Sample records for optical attenuation coefficient

  1. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  2. Extension of depth-resolved reconstruction of attenuation coefficients in optical coherence tomography for slim samples

    NASA Astrophysics Data System (ADS)

    Hohmann, Martin; Lengenfelder, B.; Kanawade, R.; Klämpfl, F.; Schmidt, Michael

    2015-12-01

    Coherent light propagating through turbid media is attenuated due to scattering and absorption. The decrease of the intensity of the coherent light is described by the attenuation coefficient. The measured decay of the coherent light through turbid media with optical coherence tomography (OCT) can be used to reconstruct the attenuation coefficient. Since most of the OCT systems work in the near-infrared region, they are the optical window from 800-1400 nm in tissue. Hence, the most part of the attenuation coefficient is caused due to the scattering. Therefore, deriving the attenuation coefficient is one way to get an approximation of the scattering coefficient which is difficult to access even up to day. Moreover, OCT measurements are one of the few possibilities to derive physical properties with micrometre resolution of the media under investigation.

  3. Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study

    PubMed Central

    Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi

    2015-01-01

    We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740

  4. Empirical algorithms for ocean optics parameters

    NASA Astrophysics Data System (ADS)

    Smart, Jeffrey H.

    2007-06-01

    As part of the Worldwide Ocean Optics Database (WOOD) Project, The Johns Hopkins University Applied Physics Laboratory has developed and evaluated a variety of empirical models that can predict ocean optical properties, such as profiles of the beam attenuation coefficient computed from profiles of the diffuse attenuation coefficient. In this paper, we briefly summarize published empirical optical algorithms and assess their accuracy for estimating derived profiles. We also provide new algorithms and discuss their applicability for deriving optical profiles based on data collected from a variety of locations, including the Yellow Sea, the Sea of Japan, and the North Atlantic Ocean. We show that the scattering coefficient (b) can be computed from the beam attenuation coefficient (c) to about 10% accuracy. The availability of such relatively accurate predictions is important in the many situations where the set of data is incomplete.

  5. Optical changes in cortical tissue during seizure activity using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.

    2017-02-01

    Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures. Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Optical imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have also been used to detect neural activity yet these techniques rely on the indirect measurement of changes in blood flow. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, OCT was used to detect non-vascular depth-dependent optical changes in cortical tissue during 4-aminopyridine (4-AP) induced seizure onset. Calculations of localized optical attenuation coefficient (µ) allow for the assessment of depth-resolved volumetric optical changes in seizure induced cortical tissue. By utilizing the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex on the attenuation calculations of cortical tissue in vivo. The results of this study reveal a significant depth-dependent decrease in attenuation coefficient of nonvascular cortical tissue both ex vivo and in vivo. Regions exhibiting decreased attenuation coefficient show significant temporal correlation to regions of increased electrical activity during seizure onset and progression. This study allows for a more thorough and biologically relevant analysis of the optical signature of seizure activity in vivo using OCT.

  6. Noninvasive monitoring of photodynamic therapy on skin neoplastic lesions using the optical attenuation coefficient measured by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goulart, Viviane P.; dos Santos, Moisés O.; Latrive, Anne; Freitas, Anderson Z.; Correa, Luciana; Zezell, Denise M.

    2015-05-01

    Photodynamic therapy (PDT) has become a promising alternative for treatment of skin lesions such as squamous cell carcinoma. We propose a method to monitor the effects of PDT in a noninvasive way by using the optical attenuation coefficient (OAC) calculated from optical coherence tomography (OCT) images. We conducted a study on mice with chemically induced neoplastic lesions and performed PDT on these lesions using homemade photosensitizers. The response of neoplastic lesions to therapy was monitored using, at the same time, macroscopic clinical visualization, histopathological analysis, OCT imaging, and OCT-based attenuation coefficient measurement. Results with all four modalities demonstrated a positive response to treatment. The attenuation coefficient was found to be 1.4 higher in skin lesions than in healthy tissue and it decreased after therapy. This study shows that the OAC is a potential tool to noninvasively assess the evolution of skin neoplastic lesions with time after treatment.

  7. Attenuation coefficient of the light in skin of BALB/c and C57BL/6 mice

    NASA Astrophysics Data System (ADS)

    Silva, C. R.; Camargo, C. F. M.; Aureliano, D. P.; De Pretto, L. R.; Freitas, A. Z.; Ribeiro, M. S.

    2015-06-01

    Optical properties of the biological tissue play an important role to a correct use of optical techniques for therapy and diagnosis. The mice skin presents morphological differences due to characteristics such as gender, body mass and age. Murine models are frequently used in pre-clinical trials in optical therapy and diagnosis. Therefore, the assessment of the skin tissue in animal models is needed for a proper understanding of how light interacts with skin. Noninvasive techniques such as optical coherence tomography (OCT) have been used to obtain optical information of the tissue, as the attenuation coefficient, with the advantage of obtaining sectional images in real time. In this study, eight female BALB/c albino mice (twenty-four weeks old) and eight male C57BL/6 black mice (eight weeks old) were used to measure the attenuation coefficient of the light in the skin, utilizing the OCT technique, aiming to check for influence of the aging process. Two moments were assessed twenty-two weeks apart from each other. Our data show that the aging process significantly affects the light attenuation coefficient in mice skin. Twenty-two weeks after, statistical significant differences were observed between groups within a same strain. We conclude that light attenuation coefficient of mice skin may be influenced by factors such as disorganization of the dermis. Morphological aspects of skin should be taken into account in studies that involve optical strategies in murine models.

  8. Quantification of numerical aperture-dependence of the OCT attenuation coefficient (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-03-01

    Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10.1155/2011/825629. [3] Jung W and Boppart S. Optical coherence tomography for rapid tissue screening and directed histological sectioning. Anal Cell Pathol (Amst). 2012; 35(3): 129-143. [4] R. Wessels et al. Optical coherence tomography in vulvar intraepithelial neoplasia. J Biomed Opt 2012 Nov; 17(11): 116022. [5] Faber D, van der Meer F, Aalders M, van Leeuwen T. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. OPT EXPRESS 2004; 12 (19): 4353-43. [6] Thrane L, Yura HT, and Andersen PE. Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. JOSA 2000; 17(3): 484-490.

  9. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  10. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    NASA Astrophysics Data System (ADS)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V.

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  11. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    PubMed Central

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro

    2012-01-01

    Abstract. Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed. PMID:22734767

  12. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    PubMed

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  13. In vitro study of the effects of ultrasound-mediated glycerol on optical attenuation of human normal and cancerous esophageal tissues with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Wei, H. J.; Yang, H. Q.; Guo, Z. Y.; Xie, S. S.; Gu, H. M.; Guo, X.; Zhu, Z. G.

    2013-06-01

    Previous studies from our group have demonstrated that glucose solution can induce optical clearing enhancement of esophageal tissues with optical coherence tomography (OCT). The aims of this study were to evaluate the optical clearing effects of ultrasound-mediated optical clearing agents (OCAs) and to find more effective methods to distinguish human normal esophageal tissues (NE) and cancerous esophageal tissues (CE). Here we used the OCT technique to investigate the optical attenuation of NE and CE in vitro after treatment with 30% glycerol alone and glycerol combined with ultrasound, respectively. Experimental results showed that the averaged attenuation coefficient of CE was significantly larger than that of NE. The maximal decreases of averaged attenuation coefficients of NE and CE were approximately 48.7% and 36.2% after treatment with 30% glycerol alone, and they were significantly lower than those treated with 30% glycerol and ultrasound (57.5% in NE and 44.8% in CE). Moreover, after treatment with 30% glycerol alone, the averaged attenuation coefficients of NE and CE reached their minima in about 80 min and 65 min, respectively. The times were much shorter in NE and CE after treatment with glycerol with ultrasound, being about 62 min and 50 min, respectively. The results suggest that there is a significant difference in the optical properties of NE and CE, and that OCT with an ultrasound-OCAs combination has the ability to distinguish CE from NE.

  14. An assessment of optical and biogeochemical multi-decadal trends in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Allen, J. G.; Siegel, D.; Nelson, N. B.

    2016-02-01

    Observations of optical and biogeochemical data, made as part of the Bermuda Bio-Optics Project (BBOP) at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea, allow for the examination of temporal trends in vertical light attenuation and their potential controls. Trends in both the magnitude and spectral slope of the diffuse attenuation coefficient should reflect changes in chlorophyll and chromophoric dissolved organic matter (CDOM) concentrations in the Sargasso Sea. The length and methodological consistency of this time series provides an excellent opportunity to extend analyses of seasonal cycles of apparent optical properties to interannual and multi-year time scales. Here, we characterize changes in the size and shape of diffuse attenuation coefficient spectra and compare them to temperature, chlorophyll a concentration, and to discrete measurements of phytoplankton and CDOM absorption. The time series analyses reveal up to a 1.2% annual increase of the magnitude of the diffuse attenuation coefficient over the upper 70 m of the water column while showing no significant change in the spectral slope of diffuse attenuation over the course of the study. These observations indicate that increases in phytoplankton pigment concentration rather than changes in CDOM are the primary driver for the attenuation trends on multi-year timescales for this region.

  15. An Innovative Concept for Spacebased Lidar Measurement of Ocean Carbon Biomass

    NASA Technical Reports Server (NTRS)

    Hu, Yongxiang; Behrenfeld, Michael; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; hide

    2015-01-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30Âdeg off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  16. Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography

    PubMed Central

    Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle

    2015-01-01

    Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382

  17. Effects of 160 keV electron irradiation on the optical properties and microstructure of "Panda" type Polarization-Maintaining optical fibers

    NASA Astrophysics Data System (ADS)

    Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He

    2012-11-01

    In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.

  18. Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1997-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.

  19. Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient

    PubMed Central

    Klyen, Blake R.; Scolaro, Loretta; Shavlakadze, Tea; Grounds, Miranda D.; Sampson, David D.

    2014-01-01

    We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm−1) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm−1), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm−1) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm−1) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy. PMID:24761302

  20. Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters

    NASA Astrophysics Data System (ADS)

    Mueller, James L.; Trees, Charles C.; Arnone, Robert A.

    1990-09-01

    The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.

  1. Monsoon variability of ultraviolet radiation (UVR) attenuation and bio-optical factors in the Asian tropical coral-reef waters

    NASA Astrophysics Data System (ADS)

    Mizubayashi, Keiko; Kuwahara, Victor S.; Segaran, Thirukanthan C.; Zaleha, Kassim; Effendy, A. W. M.; Kushairi, M. R. M.; Toda, Tatsuki

    2013-07-01

    The East coast of Peninsular Malaysia is strongly influenced by the North-East (NE) monsoon, and may significantly influence the optical environment of coral-reef ecosystems. However, our knowledge of temporal variability, including episodic events, of environmental factors in Asian tropical regions is still limited. The objectives of this study were to (1) observe temporal variability in ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) attenuation and (2) determine the bio-optical factors regulating the optical environment in shallow coral-reef waters. Downwelling UVR and PAR irradiance and in situ bio-optical factors were measured monthly near Bidong Island on the East coast of Peninsular Malaysia from June 2010 to June 2011. The NE monsoon was recognized between November 2010 and January 2011. The highest diffuse attenuation coefficient at 305 nm was 2.05 ± 0.03 m-1 in a coral-reef area on December 2010. The most significant bio-optical factor at 305, 380, 440 nm during the NE monsoon season was CDOM (89 ± 8% at 305 nm, 84 ± 9% at 380 nm and 49 ± 17% at 440 nm). All UVR attenuation coefficients showed significant correlations with the CDOM absorption coefficients (aCDOM). CDOM with relatively low S275-295 during the NE monsoon season (0.0177 ± 0.0020 nm-1) suggests terrestrial sources, which is also supported by the correlation between salinity and aCDOM(305). A significant correlation between S275-295 and the carbon specific absorbance coefficient (a*(305)) suggest the potential to measure DOC optically in these waters. The high CDOM during the NE monsoon season may have an important role to reduce harmful UVR exposure reaching benthic communities.

  2. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    PubMed

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  3. Coastal Atmosphere and Sea Time Series (CoASTS)

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Berthon, Jean-Francoise; Zibordi, Giuseppe; Doyle, John P.; Grossi, Stefania; vanderLinde, Dirk; Targa, Cristina; McClain, Charles R. (Technical Monitor)

    2002-01-01

    In this document, the first three years of a time series of bio-optical marine and atmospheric measurements are presented and analyzed. These measurements were performed from an oceanographic tower in the northern Adriatic Sea within the framework of the Coastal Atmosphere and Sea Time Series (CoASTS) project, an ocean color calibration and validation activity. The data set collected includes spectral measurements of the in-water apparent (diffuse attenuation coefficient, reflectance, Q-factor, etc.) and inherent (absorption and scattering coefficients) optical properties, as well as the concentrations of the main optical components (pigment and suspended matter concentrations). Clear seasonal patterns are exhibited by the marine quantities on which an appreciable short-term variability (on the order of a half day to one day) is superimposed. This short-term variability is well correlated with the changes in salinity at the surface resulting from the southward transport of freshwater coming from the northern rivers. Concentrations of chlorophyll alpha and total suspended matter span more than two orders of magnitude. The bio-optical characteristics of the measurement site pertain to both Case-I (about 64%) and Case-II (about 36%) waters, based on a relationship between the beam attenuation coefficient at 660nm and the chlorophyll alpha concentration. Empirical algorithms relating in-water remote sensing reflectance ratios and optical components or properties of interest (chlorophyll alpha, total suspended matter, and the diffuse attenuation coefficient) are presented.

  4. Deep seawater inherent optical properties in the Southern Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-02-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.

  5. Seasonal to multi-decadal trends in apparent optical properties in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Allen, James G.; Nelson, Norman B.; Siegel, David A.

    2017-01-01

    Multi-decadal, monthly observations of optical and biogeochemical properties, made as part of the Bermuda Bio-Optics Project (BBOP) at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea, allow for the examination of temporal trends in vertical light attenuation and their potential controls. Trends in the magnitude of the diffuse attenuation coefficient, Kd(λ), and a proxy for its spectral shape reflect changes in phytoplankton and chromophoric dissolved organic matter (CDOM) characteristics. The length and methodological consistency of this time series provide an excellent opportunity to extend analyses of seasonal cycles of apparent optical properties to interannual and decadal time scales. Here, we characterize changes in the magnitude and spectral shape proxy of diffuse attenuation coefficient spectra and compare them to available biological and optical data from the BATS time series program. The time series analyses reveal a 1.01%±0.18% annual increase of the magnitude of the diffuse attenuation coefficient at 443 nm over the upper 75 m of the water column while showing no significant change in selected spectral characteristics over the study period. These and other observations indicate that changes in phytoplankton rather than changes in CDOM abundance are the primary driver for the diffuse attenuation trends on multi-year timescales for this region. Our findings are inconsistent with previous decadal-scale global ocean water clarity and global satellite ocean color analyses yet are consistent with recent analyses of the BATS time series and highlight the value of long-term consistent observation at ocean time series sites.

  6. Differentiating functional brain regions using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.

    2017-02-01

    The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference < 0.1cm-1). Image analysis was performed on the attenuation coefficient images to derive quantitative endpoints. We observed a statistically significant difference among the median attenuation coefficients of these five regions (one-way ANOVA, p<0.05). Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.

  7. Laser microbeam CT scanning of dosimetry gels

    NASA Astrophysics Data System (ADS)

    Maryanski, Marek J.; Ranade, Manisha K.

    2001-06-01

    A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.

  8. Nanocomposite Interphases for Improved Transparent Polymer Composite Materials

    DTIC Science & Technology

    2008-08-01

    intensity of the incident light, A is the attenuation coefficient , and t is the part thickness. The intensity attenuation coefficient is a function of...index that is fairly close to that of fused silica. Most importantly, it has a high thermo- optic coefficient , dn/dt, which results in a large change in...35765K164, McMaster -Carr, Robbinsville, NJ) were attached on the outer side of both aluminum plates as shown, and the temperature was controlled

  9. A comparison of methods using optical coherence tomography to detect demineralized regions in teeth

    PubMed Central

    Sowa, Michael G.; Popescu, Dan P.; Friesen, Jeri R.; Hewko, Mark D.; Choo-Smith, Lin-P’ing

    2013-01-01

    Optical coherence tomography (OCT) is a three- dimensional optical imaging technique that can be used to identify areas of early caries formation in dental enamel. The OCT signal at 850 nm back-reflected from sound enamel is attenuated stronger than the signal back-reflected from demineralized regions. To quantify this observation, the OCT signal as a function of depth into the enamel (also known as the A-scan intensity), the histogram of the A-scan intensities and three summary parameters derived from the A-scan are defined and their diagnostic potential compared. A total of 754 OCT A-scans were analyzed. The three summary parameters derived from the A-scans, the OCT attenuation coefficient as well as the mean and standard deviation of the lognormal fit to the histogram of the A-scan ensemble show statistically significant differences (p < 0.01) when comparing parameters from sound enamel and caries. Furthermore, these parameters only show a modest correlation. Based on the area under the curve (AUC) of the receiver operating characteristics (ROC) plot, the OCT attenuation coefficient shows higher discriminatory capacity (AUC=0.98) compared to the parameters derived from the lognormal fit to the histogram of the A-scan. However, direct analysis of the A-scans or the histogram of A-scan intensities using linear support vector machine classification shows diagnostic discrimination (AUC = 0.96) comparable to that achieved using the attenuation coefficient. These findings suggest that either direct analysis of the A-scan, its intensity histogram or the attenuation coefficient derived from the descending slope of the OCT A-scan have high capacity to discriminate between regions of caries and sound enamel. PMID:22052833

  10. Hyperspectral absorption and backscattering coefficients of bulk water retrieved from a combination of remote-sensing reflectance and attenuation coefficient.

    PubMed

    Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan

    2018-01-22

    Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.

  11. Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0-70 MHz.

    PubMed

    Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T

    2011-02-01

    The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Photon interaction study of organic nonlinear optical materials in the energy range 122-1330 keV

    NASA Astrophysics Data System (ADS)

    Awasarmol, Vishal V.; Gaikwad, Dhammajyot K.; Raut, Siddheshwar D.; Pawar, Pravina P.

    2017-01-01

    In the present study, the mass attenuation coefficient (μm) of six organic nonlinear optical materials has been calculated in the energy range 122-1330 keV and compared with the obtained values from the WinXCOM program. It is found that there is a good agreement between theoretical and experimental values (<3%). The linear attenuation coefficients (μ) total atomic cross section (σt, a), and total electronic cross section (σt, el) have also been calculated from the obtained μm values and their variations with photon energy have been plotted. From the present work, it is observed that the variation of obtained values of μm, μ, σt, a, and σt, el strongly depends on the photon energy and decreases or increases due to chemical composition and density of the sample. All the samples have been studied extensively using transmission method with a view to utilize the material for radiation dosimetry. Investigated samples are good material for radiation dosimetry due their low effective atomic number. The mass attenuation coefficient (μm), linear attenuation coefficients (μ), total atomic cross section (σt, a), total electronic cross section (σt, el), effective atomic numbers (Zeff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa, en) of all sample materials have been carried out and transmission curves have been plotted. The transmission curve shows that the variation of all sample materials decreases with increasing photon energy.

  13. Light attenuation characteristics of glacially-fed lakes

    NASA Astrophysics Data System (ADS)

    Rose, Kevin C.; Hamilton, David P.; Williamson, Craig E.; McBride, Chris G.; Fischer, Janet M.; Olson, Mark H.; Saros, Jasmine E.; Allan, Mathew G.; Cabrol, Nathalie

    2014-07-01

    Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400-700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.

  14. Quantification of optical absorption coefficient from acoustic spectra in the optical diffusive regime using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zijian; Favazza, Christopher; Wang, Lihong V.

    2012-02-01

    Photoacoustic (PA) tomography (PAT) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Multi-wavelength PAT can noninvasively monitor hemoglobin oxygen saturation (sO2) with high sensitivity and fine spatial resolution. However, accurate quantification in PAT requires knowledge of the optical fluence distribution, acoustic wave attenuation, and detection system bandwidth. We propose a method to circumvent this requirement using acoustic spectra of PA signals acquired at two optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560 and 575 nm were quantified with errors of ><5%.

  15. Optical coefficient measurements using bulk living tissue by an optical fiber puncture with FOV change

    NASA Astrophysics Data System (ADS)

    Nakazawa, Haruna; Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori

    2018-02-01

    To avoid an instability of the optical coefficient measurement using sliced tissue preparation, we proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying field of view (FOV) and ray tracing calculation using Monte-Carlo method. The optical coefficients of myocardium such as absorption coefficient μa, scattering coefficient μs, and anisotropic parameter g are used in the myocardium optical propagation. Since optical coefficients obtained using thin sliced tissue could be instable because they are affected by dehydration and intracellular fluid effusion on the sample surface, variety of coefficients have been reported over individual optical differences of living samples. The proposed method which combined the experiment using the bulk tissue with ray tracing calculation were performed. In this method, a 200 μmΦ high-NA silica fiber installed in a 21G needle was punctured up to the bottom of the myocardial bulk tissue over 3 cm in thickness to measure light intensity changing the fiber-tip depth and FOV. We found that the measured attenuation coefficients decreased as the FOV increased. The ray trace calculation represented the same FOV dependence in above mentioned experimental result. We think our particular fiber punctured measurement using bulk tissue varying FOV with Inverse Monte-Carlo method might be useful to obtain the optical coefficients to avoid sample preparation instabilities.

  16. Optical properties of tissue, experimental results

    NASA Astrophysics Data System (ADS)

    Beek, Johan F.

    1993-08-01

    The effective attenuation coefficient of piglet lung was measured in vitro at 632.8 nm. Interstial fibres with isotropic tips were used to measure the fluence rate as a function of the distance from an isotropic light source. In vitro measurements at 632.8 nm on a lung that was insufflated with oxygen from 50 to 150 ml showed that the effective attenuation coefficient decreases as a function of the volume of air in the lung (at 50 ml /Jeff = 0.297 + 0.011 mnf1, at 100 ml lice 0.150 ± 0.007 mm-1, and at 150 ml /Jeff= 0.1136 + 0.015 mm-1). A single in vitro measurement at 790 nm at an insufflated lung volume of 100 ml gave a comparable result (ii ie = 0.175 + 0.004 mm-1). A ff decrease in effective attenuation coefficient with an ncrease in lung volume was explained by Mie-theory. The effective attenuation coefficient, calculated with 11, and g from Mie-theory, showed a deviation < 22% from the measured in vitro values.

  17. Load-based approaches for modelling visual clarity in streams at regional scale.

    PubMed

    Elliott, A H; Davies-Colley, R J; Parshotam, A; Ballantine, D

    2013-01-01

    Reduction of visual clarity in streams by diffuse sources of fine sediment is a cause of water quality impairment in New Zealand and internationally. In this paper we introduce the concept of a load of optical cross section (LOCS), which can be used for load-based management of light-attenuating substances and for water quality models that are based on mass accounting. In this approach, the beam attenuation coefficient (units of m(-1)) is estimated from the inverse of the visual clarity (units of m) measured with a black disc. This beam attenuation coefficient can also be considered as an optical cross section (OCS) per volume of water, analogous to a concentration. The instantaneous 'flux' of cross section is obtained from the attenuation coefficient multiplied by the water discharge, and this can be accumulated over time to give an accumulated 'load' of cross section (LOCS). Moreover, OCS is a conservative quantity, in the sense that the OCS of two combined water volumes is the sum of the OCS of the individual water volumes (barring effects such as coagulation, settling, or sorption). The LOCS can be calculated for a water quality station using rating curve methods applied to measured time series of visual clarity and flow. This approach was applied to the sites in New Zealand's National Rivers Water Quality Network (NRWQN). Although the attenuation coefficient follows roughly a power relation with flow at some sites, more flexible loess rating curves are required at other sites. The hybrid mechanistic-statistical catchment model SPARROW (SPAtially Referenced Regressions On Watershed attributes), which is based on a mass balance for mean annual load, was then applied to the NRWQN dataset. Preliminary results from this model are presented, highlighting the importance of factors related to erosion, such as rainfall, slope, hardness of catchment rock types, and the influence of pastoral development on the load of optical cross section.

  18. Oil-based gel phantom for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Aggarwal, Lucimara P.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo. Z.

    2015-06-01

    Water-based materials are commonly used in phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. Styrene-Ethylene/Butylene-Styrene (SEBS) copolymer in mineral oil samples were made varying the SEBS concentration between 5-15%, and low-density polyethylene (LDPE) between 0-9%. Acoustic properties such as speed of sound and attenuation coefficient were obtained by the substitution technique with frequencies ranging from 2.25-10 MHz, and were consistent to that of soft tissue. These properties were controlled varying SEBS and LDPE concentration; speed of sound from 1445-1480 m/s, and attenuation from 0.86-11.31 dB/cm were observed. SEBS gels with 0% of LDPE were optically transparent, presenting low optical absorption and scattering coefficients in the visible region of the spectrum. In order to fully characterize the optical properties of the samples, the reflectances of the surfaces were measured, along with the absorption. Scattering and absorption coefficients ranging from 400 nm to 1200 nm were calculated for each compound. The results showed that the presence of LDPE increased absorption and scattering of the phantoms. The results suggest the copolymer gels are promising for ultrasound and optical imaging, what make them also potentially useful for photoacoustic imaging.

  19. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    PubMed

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  20. Environmental effects on underwater optical transmission

    NASA Astrophysics Data System (ADS)

    Chu, Peter C.; Breshears, Brian F.; Cullen, Alexander J.; Hammerer, Ross F.; Martinez, Ramon P.; Phung, Thai Q.; Margolina, Tetyana; Fan, Chenwu

    2017-05-01

    Optical communication/detection systems have potential to get around some limitations of current acoustic communications and detection systems especially increased fleet and port security in noisy littoral waters. Identification of environmental effects on underwater optical transmission is the key to the success of using optics for underwater communication and detection. This paper is to answer the question "What are the transfer and correlation functions that relate measurements of hydrographic to optical parameters?" Hydrographic and optical data have been collected from the Naval Oceanographic Office survey ships with the High Intake Defined Excitation (HIDEX) photometer and sea gliders with optical back scattering sensor in various Navy interested areas such as the Arabian Gulf, Gulf of Oman, east Asian marginal seas, and Adriatic Sea. The data include temperature, salinity, bioluminescence, chlorophyll-a fluorescence, transmissivity at two different wavelengths (TRed at 670 nm, TBlue at 490 nm), and back scattering coefficient (bRed at 700 nm, bBlue at 470 nm). Transfer and correlation functions between the hydrographic and optical parameters are obtained. Bioluminescence and fluorescence maxima, transmissivity minimum with their corresponding depths, red and blue laser beam peak attenuation coefficients are identified from the optical profiles. Evident correlations are found between the ocean mixed layer depth and the blue and red laser beam peak attenuation coefficients, bioluminescence and fluorescence maxima in the Adriatic Sea, Arabian Gulf, Gulf of Oman, and Philippine Sea. Based on the observational data, an effective algorithm is recommended for solving the radiative transfer equation (RTE) for predicting underwater laser radiance.

  1. Millimeter Wave Scatter and Attenuation Measurements on Snow Slabs.

    DTIC Science & Technology

    1981-09-01

    2id cos0• II. Rlay, P.S. (1972) Broadband complex refractive indices of ice and water, Appl. Optics ,Il(No. 8):1836-1844. 12. Lammers, U.H.W., and Hayes...portion was not investi- gated separately for its attenuation coefficient. The theory of multiple scattering in optics ’- provides ai reasoning for l...at 35 GHz to cause a strong specular response, equal to or higher than the noncoherent response. No substantial snow depth is required to generate

  2. Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data

    NASA Astrophysics Data System (ADS)

    Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.

    2012-03-01

    We demonstrate significantly different scattering coefficients of the retinal nerve fiber layer (RNFL) between normal and glaucoma subjects. In clinical care, SD-OCT is routinely used to assess the RNFL thickness for glaucoma management. In this way, the full OCT data set is conveniently reduced to an easy to interpret output, matching results from older (non- OCT) instruments. However, OCT provides more data, such as the signal strength itself, which is due to backscattering in the retinal layers. For quantitative analysis, this signal should be normalized to adjust for local differences in the intensity of the beam that reaches the retina. In this paper, we introduce a model that relates the OCT signal to the attenuation coefficient of the tissue. The average RNFL signal (within an A-line) was then normalized based on the observed RPE signal, resulting in normalized RNFL attenuation coefficient maps. These maps showed local defects matching those found in thickness data. The average (normalized) RNFL attenuation coefficient of a fixed band around the optic nerve head was significantly lower in glaucomatous eyes than in normal eyes (3.0mm-1 vs. 4.9mm-1, P<0.01, Mann-Whitney test).

  3. Crystal-free Formation of Non-Oxide Optical Fiber

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  4. Optical characteristics of waste stabilization ponds: recommendations for monitoring.

    PubMed

    Davies-Colley, R J; Craggs, R J; Park, J; Nagels, J W

    2005-01-01

    The optical character of waste stabilization ponds (WSPs) is of concern for several reasons. Algal photosynthesis, which produces oxygen for waste oxidation in WSPs, is influenced by attenuation of sunlight in ponds. Disinfection in WSPs is influenced by optical characteristics because solar UV exposure usually dominates inactivation. The optical nature of WSPs effluent also affects assimilation by receiving waters. Despite the importance of light behaviour in WSPs, few studies have been made of their optical characteristics. We discuss simple optical measures suitable for routine monitoring of WSPs (including at sites remote from laboratories): optical density of filtrates - an index of dissolved coloured organic (humic) matter, visual clarity - to provide an estimate of the beam attenuation coefficient (a fundamental quantity needed for optical modelling) colour (hue) - as an indicator of general WSP 'condition' and irradiance attenuation quantifying depth of light penetration. The value of optical characterisation of WSPs is illustrated with reference to optical data for WSPs in NZ (including high-rate algal ponds) treating dairy cattle wastewater versus domestic sewage. We encourage increased research on optical characteristics of WSPs and the incorporation of optical measures in monitoring and modelling of WSP performance.

  5. Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems.

    PubMed

    Nomoto, R; Mishima, A; Kobayashi, K; McCabe, J F; Darvell, B W; Watts, D C; Momoi, Y; Hirano, S

    2008-01-01

    To evaluate the equivalence of a digital X-ray system (DenOptix) to conventional X-ray film in terms of the measured radio-opacity of known filled-resin materials and the suitability of attenuation coefficient for radio-opacity determination. Discs of five thicknesses (0.5-2.5mm) and step-wedges of each of three composite materials of nominal aluminum-equivalence of 50%, 200% and 450% were used. X-ray images of a set of discs (or step-wedge), an aluminum step-wedge, and a lead block were taken at 65 kV and 10 mA at a focus-film distance of 400 mm for 0.15s and 1.6s using an X-ray film or imaging plate. Radio-opacity was determined as equivalent aluminum thickness and attenuation coefficient. The logarithm of the individual optical density or gray scale value, corrected for background, was plotted against thickness, and the attenuation coefficient determined from the slope. The method of ISO 4049 was used for equivalent aluminum thickness. The equivalent aluminum thickness method is not suitable for materials of low radio-opacity, while the attenuation coefficient method could be used for all without difficulty. The digital system gave attenuation coefficients of greater precision than did film, but the use of automatic gain control (AGC) distorted the outcome unusably. Attenuation coefficient is a more precise and generally applicable approach to the determination of radio-opacity. The digital system was equivalent to film but with less noise. The use of AGC is inappropriate for such determinations.

  6. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  7. Mechanisms for the Crystallization of Zblan

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Tucker, Dennis S.

    2001-01-01

    The heavy metal fluoride glasses represent a class of reasonably good glass forming compositions with very unique infrared optical properties that have been of interest to researchers for 20 years. The most extensively studied glass with the most potential for practical applications is ZBLAN which contains the fluorides of zirconium, barium, lanthanum, aluminum, and sodium. It has a broad transmission range (0.3-6 um), low index of refraction (about 1.43), low dispersion, low Raleigh scattering, ultra-low thermal 2 dispersion, and potential ultra-low signal attenuation. Potential applications include fiber amplifiers, fiber optic gyroscopes, delivery systems for laser cutting, drilling and surgery, radiation resistant data links, nonlinear optical systems, and ultra-low-loss repeater-less transcontinental and transoceanic optical fiber. Potential markets for these materials are in the tens of billions of dollars per year. Optical fiber from this system possess excellent transmission characteristics in the IR, but the glass is somewhat susceptible to nucleation and crystallization. The theoretical intrinsic loss coefficient for ZBLAN at 2 microns is 0.00 1 dB/Km. Extrinsic losses, however, cause significant attenuation. The lowest loss coefficient measured is 0.7 dB/Km. This compares with the loss coefficient for fiber optic grade fused silica glass of 0.2 dB/Km. The extrinsic losses in ZBLAN have been attributed to 1) impurities which might be lowered by containerless processing and 2) to scattering from micro-crystallites that form during glass preform production or during fiber drawing.

  8. Water column attenuation coefficient estimations in Alqueva reservoir

    NASA Astrophysics Data System (ADS)

    Potes, Miguel; João Costa, Maria; Salgado, Rui; Rodrigues, Gonçalo; Bortoli, Daniele

    2017-04-01

    The vertical structure of the underwater radiative absorption plays an important role in the thermal dynamics of the water surface layer and consequently on the energy budget at the water-lake interface. Thus, a better estimation of the irradiance at different levels is relevant to understand the lake-air interactions. The main purpose of this dataset of measurements is to estimate the spectral attenuation coefficient of the water column. The apparatus exploited in this work are composed of an optical cable linked to a portable FieldSpec UV/VNIR (ASD). This version has hemispherical field-of-view (FOV) of 180° allowing for measurements under all range of solar zenith. In situ water spectral reflectances were also obtained to help in the validation of satellite water leaving reflectances obtained from satellite spectroradiometers. It is intention of the team to develop an algorithm to derive the attenuation coefficient from satellite data in this reservoir.

  9. Estimation of underwater visibility in coastal and inland waters using remote sensing data.

    PubMed

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2017-04-01

    An optical method is developed to estimate water transparency (or underwater visibility) in terms of Secchi depth (Z sd ), which follows the remote sensing and contrast transmittance theory. The major factors governing the variation in Z sd , namely, turbidity and length attenuation coefficient (1/(c + K d ), c = beam attenuation coefficient; K d  = diffuse attenuation coefficient at 531 nm), are obtained based on band rationing techniques. It was found that the band ratio of remote sensing reflectance (expressed as (R rs (443) + R rs (490))/(R rs (555) + R rs (670)) contains essential information about the water column optical properties and thereby positively correlates to turbidity. The beam attenuation coefficient (c) at 531 nm is obtained by a linear relationship with turbidity. To derive the vertical diffuse attenuation coefficient (K d ) at 531 nm, K d (490) is estimated as a function of reflectance ratio (R rs (670)/R rs (490)), which provides the bio-optical link between chlorophyll concentration and K d (531). The present algorithm was applied to MODIS-Aqua images, and the results were evaluated by matchup comparisons between the remotely estimated Z sd and in situ Z sd in coastal waters off Point Calimere and its adjoining regions on the southeast coast of India. The results showed the pattern of increasing Z sd from shallow turbid waters to deep clear waters. The statistical evaluation of the results showed that the percent mean relative error between the MODIS-Aqua-derived Z sd and in situ Z sd values was within ±25%. A close agreement achieved in spatial contours of MODIS-Aqua-derived Z sd and in situ Z sd for the month of January 2014 and August 2013 promises the model capability to yield accurate estimates of Z sd in coastal, estuarine, and inland waters. The spatial contours have been included to provide the best data visualization of the measured, modeled (in situ), and satellite-derived Z sd products. The modeled and satellite-derived Z sd values were compared with measurement data which yielded RMSE = 0.079, MRE = -0.016, and R 2  = 0.95 for the modeled Z sd and RMSE = 0.075, MRE = 0.020, and R 2  = 0.95 for the satellite-derived Z sd products.

  10. Linear electro-optic effect in sputtered polycrystalline LiNbO3 films

    NASA Astrophysics Data System (ADS)

    Griffel, G.; Ruschin, S.; Croitoru, N.

    1989-04-01

    Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. We report on films' exceptionally low attenuation (<2 dB/cm) and the highest electro-optical coefficient reported so far for this kind of film (1.34×10-12 m/V).

  11. System for testing optical fibers

    DOEpatents

    Davies, Terence J.; Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.

  12. Assessment of satellite derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters

    EPA Science Inventory

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. Th...

  13. Bio-Optical Properties of the Arabian Sea as Determined by In-Situ and SeaWifs Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1998-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. Joint Global Ocean Flux Study (JGOFS) Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces", within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient [K(490)]. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable.

  14. A discussion on validity of the diffusion theory by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Li, Hui; Xie, Shusen

    2008-12-01

    Diffusion theory was widely used as a basis of the experiments and methods in determining the optical properties of biological tissues. A simple analytical solution could be obtained easily from the diffusion equation after a series of approximations. Thus, a misinterpret of analytical solution would be made: while the effective attenuation coefficient of several semi-infinite bio-tissues were the same, the distribution of light fluence in the tissues would be the same. In order to assess the validity of knowledge above, depth resolved internal fluence of several semi-infinite biological tissues which have the same effective attenuation coefficient were simulated with wide collimated beam in the paper by using Monte Carlo method in different condition. Also, the influence of bio-tissue refractive index on the distribution of light fluence was discussed in detail. Our results showed that, when the refractive index of several bio-tissues which had the same effective attenuation coefficient were the same, the depth resolved internal fluence would be the same; otherwise, the depth resolved internal fluence would be not the same. The change of refractive index of tissue would have affection on the light depth distribution in tissue. Therefore, the refractive index is an important optical property of tissue, and should be taken in account while using the diffusion approximation theory.

  15. In vivo comparison of the optical clearing efficacy of optical clearing agents in human skin by quantifying permeability using optical coherence tomography.

