. Considerable progress has been made, but there are technical challenges associated with the reactivity of the metal atoms. Rare gas atoms (Rg) excited to the n{p}5(n+1){s} 3P2 configuration are metastable and have spectral properties that are closely similar to those of the alkali metals. In principle, optically pumped lasers could be constructed using excitation of the n{p}5(n+1){p} ← n{p}5(n+1){s} transitions. We have recently demonstrated gain and lasing for optically pumped Ar*, Kr* and Xe*. Three-level lasing schemes were used, with He as the collisional energy transfer agent that established the population inversion. These laser systems have the advantage using inert reagents that are gases at room temperature.

  2. Optical switching and bistability in four-level atomic systems

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Dasgupta, Shubhrangshu

    2016-08-01

    We explore the coherent control of nonlinear absorption of intense laser fields in four-level atomic systems. For instance, in a four-level ladder system, a coupling field creates electromagnetically induced transparency (EIT) with an Aulter-Townes doublet for the probe field while the control field is absent. A large absorption peak appears at resonance as the control field is switched on. We show how such a large absorption leads to optical switching. Further, this large absorption diminishes and a transparency window appears due to the saturation effects as the strength of the probe field is increased. We further demonstrate that the threshold of the optical bistability can be modified by suitable choices of the coupling and the control fields. In a four-level Y -type configuration, the effect of the control field on saturable absorption (SA) and reverse saturable absorption (RSA) is highlighted in the context of nonlinear absorption of the probe field. We achieve RSA and SA in a simple atomic system just by applying a control field.

  3. Simultaneous magneto-optical trapping of a boson-fermion mixture of metastable helium atoms.

    PubMed

    Stas, R J W; McNamara, J M; Hogervorst, W; Vassen, W

    2004-07-30

    We simultaneously confine fermionic metastable 3He atoms and bosonic metastable 4He atoms in a magneto-optical trap. The trapped clouds, containing up to 1.5 x 10(8) atoms of each isotope, are characterized by measuring ions and metastable helium atoms escaping from the trap. Optical pumping of 3He atoms to a nontrapped hyperfine state is investigated and it is shown that large atom numbers can be confined without additional repumping lasers. Unique possibilities for quantum degeneracy experiments with mixtures of spin-polarized metastable 3He and 4He atoms are indicated.

  4. Measurement of the atom number distribution in an optical tweezer using single-photon counting

    SciTech Connect

    Fuhrmanek, A.; Sortais, Y. R. P.; Grangier, P.; Browaeys, A.

    2010-08-15

    We demonstrate in this paper a method to reconstruct the atom number distribution of a cloud containing a few tens of cold atoms. The atoms are first loaded from a magneto-optical trap into a microscopic optical dipole trap and then released in a resonant light probe where they undergo a Brownian motion and scatter photons. We count the number of photon events detected on an image intensifier. Using the response of our detection system to a single atom as a calibration, we extract the atom number distribution when the trap is loaded with more than one atom. The atom number distribution is found to be compatible with a Poisson distribution.

  5. Atomic, Molecular, and Optical Physics Workshop Final Report

    SciTech Connect

    Armstrong, Jr., Lloyd

    1997-09-21

    This document contains the final reports from the five panels that comprised a Workshop held to explore future directions, scientific impacts and technological connections of research in Atomic, Molecular and Optical Physics. This workshop was sponsored by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and was held at the Westfields International Conference Center in Chantilly, Virginia on September 21-24, 1997. The workshop was chaired by Lloyd Armstrong, Jr., University of Southern California and the five panels focused on the following topics: Panel A: Interactions of Atoms and Molecules with Photons - Low Field Daniel Kleppner (Massachusetts Institute of Technology), chair Panel B: Interactions of Atoms and Molecules with Photons - High Field Phil Bucksbaum (University of Michigan), chair Panel C: Surface Interactions with Photons, Electrons, Ions, Atoms and Molecules J. Wayne Rabalais (University of Houston), chair Panel D: Theory of Structure and Dynamics Chris Greene (University of Colorado), chair Panel E: Nano- and Mesocopic Structures Paul Alivisatos (Lawrence Berkeley National Laboratory), chair The choice of focus areas reflects areas of significant interest to DOE/BES but is clearly not intended to span all fields encompassed by the designation of atomic, molecular and optical physics, nor even all areas that would be considered for review and funding under DOE’s AMOP program. In a similar vein, not all research that might be suggested under these topics in this report would be appropriate for consideration by DOE’s AMOP program. The workshop format included overview presentations from each of the panel chairs, followed by an intensive series of panel discussion sessions held over a two-day period. The panels were comprised of scientists from the U. S. and abroad, many of whom are not supported by DOE’s AMOP Program. This workshop was held in lieu of the customary “Contractors Meeting” held annually for

  6. Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion

    SciTech Connect

    Gupta, Subhadeep; Moore, Kevin L.; Murch, Kater W.; Stamper-Kurn, Dan M.

    2007-11-23

    We report on Kerr nonlinearity and dispersive optical bistability of a Fabry-Perot optical resonator due to the displacement of ultracold atoms trapped within. In the driven resonator, such collective motion is induced by optical forces acting upon up to 10{sup 5} {sup 87}Rb atoms prepared in the lowest band of a one-dimensional intracavity optical lattice. The longevity of atomic motional coherence allows for strongly nonlinear optics at extremely low cavity photon numbers, as demonstrated by the observation of both branches of optical bistability at photon numbers below unity.

  7. Fast figuring of large optics by reactive atom plasma

    NASA Astrophysics Data System (ADS)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  8. Double-resonance optical pumping of Rb atoms

    SciTech Connect

    Moon, Han Seb; Lee, Lim; Kim, Jung Bog

    2007-09-15

    We have studied double-resonance optical pumping (DROP) as a function of the polarization combination of lasers, laser power, and the alignment of lasers in the 5S{sub 1/2}-5P{sub 3/2}-D{sub 3/2,5/2} ladder-type system of {sup 87}Rb atoms. By considering the two-photon transition probability and optical pumping effects, the changes in the relative magnitude of the DROP hyperfine structures as a function of the polarization combination of the lasers were analyzed theoretically. The theoretical results are in good agreement with the experimental results. Owing to the low optical pumping effect in the cycling transition, we could see the dependence of the spectrum on the laser power in the 5P{sub 3/2}-4D{sub 5/2} transition distinctly. Also, the spectral linewidths as a function of the alignment between the lasers were measured 12.2 MHz for copropagating beams and 6.9 MHz for counterpropagating beams.

  9. Quantum atomic lithography via cross-cavity optical Stern-Gerlach setup

    NASA Astrophysics Data System (ADS)

    Máximo, C. E.; Batalhão, T. B.; Bachelard, R.; de Moraes Neto, G. D.; de Ponte, M. A.; Moussa, M. H. Y.

    2014-10-01

    We present a fully quantum scheme to perform 2D atomic lithography based on a cross-cavity optical Stern-Gerlach setup: an array of two mutually orthogonal cavities crossed by an atomic beam perpendicular to their optical axes, which is made to interact with two identical modes. After deriving an analytical solution for the atomic momentum distribution, we introduce a protocol allowing us to control the atomic deflection by manipulating the amplitudes and phases of the cavity field states.

  10. Ultraslow helical optical bullets and their acceleration in magneto-optically controlled coherent atomic media

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Huang, Guoxiang

    2013-05-01

    We propose a scheme to produce ultraslow (3+1)-dimensional helical optical solitons, also called helical optical bullets, in a resonant three-level Λ-type atomic system via quantum coherence. We show that, due to the effect of electromagnetically induced transparency, the helical optical bullets can propagate with an ultraslow velocity up to 10-5 c (c is the light speed in vacuum) in the longitudinal direction and a slow rotational motion (with velocity 10-7 c) in transverse directions. The generation power of such optical bullets can be lowered to microwatts, and their stability can be achieved by using a Bessel optical lattice potential formed by a far-detuned laser field. We also show that the transverse rotational motion of the optical bullets can be accelerated by applying a time-dependent Stern-Gerlach magnetic field. Because of the ultraslow velocity in the longitudinal direction, a significant acceleration of the rotational motion of optical bullets may be observed for a very short medium length.

  11. Mixtures of bosonic and fermionic atoms in optical lattices

    SciTech Connect

    Albus, Alexander; Illuminati, Fabrizio; Eisert, Jens

    2003-08-01

    We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.

  12. Optical interference artifacts in contact atomic force microscopy images.

    PubMed

    Méndez-Vilas, A; González-Martin, M L; Nuevo, M J

    2002-08-01

    Atomic force microscopy images are usually affected by different kinds of artifacts due to either the microscope design and operation mode or external environmental factors. Optical interferences between the laser light reflected off the top of the cantilever and the light scattered by the surface in the same direction is one of the most frequent sources of height artifact in contact (and occasionally non-contact) images. They are present when imaging highly reflective surfaces, or even when imaging non-reflective materials deposited onto reflective ones. In this study interference patterns have been obtained with a highly polished stainless steel planchet. The influence of these artifacts in surface roughness measurements is discussed, and a semi-quantitative method based on the fast Fourier transform technique is proposed to remove the artifacts from the images. This method improves the results obtained by applying the usual flattening routines.

  13. Surface damage correction, and atomic level smoothing of optics by Accelerated Neutral Atom Beam (ANAB) Processing

    NASA Astrophysics Data System (ADS)

    Walsh, M.; Chau, K.; Kirkpatrick, S.; Svrluga, R.

    2014-10-01

    Surface damage and surface contamination of optics has long been a source of problems for laser, lithography and other industries. Nano-sized surface defects may present significant performance issues in optical materials for deep UV and EUV applications. The effects of nanometer sized surface damage (scratches, pits, and organics) on the surface of optics made of traditional materials and new more exotic materials is a limiting factor to high end performance. Angstrom level smoothing of materials such as calcium fluoride, spinel, zinc sulfide, BK7 and others presents a unique set of challenges. Exogenesis Corporation, using its proprietary Accelerated Neutral Atom Beam (ANAB) technology, is able to remove nano-scale surface damage and contamination and leaves many material surfaces with roughness typically around one angstrom. This process technology has been demonstrated on nonlinear crystals, and various other high-end optical materials. This paper describes the ANAB technology and summarizes smoothing results for various materials that have been processed with ANAB. All surface measurement data for the paper was produced via AFM analysis. Exogenesis Corporation's ANAB processing technology is a new and unique surface modification technique that has demonstrated to be highly effective at correcting nano-scale surface defects. ANAB is a non-contact vacuum process comprised of an intense beam of accelerated, electrically neutral gas atoms with average energies of a few tens of electron volts. The ANAB process does not apply normal forces associated with traditional polishing techniques. ANAB efficiently removes surface contaminants, nano-scale scratches, bumps and other asperities under low energy physical sputtering conditions as the removal action proceeds. ANAB may be used to remove a precisely controlled, uniform thickness of material without any increase of surface roughness, regardless of the total amount of material removed. The ANAB process does not

  14. Thermal beam of metastable krypton atoms produced by optical excitation

    SciTech Connect

    Ding, Y.; Hu, S.-M.; Bailey, K.; Davis, A. M.; Dunford, R. W.; Lu, Z.-T.; O'Connor, T. P.; Young, L.

    2007-02-15

    A room-temperature beam of krypton atoms in the metastable 5s[3/2]{sub 2} level is demonstrated via an optical excitation method. A Kr-discharge lamp is used to produce vacuum ultraviolet photons at 124 nm for the first-step excitation from the ground level 4p{sup 6} {sup 1}S{sub 0} to the 5s[3/2]{sub 1} level. An 819 nm Ti:sapphire laser is used for the second-step excitation from 5s[3/2]{sub 1} to 5s[3/2]{sub 2} followed by a spontaneous decay to the 5s[3/2]{sub 2} metastable level. A metastable atomic beam with an angular flux density of 3x10{sup 14} s{sup -1} sr{sup -1} is achieved at the total gas flow rate of 0.01 cm{sup 3}/s at STP (or 3x10{sup 17} at./s). The dependences of the flux on the gas flow rate, laser power, and lamp parameters are investigated.

  15. Artificial Staggered Magnetic Field for Ultracold Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Morais Smith, Cristiane

    2011-03-01

    Uniform magnetic fields are ubiquitous in nature, but this is not the case for staggered magnetic fields. In this talk, I will discuss an experimental set-up for cold atoms recently proposed by us, which allows for the realization of a ``staggered gauge field'' in a 2D square optical lattice. If the lattice is loaded with bosons, it may be described by an effective Bose-Hubbard Hamiltonian, with complex and anisotropic hopping coefficients. A very rich phase diagram emerges: besides the usual Mott-insulator and zero-momentum condensate, a new phase with a finite momentum condensate becomes the ground-state at strong gauge fields. By using the technique of Feshbach resonance, the dynamics of a coherent superposition of a vortex-carrying atomic condensate and a conventional zero-momentum molecular condensate can also be studied within the same scheme. On the other hand, if the lattice is loaded with fermions, a highly tunable, graphene-like band structure can be realized, without requiring the honeycomb lattice symmetry. When the system is loaded with a mixture of bosons and two-species fermions, several features of the high-Tc phase diagram can be reproduced. A dome-shaped unconventional superconducting region arises, surrounded by a non-Fermi liquid and a Fermi liquid at low and high doping, respectively. We acknowledge financial support from the Netherlands Organization for Scientific Research (NWO).

  16. Negative refraction of ultra-cold atoms in optical lattices with nonuniform artificial gauge fields

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Xia; Xue, Ju-Kui

    2016-07-01

    We theoretically study the reflection and refraction of ultra-cold atoms in optical lattices exposed to a nonuniform artificial magnetic field. The introduction of the nonuniform artificial magnetic field to the optical lattice for suitable designer magnetic potential barrier can lead to a series of intriguing reflection and refraction phenomena of atoms, including reflection, positive refraction, negative refraction and atomic matter wave splitting. Both the occurrence and the distribution of these reflection and refraction scenarios can be coherently controlled by the nonuniform artificial magnetic field. In particular, the regions close to the boundary of reflection demonstrate two more interesting propagation modes, i.e., a reflected branch of atoms comprising a positive or negative refracted branch of atoms with almost same atom population will be excited simultaneously at the magnetic potential barrier. The results can be a guide for the coherent control of the matter waves in optical lattices and the design of new atom optics devices.

  17. Broadband magnetometry by infrared-absorption detection of diamond NV centers and associated temperature dependence

    NASA Astrophysics Data System (ADS)

    Acosta, Victor M.; Jarmola, Andrey; Zipp, Lucas J.; Ledbetter, M. P.; Bauch, E.; Budker, Dmitry

    2011-03-01

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy (NV) ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 μm3, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from DC to a few MHz. Operation in a gradiometer configuration yields a noise floor of 7 nTrms at ~110 Hz in one second of acquisition. We also present measurements of the zero-field splitting parameters as a function of temperature, a calibration which is essential for ultra-sensitive magnetometry at low frequencies.

  18. He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils

    NASA Astrophysics Data System (ADS)

    Schad, T. A.; Penn, M. J.; Lin, H.

    2013-05-01

    Atomic-level polarization and Zeeman effect diagnostics in the neutral helium triplet at 10830 Å in principle allow full vector magnetometry of fine-scaled chromospheric fibrils. We present high-resolution spectropolarimetric observations of superpenumbral fibrils in the He I triplet with sufficient polarimetric sensitivity to infer their full magnetic field geometry. He I observations from the Facility Infrared Spectropolarimeter are paired with high-resolution observations of the Hα 6563 Å and Ca II 8542 Å spectral lines from the Interferometric Bidimensional Spectrometer from the Dunn Solar Telescope in New Mexico. Linear and circular polarization signatures in the He I triplet are measured and described, as well as analyzed with the advanced inversion capability of the "Hanle and Zeeman Light" modeling code. Our analysis provides direct evidence for the often assumed field alignment of fibril structures. The projected angle of the fibrils and the inferred magnetic field geometry align within an error of ±10°. We describe changes in the inclination angle of these features that reflect their connectivity with the photospheric magnetic field. Evidence for an accelerated flow (~40 m s-2) along an individual fibril anchored at its endpoints in the strong sunspot and weaker plage in part supports the magnetic siphon flow mechanism's role in the inverse Evershed effect. However, the connectivity of the outer endpoint of many of the fibrils cannot be established.

  19. He I VECTOR MAGNETOMETRY OF FIELD-ALIGNED SUPERPENUMBRAL FIBRILS

    SciTech Connect

    Schad, T. A.; Penn, M. J.; Lin, H.

    2013-05-10

    Atomic-level polarization and Zeeman effect diagnostics in the neutral helium triplet at 10830 A in principle allow full vector magnetometry of fine-scaled chromospheric fibrils. We present high-resolution spectropolarimetric observations of superpenumbral fibrils in the He I triplet with sufficient polarimetric sensitivity to infer their full magnetic field geometry. He I observations from the Facility Infrared Spectropolarimeter are paired with high-resolution observations of the H{alpha} 6563 A and Ca II 8542 A spectral lines from the Interferometric Bidimensional Spectrometer from the Dunn Solar Telescope in New Mexico. Linear and circular polarization signatures in the He I triplet are measured and described, as well as analyzed with the advanced inversion capability of the ''Hanle and Zeeman Light'' modeling code. Our analysis provides direct evidence for the often assumed field alignment of fibril structures. The projected angle of the fibrils and the inferred magnetic field geometry align within an error of {+-}10 Degree-Sign . We describe changes in the inclination angle of these features that reflect their connectivity with the photospheric magnetic field. Evidence for an accelerated flow ({approx}40 m s{sup -2}) along an individual fibril anchored at its endpoints in the strong sunspot and weaker plage in part supports the magnetic siphon flow mechanism's role in the inverse Evershed effect. However, the connectivity of the outer endpoint of many of the fibrils cannot be established.

  20. Progress toward a spin squeezed optical atomic clock beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2014-05-01

    State of the art optical lattice atomic clocks have reached a relative inaccuracy level of 10-18, already making them the most stable time references in existence. One restriction on the precision of these clocks is the projection noise caused by the measurement of the atomic state. This limit, known as the standard quantum limit (SQL), can be overcome by entangling the atoms. By performing spin squeezing, we can robustly generate such entanglement and surpass the SQL of precision in optical atomic clocks. I will report on recent experimental progress toward realizing spin squeezing in an 171Yb optical lattice clock. A high-finesse micromirror-based optical cavity mediates the atom-atom interaction necessary for generating the entanglement. By exceeding the SQL in this state of the art system, we are aiming to advance precision time metrology, as well as expanding the boundaries of quantum control and measurement. Supported by DARPA QUASAR and NSERC.

  1. Progress toward a spin squeezed optical atomic clock beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2015-05-01

    State of the art optical lattice atomic clocks have reached a relative inaccuracy level of 10-18, already making them the most stable time references in existence. One restriction on the precision of these clocks is the projection noise caused by the measurement of the atomic state. This limit, known as the standard quantum limit (SQL), can be overcome by entangling the atoms. By performing spin squeezing, it is possible to robustly generate such entanglement and therefore surpass the SQL of precision in optical atomic clocks. I will report on recent experimental progress toward realizing spin squeezing in an 171Yb optical lattice clock. A high-finesse micromirror-based optical cavity mediates the atom-atom interaction necessary for generating the entanglement. By exceeding the SQL in this state of the art system, we are aiming to advance precision time metrology, as well as expanding the boundaries of quantum control and measurement.

  2. Magnetic induction measurements using an all-optical {sup 87}Rb atomic magnetometer

    SciTech Connect

    Wickenbrock, Arne; Tricot, François; Renzoni, Ferruccio

    2013-12-09

    In this work we propose, and experimentally demonstrate, the use of a self-oscillating all-optical atomic magnetometer for magnetic induction measurements. Given the potential for miniaturization of atomic magnetometers, and their extreme sensitivity, the present work shows that atomic magnetometers may play a key role in the development of instrumentation for magnetic induction tomography.

  3. FORWARD: A toolset for multiwavelength coronal magnetometry

    NASA Astrophysics Data System (ADS)

    Gibson, Sarah; Kucera, Therese; White, Stephen; Dove, James; Fan, Yuhong; Forland, Blake; Rachmeler, Laurel; Downs, Cooper; Reeves, Katharine

    2016-03-01

    Determining the 3D coronal magnetic field is a critical, but extremely difficult problem to solve. Since different types of multiwavelength coronal data probe different aspects of the coronal magnetic field, ideally these data should be used together to validate and constrain specifications of that field. Such a task requires the ability to create observable quantities at a range of wavelengths from a distribution of magnetic field and associated plasma -- i.e., to perform forward calculations. In this paper we describe the capabilities of the FORWARD SolarSoft IDL package, a uniquely comprehensive toolset for coronal magnetometry. FORWARD is a community resource that may be used both to synthesize a broad range of coronal observables, and to access and compare synthetic observables to existing data. It enables forward fitting of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties. FORWARD can also be used to generate synthetic test beds from MHD simulations in order to facilitate the development of coronal magnetometric inversion methods, and to prepare for the analysis of future large solar telescope data.

  4. High dynamic range diamond magnetometry for time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Ummal Momeen, M.; Nusran, N. M.; Gurudev Dutt, M. V.

    2012-02-01

    Nitrogen-Vacancy (NV) centers in diamond have become a topic of great interest in recent years due to their promising applications in high resolution nanoscale magnetometry and quantum information processing devices at ambient conditions. We will present our recent progress on implementing novel phase estimation algorithms with a single electron spin qubit associated with the NV center, in combination with dynamical decoupling techniques, to improve the dynamic range and sensitivity of magnetometry with time-varying magnetic fields.

  5. Optical lattice polarization effects on magnetically induced optical atomic clock transitions

    SciTech Connect

    Taichenachev, A. V.; Yudin, V. I.; Oates, C. W.

    2007-08-15

    We derive the frequency shift for a forbidden optical transition J=0{yields}J{sup '}=0 caused by the simultaneous actions of an elliptically polarized lattice field and a static magnetic field. We find that a simple configuration of lattice and magnetic fields leads to a cancellation of this shift to first order in lattice intensity and magnetic field. In this geometry, the second-order lattice intensity shift can be minimized as well by use of optimal lattice polarization. Suppression of these shifts could considerably enhance the performance of the next generation of atomic clocks.

  6. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber.

    PubMed

    Vetsch, E; Reitz, D; Sagué, G; Schmidt, R; Dawkins, S T; Rauschenbeutel, A

    2010-05-21

    Trapping and optically interfacing laser-cooled neutral atoms are essential requirements for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multicolor evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices.

  7. Atomic population distribution in the output ports of cold-atom interferometers with optical splitting and recombination

    SciTech Connect

    Ilo-Okeke, Ebubechukwu O.; Zozulya, Alex A.

    2010-11-15

    Cold-atom interferometers with optical splitting and recombination use off-resonant laser beams to split a cloud of Bose-Einstein condensate (BEC) into two clouds that travel along different paths and are then recombined again using optical beams. After the recombination, the BEC in general populates both the cloud at rest and the moving clouds. Measuring a relative number of atoms in each of these clouds yields information about the relative phase shift accumulated by the atoms in the two moving clouds during the interferometric cycle. We derive the expression for the probability of finding any given number of atoms in each of the clouds, discuss features of the probability density distribution, analyze its dependence on the relative accumulated phase shift as a function of the strength of the interatomic interactions, and compare our results with experiment.

  8. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light

    SciTech Connect

    Yudin, V. I.; Taichenachev, A. V.; Dudin, Y. O.; Velichansky, V. L.; Zibrov, A. S.; Zibrov, S. A.

    2010-09-15

    We develop a generalized principle of electromagnetically induced transparency (EIT) vector magnetometry based on high-contrast EIT resonances and the symmetry of atom-light interaction in the linearly polarized bichromatic fields. Operation of such vector magnetometer on the D{sub 1} line of {sup 87}Rb has been demonstrated. The proposed compass-magnetometer has an increased immunity to shifts produced by quadratic Zeeman and ac-Stark effects, as well as by atom-buffer gas and atom-atom collisions. In our proof-of-principle experiment the detected angular sensitivity to magnetic field orientation is 10{sup -3} deg/Hz{sup 1/2}, which is limited by laser intensity fluctuations, light polarization quality, and magnitude of the magnetic field.

  9. Observation of Doppler-free electromagnetically induced transparency in atoms selected optically with specific velocity

    SciTech Connect

    Yu, Hoon; Kim, Kwan Su; Kim, Jung Dong; Lee, Hyun Kyung; Kim, Jung Bog

    2011-11-15

    We observed an electromagnetically induced transparency signal in a four-level system with optically selected rubidium atoms at specific velocities in a room-temperature vaporized cell. Since the atoms behave like cold atoms in the selected atomic view, the observed signals coincide with a trapped atomic system. According to this result, we can observe Doppler-free signals, which correspond from 1.2 to 1.0 K in a Doppler-broadened medium. And the selected atoms have velocity components of {+-}(131 {+-} 3) MHz per wave number. Our experimental results can provide insight for research in cold media.

  10. Target parameter and error estimation using magnetometry

    NASA Astrophysics Data System (ADS)

    Norton, S. J.; Witten, A. J.; Won, I. J.; Taylor, D.

    The problem of locating and identifying buried unexploded ordnance from magnetometry measurements is addressed within the context of maximum likelihood estimation. In this approach, the magnetostatic theory is used to develop data templates, which represent the modeled magnetic response of a buried ferrous object of arbitrary location, iron content, size, shape, and orientation. It is assumed that these objects are characterized both by a magnetic susceptibility representing their passive response to the earth's magnetic field and by a three-dimensional magnetization vector representing a permanent dipole magnetization. Analytical models were derived for four types of targets: spheres, spherical shells, ellipsoids, and ellipsoidal shells. The models can be used to quantify the Cramer-Rao (error) bounds on the parameter estimates. These bounds give the minimum variance in the estimated parameters as a function of measurement signal-to-noise ratio, spatial sampling, and target characteristics. For cases where analytic expressions for the Cramer-Rao bounds can be derived, these expressions prove quite useful in establishing optimal sampling strategies. Analytic expressions for various Cramer-Rao bounds have been developed for spherical- and spherical shell-type objects. An maximum likelihood estimation algorithm has been developed and tested on data acquired at the Magnetic Test Range at the Naval Explosive Ordnance Disposal Tech Center in Indian Head, Maryland. This algorithm estimates seven target parameters. These parameters are the three Cartesian coordinates (x, y, z) identifying the buried ordnance's location, the three Cartesian components of the permanent dipole magnetization vector, and the equivalent radius of the ordnance assuming it is a passive solid iron sphere.

  11. Rectified optical force on dark-state atoms

    NASA Astrophysics Data System (ADS)

    Korsunsky, E. A.; Kosachiov, D. V.

    1997-12-01

    We show that an imperfection of velocity-selective coherent population trapping (VSCPT) in three-level atoms excited by standing light waves causes a rectified force on cooled atoms. The rectified force as well as the cooling force are calculated both analytically and numerically for 0953-4075/30/24/010/img5 and cascade three-level systems. Combination of these forces with the VSCPT mechanism can lead to localization of very cold atoms in potential wells created by the rectified force. This effect should be taken into account in experiments with VSCPT in standing waves, and can be used for realizing superlattices of cold atoms, in particular, cold Rydberg atoms.

  12. Observation of quantized motion of Rb atoms in an optical field

    NASA Astrophysics Data System (ADS)

    Jessen, P. S.; Gerz, C.; Lett, P. D.; Phillips, W. D.; Rolston, S. L.; Spreeuw, R. J. C.; Westbrook, C. I.

    1992-07-01

    We observe transitions of laser-cooled Rb between vibrational levels in subwavelength-sized optical potential wells, using high-resolution spectroscopy of resonance fluorescence. We measure the spacing of the levels and the population distribution, and find the atoms to be localized to 1/15 of the optical wavelength. We find up to 60% of the population of trapped atoms in the vibrational ground state. The dependence of the spectrum on the parameters of the optical field provides detailed information about the dynamics of laser-cooled atoms.

  13. Atomic and optical properties of warm dense copper.

    PubMed

    Miloshevsky, Gennady; Hassanein, Ahmed

    2015-09-01

    The emission of x rays from warm dense matter is of great interest for both spectroscopic diagnostics and development of intense x-ray sources. We report the results from the collisional-radiative steady-state (CRSS) modeling of atomic and optical properties of copper plasmas at near-solid and solid-state density for a range of temperatures. The CRSS model is validated against the available data on the average charge state and shifts of energy levels in aluminum and the opacity and emissivity spectra of carbon and aluminum plasmas. The average charge states, number density of ion species, and free electrons as a function of temperature are investigated for the solid-density copper plasma. Due to the dense plasma environment the four outer electrons are found to be unbounded even in the low-temperature limit ∼1eV. As the temperature changes from 1 to 100 eV, the predominant species vary from fivefold- to twelvefold-ionized copper ions. The opacity and emissivity spectra of dense copper plasmas are studied using the local thermodynamic equilibrium (LTE) and non-LTE approaches. It is found that the non-LTE effects are important in the spectral region of soft x rays emitted from the K shell. The emissivity in spectral lines is completely suppressed, indicating the importance of the energy-dissipating radiative processes in this soft x-ray region. Line broadening and redshifts of the K- and L-shell spectral lines toward higher wavelengths are observed with the increase of plasma density. These results have important implications for understanding the radiative properties of warm dense copper and can be useful for future experimental studies.

  14. Mechanical and electronic energy eigenstates of neutral Rb atoms in deep optical lattices

    NASA Astrophysics Data System (ADS)

    Neuzner, Andreas; Koerber, Matthias; Morin, Olivier; Ritter, Stephan; Rempe, Gerhard

    2015-05-01

    Optical lattices allow for tight three-dimensional confinement of neutral atoms in quasi-harmonic potentials and have become a standard tool in experimental quantum optics. Applications range from fundamental topics like metrology to applications in quantum communication and quantum information processing. Here we present an experimental characterization of the motional and internal energy eigenstates of optically trapped 87Rb atoms. We implement different spectroscopy techniques based on non-destructive hyperfine state detection using an optical cavity. Applying these techniques, we observe and explain a series of effects like the decoupling of the hyperfine spin due to a tensor lightshift and mechanical effects associated with a small non-orthogonality of the lattice axes. Furthermore, we succeed to exploit the latter for optical cooling of a single atom into the two-dimensional mechanical groundstate in an environment with restricted optical access.

  15. ATOMIC AND MOLECULAR PHYSICS: Single atoms transferring between a magneto-optical trap and a far-off-resonance optical dipole trap

    NASA Astrophysics Data System (ADS)

    He, Jun; Wang, Jing; Yang, Bao-Dong; Zhang, Tian-Cai; Wang, Jun-Min

    2009-08-01

    Based on our work on single cesium atoms trapped in a large-magnetic-gradient vapour-cell magneto-optical trap (MOT), the signal-to-noise ratio (SNR) is remarkably improved. Also a far-off-resonance optical dipole trap (FORT) formed by a strongly-focused 1064 nm single frequency Nd:YVO4 laser beam is introduced. One cesium atom is prepared in the MOT, and then it can transfer successfully between the MOT and the FORT which is overlapped with the MOT. Utilizing the effective transfer, the lifetime of single atoms trapped in the FORT is measured to be 6.9 ± 0.3 s. Thus we provide a system where the atomic qubit can be coherently manipulated.

  16. Temperature measurement of cold atoms using transient absorption of a resonant probe through an optical nanofibre

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Gokhroo, Vandna; Bhushan Tiwari, Vibhuti; Chormaic, Síle Nic

    2016-11-01

    Optical nanofibres are ultrathin optical fibres with a waist diameter typically less than the wavelength of light being guided through them. Cold atoms can couple to the evanescent field of the nanofibre-guided modes and such systems are emerging as promising technologies for the development of atom-photon hybrid quantum devices. Atoms within the evanescent field region of an optical nanofibre can be probed by sending near or on-resonant light through the fibre; however, the probe light can detrimentally affect the properties of the atoms. In this paper, we report on the modification of the local temperature of laser-cooled 87Rb atoms in a magneto-optical trap centred around an optical nanofibre when near-resonant probe light propagates through it. A transient absorption technique has been used to measure the temperature of the affected atoms and temperature variations from 160 μk to 850 μk, for a probe power ranging from 0 to 50 nW, have been observed. This effect could have implications in relation to using optical nanofibres for probing and manipulating cold or ultracold atoms.

  17. High precision deflection measurement of microcantilever in an optical pickup head based atomic force microscopy

    SciTech Connect

    Lee, Sang Heon

    2012-11-15

    This paper presents the methodology to measure the precise deflection of microcantilever in an optical pickup head based atomic force microscopy. In this paper, three types of calibration methods have been proposed: full linearization, sectioned linearization, and the method based on astigmatism. In addition, the probe heads for easy calibration of optical pickup head and fast replacement of optical pickup head have been developed. The performances of each method have been compared through a set of experiments and constant height mode operation which was not possible in the optical pickup head based atomic force microscopy has been carried out successfully.

  18. Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array

    NASA Astrophysics Data System (ADS)

    Bettles, Robert J.; Gardiner, Simon A.; Adams, Charles S.

    2016-03-01

    Enhancing the optical cross section is an enticing goal in light-matter interactions, due to its fundamental role in quantum and nonlinear optics. Here, we show how dipolar interactions can suppress off-axis scattering in a two-dimensional atomic array, leading to a subradiant collective mode where the optical cross section is enhanced by almost an order of magnitude. As a consequence, it is possible to attain an optical depth which implies high-fidelity extinction, from a monolayer. Using realistic experimental parameters, we also model how lattice vacancies and the atomic trapping depth affect the transmission, concluding that such high extinction should be possible, using current experimental techniques.

  19. A compact microchip atomic clock based on all-optical interrogation of ultra-cold trapped Rb atoms

    NASA Astrophysics Data System (ADS)

    Farkas, D. M.; Zozulya, A.; Anderson, D. Z.

    2010-12-01

    We propose a compact atomic clock that uses all-optical interrogation of ultra-cold Rb atoms that are magnetically trapped near the surface of an atom microchip. The interrogation scheme, which combines electromagnetically induced transparency with Ramsey's method of separated oscillatory fields, can achieve an atomic shot-noise-level performance better than 10^{-13}/sqrt{tau} for 106 atoms. A two-color Mach-Zehnder interferometer can detect a 100-pW probe beam at the optical shot-noise level using conventional photodetectors. This measurement scheme is nondestructive and therefore can be used to increase the operational duty cycle by reusing the trapped atoms for multiple clock cycles. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2×10-14. An overview of the apparatus is presented with estimates of cycle time and power consumption.

  20. Quantum transport of bosonic cold atoms in double-well optical lattices

    SciTech Connect

    Qian Yinyin; Gong Ming; Zhang Chuanwei

    2011-07-15

    We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultracold bosonic atoms in a double-well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well tunneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as noninteracting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can be measured in the time-of-flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the noninteracting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.

  1. Controlled manipulation of light by cooperative response of atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Jenkins, Stewart; Ruostekoski, Janne

    2013-05-01

    We show that atoms in an optical lattice can respond cooperatively to incident light. Such a cooperative response can be employed to precisely control and manipulate light on the subwavelength scale. As an illustration, we consider an optical lattice whose atoms are in a Mott-insulator state with precisely one atom per lattice site. The cooperative response of the atoms originates from strong dipole-dipole interactions mediated by scattered electromagnetic fields. As a result of these interactions, the atoms exhibit collective modes of electronic excitation distributed over the lattice. By tailoring the spatial phase profile of the incident light, one can address specific linear combinations of these modes. We demonstrate how the cooperative response can be used to produce optical excitations at isolated sites in the lattice. This work was supported by the EPSRC and the Leverhulme Trust.

  2. Hong-Ou-Mandel atom interferometry in tunnel-coupled optical tweezers

    NASA Astrophysics Data System (ADS)

    Lester, Brian; Kaufman, Adam; Reynolds, Collin; Wall, Michael; Foss-Feig, Michael; Hazzard, Kaden; Rey, Ana Maria; Regal, Cindy

    2014-05-01

    We present recent work in which we demonstrate near-complete control over all the internal and external degrees of freedom of laser-cooled 87Rb atoms trapped in sub-micron optical tweezers. Utilizing this control for two atoms in two optical tweezers, we implement a massive-particle analog of the Hong-Ou-Mandel interferometer where atom tunneling plays the role of the photon beamsplitter. The interferometer is used to probe the effect of atomic indistinguishability on the two-atom dynamics for a variety of initial conditions. These experiments demonstrate the viability of the optical tweezer platform for bottom-up generation of low-entropy quantum systems and pave the way toward the direct observation of quantum dynamics in more complex finite-sized systems.

  3. Atom optics and space physics: A summary of an 'Enrico Fermi' summer school

    NASA Astrophysics Data System (ADS)

    Arimondo, Ennio; Ertmer, Wolfgang; Rasel, Ernst M.; Schleich, Wolfgang P.

    2008-03-01

    We describe the scientific content of the International School of Physics 'Enrico Fermi' on atom optics and space physics, organized by the Italian Physical Society in Varenna at Lake Como, Italy, 2-13 July 2007.

  4. Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor.

    PubMed

    Cerè, Alessandro; Parigi, Valentina; Abad, Marta; Wolfgramm, Florian; Predojević, Ana; Mitchell, Morgan W

    2009-04-01

    We demonstrate a tunable narrowband filter based on optical-pumping-induced circular dichroism in rubidium vapor. The filter achieves a peak transmission of 14.6%, a linewidth of 80 MHz, and an out-of-band extinction of >or=35 dB. The transmission peak can be tuned within the range of the Doppler linewidth of the D1 line of atomic rubidium at 795 nm. While other atomic filters work at frequencies far from absorption, the presented technique provides light resonant with atomic media, useful for atom-photon interaction experiments. The technique could readily be extended to other alkali atoms.

  5. Measurement of the lifetime of rubidium atoms in a dark magneto-optical trap

    SciTech Connect

    Permyakova, O I; Yakovlev, A V; Chapovskii, P L

    2008-09-30

    The lifetimes of rubidium atoms in a dark magneto-optical trap are measured at different populations of the 'bright' and 'dark' hyperfine states of captured atoms. It is found that the lifetime of atoms in the trap decreases if they spend more time in the bright state. A simple explanation of this effect is proposed which is based on the increase in the transport cross section for collisions of thermal rubidium atoms surrounding the trap with cold rubidium atoms upon their electronic excitation. (laser cooling)

  6. Three-component fermionic atoms with repulsive interaction in optical lattices

    SciTech Connect

    Miyatake, Shin-ya; Inaba, Kensuke; Suga, Sei-ichiro

    2010-02-15

    We investigate three-component (colors) repulsive fermionic atoms in optical lattices using the dynamical mean-field theory. Depending on the anisotropy of the repulsive interactions, either a color density-wave state or a color-selective staggered state appears at half filling. In the former state, pairs of atoms with two of the three colors and atoms with the third color occupy different sites alternately. In the latter state, atoms with two of the three colors occupy different sites alternately and atoms with the third color are itinerant throughout the system. When the interactions are isotropic, both states are degenerate. We discuss the results using an effective model.

  7. Coherent Addressing of Individual Neutral Atoms in a 3D Optical Lattice.

    PubMed

    Wang, Yang; Zhang, Xianli; Corcovilos, Theodore A; Kumar, Aishwarya; Weiss, David S

    2015-07-24

    We demonstrate arbitrary coherent addressing of individual neutral atoms in a 5×5×5 array formed by an optical lattice. Addressing is accomplished using rapidly reconfigurable crossed laser beams to selectively ac Stark shift target atoms, so that only target atoms are resonant with state-changing microwaves. The effect of these targeted single qubit gates on the quantum information stored in nontargeted atoms is smaller than 3×10^{-3} in state fidelity. This is an important step along the path of converting the scalability promise of neutral atoms into reality.

  8. Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities

    NASA Astrophysics Data System (ADS)

    Li, Tao; Long, Gui-Lu

    2016-08-01

    We propose an effective, scalable, hyperparallel photonic quantum computation scheme in which photonic qubits are hyperencoded both in the spatial degrees of freedom (DOF) and the polarization DOF of each photon. The deterministic hyper-controlled-not (hyper-cnot) gate on a two-photon system is attainable with our interesting interface between the polarized photon and the collective spin wave (magnon) of an atomic ensemble embedded in a double-sided optical cavity, and it doubles the operations in the conventional quantum cnot gate. Moreover, we present a compact hyper-cnotN gate on N +1 hyperencoded photons with only two auxiliary cavity-magnon systems, not more, and it can be faithfully constituted with current experimental techniques. Our proposal enables various applications with the hyperencoded photons in quantum computing and quantum networks.

  9. Magnetic induction tomography using an all-optical ⁸⁷Rb atomic magnetometer.

    PubMed

    Wickenbrock, Arne; Jurgilas, Sarunas; Dow, Albert; Marmugi, Luca; Renzoni, Ferruccio

    2014-11-15

    We demonstrate magnetic induction tomography (MIT) with an all-optical atomic magnetometer. Our instrument creates a conductivity map of conductive objects. Both the shape and size of the imaged samples compare very well with the actual shape and size. Given the potential of all-optical atomic magnetometers for miniaturization and extreme sensitivity, the proof-of-principle presented in this Letter opens up promising avenues in the development of instrumentation for MIT.

  10. Quantum Correlation of Two Entangled Atoms Interacting with the Binomial Optical Field

    NASA Astrophysics Data System (ADS)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2016-10-01

    Quantum correlations of two atoms in a system of two entangled atoms interacting with the binomial optical field are investigated. In eight different initial states of the two atoms, the influence of the strength of the dipole-dipole interaction, probabilities of a the Bernoulli trial and particle number of the binomial optical field on the temporal evolution of the geometrical quantum discord between two atoms are discussed. The result shows that two atoms always exist the correlation for different parameters. In addition, when and only when the two atoms are initially in the maximally entangled state, the temporal evolution of geometrical quantum discord is not affected by the parameters, and always keep in the degree of geometrical quantum discord that is a fixed value.

  11. A Subfemtotesla Atomic Magnetometer Based on Hybrid Optical Pumping of Potassium and Rubidium

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cai, Hongwei; Ding, Ming; Quan, Wei; Fang, Jiancheng

    2016-05-01

    Atomic magnetometers, based on detection of Larmor spin precession of optically pumped atoms, have been researched and applied extensively. Higher sensitivity and spatial resolution combined with no cryogenic cooling of atomic magnetometers would enable many applications with low cost, including the magnetoencephalography (MEG). Ultrahigh sensitivity atomic magnetometer is considered to be the main development direction for the future. Hybrid optical pumping has been proposed to improve the efficiency of nuclear polarization. But it can also be used for magnetic field measurement. This method can control absorption of optical pumping light, which is benefit for improving the uniformity of alkali metal atoms polarization and the sensitivity of atomic magnetometer. In addition, it allows optical pumping in the absence of quenching gas. We conduct experiments with a hybrid optically pumped atomic magnetometer using a cell containing potassium and rubidium. By adjusting the density ratio of alkali metal and the pumping laser conditions, we measured the magnetic field sensitivity better than 0.7 fT/sqrt(Hz).

  12. Quantum defects in Rydberg nD states of optically cooled 7Li atoms

    NASA Astrophysics Data System (ADS)

    Sautenkov, V. A.; Saakyan, S. A.; Vilshanskaya, E. V.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2016-11-01

    To observe Rydberg transitions we applied a spectroscopic technique based on the observation of the resonance fluorescence of cold atoms in a magneto-optical trap. By using this approach, we estimated the quantum defect in Rydberg nD states of 7Li atoms. The obtained results are in a good agreement with previously published data.

  13. Motion of Cesium Atoms in the One-Dimensional Magneto-Optical Trap

    NASA Technical Reports Server (NTRS)

    Li, Yimin; Chen, Xuzong; Wang, Qingji; Wang, Yiqiu

    1996-01-01

    The force to which Cs atoms are subjected in the one-dimensional magneto-optical trap (lD-MOT) is calculated, and properties of this force are discussed. Several methods to increase the number of Cs atoms in the lD-MOT are presented on the basis of the analysis of the capture and escape of Cs atoms in the ID-MOT.

  14. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices.

    PubMed

    Miyake, Hirokazu; Siviloglou, Georgios A; Puentes, Graciana; Pritchard, David E; Ketterle, Wolfgang; Weld, David M

    2011-10-21

    We have observed Bragg scattering of photons from quantum degenerate ^{87}Rb atoms in a three-dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid coherence.

  15. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices.

    PubMed

    Miyake, Hirokazu; Siviloglou, Georgios A; Puentes, Graciana; Pritchard, David E; Ketterle, Wolfgang; Weld, David M

    2011-10-21

    We have observed Bragg scattering of photons from quantum degenerate ^{87}Rb atoms in a three-dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid coherence. PMID:22107532

  16. Single-spin magnetometry with multipulse sensing sequences.

    PubMed

    de Lange, G; Ristè, D; Dobrovitski, V V; Hanson, R

    2011-02-25

    We experimentally demonstrate single-spin magnetometry with multipulse sensing sequences. The use of multipulse sequences can greatly increase the sensing time per measurement shot, resulting in enhanced ac magnetic field sensitivity. We theoretically derive and experimentally verify the optimal number of sensing cycles, for which the effects of decoherence and increased sensing time are balanced. We perform these experiments for oscillating magnetic fields with fixed phase as well as for fields with random phase. Finally, by varying the phase and frequency of the ac magnetic field, we measure the full frequency-filtering characteristics of different multipulse schemes and discuss their use in magnetometry applications.

  17. Magnetic-field-compensation optical vector magnetometer.

    PubMed

    Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio

    2016-02-01

    A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D2 line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed.

  18. Nonlinear optical response of a two-dimensional atomic crystal.

    PubMed

    Merano, Michele

    2016-01-01

    The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.

  19. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.

    PubMed

    Taichenachev, A V; Yudin, V I; Oates, C W; Hoyt, C W; Barber, Z W; Hollberg, L

    2006-03-01

    We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method--a single clock laser combined with a dc magnetic field--relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline-earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10(-17) for the metrologically preferred even isotopes.

  20. Sub-Kilohertz Optical Spectroscopy with a Time Domain Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Ruschewitz, F.; Peng, J. L.; Hinderthür, H.; Schaffrath, N.; Sengstock, K.; Ertmer, W.

    1998-04-01

    We report on the sub-kilohertz optical spectroscopy on the 1S0- 3P1 intercombination transition in magnesium at 457 nm. The spectroscopic signal is probed by a time domain atom interferometer. The realization of this time domain atom interferometer with laser cooled and trapped atoms allows extremely long interaction times and leads to resolutions down to 491 Hz (FWHM). This corresponds to a high line Q factor of 1.3×1012. Because of the high accuracy in the determination of the line center, applications with respect to an optical frequency standard are possible.

  1. Ultrasensitive atomic spin measurements with a nonlinear interferometer

    NASA Astrophysics Data System (ADS)

    Sewell, Robert J.; Napolitano, Mario; Behbood, Naeimeh; Colangelo, Giorgio; Martin Curiana, Ferran; Mitchell, Morgan W.

    2015-05-01

    We study nonlinear interferometry applied to a measurement of atomic spin and demonstrate a sensitivity that cannot be achieved by any linear-optical measurement with the same experimental resources. We use alignment-to-orientation conversion, a nonlinear-optical technique from optical magnetometry, to perform a nondestructive measurement of the spin alignment of a cold Rb-87 atomic ensemble. We observe state-of-the-art spin sensitivity in a single-pass measurement, in good agreement with covariance-matrix theory. Taking the degree of measurement-induced spin squeezing as a figure of merit, we find that the nonlinear technique's experimental performance surpasses the theoretical performance of any linear-optical measurement on the same system, including optimization of probe strength and tuning. The results confirm the central prediction of nonlinear metrology, that superior scaling can lead to superior absolute sensitivity. Supported by European Research Council Starting Grant ``AQUMET''.

  2. On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation.

    PubMed

    Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei

    2016-07-25

    We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature. PMID:27464172

  3. On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation.

    PubMed

    Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei

    2016-07-25

    We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.

  4. Controllable optical phase shift over one radian from a single isolated atom.

    PubMed

    Jechow, A; Norton, B G; Händel, S; Blūms, V; Streed, E W; Kielpinski, D

    2013-03-15

    Fundamental optics such as lenses and prisms work by applying phase shifts of several radians to incoming light, and rapid control of such phase shifts is crucial to telecommunications. However, large, controllable optical phase shifts have remained elusive for isolated quantum systems. We have used a single trapped atomic ion to induce and measure a large optical phase shift of 1.3±0.1 radians in light scattered by the atom. Spatial interferometry between the scattered light and unscattered illumination light enables us to isolate the phase shift in the scattered component. The phase shift achieves the maximum value allowed by atomic theory over the accessible range of laser frequencies, pointing out new opportunities in microscopy and nanophotonics. Single-atom phase shifts of this magnitude open up new quantum information protocols, in particular long-range quantum phase-shift-keying cryptography. PMID:25166534

  5. Hexapole-compensated magneto-optical trap on a mesoscopic atom chip

    SciTech Connect

    Joellenbeck, S.; Mahnke, J.; Randoll, R.; Ertmer, W.; Klempt, C.; Arlt, J.

    2011-04-15

    Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4x10{sup 10} atoms/s and maximum number of 8.7x10{sup 9} captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all magnetic fields are applied locally without the need for external bias fields, the presented setup will facilitate parallel generation of Bose-Einstein condensates on a conveyor belt with a cycle rate above 1 Hz.

  6. Hexapole-compensated magneto-optical trap on a mesoscopic atom chip

    NASA Astrophysics Data System (ADS)

    Jöllenbeck, S.; Mahnke, J.; Randoll, R.; Ertmer, W.; Arlt, J.; Klempt, C.

    2011-04-01

    Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4×1010 atoms/s and maximum number of 8.7×109 captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all magnetic fields are applied locally without the need for external bias fields, the presented setup will facilitate parallel generation of Bose-Einstein condensates on a conveyor belt with a cycle rate above 1 Hz.

  7. Feasibility of a feedback control of atomic self-organization in an optical cavity

    SciTech Connect

    Ivanov, D. A. Ivanova, T. Yu.

    2015-08-15

    Many interesting nonlinear effects are based on the strong interaction of motional degrees of freedom of atoms with an optical cavity field. Among them is the spatial self-organization of atoms in a pattern where the atoms group in either odd or even sites of the cavity-induced optical potential. An experimental observation of this effect can be simplified by using, along with the original cavity-induced feedback, an additional electronic feedback based on the detection of light leaking the cavity and the control of the optical potential for the atoms. Following our previous study, we show that this approach is more efficient from the laser power perspective than the original scheme without the electronic feedback.

  8. Long distance transport of ultracold atoms using a 1D optical lattice

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Thalhammer, Gregor; Winkler, Klaus; Lang, Florian; Hecker Denschlag, Johannes

    2006-08-01

    We study the horizontal transport of ultracold atoms over macroscopic distances of up to 20 cm with a moving 1D optical lattice. By using an optical Bessel beam to form the optical lattice, we can achieve nearly homogeneous trapping conditions over the full transport length, which is crucial in order to hold the atoms against gravity for such a wide range. Fast transport velocities of up to 6 m s-1 (corresponding to about 1100 photon recoils) and accelerations of up to 2600 m s-2 are reached. Even at high velocities the momentum of the atoms is precisely defined with an uncertainty of less than one photon recoil. This allows for construction of an atom catapult with high kinetic energy resolution, which might have applications in novel collision experiments.

  9. Atom Detection and Photon Production in a Scalable, Open, Optical Microcavity

    SciTech Connect

    Trupke, M.; Goldwin, J.; Darquie, B.; Dutier, G.; Eriksson, S.; Ashmore, J.; Hinds, E. A.

    2007-08-10

    A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.

  10. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    NASA Astrophysics Data System (ADS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T. Peter

    2015-09-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  11. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    SciTech Connect

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  12. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    PubMed

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces. PMID:26374026

  13. Trapping of neutral mercury atoms and prospects for optical lattice clocks.

    PubMed

    Hachisu, H; Miyagishi, K; Porsev, S G; Derevianko, A; Ovsiannikov, V D; Pal'chikov, V G; Takamoto, M; Katori, H

    2008-02-01

    We report vapor-cell magneto-optical trapping of Hg isotopes on the (1)S(0)-(3)P(1) intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for "new physics" beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10;{-18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.

  14. Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks

    SciTech Connect

    Hachisu, H.; Takamoto, M.; Katori, H.; Miyagishi, K.; Porsev, S. G.; Derevianko, A.; Ovsiannikov, V. D.; Pal'chikov, V. G.

    2008-02-08

    We report vapor-cell magneto-optical trapping of Hg isotopes on the {sup 1}S{sub 0}-{sup 3}P{sub 1} intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for ''new physics'' beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10{sup -18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.

  15. Collimation of a thulium atomic beam by two-dimensional optical molasses

    SciTech Connect

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  16. Towards high phase space density of alkali atoms by simple optical cooling

    NASA Astrophysics Data System (ADS)

    Hu, Jiazhong; Vendeiro, Zachary; Chen, Wenlan; Vuletic, Vladan

    2016-05-01

    We demonstrate a simple optical cooling method, which can cool down the temperature of rubidium 87 to the ground state of the vibrational levels. We only use one far-detuned laser performing both cooling and optical repumping. By tuning the laser frequency, we verify the dependence of the two-body collision loss versus the laser detuning. Combining with the retrap of the atoms in the optical dipole trap, we can make the phase space density approaching to unity.

  17. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  18. Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.

    PubMed

    Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim

    2014-02-10

    We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given. PMID:24663640

  19. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  20. All-optical signal amplifier and distributor using cavity-atom coupling systems

    NASA Astrophysics Data System (ADS)

    Duan, Yafan; Lin, Gongwei; Niu, Yueping; Gong, Shangqing

    2016-05-01

    We report an all-optical signal amplifier and a signal distributor using cavity-atom coupling systems. In this system we couple atoms with an optical cavity and realize the great enhancement of a control laser by the cavity with the help of two high coupling lasers. By this effect, we can use one weak control field to control another strong target field and the intensity changes are linear with our experimental conditions. This can be used as an all-optical signal amplifier, also known as a ‘transphasor’. In our experiment, the gain of the weak field to strong field can be as high as 60. Furthermore, we can realize the distribution of optical signals, if we coordinate multiple cavity-atom coupling systems.

  1. Cold-Atom Physics Using Ultrathin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions

    SciTech Connect

    Sague, G.; Vetsch, E.; Alt, W.; Meschede, D.; Rauschenbeutel, A.

    2007-10-19

    The strong evanescent field around ultrathin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold-atom cloud, we investigate the interaction of a small number of cold cesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.

  2. Theory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms

    SciTech Connect

    Derevianko, Andrei

    2010-05-15

    Precision measurements and quantum-information processing with cold atoms may benefit from trapping atoms with specially engineered, 'magic' optical fields. At the magic trapping conditions, the relevant atomic properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of magic trapping for especially valuable Zeeman-insensitive clock transitions in alkali-metal atoms. The involved mechanism relies on applying a magic bias B field along a circularly polarized trapping laser field. We map out these B fields as a function of trapping laser wavelength for all commonly used alkalis. We also highlight a common error in evaluating Stark shifts of hyperfine manifolds.

  3. Optical Excitation and Decay Dynamics of Ytterbium Atoms Embedded in a Solid Neon Matrix

    SciTech Connect

    Xu, C.-Y.; Lu, Z.-T.; Hu, S.-M.; Singh, J.; Bailey, K.; Mueller, P.; O'Connor, T. P.; Welp, U.

    2011-08-26

    Neutral ytterbium atoms embedded in solid neon qualitatively retain the structure of free atoms. Despite the atom-solid interaction, the 6s6p {sup 3}P{sub 0} level is found to remain metastable with its lifetimes determined to be in the range of ten to hundreds of seconds. The atomic population can be almost completely transferred between the ground level and the metastable level via optical excitation and spontaneous decay. The dynamics of this process is examined and is used to explicitly demonstrate that the transition broadening mechanism is homogeneous.

  4. Optical excitation and decay dynamics of ytterbium atoms embedded in a solid neon matrix.

    SciTech Connect

    Xu, C.-Y.; Hu, S.-M.; Singh, J.; Bailey, K.; Lu, Z.-T.; Mueller, P.; O'Connor, T. P.; Welp, U.

    2011-09-01

    Neutral ytterbium atoms embedded in solid neon qualitatively retain the structure of free atoms. Despite the atom-solid interaction, the 6s6p {sup 3}P{sub 0} level is found to remain metastable with its lifetimes determined to be in the range of ten to hundreds of seconds. The atomic population can be almost completely transferred between the ground level and the metastable level via optical excitation and spontaneous decay. The dynamics of this process is examined and is used to explicitly demonstrate that the transition broadening mechanism is homogeneous.

  5. Highly reliable optical system for a rubidium space cold atom clock.

    PubMed

    Ren, Wei; Sun, Yanguang; Wang, Bin; Xia, Wenbing; Qu, Qiuzhi; Xiang, Jingfeng; Dong, Zuoren; Lü, Desheng; Liu, Liang

    2016-05-01

    We describe a highly reliable optical system designed for a rubidium space cold atom clock (SCAC), presenting its design, key technologies, and optical components. All of the optical and electronic components are integrated onto an optimized two-sided 300  mm×290  mm×30  mm optical bench. The compact optical structure and special thermal design ensure that the optical system can pass all of the space environmental qualification tests including both thermal vacuum and mechanical tests. To verify its performance, the optical system is carefully checked before and after each test. The results indicate that this optical system is suitably robust for the space applications for which the rubidium SCAC was built. PMID:27140378

  6. Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems.

    PubMed

    Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G

    2013-08-12

    We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.

  7. Polarization-selective optical nonlinearities in cold Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.

    2015-12-01

    We study the interaction between a probe and a trigger weak fields in a sample of cold rubidium atoms in the presence of a coupling and a dressing strong fields. Dipole Rydberg blockade may occur and can be set to depend on the probe and trigger polarizations giving rise to diverse regimes of electromagnetically induced transparency (EIT) with a concomitant small probe and trigger absorption and dispersion. This is shown to be relevant to the implementation of polarization conditional probe and trigger cross nonlinearities in cold Rydberg atoms.

  8. Large-photon-number extraction from individual atoms trapped in an optical lattice

    SciTech Connect

    Shotter, M. D.

    2011-03-15

    The atom-by-atom characterization of quantum gases requires the development of novel measurement techniques. One particularly promising new technique demonstrated in recent experiments uses strong fluorescent laser scattering from neutral atoms confined in a short-period optical lattice to measure the positions of individual atoms in the sample. A crucial condition for the measurements is that atomic hopping between lattice sites must be strongly suppressed despite substantial photon recoil heating. This paper models three-dimensional polarization gradient cooling of atoms trapped within a far-detuned optical lattice. The atomic dynamics are simulated using a hybrid Monte Carlo and master-equation analysis in order to predict the frequency of processes which give rise to degradation or loss of the fluorescent signal during measurements. It is shown, consistently with the experimental results, that there exists a wide parameter range in which the lifetime of strongly fluorescing isolated lattice-trapped atoms is limited by background gas collisions rather than radiative processes. In these cases the total number of scattered photons can be as large as 10{sup 8} per atom. The performance of the technique is related to relevant experimental parameters.

  9. Holographic optical traps for atom-based topological Kondo devices

    NASA Astrophysics Data System (ADS)

    Buccheri, F.; Bruce, G. D.; Trombettoni, A.; Cassettari, D.; Babujian, H.; Korepin, V. E.; Sodano, P.

    2016-07-01

    The topological Kondo (TK) model has been proposed in solid-state quantum devices as a way to realize non-Fermi liquid behaviors in a controllable setting. Another motivation behind the TK model proposal is the demand to demonstrate the quantum dynamical properties of Majorana fermions, which are at the heart of their potential use in topological quantum computation. Here we consider a junction of crossed Tonks-Girardeau gases arranged in a star-geometry (forming a Y-junction), and we perform a theoretical analysis of this system showing that it provides a physical realization of the TK model in the realm of cold atom systems. Using computer-generated holography, we experimentally implement a Y-junction suitable for atom trapping, with controllable and independent parameters. The junction and the transverse size of the atom waveguides are of the order of 5 μm, leading to favorable estimates for the Kondo temperature and for the coupling across the junction. Since our results show that all the required theoretical and experimental ingredients are available, this provides the demonstration of an ultracold atom device that may in principle exhibit the TK effect.

  10. Holographic optical traps for atom-based topological Kondo devices

    NASA Astrophysics Data System (ADS)

    Buccheri, F.; Bruce, G. D.; Trombettoni, A.; Cassettari, D.; Babujian, H.; Korepin, V. E.; Sodano, P.

    2016-07-01

    The topological Kondo (TK) model has been proposed in solid-state quantum devices as a way to realize non-Fermi liquid behaviors in a controllable setting. Another motivation behind the TK model proposal is the demand to demonstrate the quantum dynamical properties of Majorana fermions, which are at the heart of their potential use in topological quantum computation. Here we consider a junction of crossed Tonks–Girardeau gases arranged in a star-geometry (forming a Y-junction), and we perform a theoretical analysis of this system showing that it provides a physical realization of the TK model in the realm of cold atom systems. Using computer-generated holography, we experimentally implement a Y-junction suitable for atom trapping, with controllable and independent parameters. The junction and the transverse size of the atom waveguides are of the order of 5 μm, leading to favorable estimates for the Kondo temperature and for the coupling across the junction. Since our results show that all the required theoretical and experimental ingredients are available, this provides the demonstration of an ultracold atom device that may in principle exhibit the TK effect.

  11. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity

    NASA Astrophysics Data System (ADS)

    Neuzner, A.; Körber, M.; Morin, O.; Ritter, S.; Rempe, G.