    PubMed

    Guo, Xiao; Guo, Zhouyi; Wei, Huajiang; Yang, Hongqin; He, Yonghong; Xie, Shusen; Wu, Guoyong; Deng, Xiaoyuan; Zhao, Qingliang; Li, Lanquan

    2011-01-01

    The objective of this work is to quantify and compare the optical clearing efficacy of glucose, propylene glycol, glycerol solutions through the human skin tissue in vivo by calculating permeability coefficient of three solutions. Currently, the permeability coefficient of agent in tissues was extracted from optical coherence tomography (OCT) amplitude data mainly through the OCT signal slope and the OCT amplitude methods. In this study, we report the OCT attenuation coefficient method which is a relatively novel and rarely reported methodology to measure the permeability coefficient during the optical skin clearing procedure. The permeability coefficients for 40% propylene glycol, glucose and glycerol were (2.74 ± 0.05) × 10(-6) cm s(-1), (1.78 ± 0.04) × 10(-6) cm s(-1) and (1.67 ± 0.04) × 10(-6) cm s(-1), respectively. It could be clearly seen that the permeability coefficient of the 40% propylene glycol solution is higher than that of 40% glucose solution, and the permeability coefficient of the 40% glucose solution is higher than that of the 40% glycerol solution. These indicate 40% propylene glycol solution is more effective than others in the human skin in vivo. We then compare and prove consistency of optical clearing efficacy figured out by three different methods. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  16. Utilization of Infrared Fiber Optic in the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  17. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    PubMed

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Inherent and apparent optical properties of the complex estuarine waters of Tampa Bay: What controls light?

    NASA Astrophysics Data System (ADS)

    Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Kovach, Charles; Anastasiou, Christopher J.; Zhao, Jun; Carder, Kendall L.

    2013-01-01

    Inherent and apparent optical properties (IOPs and AOPs) of Tampa Bay (Florida, USA) were measured during fourteen cruises between February 1998 and October 2010 to understand how these properties relate to one another and what controls light absorption and diffuse attenuation in this moderately sized (˜1000 km2), shallow estuary (average depth ˜4 m). The IOPs and AOPs included: 1) absorption coefficients of three optically significant constituents: phytoplankton pigments, detrital particles, and colored dissolved organic matter (CDOM); 2) particulate backscattering coefficients; 3) chlorophyll-a concentrations; 4) above-water remote sensing reflectance; 5) downwelling diffuse attenuation coefficients (Kd) at eight wavelengths and photosynthetically active radiation (PAR). Results showed substantial variability in all IOPs and AOPs in both space and time, with most IOPs spanning more than two orders of magnitude and showing strong co-variations. Of all four bay segments, Old Tampa Bay showed unique optical characteristics. During the wet season, the magnitude of blue-green-light absorption was dominated by CDOM, while during the dry season all three constituents contributed significantly. However, the variability in Kd (PAR, 490 nm, 555 nm) was driven mainly by the variability of detrital particles and phytoplankton as opposed to CDOM. This observation explained, at least to first order, why a nutrient reduction management strategy used by the Tampa Bay Estuary Program since the 1990s led to improved water clarity in most of Tampa Bay. The findings of this study provided the optical basis to fine tune existing or develop new algorithms to estimate the various optical water quality parameters from space.

  19. Quick and Easy Measurements of the Inherent Optical Property of Water by Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izadi, Dina; Hajiesmaeilbaigi, Fereshteh

    2009-04-19

    To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less

  20. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.

    PubMed

    Spirou, Gloria M; Mandelis, Andreas; Vitkin, I Alex; Whelan, William M

    2008-05-10

    Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient (micro(a)) and the effective attenuation coefficient (micro(eff)) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: micro(a)=a(A/Phi)-b and micro(eff)=c(A/Phi)+d, where Phi is the laser fluence, A is the FD-PA amplitude, and a, ...,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.

  1. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  2. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties

    NASA Astrophysics Data System (ADS)

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-01

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.

  3. FIBER AND INTEGRATED OPTICS: Investigation of a fiber-optic polarizer with a metal film and a dielectric buffer layer

    NASA Astrophysics Data System (ADS)

    Gelikonov, V. M.; Gusovskiĭ, D. D.; Konoplev, Yu N.; Leonov, V. I.; Mamaev, Yu A.; Turkin, A. A.

    1990-01-01

    A model of a plane-layer waveguide is used in a theoretical analysis of the attenuation coefficients of the TM0 and TE0 waves in a fiber-optic polarizer with a metal film and two dielectric buffer layers, one of which is the residual part of the fiber cladding. A report is given of the construction and experimental investigation of polarizers with a buffer layer of magnesium fluoride and an aluminum film operating at wavelengths of 0.63 and 0.81 μm and characterized by extinction coefficients of at least 53 and 46 dB, respectively, and by losses not exceeding 0.5 dB.

  4. Irradiance attenuation coefficient in a stratified ocean - A local property of the medium

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1980-01-01

    The influence of optically important constituents of water on the absorption (a) and scattering (b) coefficients and the backscattering probability is considered, with emphasis placed on measuring the volume scattering function (B/theta/). Two stratification models are examined; one in which the phase function (B(theta)/b) is depth independent and only b/c is allowed to vary with optical depth, and the other in which both b/c and the phase function depend on depth. The results demonstrate that Gordon's (1977) technique of estimating a and b is applicable without change to a stratified ocean.

  5. Assessment of satellite derived diffuse attenuation coefficients ...

    EPA Pesticide Factsheets

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD < 13% and R2 ~1.0 for MODIS/Aqua and SeaWiFS). Two algorithms based on empirical regressions performed well for offshore clear waters, but underestimated Kd_490 and Kd_PAR in coastal waters due to high turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that

  6. Optical Attenuation Coefficient Meter

    DTIC Science & Technology

    2016-06-22

    detector 43 is measured and recorded at the Pico Scope 80 to validate the laser pulse strength (which is proportional to the output and time wave shape ...unusable. [0004] As such, there is a need for a meter, recognizing back scattering by a pulsed laser source, that would allow a propagation path which...an attenuation meter with a transmitter and receiver is provided in which the transmitter produces a laser pulse of a duration and water

  7. Bio-optical characterization of offshore NW Mediterranean waters: CDOM contribution to the absorption budget and diffuse attenuation of downwelling irradiance

    NASA Astrophysics Data System (ADS)

    Pérez, Gonzalo L.; Galí, Martí; Royer, Sarah-Jeanne; Sarmento, Hugo; Gasol, Josep M.; Marrasé, Cèlia; Simó, Rafel

    2016-08-01

    We investigated the peculiar bio-optical characteristics of the Mediterranean Sea focusing on the spectral diffuse attenuation coefficient [Kd (λ)] and its relationship with chlorophyll a concentration (Chl a), complemented with measurements of light absorption by chromophoric dissolved organic matter (CDOM) and the optical properties of particulate material. The non-water absorption budget showed that CDOM was the largest contributor in the 300-600 nm range (>60% of the absorption at 443 nm in the euphotic layer), increasing to 80% within the first optical depth (FOD). This translated into CDOM accounting for >50% of KdBio (λ) (the irradiance attenuation coefficient caused by all non-water absorptions) between 320 and 555 nm and throughout both layers (FOD and euphotic). Indeed, we tested three Chl a-based bio-optical models and all three underestimated Kd (λ), evidencing the importance of CDOM beside Chl a to fully account for light attenuation. The Morel & Maritorena (2001) model (M&M 01) underestimated Kd (λ) in the UV and blue spectral regions within the FOD layer, showing lower differences with increasing wavelengths. The Morel et al. (2007a) model (BGS 07) also underestimated Kd (λ) in the FOD layer, yet it performed much better in the 380-555 nm range. In the euphotic layer, the Morel (1988) model (JGR 88) underestimated Kd (λ) showing higher differences at 412 and 443 nm and also performed better at higher wavelengths. Observed euphotic layer depths (Z1%) were 28 m shallower than those predicted with the M&M 01 empirical relationship, further highlighting the role of CDOM in the bio-optical peculiarity of Mediterranean Sea. In situ measurements of the CDOM index (Φ), an indicator of the deviation of the CDOM-Chl a average relationship for Case 1 waters, gave a mean of 5.9 in the FOD, consistent with simultaneous estimates from MODIS (4.8±0.4). The implications of the bio-optical anomaly for ecological and biogeochemical inferences in the Mediterranean Sea are discussed.

  8. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings

    PubMed Central

    Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-01-01

    Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026

  9. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings.

    PubMed

    Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-04-01

    Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.

  10. SU-E-T-178: Optically Stimulated Luminescence (OSL) Dosimetry: A Study of A-Al2O3:C Assessed by PENELOPE Monte Carlo Simulation.

    PubMed

    Nicolucci, P; Schuch, F

    2012-06-01

    To use the Monte Carlo code PENELOPE to study attenuation and tissue equivalence properties of a-Al2O3:C for OSL dosimetry. Mass attenuation coefficients of α-Al2O3 and α-Al2O3:C with carbon percent weight concentrations from 1% to 150% were simulated with PENELOPE Monte Carlo code and compared to mass attenuation coefficients from soft tissue for photon beams ranging from 50kV to 10MV. Also, the attenuation of primary photon beams of 6MV and 10MV and the generation of secondary electrons by α-Al2O3 :C dosimeters positioned on the entrance surface of a water phantom were studied. A difference of up to 90% was found in the mass attenuation coefficient between the pure \\agr;-A12O3 and the material with 150% weight concentration of dopant at 1.5 keV, corresponding to the K-edge photoelectric absorption of aluminum. However for energies above 80 keV the concentration of carbon does not affect the mass attenuation coefficient and the material presents tissue equivalence for the beams studied. The ratio between the mass attenuation coefficients for \\agr-A12O3:C and for soft tissue are less than unit due to the higher density of the \\agr-A12O3 (2.12 g/cm s ) and its tissue equivalence diminishes to lower concentrations of carbon and for lower energies due to the relation of the radiation interaction effects with atomic number. The larger attenuation of the primary photon beams by the dosimeter was 16% at 250 keV and the maximum increase in secondary electrons fluence to the entrance surface of the phantom was found as 91% at 2MeV. The use of the OSL dosimeters in radiation therapy can be optimized by use of PENELOPE Monte Carlo simulation to provide a study of the attenuation and response characteristics of the material. © 2012 American Association of Physicists in Medicine.

  11. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties.

    PubMed

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-15

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. First measurements of ambient aerosol over an ecologically sensitive zone in Central India: Relationships between PM2.5 mass, its optical properties, and meteorology.

    PubMed

    Sunder Raman, Ramya; Kumar, Samresh

    2016-04-15

    PM2.5 mass and its optical properties were measured over an ecologically sensitive zone in Central India between January and December, 2012. Meteorological parameters including temperature, relative humidity, wind speed, wind direction, and barometric pressure were also monitored. During the study period, the PM2.5 (fine PM) concentration ranged between 3.2μgm(-3) and 193.9μgm(-3) with a median concentration of 31.4μgm(-3). The attenuation coefficients, βATN at 370nm, 550nm, and 880nm had median values of 104.5Mm(-1), 79.2Mm(-1), and 59.8Mm(-1), respectively. Further, the dry scattering coefficient, βSCAT at 550nm had a median value of 17.1Mm(-1) while the absorption coefficient βABS at 550nm had a median value of 61.2Mm(-1). The relationship between fine PM mass and attenuation coefficients showed pronounced seasonality. Scattering, absorption, and attenuation coefficient at different wavelengths were all well correlated with fine PM mass only during the post-monsoon season (October, November, and December). The highest correlation (r(2)=0.81) was between fine PM mass and βSCAT at 550nm during post-monsoon season. During this season, the mass scattering efficiency (σSCAT) was 1.44m(2)g(-1). Thus, monitoring optical properties all year round, as a surrogate for fine PM mass was found unsuitable for the study location. In order to assess the relationships between fine PM mass and its optical properties and meteorological parameters, multiple linear regression (MLR) models were fitted for each season, with fine PM mass as the dependent variable. Such a model fitted for the post-monsoon season explained over 88% of the variability in fine PM mass. However, the MLR models were able to explain only 31 and 32% of the variability in fine PM during pre-monsoon (March, April, and May) and monsoon (June, July, August, and September) seasons, respectively. During the winter (January and February) season, the MLR model explained 54% of the PM2.5 variability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Novel Optical Methods for Identification, Imaging, and Preservation of the Cavernous Nerves Responsible for Penile Erections during Prostate Cancer Surgery

    DTIC Science & Technology

    2010-03-01

    of near- IR l ight as a f unction of source-detector distance. The effective attenuation coefficient (μeff) and optical penetration depth (OPD...were then calculated for near- IR wavelengths of 1064, 1307, and 1555 nm (Table 1). A total of ten canine samples were used for this study. At...Diego, CA, 2009). Chitchian S, Fried NM. Near- IR optical properties of canine prostate tissue using oblique incidence reflectometry. Proc. SPIE

  14. Study of a computer-controlled integrated optical gas-concentration sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A A; Egorov, M A; Chekhlova, T K

    2008-08-31

    A computer-controlled integrated optical waveguide sensor based on an optical waveguide of the diffusion type with the low attenuation coefficient is developed and studied. It is shown that the response time of the sensor is {approx}0.15 s. According to tests and computer simulations, the sensor can detect gaseous ammonia in air with the limiting theoretical concentration of {approx}0.1 ppm for the signal-to-noise ratio no less than 20. (laser applications and other topics in quantum electronics)

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of a computer-controlled integrated optical gas-concentration sensor

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.; Egorov, M. A.; Chekhlova, T. K.; Timakin, A. G.

    2008-08-01

    A computer-controlled integrated optical waveguide sensor based on an optical waveguide of the diffusion type with the low attenuation coefficient is developed and studied. It is shown that the response time of the sensor is ≈0.15 s. According to tests and computer simulations, the sensor can detect gaseous ammonia in air with the limiting theoretical concentration of ≈0.1 ppm for the signal-to-noise ratio no less than 20.

  16. Optical changes of dentin in the near-IR as a function of mineral content

    NASA Astrophysics Data System (ADS)

    Berg, Rhett A.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2017-02-01

    The optical properties of human dentin can change markedly due to aging, friction from opposing teeth, and acute trauma, resulting in the formation of transparent or sclerotic dentin with increased mineral density. The objective of this study was to determine the optical attenuation coefficient of human dentin tissues with different mineral densities in the near-infrared (NIR) spectral regions from 1300-2200 nm using NIR transillumination and optical coherence tomography (OCT). N=50 dentin samples of varying opacities were obtained by sectioning whole extracted teeth into 150 μm transverse sections at the cemento-enamel junction or the apical root. Transillumination images were acquired with a NIR camera and attenuation measurements were acquired at various NIR wavelengths using a NIR sensitive photodiode. Samples were imaged with transverse microradiography (gold standard) in order to determine the mineral density of each sample.

  17. Commercial Production of Heavy Metal Fluoride Glass Fiber in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  18. A Maximum Likelihood Approach to Determine Sensor Radiometric Response Coefficients for NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong

    2011-01-01

    Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.

  19. Towards Cost-Effective Operational Monitoring Systems for Complex Waters: Analyzing Small-Scale Coastal Processes with Optical Transmissometry

    PubMed Central

    Gonçalves-Araujo, Rafael; Wiegmann, Sonja; Torrecilla, Elena; Bardaji, Raul; Röttgers, Rüdiger; Bracher, Astrid; Piera, Jaume

    2017-01-01

    The detection and prediction of changes in coastal ecosystems require a better understanding of the complex physical, chemical and biological interactions, which involves that observations should be performed continuously. For this reason, there is an increasing demand for small, simple and cost-effective in situ sensors to analyze complex coastal waters at a broad range of scales. In this context, this study seeks to explore the potential of beam attenuation spectra, c(λ), measured in situ with an advanced-technology optical transmissometer, for assessing temporal and spatial patterns in the complex estuarine waters of Alfacs Bay (NW Mediterranean) as a test site. In particular, the information contained in the spectral beam attenuation coefficient was assessed and linked with different biogeochemical variables. The attenuation at λ = 710 nm was used as a proxy for particle concentration, TSM, whereas a novel parameter was adopted as an optical indicator for chlorophyll a (Chl-a) concentration, based on the local maximum of c(λ) observed at the long-wavelength side of the red band Chl-a absorption peak. In addition, since coloured dissolved organic matter (CDOM) has an important influence on the beam attenuation spectral shape and complementary measurements of particle size distribution were available, the beam attenuation spectral slope was used to analyze the CDOM content. Results were successfully compared with optical and biogeochemical variables from laboratory analysis of collocated water samples, and statistically significant correlations were found between the attenuation proxies and the biogeochemical variables TSM, Chl-a and CDOM. This outcome depicted the potential of high-frequency beam attenuation measurements as a simple, continuous and cost-effective approach for rapid detection of changes and patterns in biogeochemical properties in complex coastal environments. PMID:28107539

  20. Graphene-clad tapered fiber: effective nonlinearity and propagation losses.

    PubMed

    Gorbach, A V; Marini, A; Skryabin, D V

    2013-12-15

    We derive a pulse propagation equation for a graphene-clad optical fiber, treating the optical response of the graphene and nonlinearity of the dielectric fiber core as perturbations in asymptotic expansion of Maxwell equations. We analyze the effective nonlinear and attenuation coefficients due to the graphene layer. Based on the recent experimental measurements of the nonlinear graphene conductivity, we predict considerable enhancement of the effective nonlinearity for subwavelength fiber core diameters.

  1. Bio-optical anomalies in the world's oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements

    NASA Astrophysics Data System (ADS)

    Organelli, Emanuele; Claustre, Hervé; Bricaud, Annick; Barbieux, Marie; Uitz, Julia; D'Ortenzio, Fabrizio; Dall'Olmo, Giorgio

    2017-05-01

    Identification of oceanic regions characterized by particular optical properties is extremely important for ocean color applications. The departure from globally established bio-optical models (i.e., anomaly) introduces uncertainties in the retrieval of biogeochemical quantities from satellite observations. Thanks to an array of 105 Biogeochemical Argo floats acquiring almost daily downward irradiance measurements at selected wavelengths in the UV and blue region of the spectrum, we reexamined the natural variability of the spectral diffuse attenuation coefficients, Kd(λ), among the world's oceans and compared them to previously established bio-optical models. The analysis of 2847 measurements of Kd(λ) at 380 and 490 nm, within the first optical depth, provided a classification of the examined regions into three groups. The first one included the Black Sea, a water body characterized by a very high content of colored dissolved organic matter (CDOM). The second group was essentially composed by the subtropical gyres (Atlantic and Pacific Oceans), with optical properties consistent with previous models (i.e., no anomalies). High latitude (North Atlantic and Southern oceans) and temperate (Mediterranean Sea) seas formed the third group, in which optical properties departed from existing bio-optical models. Annual climatologies of the Kd(380)/Kd(490) ratio evidenced a persistent anomaly in the Mediterranean Sea, that we attributed to a higher-than-average CDOM contribution to total light absorption. In the North Atlantic subpolar gyre, anomalies were observed only in wintertime and were also attributed to high CDOM concentrations. In the Southern Ocean, the anomaly was likely related to high phytoplankton pigment packaging rather than to CDOM.

  2. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  3. Reflectance confocal microscopy of optical phantoms

    PubMed Central

    Jacques, Steven L.; Wang, Bo; Samatham, Ravikant

    2012-01-01

    A reflectance confocal scanning laser microscope (rCSLM) operating at 488-nm wavelength imaged three types of optical phantoms: (1) 100-nm-dia. polystyrene microspheres in gel at 2% volume fraction, (2) solid polyurethane phantoms (INO BiomimicTM), and (3) common reflectance standards (SpectralonTM). The noninvasive method measured the exponential decay of reflected signal as the focus (zf) moved deeper into the material. The two experimental values, the attenuation coefficient μ and the pre-exponential factor ρ, were mapped into the material optical scattering properties, the scattering coefficient μs and the anisotropy of scattering g. Results show that μs varies as 58, 8–24, and 130–200 cm-1 for phantom types (1), (2) and (3), respectively. The g varies as 0.112, 0.53–0.67, and 0.003–0.26, respectively. PMID:22741065

  4. Detection of cortical optical changes during seizure activity using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.

    2017-02-01

    Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have been used to detect neural activity, but rely on indirect measurements such as changes in blood flow. Fluorescence-based techniques, including genetically encoded indicators, are powerful techniques, but require introduction of an exogenous fluorophore. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, we sought to examine non-vascular depth-dependent optical changes directly related to neural activity. We used an OCT system centered at 1310 nm to search for changes in an ex vivo brain slice preparation and an in vivo model during 4-AP induced seizure onset and propagation with respect to electrical recording. By utilizing Doppler OCT and the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex from in vivo attenuation calculations. The results of this study show a non-vascular decrease in intensity and attenuation in ex vivo and in vivo seizure models, respectively. Regions exhibiting decreased optical changes show significant temporal correlation to regions of increased electrical activity during seizure. This study allows for a thorough and biologically relevant analysis of the optical signature of seizure activity both ex vivo and in vivo using OCT.

  5. Acute skin lesions following psoralen plus ultraviolet A radiation investigated by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Z. M.; Zhong, H. Q.; Zhai, J.; Wang, C. X.; Xiong, H. L.; Guo, Z. Y.

    2013-08-01

    Psoralen plus ultraviolet A radiation (PUVA) therapy is a very important clinical treatment of skin diseases such as vitiligo and psoriasis, but associated with an increased risk of skin photodamage, especially photoaging. In this work, optical coherence tomography (OCT), a novel non-invasive imaging technology, was introduced to investigate in vivo the photodamage induced by PUVA qualitatively and quantitatively. Balb/c mouse dorsal skin was treated with 8-methoxypsoralen (8-MOP), and then exposed to UVA radiation. OCT images of the tissues were obtained by an OCT system with a 1310 nm central wavelength. Skin thickness and the attenuation coefficient were extracted from the OCT images to analyze the degree of injury to mouse skin. The results demonstrated that PUVA-treated skin showed an increase in skin thickness, and a reduction of attenuation coefficient in the OCT signal compared with the control groups. The data also showed good correlation with the results observed in histological sections using hematoxylin and eosin staining. In conclusion, OCT is a promising tool for photobiological studies aimed at assessing the effect of PUVA therapy in vivo.

  6. Laboratory measurements of selected optical, physical, chemical, and remote-sensing properties of five water mixtures containing Calvert clay and a nonfluorescing dye

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Whitlock, C. H.; Poole, L. R.; Witte, W. G., Jr.

    1981-01-01

    Total suspended solids concentrations ranged from 6.1 ppm to 24.3 ppm and sizes ranged between 1.5 micrometers and 10 micrometers with the most frequently occurring size less than 2 micrometers. Iron concentration was less than 1 percent of the total suspended solids. Nonfluorescing dye concentrations of the two mixtures were 20 ppm and 40 ppm. Attenuation coefficient for the five mixtures ranged from 4.8/m to 21.3/m. Variations in volume scattering function with phase angle were typical. Variations in attenuation and absorption coefficient with wavelength were similar for the mixtures without the dye. Attenuation coefficient of the mixtures with the dye increased for wavelengths less than 600 nm due to the dye's strong absorption peak near 500 nm. Reflectance increased as the concentration of Calvert clay increased and peaked near 600 nm. The nonfluorescent dye decreased the magnitude of the peak, but had practically no effect on the variation for wavelengths greater than 640 nm. At wavelengths less than 600 nm, the spectral variations of the mixtures with the dye were significantly different from those mixtures without the dye.

  7. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on sevenmore » HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75 ± 0.26 (mean ± standard error of the mean). The authors’ spectroscopic investigation has shown that HIFU-treated tissues have a greater optical absorption and reduced scattering coefficients than native tissues in the wavelength range of 500–900 nm. In fact, at 720 and 845 nm, the ratio of the optical absorption coefficient of HIFU-treated tissues to that of native tissues was 1.13 and 1.17, respectively; on the other hand, the ratio of the reduced scattering coefficient of HIFU-treated tissues to that of native tissues was 13.22 and 14.67 at 720 and 845 nm, respectively. Consequently, HIFU-treated tissues have a higher effective attenuation coefficient and a lower light penetration depth than native tissues in the wavelength range 500–900 nm. Conclusions: Using a PA approach, HIFU-treated tissues interrogated at 720 and 845 nm optical wavelengths can be differentiated from untreated tissues. Based on the authors’ spectroscopic investigation, the authors conclude that the observed PA contrast between HIFU-induced thermal lesions and untreated tissue is due, in part, to the increase in the optical absorption coefficient, the reduced scattering coefficient and, therefore, the deposited laser energy fluence in HIFU-treated tissues.« less

  8. OCT-based in vivo tissue injury mapping

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2016-03-01

    Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.

  9. Gamma ray interaction studies of organic nonlinear optical materials in the energy range 122 keV-1330 keV

    NASA Astrophysics Data System (ADS)

    Awasarmol, V. V.; Gaikwad, D. K.; Raut, S. D.; Pawar, P. P.

    The mass attenuation coefficients (μm) for organic nonlinear optical materials measured at 122-1330 keV photon energies were investigated on the basis of mixture rule and compared with obtained values of WinXCOM program. It is observed that there is a good agreement between theoretical and experimental values of the samples. All samples were irradiated with six radioactive sources such as 57Co, 133Ba, 22Na, 137Cs, 54Mn and 60Co using transmission arrangement. Effective atomic and electron numbers or electron densities (Zeff and Neff), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective atomic energy absorption cross section (σa,en) were determined experimentally and theoretically using the obtained μm values for investigated samples and graphs have been plotted. The graph shows that the variation of all samples decreases with increasing photon energy.

  10. Measured backscatter and attenuation properties, including polarization effects, of various dispersions at 0.9 micron

    NASA Technical Reports Server (NTRS)

    Kohl, R. H.; Flaherty, M. I.; Partin, R. L.

    1977-01-01

    The optical properties of a wide variety of atmospheric dispersions were studied using a 0.9-micron lidar system which included a GaAs laser stack transmitter emitting a horizontally polarized beam of 4 milliradians vertical divergence and 1.5 milliradians horizontal divergence. A principal means for assessing optical properties was the polarization ratio, that is, the backscattered radiation power perpendicular to the transmitter beam divided by the backscattered radiation power parallel to the beam polarization. The ratio of the backscattered fraction to the attenuation coefficient was also determined. Data on the dispersion properties of black carbon smoke, road dust, fog, fair-weather cumulus clouds, snow and rain were obtained; the adverse effects of sunlight-induced background noise on the readings is also discussed.

  11. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  12. Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2014-06-01

    A side-viewing, 2.3-mm diameter oblique incidence reflectometry endoscope has been designed to obtain optical property measurements of turbid samples. Light from a single-mode fiber is relayed obliquely onto the tissue with a gradient index lens-based distal optics assembly and the resulting diffuse reflectance profile is imaged and collected with a 30,000 element, 0.72 mm clear aperture fiber bundle. Sampling the diffuse reflectance in two-dimensions allows for fitting of the reflected intensity profile to a well-known theoretical model, permitting the extraction of both absorption and reduced scattering coefficients of the tissue sample. Models and measurements of the endoscopic imaging system are presented in tissue phantoms and in vivo mouse colon, verifying the endoscope's capabilities to accurately measure effective attenuation coefficient and differentiate diseased from normal colon.

  13. Optical coherence tomography for blood glucose monitoring through signal attenuation

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas R.; Yoshimura, Tania M.; Ribeiro, Martha S.; de Freitas, Anderson Z.

    2016-03-01

    Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.

  14. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  15. 18-year variability of ultraviolet radiation penetration in the mid-latitude coastal waters of the western boundary Pacific

    NASA Astrophysics Data System (ADS)

    Kuwahara, Victor S.; Nozaki, Sena; Nakano, Junji; Toda, Tatsuki; Kikuchi, Tomohiko; Taguchi, Satoru

    2015-07-01

    The 18-year time-series shows in situ ultraviolet radiation (UVR) and photosynthetically active radiation (PAR) diffuse attenuation coefficient Kd(λ) have recurrent seasonal variability of high/low attenuation during summer/winter months, respectively, dependent on variability in water column stratification and concentrations of bio-optical properties. The mid-latitude coastal survey station displayed significant seasonality of the mixed layer depth (MLD) between 12 and 82 m which modified the distribution of chlorophyll a (4.6-24.9 mg m-2) and absorption of colored dissolved organic matter [aCDOM(320 nm) 0.043-1.34 m-1]. The median Kd(320 nm) displayed significant seasonality at 0.19-0.74 m-1 (C.V. = 44.1%) and seasonal variability within the euphotic layer [Z10%(320 nm) = 7-20%]. High attenuation of UVR with relatively moderate attenuation of PAR was consistently observed during the summer months when increased concentrations of terrestrially derived CDOM coupled with a shallow MLD were present. The winter season showed the opposite of low UVR and PAR attenuation due to a relatively deeper MLD coupled with low concentrations of bio-optical properties. Although the long term Kd(λ) did not vary significantly during the time-series, analysis of the interannual variability suggests there are positive and negative phases following the Pacific Decadal Oscillation (PDO) vis-a-vis variability in bio-optical properties (p < 0.001).

  16. OCoc- from Ocean Colour to Organic Carbon

    NASA Astrophysics Data System (ADS)

    Heim, B.; Overduin, P. P.; Schirrmeister, L.; Doerffer, R.

    2009-04-01

    Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. Especially, large parts of the Central and Eastern Siberian coastline are characterized by highly erosive sedimentary ice-rich material. The ‘OCoc-from Ocean Colour to Organic Carbon' project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Circum-polar Coastal Observatory Network Acco-Net (ACCO-Net: IPY-project 90) originating from the Arctic Coastal Dynamics ACD project . OCoc uses Ocean Colour satellite data for synoptic monitoring of the input of organic matter - from both fluvial and coastal sources - into the Arctic coastal waters. Initial results from the German-Russian Expedition Lena08 along the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 are presented. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the Laptev Sea Coast from August 2008 have been processed towards L2 parameters using Beam-Visat4.2© and the MERIS case2 regional processor for coastal application (C2R). C2R uses neural network procedures for the retrieval of water leaving reflectances and neural network procedures to derive the inherent optical properties (IOPs) from the water leaving reflectances. C2R output parameters are IOPs (absorption and backscattering coefficients), apparent optical properties (AOPs) (water leaving radiance reflectance, attenuation coefficient ‘k'), optical parameters such as the first attenuation depth (‘Z90') and calculated concentrations of chlorophyll, total suspended matter, and yellow substance absorption. Initial comparisons with Lena08-Expedition data (Secchi depths, cDOM) and water transparency data from former arctic cruises show that the MERIS-C2R optical parameters 'total absorption' and the first attenuation depth, 'Z90', seem adequately to represent true conditions. High attenuation values are the tracers for the organic-rich terrigenous input. The synoptic information of MERIS Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.

  17. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    PubMed

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  18. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.

    2014-05-01

    We demonstrated the application of relative radiance-based continuous wave (cw) measurements for recovering absorption and scattering properties (the effective attenuation coefficient, the diffusion coefficient, the absorption coefficient and the reduced scattering coefficient) of bulk porcine muscle phantoms in the 650-900 nm spectral range. Both the side-firing fiber (the detector) and the fiber with a spherical diffuser at the end (the source) were inserted interstitially at predetermined locations in the phantom. The porcine phantoms were prostate-shaped with ˜4 cm in diameter and ˜3 cm thickness and made from porcine loin or tenderloin muscles. The described method was previously validated using the diffusion approximation on simulated and experimental radiance data obtained for homogenous Intralipid-1% liquid phantom. The approach required performing measurements in two locations in the tissue with different distances to the source. Measurements were performed on 21 porcine phantoms. Spectral dependences of the effective attenuation and absorption coefficients for the loin phantom deviated from corresponding dependences for the tenderloin phantom for wavelengths <750 nm. The diffusion constant and the reduced scattering coefficient were very close for both phantom types. To quantify chromophore presence, the plot for the absorption coefficient was matched with a synthetic absorption spectrum constructed from deoxyhemoglobin, oxyhemoglobin and water. The closest match for the porcine loin spectrum was obtained with the following concentrations: 15.5 µM (±30% s.d.) Hb, 21 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The tenderloin absorption spectrum was best described by 30 µM Hb (±30% s.d), 19 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The higher concentration of Hb in tenderloin was consistent with a dark-red appearance of the tenderloin phantom. The method can be applied to a number of biological tissues and organs for interstitial optical interrogation.

  19. Free-space optical channel characterization and experimental validation in a coastal environment.

    PubMed

    Alheadary, Wael G; Park, Ki-Hong; Alfaraj, Nasir; Guo, Yujian; Stegenburgs, Edgars; Ng, Tien Khee; Ooi, Boon S; Alouini, Mohamed-Slim

    2018-03-19

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  20. Evaluation of FSO System Availability in Haze Condition

    NASA Astrophysics Data System (ADS)

    Anis, A. A.; Rashidi, C. B. M.; Aljunid, S. A.; Rahman, A. K.

    2018-03-01

    In this paper, we proposed the evaluation of FSO system availability in haze condition. The atmospheric attenuation by weather conditions in the atmosphere as the most challenging problem of FSO system as the system performance is severely degraded and causing the signal optic to be transmitted poorly. The effects of haze condition on the performance of FSO system is stressed out and focused in this paper. From the evaluation of the analysis, designs of FSO system are proposed to obtain a system with improved link performance in haze conditions. The scattering coefficient and the atmospheric attenuation are determined using Beer’s Lambert equation. From the research, the link performance of the system is greatly improved using Design 2 with minimum BER of 10-127127 and maximu m Q Factor of 23.98. The FSO system using Design 2 has better performance compared to Design 1 in haze condition as the optical signals could penetrate the dense haze better without losing much optical power during the transmission to the scattering.

  1. Fluctuations of sediments-related optical parameters on a megatidal beach in the Eastern English Channel

    NASA Astrophysics Data System (ADS)

    Xing, Q.; Schmitt, F.; Loisel, H.

    2009-04-01

    To investigate the influence of turbulence coupled with waves and tides on the re-suspension of sediments, a 4-hour field experiment was conducted on a surf-zone beach near Wimereux, France where is at the Eastern English Channel and characterized by a semi-diurnal megatide (spring tidal range > 8 m). A sensor cluster was fixed 1.5 m above the sea bed when the tidal level was low. The parameters of the particle scattering coefficient and the optical attenuation coefficient were measured as a surrogate of the suspended sediments concentration (SSC), and the water temperature, the pressure, the horizontal 2-D velocity and so on, were also simultaneously measured in a continuous mode at a frequency of 1 Hz. The parameter of pressure was used for monitoring the water level and estimating the variation of surface wave heights by removing the local averages of time series, and the pressure time series show that the experiment started with a water level of about 3.7 m at 10 o'clock and ended with 4.5 m at 14 o'clock, and that the water level reached the highest at about 12 o'clock. The time series of current direction indicate that there was a steady along-coast current with a direction of 218 degrees when the water level almost reached the largest of 6 m, i.e., when the sensors were 4.5 m under the water surface. The particle scattering coefficient and the optical attenuation coefficient exhibit a similar fluctuating trend with a correlation coefficient of 0.85 between them. Although there is a time lag of about 1000 s, a relation between the optical parameters and the square of U is observed, i.e., SSC is a function of U, where U is the vector product of the along-shore and cross-shore velocities (v and u). The cross-shore velocity u fluctuates roughly with a mean of zero, and its variation decreases exponentially with the increase of water level, which is consistent with the common sense that wave orbital motions decrease exponentially with the water depth; the variation of v is slightly different to that of u, and the mean of fluctuations changes against the occurrence of along-coast current. Power spectral analysis on the basis of Fast Fourier Transform (FFT) is used to study their scaling behaviors in an energy (E(f)) ~ frequency (f) function of log(E(f)) ~ -p log(f). Temperature fluctuations exhibit to be corresponding to a passive scalar turbulence, p=1.79. When f < 0.003Hz, the values of p with the fluctuations of v and u are between 5/3 and 3, and more close to 3, which may suggest a main component of wave orbital motions in the mixed behavior with turbulence. Particle scattering coefficients and water attenuation coefficients exhibit a similar scaling behavior to each other, and when f < 0.003Hz, the values of p are close to 3 and a little larger than it, which also suggests the role of wave orbital motions in the re-suspension of sediments. In this experiments, a water volume of tens to one hundred cubic centimeters were monitored for velocity measurement. However, a finer spatial resolution may be more suitable for the observation of turbulence as well as the sediments-related optical parameters.

  2. Plastic optical fibre sensor for quality control in food industry

    NASA Astrophysics Data System (ADS)

    Novo, C.; Bilro, L.; Ferreira, R.; Alberto, N.; Antunes, P.; Leitão, C.; Nogueira, R.; Pinto, J. L.

    2013-05-01

    The present work addresses the need for new devices felt in the context of quality control, especially in the food industry. Due to the spectral dependence of the attenuation coefficient, a novel dual-parameter sensor for colour and refractive index was developed and tested. The sensor employs plastic optical fibres to measure the transmitted optical power in three measurement cells each with a different incident wavelength. The performance of the sensor was tested using several dyes at different concentrations and aqueous solutions of glycerine and ethanol. Results show that this technique allows the monitoring of refractive index and colour without cross-sensitivity.

  3. The use of optical coherence tomography to analyze the efficacy of skin care products

    NASA Astrophysics Data System (ADS)

    Irani, Sarosh; Turani, Zahra; Fotouhi, Audrey; Daveluy, Steven; Mehregan, Darius; Chen, Wei; Gelovani, Juri; Nasiriavanaki, Mohammadreza

    2018-02-01

    In this study, we assess the applicability of optical coherence tomography (OCT) for non-invasive imaging of skin morphology for the assessment of efficacy of cosmetic skin wrinkle-reduction products in humans. Evaluation of skin care products for reduction of facial wrinkles is largely limited to photographic (non-quantitative) comparison of skin surface texture before and after either single or prolonged application of skin care product. OCT could be a technique for monitoring changes in cross-sectional skin morphology. An optical attenuation coefficient analysis is also carried out to quantitatively study the changes in different layers of the skin.