    2016-05-01

    Interference is central to quantum physics and occurs when indistinguishable paths exist, as in a double-slit experiment. Replacing the two slits with single atoms introduces optical nonlinearities for which non-trivial interference phenomena are predicted. Their observation, however, has been hampered by difficulties in preparing the required atomic distribution, controlling the optical phases and detecting the faint light. Here we overcome all of these experimental challenges by combining an optical lattice for atom localization, an imaging system with single-site resolution and an optical resonator for light steering. We observe resonator-induced saturation of resonance fluorescence for constructive interference and non-zero emission with huge photon bunching for destructive interference. The latter is explained by atomic saturation and photon-pair generation, similar to predictions for free-space atoms. Our experimental setting allows realization of the Tavis-Cummings model for any number of atoms and photons, exploration of fundamental aspects of light-matter interaction and implementation of new quantum information processing protocols.

  12. Graphene-like optical light field and its interaction with two-level atoms

    NASA Astrophysics Data System (ADS)

    Lembessis, V. E.; Courtial, Johannes; Radwell, N.; Selyem, A.; Franke-Arnold, S.; Aldossary, O. M.; Babiker, M.

    2015-12-01

    The theoretical basis leading to the creation of a light field with a hexagonal honeycomb structure resembling graphene is considered along with its experimental realization and its interaction with atoms. It is argued that associated with such a light field is an optical dipole potential which leads to the diffraction of the atoms, but the details depend on whether the transverse spread of the atomic wave packet is larger than the transverse dimensions of the optical lattice (resonant Kapitza-Dirac effect) or smaller (optical Stern-Gerlach effect). Another effect in this context involves the creation of gauge fields due to the Berry phase acquired by the atom moving in the light field. The experimental realization of the light field with a honeycomb hexagonal structure is described using holographic methods and we proceed to explore the atom diffraction in the Kapitza-Dirac regime as well as the optical Stern-Gerlach regime, leading to momentum distributions with characteristic but different hexagonal structures. The artificial gauge fields too are shown to have the same hexagonal spatial structure and their magnitude can be significantly large. The effects are discussed with reference to typical parameters for the atoms and the fields.

  13. Angular-resolved magnetometry beyond triclinic crystals part II: torque magnetometry of Cp*ErCOT single-molecule magnets.

    PubMed

    Perfetti, Mauro; Cucinotta, Giuseppe; Boulon, Marie-Emmanuelle; El Hallak, Fadi; Gao, Song; Sessoli, Roberta

    2014-10-20

    The experimental investigation of the molecular magnetic anisotropy in crystals in which the magnetic centers are symmetry related, but do not have a parallel orientation has been approached by using torque magnetometry. A single crystal of the orthorhombic organometallic Cp*ErCOT [Cp*=pentamethylcyclopentadiene anion (C5Me5(-)); COT=cyclooctatetraenedianion (C8H8(2-))] single-molecule magnet, characterized by the presence of two nonparallel families of molecules in the crystal, has been investigated above its blocking temperature. The results confirm an Ising-type anisotropy with the easy direction pointing along the pseudosymmetry axis of the complex, as previously suggested by out-of-equilibrium angular-resolved magnetometry. The use of torque magnetometry, not requiring the presence of magnetic hysteresis, proves to be even more powerful for these purposes than standard single-crystal magnetometry. Furthermore, exploiting the sensitivity and versatility of this technique, magnetic anisotropy has been investigated up to 150 K, providing additional information on the crystal-field splitting of the ground J multiplet of the Er(III) ion.

  14. Atom-molecular oscillations of a Bose gas in an optical lattice

    NASA Astrophysics Data System (ADS)

    Heinzen, Daniel

    2005-05-01

    A Bose gas in an optical lattice can undergo a quantum phase transition between a superfluid and a ``Mott insulator'' state [1]. We have created a Mott insulator state of ^87Rb atoms in an optical lattice with a controllable number of atoms per site, and measured its stimulated Raman photoassociation spectrum. We found that higher density samples exhibited a two-peaked spectrum arising from photoassociation in sites with two and three atoms, respectively. The splitting between these peaks provides a measurement of the atom-molecule scattering length. Raman photoassociation of a sample with a central core of Mott insulator with two atoms per site induced macroscopic coherent oscillations between an atomic and a molecular gas, as predicted by Jaksch et al. [2]. Our result implies that at the point of minimum atom number, we have created a molecular quantum gas with one molecule in each lattice site. In addition, we have carried out Bragg spectroscopy of the gas [3], and found evidence of a gap in the excitation spectrum of the insulating state. This work was carried out in collaboration with C. Ryu, Emek Yesilada, Xu Du, and Shoupu Wan. We acknowledge the support of the R.A. Welch Foundation, the N.S.F., and the D.O.E Quantum Optics Initiative. [1] Markus Greiner et al., Nature 415, 39 (2002). [2] D. Jaksch et al., Phys. Rev. Lett. 89, 040402 (2002). [3] D. Van Oosten et al., cond-mat/0405492 (2004).

  15. Computational challenges in atomic, molecular and optical physics.

    PubMed

    Taylor, Kenneth T

    2002-06-15

    Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

  16. Atom-optics simulator of lattice transport phenomena

    NASA Astrophysics Data System (ADS)

    Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce

    2016-05-01

    We experimentally investigate a scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight-binding models that can be simulated, we demonstrate that this technique allows for a local and time-dependent control over all system parameters, and additionally allows for single-site resolved detection of atomic populations. We demonstrate full control over site-to-site off-diagonal tunneling elements (amplitude and phase) and diagonal site energies, through the observation of continuous-time quantum walks, Bloch oscillations, and negative tunneling. These capabilities open up new prospects in the experimental study of disordered and topological systems.

  17. Resonant control of cold-atom transport through two optical lattices with a constant relative speed

    NASA Astrophysics Data System (ADS)

    Greenaway, M. T.; Balanov, A. G.; Fromhold, T. M.

    2013-01-01

    We show theoretically that the dynamics of cold atoms in the lowest-energy band of a stationary optical lattice can be transformed and controlled by a second, weaker, periodic potential moving at a constant speed along the axis of the stationary lattice. The atom trajectories exhibit complex behavior, which depends sensitively on the amplitude and speed of the propagating lattice. When the speed and amplitude of the moving potential are low, the atoms are dragged through the static lattice and perform drifting orbits with frequencies an order of magnitude higher than that corresponding to the moving potential. Increasing either the speed or amplitude of the moving lattice induces Bloch-like oscillations within the energy band of the static lattice, which exhibit complex resonances at critical values of the system parameters. In some cases, a very small change in these parameters can reverse the atom's direction of motion. In order to understand these dynamics we present an analytical model, which describes the key features of the atom transport and also accurately predicts the positions of the resonant features in the atom's phase space. The abrupt controllable transitions between dynamical regimes, as well as the associated set of resonances, provide a mechanism for transporting atoms between precise locations in a lattice, as required for using cold atoms to simulate condensed matter or as a stepping stone to quantum information processing. The system also provides a direct quantum simulator of acoustic waves propagating through semiconductor nanostructures in sound analogs of the optical laser (saser).

  18. Nonlinear interaction of meta-atoms through optical coupling

    SciTech Connect

    Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A.; Powell, D. A.; Shadrivov, I. V.; Kivshar, Yu. S.; Lapine, M.; McPhedran, R. C.

    2014-01-06

    We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.

  19. Nonlinear effects in optical pumping of a cold and slow atomic beam

    NASA Astrophysics Data System (ADS)

    Porfido, N.; Bezuglov, N. N.; Bruvelis, M.; Shayeganrad, G.; Birindelli, S.; Tantussi, F.; Guerri, I.; Viteau, M.; Fioretti, A.; Ciampini, D.; Allegrini, M.; Comparat, D.; Arimondo, E.; Ekers, A.; Fuso, F.

    2015-10-01

    By photoionizing hyperfine (HF) levels of the Cs state 6 2P3 /2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180 μ s ) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of "dark" and "bright" resonances leading to power-dependent branching coefficients.

  20. Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Topcu, T.; Derevianko, A.

    2016-07-01

    We predict the possibility of ‘triply magic’ optical lattice trapping of neutral divalent atoms. In such a lattice, the {}1{{{S}}}0 and {}3{{{P}}}0 clock states and an additional Rydberg state experience identical optical potentials, fully mitigating detrimental effects of the motional decoherence. In particular, we show that this triply magic trapping condition can be satisfied for Yb atom at optical wavelengths and for various other divalent systems (Ca, Mg, Hg and Sr) in the UV region. We assess the quality of triple magic trapping conditions by estimating the probability of excitation out of the motional ground state as a result of the excitations between the clock and the Rydberg states. We also calculate trapping laser-induced photoionization rates of divalent Rydberg atoms at magic frequencies. We find that such rates are below the radiative spontaneous-emission rates, due to the presence of Cooper minima in photoionization cross-sections.

  1. Precision spectroscopy of Mg atoms in a magneto-optical trap

    SciTech Connect

    Goncharov, A N; Brazhnikov, D V; Shilov, A M; Bagayev, S N; Bonert, A E

    2014-06-30

    We report the results of experimental investigations aimed at creation of the optical frequency standard based on magnesium atoms cooled and localised in a magneto-optical trap (MOT). An experimentally realised MOT for magnesium made it possible to obtain a cloud comprising ∼10{sup 6} – 10{sup 7} atoms at a temperature of 3 – 5 mK. The results of ultra-high resolution spectroscopy of intercombination {sup 1}S{sub 0} – {sup 3}P{sub 1} transition for Mg atom are presented, the resonances in time-domain separated optical fields with the half-width of Γ = 500 Hz are recorded, which corresponds to the Q-factor of the reference line Q = ν/Δν ∼ 1.3 × 10{sup 12}. (extreme light fields and their applications)

  2. Mirror effects and optical meta-surfaces in 2d atomic arrays

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim; Wild, Dominik; Lukin, Mikhail; Yelin, Susanne

    2016-05-01

    Strong optical response of natural and artificial (meta-) materials typically relies on the fact that the lattice constant that separates their constituent particles (atoms or electromagnetic resonators, respectively) is much smaller than the optical wavelength. Here we consider a single layer of a 2d atom array with a lattice constant on the order of an optical wavelength, which can be thought of as a highly dilute 2d metamaterial (meta-surface). Our theoretical analysis shows how strong scattering of resonant incoming light off the array can be controlled by choosing its lattice constant, e.g. allowing the array to operate as a perfect mirror or a retro-reflector for most incident angles of the incoming light. We discuss the prospects for quantum metasurfaces, i.e. the ability to shape the output quantum state of light by controlling the atomic states, and the possible generality of our results as a universal wave phenomena.

  3. X-ray-excited optical luminescence of impurity atom in semiconductor.

    PubMed

    Ishii, M; Tanaka, Y; Komuro, S; Morikawa, T; Aoyagi, Y; Ishikawa, T

    2001-03-01

    We observed the x-ray-excited optical luminescence (XEOL) of erbium-doped silicon (Si:Er) thin films to make a site-selective x-ray absorption fine structure (XAFS) measurement of an optically active Er atom. The undulator beam was used for the increment of the electron population in the excited state, and following XEOL at an infrared wavelength of 1.54 microm with minimum absorption loss in the host Si was detected. The edge-jump and XAFS oscillation were successfully obtained at the Er L(III)-edge. This spectrum originated from inner-shell excitation and relaxation of only the optically active Er atom, indicating that site-selectivity at an atomic level was achieved.

  4. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.

    PubMed

    Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William

    2016-08-12

    Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.

  5. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime

    NASA Astrophysics Data System (ADS)

    Araújo, Michelle O.; Krešić, Ivor; Kaiser, Robin; Guerin, William

    2016-08-01

    Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.

  6. Preparation of a high concentration of lithium-7 atoms in a magneto-optical trap

    SciTech Connect

    Zelener, B. B. Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E.

    2014-11-15

    This study is aimed at obtaining high concentration of optically cooled lithium-7 atoms for preparing strongly interacting ultracold plasma and Rydberg matter. A special setup has been constructed, in which two high-power semiconductor lasers are used to cool lithium-7 atoms in a magneto-optical trap. At an optimum detuning of the cooling laser frequency and a magnetic field gradient of 35 G/cm, the concentration of ultracold lithium-7 atoms reaches about 10{sup 11} cm{sup −3}. Additional independent information about the concentration and number of ultracold lithium-7 atoms on different sublevels of the ground state was obtained by using of an additional probing laser.

  7. Semiclassical solitons in strongly correlated systems of ultracold bosonic atoms in optical lattices

    SciTech Connect

    Demler, Eugene; Maltsev, Andrei

    2011-07-15

    Highlights: > Dynamics of their formation in strongly correlated systems of ultracold bosonic atoms in optical lattices. > Regime of very strong interactions between atoms, the so-called hard core bosons regime. > Character of soliton excitations is dramatically different from the usual Gross-Pitaevskii regime. - Abstract: We investigate theoretically soliton excitations and dynamics of their formation in strongly correlated systems of ultracold bosonic atoms in two and three dimensional optical lattices. We derive equations of nonlinear hydrodynamics in the regime of strong interactions and incommensurate fillings, when atoms can be treated as hard core bosons. When parameters change in one direction only we obtain Korteweg-de Vries type equation away from half-filling and modified KdV equation at half-filling. We apply this general analysis to a problem of the decay of the density step. We consider stability of one dimensional solutions to transverse fluctuations. Our results are also relevant for understanding nonequilibrium dynamics of lattice spin models.

  8. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.

    PubMed

    Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William

    2016-08-12

    Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects. PMID:27563957

  9. Control of Wannier orbitals for generating tunable Ising interactions of ultracold atoms in an optical lattice

    SciTech Connect

    Inaba, Kensuke; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto; Tokunaga, Yuuki

    2014-12-04

    In this study, we propose a method for generating cluster states of atoms in an optical lattice. By utilizing the quantum properties of Wannier orbitals, we create an tunable Ising interaction between atoms without inducing the spin-exchange interactions. We investigate the cause of errors that occur during entanglement generations, and then we propose an error-management scheme, which allows us to create high-fidelity cluster states in a short time.

  10. Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases

    NASA Astrophysics Data System (ADS)

    Ruostekoski, Janne; Javanainen, Juha

    2016-09-01

    We analyze the emergence of correlated optical phenomena in the transmission of light through a waveguide that confines classical or ultracold quantum degenerate atomic ensembles. The conditions of the correlated collective response are identified in terms of atom density, thermal broadening, and photon losses by using stochastic Monte Carlo simulations and transfer matrix methods of transport theory. We also calculate the "cooperative Lamb shift" for the waveguide transmission resonance, and discuss line shifts that are specific to effectively one-dimensional waveguide systems.

  11. Detection of antiferromagnetic order by cooling atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Lin; Teles, Rafael; Hazzard, Kaden; Hulet, Randall; Rice University Collaboration

    2016-05-01

    We have realized the Fermi-Hubbard model with fermionic 6 Li atoms in a three-dimensional compensated optical lattice. The compensated optical lattice has provided low enough temperatures to produce short-range antiferromagnetic (AF) spin correlations, which we detect via Bragg scattering of light. Previously, we reached temperatures down to 1.4 times that of the AFM phase transition, more than a factor of 2 below temperatures obtained previously in 3D optical lattices with fermions. In order to further reduce the entropy in the compensated lattice, we implement an entropy conduit - which is a single blue detuned laser beam with a waist size smaller than the overall atomic sample size. This repulsive narrow potential provides a conductive metallic path between the low entropy core and the edges of the atomic sample where atoms may be evaporated. In addition, the entropy conduit may store entropy, thus further lowering the entropy in the core. We will report on the status of these efforts to further cool atoms in the optical lattice. Work supported by ARO MURI Grant, NSF and The Welch Foundation.

  12. Spectroscopy for cold atom gases in periodically modulated optical lattice potential

    NASA Astrophysics Data System (ADS)

    Tokuno, Akiyuki; Giamarchi, Thierry

    2011-03-01

    Cold atoms in optical lattices are vigorously studied experimentally and theoretically as one of the candidates for a quantum simulator. At the same time, further development of probes to microscopic structure of systems is needed. We propose a novel spectroscopy in cold atom experiments by use of periodic phase-modulation of optical lattice potentials. Corresponding to the statistics of atoms, we formulate the different observables: The energy absorption rate for bosonic atom gases, and the doublon production rate for fermionic atom gases. These observables are formulated within the linear response theory. Interestingly they are given by the imaginary part of the retarded current-current correlation function which is familiar as a quantity corresponding to an optical conductivity. As an example, we discuss one-dimensional Mott insulating state, and also compare our spectroscopy with another known spectroscopy by amplitude-modulation of an optical lattice. This work was supported in part by the Swiss SNF under MaNEP and division II.

  13. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.

    PubMed

    Westergaard, Philip G; Christensen, Bjarke T R; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W

    2015-03-01

    As an alternative to state-of-the-art laser frequency stabilization using ultrastable cavities, it has been proposed to exploit the nonlinear effects from coupling of atoms with a narrow transition to an optical cavity. Here, we have constructed such a system and observed nonlinear phase shifts of a narrow optical line by a strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multiphoton scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intracavity power, we systematically study this nonlinear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub-100 mHz level and superradiant laser sources involving narrow-line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation to ultranarrow clock transitions.

  14. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.

    PubMed

    Westergaard, Philip G; Christensen, Bjarke T R; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W

    2015-03-01

    As an alternative to state-of-the-art laser frequency stabilization using ultrastable cavities, it has been proposed to exploit the nonlinear effects from coupling of atoms with a narrow transition to an optical cavity. Here, we have constructed such a system and observed nonlinear phase shifts of a narrow optical line by a strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multiphoton scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intracavity power, we systematically study this nonlinear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub-100 mHz level and superradiant laser sources involving narrow-line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation to ultranarrow clock transitions. PMID:25793810

  15. Magneto-optical trap formed by elliptically polarised light waves for Mg atoms

    NASA Astrophysics Data System (ADS)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Goncharov, A. N.

    2016-07-01

    We consider a magneto-optical trap (MOT) formed by elliptically polarised waves for 24Mg atoms on a closed optical 3P2 → 3D3 (λ = 383.8 nm) transition in the ɛ - θ - ɛ¯ configuration of the field. Compared with a known MOT formed by circularly polarised waves (σ+ - σ- configuration), the suggested configuration of the trap formed by fields of ɛ - θ - ɛ¯ configuration allows deeper sub-Doppler cooling of trapped 24Mg atoms, which cannot be implemented in a conventional trap formed by fields of σ+ - σ- configuration.

  16. Coherence of a qubit stored in Zeeman levels of a single optically trapped atom

    SciTech Connect

    Rosenfeld, Wenjamin; Weinfurter, Harald; Volz, Juergen; Weber, Markus

    2011-08-15

    We experimentally investigate the coherence properties of a qubit stored in the Zeeman substates of the 5{sup 2}S{sub 1/2}, F=1 hyperfine ground level of a single optically trapped {sup 87}Rb atom. Larmor precession of a single atomic spin-1 system is observed by preparing the atom in a defined initial spin state and then measuring the resulting state after a programmable period of free evolution. Additionally, by performing quantum-state tomography, maximum knowledge about the spin coherence is gathered. By using an active magnetic field stabilization and without application of a magnetic guiding field, we achieve transverse and longitudinal dephasing times of T{sub 2}{sup *}=75-150 {mu}s and T{sub 1}>0.5 ms, respectively. We derive the light-shift distribution of a single atom in the approximately harmonic potential of a dipole trap and show that the measured atomic spin coherence is limited mainly by residual position- and state-dependent effects in the optical trapping potential. The improved understanding enables longer coherence times, an important prerequisite for future applications in long-distance quantum communication and computation with atoms in optical lattices, or for a loophole-free test of Bell's inequality.

  17. Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array.

    PubMed

    Bettles, Robert J; Gardiner, Simon A; Adams, Charles S

    2016-03-11

    Enhancing the optical cross section is an enticing goal in light-matter interactions, due to its fundamental role in quantum and nonlinear optics. Here, we show how dipolar interactions can suppress off-axis scattering in a two-dimensional atomic array, leading to a subradiant collective mode where the optical cross section is enhanced by almost an order of magnitude. As a consequence, it is possible to attain an optical depth which implies high-fidelity extinction, from a monolayer. Using realistic experimental parameters, we also model how lattice vacancies and the atomic trapping depth affect the transmission, concluding that such high extinction should be possible, using current experimental techniques. PMID:27015480

  18. Nonlinear optical response of multiply ionized noble-gas atoms

    NASA Astrophysics Data System (ADS)

    Tarazkar(1, 3), Maryam; Romanov(2, 3), Dmitri; Levis(1, 3), Robert

    2016-05-01

    Calculation of dynamic polarizabilities and hyperpolarizabilities of ionized species using ab initio methods presents computational and conceptual difficulties, as these ionized species often have open-shell electronic system. We use multi-configurational self-consistent field (MCSCF) method with extended basis sets for calculating dynamic polarizability and second-order hyperpolarizabilities of atomic noble gases and their multiply charged cations in non-resonant regime. The calculations were performed at wavelengths ranging from about 100 nm to the red of the first multi-photon resonance all the way toward the static regime. The results were benchmarked to those of CCSD calculations for ions of even-number charge. The second-order hyperpolarizability coefficients were found to decrease when the electrons are progressively removed from the system. At higher ionization states, these coefficients become less dispersive as a function of wavelength. The values and even the signs of the γ (2) coefficients were found to depend on the spin of the ionic quantum state. Thus, for Ne+3 and Ne+4, in low-spin states (2 Pu, and 1 Sg, respectively) the sign of γ (2) is positive, whereas in high-spin states (4 Su, and 3 Pg) the sign is negative. The calculated hyperpolarizabilities of multiply ionized atoms relate to experiments on very bright high-order harmonic generation in multiply ionized plasmas.

  19. Azimuthal Sisyphus effect for atoms in a toroidal all-optical trap

    SciTech Connect

    Lembessis, V. E.; Ellinas, D.; Babiker, M.

    2011-10-15

    It is shown that an optical arrangement in which two identical counterpropagating Laguerre-Gaussian doughnut beams LG(l,0) and LG(-l,0) with orthogonal linear polarizations e {sub x} and e {sub y} can lead to azimuthal polarization gradients and an as yet undiscovered azimuthal Sisyphus effect. It is demonstrated that this effect can be utilized in the creation and control of a persistent current of superfluid atoms circulating in a toroidal trap. Such a physical system has recently been highlighted as the basis for an atomic superconducting quantum interference device (SQUID) and ultimately for the realization of atom circuits.

  20. Micromagic Clock: Microwave Clock Based on Atoms in an Engineered Optical Lattice

    SciTech Connect

    Beloy, K.; Derevianko, A.; Dzuba, V. A.; Flambaum, V. V.

    2009-03-27

    We propose a new class of atomic microwave clocks based on the hyperfine transitions in the ground state of aluminum or gallium atoms trapped in optical lattices. For such elements magic wavelengths exist at which both levels of the hyperfine doublet are shifted at the same rate by the lattice laser field, canceling its effect on the clock transition. A similar mechanism for the magic wavelengths may work in microwave hyperfine transitions in other atoms which have the fine-structure multiplets in the ground state.

  1. A controllable double-well magneto-optical trap for Rb and Cs atoms.

    PubMed

    Lin, C T; Chen, C R; Yang, I H; Yin, Jianping; Han, D J

    2008-04-28

    We experimentally demonstrate a novel scheme to simultaneously confine two atomic species of (87)Rb and (133)Cs with adjustable spatial separation by a controllable double-well magneto-optic trap. Using a single-loop wire and a magnetic bias field, the two clouds, each containing more than 1 x 10(6) atoms, are spatially separated above and below the wire center of the double-well MOT. The cloud interdistance can be controlled by independently varying the wire current and external bias field. This allows to load the double-well magnetic trap, and to study the dynamics of cold collisions between two-species atoms.

  2. Optical radiation and ionization of hydrogen atoms in heterogeneous exothermal reactions proceeding in an electric field

    NASA Astrophysics Data System (ADS)

    Blashenkov, N. M.; Lavrent'ev, G. Ya.

    2009-09-01

    Optical radiation related to the Balmer series (Hα, Hβ, Hγ) of hydrogen atoms is discovered when studying the isothermal reaction of trimeric acetone peroxide decomposition on the surface of oxidized tungsten in a static electric field with a strength of up to 4 × 106 V/cm at T = 300 K. The distance from the surface over which desorbing excited hydrogen atoms radiate is determined from the Stark splitting of the lines. Electronically excited atoms remaining on the surface ionize according to the surface ionization mechanism.

  3. Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms.

    PubMed

    Williams, R A; Pillet, J D; Al-Assam, S; Fletcher, B; Shotter, M; Foot, C J

    2008-10-13

    We demonstrate a novel experimental arrangement which can rotate a 2D optical lattice at frequencies up to several kilohertz. Ultracold atoms in such a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, allowing investigation of phenomena such as the fractional quantum Hall effect. Our arrangement also allows the periodicity of a 2D optical lattice to be varied dynamically, producing a 2D accordion lattice.

  4. Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems

    SciTech Connect

    Gelin, M. F.; Bondarev, I. V.; Meliksetyan, A. V.

    2014-02-14

    We study theoretically a pair of spatially separated extrinsic atomic type species (extrinsic atoms, ions, molecules, or semiconductor quantum dots) near a metallic carbon nanotube, that are coupled both directly via the inter-atomic dipole-dipole interactions and indirectly by means of the virtual exchange by resonance plasmon excitations on the nanotube surface. We analyze how the optical preparation of the system by using strong laser pulses affects the formation and evolution of the bipartite atomic entanglement. Despite a large number of possible excitation regimes and evolution pathways, we find a few generic scenarios for the bipartite entanglement evolution and formulate practical recommendations on how to optimize and control the robust bipartite atomic entanglement in hybrid carbon nanotube systems.

  5. Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection.

    PubMed

    Tan, Bozhong; Tian, Yuan; Lin, Huifang; Chen, Jiehua; Gu, Sihong

    2015-08-15

    We propose and investigate a scheme for differential detection of the magneto-optic rotation (MOR) effect, where a linearly polarized bichromatic laser field is coherent population-trapping (CPT)-resonant with alkali atoms, and discuss the application of this effect to CPT-based atomic clocks. The results of our study indicate that laser noise in a vertical cavity surface-emitting laser-based CPT atomic clock can be effectively suppressed by the proposed scheme. The proposed scheme promises to realize a packaged MOR-CPT atomic clock that has significantly better frequency stability coupled with similar power consumption, volume, and cost when compared with currently available packaged CPT atomic clocks.

  6. Noise suppression in coherent population-trapping atomic clock by differential magneto-optic rotation detection.

    PubMed

    Tan, Bozhong; Tian, Yuan; Lin, Huifang; Chen, Jiehua; Gu, Sihong

    2015-08-15

    We propose and investigate a scheme for differential detection of the magneto-optic rotation (MOR) effect, where a linearly polarized bichromatic laser field is coherent population-trapping (CPT)-resonant with alkali atoms, and discuss the application of this effect to CPT-based atomic clocks. The results of our study indicate that laser noise in a vertical cavity surface-emitting laser-based CPT atomic clock can be effectively suppressed by the proposed scheme. The proposed scheme promises to realize a packaged MOR-CPT atomic clock that has significantly better frequency stability coupled with similar power consumption, volume, and cost when compared with currently available packaged CPT atomic clocks. PMID:26274639

  7. Optical readout of the quantum collective motion of an array of atomic ensembles.

    PubMed

    Botter, Thierry; Brooks, Daniel W C; Schreppler, Sydney; Brahms, Nathan; Stamper-Kurn, Dan M

    2013-04-12

    We create an ultracold-atom-based cavity optomechanical system in which the center-of-mass modes of motion of as many as six distinguishable atomic ensembles are prepared and optically detected near their ground states. We demonstrate that the collective motional state of one atomic ensemble can be selectively addressed while preserving neighboring ensembles near their ground states to better than 95% per excitation quantum. We also show that our system offers nanometer-scale spatial resolution of each atomic ensemble via optomechanical imaging. This technique enables the in situ parallel sensing of potential landscapes, a capability relevant to active research areas of atomic physics and force-field detection in optomechanics.

  8. Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps

    SciTech Connect

    Klempt, C.; Zoest, T. van; Henninger, T.; Topic, O.; Rasel, E.; Ertmer, W.; Arlt, J.

    2006-01-15

    We show that light-induced atom desorption (LIAD) can be used as a flexible atomic source for large {sup 87}Rb and {sup 40}K magneto-optical traps. The use of LIAD at short wavelengths allows for fast switching of the desired vapor pressure and permits experiments with long trapping and coherence times. The wavelength dependence of the LIAD effect for both species was explored in a range from 630 to 253 nm in an uncoated quartz cell and a stainless steel chamber. Only a few mW/cm{sup 2} of near-UV light produce partial pressures that are high enough to saturate a magneto-optical trap at 3.5x10{sup 9} {sup 87}Rb atoms or 7x10{sup 7} {sup 40}K atoms. Loading rates as high as 1.2x10{sup 9} {sup 87}Rb atoms/s and 8x10{sup 7} {sup 40}K atoms/s were achieved without the use of a secondary atom source. After the desorption light is turned off, the pressure quickly decays back to equilibrium with a time constant as short as 200 {mu}s, allowing for long trapping lifetimes after the MOT loading phase.

  9. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  10. Composite-pulse magnetometry in the solid-state

    NASA Astrophysics Data System (ADS)

    Aiello, Clarice; Hirose, Masashi; Cappellaro, Paola

    2012-02-01

    The sensitivity yielded by magnetometry schemes at the quantum level is limited by experimental imperfections in the interrogation pulses and, especially in the solid-state, by relatively short dephasing times. We investigate the use of composite-pulse magnetometry sequences as a means of addressing both limitations. We perform proof-of-principle experiments on magnetometry and noise characterization through a continuous sequence of rotary echoes applied to a single qubit in the nitrogen-vacancy center in diamond. The rotary echo is the simplest unit of a composite pulse sequence, consisting of two consecutive pulses of identical nominal rotation angle applied with opposite excitation phases. Unlike other composite sequences, the rotary echo corrects for excitation field, but not for static field, inhomogeneities. The presented scheme is flexible in that a suitable choice of rotation angle compensates for different scenarios of noise strength and origin (dephasing or fluctuations in excitation intensity). Obtained sensitivities are in the range between those obtained with the widely used Ramsey spectroscopy sequence and the recently implemented method relying on frequency beats in Rabi oscillations.

  11. Optimizing the Growth of (111) Diamond for Diamond Based Magnetometry

    NASA Astrophysics Data System (ADS)

    Kamp, Eric; Godwin, Patrick; Samarth, Nitin; Snyder, David; de Las Casas, Charles; Awschalom, David D.

    Magnetometers based on nitrogen vacancy (NV) ensembles have recently achieved sub-picotesla sensitivities [Phys. Rev. X 5, 041001(2015)], putting the technique on par with SQUID and MFM magnetometry.Typically these sensors use (100) oriented diamond with NV centers forming along all four (111) crystal orientations.This allows for vector magnetometry, but is a hindrance to the absolute sensitivity. Diamond grown on (111) oriented substrates through microwave plasma enhanced chemical vapor deposition(MP-CVD) provides a promising route in this context since such films can exhibit preferential orientation greater than 99% [Appl. Phys. Lett.104, 102407 (2014)]. An important challenge though is to achieve sufficiently high NV center densities required for enhancing the sensitivity of an NV ensemble magnetometer.We report systematic studies of the MP-CVD growth and characterization of (111) oriented diamond, where we vary growth temperature, methane concentration, and nitrogen doping. For each film we study the Nitrogen to NV ratio, the NV- to NV0 ratio, and alignment percentage to minimize sources of decoherence and ensure preferential alignment. From these measurements we determine the optimal growth parameters for high sensitivity, NV center ensemble scalar magnetometry. Funded by NSF-DMR.

  12. Spin-1 atoms in optical superlattices: Single-atom tunneling and entanglement

    SciTech Connect

    Wagner, Andreas; Bruder, Christoph; Demler, Eugene

    2011-12-15

    We examine spinor Bose-Einstein condensates in optical superlattices theoretically using a Bose-Hubbard Hamiltonian that takes spin effects into account. Assuming that a small number of spin-1 bosons is loaded in an optical potential, we study single-particle tunneling that occurs when one lattice site is ramped up relative to a neighboring site. Spin-dependent effects modify the tunneling events in a qualitative and quantitative way. Depending on the asymmetry of the double well, different types of magnetic order occur, making the system of spin-1 bosons in an optical superlattice a model for mesoscopic magnetism. We use a double-well potential as a unit cell for a one-dimensional superlattice. Homogeneous and inhomogeneous magnetic fields are applied, and the effects of the linear and the quadratic Zeeman shifts are examined. We also investigate the bipartite entanglement between the sites and construct states of maximal entanglement. The entanglement in our system is due to both orbital and spin degrees of freedom. We calculate the contribution of orbital and spin entanglements and show that the sum of these two terms gives a lower bound for the total entanglement.

  13. Atomic Bloch-Zener oscillations and Stückelberg interferometry in optical lattices.

    PubMed

    Kling, Sebastian; Salger, Tobias; Grossert, Christopher; Weitz, Martin

    2010-11-19

    We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.

  14. Is the time right for a redefinition of the second by optical atomic clocks?

    NASA Astrophysics Data System (ADS)

    Gill, Patrick

    2016-06-01

    Given the dramatic rate of progress in optical atomic clocks over the last decade, this paper presents the current state of play, and considers the possibilities, implications and timescales for a potential redefinition of the SI second in terms of an optical reference transition. In particular, the question of choice of a future standard is addressed, together with the requirements to accurately compare realisations of such standards, both for clocks local to, and remote from each other. Current performances of various optical clock systems are examined and possibilities for moving beyond potential limitations by alternative strategies are outlined.

  15. Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Zhang, Yiqi; Sheng, Jiteng; Yang, Liu; Miri, Mohammad-Ali; Christodoulides, Demetrios N.; He, Bing; Zhang, Yanpeng; Xiao, Min

    2016-09-01

    A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Due to their unusual properties, this family of non-Hermitian systems has recently attracted considerable attention in diverse areas of physics, especially in coupled gain-loss waveguides and optical lattices. Given that multi-level atoms can be quite efficient in judiciously synthesizing refractive index profiles, schemes based on atomic coherence have been recently proposed to realize optical potentials with PT-symmetric properties. Here, we experimentally demonstrate for the first time PT-symmetric optical lattices in a coherently-prepared four-level N-type atomic system. By appropriately tuning the pertinent atomic parameters, the onset of PT symmetry breaking is observed through measuring an abrupt phase-shift jump. The experimental realization of such readily reconfigurable and effectively controllable PT-symmetric periodic lattice structures sets a new stage for further exploiting and better understanding the peculiar physical properties of these non-Hermitian systems in atomic settings.

  16. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  17. Nanofabrication of diffractive optics for soft X-ray and atom beam focusing

    NASA Astrophysics Data System (ADS)

    Rehbein, S.

    2003-03-01

    Nanostructuring processes are described for manufacturing diffractive optics for the condensermonochromator set-up of the transmission X-ray microscope (TXM) and for the scanning transmission X-ray microscope (STXM) at the BESSY II electron storage ring in Berlin. Furthermore, a process for manufacturing freestanding nickel zone plates for helium atom beam focusing experiments is presented.

  18. Quantum fluctuations of the optical forces on atoms in a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Shevy, Y.; Crosignani, B.; Yariv, A.

    1992-08-01

    Squeezing the vacuum fluctuations of the electromagnetic field modifies the quantum fluctuations of the optical forces exerted on laser-cooled two-level atoms. Under certain conditions, this modification when combined with the enhanced average forces can lead to equilibrium temperatures below those attained under normal-vacuum fluctuations.

  19. Realizing non-Abelian gauge potentials in optical square lattices: an application to atomic Chern insulators

    NASA Astrophysics Data System (ADS)

    Goldman, N.; Gerbier, F.; Lewenstein, M.

    2013-07-01

    We describe a scheme to engineer non-Abelian gauge potentials on a square optical lattice using laser-induced transitions. We emphasize the case of two-electron atoms, where the electronic ground state g is laser-coupled to a metastable state e within a state-dependent optical lattice. In this scheme, the alternating pattern of lattice sites hosting g and e states depicts a chequerboard structure, allowing for laser-assisted tunnelling along both spatial directions. In this configuration, the nuclear spin of the atoms can be viewed as a ‘flavour’ quantum number undergoing non-Abelian tunnelling along nearest-neighbour links. We show that this technique can be useful to simulate the equivalent of the Haldane quantum Hall model using cold atoms trapped in square optical lattices, offering an interesting route to realize Chern insulators. The emblematic Haldane model is particularly suited to investigate the physics of topological insulators, but requires, in its original form, complex hopping terms beyond nearest-neighbouring sites. In general, this drawback inhibits a direct realization with cold atoms, using standard laser-induced tunnelling techniques. We demonstrate that a simple mapping allows us to express this model in terms of matrix hopping operators that are defined on a standard square lattice. This mapping is investigated for two models that lead to anomalous quantum Hall phases. We discuss the practical implementation of such models, exploiting laser-induced tunnelling methods applied to the chequerboard optical lattice.

  20. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  1. Individual Optical Addressing of Atomic Clock Qubits With Stark Shifts

    NASA Astrophysics Data System (ADS)

    Lee, Aaron; Smith, Jacob; Richerme, Phillip; Neyenhuis, Brian; Hess, Paul; Zhang, Jiehang; Monroe, Chris

    2016-05-01

    In recent years, trapped ions have proven to be a versatile quantum information platform, enabled by their long lifetimes and high gate fidelities. Some of the most promising trapped ion systems take advantage of groundstate hyperfine ``clock'' qubits, which are insensitive to background fields to first order. This same insensitivity also makes σz manipulations of the qubit impractical, eliminating whole classes of operations. We prove there exists a fourth-order light shift, or four-photon Stark shift, of the clock states derived from two coherent laser beams whose beatnote is close to the qubit splitting. Using a mode-locked source generates a large light shift with only modest laser powers, making it a practical σz operation on a clock qubit. We experimentally verify and measure the four-photon Stark shift and demonstrate its use to coherently individually address qubits in a chain of 10 Yb 171 ions with low crosstalk. We use this individual addressing to prepare arbitrary product states with high fidelity and also to apply independent σz terms transverse to an Ising Hamiltonian. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  2. First Optical Hyperfine Structure Measurement in an Atomic Anion

    SciTech Connect

    Fischer, A.; Canali, C.; Warring, U.; Kellerbauer, A.; Fritzsche, S.

    2010-02-19

    We have investigated the hyperfine structure of the transition between the 5d{sup 7}6s{sup 2} {sup 4}F{sub 9/2}{sup e} ground state and the 5d{sup 6}6s{sup 2}6p {sup 6}D{sub J}{sup o} excited state in the negative osmium ion by high-resolution collinear laser spectroscopy. This transition is unique because it is the only known electric-dipole transition in atomic anions and might be amenable to laser cooling. From the observed hyperfine structure in {sup 187}Os{sup -} and {sup 189}Os{sup -} the yet unknown total angular momentum of the bound excited state was found to be J=9/2. The hyperfine structure constants of the {sup 4}F{sub 9/2}{sup e} ground state and the {sup 6}D{sub 9/2}{sup o} excited state were determined experimentally and compared to multiconfiguration Dirac-Fock calculations. Using the knowledge of the ground and excited state angular momenta, the full energy level diagram of {sup 192}Os{sup -} in an external magnetic field was calculated, revealing possible laser cooling transitions.

  3. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms

    PubMed Central

    Zhang, S. Y.; Wu, J. T.; Zhang, Y. L.; Leng, J. X.; Yang, W. P.; Zhang, Z. G.; Zhao, J. Y.

    2015-01-01

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877

  4. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms.

    PubMed

    Zhang, S Y; Wu, J T; Zhang, Y L; Leng, J X; Yang, W P; Zhang, Z G; Zhao, J Y

    2015-10-13

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios.

  5. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms.

    PubMed

    Zhang, S Y; Wu, J T; Zhang, Y L; Leng, J X; Yang, W P; Zhang, Z G; Zhao, J Y

    2015-01-01

    Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877

  6. Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions.

    PubMed

    Dey, P; Paul, J; Wang, Z; Stevens, C E; Liu, C; Romero, A H; Shan, J; Hilton, D J; Karaiskaj, D

    2016-03-25

    We systematically investigate the excitonic dephasing of three representative transition-metal dichalcogenides, namely, MoS_{2}, MoSe_{2}, and WSe_{2} atomic monolayer thick and bulk crystals, in order to gain a proper understanding of the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy and temperature dependent absorption, combined with theoretical calculations of the phonon spectra, indicate electron-phonon interactions, to be the limiting factor. Surprisingly, the excitonic dephasing, differs only slightly between atomic monolayers and high quality bulk crystals, which indicates that material imperfections are not the limiting factor in atomically thin monolayer samples. The temperature dependence of the electronic band gap and the excitonic linewidth combined with "ab initio" calculations of the phonon energies and the phonon density of states reveal a strong interaction with the E' and E" phonon modes.

  7. Optical Measurements of Strong Microwave Fields with Rydberg Atoms in a Vapor Cell

    NASA Astrophysics Data System (ADS)

    Anderson, D. A.; Miller, S. A.; Raithel, G.; Gordon, J. A.; Butler, M. L.; Holloway, C. L.

    2016-03-01

    We present a spectral analysis of Rydberg atoms in strong microwave fields using electromagnetically induced transparency (EIT) as an all-optical readout. The measured spectroscopic response enables optical, atom-based electric-field measurements of high-power microwaves. In our experiments, microwaves are irradiated into a room-temperature rubidium vapor cell. The microwaves are tuned near the two-photon 65 D -66 D Rydberg transition and reach an electric-field strength of 230 V /m , about 20% of the microwave-ionization threshold of these atoms. A Floquet treatment is used to model the Rydberg-level energies and their excitation rates. We arrive at an empirical model for the field-strength distribution inside the spectroscopic cell that yields excellent overall agreement between the measured and calculated Rydberg EIT-Floquet spectra. Using spectral features in the Floquet maps, we achieve an absolute strong-field measurement precision of 6%.

  8. Optical meta-atom for localization of light with quantized energy

    PubMed Central

    Lannebère, Sylvain; Silveirinha, Mário G.

    2015-01-01

    The capacity to confine light into a small region of space is of paramount importance in many areas of modern science. Here we suggest a mechanism to store a quantized ‘bit' of light—with a very precise amount of energy—in an open core-shell plasmonic structure (‘meta-atom') with a nonlinear optical response. Notwithstanding the trapped light state is embedded in the radiation continuum, its lifetime is not limited by the radiation loss. Interestingly, it is shown that the interplay between the nonlinear response and volume plasmons enables breaking fundamental reciprocity restrictions, and coupling very efficiently an external light source to the meta-atom. The collision of an incident optical pulse with the meta-atom may be used to release the trapped light ‘bit'. PMID:26515977

  9. Enhanced Reverse Saturable Absorption and Optical Limiting in Heavy-Atom Substituted Phthalocyanines

    NASA Technical Reports Server (NTRS)

    Perry, J. W.; Mansour, K.; Marder, S. R.; Alvarez, D., Jr.; Perry, K. J.; Choong, I.

    1994-01-01

    The reverse saturable absorption and optical limiting response of metal phthalocyaninies can be enhanced by using the heavy-atom effect. Phthalocyanines containing heavy metal atoms, such as In, Sn, and Pb show nearly a factor of two enhancement in the ratio of effective excited-state to ground-state absorption cross sections compared to those containing lighter atoms, such as Al and Si. In an f/8 optical geometry, homogeneous solutions of heavy metal phthalocyanines, at 30% linear transmission, limit 8-ns, 532-nm laser pulses to less than or equal to 3 (micro)J (the energy for 50% probability of eye damage) for incident pulses up to 800 (micro)J.

  10. Measurement of an electron's electric dipole moment using Cs atoms trapped in optical lattices

    NASA Astrophysics Data System (ADS)

    Chin, Cheng; Leiber, Véronique; Vuletić, Vladan; Kerman, Andrew J.; Chu, Steven

    2001-03-01

    We propose to measure the electron's permanent electric dipole moment (EDM) using cesium atoms trapped in a sparsely populated, trichromatic, far blue-detuned three-dimensional (3D) optical lattice. In the proposed configuration, the atoms can be strongly localized near the nodes of the light field and isolated from each other, leading to a strong suppression of the detrimental effects of atom-atom and atom-field interactions. Three linearly polarized standing waves with different frequencies create an effectively linearly polarized 3D optical lattice and lead to a strong reduction of the tensor light shift, which remains a potential source of systematic error. Other systematics concerning external field instability and gradients and higher-order polarizabilities are discussed. Furthermore, auxiliary atoms can be loaded into the same lattices as effective ``comagnetometers'' to monitor various systematic effects, including magnetic-field fluctuations and imperfect electric-field reversal. We estimate that a sensitivity 100 times higher than the current upper bound for the electron's EDM of 4×10-27 e cm can be achieved with the proposed technique.

  11. Effect of Transverse Magnetic Fields on Cold-Atom Nonlinear Magneto-Optical Rotation

    NASA Astrophysics Data System (ADS)

    Meyer, David; Kunz, Paul; Fatemi, Fredrik; Quraishi, Qudsia

    2016-05-01

    We investigate nonlinear magneto-optical rotation (NMOR) in cold atoms in the presence of a transverse magnetic field where alignment-to-orientation conversion (AOC) dominates. The AOC mechanism, which relies on AC-Stark shifts generated by a strong, off-resonant probe beam, significantly alters the NMOR resonance. When an additional magnetic field is present, parallel to the electric field of the light, a nested feature within this NMOR resonance manifests. Unlike similar features observed with lower optical power in warm vapors, attributed to optical pumping through nearby hyperfine levels, this feature is due solely to the AOC mechanism. Using numerical simulations, a perturbative solution, and experimental observations we characterize the feature with respect to optical power, optical polarization, magnetic field strength, and magnetic field direction. These results shed further light on the AOC mechanism common to NMOR-based experiments and we demonstrate a potential application to measure transverse DC magnetic fields and spatial gradients.

  12. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    SciTech Connect

    Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  13. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms

    SciTech Connect

    Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; Valentine, Jason; Soukoulis, Costas M.

    2015-07-14

    Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. A metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.

  14. Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition.

    PubMed

    Abou Chaaya, Adib; Viter, Roman; Bechelany, Mikhael; Alute, Zanda; Erts, Donats; Zalesskaya, Anastasiya; Kovalevskis, Kristaps; Rouessac, Vincent; Smyntyna, Valentyn; Miele, Philippe

    2013-01-01

    A study of transmittance and photoluminescence spectra on the growth of oxygen-rich ultra-thin ZnO films prepared by atomic layer deposition is reported. The structural transition from an amorphous to a polycrystalline state is observed upon increasing the thickness. The unusual behavior of the energy gap with thickness reflected by optical properties is attributed to the improvement of the crystalline structure resulting from a decreasing concentration of point defects at the growth of grains. The spectra of UV and visible photoluminescence emissions correspond to transitions near the band-edge and defect-related transitions. Additional emissions were observed from band-tail states near the edge. A high oxygen ratio and variable optical properties could be attractive for an application of atomic layer deposition (ALD) deposited ultrathin ZnO films in optical sensors and biosensors.

  15. Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition

    PubMed Central

    Abou Chaaya, Adib; Alute, Zanda; Erts, Donats; Zalesskaya, Anastasiya; Kovalevskis, Kristaps; Rouessac, Vincent; Smyntyna, Valentyn; Miele, Philippe

    2013-01-01

    Summary A study of transmittance and photoluminescence spectra on the growth of oxygen-rich ultra-thin ZnO films prepared by atomic layer deposition is reported. The structural transition from an amorphous to a polycrystalline state is observed upon increasing the thickness. The unusual behavior of the energy gap with thickness reflected by optical properties is attributed to the improvement of the crystalline structure resulting from a decreasing concentration of point defects at the growth of grains. The spectra of UV and visible photoluminescence emissions correspond to transitions near the band-edge and defect-related transitions. Additional emissions were observed from band-tail states near the edge. A high oxygen ratio and variable optical properties could be attractive for an application of atomic layer deposition (ALD) deposited ultrathin ZnO films in optical sensors and biosensors. PMID:24205465

  16. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms

    DOE PAGES

    Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; Valentine, Jason; Soukoulis, Costas M.

    2015-07-14

    Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. Amore » metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.« less

  17. Artificial staggered magnetic field for ultracold atoms in optical lattices

    SciTech Connect

    Lim, Lih-King; Smith, C. Morais; Hemmerich, Andreas

    2010-02-15

    A time-dependent optical lattice with staggered particle current in the tight-binding regime was considered that can be described by a time-independent effective lattice model with an artificial staggered magnetic field. The low-energy description of a single-component fermion in this lattice at half-filling is provided by two copies of ideal two-dimensional massless Dirac fermions. The Dirac cones are generally anisotropic and can be tuned by the external staggered flux {phi}. For bosons, the staggered flux modifies the single-particle spectrum such that in the weak coupling limit, depending on the flux {phi}, distinct superfluid phases are realized. Their properties are discussed, the nature of the phase transitions between them is established, and Bogoliubov theory is used to determine their excitation spectra. Then the generalized superfluid-Mott-insulator transition is studied in the presence of the staggered flux and the complete phase diagram is established. Finally, the momentum distribution of the distinct superfluid phases is obtained, which provides a clear experimental signature of each phase in ballistic expansion experiments.

  18. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    NASA Astrophysics Data System (ADS)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-08-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on.

  19. Cavity quantum optomechanics of ultracold atoms in an optical lattice: Normal-mode splitting

    SciTech Connect

    Bhattacherjee, Aranya B.

    2009-10-15

    We consider the dynamics of a movable mirror (cantilever) of a cavity coupled through radiation pressure to the light scattered from ultracold atoms in an optical lattice. Scattering from different atomic quantum states creates different quantum states of the scattered light, which can be distinguished by measurements of the displacement spectrum of the cantilever. We show that for large pump intensities the steady-state displacement of the cantilever shows bistable behavior. Due to atomic back action, the displacement spectrum of the cantilever is modified and depends on the position of the condensate in the Brillouin zone. We further analyze the occurrence of splitting of the normal mode into three modes due to mixing of the mechanical motion with the fluctuations of the cavity field and the fluctuations of the condensate with finite atomic two-body interaction.

  20. A Fiber Optic Catalytic Sensor for Neutral Atom Measurements in Oxygen Plasma

    PubMed Central

    Zaplotnik, Rok; Vesel, Alenka; Mozetic, Miran

    2012-01-01

    The presented sensor for neutral oxygen atom measurement in oxygen plasma is a catalytic probe which uses fiber optics and infrared detection system to measure the gray body radiation of the catalyst. The density of neutral atoms can be determined from the temperature curve of the probe, because the catalyst is heated predominantly by the dissipation of energy caused by the heterogeneous surface recombination of neutral atoms. The advantages of this sensor are that it is simple, reliable, easy to use, noninvasive, quantitative and can be used in plasma discharge regions. By using different catalyst materials the sensor can also be applied for detection of neutral atoms in other plasmas. Sensor design, operation, example measurements and new measurement procedure for systematic characterization are presented. PMID:22666005

  1. Deflection of slow light by magneto-optically controlled atomic media

    SciTech Connect

    Zhou, D. L.; Wang, R. Q.; Zhou, Lan; Yi, S.; Sun, C. P.

    2007-11-15

    We present a semiclassical theory for light deflection by a coherent {lambda}-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect caused by the inhomogeneous magnetic field (or due to inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency cancels medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the two-photon detuning dependent behaviors and larger deflection angles by three orders of magnitude for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field.

  2. Optical Polarization From Aligned Atoms As A Diagnostic Of Interstellar And Circumstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yan, H.; Lazarian, A.

    2005-12-01

    Population among sublevels of the ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a perspective tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We discuss the process of alignment that can be used to study magnetic fields in interplanetary medium, interstellar medium, circumstellar regions and quasars. To exemplify what atomic alignment can provide to the observers we consider synthetic data obtained with MHD simulations of comet wake.

  3. Superfluid state of repulsively interacting three-component fermionic atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Suga, Sei-Ichiro; Inaba, Kensuke

    2013-03-01

    We investigate the superfluid state of repulsively interacting three-component (color) fermionic atoms in optical lattices using Feynman diagrammatic approaches and the dynamical mean field theory. When the anisotropy of the three repulsive interactions is strong, atoms of two of the three colors form Cooper pairs and atoms of the third color remain a Fermi liquid. This superfluid emerges close to half filling at which the Mott insulating state characteristic of the three-component repulsive fermions appears. An effective attractive interaction is induced by density fluctuations of the third-color atoms. The superfluid state is stable against the phase separation that occurs in the strongly repulsive region. We determine the phase diagrams in terms of temperature, filling, and the anisotropy of the repulsive interactions. This work was supported by Grant-in-Aid for Scientific Research (C) (No. 23540467) from the Japan Society for the Promotion of Science.

  4. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond

    NASA Astrophysics Data System (ADS)

    Acosta, V. M.; Bauch, E.; Jarmola, A.; Zipp, L. J.; Ledbetter, M. P.; Budker, D.

    2010-10-01

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50×50×300 μm3, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nTrms at ˜110 Hz in one second of acquisition.

  5. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study

    NASA Astrophysics Data System (ADS)

    Sergelius, Philip; Garcia Fernandez, Javier; Martens, Stefan; Zocher, Michael; Böhnert, Tim; Vega Martinez, Victor; de la Prida, Victor Manuel; Görlitz, Detlef; Nielsch, Kornelius

    2016-04-01

    The first-order reversal curve (FORC) method can be used to extract information about the interaction and switching field distribution of ferromagnetic nanowire arrays, yet it remains challenging to acquire reliable values. Within ordered pores of anodic alumina templates we electrochemically synthesize eight different Ni x Co1-x samples with x varying between 0.05 and 1. FORC diagrams are acquired using vibrating sample magnetometry. By dissolving the template and using the magneto-optical Kerr effect, we measure the hysteresis loops of up to 100 different and isolated nanowires for each sample to gain precise information about the intrinsic switching field distribution. Values of the interaction field are extracted from a deshearing of the major hysteresis loop. We present a comparative study between all methods in order to evaluate and reinforce current FORC theory with experimental findings.

  6. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond

    SciTech Connect

    Acosta, V. M.; Bauch, E.; Jarmola, A.; Zipp, L. J.; Ledbetter, M. P.; Budker, D.

    2010-10-25

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 {mu}m{sup 3}, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nT{sub rms} at {approx}110 Hz in one second of acquisition.

  7. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    PubMed

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-01

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  8. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities

    NASA Astrophysics Data System (ADS)

    Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan

    2016-03-01

    Quantum repeaters promise to enable quantum networks over global distances by circumventing the exponential decrease in success probability inherent in direct photon transmission. We propose a realistic, functionally integrated quantum-repeater implementation based on single atoms in optical cavities. Entanglement is directly generated between the single-atom quantum memory and a photon at telecom wavelength. The latter is collected with high efficiency and adjustable temporal and spectral properties into a spatially well-defined cavity mode. It is heralded by a near-infrared photon emitted from a second, orthogonal cavity. Entanglement between two remote quantum memories can be generated via an optical Bell-state measurement, while we propose entanglement swapping based on a highly efficient, cavity-assisted atom-atom gate. Our quantum-repeater scheme eliminates any requirement for wavelength conversion such that only a single system is needed at each node. We investigate a particular implementation with rubidium and realistic parameters for Fabry-Perot cavities based on hbox {CO}_2 laser-machined optical fibers. We show that the scheme enables the implementation of a rather simple quantum repeater that outperforms direct entanglement generation over large distances and does not require any improvements in technology beyond the state of the art.

  9. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  10. Cavity-based quantum networks with single atoms and optical photons

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Rempe, Gerhard

    2015-10-01

    Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.

  11. Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation.

    PubMed

    Fatemi, F K; Bashkansky, M; Dutton, Z

    2007-03-19

    We demonstrate an experimental technique for high-resolution, high-speed spatial manipulation of atom clouds. By combining holographically engineered laser beams from a spatial light modulator with off-axis shear mode acousto-optic deflectors, we manipulate 1 x 3 arrays of cold atoms with individual site addressability. Additionally, we demonstrate smooth 2-dimensional motion of atomic ensembles, and the ability to guide multiple atomic ensembles independently.

  12. Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks

    SciTech Connect

    Zibrov, Sergei A.; Velichansky, Vladimir L.; Novikova, Irina; Phillips, David F.; Walsworth, Ronald L.; Zibrov, Alexander S.; Taichenachev, Alexey V.; Yudin, Valery I.

    2010-01-15

    We present a joint theoretical and experimental characterization of the coherent population trapping (CPT) resonance excited on the D{sub 1} line of {sup 87}Rb atoms by bichromatic linearly polarized laser light. We observe high-contrast transmission resonances (up to approx =25%), which makes this excitation scheme promising for miniature all-optical atomic clock applications. We also demonstrate cancellation of the first-order light shift by proper choice of the frequencies and relative intensities of the two laser-field components. Our theoretical predictions are in good agreement with the experimental results.

  13. Magic wavelength to make optical lattice clocks insensitive to atomic motion.

    PubMed

    Katori, Hidetoshi; Hashiguchi, Koji; Il'inova, E Yu; Ovsiannikov, V D

    2009-10-01

    In a standing wave of light, a difference in spatial distributions of multipolar atom-field interactions may introduce atomic-motion dependent clock uncertainties in optical lattice clocks. We show that the magic wavelength can be defined so as to eliminate the spatial mismatch in electric dipole, magnetic dipole, and electric quadrupole interactions for specific combinations of standing waves by allowing a spatially constant light shift arising from the latter two interactions. Experimental prospects of such lattices used with a blue magic wavelength are discussed.

  14. Magic Wavelength to Make Optical Lattice Clocks Insensitive to Atomic Motion

    SciTech Connect

    Katori, Hidetoshi; Hashiguchi, Koji; Il'inova, E. Yu.; Ovsiannikov, V. D.

    2009-10-09

    In a standing wave of light, a difference in spatial distributions of multipolar atom-field interactions may introduce atomic-motion dependent clock uncertainties in optical lattice clocks. We show that the magic wavelength can be defined so as to eliminate the spatial mismatch in electric dipole, magnetic dipole, and electric quadrupole interactions for specific combinations of standing waves by allowing a spatially constant light shift arising from the latter two interactions. Experimental prospects of such lattices used with a blue magic wavelength are discussed.

  15. Three-photon-absorption resonance for all-optical atomic clocks

    SciTech Connect

    Zibrov, Sergei; Novikova, Irina; Phillips, David F.; Taichenachev, Aleksei V.; Yudin, Valeriy I.; Walsworth, Ronald L.; Zibrov, Alexander S.

    2005-07-15

    We report an experimental study of an all-optical three-photon-absorption resonance (known as an 'N resonance') and discuss its potential application as an alternative to atomic clocks based on coherent population trapping. We present measurements of the N-resonance contrast, width and light shift for the D{sub 1} line of {sup 87}Rb with varying buffer gases, and find good agreement with an analytical model of this resonance. The results suggest that N resonances are promising for atomic clock applications.

  16. Proposal for a Chaotic Ratchet Using Cold Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Monteiro, T. S.; Dando, P. A.; Hutchings, N. A.; Isherwood, M. R.

    2002-10-01

    We investigate a new type of quantum ratchet which may be realized by cold atoms in a double-well optical lattice, pulsed with unequal periods. The classical dynamics is chaotic and we find the classical diffusion rate D is asymmetric in momentum up to a finite time tr. The quantum behavior produces a corresponding asymmetry in the momentum distribution which is ``frozen-in'' by dynamical localization provided the break time t*>=tr. We conclude that the cold atom ratchets require Db/ℏ~1, where b is a small deviation from period-one pulses.

  17. Two-photon phase gate with linear optical elements and atom-cavity system

    NASA Astrophysics Data System (ADS)

    Kang, Yi-Hao; Xia, Yan; Lu, Pei-Min

    2016-09-01

    We propose a protocol for implementing π phase gate of two photons with linear optical elements and an atom-cavity system. The evolution of the atom-cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.

  18. Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices

    SciTech Connect

    Alon, Ofir E.; Streltsov, Alexej I.; Cederbaum, Lorenz S.

    2005-07-15

    Quantum phases and phase transitions of weakly to strongly interacting bosonic atoms in deep to shallow optical lattices are described by a single multiorbital mean-field approach in real space. For weakly interacting bosons in one dimension, the critical value of the superfluid to Mott insulator (MI) transition found is in excellent agreement with many-body treatments of the Bose-Hubbard model. For strongly interacting bosons (i) additional MI phases appear, for which two (or more) atoms residing in each site undergo a Tonks-Girardeau-like transition and localize, and (ii) on-site excitation becomes the excitation lowest in energy. Experimental implications are discussed.

  19. Frustrated tunneling of ultracold atoms in a state-dependent optical lattice

    SciTech Connect

    Zhou Xiangfa; Chen Zhixin; Zhou Zhengwei; Zhang Yongsheng; Guo Guangcan

    2010-02-15

    We propose a general method to realize frustrated tunneling of ultracold atoms in a state-dependent optical lattice. Two typical lattice configurations are considered, the square lattice with competing interaction and the kagome lattice with geometrical frustration. The ideal can be extended to implement frustrated tunneling of ultracold atoms in various geometries, which enable us to investigate the physics of frustration in both bosonic and spin systems. We study the mean-field phase diagrams of the considered models and the experimental situations are also discussed.