  4. Stable phantom materials for ultrasound and optical imaging.

    PubMed

    Cabrelli, Luciana C; Pelissari, Pedro I B G B; Deana, Alessandro M; Carneiro, Antonio A O; Pavan, Theo Z

    2017-01-21

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  5. Stable phantom materials for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo Z.

    2017-01-01

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  6. Attenuation of near-IR light through dentin at wavelengths from 1300–1650-nm

    PubMed Central

    Chan, Andrew C.; Darling, Cynthia L.; Chan, Kenneth H.; Fried, Daniel

    2014-01-01

    Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300–1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm−1. Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption. PMID:24839373

  7. Self-consistent approach to the solution of the light transfer problem for irradiances in marine waters with arbitrary turbidity, depth, and surface illumination. I. Case of absorption and elastic scattering.

    PubMed

    Haltrin, V I

    1998-06-20

    A self-consistent variant of the two-flow approximation that takes into account strong anisotropy of light scattering in seawater of finite depth and arbitrary turbidity is presented. To achieve an appropriate accuracy, this approach uses experimental dependencies between downward and total mean cosines. It calculates irradiances, diffuse attenuation coefficients, and diffuse reflectances in waters with arbitrary values of scattering, backscattering, and attenuation coefficients. It also takes into account arbitrary conditions of illumination and reflection from the bottom with the Lambertian albedo. This theory can be used for the calculation of apparent optical properties in both open and coastal oceanic waters, lakes, and rivers. It can also be applied to other types of absorbing and scattering medium such as paints, photographic emulsions, and biological tissues.

  8. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance

    NASA Technical Reports Server (NTRS)

    Stramski, Dariusz; Shalapyonok, Alexi; Reynolds, Rick A.

    1995-01-01

    The optical properties of the ocenanic cyanobacterium Synechococcus (clone WH8103) were examined in a nutrient-replete laboratory culture grown under a day-night cycle in natural irradiance. Measurements of the spectral absorption and beam attenuation coefficients, the size distribution of cells in suspension, and microscopic analysis of samples were made at intervals of 2-4 hours for 2 days. These measurements were used to calculate the optical properties at the level of a single 'mean' cell representative of the acutal population, specifically, the optical cross sections for spectral absorption bar-(sigma(sub a)), scattering bar-sigma(sub b))(lambda), and attentuation bar-(sigma(sub c))(lambda). In addition, concurrent determinations of chlorophyll a and particulate organic carbon allowed calculation of the Chl a- and C-specific optical coefficients. The refractive index of cells was derived from the observed data using a theory of light absorption and scattering by homogeneous spheres. Low irradiance because of cloudy skies resulted in slow division rates of cells in the culture. The percentage of dividing cells was unusually high (greater than 30%) throughout the experiment. The optical cross sections varied greatly over a day-night cycle, with a minimum near dawn or midmorning and maximum near dusk. During daylight hours, bar-(sigma(sub b)) and bar-(sigma(sub c)) can increase more than twofold and bar-(sigma(sub a) by as much as 45%. The real part of the refractive index n increaed during the day; changes in n had equal or greater effect than the varying size distribution on changes in bar-(sigma(sub c)) and bar-(sigma(sub b)). The contribution of changes in n to the increase of bar-(sigma(sub c))(660) during daylight hours was 65.7% and 45.1% on day 1 and 2, respectively. During the dark period, when bar-(sigma(sub c))(660) decreased by a factor of 2.9, the effect of decreasing n was dominant (86.3%). With the exception of a few hours during the second light period, the imaginary part of the refractive index n' showed little variation over a day-night cycle, and bar-(sigma(sub a)) was largely controlled by variations in cell size. The real part of the refractive index at lambda = 660 nm was correlated with the intracellular C concentration and the imaginary part at lambda = 678 nm with the intracellular Chl a concentration. The C-specfic attenuation coefficient showed significant diel variability, which has implications for the estimation of oceanic primary production from measurements of diel variability in beam attenuation. This study provides strong evidence that diel variability is an important component of the optical characterization of marine phytoplankton.

  9. Comparison of RNFL thickness and RPE-normalized RNFL attenuation coefficient for glaucoma diagnosis

    NASA Astrophysics Data System (ADS)

    Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.

    2013-03-01

    Recently, a method to determine the retinal nerve fiber layer (RNFL) attenuation coefficient, based on normalization on the retinal pigment epithelium, was introduced. In contrast to conventional RNFL thickness measures, this novel measure represents a scattering property of the RNFL tissue. In this paper, we compare the RNFL thickness and the RNFL attenuation coefficient on 10 normal and 8 glaucomatous eyes by analyzing the correlation coefficient and the receiver operator curves (ROCs). The thickness and attenuation coefficient showed moderate correlation (r=0.82). Smaller correlation coefficients were found within normal (r=0.55) and glaucomatous (r=0.48) eyes. The full separation between normal and glaucomatous eyes based on the RNFL attenuation coefficient yielded an area under the ROC (AROC) of 1.0. The AROC for the RNFL thickness was 0.9875. No statistically significant difference between the two measures was found by comparing the AROC. RNFL attenuation coefficients may thus replace current RNFL thickness measurements or be combined with it to improve glaucoma diagnosis.

  10. LANDSAT/coastal processes

    NASA Technical Reports Server (NTRS)

    James, W. P. (Principal Investigator); Hill, J. M.; Bright, J. B.

    1977-01-01

    The author has identified the following significant results. Correlations between the satellite radiance values water color, Secchi disk visibility, turbidity, and attenuation coefficients were generally good. The residual was due to several factors including systematic errors in the remotely sensed data, errors, small time and space variations in the water quality measurements, and errors caused by experimental design. Satellite radiance values were closely correlated with the optical properties of the water.

  11. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development

    NASA Astrophysics Data System (ADS)

    Ramm, Daniel

    2018-02-01

    Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.

  12. Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data

    NASA Astrophysics Data System (ADS)

    Tuell, Grady H.; Feygels, Viktor; Kopilevich, Yuri; Weidemann, Alan D.; Cunningham, A. Grant; Mani, Reza; Podoba, Vladimir; Ramnath, Vinod; Park, J. Y.; Aitken, Jen

    2005-08-01

    Estimation of water column optical properties and seafloor reflectance (532 nm) is demonstrated using recent SHOALS data collected at Fort Lauderdale, Florida (November, 2003). To facilitate this work, the first radiometric calibrations of SHOALS were performed. These calibrations permit a direct normalization of recorded data by converting digitized counts at the output of the SHOALS receivers to input optical power. For estimation of environmental parameters, this normalization is required to compensate for the logarithmic compression of the signals and the finite frequency of the bandpass of the detector/amplifier. After normalization, the SHOALS data are used to estimate the backscattering coefficient, the beam attenuation coefficient, the single-scattering albedo, the VSF asymmetry, and seafloor reflectance by fitting simulated waveforms to actual waveforms measured by the SHOALS APD and PMT receivers. The resulting estimates of these water column optical properties are compared to in-situ measurements acquired at the time of the airborne data collections. Images of green laser bottom reflectance are also presented and compared to reflectance estimated from simultaneously acquired passive spectral data.

  13. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    PubMed

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.

  14. Thermal and ultrasonic evaluation of porosity in composite laminates

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.

    1992-01-01

    The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.

  15. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  16. Fast response liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsun

    Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial LC-based VOA. In Chapter 7, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. Through analyzing the structure of this axially-symmetric SPNLC, we construct a 3-D model to explain the observed phenomena. An axially-symmetric sheared polymer network liquid crystal has several attractive features: (1) it is polarization independent, (2) it has gradient phase change, and (3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, the optic axis and phase retardation value of the compensation film can be determined. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.

  17. The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.; Kunova, Olga V.; Kustova, Elena V.; Oblapenko, George P.

    2018-01-01

    A detailed kinetic-theory model for the vibrationally state-resolved transport coefficients is developed taking into account the dependence of the collision cross section on the size of vibrationally excited molecule. Algorithms for the calculation of shear and bulk viscosity, thermal conductivity, thermal diffusion and diffusion coefficients for vibrational states are proposed. The transport coefficients are evaluated for single-component diatomic gases N2, O2, NO, H2, Cl2 in the wide range of temperature, and the effects of molecular diameters and the number of accounted states are discussed. The developed model is applied to study wave propagation in diatomic gases. For the case of initial Boltzmann distribution, the influence of vibrational excitation on the phase velocity and attenuation coefficient is found to be weak. We expect more significant effect in the case of initial thermal non-equilibrium, for instance in gases with optically pumped selected vibrational states.

  18. Remote sensing of the diffuse attenuation coefficient of ocean water. [coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1981-01-01

    A technique was devised which uses remotely sensed spectral radiances from the sea to assess the optical diffuse attenuation coefficient, K (lambda) of near-surface ocean water. With spectral image data from a sensor such as the coastal zone color scanner (CZCS) carried on NIMBUS-7, it is possible to rapidly compute the K (lambda) fields for large ocean areas and obtain K "images" which show synoptic, spatial distribution of this attenuation coefficient. The technique utilizes a relationship that has been determined between the value of K and the ratio of the upwelling radiances leaving the sea surface at two wavelengths. The relationship was developed to provide an algorithm for inferring K from the radiance images obtained by the CZCS, thus the wavelengths were selected from those used by this sensor, viz., 443, 520, 550 and 670 nm. The majority of the radiance arriving at the spacecraft is the result of scattering in the atmospheric and is unrelated to the radiance signal generated by the water. A necessary step in the processing of the data received by the sensor is, therefore, the effective removal of these atmospheric path radiance signals before the K algorithm is applied. Examples of the efficacy of these removal techniques are given together with examples of the spatial distributions of K in several ocean areas.

  19. A Semianalytical Ocean Color Inversion Algorithm with Explicit Water Column Depth and Substrate Reflectance Parameterization

    NASA Technical Reports Server (NTRS)

    Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2015-01-01

    A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.

  20. Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Almeida Junior, T. Airton; Nogueira, M. S.; Vivolo, V.; Potiens, M. P. A.; Campos, L. L.

    2017-11-01

    The probability of a photon interacting in a particular way with a given material, per unit path length, is usually called the linear attenuation coefficient (μ), and it is of great importance in radiation shielding. Plates of barite concrete with different thickness were fabricated in order to determining their mass attenuation coefficients at different energies. The plates were irradiated with ISO X-ray beams (N60, N80, N110 and N150), generated by Pantak HF320 X-ray equipment, at the IPEN laboratory. The mass attenuation coefficients of barite concrete have been measured using X-ray attenuation for different thicknesses of barite concrete qualities of the ISO. The attenuator material issued from different regions of Brazil. The experimental procedure in this research was validated by comparison between the experimental measurements of mass attenuation coefficients and coefficients determined by the same atomic composition, using as a tool to XCOM. The highest value of (μ/ρ) found experimentally was in the energy of 48 keV, in ISO 60 N quality, being 1.32(±0.49) for purple barite; 1.47(±0.41) for white barite and 1.75(±0.41) for cream barite. The determination of the chemical composition of the barite samples was of fundamental importance for the characterization of these materials. It can be seen that both calculated and measured data for the linear attenuation coefficients increase with the increasing materials density, as it is expected. It can be concluded that the photon attenuation coefficients depends on the photon energy and the materials density is the main contribution to the photon attenuation coefficients, which is important for radiation shielding.

  1. Variation on Molecular Structure, Crystallinity, and Optical Properties of Dentin Due to Nd:YAG Laser and Fluoride Aimed at Tooth Erosion Prevention

    PubMed Central

    Freitas, Anderson Z.; Bachmann, Luciano; Benetti, Carolina; Ana, Patricia A.

    2018-01-01

    This in vitro study evaluated the compositional, crystalline, and morphological effects promoted by Nd:YAG laser on root dentin, and verified the effects of laser and topical acidulated phosphate fluoride application (APF-gel) on dentin erosion. 180 bovine dentin slabs were randomized into 4 groups (n = 45): G1–untreated, G2–APF-gel (1.23% F−, 4 min), G3–Nd:YAG (1064 nm, 84.9 J/cm2, 10 Hz), and G4–APF-gel application followed by Nd:YAG laser irradiation. The compositional, crystalline, and morphological effects promoted by treatments were investigated on five samples of each experimental group. The other samples were submitted to a 5-day, 10-day, or 15-day erosive and abrasive demineralization and remineralization cycling in order to create erosion lesions. The area and depth of lesions, as well as the optical attenuation coefficient, were assessed, and all data were statistically analysed (p < 0.05). Nd:YAG laser promoted the reduction of carbonate, the formation of tetracalcium phosphate, as well as the melting and recrystallization of the dentin surface. Laser significantly decreased the area and depth of erosion lesions and altered the optical attenuation coefficient when compared to untreated and APF-gel groups, but the association of APF-gel and laser did not promote an additional effect. Nd:YAG laser irradiation can be a promissory treatment to prevent dentin erosion and the abrasion process. PMID:29389868

  2. The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia

    NASA Astrophysics Data System (ADS)

    Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.

    2010-06-01

    Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.

  3. Laser Doppler Radar System Calibration and Rainfall Attenuation Measurements

    DOT National Transportation Integrated Search

    1978-10-01

    The atmospheric attenuation and backscatter coefficients have been measured at the 10.6-micrometers wavelength of the CO2 laser in rainstorms. Data are presented to show the increase in attenuation coefficient with rainfall rate. Backscatter coeffici...

  4. Optical choppers with rotational elements: modeling, design and prototypes

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin; Cira, Octavian; Demian, Dorin

    2017-05-01

    We present a brief overview of our contributions regarding the analysis and design of optical choppers. Their applications range numerous domains, from optical sensing in radiometry or telescopes to laser manufacturing and biomedical imaging - for example for the controlled attenuation of light, the elimination of selected spectral domains, or the switching of optical paths. While these aspects are pointed out, the paper describes our analysis, modeling, and manufacturing of prototypes for choppers with: (a) wheels with windows with linear margins; (b) wheels with windows with non-linear margins (semi-circular or elliptical), outward or inward; (c) rotational shafts with different shapes, with slits or with holes. While variant (a) represents classical choppers, variant (b) represents the "eclipse" choppers that we have developed and also patented for the solution with two adjustable wheels that can produce circular windows. Variant (c), of choppers with shafts is also a patent application. Their transmission functions are discussed, for the shape of the laser pulses produced and for the attenuation coefficients obtained. While this discussion has been completed analytically for top-hat laser beams, it has been modeled using simulations for Gaussian and Bessel beams. Design, manufacturing aspects, and prototypes of the different chopper configurations complete the presentation.

  5. Variable photonic crystal fiber optical attenuator combining air hole reduction induced radiation and bending loss

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh

    2018-06-01

    Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.

  6. Variable photonic crystal fiber optical attenuator combining air hole reduction induced radiation and bending loss

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh

    2018-02-01

    Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.

  7. In Vivo Detection of the Effect of Electroacupuncture on “Zusanli” Acupoint in Rats with Adjuvant-Induced Arthritis through Optical Coherence Tomography

    PubMed Central

    Yang, Hui; Zhou, Yan; Wu, Xiuli; Su, Chengkang; Long, Jia; Lin, Jin

    2016-01-01

    This study aimed to investigate the effect of electroacupuncture (EA) treatment through optical coherence tomography (OCT) in vivo on rats with adjuvant-induced arthritis. OCT images were obtained from the ankle of the right hind paws of the rats in control, model, and EA groups before modelling and 1 day, 8 days, 15 days, 22 days, and 29 days after modelling. Results demonstrated that the OCT signal of the ankle of the right hind paws of the rats was indistinct compared to 1 day after modelling and before modelling in the EA group. In the EA group, the light averaged attenuation coefficients of the ankle tissues decreased as treatment duration was prolonged after EA was administered (3.43, 2.96, 2.61, 2.42, and 2.29 mm−1, resp.). There was a significant difference in attenuation coefficient decrease between the 29th d and the 1st d for EA group compared with control group (P < 0.01). This condition indicated that the light absorption of the ankle of the treated rats in the EA group decreased. Therefore, OCT can be used to monitor the effect of treatment on rats with arthritis in vivo. PMID:27981046

  8. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas Ramos; Yoshimura, Tania Mateus; Ribeiro, Martha Simões; Zanardi de Freitas, Anderson

    2016-08-01

    As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg/dL in glucose concentration.

  9. Apparent Optical Properties in Waters Influenced by the Mississippi River

    NASA Technical Reports Server (NTRS)

    D'Sa, E.; Miller, R. L.; McKee, B. A.; Trzaska, R.

    2002-01-01

    In-water downwelling irradiance (E(sub d)) and upwelling radiance (L(sub u)) were measured in coastal waters influenced by the Mississippi River at wavelengths corresponding to SeaWiFS spectral bands in April of 2000. Results of derived apparent optical properties (AOP's) such as spectral diffise attenuation coefficient for downwelling irradiance (K(sub d)) suggest that they are mainly influenced by phytoplankton chlorophyll. Large variations in chlorophyll concentrations (0.2 to greater than 10 mg per cubic meters) correspond to variations in K(sub d) at 443 nm ranging from about 0.1 to greater than 1.5 per meter. Attenuation values at 443 nm generally peaked (or were minimal at 555 nm) at depths where chlorophyll concentrations were high. Above water remote sensing reflectance R(sub rs) (443) derived from E(sub d) and L(sub u) shows good agreement to surface chlorophyll. Ratios of remote sensing reflectance, R(sub rs)(443/R(sub rs)(555)versus chlorophyll suggests a potential for obtaining a suitable bio-optical algorithm for the region influenced by the Mississippi River.

  10. Ultraviolet radiation and bio-optics in Crater Lake, Oregon

    USGS Publications Warehouse

    Hargreaves, B.R.; Girdner, S.F.; Buktenica, M.W.; Collier, R.W.; Urbach, E.; Larson, G.L.

    2007-01-01

    Crater Lake, Oregon, is a mid-latitude caldera lake famous for its depth (594 m) and blue color. Recent underwater spectral measurements of solar radiation (300-800 nm) support earlier observations of unusual transparency and extend these to UV-B wavelengths. New data suggest that penetration of solar UVR into Crater Lake has a significant ecological impact. Evidence includes a correlation between water column chlorophyll-a and stratospheric ozone since 1984, the scarcity of organisms in the upper water column, and apparent UV screening pigments in phytoplankton that vary with depth. The lowest UV-B diffuse attenuation coefficients (K d,320) were similar to those reported for the clearest natural waters elsewhere, and were lower than estimates for pure water published in 1981. Optical proxies for UVR attenuation were correlated with chlorophyll-a concentration (0-30 m) during typical dry summer months from 1984 to 2002. Using all proxies and measurements of UV transparency, decadal and longer cycles were apparent but no long-term trend since the first optical measurement in 1896. ?? 2007 Springer Science+Business Media B.V.

  11. Broadly tunable thin-film intereference coatings: active thin films for telecom applications

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias

    2003-06-01

    Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.

  12. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  13. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  14. Using of borosilicate glass waste as a cement additive

    NASA Astrophysics Data System (ADS)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-08-01

    Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  15. Ab-initio Simulations of Molten Ni Alloys

    DTIC Science & Technology

    2010-04-01

    yielding trajectories that sample an equilibrium distribution corresponding to an ensemble with fixed particle number, volume and temperature (i.e... levitation and optical dilatometry they find a coefficient of thermal expansion of 1.2 × 10−4K−1 for Ni-25Al (at.%). Variations in molar volume with...results are in much better agreement with the results of non-contact den- sity experiments, such as gamma ray attenuation and electromagnetic levitation

  16. Attenuation Coefficient Estimation of the Healthy Human Thyroid In Vivo

    NASA Astrophysics Data System (ADS)

    Rouyer, J.; Cueva, T.; Portal, A.; Yamamoto, T.; Lavarello, R.

    Previous studies have demonstrated that attenuation coefficients can be useful towards characterizing thyroid tissues. In this work, ultrasonic attenuation coefficients were estimated from healthy human thyroids in vivo using a clinical scanner. The selected subjects were five young, healthy volunteers (age: 26 ± 6 years old, gender: three females, two males) with no reported history of thyroid diseases, no palpable thyroid nodules, no smoking habits, and body mass index less than 30 kg/m2. Echographic examinations were conducted by a trained sonographer using a SonixTouch system (Ultrasonix Medical Corporation, Richmond, BC) equipped with an L14-5 linear transducer array (nominal center frequency of 10 MHz, transducer footprint of 3.8 cm). Radiofrequency data corresponding to the collected echographic images in both transverse and longitudinal views were digitized at a sampling rate of 40 MHz and processed with Matlab codes (MathWorks, Natick, MA) to estimate attenuation coefficients using the spectral log difference method. The estimation was performed using an analysis bandwidth spanning from 4.0 to 9.0 MHz. The average value of the estimated ultrasonic attenuation coefficients was equal to 1.34 ± 0.15 dB/(cm.MHz). The standard deviation of the estimated average attenuation coefficient across different volunteers suggests a non-negligible inter-subject variability in the ultrasonic attenuation coefficient of the human thyroid.

  17. Evaluation of structural remodeling of the atria with OCT in a chronic rat model of myocardial infarction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eberle, Melissa M.; Thorn, Stephanie; Young, Lawerence; Pfau, Daniel; Madwed, Jeffrey; Small, Kersten; Kilmas, Michael; Choma, Michael A.; Sinusas, Albert J.

    2017-02-01

    Atrial fibrillation (AF) occurs following myocardial infarction (MI) and is associated with left ventricular dysfunction, which promotes the development of atrial remodeling and permanent atrial fibrosis. The purpose of this study was determining the effects of MI on left atrial (LA) remodeling with and without therapy with an angiotensin converting enzyme inhibition (ACEi) utilizing optical coherence tomography (OCT). As the composition of the myocardial tissue changes during LA remodeling the optical attenuation of the light will also change providing a metric to quantify the structural remodeling process. Lewis rats (240-275 g) underwent either surgical ligation of left coronary artery creating chronic MI, or SHAM surgery. 13 weeks post-surgery, ex vivo OCT imaging was performed of the LA appendage. Depth-resolved, attenuation coefficient volumes were calculated and the resulting atrial wall attenuation values were analyzed for four experimental groups: SHAM, SHAM with ACEi, MI no ACEi, and MI with ACEi. Quantification of tissue attenuation was performed and shown to significantly increase with MI in association with increases in collagen as verified with corresponding histological sectioning. Fractal analysis of the LA wall trabeculation patterns, 100 µm below the surface, was performed to quantify wall thickening associated with LA remodeling. A significant increase in fractal dimension was determined post MI compared to SHAM corresponding to a loss of the trabeculation pattern and wall thickening. The results from this study demonstrate OCT as an imaging technique capable of investigate LA remodeling with high resolution and label-free optical contrast processing.

  18. Thermo-optic devices on polymer platform

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Keil, Norbert

    2016-03-01

    Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.

  19. Improvement of scattering correction for in situ coastal and inland water absorption measurement using exponential fitting approach

    NASA Astrophysics Data System (ADS)

    Ye, Huping; Li, Junsheng; Zhu, Jianhua; Shen, Qian; Li, Tongji; Zhang, Fangfang; Yue, Huanyin; Zhang, Bing; Liao, Xiaohan

    2017-10-01

    The absorption coefficient of water is an important bio-optical parameter for water optics and water color remote sensing. However, scattering correction is essential to obtain accurate absorption coefficient values in situ using the nine-wavelength absorption and attenuation meter AC9. Establishing the correction always fails in Case 2 water when the correction assumes zero absorption in the near-infrared (NIR) region and underestimates the absorption coefficient in the red region, which affect processes such as semi-analytical remote sensing inversion. In this study, the scattering contribution was evaluated by an exponential fitting approach using AC9 measurements at seven wavelengths (412, 440, 488, 510, 532, 555, and 715 nm) and by applying scattering correction. The correction was applied to representative in situ data of moderately turbid coastal water, highly turbid coastal water, eutrophic inland water, and turbid inland water. The results suggest that the absorption levels in the red and NIR regions are significantly higher than those obtained using standard scattering error correction procedures. Knowledge of the deviation between this method and the commonly used scattering correction methods will facilitate the evaluation of the effect on satellite remote sensing of water constituents and general optical research using different scattering-correction methods.

  20. Changes in cytochrome-oxidase oxidation in the occipital cortex during visual simulation: improvement in sensitivity by the determination of the wavelength dependence of the differential pathlength

    NASA Astrophysics Data System (ADS)

    Kohl-Bareis, Matthias; Nolte, Christian; Heekeren, Hauke R.; Horst, Susanne; Scholz, J.; Obrig, Hellmuth; Villringer, Arno

    1998-01-01

    In this study we assess changes in the hemoglobin oxygenation (oxy-Hb, deoxy-Hb) and the Cytochrome-C-Oxidase redox state (Cyt-ox) in the occipital cortex during visual stimulation by near infrared spectroscopy. For the calculation of changes in oxy-Hb, deoxy-Hb and Cyt-ox from attenuation data via a modified Beer-Lambert equation, the wavelength dependence of the differential pathlength factor (DPF), i.e. the ratio of the mean optical pathlength and the physical light-source-detector separation, has to be taken into account. The wavelength dependence of the DPF determines the crosstalk between the different concentrations and is therefore essential for a high sensitivity. Here a simple method is suggested to estimate the wavelength dependence of the DPF((lambda) ) from pulse induced attenuation changes measured on the head of adult humans. The essence is that the DPF is the ratio of the attenuation changes over absorption coefficient changes and the spectral form of the pulse correlated absorption coefficient change is proportional to the extinction coefficient of blood. Indicators for the validity of the DPF((lambda) ) derived for wavelengths between 700 and 970 nm are the stability of the calculated oxy-Hb, deoxy-Hb and Cyt-ox signals with variations of the wavelength range included for their calculation and its overall agreement with the data available from the literature. The DPF derived from pulse measurements was used for the analysis of attenuation data from cortical stimulations. We show that Cyt-ox in the occipital cortex of human subjects is transiently oxidized during visual stimulation.

  1. Changes in cytochrome-oxidase oxidation in the occipital cortex during visual simulation: improvement in sensitivity by the determination of the wavelength dependence of the differential pathlength

    NASA Astrophysics Data System (ADS)

    Kohl, Matthias; Nolte, Christian; Heekeren, Hauke R.; Horst, Susanne; Scholz, Udo; Obrig, Hellmuth; Villringer, Arno

    1997-12-01

    In this study we assess changes in the hemoglobin oxygenation (oxy-Hb, deoxy-Hb) and the Cytochrome-C-Oxidase redox state (Cyt-ox) in the occipital cortex during visual stimulation by near infrared spectroscopy. For the calculation of changes in oxy-Hb, deoxy-Hb and Cyt-ox from attenuation data via a modified Beer-Lambert equation, the wavelength dependence of the differential pathlength factor (DPF), i.e. the ratio of the mean optical pathlength and the physical light-source-detector separation, has to be taken into account. The wavelength dependence of the DPF determines the crosstalk between the different concentrations and is therefore essential for a high sensitivity. Here a simple method is suggested to estimate the wavelength dependence of the DPF((lambda) ) from pulse induced attenuation changes measured on the head of adult humans. The essence is that the DPF is the ratio of the attenuation changes over absorption coefficient changes and the spectral form of the pulse correlated absorption coefficient change is proportional to the extinction coefficient of blood. Indicators for the validity of the DPF((lambda) ) derived for wavelengths between 700 and 970 nm are the stability of the calculated oxy-Hb, deoxy-Hb and Cyt-ox signals with variations of the wavelength range included for their calculation and its overall agreement with the data available from the literature. The DPF derived from pulse measurements was used for the analysis of attenuation data from cortical stimulations. We show that Cyt-ox in the occipital cortex of human subjects is transiently oxidized during visual stimulation.

  2. A Pilot Comparative Study of Quantitative Ultrasound, Conventional Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult Nonalcoholic Fatty Liver Disease

    PubMed Central

    Paige, Jeremy S.; Bernstein, Gregory S.; Heba, Elhamy; Costa, Eduardo A. C.; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C.; Valasek, Mark A.; Lin, Grace Y.; Han, Aiguo; Erdman, John W.; O’Brien, William D.; Andre, Michael P.; Loomba, Rohit; Sirlin, Claude B.

    2017-01-01

    OBJECTIVE The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). SUBJECTS AND METHODS In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift–based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. RESULTS CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). CONCLUSION Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic steatosis grade in patients with NAFLD. PMID:28267360

  3. A Pilot Comparative Study of Quantitative Ultrasound, Conventional Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult Nonalcoholic Fatty Liver Disease.

    PubMed

    Paige, Jeremy S; Bernstein, Gregory S; Heba, Elhamy; Costa, Eduardo A C; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C; Valasek, Mark A; Lin, Grace Y; Han, Aiguo; Erdman, John W; O'Brien, William D; Andre, Michael P; Loomba, Rohit; Sirlin, Claude B

    2017-05-01

    The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift-based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic steatosis grade in patients with NAFLD.

  4. Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals

    NASA Astrophysics Data System (ADS)

    Kohl, Matthias; Nolte, Christian; Heekeren, Hauke R.; Horst, Susanne; Scholz, Udo; Obrig, Hellmuth; Villringer, Arno

    1998-06-01

    For the calculation of changes in oxyhaemoglobin, deoxyhaemoglobin and the redox state of cytochrome-c-oxidase from attenuation data via a modified Beer-Lambert equation the wavelength dependence of the differential pathlength factor (DPF) has to be taken into account. The DPF, i.e. the ratio of the mean optical pathlength and the physical light source-detector separation at each wavelength, determines the crosstalk between the different concentrations and is therefore essential for a sensitive detection of chromophore changes. Here a simple method is suggested to estimate the wavelength dependence of the DPF from pulse-induced attenuation changes measured on the head of adult humans. The essence is that the DPF is the ratio of the attenuation changes over absorption coefficient changes, and that the spectral form of the pulse correlated absorption coefficient change can be assumed to be proportional to the extinction coefficient of blood. Indicators for the validity of the DPF derived for wavelengths between 700 and 970 nm are the stability of the calculated haemoglobin and cytochrome signals with variations of the wavelength range included for their calculation and its overall agreement with the data available from the literature.

  5. Impacts of PM concentrations on visibility impairment

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Wang, Mei-mei; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu

    2016-11-01

    In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) sensor was used to monitor the atmospheric visibility. The CAPS system mainly includes a LED light source, a band-pass filter, an optical resonant cavity (composed of two high mirror, reflectivity is greater than 99.99%), a photoelectric detector and a lock-in amplifier. The 2L/min flow rate, the optical sensor rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. An Allan variance analysis was carried out evaluating the optical system stability (and hence the maximum averaging time for the minimum detection limit) of the CAPS system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. During this period, the extinction coefficient was correlated with PM2.5 mass (0.88), the extinction coefficient was correlated with PM10 mass (0.85). The atmospheric visibility was correlated with PM2.5 mass (0.74). The atmospheric visibility was correlated with PM10 mass (0.66).

  6. Optical constants of neat liquid-chemical warfare agents and related materials measured by infrared spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Yang, C. S.-C.; Williams, B. R.; Hulet, M. S.; Tiwald, T. E.; Miles, R. W., Jr.; Samuels, A. C.

    2011-05-01

    We studied various liquids using a vertical attenuated total reflection (ATR) liquid sampling assembly in conjunction with Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE), to determine the infrared optical constants of several bulk liquids related to chemical warfare. The index of refraction, n, and the extinction coefficient, k, of isopropyl methylphosphonofluoridate (Sarin or GB), isopropyl alcohol (IPA) (a precursor of GB), and dimethyl methylphosphonate (DMMP)-a commonly employed simulant for GB, measured by our vertical ATR IR-VASE setup are closely matched to those found in other studies. We also report the optical constants of cyclohexyl methylphosphonofluoridate (GF), 2-(diisopropylamino)ethyl methylphosphonothioate (VX), bis-(2-chloroethyl) sulfide (HD), and 2-chlorovinyl dichloroarsine (L, Lewisite). The ATR IR-VASE technique affords an accurate measurement of the optical constants of these hazardous compounds.

  7. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.

  8. Near-IR extinction and backscatter coefficient measurements in low- and mid-altitude clouds

    NASA Technical Reports Server (NTRS)

    Sztankay, Z. G.

    1986-01-01

    Knowledge of the attenuation and backscattering properties of clouds is required to high resolution for several types of optical sensing systems. Such data was obtained in about 15 hours of flights through clouds in the vicinity of Washington, D.C. The flights were mainly through stratocumulus, altocumulus, stratus, and stratus fractus clouds and covered an altitude and temperature range of 300 to 3200 m and -13 to 17 C. Two instruments were flown, each of which measured the backscatter from close range in two range bins to independently determine both the extinction and backscatter coefficients. The extinction and backscatter coefficients can be obtained from the signals in the two channels of each instrument, provided that the aerosol is uniform over the measurement region. When this assumptions holds, the extinction coefficient is derived basically from the ratio of the signal in the two channels; the backscatter coefficient can then be obtained from the signal in either channel.

  9. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    NASA Technical Reports Server (NTRS)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This optimized composite set of SeaUVSeaUVc algorithms will provide the optical community with improved ability to quantify the role of solar UV radiation in photochemical and photobiological processes in the ocean.

  10. Preparation and thermo-optic switch properties based on chiral azobenzene-containing polyurethane

    NASA Astrophysics Data System (ADS)

    Ye, Feiyan; Qiu, Fengxian; Yang, Dongya; Cao, Guorong; Guan, Yijun; Zhuang, Lin

    2013-07-01

    A chiral azo chromophore compound 4-(4'-nitro-phenyl-diazenyl)-phenyl-1,2-propanediol ether (NPDPPE) was prepared with p-nitroaniline, phenol and R(-)-3-chloro-1,2-propanediol by the diazo-coupling reaction. Then, the chromophore molecule NPDPPE was polymerized with isophorone diisocyanate (IPDI) to obtain novel chiral azobenzene-containing polyurethane (CACPU). The chemical structures of chromophore molecule and CACPU were characterized by the FT-IR and UV-visible spectroscopy. The physical properties (thermal conductivity, thermal diffusion coefficient, and specific heat capacity) and mechanical properties (tensile strength, elongation at break and hardness) of CACPU thin films were measured. The refractive index and thermo-optic (TO) coefficient (dn/dT) of CACPU thin film was investigated for TE (transversal electric) polarizations by using an attenuated total reflection (ATR) configuration at the wavelengths of 532, 650 and 850 nm. The transmission loss of film was measured using the charge coupled device (CCD) digital imaging devices. A Y-branch switch and Mach-Zehnder interferometer (MZI) thermo-optic switches based on thermo-optic effect were proposed and the performances of switches were simulated. The results showed that the power consumption of the Y-branch thermo-optic switch was only 3.28 mW. The rising and falling times of Y-branch and MZI switches were 12.0 ms and 2.0 ms, respectively. The conclusion has potential significance to improve and develop new Y-branch digital optical switch (DOS), MZI thermo-optic switch, directional coupler (DC) switch and optical modulators.

  11. Instrument for underwater high-angular resolution volume scattering function measurements

    NASA Astrophysics Data System (ADS)

    Dueweke, Paul W.; Bolstad, Jay; Leonard, Donald A.; Sweeney, Harold E.; Boyer, Philip A.; Winkler, Erik M.

    1997-02-01

    A prototype instrument for in situ measurements of the volume scattering function (VSF) and the beam attenuation of water has been built and tested in the EOO laboratory. The intended application of the instrument is the enhancement of Navy operational optical systems for finding and imaging underwater objects such as mines. A description of the apparatus that was built and preliminary laboratory data will be presented. The instrument measures the VSF, (beta) ((theta) ), near the optical axis in both the forward and back directions from approximately 0.2 degrees off axis to approximately 5 degrees in 0.1 degree steps and at side angles of 45 degrees, 90 degrees, and 135 degrees. A diode- pumped, frequency-doubled, Nd:YAG laser provides the 532 nm light. This is the most used wavelength for underwater optical systems. The forward and back scattered light is collected and focused to a plane where scattering angles in the water are mapped onto concentric rings. At this focal plane, a conical reflector compresses the annular optical data onto a line along the cone axis where it is read by a MOS linear image array providing over 500 separate angular measurements. The beam attenuation coefficient, c, is also measured by means of a unique dual path configuration.

  12. UV/PAR radiation and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2013-04-01

    Surface waters from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV (ultraviolet) radiation and PAR (photosynthetically active radiation) diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of both UV and PAR solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. While the Mackenzie input is the main driver of CDOM dynamics in low salinity waters, locally, primary production can create significant increases in CDOM. Extrapolating CDOM to DOC relationships, we estimate that ∼16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. The discharges of DOC and its chromophoric subset (CDOM) by the Mackenzie River during the MALINA cruise are estimated as ∼0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence excitation/emission matrix spectroscopy (EEMS) and parallel factor (PARAFAC) analysis. Our results showed an aquatic dissolved organic matter (DOM) component (C1), probably produced in the numerous lakes of the watershed, that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta Sector. This aquatic DOM could partially explain the high CDOM spectral slopes observed in the Beaufort Sea.

  13. Mass attenuation coefficients of several bio-adhesive based oil palm particleboards at 16.59-25.26 keV photon energies

    NASA Astrophysics Data System (ADS)

    Abdu Mustapa, U. A.; Yusof, M. F. Mohd; Hamid, P. N. K. Abd; Hashim, R.; Ahmad, M. Z.; Aziz, M. Z. Abd

    2018-01-01

    Particleboards made of oil palm with addition of polylactic acid (PLA), starch, and fish oil were fabricated with target density of 1.0 g/cm3. The mass attenuation coefficients of the particleboards were measured using x-ray fluorescence (XRF) configuration in conjunction with niobium, molybdenum, palladium and tin metal plates that provided Kα1 photon energies between 16.59 and 25.26 keV. The results were compared to the calculated value of water using XCOM. The results showed that all particleboards having mass attenuation coefficients near to the value of water with the mass attenuation coefficient different less than 0.25. The method of fabrication did not give significant different to the mass attenuation coefficients of the particleboards. The results had indicated the potential of bio-adhesive based palm oil particleboards to be developed as phantoms for low energy photons.

  14. NOTE: The modified Beer Lambert law revisited

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Herman, P.; Eke, A.