  20. Equilibration Rates and Negative Absolute Temperatures for Ultracold Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Rapp, Akos; Mandt, Stephan; Rosch, Achim

    2010-11-01

    As highly tunable interacting systems, cold atoms in optical lattices are ideal to realize and observe negative absolute temperatures, T<0. We show theoretically that, by reversing the confining potential, stable superfluid condensates at finite momentum and T<0 can be created with low entropy production for attractive bosons. They may serve as “smoking gun” signatures of equilibrated T<0. For fermions, we analyze the time scales needed to equilibrate to T<0. For moderate interactions, the equilibration time is proportional to the square of the radius of the cloud and grows with increasing interaction strengths as atoms and energy are transported by diffusive processes.

  1. Entanglement of Optical and Mechanical Modes Enhanced in Distant Optomechanical Systems by Atomic Coherence

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-01-01

    We present a scheme for three-level cascade atoms to entangle various optical and mechanical modes of two coupled cavity optomechanical system. With the existence of atomic mediums, our study shows that the larger stationary macroscopic entanglement of distant optomechanical systems can be obtained and reaches the maximum at the same effective detuning. Furthermore, we find that it is insensitive to the cavity decay rate for the entanglement between the two distant movable mirrors, and between the mirror and the adjacent or the distant cavity mode, which compensates for the effects of the cavity dissipation.

  2. Protective coating and hyperthermal atomic oxygen texturing of optical fibers used for blood glucose monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2008-01-01

    Disclosed is a method of producing cones and pillars on polymethylmethacralate (PMMA) optical fibers for glucose monitoring. The method, in one embodiment, consists of using electron beam evaporation to deposit a non-contiguous thin film of aluminum on the distal ends of the PMMA fibers. The partial coverage of aluminum on the fibers is randomly, but rather uniformly distributed across the end of the optical fibers. After the aluminum deposition, the ends of the fibers are then exposed to hyperthermal atomic oxygen, which oxidizes the areas that are not protected by aluminum. The resulting PMMA fibers have a greatly increased surface area and the cones or pillars are sufficiently close together that the cellular components in blood are excluded from passing into the valleys between the cones and pillars. The optical fibers are then coated with appropriated surface chemistry so that they can optically sense the glucose level in the blood sample than that with conventional glucose monitoring.

  3. Torque Magnetometry and Susceptometry using Split-Beam Optomechanical Nanocavities

    NASA Astrophysics Data System (ADS)

    Firdous, Tayyaba; Wu, Nathanael; Wu, Marcelo; Fani Sani, Fatemeh; Losby, Joseph; Barclay, Paul; Freeman, Mark

    A large number of sensitive magnetometry methods are limited to cryogenic operation. We present a highly sensitive torque magnetometer using a photonic crystal optomechanical split-beam nanocavity operating in air at room temperature. The chip-based magnetometer is proficient for probing both the net magnetization and AC susceptibility of individual magnetic microstructures. This is demonstrated through the observation of nanoscale Barkhausen transitions in the magnetic hysteresis of a permalloy thin-film element. Control of the vector direction of the radio frequency drive allows detection of accompanying AC susceptibility terms.

  4. Rb atomic magnetometer toward EDM experiment with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Inoue, Takeshi; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Kawamura, Hirokazu; Sakamoto, Kosuke; Uchiyama, Aiko; Asahi, Koichiro; Yoshimi, Akihiro; Sakemi, Yasuhiro

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield

  5. Concentrating partially entangled W-class states on nonlocal atoms using low- Q optical cavity and linear optical elements

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Chen, Xi; Duan, YuWen; Fan, Ling; Zhang, Ru; Wang, TieJun; Wang, Chuan

    2016-10-01

    Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low- Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low- Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.

  6. All-optical atomic magnetometers based on nonlinear magneto-optical rotation with amplitude modulated light

    NASA Astrophysics Data System (ADS)

    Pustelny, Szymon; Wojciechowski, Adam; Kotyrba, Mateusz; Sycz, Krystian; Zachorowski, Jerzy; Gawlik, Wojciech; Cingoz, Arman; Leefer, Nathan; Higbie, James M.; Corsini, Eric; Ledbetter, Micah P.; Rochester, Simon M.; Sushkov, Alexander O.; Budker, Dmitry

    2007-03-01

    We demonstrate a magnetometric technique based on nonlinear magneto-optical rotation using amplitude modulated light. The magnetometers can be operated in either open-loop (typical nonlinear magneto-optical rotation with amplitude-modulated light) or closed-loop (self-oscillating) modes. The latter mode is particularly well suited for conditions where the magnetic field is changing by large amounts over a relatively short timescale.

  7. Inner-shell magnetic dipole transition in Tm atoms: A candidate for optical lattice clocks

    NASA Astrophysics Data System (ADS)

    Sukachev, D.; Fedorov, S.; Tolstikhina, I.; Tregubov, D.; Kalganova, E.; Vishnyakova, G.; Golovizin, A.; Kolachevsky, N.; Khabarova, K.; Sorokin, V.

    2016-08-01

    We consider a narrow magneto-dipole transition in the 169Tm atom at the wavelength of 1.14 μ m as a candidate for a two-dimensional-optical lattice clock. Calculating dynamic polarizabilities of the two clock levels [Xe] 4 f136 s2(J =7 /2 ) and [Xe] 4 f136 s2(J =5 /2 ) in the spectral range from 250 to 1200 nm, we find a "magic" wavelength for the optical lattice at 807 nm. Frequency shifts due to black-body radiation (BBR), the van der Waals interaction, the magnetic dipole-dipole interaction, and other effects which can perturb the transition frequency are calculated. The transition at 1.14 μ m demonstrates low sensitivity to the BBR shift corresponding to 8 ×10-17 in fractional units at room temperature which makes it an interesting candidate for high-performance optical clocks. The total estimated frequency uncertainty is less than 5 ×10-18 in fractional units. By direct excitation of the 1.14 μ m transition in Tm atoms loaded into an optical dipole trap, we set the lower limit for the lifetime of the upper clock level [Xe] 4 f136 s2(J =5 /2 ) of 112 ms which corresponds to a natural spectral linewidth narrower than 1.4 Hz. The polarizability of the Tm ground state was measured by the excitation of parametric resonances in the optical dipole trap at 532 nm.

  8. Search for an Atomic EDM with Optical-Coupling Nuclear Spin Oscillator

    SciTech Connect

    Asahi, K.; Uchida, M.; Inoue, T.; Hatakeyama, N.; Yoshimi, A.

    2007-06-13

    We have constructed a nuclear spin oscillator of a new type, that employs a feedback scheme based on an optical spin detection and suceeding spin control by a transverse field application. This spin oscillator parallels the conventional spin maser in many points, but exhibits advantages and requirements that are different from those with the spin maser. By means of the optical-coupling nuclear spin oscillator, an experimental setup to search for an electric dipole moment (EDM) in a spin 1/2 diamagnetic atom 129Xe is being developed.

  9. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-01-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  10. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    NASA Astrophysics Data System (ADS)

    Haapamaki, C. M.; Flannery, J.; Bappi, G.; Al Maruf, R.; Bhaskara, S. V.; Alshehri, O.; Yoon, T.; Bajcsy, M.

    2016-08-01

    Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light-matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  11. Spatially localized structures and oscillons in atomic Bose-Einstein condensates confined in optical lattices

    NASA Astrophysics Data System (ADS)

    Charukhchyan, M. V.; Sedov, E. S.; Arakelian, S. M.; Alodjants, A. P.

    2014-06-01

    We consider the problem of formation of small-amplitude spatially localized oscillatory structures for atomic Bose-Einstein condensates confined in two- and three-dimensional optical lattices, respectively. Our approach is based on applying the regions with different signs of atomic effective masses where an atomic system exhibits effective hyperbolic dispersion within the first Brillouin zone. By using the kp method we have demonstrated mapping of the initial Gross-Pitaevskii equation on nonlinear Klein-Gordon and/or Ginzburg-Landau-Higgs equations, which is inherent in matter fields within ϕ4-field theories. Formation of breatherlike oscillating localized states—atomic oscillons—as well as kink-shaped states have been predicted in this case. Apart from classical field theories atomic field oscillons occurring in finite lattice structures possess a critical number of particles for their formation. The obtained results pave the way to simulating some analogues of fundamental cosmological processes occurring during our Universe's evolution and to modeling nonlinear hyperbolic metamaterials with condensed matter (atomic) systems.

  12. In situ characterization of an optically thick atom-filled cavity

    NASA Astrophysics Data System (ADS)

    Munns, J. H. D.; Qiu, C.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.

    2016-01-01

    A means for precise experimental characterization of the dielectric susceptibility of an atomic gas inside an optical cavity is important for the design and operation of quantum light-matter interfaces, particularly in the context of quantum information processing. Here we present a numerically optimized theoretical model to predict the spectral response of an atom-filled cavity, accounting for both homogeneous and inhomogeneous broadening at high optical densities. We investigate the regime where the two broadening mechanisms are of similar magnitude, which makes the use of common approximations invalid. Our model agrees with an experimental implementation with warm caesium vapor in a ring cavity. From the cavity response, we are able to extract important experimental parameters, for instance the ground-state populations, total number density, and the magnitudes of both homogeneous and inhomogeneous broadening.

  13. Simulating and exploring Weyl semimetal physics with cold atoms in a two-dimensional optical lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei; Zhu, Shi-Liang; Wang, Z. D.

    2015-07-01

    We propose a scheme to simulate and explore Weyl semimetal physics with ultracold fermionic atoms in a two-dimensional square optical lattice subjected to experimentally realizable spin-orbit coupling and an artificial dimension from an external parameter space, which may increase experimental feasibility compared with the cases in three-dimensional optical lattices. It is shown that this system with a tight-binding model is able to describe essentially three-dimensional Weyl semimetals with tunable Weyl points. The relevant topological properties are also addressed by means of the Chern number and the gapless edge states. Furthermore, we illustrate that the mimicked Weyl points can be experimentally detected by measuring the atomic transfer fractions in a Bloch-Zener oscillation, and the characteristic topological invariant can be measured with the particle pumping approach.

  14. An optically trapped mixture of alkali-metal and metastable helium atoms

    NASA Astrophysics Data System (ADS)

    Flores, Adonis; Mishra, Hari Prasad; Vassen, Wim; Knoop, Steven

    2016-05-01

    Ultracold collisions between alkali-metal and metastable triplet helium (He*) atoms provide the opportunity to study Feshbach resonances in the presence of a strong loss channel, namely Penning ionization, which strongly depends on the internal spin-states of the atoms. Recently we have realized the first optically trapped alkali-metal-metastable helium mixture. To prepare the ultracold 87 Rb+4 He* mixture in a single beam optical dipole trap (ODT), we apply evaporative cooling in a strong quadrupole magnetic trap (QMT) for both species and subsequent transfer to the ODT via a hybrid trap. We will present lifetime measurements of different spin-state mixtures, testing the application of the universal loss model to this interesting multichannel collision system.

  15. Optical pumping effect in absorption imaging of F =1 atomic gases

    NASA Astrophysics Data System (ADS)

    Kim, Sooshin; Seo, Sang Won; Noh, Heung-Ryoul; Shin, Y.

    2016-08-01

    We report our study of the optical pumping effect in absorption imaging of 23Na atoms in the F =1 hyperfine spin states. Solving a set of rate equations for the spin populations in the presence of a probe beam, we obtain an analytic expression for the optical signal of the F =1 absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of 23Na Bose-Einstein condensates prepared in various spin states with different probe-beam pulse durations. The analytic result can be used in the quantitative analysis of F =1 spinor condensate imaging and readily applied to other alkali-metal atoms with I =3 /2 nuclear spin such as 87Rb.

  16. Approach to a permanent electron electric dipole moment search using cold atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Tang, Cheng; Zhang, Teng; Weiss, David

    2015-05-01

    We present our progress towards measuring the electron EDM using laser-cooled cesium and rubidium atoms trapped in a one dimensional optical lattice. To date, we have collected Cs atoms in two parallel 1D optical lattices that thread three glass electric field plates in a region of well-shielded magnetic fields. As a precursor to the EDM measurement, we have performed a variant of a Hanle effect measurement and used it to study the vector light shifts due to the cavity-built up lattice beams. This gives us a very high sensitivity to the absolute linear polarization of the light, which we have demonstrated to be as good as ~10-8 in fractional power. NSF PHY-13-07096.

  17. An open source digital servo for atomic, molecular, and optical physics experiments

    SciTech Connect

    Leibrandt, D. R. Heidecker, J.

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  18. Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing

    NASA Astrophysics Data System (ADS)

    Giraud-Carrier, M.; Hill, C.; Decker, T.; Black, J. A.; Schmidt, H.; Hawkins, A.

    2016-03-01

    A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F' = 2, 3, 4 transitions of the D2 line in 85Rb were monitored for optical absorption. Maximum absorption peak depths of 9% were measured.

  19. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    PubMed

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution.

  20. Visibility of cold atomic gases in optical lattices for finite temperatures

    SciTech Connect

    Hoffmann, Alexander; Pelster, Axel

    2009-05-15

    In nearly all experiments with ultracold atoms time-of-flight pictures are the only data available. In this paper we present an analytical strong-coupling calculation for those time-of-flight pictures of bosons in a three-dimensional optical lattice in the Mott phase. This allows us to determine the visibility, which quantifies the contrast of peaks in the time-of-flight pictures, and we suggest how to use it as a thermometer.

  1. Generation and purification of maximally entangled atomic states in optical cavities

    SciTech Connect

    Lougovski, P.; Walther, H.; Solano, E.

    2005-01-01

    We present a probabilistic scheme for generating and purifying maximally entangled states of two atoms inside an optical cavity via no-photon detection at the cavity output, where ideal detectors are not required. The intermediate mixed states can be continuously purified so as to violate Bell inequalities in a parametrized manner. The scheme relies on an additional strong-driving field that realizes, atypically, simultaneous Jaynes-Cummings and anti-Jaynes-Cummings interactions.

  2. A compact, high-performance all optical atomic clock based on telecom lasers

    NASA Astrophysics Data System (ADS)

    Burke, John H.; Lemke, Nathan D.; Phelps, Gretchen R.; Martin, Kyle W.

    2016-03-01

    We discuss an optical atomic clock based on a two-photon transition at 778 nm in rubidium. In particular, we discuss the fundamental limitations to the short-term stability of a system based on a commercial C-band telecom laser as opposed to a near infrared laser. We show that this system is fundamentally capable of besting a hydrogen MASER in frequency stability and size.

  3. Controlled collisions for multi-particle entanglement of optically trapped atoms.

    PubMed

    Mandel, Olaf; Greiner, Markus; Widera, Artur; Rom, Tim; Hänsch, Theodor W; Bloch, Immanuel

    2003-10-30

    Entanglement lies at the heart of quantum mechanics, and in recent years has been identified as an essential resource for quantum information processing and computation. The experimentally challenging production of highly entangled multi-particle states is therefore important for investigating both fundamental physics and practical applications. Here we report the creation of highly entangled states of neutral atoms trapped in the periodic potential of an optical lattice. Controlled collisions between individual neighbouring atoms are used to realize an array of quantum gates, with massively parallel operation. We observe a coherent entangling-disentangling evolution in the many-body system, depending on the phase shift acquired during the collision between neighbouring atoms. Such dynamics are indicative of highly entangled many-body states; moreover, these are formed in a single operational step, independent of the size of the system.

  4. Quantum optics and cavity QED Quantum network with individual atoms and photons

    NASA Astrophysics Data System (ADS)

    Rempe, G.

    2013-08-01

    Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality.

  5. Proposal for a telecom quantum repeater with single atoms in optical cavities

    NASA Astrophysics Data System (ADS)

    Uphoff, Manuel; Brekenfeld, Manuel; Niemietz, Dominik; Ritter, Stephan; Rempe, Gerhard

    2016-05-01

    Quantum repeaters hold the promise to enable long-distance quantum communication via entanglement generation over arbitrary distances. Single atoms in optical cavities have been shown to be ideally suited for the experimental realization of many tasks in quantum communication. To utilize these systems for a quantum repeater, it would be desirable to operate them at telecom wavelengths. We propose to use a cascaded scheme employing transitions at telecom wavelengths between excited states of alkali atoms for entanglement generation between a single photon at telecom wavelength and a single atom at the crossing point of two cavity modes. A cavity-assisted quantum gate can be used for entanglement swapping. We estimate the performance of these systems using numerical simulations based on experimental parameters obtained for CO2 laser-machined fiber cavities in our laboratory. Finally, we show that a quantum repeater employing the aforementioned scheme and current technology could outperform corresponding schemes based on direct transmission.

  6. Optical limiting properties and mechanisms of single-layer graphene dispersions in heavy-atom solvents.

    PubMed

    Yan, Lihe; Xiong, Yaobing; Si, Jinhai; Sun, Xuehui; Yi, Wenhui; Hou, Xun

    2014-12-29

    The optical limiting (OL) properties of single-layer graphene dispersions in different solvents were studied using a nanosecond pulse laser. The graphene dispersions, especially in heavy-atom solvents, showed much better OL properties compared with referenced C60-toluene solution. The dependences of OL thresholds and nonlinear scattering (NLS) intensities on the solvent surface tensions indicated that, NLS effect played an important role in the OL process of graphene dispersions, while nonlinear absorption (NLA) effect might also contribute in solvents with heavy atoms. The NLA measurements further demonstrated the contribution of NLA effect to the excellent OL property of graphene dispersions in heavy-atom solvents. PMID:25607151

  7. Magnetometry at Uruk (Iraq): The city of King Gilgamesh

    NASA Astrophysics Data System (ADS)

    Fassbinder, J.; Becker, H.; van Ess, M.

    2003-04-01

    Uruk (Tell Warka) is one of the most famous sites for the early cultural development at Mesopotamia. The Sumerian city state was also important for the origin of writing and Uruk was the scene of action of mans oldest epic, the famous Epic of Gilgamesh (2600 B.C). During the time of the Sassanides, 400 A.D. the city was given up completely. Today the ruin is dominated by shallow hills and wadis, covered by pottery, mudbricks and slags. The area is totally free of modern buildings and far away from the modern village of Warka. Therefore it is an ideal place for uncompensated cesium magnetometry. The most sensational find was the discovery of a canal system inside the city. Furthermore the magnetogram shows the remains of buildings of the Babylonian type as well as garden structures, a middle Babylonian graveyard and the so called "New Years Temple" of the God Anu or Godess Ischtar. The city wall, which we prospected in a length of more than one kilometer, includes a water gate and is nearly 40 meters broad. From magnetometry it is evident that it was build by burned mudbricks as it was described by the Epic. In the west of the "New Years Temple" in the middle of the former Euphrates river we detected the remains of a building which may be interpreted as a burial. But if this building is the grave of the famous King Gilgamesh as it was described by the Epic of Gilgamesh it must remain speculative.

  8. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  9. Ultrasensitive magnetometry and magnetic resonance imaging using cantilever detection

    NASA Astrophysics Data System (ADS)

    Rugar, Daniel

    2009-03-01

    Micromachined cantilevers make remarkable magnetometers for nanoscale measurements of magnetic materials and for magnetic resonance imaging (MRI). We present various applications of cantilever magnetometry at low temperature using cantilevers capable of attonewton force sensitivity. Small, unexpected magnetic effects can be seen, such as anomalous damping in magnetic field. A key application is magnetic resonance force microscopy (MRFM) of both electron and nuclear spins. In recent experiments with MRFM-based NMR imaging, 3D spatial resolution better than 10 nm was achieved for protons in individual virus particles. The achieved volumetric resolution represents an improvement of 100 million compared to the best conventional MRI. The microscope is sensitive enough to detect NMR signals from adsorbed layers of hydrocarbon contamination, hydrogen in multiwall carbon nanotubes and the phosphorus in DNA. Operating with a force noise on the order of 6 aN per root hertz with a magnetic tip that produces a field gradient in excess of 30 gauss per nanometer, the magnetic moment sensitivity is ˜0.2 Bohr magnetons. The corresponding field sensitivity is ˜3 nT per root hertz. To our knowledge, this combination of high field sensitivity and nanometer spatial resolution is unsurpassed by any other form of nanometer-scale magnetometry.

  10. Optical characterization of photofixed RTV effluent in an atomic oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Pu, J.; Ianno, N. J.

    2014-09-01

    It is well know that the elevated satellite operating temperature causes the unused catalyst material in the Room Temperature Vulcanized materials (RTV) to volatize, which can then re-deposit or condense onto other spacecraft surfaces. In the presence of sunlight, this Volatile Condensable Material (VCM) can photo-chemically deposit onto optically-sensitive spacecraft surfaces and significantly alter their original, beginning-of-life (BOL) optical properties, such as solar absorptance and emittance, causing unintended performance loss of the spacecraft. This has been studied in vacuum environments simulating geosynchronous orbits, but never to our knowledge in atomic oxygen environments simulating low earth orbit. In this work we present an initial study of the effect of an atomic oxygen environment on the optical properties of previously photofixed material as well the effect of an atomic oxygen environment on the photofixing process. We will employ spectroscopic ellipsometry to characterize films deposited from the outgassing of DC93500, RTV566, SCV2590, CV2568 and SCV2590-2.

  11. The Optical Properties of CdSe Quantum Dots by Using Spray-Atomization Method

    NASA Astrophysics Data System (ADS)

    Rosmani, C. H.; Abdullah, S.; Rusop, M.

    2013-06-01

    Cadmium Selenide (CdSe) quantum dots (QDs) is inorganic material by using spray-atomization method which is the novelty to find out the optical properties for the CdSe QDs. The Selenium (Se) precursor and Cadmium (Cd) precursor were prepared first. Se precursor by using sodium sulfite aqueous was mixed with selenium (Se) powder. For Cd precursor was used cadmium chloride (CdCI) as the Cd precursor. From previous research, CdSe QDs was obtained by using capping agent such as tri-n-octylphosphine oxide (TOPO) and trioctylphosphine (TOP). These capping agent are hazardous to environment and human. By using spray-atomization method it is more safe and economically. The photoluminescence (PL) was used to investigate the optical properties and to investigate the energy band gap from PL result. The field emission scanning electron microscopy (FESEM) was used to know the surface morphology of CdSe QDs. By PL result, the energy band gap was calculate and the comparison was investigate between the size of particle and the energy band gap. This important in this paper is to investigate the optical properties of CdSe QDs by using sprays-atomization method and to relate with the particle size.

  12. Coherent Excitation of Lithium to Rydberg States and Application to Rydberg Atom Optics

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Widmer, M.; Tudorica, F.; Iu, C.-H.; Metcalf, H.

    1996-05-01

    We present a theoretical analysis of several schemes for coherently exciting lithium atoms in a thermal beam to Rydberg states in a four level/three laser system, previously discussed by Oreg et al.(J. Oreg et al.), Phys. Rev. A 45, 4888 (1992). The time evolution of the dressed states and their populations are calculated numerically, solving the optical Bloch equations by a fourth order Runge-Kutta integration. Our code closely models actual experimental conditions, including spontaneous decay, beam profiles, intensities and detunings. Large Rydberg populations (50%) around n=15 may be obtained by non-adiabatic excitation, with each laser power on the order of 1 mW. We discuss the effects of an externally controlled time dependent detuning in the Rydberg state, for example as produced by atoms traversing an inhomogeneous electric field. An understanding of this excitation mechanism is important for large angle reflection of coherently excited atoms using field gradients. Some primitive ideas of Stark-Rydberg atom optics are presented.

  13. Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics.

    PubMed

    Zielińska, Joanna A; Beduini, Federica A; Lucivero, Vito Giovanni; Mitchell, Morgan W

    2014-10-20

    We demonstrate atomic filtering of frequency-degenerate photon pairs from a sub-threshold optical parametric oscillator (OPO). The filter, a modified Faraday anomalous dispersion optical filter (FADOF), achieves 70% peak transmission simultaneous with 57 dB out-of-band rejection and a 445 MHz transmission bandwidth. When applied to the OPO output, only the degenerate mode, containing one-mode squeezed vacuum, falls in the filter pass-band; all other modes are strongly suppressed. The high transmission preserves non-classical continuous-variable features, e.g. squeezing or non-gaussianity, while the high spectral purity allows reliable discrete-variable detection and heralding. Correlation and atomic absorption measurements indicate a spectral purity of 96% for the individual photons, and 98% for the photon pairs. These capabilities will enable generation of atom-resonant hybrid states, e.g. "Schrödinger kittens" obtained by photon subtraction from squeezed vacuum, making these exotic states available for quantum networking and atomic quantum metrology applications.

  14. Deep dark all-optical atom trap created by the combination of the cosine-Gauss light beams

    NASA Astrophysics Data System (ADS)

    Krasnov, I. V.

    2016-10-01

    We theoretically consider a novel type of the optical dark trap (ODT) for resonant atoms and ions. This trap is based on the rectified gradient forces acting on particles in the field of a combination of multiple bichromatic cosine-Gauss optical beams (CGBs). Such a bichromatic ODT can have a depth significantly exceeding the depth of the typical dark optical traps and is comparable with the depth of magneto-optical traps (∼ 1 K).

  15. Short-term stability improvements of an optical frequency standard based on free Ca atoms

    NASA Astrophysics Data System (ADS)

    Sherman, Jeff; Oates, Chris

    2010-03-01

    Compared to optical frequency standards featuring trapped ions or atoms in optical lattices, the strength of a standard using freely expanding neutral calcium atoms is not ultimate accuracy but rather short-term stability and experimental simplicity. Recently, a fractional frequency instability of 4 x10-15 at 1 second was demonstrated for the Ca standard at 657 nm [1]. The short cycle time (˜2 ms) combined with only a moderate interrogation duty cycle (˜15 %) is thought to introduce excess, and potentially critically limiting technical noise due to the Dick effect---high-frequency noise on the laser oscillator is not averaged away but is instead down-sampled by aliasing. We will present results of two strategies employed to minimize this effect: the reduction of clock laser noise by filtering the master clock oscillator through a high-finesse optical cavity [2], and an optimization of the interrogation cycle to match our laser's noise spectrum.[4pt] [1] Oates et al., Optics Letters, 25(21), 1603--5 (2000)[0pt] [2] Nazarova et al., J. Opt. Soc. Am. B, 5(10), 1632--8 (2008)

  16. Atomic-layer molybdenum sulfide optical modulator for visible coherent light

    PubMed Central

    Zhang, Yuxia; Wang, Shuxian; Yu, Haohai; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2015-01-01

    Coherent light sources in the visible range are playing important roles in our daily life and modern technology, since about 50% of the capability of the our human brains is devoted to processing visual information. Visible lasers can be achieved by nonlinear optical process of infrared lasers and direct lasing of gain materials, and the latter has advantages in the aspects of compactness, efficiency, simplicity, etc. However, due to lack of visible optical modulators, the directly generated visible lasers with only a gain material are constrained in continuous-wave operation. Here, we demonstrated the fabrication of a visible optical modulator and pulsed visible lasers based on atomic-layer molybdenum sulfide (MoS2), a ultrathin two-dimensional material with about 9–10 layers. By employing the nonlinear absorption of the modulator, the pulsed orange, red and deep red lasers were directly generated. Besides, the present atomic-layer MoS2 optical modulator has broadband modulating properties and advantages in the simple preparation process. The present results experimentally verify the theoretical prediction for the low-dimensional optoelectronic modulating devices in the visible wavelength region and may open an attractive avenue for removing a stumbling block for the further development of pulsed visible lasers. PMID:26067821

  17. An ultra-low noise optical head for liquid environment atomic force microscopy.

    PubMed

    Schlesinger, I; Kuchuk, K; Sivan, U

    2015-08-01

    The design considerations and eventual performance of a new, ultra-low noise optical head for dynamic atomic force microscopy (AFM) are presented. The head, designed specifically for the study of hydration layers and ion organization next to solid surfaces and biomolecules, displays an integrated tip-sample distance noise below 3 pm. The sensitivity of the optical beam deflection sensor, operating at frequencies up to 8.6 MHz (3 dB roll-off), is typically below 10 fm/√Hz, enabling utilization of high frequency cantilevers of low thermal noise for fundamental and higher mode imaging. Exceptional signal stability and low optical noise are achieved by replacing the commonly used laser diode with a helium-neon laser. An integral photothermal excitation of the cantilever produces pure harmonic oscillations, minimizing the generation of higher cantilever modes and deleterious sound waves characterizing the commonly used excitation by a piezoelectric crystal. The optical head is designed to fit on top of the widespread Multimode(®) (Bruker) piezo-tube and accommodate its commercial liquid cell. The performance of the new AFM head is demonstrated by atomic resolution imaging of a muscovite mica surface in aqueous solution. PMID:26329201

  18. A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells.

    PubMed

    Colom, Adai; Casuso, Ignacio; Rico, Felix; Scheuring, Simon

    2013-01-01

    High-speed atomic force microscopy is a powerful tool for studying structure and dynamics of proteins. So far, however, high-speed atomic force microscopy was restricted to well-controlled molecular systems of purified proteins. Here we integrate an optical microscopy path into high-speed atomic force microscopy, allowing bright field and fluorescence microscopy, without loss of high-speed atomic force microscopy performance. This hybrid high-speed atomic force microscopy/optical microscopy setup allows positioning of the high-speed atomic force microscopy tip with high spatial precision on an optically identified zone of interest on cells. We present movies at 960 ms per frame displaying aquaporin-0 array and single molecule dynamics in the plasma membrane of intact eye lens cells. This hybrid setup allows high-speed atomic force microscopy imaging on cells about 1,000 times faster than conventional atomic force microscopy/optical microscopy setups, and allows first time visualization of unlabelled membrane proteins on a eukaryotic cell under physiological conditions. This development advances high-speed atomic force microscopy from molecular to cell biology to analyse cellular processes at the membrane such as signalling, infection, transport and diffusion.

  19. Energy shift and state mixing of Rydberg atoms in ponderomotive optical traps

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Robicheaux, F.

    2016-08-01

    We present a degenerate perturbation analysis in the spin–orbit coupled basis for Rydberg atoms in an optical trap. The perturbation matrix is found to be nearly the same for two states with the same total angular momentum j, and orbital angular momentum number l differing by 1, The same perturbation matrices result in the same state-mixing and energy shift. We also study the dependence of state mixing and energy shift on the periodicity and symmetry of the ponderomotive potentials induced by different optical traps. State mixing in a one-dimensional lattice formed with two counterpropagating Gaussian beams is studied and yields a state-dependent trap depth. We also calculate the state-mixing in an optical trap formed by four parallel, separated and highly focused Gaussian beams.

  20. Modeling optical properties of silicon clusters by first principles: From a few atoms to large nanocrystals

    SciTech Connect

    Nurbawono, Argo; Liu, Shuanglong; Zhang, Chun

    2015-04-21

    Time dependent density functional tight binding (TDDFTB) method is implemented with sparse matrix techniques and improved parallelization algorithms. The method is employed to calculate the optical properties of various Si nanocrystals (NCs). The calculated light absorption spectra of small Si NCs from TDDFTB were found to be comparable with many body perturbation methods utilizing planewave basis sets. For large Si NCs (more than a thousand atoms) that are beyond the reach of conventional approaches, the TDDFTB method is able to produce reasonable results that are consistent with prior experiments. We also employed the method to study the effects of surface chemistry on the optical properties of large Si NCs. We learned that the optical properties of Si NCs can be manipulated with small molecule passivations such as methyl, hydroxyl, amino, and fluorine. In general, the shifts and profiles in the absorption spectra can be tuned with suitably chosen passivants.

  1. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Cirac, J. Ignacio; Reznik, Benni

    2016-01-01

    Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1  +  1 and 2  +  1 dimensions using ultracold atoms in optical lattices.

  2. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.

    PubMed

    Zohar, Erez; Cirac, J Ignacio; Reznik, Benni

    2016-01-01

    Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1  +  1 and 2  +  1 dimensions using ultracold atoms in optical lattices. PMID:26684222

  3. Geometric effects on quantum transport of ultracold atoms in optical lattices: Quantum acceleration and flat band

    NASA Astrophysics Data System (ADS)

    Chien, Chih-Chun; Metcalf, Mekena; di Ventra, Massimiliano; Chern, Gia-Wei

    2015-05-01

    The realizations of interesting optical lattices for ultracold atoms provide opportunities for investigating geometric effects on many-body physics. Thesquare, triangular, honeycomb, kagome lattices, and other geometries have been experimentally demonstrated. When the atoms are driven out of equilibrium by manipulations of the density or trapping potential, their quantum transport can be monitored and fundamental questions regarding transport in isolated systems can be addressed unambiguously. We found that the propagation velocity of the matter wave representing the flowing atoms can be accelerated by tuning the lattice geometry. This acceleration is a pure quantum effect because no shorter path is created as the geometry changes. For lattice geometries supporting a dispersionless flat band, the localized atoms in the flat band do not participate in transport but interfere with the mobile atoms. We found a generic insulating phase exhibiting a density jump in the profile that can be dynamically generated. Interesting spatial patterns may emerge if those flat-band lattices are manipulated, and an analogue of geometric frustration in quantum transport will be presented.

  4. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Long-lived positronium atom in the field of an optical laser

    NASA Astrophysics Data System (ADS)

    Gadomskii, Oleg N.; Idiatullov, T. T.

    1998-06-01

    The problem of the interaction of a positronium atom with the field of optical and annihilation photons is considered. The solution obtained for the occupation numbers is used to study kinetics of the annihilation decay of a para-positronium atom from two (for example, 1S and 2P) states participating in stimulated optical transitions excited by a laser. It is shown that a nonexponential time dependence of the occupation numbers is observed under the conditions of a nonlinear coherent interaction of a positronium atom with the field of optical and annihilation photons, and that in some cases there is a possibility of appearance of a long-lived state of a positronium atom with a lifetime hundreds of times longer than the lifetime of a positronium atom in the 1S state.

  5. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario E.; Molek, Christopher D.; Vesely, Annamaria L.

    2015-10-01

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N2 gas cell to encode the Doppler shift of reflected near-resonant (λ0 ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N2 gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N2 vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N2 collisions. The minimum necessary N2 buffer gas density ≈0.3 amagat translates into a smallest useful velocity range of 0 to 2 km/s, which can

  6. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    SciTech Connect

    Fajardo, Mario E. Molek, Christopher D.; Vesely, Annamaria L.

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a smallest

  7. Addition of Hetero-Atoms to the Polymer Film by Plasma Enhanced Polymerization and its Optical Properties

    NASA Astrophysics Data System (ADS)

    Moriki, Kazunori; Yumoto, Motoshige

    Plasma enhanced polymerization is an attractive technology to fabricate an optical polymer waveguide, because it has capability to provide an uniform thickness film on a substrate with various surface geometry, and to provide change of refractive index by controlling a proportion of source monomer mixing. In the present paper we discuss optical constants and molecule structures of the films added hetero-atoms, O, N and F in the CHx network of polymer. Refractive index of those films changes from 1.52 to 1.63 at 1.0 μm wavelength, depending on the variety of hetero-atoms. Fluorine atoms added into a film decreases refractive index of the film. Oxygen atoms added into a film, which form ester structure (- COO-), decrease refractive index of the film, and some O atoms token into a film as OH base will increase optical absorption in inferred region for optical communication. Nitrogen atoms added increase optical absorption due to forming NH2 base. Finally, sp3/sp2 fraction controlling in the film will be a suitable to control refractive index of the film for an optical waveguide, for example by using mixed monomer of C6H6 and C6H10.

  8. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  9. Deviations from early-time quasilinear behavior for the atom-optics kicked rotor near the classical limit

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Mullins, Terry; Parkins, Scott; Leonhardt, Rainer

    2005-02-01

    We present experimental measurements of the mean energy for the atom-optics kicked rotor after just two kicks. The energy is found to deviate from the quasilinear value for small kicking periods. The observed deviation is explained by recent theoretical results which include the effect of a nonuniform initial momentum distribution, previously applied only to systems using much colder atoms than ours.

  10. Ballistic and Localized Transport for the Atom Optics Kicked Rotor in the Limit of a Vanishing Kicking Period

    SciTech Connect

    Sadgrove, Mark; Parkins, Scott; Leonhardt, Rainer; Wimberger, Sandro

    2005-05-06

    We present mean energy measurements for the atom optics kicked rotor as the kicking period tends to zero. A narrow resonance is observed marked by quadratic energy growth, in parallel with a complete freezing of the energy absorption away from the resonance peak. Both phenomena are explained by classical means, taking proper account of the atoms' initial momentum distribution.

  11. Imaging and addressing of individual fermionic atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Trotzky, Stefan; Edge, Graham; Anderson, Rhys; Xu, Peihang; Venu, Vijin; Jervis, Dylan; McKay, Dave; Day, Ryan; Thywissen, Joseph

    2016-05-01

    The implementation of site-resolved imaging of atoms in short-period optical lattices constitutes a milestone achievement in the study of strongly correlated matter with these systems. Its realization with bosons six years ago has boosted progress in the field. In the last year, site-resolved imaging was demonstrated for fermions in five independent experiments. We present our newest results on site-resolved microscopy of ultracold 40 K in a 527nm-period optical lattice. Atoms remain pinned during imaging due to EIT cooling on the 770nm D1 transition. We observe pinning fidelities of up to 96% for an illumination time of 2.6s during which the atoms scatter > 2000 photons. A 0.8NA objective collects the fluorescence light to be imaged onto a EMCCD camera, giving a 600nm -wide PSF. In conjunction with the known lattice geometry, this allows us to reconstruct the lattice-site occupations from the images. The imaging technique is implemented in an apparatus capable of simulating the Fermi-Hubbard model. The use of tomographic tools enables us to select single lattice planes for background free imaging. We also address in-plane patterns with straight and circular boundaries in order to eliminate inhomogeneity effects on the imaging fidelity, or for controlled entropy removal.

  12. Interacting Rydberg atoms in an optical cavity to synthesize coherent collective states using dipole blockade

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Sheng, Jiteng; Sedlacek, Jonathon; Ewel, Charlie; Fan, Haoquan; Shaffer, James

    2015-05-01

    We investigate the coherent manipulation of interacting Rydberg atoms placed inside a high-finesse optical cavity for the preparation of strongly coupled light-matter systems. We consider a four-level diamond scheme with one common Rydberg level. One side of the diamond is used to collectively excite the atoms to the Rydberg level using a pair of pulses. The other side of the diamond is used to produce a collective state that is close to resonance with a field mode of a high-finesse optical cavity. The interaction between Rydberg atoms creates a blockade which is useful for synthesizing the coherent collective state. We use numerical simulation to generate non-classical states of light and also investigate different decay mechanisms affecting this system. We also analyze our system in the case of two Rydberg excitations within the blockade volume. In this case, we show that more elaborate few excitation quantum states can be prepared in the cavity to observe interesting dynamics and analyze the correlation of the two-photon emission. This work is supported by the DARPA Quasar program by a grant through ARO, AFOSR and NSF.

  13. Nonlinear spectroscopy of Sr atoms in an optical cavity for laser stabilization

    NASA Astrophysics Data System (ADS)

    Christensen, Bjarke T. R.; Henriksen, Martin R.; Schäffer, Stefan A.; Westergaard, Philip G.; Tieri, David; Ye, Jun; Holland, Murray J.; Thomsen, Jan W.

    2015-11-01

    We study the nonlinear interaction of a cold sample of 88Sr atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit, and we investigate the implications for applications to laser stabilization. The atoms are probed on the weak intercombination line |5 s21S0>-|5 s 5 p 3P1> at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures—the cavity transmitted phase and absorption—by employing frequency modulation (FM) spectroscopy (noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free-space situation in which no cavity is present. Furthermore, the nonlinear dynamics of the phase dispersion slope is experimentally investigated, and the optimal conditions for laser stabilization are established. Our experimental results are compared to state-of-the-art cavity QED theoretical calculations.

  14. Improved atom number with a dual color magneto—optical trap

    NASA Astrophysics Data System (ADS)

    Cao, Qiang; Luo, Xin-Yu; Gao, Kui-Yi; Wang, Xiao-Rui; Chen, Dong-Min; Wang, Ru-Quan

    2012-04-01

    We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems.

  15. Optical nanofiber fabrication and analysis towards coupling atoms to superconducting qubits

    NASA Astrophysics Data System (ADS)

    Hoffman, Jonathan

    We describe advancements towards coupling superconducting qubits to neutral atoms. To produce a measurably large coupling, the atoms will need to be on the order of a few micrometers away from the qubit. A consequence of combining superconducting qubits and atoms is addressing their operational constraints, such as the deleterious light effects on superconducting systems and the magnetic field sensitivity of superconducting qubits. Our group proposes the use of optical-nanofiber-based optical dipole traps to confine atoms near the superconductor. Optical nanofibers (ONFs) have high-intensity evanescent waves that require less power than equivalent standard dipole traps. This thesis focuses on the fabrication and analysis of the behavior of ONFs. First we present the construction of the pulling apparatus. We outline the necessary steps for a typical pull, detailing the cleaning and alignment process. Then we examine the quality of the fibers by measuring their transmission and comparing our results to other reported measurements, demonstrating a two-order of magnitude decrease in loss. Next we present the modal evolution in ONFs using simulations and spectrogram analysis. We identify crucial elements to improve the transmission and demonstrate understanding of the modal dynamics during the pull. Then we study higher-order modes (HOMs) with ONFs using the first excited TE01, TM01, and HE21 modes. We demonstrate transmissions greater than 97% for 780 nm light when we launch the first excited LP11 family of modes through fibers with a 350 nm waist. This setup enables us to launch these three modes with high purity at the output, where less than 1% of the light is coupled to the fundamental mode. We then focus on the identification of modes on the ONF waist. First we use Rayleigh scattering to identify the modal content of an ONF. Bulk optics can convert the modes in the ONF, and we observe the controllable conversion of superpositions of modes. Finally, we use an

  16. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    NASA Technical Reports Server (NTRS)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; Zuber, Maria T.

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  17. Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Norte, Richard Alexander

    a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents

  18. Ultra-high sensitivity moment magnetometry of geological samples

    NASA Astrophysics Data System (ADS)

    Andrade Lima, E.; Weiss, B. P.

    2012-12-01

    Scanning SQUID microscopy offers a unique combination of high spatial resolution and magnetic field sensitivity that allows for the detection of magnetic moments as weak as 10^-16 Am2. This opens the possibility of extending paleomagnetic analyses to samples that have not been accessible to standard moment magnetometry, for which the detection limit is 10^-12 Am2. Of particular interest are individual terrestrial and extraterrestrial particles of small size (< 500 μm) that may preserve records of planetary dynamos and early nebular magnetic fields. Example targets include impact melt spherules, zircon and other silicate crystals, micrometeorites, cosmic dust, chondrules and refractory inclusions. These grains may be adequately modeled as small uniformly magnetized volumes, such that retrieving their magnetic moments from measured magnetic field maps does not require solving non-unique inverse problems. As a consequence, SQUID microscopes can be utilized as ultra-high sensitivity moment magnetometers. We show alternating field and thermal demagnetization data for several grains that demonstrate the performance of this technique. In addition, we compare scanning SQUID microscopy data with net moment measurements of the same samples performed by a commercial superconducting rock magnetometer. The results agree for stronger moments, as expected, but rapidly diverge as net moments fall below the lower 10^-10 Am2 range. These studies underscore the inability of conventional instruments not only to detect very weak moments but also to isolate contamination originating from background sources such as sample holders and mounts. We expect ultra-high sensitivity moment magnetometry using scanning SQUID microscopy will be a powerful tool in helping elucidate the formation of the solar system and planetary history.

  19. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy.

    PubMed

    Miranda, Adelaide; Martins, Marco; De Beule, Pieter A A

    2015-09-01

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.

  20. Measuring the Gouy Phase of Matter Waves using Singular Atom Optics with Spinor BECs

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-05-01

    The Gouy phase is a propagation-dependent geometric phase found in confined waves as they propagate through a focus. Although it has been observed and studied extensively both in scalar and vector optical beams as well as in electron vortex beams, it has not yet been directly observed in ultracold matter waves. The Schrödinger equation has the same form as the paraxial wave equation from electromagnetism; expansion of a BEC upon release from a trap has the same mathematical form as a beam propagating away from a focus. We employ and extend this analogy between coherent optical beams and coherent matter waves to include spin angular momentum (polarization), which enables us measure the matter wave Gouy phase using coreless vortex spin textures in spinor BECs. Because the Gouy phase is dependent on the orbital angular momentum of the wave, the vortex and core states acquire different Gouy phase shifts. Parameters that are sensitive to the relative phase such as two-dimensional maps of the Stokes parameters rotate during evolution due to this phase difference. Using atom-optic polarimetry we can access the evolution of the atomic Stokes parameters and observe this rotation.

  1. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy.

    PubMed

    Miranda, Adelaide; Martins, Marco; De Beule, Pieter A A

    2015-09-01

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate. PMID:26429446

  2. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    SciTech Connect

    Miranda, Adelaide; De Beule, Pieter A. A.

    2015-09-15

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.

  3. Optical potential approach to the electron-atom impact ionization threshold problem

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Hahn, Y.

    1973-01-01

    The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.

  4. Coherent control of atomic motion in an optical lattice for precise measurements of gravity

    NASA Astrophysics Data System (ADS)

    Tarallo, Marco; Alberti, Andrea; Poli, Nicola; Prevedelli, Marco; Wang, Fu-Yuan; Tino, Guglielmo

    2011-05-01

    Coherent control of atomic motion inside an optical lattice allows precise measurement of forces by means amplitude-modulation (AM) driven resonant tunneling. We report about the recently-performed high precision measurements of gravitational acceleration using ultracold strontium atoms trapped in an AM driven vertical optical lattice. We reached an uncertainty Δg / g ~10-7 by measuring at the 5th harmonic of the Bloch oscillation frequency. We analyzed the systematic effects induced by the trapping optical lattice, such as the intensity gradient and the lattice frequency-induced shift. We accurately measured the lattice frequency by means of an fiber link with a home-made frequency comb. The value of g obtained with this microscopic quantum system is consistent with the one we measured with a classical absolute gravimeter. Short-distance measurements of gravity near dielectric surfaces are discussed. These results prospect a new way to new tests of gravity at micrometer scale. A. Alberti et al., New J. Phys. 12, 065037 (2010).

  5. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Properties of Floquet states

    NASA Astrophysics Data System (ADS)

    Hur, Gwang-Ok

    The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are

  6. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations

  7. A photon-photon quantum gate based on a single atom in an optical resonator

    NASA Astrophysics Data System (ADS)

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-01

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other’s phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon’s polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because “no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift”. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two

  8. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations

  9. Velocity distribution function of sputtered Cu atoms obtained by time resolved optical absorption spectroscopy

    SciTech Connect

    Kang, Namjun; Gaboriau, Freddy; Ricard, Andre; Oh, Soo-ghee

    2010-01-15

    A new method based on time resolved optical absorption spectroscopy is proposed to determine the velocity distribution function of sputtered Cu atoms in a magnetron plasma discharge. The method consists of applying a short pulse of 1.5 {mu}s and of recording time variations in copper atom density in off pulse at different positions (1, 2, and 3 cm) from target surface under 3-30 mTorr. The time evolution of the density is then converted into velocity distribution. We estimate that only sputtered atoms with radial velocity component lower than 0.5 km/s are detected. The average velocity of Cu atoms is evaluated as the first order moment of the velocity distribution functions. The velocity distribution functions become the more dispersive the farther from target surface. The average velocities vary in the range of 2.5-3 km/s at the vicinity of target surface whereas at 3 cm a decrease from 2.5 to 1.2 km/s is observed at 30 mTorr.

  10. Magnetic induction imaging with optical atomic magnetometers: towards applications to screening and surveillance

    NASA Astrophysics Data System (ADS)

    Marmugi, Luca; Hussain, Sarah; Deans, Cameron; Renzoni, Ferruccio

    2015-10-01

    We propose a new approach, based on optical atomic magnetometers and magnetic induction tomography (MIT), for remote and non-invasive detection of conductive targets. Atomic magnetometers overcome the main limitations of conventional MIT instrumentation, in particular their poor low-frequency sensitivity, their large size and their limited scalability. Moreover, atomic magnetometers have been proven to reach extremely high sensitivities, with an improvement of up to 7 orders of magnitude in the 50 MHz to DC band, with respect to a standard pick-up coil of the same size. In the present scheme, an oscillating magnetic field induces eddy currents in a conductive target and laser-pumped atomic magnetometers, either stand-alone or in an array, detect the response of the objects. A phase-sensitive detection scheme rejects the background, allowing remote detection of the secondary field and, thus, mapping of objects, hidden in cargos, underwater or underground. The potential for extreme sensitivity, miniaturization, dynamic range and array operation paves the way to a new generation of non-invasive, active detectors for surveillance, as well as for real-time cargo screening.

  11. Speckle reduction in optical coherence tomography images based on wave atoms

    PubMed Central

    Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping

    2014-01-01

    Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507

  12. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation

    SciTech Connect

    Affolderbach, Christoph; Mileti, Gaetano

    2005-07-15

    We present a compact and frequency-stabilized laser head based on an extended-cavity diode laser. The laser head occupies a volume of 200 cm{sup 3} and includes frequency stabilization to Doppler-free saturated absorption resonances on the hyperfine components of the {sup 87}Rb D{sub 2} lines at 780 nm, obtained from a simple and compact spectroscopic setup using a 2 cm{sup 3} vapor cell. The measured frequency stability is {<=}2x10{sup -12} over integration times from 1 s to 1 day and shows the potential to reach 2x10{sup -13} over 10{sup 2}-10{sup 5} s. Compact laser sources with these performances are of great interest for applications in gas-cell atomic frequency standards, atomic magnetometers, interferometers and other instruments requiring stable and narrow-band optical sources.

  13. Mapping of the Optical Frequency Comb to the Atom Velocity Comb

    SciTech Connect

    Pichler, G.; Aumiler, D.; Vujicic, N.; Vdovic, S.; Ban, T.; Skenderovic, H.

    2006-11-15

    We present the experimental and theoretical study of the resonant excitation of rubidium and cesium atoms with fs pulse train in the conditions when the pulse repetition period is shorter than the atomic relaxation time. Velocity selective optical pumping of the ground state hyperfine levels and velocity comb-like excited state hyperfine level populations is demonstrated. Both effects are a direct consequence of the fs pulse train excitation considered in the frequency domain. A simple experimental apparatus was employed to develop a modified direct frequency comb spectroscopy which uses a fixed frequency comb for the 85,87Rb 5s 2S1/2 {yields} 5s 2P1/2,3/2 and 133Cs 6s 2S1/2 {yields} 6p 2P1/2,3/2 excitation, and a weak cw scanning probe laser at 780 and 852 nm for Rb and Cs ground levels population monitoring.

  14. Quantum phases and dynamics of bosonic atoms trapped in a single-mode optical cavity

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh; Mueller, Erich

    2016-05-01

    Motivated by experiments performed by R. Landig et al. (arXiv:1511.00007), we theoretically explore the behavior of bosonic atoms trapped in a single-mode cavity in the presence of a two-dimensional optical lattice. As explained by arXiv:1511.00007, Rayleigh scattering of light from the lattice-inducing beams into the cavity produces infinite-range cavity-mediated interactions between the atoms, leading to competition between superfluid, supersolid, Mott insulating and charge density wave phases. We calculate the phase diagram for a uniform trap using a variation of the Gutzwiller Ansatz. We also calculate the spatial distribution of the different phases in the gas in the presence of a harmonic trap. We explore hysteretic behavior when parameters of the system are changed.

  15. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Analysis using Floquet states

    SciTech Connect

    Hur, G.; Creffield, C.E.; Jones, P.H.; Monteiro, T.S.

    2005-07-15

    Recently, cesium atoms in optical lattices subjected to cycles of unequally spaced pulses have been found to show interesting behavior: they represent an experimental demonstration of a Hamiltonian ratchet mechanism, and they show strong variability of the dynamical localization lengths as a function of initial momentum. The behavior differs qualitatively from corresponding atomic systems pulsed with equal periods, which are a textbook implementation of a well-studied quantum chaos paradigm, the quantum {delta}-kicked rotor ({delta}-QKR). We investigate here the properties of the corresponding eigenstates (Floquet states) in the parameter regime of the recent experiments and compare them with those of the eigenstates of the {delta}-QKR at similar kicking strengths. We show that by studying the properties of the Floquet states we can shed light on the form of the observed ratchet current, as well as variations in the dynamical localization length.

  16. High-temperature properties of fermionic alkaline-earth-metal atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Hazzard, Kaden R. A.; Gurarie, Victor; Hermele, Michael; Rey, Ana Maria

    2012-04-01

    We calculate experimentally relevant properties of trapped fermionic alkaline-earth-metal atoms in an optical lattice, modeled by the SU(N) Hubbard model. We employ a high-temperature expansion that is accurate when the temperature is larger than the tunneling rate, similar to current regimes in ultracold atom experiments. In addition to exploring the Mott insulator-metal crossover, we calculate final temperatures achieved by the standard experimental protocol of adiabatically ramping from a noninteracting gas, as a function of initial gas temperature. Of particular experimental interest, we find that increasing N for fixed particle numbers and initial temperatures gives substantially colder Mott insulators after the adiabatic ramping, up to more than a factor of 5 for relevant parameters. This cooling happens for all N, fixing the initial entropy, or for all N≲20 (the exact value depends on dimensionality), at fixed, experimentally relevant initial temperatures.

  17. Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Boukari, H.; Kuroda, S.; Besombes, L.

    2016-08-01

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.

  18. Observation of the 1S0-3P0 transition in atomic ytterbium for optical clocks and qubit arrays.

    PubMed

    Hong, Tao; Cramer, Claire; Cook, Eryn; Nagourney, Warren; Fortson, E N

    2005-10-01

    We report an observation of the weak 6 1S0-6 3P0 transition in (171,173)Yb as an important step to establishing Yb as a primary candidate for future optical frequency standards, and to open up a new approach for qubits using the 1S0 and 3P0 states of Yb atoms in an optical lattice.

  19. Dual channel self-oscillating optical magnetometer

    SciTech Connect

    Belfi, J.; Bevilacqua, G.; Biancalana, V.; Dancheva, Y.; Khanbekyan, K.; Moi, L.; Cartaleva, S.

    2009-05-15

    We report on a two-channel magnetometer based on nonlinear magneto-optical rotation in a Cs glass cell with buffer gas. The Cs atoms are optically pumped and probed by free running diode lasers tuned to the D{sub 2} line. A wide frequency modulation of the pump laser is used to produce both synchronous Zeeman optical pumping and hyperfine repumping. The magnetometer works in an unshielded environment, and a spurious signal from distant magnetic sources is rejected by means of differential measurement. In this regime the magnetometer simultaneously gives the magnetic field modulus and the field difference. Rejection of the common-mode noise allows for high-resolution magnetometry with a sensitivity of 2 pT/{radical}(Hz). This sensitivity, in conjunction with long-term stability and a large bandwidth, makes it possible to detect water proton magnetization and its free induction decay in a measurement volume of 5 cm{sup 3}.

  20. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    PubMed Central

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles; Coffee, Ryan; Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing; Bostedt, Christoph

    2015-01-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. PMID:25931058

  1. Influence of trapping potentials on the phase diagram of bosonic atoms in optical lattices

    SciTech Connect

    Giampaolo, S.M.; Illuminati, F.; Mazzarella, G.; De Siena, S.

    2004-12-01

    We study the effect of external trapping potentials on the phase diagram of bosonic atoms in optical lattices. We introduce a generalized Bose-Hubbard Hamiltonian that includes the structure of the energy levels of the trapping potential, and show that these levels are in general populated both at finite and zero temperature. We characterize the properties of the superfluid transition for this situation and compare them with those of the standard Bose-Hubbard description. We briefly discuss similar behaviors for fermionic systems.

  2. Rapid Fabrication of Lightweight SiC Optics using Reactive Atom Plasma (RAP) Processing

    NASA Technical Reports Server (NTRS)

    Fiske, Peter S.

    2006-01-01

    Reactive Atom Plasma (RAP) processing is a non-contact, plasma-based processing technology that can be used to generate damage-free optical surfaces. We have developed tools and processes using RAP that allow us to shape extremely lightweight mirror Surfaces made from extremely hard-to-machine materials (e.g. SiC). We will describe our latest results using RAP in combination with other technologies to produce finished lightweight SiC mirrors and also discuss applications for RAP in the rapid fabrication of mirror segments for reflective and grazing incidence telescopes.

  3. ATOMIC AND MOLECULAR PHYSICS: Energy spectrum and superfluidity of spin-2 ultracold bosons in optical lattices

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Jun; Liu, Xian-Feng; Han, Jiu-Rong

    2009-12-01

    This paper studies the superfluidity of ultracold spin-2 Bose atoms with weak interactions in optical lattices by calculating the excitation energy spectrum using the Bogoliubov approach. The energy spectra exhibit the characteristics of the superfluid-phase explicitly and it finds the nonvanishing critical speeds of superfluid. The obtained results display that the critical speeds of superfluid are different for five spin components and can be controlled by adjusting the lattice parameters in experiments. Finally it discusses the feasibilities of implementing and measuring superfluid.

  4. Photon Statistics of a Two-Level Atom in a Driven Optical Cavity

    NASA Astrophysics Data System (ADS)

    Clemens, James; Rice, Perry

    1997-10-01

    We consider the second-order intensity correlation function g^(τ ) for a single two-level atom in an optical cavity driven by a classical field. Previous results are extended beyond the weak-field limit, using a quantum trajectory method. Manifestly quantum behavior is observed, and we compare our results to recent experiments by Mielke et. al. ( S. L. Mielke, G. T. Foster, and L. A. Orozco, submitted to Physical Review Letters.) More information can be found at http://muohio.edu/ ~ ricepr/research.htm.

  5. Energetic atomic and ionic oxygen textured optical surfaces for blood glucose monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2007-01-01

    Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.

  6. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    DOE PAGES

    Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles; Coffee, Ryan; Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; et al

    2015-05-01

    The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  7. Disorder-induced heating of ultracold neutral plasmas created from atoms in partially filled optical lattices

    NASA Astrophysics Data System (ADS)

    Murphy, D.; Sparkes, B. M.

    2016-08-01

    We quantify the disorder-induced heating (DIH) of ultracold neutral plasmas (UCNPs) created from cold atoms in optical lattices with partial filling fractions, using a conservation of energy model involving the spatial correlations of the initial state and the equation of state in thermal equilibrium for a one-component plasma. We show, for experimentally achievable filling fractions, that the ionic Coulomb coupling parameter could be increased to a degree comparable to other proposed DIH-mitigation schemes. Molecular dynamics simulations were performed with compensation for finite-size and periodic boundary effects, which agree with calculations using the model. Reduction of DIH using optical lattices will allow for the study of strongly coupled plasma physics using low-density, low-temperature, laboratory-based plasmas, and lead to improved brightness in UCNP-based cold electron and ion beams, where DIH is otherwise a fundamental limitation to beam focal sizes and diffraction imaging capability.

  8. Disorder-induced heating of ultracold neutral plasmas created from atoms in partially filled optical lattices.

    PubMed

    Murphy, D; Sparkes, B M

    2016-08-01

    We quantify the disorder-induced heating (DIH) of ultracold neutral plasmas (UCNPs) created from cold atoms in optical lattices with partial filling fractions, using a conservation of energy model involving the spatial correlations of the initial state and the equation of state in thermal equilibrium for a one-component plasma. We show, for experimentally achievable filling fractions, that the ionic Coulomb coupling parameter could be increased to a degree comparable to other proposed DIH-mitigation schemes. Molecular dynamics simulations were performed with compensation for finite-size and periodic boundary effects, which agree with calculations using the model. Reduction of DIH using optical lattices will allow for the study of strongly coupled plasma physics using low-density, low-temperature, laboratory-based plasmas, and lead to improved brightness in UCNP-based cold electron and ion beams, where DIH is otherwise a fundamental limitation to beam focal sizes and diffraction imaging capability. PMID:27627236

  9. Orbital atomic oxygen effects on thermal control and optical materials - STS-8 results

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Little, S. A.; Harwell, R. J.; Griner, D. B.; Dehaye, R. F.; Fromhold, A. T., Jr.

    1985-01-01

    The effects of exposing 23 specimens of optical and thermal control materials to space at 120 km altitude for over 40 hrs during the STS-8 mission are discussed. Ten samples of paint targeted for the Space Telescope (ST) and the Tethered Satellite were exposed, and included polyurethane, oxide, silicone, and glossy black and white samples which were scanned for alterations in the optical properties after being retrieved. Nine mirror-type materials were also investigated, along with silver specimens typical of solar cell interconnects. The oxygen flow at the orbital altitude was 3.5 x 10 to the 20th atoms/cu cm. The exposures caused no degradation of the magnesium fluoride mirror coatings, while the Kapton coating for the ST solar cell panels showed evidence of losing thickness. The Ag solar cell contacts will require coatings to extend their lifetimes. Overcoatings were also proven necessary for inhibiting degradation of painted surfaces.

  10. An ultra-high optical depth cold atomic ensemble for quantum memories

    NASA Astrophysics Data System (ADS)

    Sparkes, B. M.; Bernu, J.; Hosseini, M.; Geng, J.; Glorieux, Q.; Altin, P. A.; Lam, P. K.; Robins, N. P.; Buchler, B. C.

    2013-12-01

    Quantum memories for light lie at the heart of long-distance provably-secure communication. Demand for a functioning quantum memory, with high efficiency and coherence times approaching a millisecond, is therefore at a premium. Here we report on work towards this goal, with the development of a 87Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F = 2 → F' = 3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble we implemented the gradient echo memory (GEM) scheme on the D1 line. Our data shows a memory efficiency of 80 ± 2% and coherence times up to 195 μs.

  11. Note: A stand on the basis of atomic force microscope to study substrates for imaging optics

    SciTech Connect

    Chkhalo, N. I.; Salashchenko, N. N.; Zorina, M. V.