    2006-03-01

    The modified Beer Lambert law (MBLL) is the basis of continuous-wave near-infrared tissue spectroscopy (cwNIRS). The differential form of MBLL (dMBLL) states that the change in light attenuation is proportional to the changes in the concentrations of tissue chromophores, mainly oxy- and deoxyhaemoglobin. If attenuation changes are measured at two or more wavelengths, concentration changes can be calculated. The dMBLL is based on two assumptions: (1) the absorption of the tissue changes homogeneously, and (2) the scattering loss is constant. It is known that absorption changes are usually inhomogeneous, and therefore dMBLL underestimates the changes in concentrations (partial volume effect) and every calculated value is influenced by the change in the concentration of other chromophores (cross-talk between chromophores). However, the error introduced by the second assumption (cross-talk of scattering changes) has not been assessed previously. An analytically treatable special case (semi-infinite, homogeneous medium, with optical properties of the cerebral cortex) is utilized here to estimate its order of magnitude. We show that the per cent change of the transport scattering coefficient and that of the absorption coefficient have an approximately equal effect on the changes of attenuation, and a 1% increase in scattering increases the estimated concentration changes by about 0.5 µM.

  15. The modified Beer-Lambert law revisited.

    PubMed

    Kocsis, L; Herman, P; Eke, A

    2006-03-07

    The modified Beer-Lambert law (MBLL) is the basis of continuous-wave near-infrared tissue spectroscopy (cwNIRS). The differential form of MBLL (dMBLL) states that the change in light attenuation is proportional to the changes in the concentrations of tissue chromophores, mainly oxy- and deoxyhaemoglobin. If attenuation changes are measured at two or more wavelengths, concentration changes can be calculated. The dMBLL is based on two assumptions: (1) the absorption of the tissue changes homogeneously, and (2) the scattering loss is constant. It is known that absorption changes are usually inhomogeneous, and therefore dMBLL underestimates the changes in concentrations (partial volume effect) and every calculated value is influenced by the change in the concentration of other chromophores (cross-talk between chromophores). However, the error introduced by the second assumption (cross-talk of scattering changes) has not been assessed previously. An analytically treatable special case (semi-infinite, homogeneous medium, with optical properties of the cerebral cortex) is utilized here to estimate its order of magnitude. We show that the per cent change of the transport scattering coefficient and that of the absorption coefficient have an approximately equal effect on the changes of attenuation, and a 1% increase in scattering increases the estimated concentration changes by about 0.5 microM.

  16. Technical note: Aerosol light absorption measurements with a carbon analyser - Calibration and precision estimates

    NASA Astrophysics Data System (ADS)

    Ammerlaan, B. A. J.; Holzinger, R.; Jedynska, A. D.; Henzing, J. S.

    2017-09-01

    Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable.

  17. Propagation of evanescent waves in multimode chalcogenide fiber immersed in an aqueous acetone solution: theory and experiment

    NASA Astrophysics Data System (ADS)

    Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.

    2017-04-01

    Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.

  18. Features of tropospheric and stratospheric dust.

    PubMed

    Elterman, L; Wexler, R; Chang, D T

    1969-05-01

    A series of 119 profiles obtained over New Mexico comprise aerosol attenuation coefficients vs altitude to about 35 km. These profiles show the existence of several features. A surface convective dust layer extending up to about 5 km is seasonally dependent. Also, a turbidity maximum exists below the tropopause. The altitude of an aerosol maximum in the lower stratosphere is located just below that of the minimum temperature. The colder the minimum temperature, the greater is the aerosol content of the layer. This relationship suggests that the 20-km dust layer is due to convection in tropical air and advection to higher latitudes. Computed averages of optical thickness show that abatement of stratospheric dust from the Mt. Agung eruption became evident in April 1964. Results based on seventy-nine profiles characterizing volcanic dust abatement indicate that above 26 km, the aerosol scale height averages 3.75 km. Extrapolating with this scale height, tabulations are developed for uv, visible, and ir attenuation to 50 km. Optical mixing ratios are used to examine the aerosol concentrations at various altitudes, including a layer at 26 km having an optical thickness 10(-3) for 0.55-micro wavelength.

  19. RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.

    PubMed

    Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J

    2010-01-01

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.

  20. RadBall™ Technology Testing and MCNP Modeling of the Tungsten Collimator

    PubMed Central

    Farfán, Eduardo B.; Foley, Trevor Q.; Coleman, J. Rusty; Jannik, G. Timothy; Holmes, Christopher J.; Oldham, Mark; Adamovics, John; Stanley, Steven J.

    2010-01-01

    The United Kingdom’s National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall™, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall™ consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall™ has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall™ technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall™ testing and modeling accomplished at SRNL. PMID:21617740

  1. Measurement of X-ray mass attenuation coefficients in biological and geological samples in the energy range of 7-12keV.

    PubMed

    Trunova, Valentina; Sidorina, Anna; Kriventsov, Vladimir

    2015-01-01

    Information about X-ray mass attenuation coefficients in different materials is necessary for accurate X-ray fluorescent analysis. The X-ray mass attenuation coefficients for energy of 7-12keV were measured in biological (Mussel and Oyster tissues, blood, hair, liver, and Cabbage leaves) and geological (Baikal sludge, soil, and Alaskite granite) samples. The measurements were carried out at the EXAFS Station of Siberian Synchrotron Radiation Center (VEPP-3). Obtained experimental mass attenuation coefficients were compared with theoretical values calculated for some samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Mass attenuation coefficient of chromium and manganese compounds around absorption edge.

    PubMed

    Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B

    2009-01-01

    The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.

  3. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  4. Importance of solar subsurface heating in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.

    2001-12-01

    The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.

  5. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M. A.; Cernohorsky, Paul; de Bruin, Daniel M.; van der Pol, Edwin; Savci-Heijink, Cemile D.; Strackee, Simon D.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-02-01

    Quantification of the OCT signal is an important step toward clinical implementation of a diagnostic tool in cartilage imaging. Discrimination of structural cartilage differences in patients with osteoarthritis is critical, yet challenging. This study assesses the variation in the optical attenuation coefficient (μOCT) between healthy cartilage, repair tissue, bone and layers within repair tissue in a controlled setting. OCT and histology was used to assess goat talus articular surfaces in which central osteochondral defects were created. Exact matches of OCT and histology were selected for research. μOCT measurements were taken from healthy cartilage, repair tissue and bone. Measured μOCT in healthy cartilage was higher compared to both repair tissue and bone tissue. Two possible mechanisms for the difference in attenuation were investigated. We studied morphological parameters in terms of nucleus count, nucleus size and inter-nucleus distance. Collagen content in healthy cartilage and repair tissue was assessed using polarization microscopy. Quantitative analysis of the nuclei did not demonstrate a difference in nucleus size and count between healthy cartilage and repair tissue. In healthy cartilage, cells were spaced farther apart and had a lower variation in local nuclear density compared to repair tissue. Polarization microscopy suggested higher collagen content in healthy cartilage compared to repair tissue. μOCT measurements can distinguish between healthy cartilage, repair tissue and bone. Results suggest that cartilage OCT attenuation measurements could be of great impact in clinical diagnostics of osteoarthritis.

  6. The role of the reflection coefficient in precision measurement of ultrasonic attenuation

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1984-01-01

    Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.

  7. Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven

    2016-07-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.

  8. The Research on the Spectral Characteristics of Sea Fog Based on Caliop and Modis Data

    NASA Astrophysics Data System (ADS)

    Wan, J.; Su, J.; Liu, S.; Sheng, H.

    2018-04-01

    In view of that difficulty of distinguish between sea fog and low cloud by optical remote sensing mean, the research on spectral characteristics of sea fog is focused and carried out. The satellite laser radar CALIOP data and the high spectral MODIS data were obtained from May to December 2017, and the scattering coefficient and the vertical height information were extracted from the atmospheric attenuation of the lower star to extract the sea fog sample points, and the spectral response curve based on MODIS was formed to analyse the spectral response characteristics of the sea fog, thus providing a theoretical basis for the monitoring of sea fog with optical remote sensing image.

  9. Improving the quantitative accuracy of optical-emission computed tomography by incorporating an attenuation correction: application to HIF1 imaging

    NASA Astrophysics Data System (ADS)

    Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.

    2008-10-01

    Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and revealed highly inhomogeneous vasculature perfusion within the tumour. Optical-ECT emission images yielded high-resolution 3D images of the fluorescent protein distribution in the tumour. Attenuation-uncorrected optical-ECT images showed clear loss of signal in regions of high attenuation, including regions of high perfusion, where attenuation is increased by increased vascular ink stain. Application of attenuation correction showed significant changes in an apparent expression of fluorescent proteins, confirming the importance of the attenuation correction. In conclusion, this work presents the first development and application of an attenuation correction for optical-ECT imaging. The results suggest that successful attenuation correction for optical-ECT is feasible and is essential for quantitatively accurate optical-ECT imaging.

  10. Global Mapping of Underwater UV Irradiances and DNA-Weighted Exposures using TOMS and SeaWiFS Data Products

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Krotkov, Nickolay; Herman, Jay; McClain, Charles; Arrigo, Kevin; Robinson, Wayne

    1999-01-01

    The global stratospheric ozone-layer depletion results In an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the SeaWIFS satellite ocean-color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the Case I water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the RT (radiative transfer) quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. The sensitivity study of the underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling the absolute levels of the UVB (280-320nm) and DNA-weighted irradiance underwater are: solar-zenith angle, cloud transmittance, water optical properties, and total ozone. Weekly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly-mean SeaWiFS chlorophyll and diffuse attenuation coefficient products, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The final products include global maps of weekly-average UVB irradiance and DNA-weighted daily exposures at 3m and 10m, and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.

  11. Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars

    NASA Astrophysics Data System (ADS)

    Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai

    2018-05-01

    Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.

  12. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source

    NASA Astrophysics Data System (ADS)

    Panin, V. Y.; Aykac, M.; Casey, M. E.

    2013-06-01

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.

  13. Experimental wave attenuation study over flexible plants on a submerged slope

    NASA Astrophysics Data System (ADS)

    Yin, Zegao; Yang, Xiaoyu; Xu, Yuanzhao; Ding, Meiling; Lu, Haixiang

    2017-12-01

    Using plants is a kind of environmentally-friendly coastal protection to attenuate wave energy. In this paper, a set of experiments were conducted to investigate the wave attenuation performance using flexible grasses on a submerged slope, and the wave attenuation coefficient for these experiments was calculated for different still water depths, slope and grass configurations. It was found that the slope plays a significant role in wave attenuation. The wave attenuation coefficient increases with increasing relative row number and relative density. For a small relative row number, the two configurations from the slope top to its toe and from the slope toe to its top performed equally to a large extent. For a medium relative row number, the configuration from the slope toe to its top performed more poorly than that from the slope top to its toe; however, it performed better than that from the slope top to its toe for a high relative row number. With a single row of grasses close to the slope top from the slope toe, the wave attenuation coefficient shows double peaks. With increasing grass rows or still water depth, the grass location corresponding to the maximum wave attenuation coefficient is close to the slope top. The dimensional analysis and the least square method were used to derive an empirical equation of the wave attenuation coefficient considering the effect of relative density, the slope, the relative row number and the relative location of the middle row, and the equation was validated to experimental data.

  14. Determination of 210Pb concentration in NORM waste - An application of the transmission method for self-attenuation corrections for gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Bonczyk, Michal

    2018-07-01

    This article deals with the problem of the self-attenuation of low-energy gamma-rays from the isotope of lead 210Pb (46.5 keV) in industrial waste. The 167 samples of industrial waste, belonging to nine categories, were tested by means of gamma spectrometry in order to determine 210Pb activity concentration. The experimental method for self-attenuation corrections for gamma rays emitted by lead isotope was applied. Mass attenuation coefficients were determined for energy of 46.5 keV. Correction factors were calculated based on mass attenuation coefficients, sample density and thickness. A mathematical formula for correction calculation was evaluated. The 210Pb activity concentration obtained varied in the range from several Bq·kg-1 up to 19,810 Bq kg-1. The mass attenuation coefficients varied across the range of 0.19-4.42 cm2·g-1. However, the variation of mass attenuation coefficient within some categories of waste was relatively small. The calculated corrections for self-attenuation were 0.98 - 6.97. The high value of correction factors must not be neglect in radiation risk assessment.

  15. Effects of vegetation canopy on the radar backscattering coefficient

    NASA Technical Reports Server (NTRS)

    Mo, T.; Blanchard, B. J.; Schmugge, T. J.

    1983-01-01

    Airborne L- and C-band scatterometer data, taken over both vegetation-covered and bare fields, were systematically analyzed and theoretically reproduced, using a recently developed model for calculating radar backscattering coefficients of rough soil surfaces. The results show that the model can reproduce the observed angular variations of radar backscattering coefficient quite well via a least-squares fit method. Best fits to the data provide estimates of the statistical properties of the surface roughness, which is characterized by two parameters: the standard deviation of surface height, and the surface correlation length. In addition, the processes of vegetation attenuation and volume scattering require two canopy parameters, the canopy optical thickness and a volume scattering factor. Canopy parameter values for individual vegetation types, including alfalfa, milo and corn, were also determined from the best-fit results. The uncertainties in the scatterometer data were also explored.

  16. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization models by making dynamic quantitative measurements of lesion properties. This has important implications for future applications in clinical dentistry.

  17. Forecasting the ocean optical environment in support of Navy mine warfare operations

    NASA Astrophysics Data System (ADS)

    Ladner, S. D.; Arnone, R.; Jolliff, J.; Casey, B.; Matulewski, K.

    2012-06-01

    A 3D ocean optical forecast system called TODS (Tactical Ocean Data System) has been developed to determine the performance of underwater LIDAR detection/identification systems. TODS fuses optical measurements from gliders, surface satellite optical properties, and 3D ocean forecast circulation models to extend the 2-dimensional surface satellite optics into a 3-dimensional optical volume including subsurface optical layers of beam attenuation coefficient (c) and diver visibility. Optical 3D nowcast and forecasts are combined with electro-optical identification (EOID) models to determine the underwater LIDAR imaging performance field used to identify subsurface mine threats in rapidly changing coastal regions. TODS was validated during a recent mine warfare exercise with Helicopter Mine Countermeasures Squadron (HM-14). Results include the uncertainties in the optical forecast and lidar performance and sensor tow height predictions that are based on visual detection and identification metrics using actual mine target images from the EOID system. TODS is a new capability of coupling the 3D optical environment and EOID system performance and is proving important for the MIW community as both a tactical decision aid and for use in operational planning, improving timeliness and efficiency in clearance operations.

  18. The Airborne Ocean Color Imager - System description and image processing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.

    1992-01-01

    The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.

  19. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser.

    PubMed

    Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki

    2004-12-01

    Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.

  20. The calculation of mass attenuation coefficients of well-known thermoluminescent dosimetric compounds at wide energy range

    NASA Astrophysics Data System (ADS)

    Ermis, Elif Ebru

    2017-02-01

    The photon mass attenuation coefficients of LiF, BaSO4, CaCO3 and CaSO4 thermoluminescent dosimetric compounds at 100; 300; 500; 600; 800; 1,000; 1,500; 2,000; 3,000 and 5,000 keV gamma-ray energies were calculated. For this purpose, FLUKA Monte Carlo (MC) program which is one of the well-known MC codes was used in this study. Furthermore, obtained results were analyzed by means of ROOT program. National Institute of Standards and Technology (NIST) values were also used to compare the obtained theoretical values because the mass attenuation values of the used compounds could not found in the literature. Calculated mass attenuation coefficients were highly in accordance with the NIST values. As a consequence, FLUKA was successful in calculating the mass attenuation coefficients of the most used thermoluminescent compound.

  1. Measurement of exposure buildup factors: The influence of scattered photons on gamma-ray attenuation coefficients

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh

    2018-01-01

    Scattered photon's influence on measured values of attenuation coefficients (μm, cm2g-1) for six low-Z (effective atomic number) building materials, at three photon energies has been estimated. Narrow-beam transmission geometry has been used for the measurements. Samples of commonly used engineering materials (Cements, Clay, Lime-Stone, Plaster of Paris) have been selected for the present study. Standard radioactive sources Cs137 and Co60 have been used for obtaining γ-ray energies 661.66, 1173.24 and 1332.50 keV. The optical thickness (OT) of 0.5 mfp (mean free path) has been found the optimum optical thickness (OOT) for μm-measurement in the selected energy range (661.66-1332.50 keV). The aim of this investigation is to provide neglected information regarding subsistence of scattered photons in narrow beam geometry measurements for low-Z materials. The measurements have been performed for a wide range of sample-thickness (2-26 cm) such that their OT varies between 0.2-3.5 mfp in selected energy range. A computer program (GRIC2-toolkit) has been used for various theoretical computations required in this investigation. It has been concluded that in selected energy-range, good accuracy in μm-measurement of low-Z materials can be achieved by keeping their sample's OT below 0.5 mfp. The exposure buildup factors have been measured with the help of mathematical-model developed in this investigation.

  2. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient measurement from the CAPS PM_{ssa (calculated as the difference from the measured extinction and scattering). The study was carried out in the laboratory with controlled particle generation systems. We used both light absorbing aerosols (Regal 400R pigment black from Cabot Corp. and colloidal graphite - Aquadag - from Agar Scientific) and purely scattering aerosols (ammonium sulphate and polystyrene latex spheres), covering single scattering albedo values from approximately 0.4 to 1.0. A new truncation angle correction for the CAPS PM_{ssa integrated sphere is proposed.

  3. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

    PubMed

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2010-04-01

    Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder. By following the methods used in this article, phantoms matching the optical, acoustic, and mechanical properties of other biological tissues can also be constructed.

  4. Effective atomic numbers and electron density of dosimetric material

    PubMed Central

    Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.

    2009-01-01

    A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566

  5. High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.

    2016-02-01

    The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.

  6. Impact of errors in short wave radiation and its attenuation on modeled upper ocean heat content

    DTIC Science & Technology

    Photosynthetically available radiation (PAR) and its attenuation with the depth represent a forcing (source) term in the governing equation for the...and vertical attenuation of PAR have on the upper ocean model heat content. In the Monterey Bay area, we show that with a decrease in water clarity...attenuation coefficient. For Jerlov’s type IA water (attenuation coefficient is 0.049 m1), the relative error in surface PAR introduces an error

  7. Characterizing light attenuation within Northwest Florida ...

    EPA Pesticide Factsheets

    Water Quality (WQ) condition is based on ecosystem stressor indicators (e.g. water clarity) which are biogeochemically important and critical when considering the Deepwater Horizon oil spill restoration efforts under the 2012 RESTORE Act. Nearly all of the proposed RESTORE projects list restoring WC as a goal, but 90% neglect water clarity. Here, dynamics of optical constituents impacting clarity are presented from a 2009-2011 study within Pensacola, Choctawhatchee, St. Andrew and St. Joseph estuaries (targeted RESTORE sites) in Northwest Florida. Phytoplankton were the smallest contribution to total absorption (at-wPAR) at 412 nm (5-11%), whereas colored dissolved organic matter was the largest (61-79%). Estuarine at-wPAR was significantly related to light attenuation (KdPAR), where individual contributors to clarity and the influence of climatic events were discerned. Provided are conversion equations demonstrating interoperability of clarity indicators between traditional State-measured WQ measures (e.g. secchi disc), optical constituents, and even satellite remote sensing for obtaining baseline assessments. This paper arose from efforts under SSWR and SHC to utilize water quality data as baseline measures for RESTORE Act monitoring in Florida estuaries. This paper aims to (1) describe dynamics of optical constituents that impact water clarity in four NW Florida estuaries, and (2) make a case for the total absorption coefficient (at-wPAR) as a valuable

  8. Effect of sputtering power on MgF2 thin films deposited by sputtering technique under fluorine trapping

    NASA Astrophysics Data System (ADS)

    De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Prathap, C.; Rao, K. Divakar; Sahoo, N. K.

    2016-05-01

    A non-conventional magnetron sputtering technique was explored to deposit magnesium fluoride thin films using the concept of fluorine gas trapping without the introduction of additional fluorine gas flow inside the chamber. The effect of magnetron power from 50 W to 250 W has been explored on structural, optical and physical properties of the samples. Polycrystalline nature with tetragonal crystallinity of the films has been confirmed by GIXRD measurements along with thickness dependency. Monotonic increase of attenuation coefficient (k) with RF power has been explained in terms of target compound dissociation probability. In conclusion, with fluorine trapping method, the samples deposited at lower RF powers (<100 W) are found to be more suitable for optical applications.

  9. Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors

    NASA Astrophysics Data System (ADS)

    Giese, A.; Böhringer, H. J.; Leppert, J.; Kantelhardt, S. R.; Lankenau, E.; Koch, P.; Birngruber, R.; Hüttmann, G.

    2006-02-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique with a micrometer resolution. It allows non-contact / non-invasive analysis of central nervous system tissues with a penetration depth of 1-3,5 mm reaching a spatial resolution of approximately 4-15 μm. We have adapted spectral-domain OCT (SD-OCT) and time-domain OCT (TD-OCT) for intraoperative detection of residual tumor during brain tumor surgery. Human brain tumor tissue and areas of the resection cavity were analyzed during the resection of gliomas using this new technology. The site of analysis was registered using a neuronavigation system and biopsies were taken and submitted to routine histology. We have used post image acquisition processing to compensate for movements of the brain and to realign A-scan images for calculation of a light attenuation factor. OCT imaging of normal cortex and white matter showed a typical light attenuation profile. Tumor tissue depending on the cellularity of the specimen showed a loss of the normal light attenuation profile resulting in altered light attenuation coefficients compared to normal brain. Based on this parameter and the microstructure of the tumor tissue, which was entirely absent in normal tissue, OCT analysis allowed the discrimination of normal brain tissue, invaded brain, solid tumor tissue, and necrosis. Following macroscopically complete resections OCT analysis of the resection cavity displayed the typical microstructure and light attenuation profile of tumor tissue in some specimens, which in routine histology contained microscopic residual tumor tissue. We have demonstrated that this technology may be applied to the intraoperative detection of residual tumor during resection of human gliomas.

  10. Mass attenuation coefficient of tannin-added Rhizophora spp. particleboards at 16.59-25.56 keV photons, and 137Cs and 60Co gamma energies.

    PubMed

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abd; Tajuddin, Abd Aziz; Hashim, Rokiah; Bauk, Sabar; Isa, Norriza Mohd; Isa, Muhammad Jamal Md

    2017-09-01

    The aim of this study was to determine the suitability of tannin-added Rhizophora spp. particleboards as phantom materials in the application of low- and high-energy photons. The tannin-added Rhizophora spp. particleboards and density plug phantoms were created with a target density of 1.0 g/cm 3 . The elemental composition and effective atomic number of the particleboards were measured using energy dispersive X-ray analysis. The mass attenuation coefficient of the particleboards for low-energy photons were measured using the attenuation of X-ray fluorescence. The mass attenuation coefficients of high-energy photons were measured using the attenuation of 137 Cs and 60 Co gamma energies. The results were compared to the calculated value of water using XCOM calculations. The results showed that the effective atomic number and mass attenuation coefficients of tannin-added Rhizophora spp. particleboards were similar to those of water, indicating the suitability of tannin-added Rhizophora spp. particleboards as phantom materials for low- and high-energy photons.

  11. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.

  12. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.

    2017-08-01

    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.

  13. Laser induced heat source distribution in bio-tissues

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-09-01

    During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.

  14. Optical transmission and laser ablation of pathologically changed eye lens capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamidov, A A; Bolshunov, A V; Yuzhakov, A V

    Optical transmission and ablation mechanisms in the secondary cataract films under the impact of 1.06-mm laser radiation are studied. The comparison of incident and transmitted (paraxial) radiation power at different values of the power density is carried out for two types of the eye lens capsule tissue (hard and soft) possessing different optical and mechanical properties. It is found that the effective attenuation coefficient for soft films is almost five times as large as that for the hard ones. The obtained measurement data on the transparency variation in the process of laser action allow the temperature evaluation and the determinationmore » of dominant mechanism of laser ablation, as well as the development of recommendations, providing the prevention or reduction of possible side effects. The obtained results can be used to optimise the regimes of laser impact in the process of the opacified lens capsule removal.« less

  15. Textural analysis of optical coherence tomography skin images: quantitative differentiation between healthy and cancerous tissues

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza

    2017-02-01

    Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.

  16. Feasibility of interstitial near-infrared radiance spectroscopy platform for ex vivo canine prostate studies: optical properties extraction, hemoglobin and water concentration, and gold nanoparticles detection

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.

    2014-05-01

    The canine prostate is a close match for the human prostate and is used in research of prostate cancers. Determining accurately optical absorption and scattering properties of the gland in a wide spectral range (preferably in a minimally invasive way), linking optical properties to concentrations of major endogenous chromophores, and detecting the presence of localized optical inhomogeneities like inclusions of gold nanoparticles for therapeutic and diagnostic purposes, are among the major challenges for researchers. The goal of the article is to demonstrate a feasibility of the multifunctional radiance spectroscopy platform in providing the required information. For ex vivo canine prostate, extraction of the effective attenuation and diffusion coefficients using relative cw radiance measurements was demonstrated in the 650- to 900-nm range. The derived absorption coefficient was decomposed to contributions from 9.0 μM HbO2, 29.6 μM Hb, and 0.47 fractional volume of H2O. Detection of a localized inclusion containing ˜1.5.1010 gold nanorods (0.8 μg Au) at 10 mm distance from the urethra was achieved with the detector in the urethra and the light source in a virtual rectum position. The platform offers the framework for a systematic study of various chromophores in the prostate that can be used as comprehensive diagnostic markers.

  17. Feasibility of interstitial near-infrared radiance spectroscopy platform for ex vivo canine prostate studies: optical properties extraction, hemoglobin and water concentration, and gold nanoparticles detection.

    PubMed

    Grabtchak, Serge; Montgomery, Logan G; Whelan, William M

    2014-05-01

    The canine prostate is a close match for the human prostate and is used in research of prostate cancers. Determining accurately optical absorption and scattering properties of the gland in a wide spectral range (preferably in a minimally invasive way), linking optical properties to concentrations of major endogenous chromophores, and detecting the presence of localized optical inhomogeneities like inclusions of gold nanoparticles for therapeutic and diagnostic purposes, are among the major challenges for researchers. The goal of the article is to demonstrate a feasibility of the multifunctional radiance spectroscopy platform in providing the required information. For ex vivo canine prostate, extraction of the effective attenuation and diffusion coefficients using relative cw radiance measurements was demonstrated in the 650- to 900-nm range. The derived absorption coefficient was decomposed to contributions from 9.0 μM HbO₂, 29.6 μM Hb, and 0.47 fractional volume of H₂O. Detection of a localized inclusion containing ∼1.5·1010 gold nanorods (0.8 μg Au) at 10 mm distance from the urethra was achieved with the detector in the urethra and the light source in a virtual rectum position. The platform offers the framework for a systematic study of various chromophores in the prostate that can be used as comprehensive diagnostic markers.

  18. Attenuation of the Squared Canonical Correlation Coefficient under Varying Estimates of Score Reliability

    ERIC Educational Resources Information Center

    Wilson, Celia M.

    2010-01-01

    Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…

  19. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  20. Effect of an external magnetic field on the mass attenuation coefficients of p-Si and n-Si

    NASA Astrophysics Data System (ADS)

    Yılmaz, D.; Önder, P.

    2018-05-01

    In this study, the mass attenuation coefficients of p-Si and n-Si semiconductor samples have been determined in an external magnetic field. The semiconductor samples were located to the external magnetic field of intensities 0.2 T, 0.4 T, 0.6 T and 0.8 T. The samples were bombarded by 59.5 keV, 80.1 keV, 121.8 keV and 244.7 keV gamma-rays emitted from Am241, Ba133 and Eu152 radioactive sources. The transmitted photons were detected by a CdTe detector. It was observed that the mass attenuation coefficients of p-Si and n-Si semiconductor samples decrease with increasing gamma-ray energy. Also, the mass attenuation coefficients of the samples increase with applying magnetic field intensity.

  1. Anomalous optical behavior of biological media: modifying the optical window of myocardial tissues

    NASA Astrophysics Data System (ADS)

    Splinter, Robert; Raja, M. Yasin A.; Svenson, Robert H.

    1996-05-01

    In medical experimental and clinical treatment modalities of light, laser photocoagulation of ventricular tachycardia amongst others, the success of the application relies on whether or not the procedure operates in the optical window of the light-tissue interaction. The optical window of biological tissues can be determined by spectral scans of the optical properties. Optical anomalies may result from the irradiance, the wavelength, or from the tissue composition itself. The transmission of cw Nd:YAG laser light on myocardial tissue showed a nonlinearity in the transmission curve at approximately 3 kW/mm2 irradiance. The total attenuation coefficient dropped sharp from 1.03 plus or minus 0.04 mm-1 to 0.73 plus or minus 0.05 mm-1 at this point in the curve. On the other hand, aneurysm tissue has a highly organized fiber structure, which serves as light-guides, since the transmission of light along the length of the collagen fibers is approximately 50% higher than the transmission perpendicular to the fiber orientation. In addition, changes in optical properties due to tissue phase changes also influence the penetration depth. These phenomena can be utilized to manipulate the optical penetration to an advantage.

  2. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation

    PubMed Central

    Uusikivi, Jari; Vähätalo, Anssi V.; Granskog, Mats A.; Sommaruga, Ruben

    2010-01-01

    In the Baltic Sea ice, the spectral absorption coefficients for particulate matter (PM) were about two times higher at ultraviolet wavelengths than at photosynthetically available radiation (PAR) wavelengths. PM absorption spectra included significant absorption by mycosporine-like amino acids (MAAs) between 320 and 345 nm. In the surface ice layer, the concentration of MAAs (1.37 μg L−1) was similar to that of chlorophyll a, resulting in a MAAs-to-chlorophyll a ratio as high as 0.65. Ultraviolet radiation (UVR) intensity and the ratio of UVR to PAR had a strong relationship with MAAs concentration (R2 = 0.97, n = 3) in the ice. In the surface ice layer, PM and especially MAAs dominated the absorption (absorption coefficient at 325 nm: 0.73 m−1). In the columnar ice layers, colored dissolved organic matter was the most significant absorber in the UVR (< 380 nm) (absorption coefficient at 325 nm: 1.5 m−1). Our measurements and modeling of UVR and PAR in Baltic Sea ice show that organic matter, both particulate and dissolved, influences the optical properties of sea ice and strongly modifies the UVR exposure of biological communities in and under snow-free sea ice. PMID:20585592

  3. Worldwide Ocean Optics Database (WOOD)

    DTIC Science & Technology

    2002-09-30

    attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the computed results. Extensive algorithm...empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for the...properties, including diffuse attenuation, beam attenuation, and scattering. Data from ONR-funded bio-optical cruises will be given priority for loading

  4. UV/PAR radiations and DOM properties in surface coastal waters of the Canadian shelf of the Beaufort Sea during summer 2009

    NASA Astrophysics Data System (ADS)

    Para, J.; Charrière, B.; Matsuoka, A.; Miller, W. L.; Rontani, J. F.; Sempéré, R.

    2012-11-01

    Water masses from the Beaufort Sea in the Arctic Ocean were evaluated for dissolved organic carbon (DOC), and optical characteristics including UV and PAR diffuse attenuation (Kd), and chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) as part of the MALINA field campaign (30 July to 27 August). Even with relatively low mean daily solar radiation incident on the sea surface (0.12 ± 0.03, 8.46 ± 1.64 and 18.09 ± 4.20 kJ m-2 for UV-B (305 nm), UV-A (380 nm) and PAR, respectively), we report significant light penetration with 10% irradiance depths (Z10% (λ)) reaching 9.5 m for 340 nm (UV-A) radiation in the Eastern sector and 4.5 m in the Mackenzie River influenced area (Western sector). Spectral absorption coefficients (aCDOM (350 nm) (m-1)) were significantly correlated to both diffuse attenuation coefficients (Kd) in the UV-A and UV-B and to DOC concentrations. This indicates CDOM as the dominant attenuator of UV solar radiation and suggests its use as an optical proxy for DOC concentrations in this region. Extrapolating CDOM to DOC relationships, we estimate that ~ 16% of the DOC in the Mackenzie River does not absorb radiation at 350 nm. DOC and CDOM discharges by the Mackenzie River during the MALINA Cruise are estimated as ~ 0.22 TgC and 0.18 TgC, respectively. Three dissolved fluorescent components (C1-C3) were identified by fluorescence Excitation/Emission Matrix Spectroscopy (EEMS) and PARAFAC analysis. Our results showed an in-situ biological component (C1) that co-dominated with a terrestrial humic-like component (C2) in the Mackenzie Delta sector, whereas the protein-like (C3) component dominated in the saltiest waters of the North East sector.

  5. Impact of phytoplankton community structure and function on marine particulate optical properties

    NASA Astrophysics Data System (ADS)

    McFarland, Malcolm Neil

    Phytoplankton are an ecologically important and diverse group of organisms whose distribution, abundance, and population dynamics vary significantly over small spatial (cm) and temporal (minutes) scales in the coastal ocean. Our inability to observe phytoplankton community structure and function at these small scales has severely limited our understanding of the fundamental ecological and evolutionary mechanisms that drive phytoplankton growth, mortality, adaptation and speciation. The goal of this dissertation was to enhance our understanding of phytoplankton ecology by improving in situ observational techniques based on the optical properties of cells, colonies, populations, and communities. Field and laboratory studies were used to determine the effects of phytoplankton species composition, morphology, and physiology on the inherent optical properties of communities and to explore the adaptive significance of bio-optically important cellular characteristics. Initial field studies found a strong association between species composition and the relative magnitude and shape of particulate absorption, scattering, and attenuation coefficient spectra. Subsequent field studies using scanning flow cytometry to directly measure optically important phytoplankton and non-algal particle characteristics demonstrated that the size and pigment content of large (>20 microm) phytoplankton cells and colonies vary significantly with the slope of particulate attenuation and absorption spectra, and with the ratio of particulate scattering to absorption. These relationships enabled visualization of phytoplankton community composition and mortality over small spatial and temporal scales derived from high resolution optical measurements acquired with an autonomous profiling system. Laboratory studies with diverse uni-algal cultures showed that morphological and physiological characteristics of cells and colonies can account for ˜30% of the optical variation observed in natural communities and that complex morphologies and low intracellular pigment concentrations minimize pigment self-shading that could otherwise limit bio-optical fitness. These results demonstrate that optical properties reveal detailed information about the distribution, abundance, morphology, and physiology of phytoplankton that can help explain their ecological dynamics over small spatial scales and the bio-optical function of diverse forms in the ocean.

  6. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca; Goussard, Yves, E-mail: yves.goussard@polymtl.ca

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numericalmore » simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.« less

  7. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    PubMed

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.

  8. Gamma dosimetric parameters in some skeletal muscle relaxants

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2017-09-01

    We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.

  9. Simulation of photon attenuation coefficients for high effective shielding material Lead-Boron Polyethyene

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.

    2017-12-01

    The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.

  10. Polymeric PLC-type thermo-optic optical attenuator fabricated by UV imprint technique

    NASA Astrophysics Data System (ADS)

    Kim, Jin Tae; Choi, Choon-Gi

    2006-01-01

    A planar lightwave circuit-type polymer thermo-optic optical attenuator was fabricated via a UV imprint technique. In order to reduce the step for filling of cores and minimize the detrimental residual slab waveguide, convex ridge-type micro cores for guidance of light were defined with an accuracy of ±0.5 μm on the under-clad by a single step of imprinting. The voltage-controlled polymer optical attenuator showed 30-dB attenuation with 80-mW electrical input power at a wavelength of 1.55 μm. The rise and fall times are less than 5 ms. It displays about 0.2- and 1-dB polarization dependence at 0- and 10-dB attenuations, respectively.

  11. On the propagation of elasto-thermodiffusive surface waves in heat-conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.; Sharma, Y. D.; Sharma, P. K.

    2008-09-01

    The present paper deals with the study of the propagation of Rayleigh surface waves in homogeneous isotropic, thermodiffusive elastic half-space. After developing the formal solution of the model, the secular equations for stress free, thermally insulated or isothermal, and isoconcentrated boundary conditions of the half-space have been obtained. The secular equations have been solved by using irreducible Cardano's method with the help of DeMoivre's theorem in order to obtain phase velocity and attenuation coefficient of waves under consideration. The motion of the surface particles during the Rayleigh surface wave propagation is also discussed and found to be elliptical in general. The inclinations of wave normal with the major axis of the elliptical path of a typical particle have also been computed. Finally, the numerically simulated results regarding phase velocity, attenuation coefficient, specific loss and thermo-mechanical coupling factors of thermoelastic diffusive waves have been obtained and presented graphically. Some very interesting and useful characteristics of surface acoustic waves have been obtained, which may help in improving the fabrication quality of optical and electronic devices in addition to construction and design of materials such as semiconductors and composite structures. Therefore, this work finds applications in the geophysics and electronics industry.

  12. The origin of blue-green window and the propagation of radiation in ocean waters

    NASA Astrophysics Data System (ADS)

    Reghunath, A. T.; Venkataramanan, V.; Suviseshamuthu, D. Victor; Krishnamohan, R.; Prasad, B. Raghavendra

    1991-01-01

    A review of the present knowledge about the origin of blue-green window in the attenuation spectrum of ocean waters is presented. The various physical mechanisms which contribute to the formation of the window are dealt separately and discussed. The typical values of attenuation coefficient arising out of the various processes are compiled to obtain the total beam attenuation coefficient. These values are then compared with measured values of attenuation coefficient for ocean waters collected from Arabian sea and Bay of Bengal. The region of minimum attenuation in pure particle-free sea water is found to be at 450 to 500 nm. It is shown that in the presence of suspended particles and chlorophyll, the window shifts to longer wavelength side. Some suggestions for future work in this area are also given in the concluding section.