    2015-01-15

    A description of a stand based on atomic force microscopy (AFM) for roughness measurements of large optical components with arbitrary surfaces is given. The sample under study is mounted on a uniaxial goniometer which allows the sample to be tilted in the range of ±30°. The inclination enables the local normal along the axis of the probe to be established at any point of the surface under study. A comparison of the results of the measurement of noise and roughness of a flat quartz sample, in the range of spatial frequencies 0.025–70 μm{sup −1}, obtained from “standard” AFM and developed versions is given. Within the experimental error, the measurement results were equivalent. Examples of applications of the stand for the study of substrates for X-ray optics are presented.

  12. Atomic force microscopy and near-field optical imaging of a spin transition.

    PubMed

    Lopes, Manuel; Quintero, Carlos M; Hernández, Edna M; Velázquez, Víctor; Bartual-Murgui, Carlos; Nicolazzi, William; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2013-09-01

    We report on atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) investigations of single crystals of the spin crossover complex {Fe(pyrazine)[Pt(CN)4]} across the first-order thermal spin transition. We demonstrate for the first time that the change in spin state can be probed with sub-micrometer spatial resolution through various topographic features extracted from AFM data. This original approach based on surface topography analysis should be easy to implement to any phase change material exhibiting sizeable electron-lattice coupling. In addition, AFM images revealed specific topographic features in the crystals, which were correlated with the spatiotemporal evolution of the transition observed by far-field and near-field optical microscopies.

  13. Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density

    PubMed

    Kerman; Vuletic; Chin; Chu

    2000-01-17

    We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity.

  14. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing.

  15. Optimized modulation parameters for a two-dimensional magneto-optical trap for cold fermionic potassium atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hoon; Mun, Jongchul

    2016-05-01

    We study optimized parameters for a high flux atomic beam source for 40 K fermionic atoms from a frequency modulated two-dimensional magneto-optical trap (2D MOT). The laser cooling beam frequencies of the 2D MOT were effectively broadened via elecro-optical modulators at 10MHz with modulation depths β ranging up to 7, depending on the laser intensity. A two-color pushing laser beam was also implemented for an asymmetrically directed atomic beam source. All laser parameters of the 2D MOT beams along with the magnetic field gradient were scanned for optimal atomic flux. With the added modulation, we were able to obtain 4 times enhancement of the atomic flux which was limited by the applied laser power. This work is supported by KRISS Creative Research Initiative.

  16. The pecularities of formation of dynamic gratings in metal vapors at the optical pumping of atomic hyperfine sublevels

    SciTech Connect

    Nazarov, V.N.

    1994-07-01

    The properties of the resonant dynamic gratings produced in atomic cesium vapors by low-power beams of a semiconductor laser are studied. It is shown, both experimentally and theoretically, that the efficiency of laser-beam diffraction on dynamic gratings in a three-level atomic medium can be appreciably increased owing to the compensation of medium bleaching by the increase in initial atomic concentration. The spatial frequency response of an atomic medium during optical pumping is shown to be substantially non-uniform and to have a strong rise in the range of low spatial frequencies of the gratings. 22 refs., 4 figs.

  17. SQUID magnetometry from nanometer to centimeter length scales

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael Jonathan

    Information stored in magnetic fields plays an important role in everyday life. This information exists over a remarkably wide range of sizes, so that magnetometry at a variety of length scales can extract useful information. Examples at centimeter to millimeter length scales include measurement of spatial and temporal character of fields generated in the human brain and heart, and active manipulation of spins in the human body for non-invasive magnetic resonance imaging (MRI). At micron length scales, magnetometry can be used to measure magnetic objects such as flux qubits; at nanometer length scales it can be used to study individual magnetic domains, and even individual spins. The development of Superconducting QUantum Interference Device (SQUID) based magnetometer for two such applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nanoscale magnetometry, are the focus of this thesis. Conventional MRI has developed into a powerful clinical tool for imaging the human body. This technique is based on nuclear magnetic resonance of protons with the addition application of three-dimensional magnetic field gradients to encode spatial information. Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems. Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. The prepolarized, SQUID detected ultra-low field MRI (ULF MRI) developed by the Clarke group allows imaging in very weak fields (typically 132 muT, corresponding to a resonant frequency of 5.6 kHz). At these low field strengths, there is enhanced contrast in the longitudinal relaxation time of various tissue types, enabling imaging of objects which are not visible to conventional MRI, for instance prostate cancer. We are currently investigating the contrast between normal and cancerous

  18. Construction and applications of an atomic magnetic gradiometerbased on nonlinear magneto-optical rotation

    SciTech Connect

    Xu, Shoujun; Rochester, Simon M.; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Budker, Dmitry

    2006-06-28

    We report on the design, characterization, and applicationsof a sensitive atomic magnetic gradiometer. The device is based onnonlinear magneto-optical rotation in alkali-metal (87Rb) vapor, and usesfrequency-modulated laser light. The magnetic field produced by a sampleis detected by measuring the frequency of a resonance in optical rotationthat arises when the modulation frequency equals twice the Larmorprecession frequency of the Rb atoms. The gradiometer consists of twoatomic magnetometers. The rotation of light polarization in eachmagnetometer is detected with a balanced polarimeter. The sensitivity ofthe gradiometer is 0.8 nG/Hz1/2 for near-DC (0.1 Hz) magnetic fields,with a baseline of 2.5 cm. For applications in nuclear magnetic resonance(NMR) and magnetic resonance imaging (MRI), a long solenoid that piercesthe magnetic shields provides a ~;0.5 G leading field for the nuclearspins in the sample. Our apparatus is particularly suited for remotedetection of NMR and MRI. We demonstrate a point-by-point free inductiondecay measurement and a spin echo reconstructed with a pulse sequencesimilar to the Carr-Purcell-Meiboom-Gill (CPMG) pulse. Additionalapplications and future improvements are also discussed.

  19. Interplay of Atomic and Electronic Structure in Second Harmonic Generating Nonlinear Optical Materials

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James

    2015-03-01

    Group theoretical methods and ab initio electronic structure calculations are combined to formulate a general Symmetry-Assisted Functional Optical Response (SAFOR) protocol to understand and predict the second harmonic generation (SHG) response in nonlinear optical crystals. We show that the SHG coefficients may be decomposed into atomic contributions from various inversion symmetry lifting distortions, which we parametrize as symmetry-adapted displacement patterns that transform as irreducible representations of a relevant centrosymmetric parent structure. The SAFOR protocol is then combined with an electronic descriptor for bond covalency to explain the origin of SHG in noncentrosymmetric-nonpolar ATeMoO6 telluromolybdate compounds. We show that the SHG response has a complex dependence on the asymmetric geometry of the polyhedral units and the orbital character at the valence band edge. The atomic scale and electronic structure understanding of the macroscopic SHG behavior obtained with these descriptions is then used to identify hypothetical HgTeMoO6 as a candidate telluromolybdate, which we predict should exhibit the largest SHG response in the ATeMoO6 family. A.C. and J.M.R. were supported by ONR and ACS-PRF under Grant Numbers N00014-11-1-0664 and 52138-DNI10.

  20. Construction and preliminary tests of a laser optically pumped cesium jet atomic clock

    NASA Astrophysics Data System (ADS)

    Arditi, M.; Picque, J.-L.

    1980-06-01

    The design and preliminary operational test results of an atomic clock based on an optically pumped cesium jet utilizing laser pumping and optical detection are presented. The apparatus consists of a tunable CW monomode GaAs semiconductor laser diode emitting in the vicinity of the cesium D2 resonance line at 852.1 nm which creates a population splitting between the hyperfine Zeeman sublevels F equals 3, mF equals 0 and F equals 4, mF equals 0 of the ground state of a jet of cesium atoms; the microwave resonance is detected through a change in the intensity of laser-induced fluorescence produced by the 9192-MHz excitation of a resonant cavity. The observed Ramsey spectrum for a clock with a resonant cavity 22.5 cm long is shown to be in good agreement with the theoretical curve for the mean transition probability, and measurements of the magnetic field dependence of the frequency standard indicating an accuracy on the order of 10 to the -11th are reported.

  1. Atomic Sensors using Nonlinear Magneto-Optical Rotation in the Strongly Saturated Regime

    NASA Astrophysics Data System (ADS)

    Kunz, Paul; Meyer, David; Quraishi, Qudsia; Fatemi, Fredrik

    2016-05-01

    We report on two separate atomic sensor experiments that rely on narrow spectral features associated with nonlinear magneto-optical rotation (NMOR). The first experiment uses a cold cloud of rubidium to investigate a ``twist'' feature nested within the standard dispersive-shaped NMOR curve. Though similar features have been observed previously in warm vapor, in this case the mechanism responsible is different. Here it is due to the combination of Zeeman and AC Stark shifts leading to complex evolutions of the atomic angular momentum, namely alignment-to-orientation conversion (AOC). This twist can be used as a rapid measure of transverse magnetic fields since its width scales linearly with the magnitude of the magnetic field directed along the optical polarization. We demonstrate applications of this feature both as a measure of background DC magnetic fields and also magnetic field gradients imaged with a CCD camera. Separately, in the second experiment we have begun investigations of NMOR in Rydberg levels for the purpose of measuring microwave electric field amplitudes. This has the potential to significantly enhance the signal-to-noise ratio over previous absorption-based techniques.

  2. Nonresonant corrections for the optical resonance frequency measurements in the hydrogen atom

    SciTech Connect

    Labzowsky, Leonti; Schedrin, Gavriil; Solovyev, Dmitrii; Chernovskaya, Evgenia; Plunien, Guenter; Karshenboim, Savely

    2009-05-15

    The deviation of the natural spectral line profile from the Lorentz shape for the optical resonant frequency measurements is considered. This deviation leads to an asymmetry, which is mainly due to nonresonant correction to the resonant Lorentz profile. The nonresonant corrections are studied for the different types of the atomic resonant experiments. The most accurate recent optical resonance experiments are analyzed, i.e., the two-photon 1s-2s resonance excitation of the hydrogen atom with the delayed decay in the external electric field. The description of the nonresonant correction in the latter case requires the employment of QED with different in and out Hamiltonians. The nonresonant corrections for this experiment are investigated and found to be about 10{sup -5} Hz, while the recent experimental uncertainty is 34 Hz and in the near feature is expected to be a few hertz. The projected 1s-2s resonance excitation experiment with the three-photon ionization detection (which is now in progress) is also considered.

  3. Calcium optical frequency standard with ultracold atoms: Approaching 10{sup -15} relative uncertainty

    SciTech Connect

    Degenhardt, Carsten; Stoehr, Hardo; Lisdat, Christian; Wilpers, Guido; Schnatz, Harald; Lipphardt, Burghard; Nazarova, Tatiana; Pottie, Paul-Eric; Sterr, Uwe; Helmcke, Juergen; Riehle, Fritz

    2005-12-15

    An optical frequency standard based on an ensemble of neutral calcium atoms laser-cooled to 12 {mu}K has been realized. By using ultracold atoms, one major previous source of uncertainty, the residual Doppler effect, was reduced. We show that cold collisions contribute a negligible amount to the uncertainty. The influence of a temporal evolution of the phase of the laser pulses used to interrogate the clock transition was measured and corrected for. The frequency of the clock transition at 657 nm was referenced to the caesium fountain clock of PTB utilizing a femtosecond comb generator with a fractional uncertainty of 1.2x10{sup -14}. The transition frequency was determined to be (455 986 240 494 144{+-}5.3) Hz, making the calcium clock transition one of the most accurately known optical transitions. A frequency stability of 3x10{sup -15} at 100 s averaging time was achieved and the noise contributions that limit to the observed stability were analyzed in detail. Additionally, the natural linewidth of the clock transition has been determined.

  4. Optical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications

    PubMed Central

    Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.

    2015-01-01

    The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si. PMID:25990870

  5. Magnetometry in the Munich Neutron Electric Dipole Moment (nEDM) Experiment

    NASA Astrophysics Data System (ADS)

    Degenkolb, Skyler

    2013-05-01

    Neutron EDM measurements rely on sensitive magnetometry to decouple signal from systematic errors. State-of-the-art co-magnetometers use hyperpolarized diamagnetic atoms, chosen for small spin-flip cross-sections and long coherence times. In particular, the 254 nm 199Hg line is used to polarize and detect via Hg lamps or lasers. We present a comprehensive scheme of Hg co-magnetometers, external magnetometers and gradiometers inside passive and active shields. Hg gas is pumped and probed by a diode laser with two doubling stages whose UV output is locked to the 254 nm line at the point of vanishing light shift; adjacent cells containing Hg and/or other species are used to extract systematics correlated with material properties of Hg (e.g., center-of-mass displacements or georotational shifts). Vapor cell magnetometers of Hg or Cs are used for comparison, and to guide apparatus installation. The vibration-isolated experiment takes place within passive mu-metal and aluminum shields, inside a non-magnetic experimental hall. A magnetically shielded room, monitored by 180 fluxgate magnetometers which generate error signals for 24 independent external compensation coils, contains the passive shield. Design and performance of the composite system will be discussed. (for the Munich nEDM Collaboration: nedm.ph.tum.de)

  6. Dirac and Weyl rings in three-dimensional cold-atom optical lattices

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhang, Chuanwei

    2016-06-01

    Recently three-dimensional topological quantum materials with gapless energy spectra have attracted considerable interest in many branches of physics. Besides the celebrated example, Dirac and Weyl points which possess gapless point structures in the underlying energy dispersion, the topologically protected gapless spectrum, can also occur along a ring, named Dirac and Weyl nodal rings. Ultracold atomic gases provide an ideal platform for exploring new topological materials with designed symmetries and dispersion. However, whether Dirac and Weyl rings can exist in the single-particle spectrum of cold atoms remains elusive. Here we propose a realistic model for realizing Dirac and Weyl rings in the single-particle band dispersion of a cold-atom optical lattice. Our scheme is based on a previously experimentally implemented Raman coupling setup for realizing spin-orbit coupling. Without the Zeeman field, the model preserves both pseudo-time-reversal and inversion symmetries, allowing Dirac rings. The Dirac rings split into Weyl rings with a Zeeman field that breaks the pseudo-time-reversal symmetry. We examine the superfluidity of attractive Fermi gases in this model and also find Dirac and Weyl rings in the quasiparticle spectrum.

  7. Natural Atomic Orbital Representation for Optical Spectra Calculations in the Exciton Scattering Approach.

    PubMed

    Li, Hao; Chernyak, Vladimir Y; Tretiak, Sergei

    2012-12-20

    The exciton scattering (ES) method allows efficient calculations of spectroscopic observables in large low-dimensional conjugated molecular systems. To compute the transition dipoles between the ground and excited electronic states, we should extract the ES dipole parameters from quantum chemistry calculations in simple molecular fragments. In this manuscript, we show how to retrieve these parameters from any reference quantum chemistry model that uses an arbitrary nonorthogonal and possibly overcomplete atomic orbital basis set. Our approach relies on the natural atomic orbital (NAO) representation, in which the basis functions are orthonormal and the atom-like character is preserved. We apply the ES approach, combined with the NAO analysis to optical spectra of branched phenylacetylene oligomers. Absorption spectra predicted by the ES method demonstrate close agreement with the results of direct quantum chemistry calculations, when the Time-Dependent Density Functional Theory (TD-DFT) being used as a reference. This testifies applicability of a variety of quantum-chemical techniques, where the NAO population analysis can be conducted, for the ES framework. PMID:26291103

  8. Light scattering and dissipative dynamics of many fermionic atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Langer, S.; Schachenmayer, J.; Daley, A. J.

    2014-08-01

    We investigate the many-body dissipative dynamics of fermionic atoms in an optical lattice in the presence of incoherent light scattering. Deriving and solving a master equation to describe this process microscopically for many particles, we observe contrasting behavior in terms of the robustness against this type of heating for different many-body states. In particular, we find that the magnetic correlations exhibited by a two-component gas in the Mott insulating phase should be particularly robust against decoherence from light scattering, because the decoherence in the lowest band is suppressed by a larger factor than the time scales for effective superexchange interactions that drive coherent dynamics. Furthermore, the derived formalism naturally generalizes to analogous states with SU(N) symmetry. In contrast, for typical atomic and laser parameters, two-particle correlation functions describing bound dimers for strong attractive interactions exhibit superradiant effects due to the indistinguishability of off-resonant photons scattered by atoms in different internal states. This leads to rapid decay of correlations describing off-diagonal long-range order for these states. Our predictions should be directly measurable in ongoing experiments, providing a basis for characterizing and controlling heating processes in quantum simulation with fermions.

  9. Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Mei; Hu, Chang-Sheng; Yang, Zhen-Biao; Wu, Huai-Zhi

    2016-10-01

    We investigate the effect of the dipole-dipole interaction (DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom-cavity system’s nonlinear Jaynes-Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305037, 11347114, and 11374054) and the Natural Science Foundation of Fujian Province, China (Grant No. 2013J01012).

  10. Noise spectroscopy for detecting multi-atomic composite states in optical lattices

    NASA Astrophysics Data System (ADS)

    Moritz, Henning; Kuklov, Anatoly

    2007-03-01

    We propose and discuss methods for detecting quasi-molecular complexes which are expected to form in strongly interacting optical lattice systems. Particular emphasis is placed on the detection of composite fermions forming in Bose-Fermi mixtures. We argue that, as an indirect indication of the composite fermions and a generic consequence of strong interactions, periodic correlations must appear in the atom shot noise of bosonic absorption images, similar to the bosonic Mott insulator. The composites can also be detected directly and their quasi-momentum distribution measured. This method -- an extension of the technique of noise correlation interferometry -- relies on measuring higher order correlations between the bosonic and fermionic shot noise in the absorption images.The method is expected to work well for fermionic composites consisting of less than four atoms and for bosonic ones consisting of less than six atoms. Above these numbers, the uncorrelated noise becomes too large. [1]A.B. Kuklov, H. Moritz, cond-mat/0609531 [2]S. F"olling, et al., Nature 434, 481 (2005). [3]E. Altman et al., Phys. Rev. A 79, 013603 (2004)

  11. Natural Atomic Orbital Representation for Optical Spectra Calculations in the Exciton Scattering Approach.

    PubMed

    Li, Hao; Chernyak, Vladimir Y; Tretiak, Sergei

    2012-12-20

    The exciton scattering (ES) method allows efficient calculations of spectroscopic observables in large low-dimensional conjugated molecular systems. To compute the transition dipoles between the ground and excited electronic states, we should extract the ES dipole parameters from quantum chemistry calculations in simple molecular fragments. In this manuscript, we show how to retrieve these parameters from any reference quantum chemistry model that uses an arbitrary nonorthogonal and possibly overcomplete atomic orbital basis set. Our approach relies on the natural atomic orbital (NAO) representation, in which the basis functions are orthonormal and the atom-like character is preserved. We apply the ES approach, combined with the NAO analysis to optical spectra of branched phenylacetylene oligomers. Absorption spectra predicted by the ES method demonstrate close agreement with the results of direct quantum chemistry calculations, when the Time-Dependent Density Functional Theory (TD-DFT) being used as a reference. This testifies applicability of a variety of quantum-chemical techniques, where the NAO population analysis can be conducted, for the ES framework.

  12. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  13. Optically-Detected Magnetic Resonance of Alkali Atoms Isolated on Helium Nano-Droplets

    NASA Astrophysics Data System (ADS)

    Koch, Markus; Callegari, Carlo; Ernst, Wolfgang E.

    2009-06-01

    Sharp, hyperfine-resolved, ESR spectra of alkali atoms isolated on helium nanodroplets are measured by optically-detected magnetic resonance (ODMR). A net spin polarization is created inside a magnetic field (B=0.2 to 4.2 T) by a pump laser beam. Microwave radiation in a resonant cavity at 9.4 GHz causes a spin transition which is detected by a probe laser beam. For ultimate precision the spectrum of free atoms is concurrently measured and serves as a reference. The shift of the ESR lines on the droplet with respect to free atoms directly reflects the distortion of the valence-electron wavefunction due to the He nanodroplet. While the electron g-factor remains unchanged within experimental uncertainties (<5 ppm), the increase of the hyperfine constant (typically +400 ppm) is consistent with an increase of the Fermi contact interaction. We are able to follow this change as a function of droplet size attesting the sensitivity of the method for the measurement of chemical shifts. The observation of Rabi oscillations indicates a long decoherence time and proves our ability to perform coherent manipulation of the spin.

  14. Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction

    NASA Astrophysics Data System (ADS)

    Lee, Mark D.; Ruostekoski, Janne

    2014-08-01

    We formulate computationally efficient classical stochastic measurement trajectories for a multimode quantum system under continuous observation. Specifically, we consider the nonlinear dynamics of an atomic Bose-Einstein condensate contained within an optical cavity subject to continuous monitoring of the light leaking out of the cavity. The classical trajectories encode within a classical phase-space representation a continuous quantum measurement process conditioned on a given detection record. We derive a Fokker-Planck equation for the quasiprobability distribution of the combined condensate-cavity system. We unravel the dynamics into stochastic classical trajectories that are conditioned on the quantum measurement process of the continuously monitored system. Since the dynamics of a continuously measured observable in a many-atom system can be closely approximated by classical dynamics, the method provides a numerically efficient and accurate approach to calculate the measurement record of a large multimode quantum system. Numerical simulations of the continuously monitored dynamics of a large atom cloud reveal considerably fluctuating phase profiles between different measurement trajectories, while ensemble averages exhibit local spatially varying phase decoherence. Individual measurement trajectories lead to spatial pattern formation and optomechanical motion that solely result from the measurement backaction. The backaction of the continuous quantum measurement process, conditioned on the detection record of the photons, spontaneously breaks the symmetry of the spatial profile of the condensate and can be tailored to selectively excite collective modes.

  15. Reduced-density-matrix description for pump-probe optical phenomena in moving atomic systems

    NASA Astrophysics Data System (ADS)

    Jacobs, V. L.

    2014-09-01

    Linear and nonlinear (especially coherent) electromagnetic interactions of moving many-electron atoms are investigated using a reduced-density-matrix description, which is applied to electromagnetically induced transparency and related resonant pump-probe optical phenomena. External magnetic fields are included on an equal footing with the electromagnetic fields and spin-Zeeman interactions are taken into account. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix description are self-consistently developed. The general nonperturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. The macroscopic electromagnetic response is described semiclassically, employing a perturbation expansion of the reduced-density operator in powers of the classical electromagnetic field. Our primary results are compact Liouville-space operator expressions for the linear and general (nth-order) nonlinear macroscopic electromagnetic-response tensors, which can be evaluated for nonlocal and nonstationary optical media described by multilevel atomic-system representations. Interactions among atoms and with environmental photons are treated as line-broadening effects by means of a general Liouville-space self-energy operator, for which the tetradic-matrix elements are explicitly evaluated in the diagonal, lowest-order, and Markov approximations. The compact Liouville-space operator expressions that are derived for the macroscopic electromagnetic-response tensors are introduced into the dynamical description of the electromagnetic-field propagation. It is pointed out that a quantized-electromagnetic-field approach will be required for a fully self-consistent quantum-mechanical treatment of local-field effects and radiative corrections.

  16. Longterm optical monitoring of bright BL Lacertae objects with ATOM: Spectral variability and multiwavelength correlations

    NASA Astrophysics Data System (ADS)

    Wierzcholska, Alicja; Ostrowski, Michał; Stawarz, Łukasz; Wagner, Stefan; Hauser, Marcus

    2015-01-01

    Context. Blazars are the established sources of an intense and variable non-thermal radiation extending from radio wavelengths up to high and very high-energy γ-rays. Understanding the spectral evolution of blazars in selected frequency ranges, as well as multifrequency correlations in various types of blazar sources, is of a primary importance for constraining blazar physics. Aims: We present the results of a long-term optical monitoring of a sample of 30 blazars of the BL Lac type, most of which are the confirmed TeV emitters. We study the optical color-magnitude correlation patterns emerging in the analyzed sample and compare the optical properties of the targets with the high-energy γ-ray and high-frequency radio data. Methods: The optical observations were carried out in R and B filters using the Automatic Telescope for Optical Monitoring (ATOM) located at the site of the H.E.S.S. Array. Each object in the sample was observed during at least 20 nights in the period 2007 to 2012. Results: We find significant overall color-magnitude correlations (meaning bluer-when-brighter spectral evolution) in 40% of the sample. The sources that do not display any clear chromatism in the full datasets often do exhibit bluer-when-brighter behavior but only in isolated shorter time intervals. We also discovered spectral state transitions at optical wavelengths in several of the analyzed sources. Finally, we find that the radio, optical, and γ-ray luminosities of the sources in the sample obey almost linear correlations, which seem induced, at least partly, by the redshift dependence and may also be affected by the non-simultaneity of the analyzed multifrequency dataset. Conclusions: We argue that the observed bluer-when-brighter behavior is intrinsic to the jet-emission regions, at least for some of these blazars, rather than resulting from the contamination of the measured flux by the starlight of host galaxies. We also conclude that the significance of color

  17. Optical response of metal nanojunctions driven by single atom motion: influence of quantized electron transport on nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Sanchez-Portal, Daniel; Marchesin, Federico; Koval, Peter; Barbry, Marc; Aizpurua, Javier

    The correlation between transport properties across sub-nanometric metallic gaps and the optical response of the system is a complex effect that, similarly to the near-field enhancement, is determined by fine atomic-scale details in the junction structure. Using ab initio calculations, we present here a study of the simultaneous evolution of the structure and the optical response of a plasmonic junction as the two Na380 clusters forming the cavity approach and retract. Atomic reorganizations are responsible for a large hysteresis of the optical response. The system exhibits a jump-to-contact instability during the approach, and the formation of an atom-sized neck across the junction during retraction. Due to the quantization of the conductance in metal nanocontacts, atomic-scale reconfigurations play a crucial role in determining the optical response. We observe abrupt changes in the intensities and spectral positions of the dominating plasmon resonances, and find a one-to-one correspondence between these jumps and those of the quantized transport across the neck. These results point out to an unforeseen connection between transport and optics at the atomic scale, which is at the frontier of current optoelectronics We acknowledge support from MINECO (Grants FIS2013-14481-P and MAT2013-46593-C6-2-P), UPV/EHU and Gipuzkuako Foru Aldundia.

  18. Development of a Magneto-Optical Trap System of Francium Atoms for the Electron Electric-Dipole-Moment Search

    NASA Astrophysics Data System (ADS)

    Harada, K.; Aoki, T.; Kato, K.; Kawamura, H.; Inoue, T.; Aoki, T.; Uchiyama, A.; Sakamoto, K.; Ito, S.; Itoh, M.; Hayamizu, T.; Hatakeyama, A.; Hatanaka, K.; Wakasa, T.; Sakemi, Y.

    2016-02-01

    The finite value of an electron electric dipole moment (eEDM) provides the direct evidence for the violation of time reversal symmetry. Fr atoms, whose enhancement factor is 895, trapped by laser cooling and trapping techniques are one of the strongest candidates for measuring the eEDM. We are constructing a beamline for measuring the eEDM using laser- cooled Fr atoms at the Cyclotron and Radioisotope Center. We have developed laser light sources including the frequency stabilization system and a magneto-optical trap system for Fr atoms. As the Fr production requires the cyclotron operation, we also use Rb atoms whose chemical properties are similar to those of the Fr atoms. Thus, the Rb beam is utilized for optimizing the operation parameters of the entire apparatus. We have also developed the laser light sources for Rb atoms and observed the beat signal for frequency stabilization of the source using the frequency offset locking method.

  19. Thermodynamics and dynamics of atomic self-organization in an optical cavity

    NASA Astrophysics Data System (ADS)

    Schütz, Stefan; Jäger, Simon B.; Morigi, Giovanna

    2015-12-01

    Pattern formation of atoms in high-finesse optical resonators results from the mechanical forces of light associated with superradiant scattering into the cavity mode. It occurs when the laser intensity exceeds a threshold value such that the pumping processes counteract the losses. We consider atoms driven by a laser and coupling with a mode of a standing-wave cavity and describe their dynamics with a Fokker-Planck equation, in which the atomic motion is semiclassical but the cavity field is a full quantum variable. The asymptotic state of the atoms is a thermal state, whose temperature is solely controlled by the detuning between the laser and the cavity frequency and by the cavity loss rate. From this result we derive the free energy and show that in the thermodynamic limit self-organization is a second-order phase transition. The order parameter is the field inside the resonator to which one can associate a magnetization in analogy to ferromagnetism, the control field is the laser intensity, but the steady state is intrinsically out of equilibrium. In the symmetry-broken phase, quantum noise induces jumps of the spatial density between two ordered patterns: We characterize the statistical properties of this temporal behavior at steady state and show that the thermodynamic properties of the system can be extracted by detecting the light at the cavity output. The results of our analysis are in full agreement with previous studies; we extend them by deriving a self-consistent theory which is valid also when the cavity field is in the shot-noise limit and elucidate the nature of the self-organization transition.

  20. The Sr optical lattice clock at JILA: A new record in atomic clock performance

    NASA Astrophysics Data System (ADS)

    Nicholson, Travis; Bloom, Benjamin; Williams, Jason; Campbell, Sara; Bishof, Michael; Zhang, Xibo; Zhang, Wei; Bromley, Sarah; Hutson, Ross; McNally, Rees; Ye, Jun

    2014-05-01

    The exquisite control exhibited over quantum states of individual particles has revolutionized the field of precision measurement, as exemplified by highly accurate atomic clocks. Optical clocks have been the most accurate frequency standards for the better part of a decade, surpassing even the cesium microwave fountains upon which the SI second is based. Two classes of optical clocks have outperformed cesium: single-ion clocks and optical lattice clocks. Historically ion clocks have always been more accurate, and the precision of ion clocks and lattice clocks has been comparable. For years it has been unclear if lattice clocks can overcome key systematics and become more accurate than ion clocks. In this presentation I report the first lattice clock that has surpassed ion clocks in both precision and accuracy. These measurements represent a tenfold improvement in precision and a factor of 20 improvement in accuracy over the previous best lattice clock results. This work paves the way for a better realization of SI units, the development of more sophisticated quantum sensors, and precision tests of the fundamental laws of nature.

  1. Progress in hollow core photonic crystal fiber for atomic vapour based coherent optics

    NASA Astrophysics Data System (ADS)

    Bradley, T. D.; Wang, Y. Y.; Alharbi, M.; Fourcade Dutin, C.; Mangan, B. J.; Wheeler, N. V.; Benabid, F.

    2012-03-01

    We report on progress in different hollow core photonic crystal fiber (HC-PCF) design and fabrication for atomic vapor based applications. We have fabricated a Photonic bandgap (PBG) guiding HC-PCF with a record loss of 107dB/km at 785nm in this class of fiber. A double photonic bandgap (DPBG) guiding HC-PCF with guidance bands centred at 780nm and 1064nm is reported. A 7-cell 3-ring Kagome HC-PCF with hypocycloid core is reported, the optical loss at 780nm has been reduced to 70dB/km which to the best of our knowledge is the lowest optical loss reported at this wavelength using HC-PCF. Details on experimental loading of alkali metal vapours using a far off red detuned laser are reported. This optical loading has been shown to decrease the necessary loading time for Rb into the hollow core of a fiber. The quantity of Rb within the fiber core has been enhanced by a maximum of 14% through this loading procedure.