  13. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems

    PubMed Central

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39–44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2–11 m for UV-B (313 nm), 4–27 m for UV-A (395 nm), and 7–30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be further exacerbated by cold temperatures in this location, together with episodes of ozone depletion. Overall, the results emphasize the marked spatial (horizontal and vertical) and temporal heterogeneity of optical characteristics, and challenges that these imply for estimations of underwater optics. PMID:27144454

  14. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  15. Optical coherence microscopy for deep tissue imaging of the cerebral cortex with intrinsic contrast

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha; Jiang, James Y.; Barry, Scott; Cable, Alex E.

    2012-01-01

    In vivo optical microscopic imaging techniques have recently emerged as important tools for the study of neurobiological development and pathophysiology. In particular, two-photon microscopy has proved to be a robust and highly flexible method for in vivo imaging in highly scattering tissue. However, two-photon imaging typically requires extrinsic dyes or contrast agents, and imaging depths are limited to a few hundred microns. Here we demonstrate Optical Coherence Microscopy (OCM) for in vivo imaging of neuronal cell bodies and cortical myelination up to depths of ~1.3 mm in the rat neocortex. Imaging does not require the administration of exogenous dyes or contrast agents, and is achieved through intrinsic scattering contrast and image processing alone. Furthermore, using OCM we demonstrate in vivo, quantitative measurements of optical properties (index of refraction and attenuation coefficient) in the cortex, and correlate these properties with laminar cellular architecture determined from the images. Lastly, we show that OCM enables direct visualization of cellular changes during cell depolarization and may therefore provide novel optical markers of cell viability. PMID:22330462

  16. Design challenges of EO polymer based leaky waveguide deflector for 40 Gs/s all-optical analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2016-08-01

    Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.

  17. [Accuracy of attenuation coefficient obtained by 137Cs single-transmission scanning in PET: comparison with conventional germanium line source].

    PubMed

    Matsumoto, Keiichi; Kitamura, Keishi; Mizuta, Tetsuro; Shimizu, Keiji; Murase, Kenya; Senda, Michio

    2006-02-20

    Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients was stable with all phantoms. We evaluated the accuracy of attenuation coefficients of Cs-137 single-transmission scans. The results for Cs-137 suggest that scattered photons depend on object size. Although Cs-137 single-transmission scans contained scattered photons, attenuation coefficient error could be reduced using by the segmentation method.

  18. OCoc- from Ocean Colour to Organic Carbon

    NASA Astrophysics Data System (ADS)

    Heim, B.; Overduin, P. P.; Schirrmeister, L.; Lantuit, H.; Doerffer, R.

    2009-12-01

    Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. The ‘OCoc-from Ocean Colour to Organic Carbon’ project (IPY-project 1176), funded by the German Research Foundation (DFG), is an Ocean Colour study joined with the Arctic Coastal Dynamics ACD network and Arctic Circum-polar Coastal Observatory Network ACCO-Net (IPY-project 90). OCoc uses Ocean Colour satellite data for synoptical monitoring of organic matter fluxes from fluvial and coastal sources. Initial results from German-Russian expeditions at the southeastern Laptev Sea Coast (Arctic Siberia, Russia) in August 2008 and August 2009 are presented. Large parts of this coastal zone are characterized by highly erosive organic-rich material. Ocean Colour MERIS Reduced Resolution (RR)-LIB data of the have been processed towards optical aquatic parameters using Beam-Visat4.2 and the MERIS case2 regional processor for coastal application (C2R). Calculated aquatic parameters are absorption and backscattering coefficients, apparent optical properties such as the first attenuation depth (‘Z90’) and calculated concentrations of chlorophyll, total suspended matter and coloured dissolved organic matter absorption from the water leaving reflectances. Initial comparisons with expedition data (Secchi depths, cDOM) show that the MERIS-C2R optical parameters ’total absorption’ and the first attenuation depth, ’Z90’, seem adequately to represent true conditions. High attenuation values in the spectral blue wavelength range may serve as tracer for the organic-rich terrigenous input. The synoptic information of Ocean Colour products will provide valuable spatial and dynamical information on the Organic Carbon and sediment fluxes from the Siberian permafrost coast.

  19. Optical analysis of enamel and dentin caries in relation to mineral density using swept-source optical coherence tomography

    PubMed Central

    Ueno, Tomoka; Shimada, Yasushi; Matin, Khairul; Zhou, Yuan; Wada, Ikumi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji

    2016-01-01

    Abstract. The aim of this study was to evaluate the signal intensity and signal attenuation of swept source optical coherence tomography (SS-OCT) for dental caries in relation to the variation of mineral density. SS-OCT observation was performed on the enamel and dentin artificial demineralization and on natural caries. The artificial caries model on enamel and dentin surfaces was created using Streptococcus mutans biofilms incubated in an oral biofilm reactor. The lesions were centrally cross sectioned and SS-OCT scans were obtained in two directions to construct a three-dimensional data set, from the lesion surface (sagittal scan) and parallel to the lesion surface (horizontal scan). The integrated signal up to 200  μm in depth (IS200) and the attenuation coefficient (μ) of the enamel and dentin lesions were calculated from the SS-OCT signal in horizontal scans at five locations of lesion depth. The values were compared with the mineral density obtained from transverse microradiography. Both enamel and dentin demineralization showed significantly higher IS200 and μ than the sound tooth substrate from the sagittal scan. Enamel demineralization showed significantly higher IS200 than sound enamel, even with low levels of demineralization. In demineralized dentin, the μ from the horizontal scan consistently trended downward compared to the sound dentin. PMID:27704033

  20. Diffuse attenuation coefficient for downwelling irradiance at 490 nm and its spectral characteristics in the Black Sea upper layer: modeling, in situ measurements and ocean color data

    NASA Astrophysics Data System (ADS)

    Suslin, V. V.; Slabakova, V. K.; Churilova, T. Ya.

    2017-11-01

    Vertical diffuse attenuation coefficient, Kd(490), is one of the key parameter required for water quality modeling, hydrodynamic and biological processes in the sea. We showed that standard level-2 product of Kd(490) was underestimated in comparison with Kd(490) values simulated by the regional model during the diatom bloom in the Black Sea. Using data of SeaWiFS, MERIS and MODIS color scanners, a regional relationship between the model value of Kd(490) and the ratio of remote sensing reflectances has been obtained. Based on the bulgarian argo-bio-buoy dataset, the relationship between the attenuation coefficient of photosynthetically active radiation and attenuation coefficient at a wavelength of 490 nm is obtained. The simplified model, below as the S-model, of the diffuse attenuation coefficient spectrum for downwelling irradiance in the Black Sea upper layer is described. As a consequence of the S-model, the link between the depth of the euphotic zone and Kd(490) has been obtained. It is shown that the Kd(490) values, retrieved from ocean color data with using the regional link and from argo-bio-buoy measurements at depths between 6-20 m, are close to each other.

  1. Seasonal to Decadal-Scale Variability in Satellite Ocean Color and Sea Surface Temperature for the California Current System

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Kahru, Mati; Marra, John (Technical Monitor)

    2002-01-01

    Support for this project was used to develop satellite ocean color and temperature indices (SOCTI) for the California Current System (CCS) using the historic record of CZCS West Coast Time Series (WCTS), OCTS, WiFS and AVHRR SST. The ocean color satellite data have been evaluated in relation to CalCOFI data sets for chlorophyll (CZCS) and ocean spectral reflectance and chlorophyll OCTS and SeaWiFS. New algorithms for the three missions have been implemented based on in-water algorithm data sets, or in the case of CZCS, by comparing retrieved pigments with ship-based observations. New algorithms for absorption coefficients, diffuse attenuation coefficients and primary production have also been evaluated. Satellite retrievals are being evaluated based on our large data set of pigments and optics from CalCOFI.

  2. Radiation attenuation and opacity in smoke and water sprays

    NASA Astrophysics Data System (ADS)

    Parent, Gilles; Boulet, Pascal; Morlon, Romain; Blanchard, Elizabeth

    2017-08-01

    Radiation attenuation through sprays, smoke and mixings of both media was studied in the infrared and in the visible range, by conducting real scale experiments in a corridor. The effect of water injection by a water mist nozzle and a sprinkler device was investigated. Radiation attenuation in the infrared range and opacity in the visible range were measured, by using a FTIR spectrometer and a dedicated opacimetry device especially designed for the present application. Experiments were done using either a blackbody source for attenuation characterization, or a heptane pool fire aimed at producing smoke for opacity measurements. For tests with smoke, the difficulties raised by the harsh environment involving a hot mixing of gas plus soot and vapor carrying water droplets were circumvented with an original device involving an optical fiber network. Mean infrared transmission was found equal to 12% for the water mist (with a 25 L/min water flowrate) and 37% for the sprinkler (with a 91 L/min water flowrate). Fitting the infrared transmission spectra with results obtained using a Monte Carlo simulation provided an estimation of the water volumetric fraction in the spray. It was shown that the better attenuation capability of the water mist is due to two factors: (1) a higher extinction coefficient of the water mist for a given water volumetric fraction due to the small size of the injected droplets and (2) a higher water volumetric fraction. Opacity measurements in the visible range yielded a measured extinction coefficient in good agreement with an estimation obtained with the Mie theory and the identified water volumetric fraction. Moreover, the water sprays (sprinkler or water mist) was seen to lead to a quick de-stratification of the smoke layer. When the spraying operation was stopped, the visibility re-increased in two main steps: a first step of fast increase and a second step of slow increase needing a few tens of seconds to get again a fully stratified smoke layer.

  3. Determination of the total attenuation coefficient for six contact lens materials using the Beer-Lambert law.

    PubMed

    Hull, C C; Crofts, N C

    1996-03-01

    The Beer-Lambert law has been used to determine the total attenuation coefficient, mu t, of three hard and three soft contact lens materials. The three hard contact lens materials were PMMA, Polycon II and Boston IV whereas the 3 soft materials were chosen with differing water contents of 38, 55 and 70%, respectively. The total attenuation coefficients of all six materials were obtained from measurements of the axial transmission at 632.8 nm of a series of plano powered lenses varying in axial thickness from 0.5 to 3.5 mm. The value of the total attenuation coefficient depends on both scattering and absorption and hence PMMA and Boston IV, which both incorporated a handling tint, showed significantly higher values (P < 0.0001) of mu t (0.562 +/- 0.010 mm-1 and 0.820 +/- 0.008 mm-1, respectively) than Polycon II (mu t = 0.025 +/- 0.005 mm-1). A comparison between Polycon II and the three hydrated soft contact lens materials showed a significant increase (P < 0.02) in the total attenuation coefficients for the 38% and 55% water content materials, and a weakly significant increase for the 70% water content soft lens material (P < 0.1). On the assumption that the absorption coefficients of these four materials are approximately constant, then this change would be due to an increase in the scattering coefficient of the material and could contribute to an increase in intraocular scatter. No significant difference (P > 0.5) was found between any of the hydrated soft contact lens materials tested.

  4. Quantification and Reconstruction in Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Guo, Zijian

    Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin. Conventionally, accurate quantification in PAT requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. We demonstrate the method using the optical-resolution photoacoustic microscopy (OR-PAM) and the acoustical-resolution photoacoustic microscopy (AR-PAM) in the optical ballistic regime and in the optical diffusive regime, respectively. The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapted Compressed Sensing (CS) for the reconstruction in PACT. CS-based PACT was implemented as a non-linear conjugate gradient descent algorithm and tested with both phantom and in vivo experiments. Speckles have been considered ubiquitous in all scattering-based coherent imaging technologies. As a coherent imaging modality based on optical absorption, photoacoustic (PA) tomography (PAT) is generally devoid of speckles. PAT suppresses speckles by building up prominent boundary signals, via a mechanism similar to that of specular reflection. When imaging smooth boundary absorbing targets, the speckle visibility in PAT, which is defined as the ratio of the square root of the average power of speckles to that of boundaries, is inversely proportional to the square root of the absorber density. If the surfaces of the absorbing targets have uncorrelated height fluctuations, however, the boundary features may become fully developed speckles. The findings were validated by simulations and experiments. The first- and second-order statistics of PAT speckles were also studied experimentally. While the amplitude of the speckles follows a Gaussian distribution, the autocorrelation of the speckle patterns tracks that of the system point spread function.

  5. The Ocean Colour Climate Change Initiative: III. A Round-Robin Comparison on In-Water Bio-Optical Algorithms

    NASA Technical Reports Server (NTRS)

    Brewin, Robert J.W.; Sathyendranath, Shubha; Muller, Dagmar; Brockmann, Carsten; Deschamps, Pierre-Yves; Devred, Emmanuel; Doerffer, Roland; Fomferra, Norman; Franz, Bryan; Grant, Mike; hide

    2013-01-01

    Satellite-derived remote-sensing reflectance (Rrs) can be used for mapping biogeochemically relevant variables, such as the chlorophyll concentration and the Inherent Optical Properties (IOPs) of the water, at global scale for use in climate-change studies. Prior to generating such products, suitable algorithms have to be selected that are appropriate for the purpose. Algorithm selection needs to account for both qualitative and quantitative requirements. In this paper we develop an objective methodology designed to rank the quantitative performance of a suite of bio-optical models. The objective classification is applied using the NASA bio-Optical Marine Algorithm Dataset (NOMAD). Using in situ Rrs as input to the models, the performance of eleven semianalytical models, as well as five empirical chlorophyll algorithms and an empirical diffuse attenuation coefficient algorithm, is ranked for spectrally-resolved IOPs, chlorophyll concentration and the diffuse attenuation coefficient at 489 nm. The sensitivity of the objective classification and the uncertainty in the ranking are tested using a Monte-Carlo approach (bootstrapping). Results indicate that the performance of the semi-analytical models varies depending on the product and wavelength of interest. For chlorophyll retrieval, empirical algorithms perform better than semi-analytical models, in general. The performance of these empirical models reflects either their immunity to scale errors or instrument noise in Rrs data, or simply that the data used for model parameterisation were not independent of NOMAD. Nonetheless, uncertainty in the classification suggests that the performance of some semi-analytical algorithms at retrieving chlorophyll is comparable with the empirical algorithms. For phytoplankton absorption at 443 nm, some semi-analytical models also perform with similar accuracy to an empirical model. We discuss the potential biases, limitations and uncertainty in the approach, as well as additional qualitative considerations for algorithm selection for climate-change studies. Our classification has the potential to be routinely implemented, such that the performance of emerging algorithms can be compared with existing algorithms as they become available. In the long-term, such an approach will further aid algorithm development for ocean-colour studies.

  6. Contrasting properties of zinc oxide nanoparticles and titanium dioxide nanoparticles for optical coherence tomography imaging of human normal endometrium tissues and uterine leiomyoma tissues in ex vivo study combined with microneedle

    NASA Astrophysics Data System (ADS)

    Gu, P. C.; Ye, M.; Wei, H. J.; Wu, G. Y.; Guo, Z. Y.; Yang, H. Q.; He, Y. H.; Xie, S. S.; Zhou, L. P.

    2016-05-01

    The aims of this study were to monitor and contrast the diffusion of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles’ (NPs) penetration and accumulation in human normal endometrium (NE) tissues and uterine leiomyoma (UL) tissues combined with microneedles (MN) in vitro using optical coherence tomography (OCT) and diffuse reflectance (DR) spectral. Continuous OCT and DR spectra monitoring showed that, after application of ZnO or TiO2 NPs, the OCT signal intensities of NE and UL both increase with time, and the TiO2 NPs tend to produce a greater signal enhancement than ZnO NPs in the same type of tissue. And for the same type of NPs, they penetrate faster in NE tissue compared with UL tissue. In addition, the use of MN can significantly enhance the penetration of topically applied ZnO or TiO2 NPs in the tissue. The attenuation coefficients of NE tissue are about 5.01  ±  0.35 mm-1 for ZnO NPs treatment at 195 min and 4.62  ±  0.29 mm-1 for ZnO NPs/MN at 179 min, 4.73  ±  0.30 mm-1 for TiO2 NPs at 183 min, 4.05  ±  0.25 mm-1 for TiO2 NPs/MN at 147 min when the penetration process reached the stable state. And the attenuation coefficients of UL tissue are about 5.0  ±  0.34 mm-1 for ZnO NP treatment at 191 min and 4.20  ±  0.26 mm-1 for ZnO NPs/MN at 169 min, 4.33  ±  0.27 mm-1 for TiO2 NPs at 176 min, 3.53  ±  0.20 mm-1 for TiO2 NPs/MN at 141 min when the penetration process reached the stable state. This suggests that TiO2 NPs penetrate faster and reach the maximum amount of penetration earlier than ZnO NPs with the same condition. The results of attenuation coefficients and reflectance intensity of NE and UL tissue suggests that the accumulation of the TiO2 or ZnO NPs in both NE and UL tissue greatly influenced the tissue optical properties.

  7. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan

    2017-11-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.

  8. Empirical Analysis of Optical Attenuator Performance in Quantum Key Distribution Systems Using a Particle Model

    DTIC Science & Technology

    2012-03-01

    EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING A...DISTRIBUTION IS UNLIMITED AFIT/GCS/ENG/12-01 EMPIRICAL ANALYSIS OF OPTICAL ATTENUATOR PERFORMANCE IN QUANTUM KEY DISTRIBUTION SYSTEMS USING ...challenging as the complexity of actual implementation specifics are considered. Two components common to most quantum key distribution

  9. Natural variability of bio-optical properties in an ultra-oligotrophic region: backscattering, attenuation and absorption coefficients as observed in the Red Sea

    NASA Astrophysics Data System (ADS)

    Kheireddine, M.; Jones, B. H.

    2016-02-01

    Until recently, satellite-derived ocean color observations have been the only means of evaluating optical variability of the Red Sea. The optical properties of the Red Sea have been empirically related to the chlorophyll concentration, [Chl], historically used as an index of the trophic state and of the abundance of the biological materials. The natural variability around the mean statistical relationships is here examined by comparing the optical properties as a function of [Chl] in different area of the Red Sea: the North Red Sea (NRS), the North Central Red Sea (NCRS) and the South Central Red Sea (SCRS) waters. The systematic deviations, with respect to the average laws provided for the global ocean, mainly result from the differing contents in non-algal particles, phytoplankton communities and dissolved colored substance for a given [Chl] level. These optical anomalies relate to the specific biological and environmental conditions occurring in the Red Sea ecosystem, showing the peculiar character of the Red Sea. Specifically, absorption's values of colored dissolved organic matter are lower than the values predicted from the global relationships, the surface specific phytoplankton absorption coefficients are lower than the values predicted from the global relationships due to a high proportion of relatively large sized phytoplankton. Conversely, bbp values are much higher than the mean standard values for a given [Chl] concentration. This presumably results from the influence of highly refractive submicrometer particles of Saharan or Arabian origin in the surface layer of the water column.

  10. Spatial and seasonal changes in optical properties of autochthonous and allochthonous chromophoric dissolved organic matter in a stratified mountain lake.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Nannicini, Luciano; Picchi, Maria Pia; Ricci, Maso; Santinelli, Chiara; Seritti, Alfredo; Tognazzi, Antonio; Rossi, Claudio

    2010-03-01

    In this study, we present results on seasonal and spatial changes in CDOM absorption and fluorescence (fCDOM) in a deep mountain lake (Salto Lake, Italy). A novel approach was used to describe the shape of CDOM absorption between 250-700 nm (distribution of the spectral slope, S(lambda)) and a new fluorescence ratio is used to distinguish between humic and amino acid-like components. Solar ultraviolet irradiance, dissolved organic carbon (DOC), DOM fluorescence and absorption measurements were analysed and compared to other physicochemical parameters. We show that in the UV-exposed mixed layer: (i) fluorescence by autochthonous amino acid-like CDOM, (ii) values of S(lambda) across UV-C and UV-B wavebands increased during the summer months, whereas (i) average molar absorption coefficient and (ii) fluorescence by allochthonous humic CDOM decreased. In the unexposed deep layer of the water column (and in the entire water column in winter), humic-like CDOM presented high values of molar absorption coefficients and low values of S(lambda). UV attenuation coefficients correlated with both chlorophyll a concentrations and CDOM absorption. In agreement with changes in CDOM, minimal values in UV attenuation were found in summer. The S(lambda) curve was used as a signature of the mixture between photobleached and algal-derived CDOM with respect to the unexposed chromophoric dissolved compounds in this thermal stratified lake. Furthermore, S(lambda) curves were useful to distinguish between low and high molecular weight CDOM.

  11. Prehistological evaluation of benign and malignant pigmented skin lesions with optical computed tomography

    NASA Astrophysics Data System (ADS)

    Kokolakis, Athanasios; Zacharakis, Giannis; Krasagakis, Konstantin; Lasithiotakis, Konstantinos; Favicchio, Rosy; Spiliopoulos, George; Giannikaki, Elpida; Ripoll, Jorge; Tosca, Androniki

    2012-06-01

    Discrimination of benign and malignant melanocytic lesions is a major issue in clinical dermatology. Assessment of the thickness of melanoma is critical for prognosis and treatment selection. We aimed to evaluate a novel optical computed tomography (optical-CT) system as a tool for three-dimensional (3-D) imaging of melanocytic lesions and its ability to discriminate benign from malignant melanocytic lesions while simultaneously determining the thickness of invasive melanoma. Seventeen melanocytic lesions, one hemangioma, and normal skin were assessed immediately after their excision by optical-CT and subsequently underwent histopathological examination. Tomographic reconstructions were performed with a back-propagation algorithm calculating a 3-D map of the total attenuation coefficient (AC). There was a statistically significant difference between melanomas, dysplastic nevi, and non-dysplastic nevi, as indicated by Kruskal-Wallis test. Median AC values were higher for melanomas compared with dysplastic and non-dysplastic nevi. No statistically significant difference was observed when thickness values obtained by optical-CT were compared with histological thickness using a Wilcoxon sighed rank test. Our results suggest that optical-CT can be important for the immediate prehistological evaluation of biopsies, assisting the physician for a rapid assessment of malignancy and of the thickness of a melanocytic lesion.

  12. Measurements of mass attenuation coefficients and determination of photoionization cross sections at energies across the Li (i=1-3) edges of 66Dy

    NASA Astrophysics Data System (ADS)

    Kaur, Rajnish; Kumar, Anil; Osan, Janos; Czyzycki, M.; Karydas, A. G.; Puri, Sanjiv

    2017-07-01

    The absolute values of the mass attenuation coefficients have been measured at sixty two photon energies across the Li (i=1-3) sub-shell absorption edges of 66Dy covering the region 7.6-14.0 keV in order to investigate the influence of near-edge processes on the attenuation coefficients. The present measured attenuation coefficients are found to be higher by up to 10% than the theoretical values evaluated from the computer code XCOM (Berger et al., 2010) and the self-consistent Dirac-Hartree-Slater (DHS) model based values tabulated by Chantler (1995) over the energy region 7.6-14.0 keV, except at energies in vicinity (few eV) of the Li (i=1-3) sub-shell absorption edge energies where the measured values are significantly higher (up to 37%) than both the sets of theoretical values. Further, the Li (i=1-3) sub-shell photoionization cross sections, (σLiP)exp, deduced from the present measured mass attenuation coefficients are compared with the non-relativistic Hartree-Fock-Slater (HFS) model based values tabulated by Scofield (1973) and those evaluated from the theoretical total photoionization attenuation coefficients tabulated by Chantler (1995). The deduced (σLiP)exp(i=1-3) values are found to be in better agreement with those evaluated from the tabulations given by Chantler (1995) than the values given by Scofield (1973) over the energy region 7.8 - 14.0 keV included in this study. However, at photon energies up to few eV above the Li edges, the deduced (σLiP)exp(i=1-3) values are found to be significantly higher (up to 32%) than both the sets of theoretical values.

  13. Unusual Attenuation Recovery Process After Fiber Optic Cable Irradiation

    NASA Astrophysics Data System (ADS)

    Konečná, Z.; Plaček, V.; Havránek, P.

    2017-11-01

    At present, the number of optical cables in nuclear power plants has been increasing. Fiber optic cables are commonly used at nuclear power plants in instrumentation and control systems but they are usually used in environments without radiation. Nevertheless, currently, the number of applications in NPP containment with radiation is increasing. One of the most prevalent effects of radiation exposure is an increase of signal attenuation (signal loss). This is the result of fiber darkening due to radiation exposure and it is the main limitation factor in application of fiber optics in radiation environment. However, after the irradiation, the fiber optics go through a “recovery process” during which the optical properties improve again; i.e. attenuation decreases. However, we have found cable, where the expected healing process after few days changed its trend and the attenuation increased again to a value well above the attenuation just after the irradiation. This paper describes experiments that were carried out to explain this unusual recovery behaviour.

  14. Design and characterization of a phantom that simultaneously simulates tissue optical properties between 400 and 650 nm

    NASA Astrophysics Data System (ADS)

    Wagnieres, Georges A.; Cheng, Shangguan; Zellweger, Matthieu; Doegnitz-Utke, Nora; Braichotte, Daniel; Ballini, Jean-Pierre; van den Bergh, Hubert

    1996-12-01

    The design and characterization of optical phantoms which have the same absorption and scattering characteristics as biological tissues in a broad spectral window (between 400 and 650 nm) are presented. These low cost phantoms use agarose dissolved in water as the transparent matrix. The latter is loaded with various amounts of silicon dioxide, intralipid, ink, bovine serum, blood, azide, penicillin and fluorochromes. The silicon dioxide and intralipid particles are responsible for the light scattering whereas the ink and blood are the absorbers. The penicillin and the azide are used to insure the conservation of such phantoms when stored at 4 degrees Celsius. The serum and fluorochromes, such as Coumarin 30, produce an autofluorescence similar to human tissues. Various fluorochromes or photosensitizers can be added to these phantoms to simulate a photodetection procedure. The absorption and fluorescence spectroscopy of the dyes tested was not different in these phantoms than in live tissues. The mechanical properties of these gelatinous phantoms are also of interest as they can easily be molded and reshaped with a conventional cutter, so that for instance layered structures, with different optical properties in each layer, can be designed. The optical properties of these phantoms were determined between 400 and 650 nm by measuring their effective attenuation coefficient ((mu) eff) and total reflectance (Rd). The microscopic absorption and reduced scattering coefficients ((mu) a, (mu) s') were deduced from (mu) eff and Rd using a Monte-Carlo simulation.

  15. Tunable synthesis and acetylation of dendrimer-entrapped or dendrimer-stabilized gold-silver alloy nanoparticles.

    PubMed

    Liu, Hui; Shen, Mingwu; Zhao, Jinglong; Guo, Rui; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang

    2012-06-01

    In this study, amine-terminated generation 5 poly(amidoamine) dendrimers were used as templates or stabilizers to synthesize dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy nanoparticles (NPs) with different gold atom/silver atom/dendrimer molar ratios with the assistance of sodium borohydride reduction chemistry. Following a one-step acetylation reaction to transform the dendrimer terminal amines to acetyl groups, a series of dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs with terminal acetyl groups were formed. The formed Au-Ag alloy NPs before and after acetylation reaction were characterized using different techniques. We showed that the optical property and the size of the bimetallic NPs were greatly affected by the metal composition. At the constant total metal atom/dendrimer molar ratio, the size of the alloy NPs decreased with the gold content. The formed Au-Ag alloy NPs were stable at different pH (pH 5-8) and temperature (4-50°C) conditions. X-ray absorption coefficient measurements showed that the attenuation of the binary NPs was dependent on both the gold content and the surface modification. With the increase of gold content in the binary NPs, their X-ray attenuation intensity was significantly enhanced. At a given metal composition, the X-ray attenuation intensity of the binary NPs was enhanced after acetylation. Cytotoxicity assays showed that after acetylation, the cytocompatibility of Au-Ag alloy NPs was significantly improved. With the controllable particle size and optical property, metal composition-dependent X-ray attenuation characteristics, and improved cytocompatibility after acetylation, these dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs should have a promising potential for CT imaging and other biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuationmore » coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.« less

  17. New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique.

    PubMed

    Chantler, C T; Islam, M T; Rae, N A; Tran, C Q; Glover, J L; Barnea, Z

    2012-03-01

    An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

  18. Imaging of polarized target in underwater environment

    NASA Astrophysics Data System (ADS)

    Carrizo, Carlos; Foster, Robert; El-Habashi, Ahmed; Gray, Deric; Gilerson, Alex

    2017-10-01

    Imaging of underwater targets is challenging because of the significant attenuation of the propagating light field due to the absorption and scattering by water and suspended/dissolved matter. Some living and manmade objects in water have surfaces which partially polarize the light, whose properties can be used to camouflage or, conversely, to detect such objects. The attenuation of light by the intervening water (so-called veiling light) changes both the intensity and polarization characteristics at each pixel of the image, but does not contain any information about the target and contributes to image degradation and blurring. Its properties need to be understood in order to isolate the true optical signature of the target. The main goal of this study is to retrieve the polarization characteristics of the target from the image in different water environmental and illumination conditions by taking into account coincidentally measured inherent water optical properties (IOPs) during recent field campaigns outside the Chesapeake Bay and in New York Bight. Data, in the form of images and videos, were acquired using a green-band full-Stokes polarimetric video camera. Analysis of the acquired images show reasonable agreement in Stokes vector components with the measurements by the underwater polarimeter and modeled polarized signals. In addition, Stokes vector components of the veiling light were also estimated and compared with the models. Finally, retrieval of the attenuation coefficient for the light from the target is attempted from the measurements and compared with the results of the independent measurements of IOPs.

  19. Wavelength tunable and broadband variable fiber-optic attenuators using liquid crystals

    NASA Astrophysics Data System (ADS)

    Khan, Sajjad A.; Riza, Nabeel A.

    2005-05-01

    Fiber-Optic Variable Optical Attenuators (VOAs) are demonstrated using Liquid Crystals (LC) for broadband as well as wavelength tunable applications. Attenuation is achieved by using a beam spoiling approach implemented via electrically reconfigurable non-pixelated no moving parts Nematic LC deflectors. The VOAs feature in-line architecture and polarization insensitive design without the use of bulky polarization splitting and combining optics. The proof-of-concept VOAs in the 1550 nm band demonstrate >30 dB attenuation ranges, low polarization dependent losses and low power consumption. Applications for these VOAs include agile wavelength tunable secure data communications networks and RF sensor systems.

  20. A summary of Selected Data: DSDP Legs 20-44,

    DTIC Science & Technology

    1980-09-01

    water X 100 minerals may be applied in the future density water when the mineralogy and attenuation wt. wate r \\+ wt r ed. + salIt coefficients...in the future when densities of some common minerals are the exact quantitative mineralogy and listed in Harms and Choquette (1965), attenuation...different attenuation coefficient than were used to get a " ball park" answer that of calcite. for a particular sediment type, or for drilling

  1. Investigation of photon attenuation coefficient of some building materials used in Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dogan, B.; Altinsoy, N.

    In this study, some building materials regularly used in Turkey, such as concrete, gas concrete, pumice and brick have been investigated in terms of mass attenuation coefficient at different gamma-ray energies. Measurements were carried out by gamma spectrometry containing NaI(Tl) detector. Narrow beam gamma-ray transmission geometry was used for the attenuation measurements. The results are in good agreement with the theoretical calculation of XCOM code.

  2. X-Ray Attenuation and Absorption for Materials of Dosimetric Interest

    National Institute of Standards and Technology Data Gateway

    SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access)   Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.

  3. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  4. Robust determination of mass attenuation coefficients of materials with unknown thickness and density

    NASA Astrophysics Data System (ADS)

    Kurudirek, M.; Medhat, M. E.

    2014-07-01

    An alternative approach is used to measure normalized mass attenuation coefficients (μ/ρ) of materials with unknown thickness and density. The adopted procedure is based on the use of simultaneous emission of Kα and Kβ X-ray lines as well as gamma peaks from radioactive sources in transmission geometry. 109Cd and 60Co radioactive sources were used for the purpose of the investigation. It has been observed that using the simultaneous X- and/or gamma rays of different energy allows accurate determination of relative mass attenuation coefficients by eliminating the dependence of μ/ρ on thickness and density of the material.

  5. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding

    NASA Astrophysics Data System (ADS)

    Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar

    2018-06-01

    Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.

  6. Potential of SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in achieving integrated magneto-optical isolators

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi; Hocini, Abdesselam

    2017-05-01

    We have investigated the potential of the SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in order to overcome the problem of integration of the magneto-optical isolators (MOIs). In this way, we have performed a theoretical study for the case of designing perfect and adjustable MOIs based on magnetophotonic crystals (MPCs) containing SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles as a magnetic medium. Despite the existence the attenuation coefficient for SiO2/ZrO2 matrix at wavelength 1550 nm that leads to a non-perfect transmittance, we could introduce an MPC structure having no reflectance; therefore, an ideal MOI for eliminating unwanted back-reflection could be achieved.

  7. BLAM (Benthic Light Availability Model): A Proposed Model of Hydrogeomorphic Controls on Light in Rivers

    NASA Astrophysics Data System (ADS)

    Julian, J. P.; Doyle, M. W.; Stanley, E. H.

    2006-12-01

    Light is vital to the dynamics of aquatic ecosystems. It drives photosynthesis and photochemical reactions, affects thermal structure, and influences behavior of aquatic biota. Despite the fundamental role of light to riverine ecosystems, light studies in rivers have been mostly neglected because i) boundary conditions (e.g., banks, riparian vegetation) make ambient light measurements difficult, and ii) the optical water quality of rivers is highly variable and difficult to characterize. We propose a benthic light availability model (BLAM) that predicts the percent of incoming photosynthetically active radiation (PAR) available at the river bed. BLAM was developed by quantifying light attenuation of the five hydrogeomorphic controls that dictate riverine light availability: topography, riparian vegetation, channel geometry, optical water quality, and water depth. BLAM was calibrated using hydrogeomorphic data and light measurements from two rivers: Deep River - a 5th-order, turbid river in central North Carolina, and Big Spring Creek - a 2nd-order, optically clear stream in central Wisconsin. We used a series of four PAR sensors to measure i) above-canopy PAR, ii) PAR above water surface, iii) PAR below water surface, and iv) PAR on stream bed. These measurements were used to develop empirical light attenuation coefficients, which were then used in combination with optical water quality measurements, shading analyses, channel surveys, and flow records to quantify the spatial and temporal variability in riverine light availability. Finally, we apply BLAM to the Baraboo River - a 6th-order, 120-mile, unimpounded river in central Wisconsin - in order to characterize light availability along the river continuum (from headwaters to mouth).

  8. Loosely coupled level sets for retinal layers and drusen segmentation in subjects with dry age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Novosel, Jelena; Wang, Ziyuan; de Jong, Henk; Vermeer, Koenraad A.; van Vliet, Lucas J.

    2016-03-01

    Optical coherence tomography (OCT) is used to produce high-resolution three-dimensional images of the retina, which permit the investigation of retinal irregularities. In dry age-related macular degeneration (AMD), a chronic eye disease that causes central vision loss, disruptions such as drusen and changes in retinal layer thicknesses occur which could be used as biomarkers for disease monitoring and diagnosis. Due to the topology disrupting pathology, existing segmentation methods often fail. Here, we present a solution for the segmentation of retinal layers in dry AMD subjects by extending our previously presented loosely coupled level sets framework which operates on attenuation coefficients. In eyes affected by AMD, Bruch's membrane becomes visible only below the drusen and our segmentation framework is adapted to delineate such a partially discernible interface. Furthermore, the initialization stage, which tentatively segments five interfaces, is modified to accommodate the appearance of drusen. This stage is based on Dijkstra's algorithm and combines prior knowledge on the shape of the interface, gradient and attenuation coefficient in the newly proposed cost function. This prior knowledge is incorporated by varying the weights for horizontal, diagonal and vertical edges. Finally, quantitative evaluation of the accuracy shows a good agreement between manual and automated segmentation.

  9. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    NASA Astrophysics Data System (ADS)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  10. Observation and analysis on skin cancer induced by UVB irradiation using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Yunxia; Wu, Shulian; Li, Hui; Zheng, Xiaoxiao

    2014-09-01

    Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the prevalent skin cancers, which have a quite high incidence in the white race. In recent years, however, their incidences have been increasing in the yellow race, resulting in a great threat to the public health. According to researches, chronics UVB irradiation (280nm~320nm) is the major culprit of skin cancer in humans. In our study, the model of UVB induced skin cancer was established firstly. Optical coherence tomography (OCT) combined with the histopathology was exploited to monitor the morphologic and histological changes of the process of UVB induced skin cancer. Meanwhile, this canceration process was systematically studied and analyzed from the perspective of tissue optics. The attenuation coefficient (μt) has a rising trend in the epidermis, but which shows a downward trend in the dermis. The results are conducive to understand the process of UVB-induced skin cancer and further be able to provide a reference for medical researchers.

  11. Production of Bulk and Fiber Glass in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The production of bulk glass and fiber glass in space and on the moon and Mars should lead to superior products. Specifically glass plates for windows and optical elements could be produced with theoretical strengths by production in vacuum. Water vapor is known to decrease glass strength by up to two orders of magnitude from theoretical. A low gravity glass plate apparatus prototype has been designed and built which uses centrifugal force to shape the glass and solar energy to melt the glass. Glass fiber could be produced on the moon or Mars from in-situ materials using standard technologies. This material could then be used as reinforcement in composite materials in construction of bases. Also, it has been shown that processing in reduced gravity suppresses crystallization in certain heavy metal fluoride glasses. It is proposed to reprocess optical fiber preforms on the space station and then pull these into optical fiber. It is estimated that the attenuation coefficient should be reduced by two orders of magnitude.

  12. I Vivo Quantitative Ultrasound Imaging and Scatter Assessments.

    NASA Astrophysics Data System (ADS)

    Lu, Zheng Feng

    There is evidence that "instrument independent" measurements of ultrasonic scattering properties would provide useful diagnostic information that is not available with conventional ultrasound imaging. This dissertation is a continuing effort to test the above hypothesis and to incorporate quantitative ultrasound methods into clinical examinations for early detection of diffuse liver disease. A well-established reference phantom method was employed to construct quantitative ultrasound images of tissue in vivo. The method was verified by extensive phantom tests. A new method was developed to measure the effective attenuation coefficient of the body wall. The method relates the slope of the difference between the echo signal power spectrum from a uniform region distal to the body wall and the echo signal power spectrum from a reference phantom to the body wall attenuation. The accuracy obtained from phantom tests suggests further studies with animal experiments. Clinically, thirty-five healthy subjects and sixteen patients with diffuse liver disease were studied by these quantitative ultrasound methods. The average attenuation coefficient in normals agreed with previous investigators' results; in vivo backscatter coefficients agreed with the results from normals measured by O'Donnell. Strong discriminating power (p < 0.001) was found for both attenuation and backscatter coefficients between fatty livers and normals; a significant difference (p < 0.01) was observed in the backscatter coefficient but not in the attenuation coefficient between cirrhotic livers and normals. An in vivo animal model of steroid hepatopathy was used to investigate the system sensitivity in detecting early changes in canine liver resulting from corticosteroid administration. The average attenuation coefficient slope increased from 0.7 dB/cm/MHz in controls to 0.82 dB/cm/MHz (at 6 MHz) in treated animals on day 14 into the treatment, and the backscatter coefficient was 26times 10^{ -4}cm^{-1}sr^{-1} in controls compared with 74times 10^{-4}cm^{-1}sr^ {-1} (at 6 MHz) in treated animals. A simplified quantitative approach using video image signals was developed. Results derived both from the r.f. signal analysis and from the video signal analysis are sensitive to the changes in the liver in this animal model.

  13. An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study

    NASA Technical Reports Server (NTRS)

    Kacenelenbogen, M.; Vaughan, M. A.; Redemann, J.; Hoff, R. M.; Rogers, R. R.; Ferrare, R. A.; Russell, P. B.; Hostetler, C. A.; Hair, J. W.; Holben, B. N.

    2011-01-01

    The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP), on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products) since June 2006. CALIOP s level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010). To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ) validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD) values recorded by four different instruments (i.e. spaceborne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth s Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73) while CALIOP AOD is a factor of two lower (0.32 at 532 nm). This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i) CALIOP s low signal-to-noise ratio (SNR) leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth s surface; (ii) the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii) potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa) used in CALIOP s extinction retrievals; and (iv) calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction retrieval for our case study seems to partially fix factor (i) although the aerosol retrieved by CALIOP is still somewhat lower than the profile measured by HSRL; the cloud contamination (ii) appears to be corrected; no particular change is apparent in the observation-based CALIOP Sa value (iii). Our case study also showed very little difference in version 2 and version 3 CALIOP attenuated backscatter coefficient profiles, illustrating a minor change in the calibration scheme (iv).

  14. Comparison study of photon attenuation characteristics of Lead-Boron Polyethylene by MCNP code, XCOM and experimental data

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming

    2017-08-01

    The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.

  15. Inferential Procedures for Correlation Coefficients Corrected for Attenuation.

    ERIC Educational Resources Information Center

    Hakstian, A. Ralph; And Others

    1988-01-01

    A model and computation procedure based on classical test score theory are presented for determination of a correlation coefficient corrected for attenuation due to unreliability. Delta and Monte Carlo method applications are discussed. A power analysis revealed no serious loss in efficiency resulting from correction for attentuation. (TJH)

  16. On-site ocean horizontal aerosol extinction coefficient inversion under different weather conditions on the Bo-hai and Huang-hai Seas

    NASA Astrophysics Data System (ADS)

    Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng

    2018-03-01

    In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.

  17. Adjustable Optical-Fiber Attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F.

    1994-01-01

    Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.

  18. Gamma ray shielding characteristic of BiZnBo-SLS and PbZnBo-SLS glass

    NASA Astrophysics Data System (ADS)

    Syuhada Ahmad, Nor; Shahrim Mustafa, Iskandar; Mansor, Ishak; Malik, Muhammad Fadhirul Izwan bin Abdul; Ain Nabilah Razali, Nur; Nordin, Sufiniza

    2018-05-01

    The radiation shielding and optical properties of x [RmOn] (0.5‑x) [ZnO] 0.2 [B2O3] 0.3 [SLS], where RmOn are Bi2O3 and PbO with x = 0.05, 0.10, 0.20, 0.30, 0.40, and 0.45 have been prepared by using the melt-quenching method at 1200 °C and was investigated on their physical, structural and gamma ray shielding properties. Field-emission scanning electron microscope (FESEM) data revealed that the particle morphologies is aggregated and irregular in shapes and size. Energy dispersive x-ray spectroscopy (EDS) elemental mapping data confirmed that all mentioned element all present on the prepared glass. Soda Lime Silica (SLS) that is mainly composed of SiO2 has been utilized in this study as the source of SiO2 for fabrication of glass system. From the result, the density and molar volume of both glass samples increased as Bi2O3 and PbO content increased. The gamma ray shielding properties, such as linear attenuation and mass attenuation coefficient, were increased while half value layer (HVL) and mean free path (MFP) were decreased as the increased in Bi2O3 and PbO concentrations. It is recognized that the mass attenuation coefficient value of Bi2O3 and PbO glass are slightly different. From this study, it can be concluded that from the non-toxicity and shielding point of view, the bismuth glass is a good shield to gamma radiation as compared to lead glass.

  19. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; LaPointe, Michael R.

    2012-01-01

    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  20. Variable optical attenuator and dynamic mode group equalizer for few mode fibers.

    PubMed

    Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M

    2014-12-15

    Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.

  1. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.

  2. Parameterization and sensitivity analyses of a radiative transfer model for remote sensing plant canopies

    NASA Astrophysics Data System (ADS)

    Hall, Carlton Raden

    A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf thickness Ltadj, LAI, and h (m). Its function is to translate leaf level estimates of diffuse absorption and backscatter to the canopy scale allowing the leaf optical properties to directly influence above canopy estimates of reflectance. The model was successfully modified and parameterized to operate in a canopy scale and a leaf scale mode. Canopy scale model simulations produced the best results. Simulations based on leaf derived coefficients produced calculated above canopy reflectance errors of 15% to 18%. A comprehensive sensitivity analyses indicated the most important parameters were beam to diffuse conversion c(lambda, m-1), diffuse absorption a(lambda, m-1), diffuse backscatter b(lambda, m-1), h (m), Q, and direct and diffuse irradiance. Sources of error include the estimation procedure for the direct beam to diffuse conversion and attenuation coefficients and other field and laboratory measurement and analysis errors. Applications of the model include creation of synthetic reflectance data sets for remote sensing algorithm development, simulations of stress and drought on vegetation reflectance signatures, and the potential to estimate leaf moisture and chemical status.

  3. Deriving Hounsfield units using grey levels in cone beam computed tomography

    PubMed Central

    Mah, P; Reeves, T E; McDavid, W D

    2010-01-01

    Objectives An in vitro study was performed to investigate the relationship between grey levels in dental cone beam CT (CBCT) and Hounsfield units (HU) in CBCT scanners. Methods A phantom containing 8 different materials of known composition and density was imaged with 11 different dental CBCT scanners and 2 medical CT scanners. The phantom was scanned under three conditions: phantom alone and phantom in a small and large water container. The reconstructed data were exported as Digital Imaging and Communications in Medicine (DICOM) and analysed with On Demand 3D® by Cybermed, Seoul, Korea. The relationship between grey levels and linear attenuation coefficients was investigated. Results It was demonstrated that a linear relationship between the grey levels and the attenuation coefficients of each of the materials exists at some “effective” energy. From the linear regression equation of the reference materials, attenuation coefficients were obtained for each of the materials and CT numbers in HU were derived using the standard equation. Conclusions HU can be derived from the grey levels in dental CBCT scanners using linear attenuation coefficients as an intermediate step. PMID:20729181

  4. Transparent ITO electrode in the polymer network liquid crystal variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Zhang, Xindong; Dong, Wei; Liu, Caixia; Chen, Yinghua; Ruan, Shengping; Zhang, Shuang; Guo, Wenbin; Yang, Dong; Han, Lin; Chen, Weiyou

    2004-05-01

    Indium tin oxide (ITO) films as transparent conductors have caused a great deal of interest due to their prominent electro-optical behavior. This paper describes a study of the properties of ITO thin films that are used for a new type variable optical attenuator using polymer network liquid crystal (PNLC). The mechanism of PNLC optical attenuator operation is that the light from the input fiber is scattered when no voltage is applied, and the light passes through the attenuator when sufficient voltage is applied. So the ITO thin films can provide transparent electrodes for PNLC. They were deposited under various preparation conditions using the radio-frequency (rf) magnetron sputtering technique. Here discuss the results of the structural, electrical and optical properties of the ITO films. The paper presents some experimental results obtained in laboratory.

  5. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  6. Fractal ladder models and power law wave equations

    PubMed Central

    Kelly, James F.; McGough, Robert J.

    2009-01-01

    The ultrasonic attenuation coefficient in mammalian tissue is approximated by a frequency-dependent power law for frequencies less than 100 MHz. To describe this power law behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By combining this constitutive equation with linearized conservation principles and an adiabatic equation of state, a fractional partial differential equation that describes power law attenuation is derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and 2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder model is compared to published attenuation coefficient data, thus providing equivalent lumped parameters. PMID:19813816

  7. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing

    2017-10-01

    Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.

  8. 7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...

  9. 7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...

  10. 7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...

  11. The atmospheric transparency measured with a LIDAR system at the Telescope Array experiment

    NASA Astrophysics Data System (ADS)

    Tomida, Takayuki; Tsuyuguchi, Yusuke; Arai, Takahito; Benno, Takuya; Chikawa, Michiyuki; Doura, Koji; Fukushima, Masaki; Hiyama, Kazunori; Honda, Ken; Ikeda, Daisuke; Matthews, John N.; Nakamura, Toru; Oku, Daisuke; Sagawa, Hiroyuki; Tokuno, Hisao; Tameda, Yuichiro; Thomson, Gordon B.; Tsunesada, Yoshiki; Udo, Shigeharu; Ukai, Hisashi

    2011-10-01

    An atmospheric transparency was measured using a LIDAR with a pulsed UV laser (355 nm) at the observation site of Telescope Array in Utah, USA. The measurement at night for two years in 2007-2009 revealed that the extinction coefficient by aerosol at the ground level is 0.033-0.012+0.016km-1 and the vertical aerosol optical depth at 5 km above the ground is 0.035-0.013+0.019. A model of the altitudinal aerosol distribution was built based on these measurements for the analysis of atmospheric attenuation of the fluorescence light generated by ultra high energy cosmic rays.

  12. Measurements of the hard-x-ray reflectivity of iridium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romaine, S.; Bruni, R.; Gorenstein, P.

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  13. Measurements of the hard-x-ray reflectivity of iridium.

    PubMed

    Romaine, S; Bruni, R; Gorenstein, P; Zhong, Z

    2007-01-10

    In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

  14. Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.

    NASA Astrophysics Data System (ADS)

    Han, Wei

    1995-11-01

    This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of spheroids, is developed and applied to estimate the viscous attenuation coefficients. With incorporation of particle size and shape distributions (PSSD), predictions agree quantitatively with observed attenuation coefficients. The effects of particle aspect ratio and orientation become more evident as particle concentrations and frequencies are increased. The UCPC model combined with the ultrasonic spectroscopy techniques can provide for theoretical and experimental frameworks in characterization of concentrated colloidal dispersions.

  15. Monitoring remineralization of enamel subsurface lesions by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mandurah, Mona M.; Sadr, Alireza; Shimada, Yasushi; Kitasako, Yuichi; Nakashima, Syozi; Bakhsh, Turki A.; Tagami, Junji; Sumi, Yasunori

    2013-04-01

    Optical coherence tomography (OCT) is a potential clinical tool for enamel lesion monitoring. Swept-source OCT findings were compared with cross-sectional nanohardness findings of enamel. Subsurface bovine enamel lesions in three groups were subjected to (1) deionized water (control), (2) phosphoryl oligosaccharide of calcium (POs-Ca) or (3) POs-Ca with 1 ppm fluoride for 14 days. B-scans images were obtained at 1310-nm center wavelength on sound, demineralized and remineralized areas after 4, 7, and 14 days. The specimens were processed for cross-sectional nanoindentation. Reflectivity from enamel that had increased with demineralization decreased with remineralization. An OCT attenuation coefficient parameter (μt), derived based on the Beer-Lambert law as a function of backscatter signal slope, showed a strong linear regression with integrated nanohardness of all regions (p<0.001, r=-0.97). Sound enamel showed the smallest, while demineralized enamel showed the highest μt. In group three, μt was significantly lower at four days than baseline, but remained constant afterwards. In group two, the changes were rather gradual. There was no significant difference between groups two and three at 14 days in nanohardness or μt POs-Ca with fluoride-enhanced nanohardness of the superficial zone. OCT signal attenuation demonstrated a capability for monitoring changes of enamel lesions during remineralization.

  16. C-band attenuation by tropical rainfall in Darwin, Australia, using climatologically tuned Z(e)-R relations

    NASA Technical Reports Server (NTRS)

    Atlas, David; Rosenfeld, Daniel; Wolff, David B.

    1993-01-01

    The probability matching method (PMM) is used as a basis for estimating attenuation in tropical rains near Darwin, Australia. PMM provides a climatological relationship between measured radar reflectivity and rain rate, which includes the effects of rain and cloud attenuation. When the radar sample is representative, PMM estimates the rainfall without bias. When the data are stratified for greater than average rates, the method no longer compensates for the higher attenuation and the radar rainfall estimates are biased low. The uncompensated attenuation is used to estimate the climatological attenuation coefficient. The two-way attenuation coefficient was found to be 0.0085 dB/km ( mm/h) exp -1.08 for the tropical rains and associated clouds in Darwin for the first two months of the year for horizontally polarized radiation at 5.63 GHz. This unusually large value is discussed. The risks of making real-time corrections for attenuation are also treated.

  17. Quantitative Mapping of Pore Fraction Variations in Silicon Nitride Using an Ultrasonic Contact Scan Technique

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.

    1993-01-01

    An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.

  18. Sensitivity study on durability variables of marine concrete structures

    NASA Astrophysics Data System (ADS)

    Zhou, Xin'gang; Li, Kefei

    2013-06-01

    In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.

  19. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.

    PubMed

    Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas

    2017-04-01

    The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).

  20. Novel method of optical image registration in wide wavelength range using matrix of piezoelectric crystals

    NASA Astrophysics Data System (ADS)

    Pigarev, Aleksey V.; Bazarov, Timur O.; Fedorov, Vladimir V.; Ryabushkin, Oleg A.

    2018-02-01

    Most modern systems of the optical image registration are based on the matrices of photosensitive semiconductor heterostructures. However, measurement of radiation intensities up to several MW/cm2 -level using such detectors is a great challenge because semiconductor elements have low optical damage threshold. Reflecting or absorbing filters that can be used for attenuation of radiation intensity, as a rule, distort beam profile. Furthermore, semiconductor based devices have relatively narrow measurement wavelength bandwidth. We introduce a novel matrix method of optical image registration. This approach doesn't require any attenuation when measuring high radiation intensities. A sensitive element is the matrix made of thin transparent piezoelectric crystals that absorb just a small part of incident optical power. Each crystal element has its own set of intrinsic (acoustic) vibration modes. These modes can be exited due to the inverse piezoelectric effect when the external electric field is applied to the crystal sample providing that the field frequency corresponds to one of the vibration mode frequencies. Such piezoelectric resonances (PR) can be observed by measuring the radiofrequency response spectrum of the crystal placed between the capacitor plates. PR frequencies strongly depend on the crystal temperature. Temperature calibration of PR frequencies is conducted in the uniform heating conditions. In the case a crystal matrix is exposed to the laser radiation the incident power can be obtained separately for each crystal element by measuring its PR frequency kinetics providing that the optical absorption coefficient is known. The operating wavelength range of such sensor is restricted by the transmission bandwidth of the applied crystals. A plane matrix constituting of LiNbO3 crystals was assembled in order to demonstrate the possibility of application of the proposed approach. The crystal elements were placed between two electrodes forming a capacitor which was interconnected to the lock-in detection system. The radiofrequency response to the applied voltage from the generator was measured simultaneously for all elements.

  1. Star formation in the local Universe from the CALIFA sample. I. Calibrating the SFR using integral field spectroscopy data

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Iglesias-Páramo, J.; Sánchez, S. F.; Kennicutt, R. C.; Pérez-González, P. G.; Marino, R. A.; Walcher, C. J.; Husemann, B.; García-Benito, R.; Mast, D.; González Delgado, R. M.; Muñoz-Mateos, J. C.; Bland-Hawthorn, J.; Bomans, D. J.; Del Olmo, A.; Galbany, L.; Gomes, J. M.; Kehrig, C.; López-Sánchez, Á. R.; Mendoza, M. A.; Monreal-Ibero, A.; Pérez-Torres, M.; Sánchez-Blázquez, P.; Vilchez, J. M.; Califa Collaboration

    2015-12-01

    Context. The star formation rate (SFR) is one of the main parameters used to analyze the evolution of galaxies through time. The need for recovering the light reprocessed by dust commonly requires the use of low spatial resolution far-infrared data. Recombination line luminosities provide an alternative, although uncertain dust-extinction corrections based on narrowband imaging or long-slit spectroscopy have traditionally posed a limit to their applicability. Integral field spectroscopy (IFS) is clearly the way to overcome this kind of limitation. Aims: We obtain integrated Hα, ultraviolet (UV) and infrared (IR)-based SFR measurements for 272 galaxies from the CALIFA survey at 0.005

  2. Automated fiber tracking and tissue characterization of the anterior cruciate ligament with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Priya S.; Guo, Jiaqi; Yao, Xinwen; Qu, Dovina; Lu, Helen H.; Hendon, Christine P.

    2017-02-01

    The directionality of collagen fibers across the anterior cruciate ligament (ACL) as well as the insertion of this key ligament into bone are important for understanding the mechanical integrity and functionality of this complex tissue. Quantitative analysis of three-dimensional fiber directionality is of particular interest due to the physiological, mechanical, and biological heterogeneity inherent across the ACL-to-bone junction, the behavior of the ligament under mechanical stress, and the usefulness of this information in designing tissue engineered grafts. We have developed an algorithm to characterize Optical Coherence Tomography (OCT) image volumes of the ACL. We present an automated algorithm for measuring ligamentous fiber angles, and extracting attenuation and backscattering coefficients of ligament, interface, and bone regions within mature and immature bovine ACL insertion samples. Future directions include translating this algorithm for real time processing to allow three-dimensional volumetric analysis within dynamically moving samples.

  3. Experimental research and observation of the skin response of mice with a second-degree scald during irradiation by a CO2 laser

    NASA Astrophysics Data System (ADS)

    Wang, Yunxia; Wu, Shulian; Li, Zhifang; Xu, Xiaohui; Li, Hui

    2014-05-01

    Second-degree scalding is a common dermatological injury. Inappropriate treatment methods in clinical practice always produce scarring, and can lead to skin cancer and other complications in the longer term. In this study optical coherence tomography (OCT) combined with a skin detector was used to monitor the response of second-degree scalded skin tissue irradiated by a CO2 laser. The process of treatment of second-degree scalding was systematically studied from the perspective of tissue optics. The OCT signal intensity was stronger within the whole recovery period in the experimental group undergoing CO2 laser treatment, and the attenuation coefficient (μt) returned to its original value in a shorter time. The results help us to understand tissue injury in a second-degree scald and may help improve the standard treatment.

  4. Modifying Spearman's Attenuation Equation to Yield Partial Corrections for Measurement Error--With Application to Sample Size Calculations

    ERIC Educational Resources Information Center

    Nicewander, W. Alan

    2018-01-01

    Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…

  5. Optical Measurements and Modeling to Estimate Concentrations and Fluxes of Organic Matter in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    Stramski, Dariusz; Mitchell, B. Greg; Marra, John W. (Technical Monitor)

    2001-01-01

    This project was a collaboration between two Principal Investigators, Dr. Dariusz Stramski and Dr. Greg Mitchell of Scripps Institution of Oceanography, University of California San Diego. Our overall goal was to conduct optical measurements and modeling to estimate concentrations of organic matter in the Southern Ocean in support of the U.S. JGOFS Process Study in this region. Key variables and processes of high relevance to accomplish the JGOFS goals include time and space resolution of phytoplankton pigments, particulate organic carbon, and the formation and export of organic carbon. Our project focused on establishing the fundamental relationships for parameterization of these variables and processes in terms of the optical properties of seawater, and developing understanding of why the Southern Ocean differs from other low-latitude systems, or has differentiation within. Our approach builds upon historical observations that optical properties provide a useful proxy for key reservoirs of organic matter such as chlorophyll alpha (Chl) and particulate organic carbon (POC) concentrations, which are of relevance to the JGOFS objectives. We carried out detailed studies of in situ and water sample optical properties including spectral reflectance, absorption, beam attenuation, scattering, and backscattering coefficients. We evaluated the ability to estimate Chl from the spectral reflectance (ocean color) in the Southern Ocean. We examined relationships between the ocean optical properties and particulate organic carbon. We developed, for the first time, an algorithm for estimating particulate organic carbon concentration in the surface ocean from satellite imagery of ocean color. With this algorithm, we obtained maps of POC distribution in the Southern Ocean showing the seasonal progression of POC in the austral spring-summer season. We also developed a semianalytical reflectance model for the investigated polar waters based on our field measurements of absorption and backscattering coefficients and Chl-dependent parameterizations of these coefficients. With this model, libraries of expected reflectance spectra for various chlorophyll concentrations can be generated with high spectral resolution for specific oceanic regions. In addition, our semianalytical reflectance model provided insight into the mechanisms which drive the empirical relationships between the ocean color and chlorophyll concentration. Our optical approach to the study of pigment and carbon concentrations will be directly relevant to development of system models and long-term monitoring of the Southern Ocean.

  6. Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration.

    PubMed

    Nebelung, Sven; Brill, Nicolai; Tingart, Markus; Pufe, Thomas; Kuhl, Christiane; Jahr, Holger; Truhn, Daniel

    2016-04-01

    To evaluate the usefulness of quantitative parameters obtained by optical coherence tomography (OCT) and magnetic resonance imaging (MRI) in the comprehensive assessment of human articular cartilage degeneration. Human osteochondral samples of variable degeneration (n = 45) were obtained from total knee replacements and assessed by MRI sequences measuring T1, T1ρ, T2 and T2* relaxivity and by OCT-based quantification of irregularity (OII, optical irregularity index), homogeneity (OHI, optical homogeneity index]) and attenuation (OAI, optical attenuation index]). Samples were also assessed macroscopically (Outerbridge classification) and histologically (Mankin classification) as grade-0 (Mankin scores 0-4)/grade-I (scores 5-8)/grade-II (scores 9-10)/grade-III (score 11-14). After data normalisation, differences between Mankin grades and correlations between imaging parameters were assessed using ANOVA and Tukey's post-hoc test and Spearman's correlation coefficients, respectively. Sensitivities and specificities in the detection of Mankin grade-0 were calculated. Significant degeneration-related increases were found for T2 and OII and decreases for OAI, while T1, T1ρ, T2* or OHI did not reveal significant changes in relation to degeneration. A number of significant correlations between imaging parameters and histological (sub)scores were found, in particular for T2 and OII. Sensitivities and specificities in the detection of Mankin grade-0 were highest for OHI/T1 and OII/T1ρ, respectively. Quantitative OCT and MRI techniques seem to complement each other in the comprehensive assessment of cartilage degeneration. Sufficiently large structural and compositional changes in the extracellular matrix may thus be parameterized and quantified, while the detection of early degeneration remains challenging.

  7. Measuring optical properties of a blood vessel model using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  8. Sound Propagation in Gas-Vapor-Droplet Suspensions with Evaporation and Nonlinear Particle Relaxation

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.

  9. Impact of Scattering Model on Disdrometer Derived Attenuation Scaling

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo (Compiler)

    2016-01-01

    NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 GHz attenuation from the disdrometer and the 20 GHz timeseries as well as to directly measure the 40 GHz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data.In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.

  10. Impact of Scattering Model on Disdrometer Derived Attenuation Scaling

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo

    2016-01-01

    NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP#5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 gigahertz attenuation from the disdrometer and the 20 gigahertz time-series as well as to directly measure the 40 gigahertz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data. In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer-derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.

  11. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    NASA Astrophysics Data System (ADS)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  12. X-Ray Form Factor, Attenuation and Scattering Tables

    National Institute of Standards and Technology Data Gateway

    SRD 66 X-Ray Form Factor, Attenuation and Scattering Tables (Web, free access)   This database collects tables and graphs of the form factors, the photoabsorption cross section, and the total attenuation coefficient for any element (Z <= 92).

  13. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  14. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  15. Determination of the Mass Absorption Coefficient in Two-Layer Ti/V and V/Ti Thin Film Systems by the X-Ray Fluorescence Method

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.

    2016-03-01

    A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.

  16. Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System

    DTIC Science & Technology

    2015-03-26

    through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing

  17. Nano-stepper-driven optical shutter for applications in free-space micro-optics

    NASA Astrophysics Data System (ADS)

    Zawadzka, Justyna; Li, Lijie; Unamuno, Anartz; Uttamchandani, Deepak G.

    2002-09-01

    In this paper we report a simple design of a micro-optical shutter/attenuator. The standard MUMPS process was used to fabricate the device. A vertically erected, gold-coated, 200x300 mm side length micro-mirror was precisely placed between the end faces of two closely spaced optical fibers. The position of the micro-mirror with respect to the optical fiber end face was controlled by a nano-stepping motor array. Optical and mechanical tests were performed on the device. A 1.55 mm laser beam was sent along the optical fiber. When the micro-mirror was removed from the front of the fiber, the coupling efficiency between two fibers was -10 dBm. Once the micro-mirror was placed in the optical path the coupling efficiency dropped to -51.5 dBm. The best attenuation was obtained when the micro-mirror blocked the whole cross-section of the laser beam diameter. It is evident that the device can operate as a high precision fiber optic attenuator or shutter.

  18. Structural and optical properties of Bi2O3-B2O3-CdO-Na2O glass system for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder

    2018-05-01

    Quaternary system of the composition (0.15+x) Bi2O3-(0.55-x) B2O3-0.15CdO-0.15Na2O (where x=0, 0.1, 0.3 and 0.5 mole fraction) has been synthesized using melt-quenching technique. Gamma ray shielding properties are measured in terms of mass attenuation coefficient and half value layer at photon energies 662, 1173 and 1332 keV. These parameters are compared with standard nuclear radiation shielding `barite and ferrite' concretes. The results reflect better radiation shielding properties as compared to barite and ferrite concretes. Effective atomic number is calculated at photon energies 662 and 1173 keV. Density, molar volume and XRD studies are analyzed to know physical and structural properties of the glass system. Optical band gap, refractive index and molar refraction are calculated from UV-Visible measurements. Decrease in optical band gap and increase in molar refraction have been observed indicating the increase of non-bridging oxygens in the structure.

  19. Serial optical coherence scanning reveals an association between cardiac function and the heart architecture in the aging rodent heart

    PubMed Central

    Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Avti, Pramod; Moeini, Mohammad; Lesage, Frédéric

    2017-01-01

    Normal aging is accompanied by structural changes in the heart architecture. To explore this remodeling, we used a serial optical coherence tomography scanner to image entire mouse hearts at micron scale resolution. Ex vivo hearts of 7 young (4 months) and 5 old (24 months) C57BL/6 mice were acquired with the imaging platform. OCT of the myocardium revealed myofiber orientation changing linearly from the endocardium to the epicardium. In old mice, this rate of change was lower when compared to young mice while the average volume of old mice hearts was significantly larger (p<0.05). Myocardial wall thickening was also accompanied by extracellular spacing in the endocardium, resulting in a lower OCT attenuation coefficient in old mice endocardium (p<0.05). Prior to serial sectioning, cardiac function of the same hearts was imaged in vivo using MRI and revealed a reduced ejection fraction with aging. The use of a serial optical coherence tomography scanner allows new insight into fine age-related changes of the heart associated with changes in heart function. PMID:29188099

  20. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters.

    PubMed

    Albert, A; Mobley, C

    2003-11-03

    Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.

  1. Boson peak, heterogeneity and intermediate-range order in binary SiO2-Al2O3 glasses.

    PubMed

    Ando, Mariana F; Benzine, Omar; Pan, Zhiwen; Garden, Jean-Luc; Wondraczek, Katrin; Grimm, Stephan; Schuster, Kay; Wondraczek, Lothar

    2018-03-29

    In binary aluminosilicate liquids and glasses, heterogeneity on intermediate length scale is a crucial factor for optical fiber performance, determining the lower limit of optical attenuation and Rayleigh scattering, but also clustering and precipitation of optically active dopants, for example, in the fabrication of high-power laser gain media. Here, we consider the low-frequency vibrational modes of such materials for assessing structural heterogeneity on molecular scale. We determine the vibrational density of states VDoS g(ω) using low-temperature heat capacity data. From correlation with low-frequency Raman spectroscopy, we obtain the Raman coupling coefficient. Both experiments allow for the extraction of the average dynamic correlation length as a function of alumina content. We find that this value decreases from about 3.9 nm to 3.3 nm when mildly increasing the alumina content from zero (vitreous silica) to 7 mol%. At the same time, the average inter-particle distance increases slightly due to the presence of oxygen tricluster species. In accordance with Loewensteinian dynamics, this proves that mild alumina doping increases structural homogeneity on molecular scale.

  2. Spatial-temporal bio-optical classification of dynamic semi-estuarine waters in western North America

    NASA Astrophysics Data System (ADS)

    Phillips, Stephen Robert; Costa, Maycira

    2017-12-01

    The use of standard ocean colour reflectance based algorithms to derive surface chlorophyll may have limited applicability for optically dynamic coastal waters due to the pre-defined coefficients based on global datasets. Reflectance based algorithms adjusted to regional optical water characteristics are a promising alternative. A class-based definition of optically diverse coastal waters was investigated as a first step towards the development of temporal and spatial constrained reflectance based algorithms for optically variable coastal waters. A large set of bio-optical data were collected as part of five research cruises and bi-weekly trips aboard a ship of opportunity in the west coast of Canada, to assess the spatial and temporal variability of above-water reflectance in this contrasted coastal environment. To accomplish this, in situ biophysical and optical measurements were collected in conjunction with above-water hyperspectral remote sensing reflectance (Rrs) at 145 stations. The concentrations of measured biophysical data varied considerably; chlorophyll a (Chla) (mean = 1.64, range: 0.10-7.20 μg l-1), total suspended matter (TSM) (3.09, 0.82-20.69 mg l-1), and absorption by chromophoric dissolved organic matter (CDOM) (acdom(443 nm)) (0.525, 0.007-3.072 m-1), thus representing the spatio-temporal variability of the Salish Sea. Optically, a similar large range was also found; particulate scattering (bp(650 nm)) (1.316, 0.250-7.450 m-1), particulate backscattering (bbp(650 nm)) (0.022, 0.005-0.097 m-1), total beam attenuation coefficient (ct(650)) (1.675, 0.371-9.537 m-1) and particulate absorption coefficient (ap(650 nm)) (0.345, 0.048-2.020 m-1). An empirical orthogonal function (EOF) analysis revealed that Rrs variability was highly correlated to bp (r = 0.90), bbp (r = 0.82) and concentration of TSM (r = 0.80), which highlighted the dominant role of water turbidity in this region. Hierarchical clustering analysis was applied to the normalized Rrs spectra to define optical water classes. Class 1 was defined by the highest Rrs values, particularly above 570 nm, indicating more turbid waters; Class 2 was dominated by high Chla and TSM concentrations, which is shown by high Rrs at 570 nm as well as fluorescence and absorption peaks; Class 3 shows strong fluorescence signatures accompanied by low TSM influence; and Class 4 is most representative of clear waters with a less defined absorption peak around 440 nm. By understanding the bio-optical factors which control the variability of the Rrs spectra this study aims to develop a sub-regional characterization of this coastal region aiming to improve bio-optical algorithms in this complex coastal area.

  3. Comparison of x-ray cross sections for diagnostic and therapeutic medical physics.

    PubMed

    Boone, J M; Chavez, A E

    1996-12-01

    The purpose of this technical report is to make available an up-to-date source of attenuation coefficient data to the medical physics community, and to compare these data with other more familiar sources. Data files from Lawrence Livermore National Laboratory (in Livermore, CA) were truncated to match the needs of the medical physics community, and an interpolation routine was written to calculate a continuous set of cross sections spanning energies from 1 keV to 50 MeV. Coefficient data are available for elements Z = 1 through Z = 100. Values for mass attenuation coefficients, mass-energy-transfer coefficients, and mass-energy absorption coefficients are produced by a single computer subroutine. In addition to total interaction cross sections, the cross sections for photoelectric, Rayleigh, Compton, pair, and some triplet interactions are also produced by this single program. The coefficients were compared to the 1970 data of Storm and Israel over the energy interval from 1 to 1000 keV; for elements 10, 20, 30, 40, 50, 60, 70, and 80, the average positive difference between the Storm and Israel coefficients and the coefficients reported here are 1.4%, 2.7%, and 2.6%, for the mass attenuation, mass energy-transfer, and mass-energy absorption coefficients, respectively. The 1969 data compilation of mass attenuation coefficients from McMaster et al. were also compared with the newer LLNL data. Over the energy region from 10 keV to 1000 keV, and from elements Z = 1 to Z = 82 (inclusive), the overall average difference was 1.53% (sigma = 0.85%). While the overall average difference was small, there was larger variation (> 5%) between cross sections for some elements. In addition to coefficient data, other useful data such as the density, atomic weight, K, L1, L2, L3, M, and N edges, and numerous characteristic emission energies are output by the program, depending on a single input variable. The computer source code, written in C, can be accessed and downloaded from the World Wide Web at: http:@www.aip.org/epaps/epaps.html [E-MPHSA-23-1977].

  4. System of Mueller-Jones matrix polarizing mapping of blood plasma films in breast pathology

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Radchenko, Kostiantyn O.; Tarnovskiy, Mykola H.

    2017-08-01

    The combined method of Jones-Mueller matrix mapping and blood plasma films analysis based on the system that proposed in this paper. Based on the obtained data about the structure and state of blood plasma samples the diagnostic conclusions can be make about the state of breast cancer patients ("normal" or "pathology"). Then, by using the statistical analysis obtain statistical and correlational moments for every coordinate distributions; these indicators are served as diagnostic criterias. The final step is to comparing results and choosing the most effective diagnostic indicators. The paper presents the results of Mueller-Jones matrix mapping of optically thin (attenuation coefficient ,τ≤0,1) blood plasma layers.

  5. Quantitative Evaluation of Segmentation- and Atlas-Based Attenuation Correction for PET/MR on Pediatric Patients.

    PubMed

    Bezrukov, Ilja; Schmidt, Holger; Gatidis, Sergios; Mantlik, Frédéric; Schäfer, Jürgen F; Schwenzer, Nina; Pichler, Bernd J

    2015-07-01

    Pediatric imaging is regarded as a key application for combined PET/MR imaging systems. Because existing MR-based attenuation-correction methods were not designed specifically for pediatric patients, we assessed the impact of 2 potentially influential factors: inter- and intrapatient variability of attenuation coefficients and anatomic variability. Furthermore, we evaluated the quantification accuracy of 3 methods for MR-based attenuation correction without (SEGbase) and with bone prediction using an adult and a pediatric atlas (SEGwBONEad and SEGwBONEpe, respectively) on PET data of pediatric patients. The variability of attenuation coefficients between and within pediatric (5-17 y, n = 17) and adult (27-66 y, n = 16) patient collectives was assessed on volumes of interest (VOIs) in CT datasets for different tissue types. Anatomic variability was assessed on SEGwBONEad/pe attenuation maps by computing mean differences to CT-based attenuation maps for regions of bone tissue, lungs, and soft tissue. PET quantification was evaluated on VOIs with physiologic uptake and on 80% isocontour VOIs with elevated uptake in the thorax and abdomen/pelvis. Inter- and intrapatient variability of the bias was assessed for each VOI group and method. Statistically significant differences in mean VOI Hounsfield unit values and linear attenuation coefficients between adult and pediatric collectives were found in the lungs and femur. The prediction of attenuation maps using the pediatric atlas showed a reduced error in bone tissue and better delineation of bone structure. Evaluation of PET quantification accuracy showed statistically significant mean errors in mean standardized uptake values of -14% ± 5% and -23% ± 6% in bone marrow and femur-adjacent VOIs with physiologic uptake for SEGbase, which could be reduced to 0% ± 4% and -1% ± 5% using SEGwBONEpe attenuation maps. Bias in soft-tissue VOIs was less than 5% for all methods. Lung VOIs showed high SDs in the range of 15% for all methods. For VOIs with elevated uptake, mean and SD were less than 5% except in the thorax. The use of a dedicated atlas for the pediatric patient collective resulted in improved attenuation map prediction in osseous regions and reduced interpatient bias variation in femur-adjacent VOIs. For the lungs, in which intrapatient variation was higher for the pediatric collective, a patient- or group-specific attenuation coefficient might improve attenuation map accuracy. Mean errors of -14% and -23% in bone marrow and femur-adjacent VOIs can affect PET quantification in these regions when bone tissue is ignored. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Simultaneous aerosol/ocean products retrieved during the 2014 SABOR campaign using the NASA Research Scanning Polarimeter (RSP)

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Burton, S. P.; Liu, X.; Hu, Y.; Stamnes, K. H.; Chowdhary, J.; Brian, C.

    2017-12-01

    The SABOR (Ship-Aircraft Bio-Optical Research) campaign was conducted during the summer of 2014, in the Atlantic Ocean, over the Chesapeake Bay and the eastern coastal region of the United States. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft. We present results from the new "MAPP" algorithm for RSP that is based on optimal estimation and that can retrieve simultaneous aerosol microphysical properties (including effective radius, single-scattering albedo, and real refractive index) and ocean color products using accurate radiative transfer and Mie calculations. The algorithm was applied to data collected during SABOR to retrieve aerosol microphysics and ocean products for all Aerosols-Above-Ocean (AAO) scenes. The RSP MAPP products are compared against collocated aerosol extinction and backscatter profiles collected by the NASA LaRC airborne High Spectral Resolution Lidar (HSRL-1), including lidar depth profiles of the ocean diffuse attenuation coefficient and the hemispherical backscatter coefficient.