  2. Spin precession by pulsed inductive magnetometry in thin amorphous plates

    NASA Astrophysics Data System (ADS)

    Magni, Alessandro; Bottauscio, Oriano; Caprile, Ambra; Celegato, Federica; Ferrara, Enzo; Fiorillo, Fausto

    2014-05-01

    Broadband magnetic loss and damping behavior of Co-based amorphous ribbons and thin films have been investigated. The permeability and loss response of the transverse anisotropy ribbon samples in the frequency range DC to 1 GHz is interpreted in terms of combined and distinguishable contributions to the magnetization process by domain wall displacements and magnetization rotations. The latter alone are shown to survive at the highest frequencies, where the losses are calculated via coupled Maxwell and Landau-Lifshitz-Gilbert (LLG) equations. Remarkably high values of the LLG damping coefficient α = 0.1-0.2 are invoked in this theoretical prediction. Direct measurements of α by pulsed inductive microwave magnetometry are thus performed, both in these laminae and in amorphous films of identical composition, obtaining about one order of magnitude increase of the α value upon the 100 nm÷10 μm thickness range. This confirms that dissipation by eddy currents enters the LLG equation via large increase of the damping coefficient.

  3. Spin precession by pulsed inductive magnetometry in thin amorphous plates

    SciTech Connect

    Magni, Alessandro; Bottauscio, Oriano; Caprile, Ambra Celegato, Federica; Ferrara, Enzo; Fiorillo, Fausto

    2014-05-07

    Broadband magnetic loss and damping behavior of Co-based amorphous ribbons and thin films have been investigated. The permeability and loss response of the transverse anisotropy ribbon samples in the frequency range DC to 1 GHz is interpreted in terms of combined and distinguishable contributions to the magnetization process by domain wall displacements and magnetization rotations. The latter alone are shown to survive at the highest frequencies, where the losses are calculated via coupled Maxwell and Landau–Lifshitz–Gilbert (LLG) equations. Remarkably high values of the LLG damping coefficient α = 0.1–0.2 are invoked in this theoretical prediction. Direct measurements of α by pulsed inductive microwave magnetometry are thus performed, both in these laminae and in amorphous films of identical composition, obtaining about one order of magnitude increase of the α value upon the 100 nm÷10 μm thickness range. This confirms that dissipation by eddy currents enters the LLG equation via large increase of the damping coefficient.

  4. Improved Quantum Magnetometry beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Brask, J. B.; Chaves, R.; Kołodyński, J.

    2015-07-01

    Under ideal conditions, quantum metrology promises a precision gain over classical techniques scaling quadratically with the number of probe particles. At the same time, no-go results have shown that generic, uncorrelated noise limits the quantum advantage to a constant factor. In frequency estimation scenarios, however, there are exceptions to this rule and, in particular, it has been found that transversal dephasing does allow for a scaling quantum advantage. Yet, it has remained unclear whether such exemptions can be exploited in practical scenarios. Here, we argue that the transversal-noise model applies to the setting of recent magnetometry experiments and show that a scaling advantage can be maintained with one-axis-twisted spin-squeezed states and Ramsey-interferometry-like measurements. This is achieved by exploiting the geometry of the setup that, as we demonstrate, has a strong influence on the achievable quantum enhancement for experimentally feasible parameter settings. When, in addition to the dominant transversal noise, other sources of decoherence are present, the quantum advantage is asymptotically bounded by a constant, but this constant may be significantly improved by exploring the geometry.

  5. Quantitative magnetometry of ferromagnetic nanorods by microfluidic analytical magnetophoresis

    NASA Astrophysics Data System (ADS)

    Balk, A. L.; Mair, L. O.; Guo, F.; Hangarter, C.; Mathai, P. P.; McMichael, R. D.; Stavis, S. M.; Unguris, J.

    2015-09-01

    We introduce an implementation of magnetophoresis to measure the absolute magnetization of ferromagnetic nanorods dispersed in fluids, by analyzing the velocity of single nanorods under an applied magnetic field gradient. A microfluidic guideway prevents aggregation of nanorods, isolates them, and confines their motion for analysis. We use a three-dimensional imaging system to precisely track nanorod velocity and particle-surface proximity. We test the effect of the guideway on nanorod velocity under field gradient application, finding that it guides magnetophoresis, but imposes insignificant drag beyond that of a planar surface. This result provides insight into the transport of magnetic nanorods at microstructured interfaces and allows the use of an analytical model to accurately determine the reacted viscous drag in the force balance needed for quantitative magnetometry. We also estimate the confining potential of the guideway with Brownian motion measurements and Boltzmann statistics. We use our technique to measure the magnetization of ferromagnetic nanorods with a noise floor of 8.5 × 10-20 A.m2.Hz-½. Our technique is quantitative, rapid, and scalable for determining the absolute magnetization of ferromagnetic nanoparticles with high throughput.

  6. Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds

    NASA Astrophysics Data System (ADS)

    Maclaurin, D.; Hall, L. T.; Martin, A. M.; Hollenberg, L. C. L.

    2013-01-01

    The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond—a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.

  7. Committee on Atomic, Molecular, and Optical Sciences (CAMOS). Technical progress report and continuation proposal, February 1, 1992--January 31, 1993

    SciTech Connect

    Not Available

    1992-12-31

    The Committee on Atomic, Molecular and Optical Sciences (CAMOS) of the National Research Council (NRC) is charged with monitoring the health of the field of atomic, molecular, and optical (AMO) science in the United States. Accordingly, the Committee identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the CAMOS to meet its charge. This progress report presents a review of CAMOS activities from February 1, 1992 to January 31, 1993. This report also includes the status of activities associated with the CAMOS study on the field that is being conducted by the Panel on the Future of Atomic, Molecular, and Optical Sciences (FAMOS).

  8. Enhancement of phase space density by increasing trap anisotropy in a magneto-optical trap with a large number of atoms.

    PubMed

    Vengalattore, M; Conroy, R S; Prentiss, M G

    2004-05-01

    The phase space density of dense, cylindrical clouds of atoms in a 2D magneto-optic trap is investigated. For a large number of trapped atoms (>10(8)), the density of a spherical cloud is limited by photon reabsorption. However, as the atom cloud is deformed to reduce the radial optical density, the temperature of the atoms decreases due to the suppression of multiple scattering leading to an increase in the phase space density. A density of 2 x 10(-4) has been achieved in a magneto-optic trap containing 2 x 10(8) atoms.

  9. Lars Onsager Prize Talk: A New Challenge for Cold Atom Physics: Achieving the Strongly Correlated Regimes for Cold Atoms in Optical Lattices.

    NASA Astrophysics Data System (ADS)

    Ho, Tin-Lun

    2008-03-01

    Cold atoms in optical lattices show great promise to generate a whole host of new strongly correlated states and to emulate many theoretical models for strongly interacting electronic systems. However, to reach these strongly correlated regimes, we need to reach unprecedented low temperatures within current experimental settings. To achieve this, it is necessary to remove considerable amount of entropy from the system. Here, we point out a general principle for removing entropies of quantum gases in optical lattices which will allow one to reach some extraordinarily low temperature scales.

  10. Investigation and development of magnetooptical methods of ellipsometry and vector magnetometry of structures with one and two magnetic layers

    NASA Astrophysics Data System (ADS)

    Pufall, Matthew Read

    2000-07-01

    Magneto-optical methods of vector magnetometry and ellipsometry were developed to study magnetic thin film structures consisting of one or two magnetic layers and several nonmagnetic layers. The method of Generalized Magneto-Optical Ellipsometry was developed to determine both the magnetization vector of the magnetic layer, and the optical and magneto-optical constants. High- resolution DC vector hysteresis loop measurements were made of Co thin films using the method. The technique was able to determine both the magnitude and direction of M throughout the reversal of the magnetization. The method was also used to examine the ripple-state of a NiFe thin film. By making such measurements at multiple angles of incidence, the thickness and optical constant of a non-magnetic overlayer on a magnetic layer were determined, with reasonable accuracy. Measurements at multiple angles of incidence also allowed the resolution of the individual layer magnetizations in a magnetic bilayer structure. By changing the angle of incidence, the magneto-optical sensitivity to each layer changed dramatically, enabling discrimination of the signal from each layer. Both the magnitude and direction of the magnetization of each layer was determined throughout a hysteresis cycle.

  11. Requirements for fault-tolerant factoring on an atom-optics quantum computer

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.; Stephens, Ashley M.; Munro, William J.; Nemoto, Kae

    2013-10-01

    Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor’s factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.

  12. Probing dark energy with an atom interferometer in an optical cavity

    NASA Astrophysics Data System (ADS)

    Jaffe, Matthew; Haslinger, Philipp; Hamilton, Paul; Mueller, Holger; Khoury, Justin; Elder, Benjamin

    2016-05-01

    If dark energy -- which drives the accelerated expansion of the universe -- consists of a light scalar field, it might be detectable as a ``fifth force'' between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms can evade such tests by suppressing this force in regions of high density, such as the laboratory. Our experiments constrain these dark energy models using atoms in an ultrahigh-vacuum chamber as probes to expose the screened fields. Using a cesium matter wave interferometer in an optical cavity, we set stringent bounds on coupling screened theories to matter. A further 4 to 5 orders of magnitude would completely rule out chameleon and f(R) theories. I will describe this first tabletop dark energy search, and present the hundredfold boost in sensitivity we have since achieved.

  13. Quasiadiabatic dynamics of ultracold bosonic atoms in a one-dimensional optical superlattice

    NASA Astrophysics Data System (ADS)

    Dhar, A.; Rossini, D.; Das, B. P.

    2015-09-01

    We study the quasiadiabatic dynamics of a one-dimensional system of ultracold bosonic atoms loaded in an optical superlattice. Focusing on a slow linear variation in time of the superlattice potential, the system is driven from a conventional Mott insulator phase to a superlattice-induced Mott insulator, crossing in between a gapless critical superfluid region. Due to the presence of a gapless region, a number of defects depending on the velocity of the quench appear. Our findings suggest a power-law dependence similar to the Kibble-Zurek mechanism for intermediate values of the quench rate. For the temporal ranges of the quench dynamics that we considered, the scaling of defects depends nontrivially on the width of the superfluid region.

  14. Zitterbewegung with spin-orbit coupled ultracold atoms in a fluctuating optical lattice

    NASA Astrophysics Data System (ADS)

    Argonov, V. Yu; Makarov, D. V.

    2016-09-01

    The dynamics of non-interacting ultracold atoms with artificial spin-orbit coupling is considered. Spin-orbit coupling is created using two moving optical lattices with orthogonal polarizations. Our main goal is to study influence of lattice noise on Rabi oscillations. Special attention is paid to the phenomenon of the Zitterbewegung being trembling motion caused by Rabi transitions between states with different velocities. Phase and amplitude fluctuations of lattices are modelled by means of the two-dimensional stochastic Ornstein-Uhlenbeck process, also known as harmonic noise. In the the noiseless case the problem is solved analytically in terms of the momentum representation. It is shown that lattice noise significantly extends duration of the Zitterbewegung as compared to the noiseless case. This effect originates from noise-induced decoherence of Rabi oscillations.

  15. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    SciTech Connect

    Labuda, Aleksander; Proksch, Roger

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  16. Effective dynamics of cold atoms flowing in two ring-shaped optical potentials with tunable tunneling

    NASA Astrophysics Data System (ADS)

    Aghamalyan, Davit; Amico, Luigi; Kwek, L. C.

    2013-12-01

    We study the current dynamics of coupled atomic condensates flowing in two ring-shaped optical potentials. We provide a specific setup where the ring-ring coupling can be tuned in an experimentally feasible way. It is demonstrated that the imaginary time effective action of the system in a weak coupling regime provides a two-level-system dynamics for the phase slip across the two rings. Through two-mode Gross- Pitaevskii mean-field equations, the real-time dynamics of the population imbalance and the phase difference between the two condensates is thoroughly analyzed analytically, as a function of the relevant physical parameters of the system. In particular, we find that the macroscopic quantum self-trapping phenomenon is induced in the system if the flowing currents assume a nonvanishing difference.

  17. Atom number in magneto-optic traps with millimeter scale laser beams.

    PubMed

    Hoth, Gregory W; Donley, Elizabeth A; Kitching, John

    2013-03-01

    We measure the number of atoms N trapped in a conventional vapor-cell magneto-optic trap (MOT) using beams that have a diameter d in the range 1-5 mm. We show that the N is proportional to d(3.6) scaling law observed for larger MOTs is a robust approximation for optimized MOTs with beam diameters as small as 3 mm. For smaller beams, the description of the scaling depends on how d is defined. The most consistent picture of the scaling is obtained when d is defined as the diameter where the intensity profile of the trapping beams decreases to the saturation intensity. Using this definition, N scales as d(6) for d<2.3 mm but, at larger d, N still scales as d(3.6).

  18. Density-dependent synthetic magnetism for ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Greschner, Sebastian; Huerga, Daniel; Sun, Gaoyong; Poletti, Dario; Santos, Luis

    2015-09-01

    Raman-assisted hopping can allow for the creation of density-dependent synthetic magnetism for cold neutral gases in optical lattices. We show that the density-dependent fields lead to a nontrivial interplay between density modulations and chirality. This interplay results in a rich physics for atoms in two-leg ladders, characterized by a density-driven Meissner-superfluid to vortex-superfluid transition, and a nontrivial dependence of the density imbalance between the legs. Density-dependent fields also lead to intriguing physics in square lattices. In particular, it leads to a density-driven transition between a nonchiral and a chiral superfluid, both characterized by nontrivial charge density-wave amplitude. We finally show how the physics due to the density-dependent fields may be easily probed in experiments by monitoring the expansion of doublons and holes in a Mott insulator, which presents a remarkable dependence on quantum fluctuations.

  19. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Proksch, Roger

    2015-06-01

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  20. Energetic Atomic and Ionic Oxygen Textured Optical Surfaces for Blood Glucose Monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2007-01-01

    Disclosed is a method and the resulting product thereof comprising a solid light-conducting fiber with a point of attachment and having a textured surface site consisting of a textured distal end prepared by being placed in a vacuum and then subjected to directed hyperthermal beams comprising oxygen ions or atoms. The textured distal end comprises cones or pillars that are spaced upon from each other by less than 1 micron and are extremely suitable to prevent cellular components of blood from entering the valleys between the cones or pillars so as to effectively separate the cellular components in the blood from interfering with optical sensing of the glucose concentration for diabetic patients.

  1. Optical knife-edge displacement sensor for high-speed atomic force microscopy

    SciTech Connect

    Braunsmann, Christoph; Schäffer, Tilman E.; Prucker, Veronika

    2014-03-10

    We show that an optical knife-edge technique can be used to detect the parallel shift of an object with sub-nanometer resolution over a wide bandwidth. This allows to design simple, contact-free, and high-speed displacement sensors that can be implemented in high-speed atomic force microscope scanners. In an experimental setup, we achieved a root-mean-square sensor noise of 0.8 nm within a bandwidth from 1 Hz to 1.1 MHz. We used this sensor to detect and correct the nonlinear z-piezo displacement during force curves acquired with rates of up to 5 kHz. We discuss the fundamental resolution limit and the linearity of the sensor.

  2. Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization.

    PubMed

    Ito, Yosuke; Sato, Daichi; Kamada, Keigo; Kobayashi, Tetsuo

    2016-07-11

    An optically pumped K-Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m-3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property. PMID:27410815

  3. Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization.

    PubMed

    Ito, Yosuke; Sato, Daichi; Kamada, Keigo; Kobayashi, Tetsuo

    2016-07-11

    An optically pumped K-Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m-3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property.

  4. Electronic and Optical Properties of Atomically Precise Graphene Nanoribbons and Heterojunctions

    NASA Astrophysics Data System (ADS)

    Pignedoli, Carlo Antonio

    2015-03-01

    Among graphene related materials, nanoribbons (GNRs) - narrow stripes of graphene - have emerged as promising building blocks for nanoelectronic devices. The lateral confinement in GNRs opens a bandgap that sensitively depends on the ribbon width, allowing in principle for the design of GNR-based structures with tunable properties. However, structuring with atomic precision is required to avoid detrimental effects induced by edge defects. Recently, we have introduced a versatile route for the bottom-up fabrication of GNRs, allowing for the atomically precise synthesis of ribbons with different shapes as well as heterojunctions be-tween doped and undoped ribbon segments. Here, we report on detailed experimental and computational investigations of the structural, electronic and optical properties of selected GNRs and heterojunctions. For the case of armchair GNRs of width N =7, the electronic band gap and band dispersion have been determined with high precision. Optical characterization has revealed important excitonic effects, which are in good agreement with ab initio calculations including many-body effects. For the case of heterojunctions, consisting of seamlessly assembled segments of pristine (undoped) graphene nanoribbons and deterministically nitrogen-doped graphene nanoribbons, we find a behavior similar to traditional p-n junctions. With a band shift of 0.5 eV and an electric field of 2 × 108 V m-1 at the heterojunction, these materials bear a high potential for applications in photovoltaics and electronics. Finally, we will discuss the potential of the bottom-up approach with regard to the fabrication of GNRs exhibiting zigzag edges, which are predicted to exhibit spin-polarized edge states.

  5. Magnetic-field-compensation optical vector magnetometer.

    PubMed

    Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio

    2016-02-01

    A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D2 line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed. PMID:26836097

  6. Modulation of periodic field on the atomic current in optical lattices with Landau-Zener tunneling considered

    NASA Astrophysics Data System (ADS)

    Yan, Jie-Yun; Wang, Lan-Yu

    2016-09-01

    We investigate the atomic current in optical lattices under the presence of both constant and periodic external field with Landau-Zener tunneling considered. By simplifying the system to a two-band model, the atomic current is obtained based on the Boltzmann equations. We focus on three situations to discuss the influence of the Landau-Zener tunneling and periodic field on the atomic current. Numerical calculations show the atomic transient current would finally become the stable oscillation, whose amplitude and average value can be further adjusted by the periodic external field. It is concluded that the periodic external field could provide an effective modulation on the atomic current even when the Landau-Zener tunneling probability has almostly become a constant.

  7. Dependence of fluorescence-level statistics on bin-time size in a few-atom magneto-optical trap

    SciTech Connect

    Kang, Sungsam; Yoon, Seokchan; Choi, Youngwoon; Lee, Jai-Hyung; An, Kyungwon

    2006-07-15

    We have analyzed the statistical distribution of the fluorescence signal levels in a magneto-optical trap containing a few atoms and observed that it strongly depends on the relative size of the bin time with respect to the trap decay time. We derived analytic expressions for the signal distributions in two limiting cases, long and short bin time limits, and found good agreement with numerical simulations performed regardless of the size of the bin time. We found an optimal size of the bin time for minimizing the probability of indeterminate atom numbers while providing accurate information on the instantaneous number of atoms in the trap. These theoretical results are compared with actual experimental data. We observed super-Poisson counting statistics for the fluorescence from trapped atoms, which might be attributed to uncorrelated motion of trapped atoms in the inhomogeneous magnetic field in the trap.

  8. Inhomogeneous BCS-BEC crossover for trapped cold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Amaricci, A.; Privitera, A.; Capone, M.

    2014-05-01

    The BCS-BEC (Bose-Einstein condensation) crossover in a lattice is a powerful paradigm that describes how a superconductor deviates from the Bardeen-Cooper-Schrieffer physics as the attractive interaction increases. Optical lattices loaded with binary mixtures of cold atoms allow one to access this phenomenon experimentally in a clean and controlled way. We show that, however, the possibility to study this phenomenon in actual cold-atoms experiments is limited by the effect of the trapping potential. Real-space dynamical mean-field theory calculations show indeed that interactions and the confining potential conspire to pack the fermions in the center of the trap, which approaches a band insulator when the attraction becomes sizeable. Interestingly, the energy gap is spatially more homogeneous than the superfluid condensate order parameter. We show how this physics reflects in several observables, and we propose an alternative strategy to disentangle the effect of the harmonic potential and measure the intrinsic properties resulting from the interaction strength.

  9. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    SciTech Connect

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-15

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.

  10. Analysis of anomalous slip in Ta single crystals using optical, atomic force, and orientation imaging microscopies

    SciTech Connect

    Stoelken, J.S.; King, W.E.; Schwartz, A.J.; Campbell, G.H.; Balooch, M.

    1999-07-01

    High purity Ta single crystals oriented for single slip were deformed in compression at 300K and 77K. The sample deformed at 300K exhibited wavy glide whereas the sample deformed at 77K exhibited anomalous slip. Sharp load drops were recorded in the stress-strain curve of the sample tested at 77K. Previous work attributes such unloading events to either the formation of large deformation twins or to the anomalous slip process itself. Orientation imaging microscopy was applied to probe lattice rotations occurring as a result of deformation in an effort to detect the presence of large deformation twins, none were found. Optical and atomic force microscopies were applied to map the slip traces appearing on the sample surface. Atomic force microscopy revealed that the fine structure within the rather coarse anomalous slip bands is comprised of atomistic scale slip lines organized into packets. These slip packets appear to account for the fine slip traces often observed within anomalous slip bands.

  11. A thermal beam of metastable krypton atoms produced by optical excitation.

    SciTech Connect

    Ding, Y.; Hu, S.-M.; Bailey, K.; Davis, A. M.; Dunford, R. W.; Lu, Z.-T.; O'Connor, T. P.; Young, L.; Univ. of Chicago; Univ. of Science and Technology of China

    2007-02-08

    A room-temperature beam of krypton atoms in the metastable 5s[3/2]{sub 2} level is demonstrated via an optical excitation method. A Kr-discharge lamp is used to produce vacuum ultraviolet photons at 124 nm for the first-step excitation from the ground level 4p{sup 6} {sup 1}S{sub 0} to the 5s[3/2]{sub 1} level. An 819 nm Ti:sapphire laser is used for the second-step excitation from 5s[3/2]{sub 1} to 5s[3/2]{sub 2} followed by a spontaneous decay to the 5s[3/2]{sub 2} metastable level. A metastable atomic beam with an angular flux density of 3 x 10{sup 14} s{sup -1} sr{sup -1} is achieved at the total gas flow rate of 0.01 cm{sup 3}/s at STP (or 3 x 10{sup 17} at./s). The dependences of the flux on the gas flow rate, laser power, and lamp parameters are investigated.

  12. Rashba Spin-Orbit-Coupled Atomic Fermi Gases in a Two-Dimensional Optical Lattice

    NASA Astrophysics Data System (ADS)

    Koinov, Zlatko; Mendoza, Rafael

    2015-11-01

    The collective-mode excitation energy of a population-imbalanced spin-orbit-coupled atomic Fermi gas loaded in a two-dimensional optical lattice at zero temperature is calculated within the Gaussian approximation, and from the Bethe-Salpeter equation in the generalized random-phase approximation assuming the existence of a Sarma superfluid state. It is found that the Gaussian approximation overestimates the speed of sound of the Goldstone mode. More interestingly, the Gaussian approximation fails to reproduce the roton-like structure of the collective-mode dispersion which appears after the linear part of the dispersion in the Bethe-Salpeter approach. We investigate the speed of sound of a balanced spin-orbit-coupled atomic Fermi gas near the boundary of the topological phase transition driven by an out-of-plane Zeeman field. It is shown that the minimum of the speed of sound is located at the topological phase transition boundary, and this fact can be used to confirm the existence of a topological phase transition.

  13. A plateau in the sensitivity of a compact optically pumped atomic magnetometer

    SciTech Connect

    Mizutani, Natsuhiko Okano, Kazuhisa; Ban, Kazuhiro; Ichihara, Sunao; Terao, Akira; Kobayashi, Tetsuo

    2014-05-15

    In a compact optically pumped atomic magnetometer (OPAM), there is a plateau in the sensitivity where the dependence of the sensitivity on pumping power is small compared with that predicted by the uniform polarization model. The mechanism that generates this plateau was explained by numerical analysis. The distribution of spin polarization in the alkali metal cell of an OPAM was modeled using the Bloch equation incorporating a diffusion term and an equation for the attenuation of the pump beam. The model was well-fitted to the experimental results for a module with a cubic cell with 20 mm sides and pump and probe beams with 8 mm diameter. On the plateau, strong magnetic response was generated at the regions that were not illuminated directly by the intense pump beam, while at the same time spin polarization as large as 0.5 was maintained due to diffusion of the spin-polarized atoms. Thus, the sensitivity of the magnetometer monitored with a probe beam decreases only slightly with increasing pump beam intensity because the spin polarization under an intense pump beam is saturated. This plateau, which is characteristic of this type of magnetometer using a narrow pump and probe beams, can be used in arrays of magnetometers because it enables stable operation with little sensitivity fluctuation from changes in pump beam power.

  14. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation.

    PubMed

    Orfield, Noah J; McBride, James R; Wang, Feng; Buck, Matthew R; Keene, Joseph D; Reid, Kemar R; Htoon, Han; Hollingsworth, Jennifer A; Rosenthal, Sandra J

    2016-02-23

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.

  15. [Optical Properties of ZnO Films Fabricated by Atomic Layer Deposition].

    PubMed

    Zhang, Chun-mei; Wang, Dong-dong; Fang, Ming; Zhang, Ao; Wang, Xiao-yu; Chen, Qiang; Meng, Tao

    2016-01-01

    The ZnO films were deposited by atomic layer deposition method using water and diethylzinc as precursors at different temperatures (110 and 190 degrees C). X-ray photoelectron spectroscopy, spectroscopic ellipsometry and photoluminescence spectra (PL) were used to investigate the elemental composition and optical properties of ZnO films. Our results showed that with the increasing of the growth temperature, the amount of -OH groups in the ZnO film decreased, which indicated that the reactions went to completion at high processing temperatures. The PL spectra of the ZnO film deposited at 110 degrees C exhibited two emission bands, one in the UV region and the other in the visible region. When the deposition temperature increased to 190 degrees C, the emission bands in the visible region disappeared, which indicated that the deep level defect in ZnO became less. The carrier mobility improved from 25 to 32 cm2 x (V x S)(-1) with the reduction of the defects in the ZnO film. The refractive index of the ZnO films decreased from 2.33 to 1.9 in the 375-800 nm region. The optical absorption edge (E(g)) values of the ZnO films deposited at different temperature were about 3.27 eV.

  16. Double resonance fequency light shift compensation in optically oriented laser-pumped alkali atoms

    SciTech Connect

    Baranov, A. A. Ermak, S. V.; Sagitov, E. A.; Smolin, R. V.; Semenov, V. V.

    2015-09-15

    The contributions of the vector and scalar components to the magnetically dependent microwave transition frequency light shift are analyzed and the compensation of these components is experimentally demonstrated for the {sup 87}Rb atoms optically oriented by a laser tuned to the D{sub 2} line of the head doublet. The Allan variance is studied as a function of the averaging time for a tandem of optically pumped quantum magnetometers (OPQMs), one of which is based on a low-frequency spin oscillator while another is based on a quantum microwave discriminator with a resonance frequency that corresponds to magnetically dependent transitions between HFS sublevels with the extremal value of the magnetic quantum number. It is shown that the compensation of the scalar and vector components of the light shift in OPQMs reduces the Allan variance at averaging times that exceed hundreds of seconds compared to a quantum discriminator based on the magnetically independent 0–0 transition. In this case, the minimal Allan variance in OPQMs at the end resonance is achieved at considerably longer averaging times than in the case of the quantum discriminator that is tuned to the 0–0 transition frequency.

  17. Atomic force microscopy deep trench and sidewall imaging with an optical fiber probe

    SciTech Connect

    Xie, Hui Hussain, Danish; Yang, Feng; Sun, Lining

    2014-12-15

    We report a method to measure critical dimensions of micro- and nanostructures using the atomic force microscope (AFM) with an optical fiber probe (OFP). This method is capable of scanning narrow and deep trenches due to the long and thin OFP tip, as well as imaging of steep sidewalls with unique profiling possibilities by laterally tilting the OFP without any modifications of the optical lever. A switch control scheme is developed to measure the sidewall angle by flexibly transferring feedback control between the Z- and Y-axis, for a serial scan of the horizontal surface (raster scan on XY-plane) and sidewall (raster scan on the YZ-plane), respectively. In experiments, a deep trench with tapered walls (243.5 μm deep) and a microhole (about 14.9 μm deep) have been imaged with the orthogonally aligned OFP, as well as a silicon sidewall (fabricated by deep reactive ion etching) has been characterized with the tilted OFP. Moreover, the sidewall angle of TGZ3 (AFM calibration grating) was accurately measured using the switchable scan method.

  18. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  19. The Quantum World of Ultra-Cold Atoms and Light - Book 1: Foundations of Quantum Optics

    NASA Astrophysics Data System (ADS)

    Gardiner, Crispin; Zoller, Peter

    2014-03-01

    Abstract The Table of Contents is as follows: * I - THE PHYSICAL BACKGROUND * 1. Controlling the Quantum World * 1.1 Quantum Optics * 1.2 Quantum Information * 2. Describing the Quantum World * 2.1 Classical Stochastic Processes * 2.2. Theoretical Quantum Optics * 2.3. Quantum Stochastic Methods * 2.4. Ultra-Cold Atoms * II - CLASSICAL STOCHASTIC METHODS * 3. Physics in a Noisy World * 3.1. Brownian Motion and the Thermal Origin of Noise * 3.2. Brownian Motion, Friction, Noise and Temperature * 3.3. Measurement in a Fluctuating System * 4. Stochastic Differential Equations * 4.1. Ito Stochastic Differential Equation * 4.2. The Fokker-Planck Equation * 4.3. The Stratonovich Stochastic Differential Equation * 4.4. Systems with Many Variables * 4.5. Numerical Simulation of Stochastic Differential Equations * 5. The Fokker-Planck Equation * 5.1. Fokker-Planck Equation in One Dimension * 5.2. Eigenfunctions of the Fokker-Planck Equation * 5.3. Many-Variable Fokker-Planck Equations * 6. Master Equations and Jump Processes * 6.1. The Master Equation * 7. Applications of Random Processes * 7.1. The Ornstein-Uhlenbeck Process * 7.2. Johnson Noise * 7.3. Complex Variable Oscillator Processes * 8. The Markov Limit * 8.1. The White Noise Limit * 8.2. Interpretation and Generalizations of the White Noise Limit * 8.3. Linear Non-Markovian Stochastic Differential Equations * 9. Adiabatic Elimination of Fast Variables * 9.1 Slow and Fast Variables * 9.2. Other Applications of the Adiabatic Elimination Method * III - FIELDS, QUANTA AND ATOMS * 10. Ideal Bose and Fermi Systems * 10.1. The Quantum Gas * 10.2. Thermal States * 10.3. Fluctuations in the Ideal Bose Gas * 10.4. Bosonic Quantum Gaussian Systems * 10.5. Coherent States * 10.6. Fluctuations in Systems of Fermions * 10.7. Two-Level Systems and Pauli Matrices * 11. Quantum Fields * 11.1 Kinds of Quantum Field * 11.2 Coherence and Correlation Functions * 12. Atoms, Light and their Interaction * 12.1. Interaction with the

  20. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy.

    PubMed

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase-polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase-alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the