  7. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 - 25.26 keV photon energy range

    NASA Astrophysics Data System (ADS)

    Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).

  8. A simple model for deep tissue attenuation correction and large organ analysis of Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Habte, Frezghi; Natarajan, Arutselvan; Paik, David S.; Gambhir, Sanjiv S.

    2014-03-01

    Cerenkov luminescence imaging (CLI) is an emerging cost effective modality that uses conventional small animal optical imaging systems and clinically available radionuclide probes for light emission. CLI has shown good correlation with PET for organs of high uptake such as kidney, spleen, thymus and subcutaneous tumors in mouse models. However, CLI has limitations for deep tissue quantitative imaging since the blue-weighted spectral characteristics of Cerenkov radiation attenuates highly by mammalian tissue. Large organs such as the liver have also shown higher signal due to the contribution of emission of light from a greater thickness of tissue. In this study, we developed a simple model that estimates the effective tissue attenuation coefficient in order to correct the CLI signal intensity with a priori estimated depth and thickness of specific organs. We used several thin slices of ham to build a phantom with realistic attenuation. We placed radionuclide sources inside the phantom at different tissue depths and imaged it using an IVIS Spectrum (Perkin-Elmer, Waltham, MA, USA) and Inveon microPET (Preclinical Solutions Siemens, Knoxville, TN). We also performed CLI and PET of mouse models and applied the proposed attenuation model to correct CLI measurements. Using calibration factors obtained from phantom study that converts the corrected CLI measurements to %ID/g, we obtained an average difference of less that 10% for spleen and less than 35% for liver compared to conventional PET measurements. Hence, the proposed model has a capability of correcting the CLI signal to provide comparable measurements with PET data.

  9. Synthesis, physical properties and simulation of thermo-optic switch based on azo benzothiazole heterocyclic polymer

    NASA Astrophysics Data System (ADS)

    Qiu, Fengxian; Chen, Caihong; Zhou, Qiaolan; Cao, Zhijuan; Cao, Guorong; Guan, Yijun; Yang, Dongya

    2014-05-01

    A chromophore molecule 4-[(benzothiazole-2-yl)diazenyl]phenyl-1,3-diamine (BTPD) was prepared with 2-amino benzothiazole and m-phenylenediamine by diazo-coupling reaction. Then, the BTPD was polymerized with polyether polyol (NJ-220) and isophorone diisocyanate (IPDI) to obtain novel azo benzothiazole polyurethane-urea (BTPUU). The chemical structures of BTPD and BTPUU were characterized by FT-IR and UV-visible spectroscopy. The thermal and mechanical properties of BTPUU film were investigated. The refractive index and transmission loss of BTPUU film were measured at different temperatures and different laser wavelengths (532 nm, 650 nm and 850 nm) by an attenuated total reflection (ATR) technique and CCD digital imaging devices. The thermo-optic coefficients of BTPUU are -4.7086 × 10-4 °C-1 (532 nm), -6.5257 × 10-4 °C-1 (650 nm) and -5.1029 × 10-4 °C-1 (850 nm), respectively. A Y-branch switch and Mach-Zehnder interferometer (MZI) thermo-optic switches based on thermo-optic effect were proposed and the performances of the switches were simulated, respectively. The results show that the power consumption of the Y-branch thermo-optic switch is only 3.28 mW. The response times of Y-branch and MZI switches are 8.0 ms and 2.0 ms, respectively. The results indicate that the prepared BTPUU has high potential for the applications of the Y-branch digital optical switch (DOS), MZI thermo-optic switch, directional coupler (DC) switch and optical modulators.

  10. Contribution to a bio-optical model for remote sensing of Lena River water

    NASA Astrophysics Data System (ADS)

    Örek, H.; Doerffer, R.; Röttgers, R.; Boersma, M.; Wiltshire, K. H.

    2013-11-01

    Bio-optical measurements and sampling were carried out in the delta of the Lena River (northern Siberia, Russia) between 26 June and 4 July 2011. The aim of this study was to determine the inherent optical properties of the Lena water, i.e., absorption, attenuation, and scattering coefficients, during the period of maximum runoff. This aimed to contribute to the development of a bio-optical model for use as the basis for optical remote sensing of coastal water of the Arctic. In this context the absorption by CDOM (colored dissolved organic matter) and particles, and the concentrations of total suspended matter, phytoplankton-pigments, and carbon were measured. CDOM was found to be the most dominant parameter affecting the optical properties of the river, with an absorption coefficient of 4.5-5 m-1 at 442 nm, which was almost four times higher than total particle absorption values at visible wavelength range. The wavelenght-dependence of absorption of the different water constituents was chracterized by determining the semi logarithmic spectral slope. Mean CDOM, and detritus slopes were 0.0149 nm-1(standard deviation (stdev) = 0.0003, n = 18), and 0.0057 nm-1 (stdev = 0.0017, n = 19), respectively, values which are typical for water bodies with high concentrations of dissolved and particulate carbon. Mean chlorophyll a and total suspended matter were 1.8 mg m-3 (stdev = 0.734 n = 18) and 31.9 g m-3 (stdev = 19.94, n = 27), respectively. DOC (dissolved organic carbon) was in the range 8-10 g m-3 and the total particulate carbon (PC) in the range 0.25-1.5 g m-3. The light penetration depth (Secchi disc depth) was in the range 30-90 cm and was highly correlated with the suspended matter concentration. The period of maximum river runoff in June was chosen to obtain bio-optical data when maximum water constituents are transported into the Laptev Sea. However, we are aware that more data from other seasons and other years need to be collected to establish a general bio-optical model of the Lena water and conclusively characterize the light climate with respect to primary production.

  11. Accuracy of CT-based attenuation correction in PET/CT bone imaging

    NASA Astrophysics Data System (ADS)

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-05-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  12. Inhomogeneity in optical properties of rat brain: a study for LLLT dosimetry

    NASA Astrophysics Data System (ADS)

    Sousa, Marcelo V. P.; Prates, Renato; Kato, Ilka T.; Sabino, Caetano P.; Yoshimura, Tania M.; Suzuki, Luis C.; Magalhães, Ana C.; Yoshimura, Elisabeth M.; Ribeiro, Martha S.

    2013-03-01

    Over the last few years, low-level light therapy (LLLT) has shown an incredible suitability for a wide range of applications for central nervous system (CNS) related diseases. In this therapeutic modality light dosimetry is extremely critical so the study of light propagation through the CNS organs is of great importance. To better understand how light intensity is delivered to the most relevant neural sites we evaluated optical transmission through slices of rat brain point by point. We experimented red (λ = 660 nm) and near infrared (λ = 808 nm) diode laser light analyzing the light penetration and distribution in the whole brain. A fresh Wistar rat (Rattus novergicus) brain was cut in sagittal slices and illuminated with a broad light beam. A high-resolution digital camera was employed to acquire data of transmitted light. Spatial profiles of the light transmitted through the sample were obtained from the images. Peaks and valleys in the profiles show sites where light was less or more attenuated. The peak intensities provide information about total attenuation and the peak widths are correlated to the scattering coefficient at that individual portion of the sample. The outcomes of this study provide remarkable information for LLLT dose-dependent studies involving CNS and highlight the importance of LLLT dosimetry in CNS organs for large range of applications in animal and human diseases.

  13. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds

    NASA Astrophysics Data System (ADS)

    Gowda, Shivalinge; Krishnaveni, S.; Yashoda, T.; Umesh, T. K.; Gowda, Ramakrishna

    2004-09-01

    Photon mass attenuation coefficients of some thermoluminescent dosimetric (TLD) compounds, such as LiF, CaCO_3, CaSO_4, CaSO_4\\cdot2H_2O, SrSO_4, CdSO_4, BaSO_4, C_4H_6BaO_4 and 3CdSO_4\\cdot8H_2O were determined at 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The attenuation coefficient data were then used to compute the effective atomic number and the electron density of TLD compounds. The interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other available published values.

  14. Parameters and computer software for the evaluation of mass attenuation and mass energy-absorption coefficients for body tissues and substitutes.

    PubMed

    Okunade, Akintunde A

    2007-07-01

    The mass attenuation and energy-absorption coefficients (radiation interaction data), which are widely used in the shielding and dosimetry of X-rays used for medical diagnostic and orthovoltage therapeutic procedures, are strongly dependent on the energy of photons, elements and percentage by weight of elements in body tissues and substitutes. Significant disparities exist in the values of percentage by weight of elements reported in literature for body tissues and substitutes for individuals of different ages, genders and states of health. Often, interested parties are in need of these radiation interaction data for body tissues or substitutes with percentage by weight of elements and intermediate energies that are not tabulated in literature. To provide for the use of more precise values of these radiation interaction data, parameters and computer programs, MUA_T and MUEN_T are presented for the computation of mass attenuation and energy-absorption coefficients for body tissues and substitutes of arbitrary percentage-by-weight elemental composition and photon energy ranging between 1 keV (or k-edge) and 400 keV. Results are presented, which show that the values of mass attenuation and energy-absorption coefficients obtained from computer programs are in good agreement with those reported in literature.

  15. Airborne Polarized Lidar Detection of Scattering Layers in the Ocean

    NASA Astrophysics Data System (ADS)

    Vasilkov, Alexander P.; Goldin, Yury A.; Gureev, Boris A.; Hoge, Frank E.; Swift, Robert N.; Wright, C. Wayne

    2001-08-01

    A polarized lidar technique based on measurements of waveforms of the two orthogonal-polarized components of the backscattered light pulse is proposed to retrieve vertical profiles of the seawater scattering coefficient. The physical rationale for the polarized technique is that depolarization of backscattered light originating from a linearly polarized laser beam is caused largely by multiple small-angle scattering from particulate matter in seawater. The magnitude of the small-angle scattering is determined by the scattering coefficient. Therefore information on the vertical distribution of the scattering coefficient can be derived potentially from measurements of the timedepth dependence of depolarization in the backscattered laser pulse. The polarized technique was verified by field measurements conducted in the Middle Atlantic Bight of the western North Atlantic Ocean that were supported by in situ measurements of the beam attenuation coefficient. The airborne polarized lidar measured the timedepth dependence of the backscattered laser pulse in two orthogonal-polarized components. Vertical profiles of the scattering coefficient retrieved from the timedepth depolarization of the backscattered laser pulse were compared with measured profiles of the beam attenuation coefficient. The comparison showed that retrieved profiles of the scattering coefficient clearly reproduce the main features of the measured profiles of the beam attenuation coefficient. Underwater scattering layers were detected at depths of 2025 m in turbid coastal waters. The improvement in dynamic range afforded by the polarized lidar technique offers a strong potential benefit for airborne lidar bathymetric applications.

  16. The Effect of Various Waste Materials' Contents on the Attenuation Level of Anti-Radiation Shielding Concrete.

    PubMed

    Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul

    2013-10-23

    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.

  17. Examining the mean vertical attenuation of scalar quantum irradiance (PAR) over the Louisiana-Texas shelf (northern Gulf of Mexico)

    NASA Astrophysics Data System (ADS)

    Lugo-Fernández, A.; Gravois, M.; Green, R. E.; Montgomery, T.

    2012-04-01

    We examined freshwater and ocean circulation effects on the distribution of vertical quantum diffuse attenuation coefficients (Kq0) of photosyntheticaly available radiation (PAR) in waters of the northern Gulf of Mexico's Louisiana-Texas shelf. Mean Kq0 coefficients were estimated from 509 vertical profiles of PAR collected during 10 cruises spanning 30 months (1992-1994). Vertical profiles of density revealed that the shelf waters are divided into two periods: a stratified period with an upper layer 10 m thick of turbid waters (0.06≤Kq0≤1.18 m-1) and a lower layer of more transparent waters (0.01≤Kq0≤0.49 m-1). The second or non-stratified period consists of a homogenous layer ˜55 m thick and less turbid waters (0.03≤Kq0≤1.00 m-1). Horizontally, the distribution of Kq0 reveals nearshore coastal or case 2 waters followed by offshore oceanic or case 1 waters that separate near the 70-m isobath regardless of time and place. The Kq0 distribution reflects the freshwater influx from the Mississippi and Atchafalaya Rivers which causes a turbid surface trapped river plume, the shelf wind-driven circulation, and ensuing mixing. To investigate Kq0 we used two regression models involving salinity, suspended particulate matter (SPM), chlorophyll-a (Chl), and water depth. The best statistical model explained 57% to 85% of the observed Kq0 variability and involved the reciprocal of water depth, salinity, and SPM. However, a more bio-optically relevant model involving salinity, SPM, and Chl, explained only 32% to 64% of the observed Kq0 variability. Estimates of Kq0 for the upper layer indicate compensation depths of 30-92 m in waters deeper than 70 m which help account for the presence of coral communities on submerged banks near the shelf edge. The observed temporal and spatial distribution of Kq0 agrees qualitatively with that of satellite-derived values of the diffuse attenuation coefficient, Kd(4 9 0) over this shelf.

  18. Corneal permeability for cement dust: prognosis for occupational safety

    NASA Astrophysics Data System (ADS)

    Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.

    2018-02-01

    The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.

  19. Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between summer and winter in Beijing, China

    NASA Astrophysics Data System (ADS)

    Han, Tingting; Xu, Weiqi; Li, Jie; Freedman, Andrew; Zhao, Jian; Wang, Qingqing; Chen, Chen; Zhang, Yingjie; Wang, Zifa; Fu, Pingqing; Liu, Xingang; Sun, Yele

    2017-02-01

    Aerosol optical properties were measured in Beijing in summer and winter using a state-of-the-art cavity attenuated phase shift single scattering albedo monitor (CAPS PMssa) along with aerosol composition measurements by aerosol mass spectrometers and aethalometers. The SSA directly measured by the CAPS PMssa showed overall agreements with those derived from colocated measurements. However, substantial differences were observed during periods with low SSA values in both summer and winter, suggesting that interpretation of low SSA values needs to be cautious. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 336 (±343) Mm-1 and 44 (±41) Mm-1, respectively, during wintertime, which were approximately twice those observed in summer, while the average SSA was relatively similar, 0.86 (±0.06) and 0.85 (±0.04) in summer and winter, respectively. Further analysis showed that the variations in SSA can be approximately parameterized as a function of mass fraction of secondary particulate matter (fSPM), which is SSA = 0.74 + 0.19 × fSPM (fSPM > 0.3, r2 = 0.85). The contributions of aerosol species to extinction coefficients during the two seasons were also estimated. Our results showed that the light extinction was dominantly contributed by ammonium sulfate (30%) and secondary organic aerosol (22%) in summer, while organic aerosol was the largest contributor (51%) in winter. Consistently, SPM played the major role in visibility degradation in both seasons by contributing 70% of the total extinction.

  20. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    NASA Astrophysics Data System (ADS)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  1. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    PubMed

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 < or = Z < or = 20, and the energy range 30-150 keV, the parameterization utilizes four coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  2. Evaluation and automatic correction of metal-implant-induced artifacts in MR-based attenuation correction in whole-body PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Schramm, G.; Maus, J.; Hofheinz, F.; Petr, J.; Lougovski, A.; Beuthien-Baumann, B.; Platzek, I.; van den Hoff, J.

    2014-06-01

    The aim of this paper is to describe a new automatic method for compensation of metal-implant-induced segmentation errors in MR-based attenuation maps (MRMaps) and to evaluate the quantitative influence of those artifacts on the reconstructed PET activity concentration. The developed method uses a PET-based delineation of the patient contour to compensate metal-implant-caused signal voids in the MR scan that is segmented for PET attenuation correction. PET emission data of 13 patients with metal implants examined in a Philips Ingenuity PET/MR were reconstructed with the vendor-provided method for attenuation correction (MRMaporig, PETorig) and additionally with a method for attenuation correction (MRMapcor, PETcor) developed by our group. MRMaps produced by both methods were visually inspected for segmentation errors. The segmentation errors in MRMaporig were classified into four classes (L1 and L2 artifacts inside the lung and B1 and B2 artifacts inside the remaining body depending on the assigned attenuation coefficients). The average relative SUV differences (\\varepsilon _{rel}^{av}) between PETorig and PETcor of all regions showing wrong attenuation coefficients in MRMaporig were calculated. Additionally, relative SUVmean differences (ɛrel) of tracer accumulations in hot focal structures inside or in the vicinity of these regions were evaluated. MRMaporig showed erroneous attenuation coefficients inside the regions affected by metal artifacts and inside the patients' lung in all 13 cases. In MRMapcor, all regions with metal artifacts, except for the sternum, were filled with the soft-tissue attenuation coefficient and the lung was correctly segmented in all patients. MRMapcor only showed small residual segmentation errors in eight patients. \\varepsilon _{rel}^{av} (mean ± standard deviation) were: ( - 56 ± 3)% for B1, ( - 43 ± 4)% for B2, (21 ± 18)% for L1, (120 ± 47)% for L2 regions. ɛrel (mean ± standard deviation) of hot focal structures were: ( - 52 ± 12)% in B1, ( - 45 ± 13)% in B2, (19 ± 19)% in L1, (51 ± 31)% in L2 regions. Consequently, metal-implant-induced artifacts severely disturb MR-based attenuation correction and SUV quantification in PET/MR. The developed algorithm is able to compensate for these artifacts and improves SUV quantification accuracy distinctly.

  3. PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data.

    PubMed

    Fuin, Niccolo; Pedemonte, Stefano; Catalano, Onofrio A; Izquierdo-Garcia, David; Soricelli, Andrea; Salvatore, Marco; Heberlein, Keith; Hooker, Jacob M; Van Leemput, Koen; Catana, Ciprian

    2017-05-01

    We present a novel technique for accurate whole-body attenuation correction in the presence of metallic endoprosthesis, on integrated non-time-of-flight (non-TOF) PET/MRI scanners. The proposed implant PET-based attenuation map completion (IPAC) method performs a joint reconstruction of radioactivity and attenuation from the emission data to determine the position, shape, and linear attenuation coefficient (LAC) of metallic implants. Methods: The initial estimate of the attenuation map was obtained using the MR Dixon method currently available on the Siemens Biograph mMR scanner. The attenuation coefficients in the area of the MR image subjected to metal susceptibility artifacts are then reconstructed from the PET emission data using the IPAC algorithm. The method was tested on 11 subjects presenting 13 different metallic implants, who underwent CT and PET/MR scans. Relative mean LACs and Dice similarity coefficients were calculated to determine the accuracy of the reconstructed attenuation values and the shape of the metal implant, respectively. The reconstructed PET images were compared with those obtained using the reference CT-based approach and the Dixon-based method. Absolute relative change (aRC) images were generated in each case, and voxel-based analyses were performed. Results: The error in implant LAC estimation, using the proposed IPAC algorithm, was 15.7% ± 7.8%, which was significantly smaller than the Dixon- (100%) and CT- (39%) derived values. A mean Dice similarity coefficient of 73% ± 9% was obtained when comparing the IPAC- with the CT-derived implant shape. The voxel-based analysis of the reconstructed PET images revealed quantification errors (aRC) of 13.2% ± 22.1% for the IPAC- with respect to CT-corrected images. The Dixon-based method performed substantially worse, with a mean aRC of 23.1% ± 38.4%. Conclusion: We have presented a non-TOF emission-based approach for estimating the attenuation map in the presence of metallic implants, to be used for whole-body attenuation correction in integrated PET/MR scanners. The Graphics Processing Unit implementation of the algorithm will be included in the open-source reconstruction toolbox Occiput.io. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. The Attenuation of Correlation Coefficients: A Statistical Literacy Issue

    ERIC Educational Resources Information Center

    Trafimow, David

    2016-01-01

    Much of the science reported in the media depends on correlation coefficients. But the size of correlation coefficients depends, in part, on the reliability with which the correlated variables are measured. Understanding this is a statistical literacy issue.

  5. Determination of self attenuation coefficient and relative TL efficiency of CaSO 4 :Dy, LiF:Mg,Cu,P and LiF:Mg,Ti TLDs - An alternate approach

    NASA Astrophysics Data System (ADS)

    Bakshi, A. K.; Chatterjee, S.; Palani Selvam, T.; Joshi, V. J.; Chougaonkar, M. P.

    2011-10-01

    Self attenuation of TL and relative TL efficiency of polytetra fluoro ethylene (PTFE) embedded CaSO 4:Dy disc, LiF:Mg,Ti (MTS) disc and LiF:Mg,Cu,P (MCP-N) chip were determined in the present study for photons of energy 10-34 keV. The relative TL efficiency was determined using an alternative approach in which ratio of experimental response and corrected theoretical response was used instead of measuring the absolute TL emission in photon counting mode. For CaSO 4:Dy disc, it was found that with increasing the proportion of CaSO 4:Dy phosphor in the disc, the light attenuation coefficient increases. The light attenuation coefficient of MTS disc and MCP-N chip was found to be 23.4 and 45.5 cm -1, respectively. The relative TL efficiency in the photon energy range of 10-34 keV for MTS discs and MCP-N chips, evaluated in the present study matches well with the reported values in the literature.

  6. Gamma-rays attenuation of zircons from Cambodia and South Africa at different energies: A new technique for identifying the origin of gemstone

    NASA Astrophysics Data System (ADS)

    Limkitjaroenporn, P.; Kaewkhao, J.

    2014-10-01

    In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African's zircons are 4.6716±0.0040 g/cm3 and 4.5505±0.0018 g/cm3, respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223-662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing.

  7. Modeling and properties of an ion-exchanged optical variable attenuator

    NASA Astrophysics Data System (ADS)

    Orignac, Xavier; Ingenhoff, Jan; Fabricius, Norbert

    1999-03-01

    The optical signal power needs to be regulated at some locations in transmission lines. That can be done with the help of optical variable attenuators (OVA), devices which allows for the control of their insertion loss. This work describes the design and properties of some OVAs fabricated by the ion-exchange technique. The OVA functionality relies on a Mach-Zehnder structure, where the output optical intensity is tuned via the change in optical path along one of the two interferometer arms. Here, the optical path is varied through thermo-optic effect (change of refractive index with temperature). Modelling is first addressed: a mostly qualitative theoretical investigation is used to clarify how the fabrication parameters (burial depth and Mach-Zehnder arm separation distance) can be related to the OVAs properties (attenuation dynamic, switching power, settling time, PDL). Properties of fabricated OVAs are presented in a second part. They are compared with other existing products. The relationship between fabrication parameters and properties is also re-examined in light of these results.

  8. Design and fabrication of a variable optical attenuator based on polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    She, Jun; Xu, Su; Tao, Tao; Wang, Qian

    2005-02-01

    In order to obtain a low polarization dependent loss (PDL) and a large attenuation range simultaneously, an optimal design and fabrication of a polymer-dispersed liquid crystal (PDLC) based variable optical attenuator (VOA) is presented. First, an optimal diameter of the liquid crystal droplets is determined by the anomalous diffraction approach (ADA). This optimal diameter gives maximal scattering and thus a large attenuation range is achieved with a relatively thin liquid crystal cell. Secondly, the fabrication of PDLC cell is carried out. The influence of the ultraviolet (UV) curing condition on the morphology of the LC droplets is investigated. For a given liquid crystal concentration, the optimal UV curing power is obtained after a series of statistically designed experiments. Finally, an optical configuration of the PDLC based VOA is presented. Measurements of the attenuation and the PDL are carried out with this configuration. The measured results show that the device has a typical attenuation range of 25dB. The corresponding PDL is nearly 1dB and the insertion loss is 1.8dB. The threshold voltage is 8Vrms and the saturation voltage is 40Vrms. From these measured results, one can see that the fabricated VOA based on PDLC is much more practical for optical communications as compared to the existing ones.

  9. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  10. A Summary of Selected Data: DSDP Legs 1-19,

    DTIC Science & Technology

    1980-09-01

    100 minerals may be applied in the future (densi ty water when the mineralogy and attenuation wt. water + wt. dry sed. + salt coefficients become...may be applied in the future when densities of some common minerals are the exact quantitative mineralogy and listed in Harms and Choquette (1965...calculation. These measurements different attenuation coefficient than were used to get a " ball park" answer that of calcite. for a particular sediment type

  11. Mass attenuation coefficient of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using 16.59 – 25.26 keV photon energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd Yusof, Mohd Fahmi, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz

    2015-04-29

    The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 valuemore » of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)« less

  12. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  13. Comparison of W-VC-C composites against Co-60, Se-75 and Sb-125 for gamma radioisotope sources

    NASA Astrophysics Data System (ADS)

    Demir, Ertugrul; Tugrul, A. Beril; Buyuk, Bulent; Yilmaz, Ozan; Ovecoglu, Lutfi

    2018-02-01

    Tungsten based materials are considered to be the promising materials for nuclear applications due to the good properties. The tungsten composite materials have so many advantages in nuclear technological applications especially fusion reactor systems. In this paper, Tungsten-Vanadium carbide-Graphite (W-VC-C) which include 93% tungsten (W), 6% vanadium carbide (VC) and 1% graphite (C) also which has three different alloying time (6-12-24 hours) were produced by mechanical alloying method. Co-60, Se-75 and Sb-125 gamma radioisotopeswere used as a gamma sources in order to determine behavior of gamma attenuation properties of the composite materials. The experimental results were compared with each other to clarify effects of varying gamma energies on the tungsten based composite materials. The mass attenuation coefficients of the samples were obtained by using XCOM computer code and compared with experimental data. The gamma linear attenuation, the mass attenuation coefficients and half value thickness (HVL) of the samples were evaluated and compared with Co-60, Se-75 and Sb-125 for gamma radioisotopes. Results showed that gamma attenuation coefficients of the samples depend on gamma energies and mechanical alloying time has negatively effect on the gamma shielding properties for the all studied W-VC-C.

  14. Development and validation of a biologically realistic tissue-mimicking material for photoacoustics and other bimodal optical-acoustic modalities

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2017-03-01

    Recent years have seen rapid development of hybrid optical-acoustic imaging modalities with broad applications in research and clinical imaging, including photoacoustic tomography (PAT), photoacoustic microscopy, and ultrasound-modulated optical tomography. Tissue-mimicking phantoms are an important tool for objectively and quantitatively simulating in vivo imaging system performance. However, no standard tissue phantoms exist for such systems. One major challenge is the development of tissue-mimicking materials (TMMs) that are both highly stable and possess biologically realistic properties. To address this need, we have explored the use of various formulations of PVC plastisol (PVCP) based on varying mixtures of several liquid plasticizers. We developed a custom PVCP formulation with optical absorption and scattering coefficients, speed of sound, and acoustic attenuation that are tunable and tissue-relevant. This TMM can simulate different tissue compositions and offers greater mechanical strength than hydrogels. Optical properties of PVCP samples with varying composition were characterized using integrating sphere spectrophotometry and the inverse adding-doubling method. Acoustic properties were determined using a broadband pulse-transmission technique. To demonstrate the utility of this bimodal TMM, we constructed an image quality phantom designed to enable quantitative evaluation of PAT spatial resolution. The phantom was imaged using a custom combined PAT-ultrasound imaging system. Results indicated that this more biologically realistic TMM produced performance trends not captured in simpler liquid phantoms. In the future, this TMM may be broadly utilized for performance evaluation of optical, acoustic, and hybrid optical-acoustic imaging systems.

  15. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  16. Passive athermalization: required accuracy of the thermo-optical coefficients

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2014-12-01

    Passive athermalization requires that the materials (both optical and mechanical) and optical powers be carefully selected in order for the image to stay adequately in focus at the plane of the detector as the various materials change in physical dimension and refractive index. For a large operational temperature range, the accuracy of the thermo-optical coefficients (dn/dT coefficients and the Coefficients of Thermal Expansion) can limit the performance of the final system. Based on an example lens designed to be passively athermalized over a 200°C temperature range, and using a Monte Carlo analysis technique, we examine the accuracy to which the expansion coefficients and dn/dT coefficients of the system must be known.

  17. Diel Variations in Optical Properties of Micromonas pusilla, a Prasinophyte

    NASA Technical Reports Server (NTRS)

    DuRand, Michele D.; Green, Rebecca E.; Sosik, Heidi M.; Olson, Robert J.

    2001-01-01

    A laboratory experiment was conducted on cultures of Micromonas pusilla, a marine prasinophyte, to investigate how cell growth and division affect the optical properties over the light:dark cycle. Measurements were made of cell size and concentration, attenuation and absorption coefficients, flow cytometric light scattering (in forward and side directions), chlorophyll and carbon content. Refractive index was calculated using the anomalous diffraction approximation Cells were about 1.5 micrometers in diameter and exhibited phased division, with the major division burst occurring during the night. Typical diel variations were observed, with cells increasing in size and light scattering during the day as they photosynthesize and decreasing at night upon division. The cells were in ultradian growth, with more than one division per day, at a light level of 120 Mu-mol photons m/sq/sec. Since these cells are similar in size to small phytoplankton that are typically abundant in field samples, these results can be used in the interpretation of diel variations in light scattering in natural populations of phytoplankton.

  18. Optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals

    NASA Astrophysics Data System (ADS)

    Chewpraditkul, Warut; Sakthong, Ongsa; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Szczesniak, Tomasz; Swiderski, Lukasz; Moszynski, Marek; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2017-06-01

    The optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals are investigated. At 662 keV γ-rays, light yield (LY) of 37,900 ph/MeV and energy resolution of 7.0% obtained for Gd2YAl2Ga3O12:Ce are superior to those of 18,900 ph/MeV and 11.5% obtained for Lu2YAl2Ga3O12:Ce. Scintillation decays are measured using the time-correlated single photon counting technique. A fast component decay time of 45 ns with relative intensity of 88% obtained for Lu2YAl2Ga3O12:Ce is superior to that of 50 ns (65%) for Gd2YAl2Ga3O12:Ce. The linear attenuation coefficient at 662 keV γ-rays is also determined and discussed.

  19. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  20. Microultrasound characterisation of ex vivo porcine tissue for ultrasound capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Lay, H. S.; Cox, B. F.; Sunoqrot, M.; Démoré, C. E. M.; Näthke, I.; Gomez, T.; Cochran, S.

    2017-01-01

    Gastrointestinal (GI) disease development and progression is often characterised by cellular and tissue architectural changes within the mucosa and sub-mucosa layers. Current clinical capsule endoscopy and other approaches are heavily reliant on optical techniques which cannot detect disease progression below the surface layer of the tissue. To enhance the ability of clinicians to detect cellular changes earlier and more confidently, both quantitative and qualitative microultrasound (μUS) techniques are investigated in healthy ex vivo porcine GI tissue. This work is based on the use of single-element, focussed μUS transducers made with micromoulded piezocomposite operating at around 48 MHz. To explore the possibility that μUS can detect Crohn’s disease and other inflammatory bowel diseases, ex vivo porcine small bowel tissue samples were cannulised and perfused with phosphate-buffered saline followed by various dilutions of polystyrene microspheres. Comparison with fluorescent imaging showed that the microspheres had infiltrated the microvasculature of the samples and that μUS was able to successfully detect this as a mimic of inflammation. Samples without microspheres were analysed using quantitative ultrasound to assess mechanical properties. Attenuation coefficients of 1.78 ± 0.66 dB/mm and 1.92 ± 0.77 dB/mm were obtained from reference samples which were surgically separated from the muscle layer. Six intact samples were segmented using a software algorithm and the acoustic impedance, Z, for varying tissue thicknesses, and backscattering coefficient, BSC, were calculated using the reference attenuation values and tabulated.

  1. Temporally Coincident Lidar Measurements from UMBC with CALIPSO during the Initial Validation Period

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Delgado, R.; Rogers, R.; Torres, O.; McCann, K.

    2006-12-01

    During June-October, 2006, the University of Maryland, Baltimore County Elastic Lidar Facilty (ELF) was operated for over 30 overpasses of the CALIPSO satellite. Like CALIPSO, the ELF operates at 532 nm and 1064 nm and has polarization capability. Many of these overpasses were temporally well aligned but were considerably distant from the UMBC campus. Since the aerosol features in the lowest part of the boundary layer are dynamic, "validation" of the CALIPSO profiles from such a ground-based data set is nearly impossible. This paper will examine the suite of overpass measurements in a statistical sense. Cases where the UMBC lidar and Calipso attenuated backscatter coefficient can be compared by difference as a function of height will be shown. Additionally, probability density functions (PDF) of attenuated backscatter coefficient within the PBL and above for various spatial offsets are examined. Digital data from the CALIOP lidar on CALIPSO is only beginning to be released at the time of writing of this abstract and this paper will present a more thorough comparison of these cases at the AGU meeting. The validation data taken during this period also revealed transport of plumes of smoke from Canada over UMBC. We have used the UMBC lidar data and the CALIPSO data to help constrain retrievals in the Ozone Monitoring Instrument (OMI) aerosol optical depth data. An example of how this synergistic use of instruments on two satellites and from the ground during A-Train overpasses will be discussed.

  2. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.

    PubMed

    Huang, Chih-Chung

    2010-10-07

    There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r(2)) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm(-1) at 30 MHz to 0.47 Nepers mm(-1) at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a hematocrit of 20% at the same rotation speed, and shifted to a hematocrit of 10% at a higher speed. The backscattering properties of rat RBCs in plasma are similar to those of RBCs in saline at a higher rotation speed. The differences in attenuation and backscattering between rat and porcine blood may be attributed to RBCs' being smaller and the RBC aggregation level being lower for rat blood than for porcine blood.

  3. Measuring atmospheric visibility cavity attenuated phase shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    In the paper, an accurate and sensitive cavity attenuated phase shift spectroscopy (CAPS) system was used to monitor the atmospheric visibility coefficient in urban areas. The CAPS system, which detects the atmospheric visibility within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector and a lock in amplifier. The performance of the CAPS system was evaluated by measuring of the stability and response of the system. The minima ( 0.06 Mm-1) in the Allan plots show the optimum average time( 80s) for optimum detection performance of the CAPS system. The 2L/min flow rate, the CAPS system rise and fall response time is about 15 s, so as to realize the fast measurement of visibility. By comparing the forward scatter visibility meter measurement results, the CAPS system measurement results are verified reliably, and have high precision measurement. These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for atmospheric visibility detection.

  4. Worldwide Ocean Optics Database (WOOD)

    DTIC Science & Technology

    2001-09-30

    user can obtain values computed from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error ...from empirical algorithms (e.g., beam attenuation estimated from diffuse attenuation and backscatter data). Error estimates will also be provided for...properties, including diffuse attenuation, beam attenuation, and scattering. The database shall be easy to use, Internet accessible, and frequently updated

  5. Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering.

    PubMed

    Sagues, Mikel; García Olcina, Raimundo; Loayssa, Alayn; Sales, Salvador; Capmany, José

    2008-01-07

    We propose a novel scheme to implement tunable multi-tap complex coefficient filters based on optical single sideband modulation and narrow band optical filtering. A four tap filter is experimentally demonstrated to highlight the enhanced tuning performance provided by complex coefficients. Optical processing is performed by the use of a cascade of four phase-shifted fiber Bragg gratings specifically fabricated for this purpose.

  6. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  7. Ocean color measurements

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Austin, R. W.; Clark, D. K.; Hovis, W. A.; Yentsch, C. S.

    1985-01-01

    Ocean color observations by the Coastal Zone color scanner (CZCS) aboard the Nimbus-7 satellite are discussed, together with the factors contributing to the 'apparent' color of the ocean. The CZCS optical systems and the tecniques for extraction of the phytoplankton pigment concentration and the diffuse attenuation coefficient K from the 'apparent' water color are described in detail. Special consideration is given to the use of biooptical algorithms and the development of the K algorithm for the CZCS imagery. It is shown that under typical atmospheric conditions, the pigment concentration can be extracted from the satellite imagery to within + or - 30 percent over concentration ranges from 0 to 5 mg/cu m for the Morel case 1 water (Morel and Prieur, 1977), to which the oceanic waters belong as a rule.

  8. Method and system of Jones-matrix mapping of blood plasma films with "fuzzy" analysis in differentiation of breast pathology changes

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Radchenko, Kostiantyn O.; Karas, Oleksandr V.

    2018-01-01

    A fibroadenoma diagnosing of breast using statistical analysis (determination and analysis of statistical moments of the 1st-4th order) of the obtained polarization images of Jones matrix imaginary elements of the optically thin (attenuation coefficient τ <= 0,1 ) blood plasma films with further intellectual differentiation based on the method of "fuzzy" logic and discriminant analysis were proposed. The accuracy of the intellectual differentiation of blood plasma samples to the "norm" and "fibroadenoma" of breast was 82.7% by the method of linear discriminant analysis, and by the "fuzzy" logic method is 95.3%. The obtained results allow to confirm the potentially high level of reliability of the method of differentiation by "fuzzy" analysis.

  9. Determination of optical coefficients of biological tissue from a single integrating-sphere

    NASA Astrophysics Data System (ADS)

    Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang

    2012-01-01

    The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.

  10. The Effect of Various Waste Materials’ Contents on the Attenuation Level of Anti-Radiation Shielding Concrete

    PubMed Central

    Azeez, Ali Basheer; Mohammed, Kahtan S.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul

    2013-01-01

    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities. PMID:28788363

  11. Source Apportionment of PM2.5 Mass and Optical Attenuation Over an Ecologically Sensitive Zone in Central India by Positive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Nirmalkar, J.; Raman, R. S.

    2016-12-01

    Ambient PM2.5 samples (N=366) were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected using three co-located Mini-Vol® samplers on Teflon, Nylon, and Quartz filter substrates. The aerosol was then chemically characterized for water-soluble inorganic ions, elements, and carbon fractions (elemental carbon and organic carbon) using ion chromatography, ED-XRF, and thermal-optical EC/OC analyzer, respectively. The optical attenuation (at 370 nm and 800 nm) of PM2.5 aerosols was also determined by optical transmissometry (OT-21). The application of Positive matrix factorization (PMF) to a combination of PM2.5 mass, its ions, elements, carbon fractions, and optical attenuation and its outcomes will be discussed.

  12. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; O'C.Starr, D. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.

  13. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication.

    PubMed

    Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Qin, Boqiang; Yao, Xiaolong; Zhang, Yibo

    2017-12-26

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance in aquatic environments and plays a key role in light attenuation and in the carbon, nitrogen and phosphorus biogeochemical cycles. Although the optical properties, abundance, sources, cycles, compositions and remote sensing estimations of CDOM have been widely reported in different aquatic environments, little is known about the optical properties and composition changes in CDOM along trophic gradients. Therefore, we collected 821 samples from 22 lakes along a trophic gradient (oligotrophic to eutrophic) in China from 2004 to 2015 and determined the CDOM spectral absorption and nutrient concentrations. The total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla) concentrations and the Secchi disk depth (SDD) ranged from 0.02 to 24.75 mg/L, 0.002-3.471 mg/L, 0.03-882.66 μg/L, and 0.05-17.30 m, respectively. The trophic state index (TSI) ranged from 1.55 to 98.91 and covered different trophic states, from oligotrophic to hyper-eutrophic. The CDOM absorption coefficient at 254 nm (a(254)) ranged from 1.68 to 92.65 m -1 . Additionally, the CDOM sources and composition parameters, including the spectral slope and relative molecular size value, exhibited a substantial variability from the oligotrophic level to other trophic levels. The natural logarithm value of the CDOM absorption, lna(254), is highly linearly correlated with the TSI (r 2  = 0.92, p < .001, n = 821). Oligotrophic lakes are distinguished by a(254)<4 m -1 , and mesotrophic and eutrophic lakes are classified as 4 ≤ a(254)≤10 and a(254)>10 m -1 , respectively. The results suggested that the CDOM absorption coefficient a(254) might be a more sensitive single indicator of the trophic state than TN, TP, Chla and SDD. Therefore, we proposed a CDOM absorption coefficient and determined the threshold for defining the trophic state of a lake. Several advantages of measuring and estimating CDOM, including rapid experimental measurements, potential in situ optical sensor measurements and large-spatial-scale remote sensing estimations, make it superior to traditional TSI techniques for the rapid monitoring and assessment of lake trophic states. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. MR-Consistent Simultaneous Reconstruction of Attenuation and Activity for Non-TOF PET/MR

    NASA Astrophysics Data System (ADS)

    Heußer, Thorsten; Rank, Christopher M.; Freitag, Martin T.; Dimitrakopoulou-Strauss, Antonia; Schlemmer, Heinz-Peter; Beyer, Thomas; Kachelrieß, Marc

    2016-10-01

    Attenuation correction (AC) is required for accurate quantification of the reconstructed activity distribution in positron emission tomography (PET). For simultaneous PET/magnetic resonance (MR), however, AC is challenging, since the MR images do not provide direct information on the attenuating properties of the underlying tissue. Standard MR-based AC does not account for the presence of bone and thus leads to an underestimation of the activity distribution. To improve quantification for non-time-of-flight PET/MR, we propose an algorithm which simultaneously reconstructs activity and attenuation distribution from the PET emission data using available MR images as anatomical prior information. The MR information is used to derive voxel-dependent expectations on the attenuation coefficients. The expectations are modeled using Gaussian-like probability functions. An iterative reconstruction scheme incorporating the prior information on the attenuation coefficients is used to update attenuation and activity distribution in an alternating manner. We tested and evaluated the proposed algorithm for simulated 3D PET data of the head and the pelvis region. Activity deviations were below 5% in soft tissue and lesions compared to the ground truth whereas standard MR-based AC resulted in activity underestimation values of up to 12%.

  15. Wave-induced fluid flow in random porous media: Attenuation and dispersion of elastic waves

    NASA Astrophysics Data System (ADS)

    Müller, Tobias M.; Gurevich, Boris

    2005-05-01

    A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. .

  16. Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers

    PubMed Central

    Chang, Keke; Wang, Shun; Zhang, Hao; Guo, Qingqian; Hu, Xinran; Lin, Zhili; Sun, Haifeng; Jiang, Min

    2017-01-01

    A biosensing system with optical fibers is proposed for the colorimetric detection of melamine in liquid milk samples by using the localized surface plasmon resonance (LSPR) of unmodified gold nanoparticles (AuNPs). The biosensing system consists of a broadband light source that covers the spectral range from 200 nm to 1700 nm, an optical attenuator, three types of 600 μm premium optical fibers with SMA905 connectors and a miniature spectrometer with a linear charge coupled device (CCD) array. The biosensing system with optical fibers is low-cost, simple and is well-proven for the detection of melamine. Its working principle is based on the color changes of AuNPs solution from wine-red to blue due to the inter-particle coupling effect that causes the shifts of wavelength and absorbance in LSPR band after the to-be-measured melamine samples were added. Under the optimized conditions, the detection response of the LSPR biosensing system was found to be linear in melamine detection in the concentration range from 0μM to 0.9 μM with a correlation coefficient (R2) 0.99 and a detection limit 33 nM. The experimental results obtained from the established LSPR biosensing system in the actual detection of melamine concentration in liquid milk samples show that this technique is highly specific and sensitive and would have a huge application prospects. PMID:28475597

  17. Continuous light absorption photometer for long-term studies

    NASA Astrophysics Data System (ADS)

    Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.

    2017-12-01

    A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.

  18. Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization

    NASA Astrophysics Data System (ADS)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-08-01

    Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign than depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.

  19. Light extinction method for diagnostics of particles sizes formed in magnetic field

    NASA Astrophysics Data System (ADS)

    Myshkin, Vyacheslav; Izhoykin, Dmitry; Grigoriev, Alexander; Gamov, Denis; Leonteva, Daria

    2018-03-01

    The results of laser diagnostics of dispersed particles formed upon cooling of Zn vapor are presented. The radiation attenuation in the wavelength range 420-630 nm with a step of 0.3 nm was registered. The attenuation coefficients spectral dependence was processed using known algorithms for integral equation solving. The 10 groups of 8 attenuation coefficients were formed. Each group was processed taking with considering of previous decisions. After processing of the 10th group of data, calculations were repeated from the first one. Data of the particles sizes formed in a magnetic field of 0, 44 and 76 mT are given. A model of physical processes in a magnetic field is discussed.

  20. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  1. Optical to extreme ultraviolet reddening curves for normal AGN dust and for dust associated with high-velocity outflows

    NASA Astrophysics Data System (ADS)

    Singh, Japneet; Gaskell, Martin; Gill, Jake

    2017-01-01

    We use mid-IR (WIRE), optical (SDSS), and ultraviolet (GALEX) photometry of over 80,000 AGNs to derive mean attenuation curves from the optical to the rest frame extreme ultraviolet (EUV) for (i) “normal” AGN dust dominating the optical reddening of AGNs and (ii) “BAL dust” - the dust causing the additional extinction in AGNs observed to have broad absorption lines (BALs). Our method confirms that the attenuation curve of “normal” AGN dust is flat in the ultraviolet, as found by Gaskell et al. (2004). In striking contrast to this, the attenuation curve for BAL dust is well fit by a steeply-rising, SMC-like curve. We confirm the shape of the theoretical Weingartner & Draine (2001) SMC curve out to 700 Angstroms but the drop in attenuation to still shorter wavelengths (400 Angstroms) seems to be less than predicted. We find identical attenuation curves for high-ionization and low-ionization BALQSOs. We suggest that attenuation curves appearing to be steeper than the SMC are due to differences in underlying spectra and partial covering by BAL dust. This work was This work was performed under the auspices of the Science Internship Program (SIP) of the University of California at Santa Cruz performed under the auspices of the Science Internship Program (SIP) of the University of California at Santa Cruz.

  2. Effect of antimony-oxide on the shielding properties of some sodium-boro-silicate glasses.

    PubMed

    Zoulfakar, A M; Abdel-Ghany, A M; Abou-Elnasr, T Z; Mostafa, A G; Salem, S M; El-Bahnaswy, H H

    2017-09-01

    Some sodium-silicate-boro-antimonate glasses having the molecular composition [(20) Na 2 O - (20) SiO 2 - (60-x) B 2 O 3 - (x) Sb 2 O 3 (where x takes the values 0, 5 … or 20)] have been prepared by the melt quenching method. The melting and annealing temperatures were 1500 and 650K respectively. The amorphous nature of the prepared samples was confirmed by using X-ray diffraction analysis. Both the experimental and empirical density and molar volume values showed gradual increase with increasing Sb 2 O 3 content. The empirical densities showed higher values than those obtained experimentally, while the empirical molar volume values appeared lower than those obtained experimentally, which confirm the amorphous nature and randomness character of the studied samples. The experimentally obtained shielding parameters were approximately coincident with those obtained theoretically by applying WinXCom program. At low gamma-ray energies (0.356 and 0.662MeV) Sb 2 O 3 has approximately no effect on the total Mass Attenuation Coefficient, while at high energies it acts to increase the total Mass Attenuation Coefficient gradually. The obtained Half Value Layer and Mean Free Path values showed gradual decrease as Sb 2 O 3 was gradually increased. Also, the Total Mass Attenuation Coefficient values obtained between about 0.8 and 3.0MeV gamma-ray energy showed a slight decrease, as gamma-ray photon energy increased. This may be due to the differences between the Attenuation Coefficients of both antimony and boron oxides at various gamma-ray photon energies. However, it can be stated that the addition of Sb 2 O 3 into sodium-boro-silicate glasses increases the gamma-ray Attenuation Coefficient and the best sample is that contains 20 mol% of Sb 2 O 3 , which is operating well at 0.356 and 0.662MeV gamma-ray. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    NASA Technical Reports Server (NTRS)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  4. A l% and 1cm Perspective Leads to a Novel CDOM Absorption Algorithm

    NASA Technical Reports Server (NTRS)

    Morrow, J. H.; Hooker, S. B.; Matsuoka, A.

    2012-01-01

    A next-generation in-water profiler designed to measure the apparent optical properties of seawater was developed and validated across a wide dynamic range of water properties. This new Compact-Optical Profiling System (C-OPS) design uses a novel, kite-shaped, free-falling backplane with adjustable buoyancy and is based on 19 state-of-the-art microradiometers, spanning 320-780 nm. Data collected as part of the field commissioning were of a previously unachievable quality and showed that systematic uncertainties in the sampling protocols were discernible at the 1% optical and 1cm depth resolution levels. A sensitivity analysis as a function of three water types, established by the peak in the remote sensing reflectance spectra, revealed which water types and spectral domains were the most indicative of data acquisition uncertainties. The unprecedented vertical resolution of C-OPS measurements provided near-surface data products at the spectral endpoints with a quality level that has not been obtainable. The improved data allowed development of an algorithm for predicting the spectral absorption due to chromophoric dissolved organic matter (CDOM) using ratios of diffuse attenuation coefficients with over 99% of the variance in the data explained.

  5. Mode-independent attenuation in evanescent-field sensors

    NASA Astrophysics Data System (ADS)

    Gnewuch, Harald; Renner, Hagen

    1995-03-01

    Generally, the total power attenuation in multimode evanescent-field sensor waveguides is nonproportional to the bulk absorbance because the modal attenuation constants differ. Hence a direct measurement is difficult and is additionally aggravated because the waveguide absorbance is highly sensitive to the specific launching conditions at the waveguide input. A general asymptotic formula for the modal power attenuation in strongly asymmetric inhomogeneous planar waveguides with arbitrarily distributed weak absorption in the low-index superstrate is derived. Explicit expressions for typical refractive-index profiles are given. Except when very close to the cutoff, the predicted asymptotic attenuation behavior agrees well with exact calculations. The ratio of TM versus TE absorption has been derived to be (2 - n0 2/nf2 ) for arbitrary profiles. Waveguides with a linear refractive-index profile show mode-independent attenuation coefficients within each polarization. Further, the asymptotic sensitivity is independent of the wavelength, so that it should be possible to directly measure the spectral variation of the bulk absorption. The mode independence of the attenuation has been verified experimentally for a second-order polynomial profile, which is close to a linear refractive-index distribution. In contrast, the attenuation in the step-profile waveguide has been found to depend strongly on the mode number, as predicted by theory. A strong spread of the modal attenuation coefficients is also predicted for the parabolic-profile waveguide sensor.

  6. DIFF--A 7090 Fortran Program to Determine Neutron Diffusion Constants Relating to a Six-Group Calculation; DIFF--UN PROGRAMME FOR TRAN 7090 POUR DETERMINER LES CONSTANTES DE DIFFUSION NEUTRONIQUE RELATIVES A UN CALCUL A SIX GROUPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plelnevaux, C.

    The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)

  7. X-Ray Attenuation Coefficients from 10 Kev to 100 Mev,

    DTIC Science & Technology

    1957-04-30

    is u&Ung"w APR n 4 1994 94-10025 0 Z1UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS 94 .4 1 096 Data on Radiation Physics Graphs...OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS , A. V. Astin, Dirvcew X-ray Attenuation Coefficients From 10 key to 100 Mev...Dit. ibtion I Availabiilty Codes Avai# and/or Dist Special National Bureau of Standards Circular 583 Issuw1 April 30, 1957 Fo e teSpr dt

  8. Coastal Zone Color Scanner data of rich coastal waters

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Klooster, S. A.

    1983-01-01

    Comparisons of chlorophyll concentrations and diffuse attenuation coefficients measured from ships off the central California coast were made with satellite derived estimates of the same parameters using data from the Coastal Zone Color Scanner. Very high chlorophyll concentrations were encountered in Monterey Bay. Although lower chlorophyll values acquired off Pt. Sur agreed satisfactorily with the satellite data, the high chlorophyll values departed markedly from agreement. Two possible causes for the disagreement are suggested. Comparison of diffuse attenuation coefficients from the same data sets showed closer agreement.

  9. Investigation of multiple optical and biometric properties of optic nerve head (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hong, Young-Joo; Chan, Aaron C.; Kasaragod, Deepa K.; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2017-02-01

    Glaucoma is a group of eye diseases which results in optic nerve damage and vision loss. Optical coherence tomography (OCT) has been widely used to investigate geometric risk factor of glaucoma. However, material properties of ONH are also important to understand intra-ocular pressure related stress. We developed Jones-matrix based multifunctional posterior eye OCT (JM-OCT), which uses 1-μm band swept-source with a 100-kHz A-line rate. It provides three different optical properties, attenuation coefficient (AC), local birefringence (LB), and optical coherence angiography (OCA). We investigated the utility those properties for the investigation of normal ONH cases. 3 mm x 3 mm area around ONH was scanned for each eye, and biometric parameters were measured in hospital. Statistical analyses were performed with the mean values of above parameters at the regions of prelamina, lamina cribrosa, peripapillary sclera, and peripapillary nerve fiber layer, and biometric parameters of age, axial eye length, refractive error, and intraocular pressure. In qualitative observation, the lamina cribrosa generally shows more hyper signals in AC, LB, and OCA than prelamina. In t-test, AC, LB, and OCA showed significant difference (p < 0.05) between prelamina and lamina cribrosa, while conventional OCT did not. In correlation test, axial eye length is positively correlated with LB and AC in lamina cribrosa. And these LB and AC are also negatively correlated with the refractive error. Age was found to be negatively correlated with OCA in lamina cribrosa.

  10. Observation and analysis of water inherent optical properties

    NASA Astrophysics Data System (ADS)

    Sun, Deyong; Li, Yunmei; Le, Chengfeng; Huang, Changchun

    2008-03-01

    Inherent optical property is an important part of water optical properties, and is the foundation of water color analytical model establishment. Through quantity filter technology (QFT) and backscattering meter BB9 (WETlabs Inc), absorption coefficients of CDOM, total suspended minerals and backscattering coefficients of total suspended minerals had been observed in Meiliang Bay of Taihu lake at summer and winter respectively. After analyzing the spectral characteristics of absorption and backscattering coefficients, the differences between two seasons had been illustrated adequately, and the reasons for the phenomena, which are related to the changes of water quality coefficient, had also been explained. So water environment states can be reflected by inherent optical properties. In addition, the relationship models between backscattering coefficients and suspended particle concentrations had been established, which can support coefficients for analytical models.

  11. First evidence for high anelastic attenuation beneath the Red Sea from Love wave analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadiouche, Ouiza

    Attenuation coefficients of Love waves are determined for two seismic paths along the Red Sea. The attenuation coefficients are obtained using the multiple filter method for periods from 25 to 130 s along one path and from 40 to 130 s along the second one. The two sets of observations are in good agreement with anomalously high attenuation coefficients similar to those reported across a young part of the Pacific Ocean. Indeed, the values lie on average between 3.3 {plus minus} 0.6 and 1.1 {plus minus} 0.3 (10{sup {minus}4}km{sup {minus}1}) higher values being observed at shorter periods. In a secondmore » part of the paper, these apparent attenuation observations are interpreted in terms of a distribution of intrinsic absorption in the upper mantle. A frequency independent Q{sub {beta}} model is obtained using a trial-and-error method. The best fit to the data required a large and very low Q{sub {beta}} (30-50) zone below a depth of 50 km, underlying a thin and high Q{sub {beta}} (200-300) lid. These results are consistent with high heat flows and low velocities which characterize this tectonically active area, and corroborate the inference of anomalously high temperatures and low viscosity in the upper mantle beneath the Red Sea from recent seismological results.« less

  12. Bismuth-Silicon and Bismuth-Polyurethane Composite Shields for Breast Protection in Chest Computed Tomography Examinations

    PubMed Central

    Mehnati, Parinaz; Arash, Mehran; Akhlaghi, Parisa

    2018-01-01

    The article aims at constructing protective composite shields for breasts in chest computed tomography and investigating the effects of applying these new bismuth composites on dose and image quality. Polyurethane and silicon with 5% of bismuth were fabricated as a protective shield. At first, their efficiency in attenuating the X-ray beam was investigated by calculating the total attenuation coefficients at diagnostic energy range. Then, a physical chest phantom was scanned without and with these shields at tube voltage of 120 kVp, and image parameters together with dose values were studied. The results showed that these two shields have great effects on attenuating the X-ray beam, especially for lower energies (<40 kV), and in average, the attenuation coefficients of bismuth-polyurethane composite are higher in this energy range. The maximum relative differences between the average Hounsfield units (HUs) and noises of images without and with shield for both composites in 13 regions of interest were 4.5% and 15.7%, respectively. Moreover, primary investigation confirmed the ability of both shields (especially polyurethane-bismuth composite) in dose reduction. Comparing these two composites regarding the amount of dose reduction, the changes in HU and noise, and attenuation coefficients in diagnostic energy range, it seems that polyurethane composite is more useful for dose reduction, especially for higher tube voltages. PMID:29628636

  13. Characterization of transparent dentin in attrited teeth using optical coherence tomography.

    PubMed

    Mandurah, Mona M; Sadr, Alireza; Bakhsh, Turki A; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji

    2015-05-01

    Attrition and wear of tooth surface occur with aging and result in loss of enamel, with exposure and histological changes in dentin. Dealing with attrited teeth and restoration of the lost tissue are clinically challenging. The main objective of this study is to characterize the exposed transparent dentin in the occlusal surface of attrited teeth by optical coherence tomography (OCT). Naturally attrited, extracted human teeth with occlusal-transparent dentin were investigated in comparison to sound and carious teeth. The teeth were subjected to OCT imaging and then cross-sectioned and polished. OCT B-scans were compared to light microscopy images of the same cross section. In OCT images, some changes were evident at the transparent dentin in attrited teeth. An OCT attenuation coefficient parameter (μ t) was derived based on the Beer-Lambert law as a function of backscatter signal slope. The mean values of μ t were 1.05 ± 0.3, 2.23 ± 0.4, and 0.61 ± 0.27 mm(-1) for sound, carious, and transparent dentins, respectively. One-way ANOVA with Tukey's post-hoc showed a significant difference between groups (p < 0.05). Physiological changes in transparent dentin that involve deposition of mineral casts in the dentinal tubules lead to lower attenuation of OCT signal. OCT has a potential role to detect transparent dentin on the surface of attrited teeth and can be used in the future as a clinical adjunct tool.

  14. Attenuation characteristics of the leaky \\text{T}(0,1) mode guided wave propagating in piping coated with anticorrosion grease

    NASA Astrophysics Data System (ADS)

    Nishino, Hideo; Tateishi, Kohei; Ishikawa, Masashi; Furukawa, Takashi; Goka, Motoki

    2018-07-01

    Guided wave inspection is expected especially for buried piping because it can be applied easily to such piping requiring only its partial digging from the ground. However, in buried piping, the attenuation coefficient is extremely large compared with that in above-ground piping because the leaky \\text{T}(0,1) mode guided wave (LTGW) propagates in buried piping and its energy leaks into the adjacent surrounding material as a bulk shear wave. Petrolatum anticorrosion grease (PAG) is the most widely used as the coating material on the pipe surface before burying piping in sand or soil, which is a viscous material with a temperature-dependent shear wave velocity. In this paper, attenuation characteristics of the LTGW are shown theoretically and experimentally. The theoretical calculations explain very well the experimental results measured. The temperature dependence of the attenuation coefficient is discussed with the theoretical outcomes.

  15. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E [Livermore, CA

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  16. Phase 9 Fiber Optic Cable Microbending and Temperature Cycling Tests

    NASA Technical Reports Server (NTRS)

    Abushagur, Mustafa A.G.; Huang, Po T.; Hand, Larry

    1996-01-01

    Optical fibers represent the back bone of the current communications networks. Their performance in the field lacks long term testing data because of the continuous evolution of the manufacturing of fibers and cables. An optical fiber cable that is installed in NASA's KSC has experienced a dramatic increase in attenuation after three years of use from 0.7 dB/km to 7 dB/km in some fibers. A thorough study is presented to assess the causes of such an attenuation increase. Material and chemical decomposition testing showed that there are no changes in the composition of the fiber which might have caused the increase in attenuation. Microbending and heat cycling tests were performed on the cable and individual fibers. It was found that the increase in attenuation is due to microbending caused by excessive stress exerted on the fibers. This was the result of manufacturing and installation irregularities.

  17. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    PubMed

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  18. Generalized local emission tomography

    DOEpatents

    Katsevich, Alexander J.

    1998-01-01

    Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

  19. Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations.

    PubMed

    Mesbahi, Asghar; Ghiasi, Hosein

    2018-06-01

    The shielding properties of ordinary concrete doped with some micro and nano scaled materials were studied in the current study. Narrow beam geometry was simulated using MCNPX Monte Carlo code and the mass attenuation coefficient of ordinary concrete doped with PbO 2 , Fe 2 O 3 , WO 3 and H 4 B (Boronium) in both nano and micro scales was calculated for photon and neutron beams. Mono-energetic beams of neutrons (100-3000 keV) and photons (142-1250 keV) were used for calculations. The concrete doped with nano-sized particles showed higher neutron removal cross section (7%) and photon attenuation coefficient (8%) relative to micro-particles. Application of nano-sized material in the composition of new concretes for dual protection against neutrons and photons are recommended. For further studies, the calculation of attenuation coefficients of these nano-concretes against higher energies of neutrons and photons and different particles are suggested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Active microwave measurement of soil water content

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Cihlar, J.; Moore, R. K.

    1974-01-01

    Measurements of radar backscatter from bare soil at 4.7, 5.9, and 7.1 GHz for incident angles of 0-70 deg have been analyzed to determine sensitivity to soil moisture. Because the effective depth of penetration of the radar signal is only about one skin depth, the observed signals were correlated with the moisture in a skin depth as characterized by the attenuation coefficient (reciprocal of skin depth). Since the attenuation coefficient is a monotonically increasing function of moisture density, it may also be used as a measure of moisture content over the distance involved, which varies with frequency and moisture content. The measurements show an approximately linear increase in scattering with attenuation coefficient of the soil at angles within 10 deg of vertical and all frequencies. At 4.7 GHz this increase continues relatively large out to 70 deg incidence, but by 7.1 GHz the sensitivity is much less even at 20 deg and practically gone at 50 deg.

  1. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, P. I.; Fountos, G. P.; Martini, N. D.; Koukou, V. N.; Michail, C. M.; Valais, I. G.; Kandarakis, I. S.; Nikiforidis, G. C.

    2015-09-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.

  2. Electro-Optic Beam Steering Using Non-Linear Organic Materials

    DTIC Science & Technology

    1993-08-01

    York (SUNY), Buffalo, for potential application to the Hughes electro - optic beam deflector device. Evaluations include electro - optic coefficient...response time, transmission, and resistivity. Electro - optic coefficient measurements were made at 633 nm using a simple reflection technique. The

  3. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer.

    PubMed

    Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S; Shung, K Kirk

    2009-10-07

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 +/- 0.02 to 0.520 +/- 0.06 dB mm(-1) MHz(-1) corresponding to an increase in Young's modulus from 6 +/- 0.4 to 96 +/- 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  4. Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure

    NASA Astrophysics Data System (ADS)

    Stanton, Ian N.; Belley, Matthew D.; Nguyen, Giao; Rodrigues, Anna; Li, Yifan; Kirsch, David G.; Yoshizumi, Terry T.; Therien, Michael J.

    2014-04-01

    Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3 Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3 Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3 Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 +/- 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded scintillation intensities that tracked linearly with total radiation exposure, highlighting its capability to provide alternately accurate dosimetry measurements for both diagnostic imaging (80 kVp) and radiation therapy treatment (225 kVp).Eu- and Li-doped yttrium oxide nanocrystals [Y2-xO3 Eux, Liy], in which Eu and Li dopant ion concentrations were systematically varied, were developed and characterized (TEM, XRD, Raman spectroscopic, UV-excited lifetime, and ICP-AES data) in order to define the most emissive compositions under specific X-ray excitation conditions. These optimized [Y2-xO3 Eux, Liy] compositions display scintillation responses that: (i) correlate linearly with incident radiation exposure at X-ray energies spanning from 40-220 kVp, and (ii) manifest no evidence of scintillation intensity saturation at the highest evaluated radiation exposures [up to 4 Roentgen per second]. For the most emissive nanoscale scintillator composition, [Y1.9O3; Eu0.1, Li0.16], excitation energies of 40, 120, and 220 kVp were chosen to probe the dependence of the integrated emission intensity upon X-ray exposure-rate in energy regimes having different mass-attenuation coefficients and where either the photoelectric or the Compton effect governs the scintillation mechanism. These experiments demonstrate for the first time for that for comparable radiation exposures, when the scintillation mechanism is governed by the photoelectric effect and a comparably larger mass-attenuation coefficient (120 kVp excitation), greater integrated emission intensities are recorded relative to excitation energies where the Compton effect regulates scintillation (220 kVp) in nanoscale [Y2-xO3 Eux] crystals. Nanoscale [Y1.9O3; Eu0.1, Li0.16] (70 +/- 20 nm) was further exploited as a detector material in a prototype fiber-optic radiation sensor. The scintillation intensity from the [Y1.9O3; Eu0.1, Li0.16]-modified, 400 μm sized optical fiber tip, recorded using a CCD-photodetector and integrated over the 605-617 nm wavelength domain, was correlated with radiation exposure using a Precision XRAD 225Cx small-animal image guided radiation therapy (IGRT) system. For both 80 and 225 kVp energies, this radiotransparent device recorded scintillation intensities that tracked linearly with total radiation exposure, highlighting its capability to provide alternately accurate dosimetry measurements for both diagnostic imaging (80 kVp) and radiation therapy treatment (225 kVp). Electronic supplementary information (ESI) available: Material synthesis; experimental details; X-ray diffraction (XRD), UV-excited lifetimes, ICP-AES, and additional TEM data. See DOI: 10.1039/c4nr00497c

  5. Extracting near-surface QL between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece

    NASA Astrophysics Data System (ADS)

    Haendel, A.; Ohrnberger, M.; Krüger, F.

    2016-11-01

    Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings <2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors QL. The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient γ and QL can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area.

  6. Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation

    DTIC Science & Technology

    2016-05-01

    identifying and mapping flaw size distributions on glass surfaces for predicting mechanical response. International Journal of Applied Glass ...ARL-TN-0756 ● MAY 2016 US Army Research Laboratory Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation...Stress Optical Coefficient, Test Methodology, and Glass Standard Evaluation by Clayton M Weiss Oak Ridge Institute for Science and Education

  7. Attenuation of X and Gamma Rays in Personal Radiation Shielding Protective Clothing.

    PubMed

    Kozlovska, Michaela; Cerny, Radek; Otahal, Petr

    2015-11-01

    A collection of personal radiation shielding protective clothing, suitable for use in case of accidents in nuclear facilities or radiological emergency situations involving radioactive agents, was gathered and tested at the Nuclear Protection Department of the National Institute for Nuclear, Chemical and Biological Protection, Czech Republic. Attenuating qualities of shielding layers in individual protective clothing were tested via spectra measurement of x and gamma rays, penetrating them. The rays originated from different radionuclide point sources, the gamma ray energies of which cover a broad energy range. The spectra were measured by handheld spectrometers, both scintillation and High Purity Germanium. Different narrow beam geometries were adjusted using a special testing bench and a set of various collimators. The main experimentally determined quantity for individual samples of personal radiation shielding protective clothing was x and gamma rays attenuation for significant energies of the spectra. The attenuation was assessed comparing net peak areas (after background subtraction) in spectra, where a tested sample was placed between the source and the detector, and corresponding net peak areas in spectra, measured without the sample. Mass attenuation coefficients, which describe attenuating qualities of shielding layers materials in individual samples, together with corresponding lead equivalents, were determined as well. Experimentally assessed mass attenuation coefficients of the samples were compared to the referred ones for individual heavy metals.

  8. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  9. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products.

    PubMed

    Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B

    2018-04-01

    We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.

  10. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamnes, S.; Hostetler, C.; Ferrare, R.

    We present an optimal estimation based retrieval framework, the Microphysical Aerosol Properties from Polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High Spectral Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355, 532, and 1064 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ã…ngstrømmore » exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio- Optical Research (SABOR) campaign. For the SABOR campaign, 71% RSP MAPP retrievals fall within 0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.925 and root-mean-square deviation of 0.04. For the TCAP campaign, 55% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.925 and root-mean-square deviation of 0.07. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.96 and a root-mean-square deviation of also 0.07. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar+polarimeter retrieval using both HSRL and RSP measurements.« less

  11. Direct electro-optic effect in langasites and α-quartz

    NASA Astrophysics Data System (ADS)

    Ivanov, Vadim

    2018-05-01

    Strain-constant (clamped) electro-optic coefficients r11S of langasite La3Ga5SiO14 (LGS), langatate La3Ga5.5Ta0.5O14 (LGT), catangasite Ca3TaGa3Si2O14 (CTGS) and α-quartz are measured at 1540 nm in the frequency range of 3-25 MHz. Experimental ratio of clamped and unclamped electro-optic coefficients r11S/r11T is 0.97 for LGS, 0.91 for LGT, 0.31 for CTGS, and 0.49 for quartz. Most of direct electro-optic effect in LGS and LGT is associated with lanthanum ions: clamped electro-optic coefficient r11S in lanthanum-free CTGS is 14 times less than in LGS. Low piezoelectric contribution to unclamped electro-optic coefficient r11T makes LGS and LGT promising materials for electro-optic devices, whose performance can be deteriorated by piezoelectric effect, especially, for high-voltage optical voltage sensors.

  12. Aerosols attenuating the solar radiation collected by solar tower plants: The horizontal pathway at surface level

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Dubus, Laurent; Bourdil, Charles; Cuevas-Agulló, Emilio; Zaidouni, Taoufik; Formenti, Paola

    2016-05-01

    Aerosols attenuate the solar radiation collected by solar tower plants (STP), along two pathways: 1) the atmospheric column pathway, between the top of the atmosphere and the heliostats, resulting in Direct Normal Irradiance (DNI) changes; 2) the grazing pathway close to surface level, between the heliostats and the optical receiver. The attenuation along the surface-level grazing pathway has been less studied than the aerosol impact on changes of DNI, while it becomes significant in STP of 100 MW or more. Indeed aerosols mostly lay within the surface atmospheric layer, called the boundary layer, and the attenuation increases with the distance covered by the solar radiation in the boundary layer. In STP of 100 MW or more, the distance between the heliostats and the optical receiver becomes large enough to produce a significant attenuation by aerosols. We used measured aerosol optical thickness and computed boundary layer height to estimate the attenuation of the solar radiation at surface level at Ouarzazate (Morocco). High variabilities in aerosol amount and in vertical layering generated a significant magnitude in the annual cycle and significant inter-annual changes. Indeed the annual mean of the attenuation caused by aerosols over a 1-km heliostat-receiver distance was 3.7% in 2013, and 5.4% in 2014 because of a longest desert dust season. The monthly minimum attenuation of less than 3% was observed in winter and the maximum of more than 7% was observed in summer.

  13. Technology optimization techniques for multicomponent optical band-pass filter manufacturing

    NASA Astrophysics Data System (ADS)

    Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.

    2016-04-01

    Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.

  14. Assessing near infrared optical properties of ceramic orthodontic brackets using cross-polarization optical coherence tomography.

    PubMed

    Isfeld, Darren M; Aparicio, Conrado; Jones, Robert S

    2014-04-01

    Secondary decay (caries) under ceramic orthodontic brackets remains a significant dental problem and near infrared cross-polarization optical coherence tomography (CP-OCT) has the potential to detect underlying demineralization. The purpose of this study was to determine the effect of crystalline structure and chemical composition of ceramic brackets on CP-OCT imaging. Four ceramic brackets types, which were divided into monocrystalline and polycrystalline, were examined using CP-OCT. The results of this study demonstrated that the crystallinity of the ceramic brackets affected the 1310 nm CP-OCT imaging with the greatest attenuation seen in polycrystalline alumina brackets. The alumina polycrystalline bracket materials had significantly higher attenuation and scattering than alumina monocrystalline brackets (p < 0.05, ANOVA, Bonferroni). Additionally, bracket base morphology and composition affected NIR light attenuation. There was considerable attenuation in bracket bases that contained additive zirconium spheres (∼30 µm) and this alteration was significantly greater than the jagged alumina crystallographic alterations found in the other bracket systems (p < 0.05, ANOVA, Bonferroni). Noninvasive, near infrared (NIR) cross-polarization optical coherence tomography (CP-OCT) has potential to effectively image through portions of ceramic brackets; however, further investigation into the optical effects of resin integration in the base portion of the brackets is warranted. © 2013 Wiley Periodicals, Inc.

  15. On determination of sign of the piezo-optic coefficients using torsion method.

    PubMed

    Vasylkiv, Yurij; Savaryn, Viktoriya; Smaga, Ihor; Skab, Ihor; Vlokh, Rostyslav

    2011-06-10

    We have shown that a high-accuracy torsion method recently developed by the authors for measuring piezo-optic coefficients allows determining not only the absolute value of the coefficients but also their sign. The techniques and experimental procedures used for determination of the sign are described in detail and proven based on studies of α-BaB2O4 and LiNbO3 crystals. The piezo-optic coefficients are determined for both crystals, and a combination of the corresponding photoelastic coefficients is determined for the case of α-BaB2O4 crystals.

  16. Characteristics of the near-bottom suspended sediment field over the continental shelf off northern California based on optical attenuation measurements during STRESS and SMILE

    NASA Astrophysics Data System (ADS)

    Trowbridge, J. H.; Butman, B.; Limeburner, R.

    1994-08-01

    Time-series measurements of current velocity, optical attenuation and surface wave intensity obtained during the Sediment Transport Events on Shelves and Slopes (STRESS) experiments, combined with shipboard measurements of conductivity, temperature and optical attenuation obtained during the Shelf Mixed Layer Experiment (SMILE), provide a description of the sediment concentration field over the central and outer shelf off northern California. The questions addressed are: (1) existence and characteristics of bottom nepheloid layers and their relationship to bottom mixed layers; (2) characteristics of temporal fluctuations in sediment concentration and their relationship to waves and currents; (3) spatial scales over which suspended sediment concentrations vary horizontally; and (4) vertical distribution of suspended sediment.

  17. Factors That Attenuate the Correlation Coefficient and Its Analogs.

    ERIC Educational Resources Information Center

    Dolenz, Beverly

    The correlation coefficient is an integral part of many other statistical techniques (analysis of variance, t-tests, etc.), since all analytic methods are actually correlational (G. V. Glass and K. D. Hopkins, 1984). The correlation coefficient is a statistical summary that represents the degree and direction of relationship between two variables.…

  18. GPR measurements of attenuation in concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena,more » and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.« less

  19. Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Marashdeh, Mohammad W.; Al-Hamarneh, Ibrahim F.; Abdel Munem, Eid M.; Tajuddin, A. A.; Ariffin, Alawiah; Al-Omari, Saleh

    Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff) and effective electron density (Neff) of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10-60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5) simulation code. The MCNP5 calculations of the attenuation parameters for the Rhizophora spp. samples were plotted graphically against photon energy and discussed in terms of their relative differences compared with those of water and breast tissue. Moreover, the validity of the MCNP5 code was examined by comparing the calculated attenuation parameters with the theoretical values obtained by the XCOM program based on the mixture rule. The results indicated that the MCNP5 process can be followed to determine the attenuation of gamma rays with several photon energies in other materials.

  20. GPR measurements of attenuation in concrete

    NASA Astrophysics Data System (ADS)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-03-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  1. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert

    2013-09-01

    Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.

  2. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    NASA Astrophysics Data System (ADS)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  3. Dispersion and Attenuation Due to Scattering from Heterogeneities of the Frame Bulk Modulus of a Poroelastic Medium

    DTIC Science & Technology

    2010-02-19

    attenuation is a function of the Hurst exponent which characterizes the fractal het- erogeneity. Muller and Gurevich15,16 used statistical smoothing of...modified Bessel function of the third kind, Γ denotes the gamma function, and ν is the Hurst coefficient which is assumed to be 0 < ν ≤ 1. The three...The Hurst coefficient, ν, is ν = 0.1 (long-dashed line), ν = 0.5 (short-dashed line), and ν = 0.9 (long-short dashed line). In (a) the sound speed

  4. Transfer function concept for ultrasonic characterization of material microstructures

    NASA Technical Reports Server (NTRS)

    Vary, A.; Kautz, H. E.

    1986-01-01

    The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.

  5. Apparatus and method for the determination of grain size in thin films

    DOEpatents

    Maris, Humphrey J

    2000-01-01

    A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

  6. Apparatus and method for the determination of grain size in thin films

    DOEpatents

    Maris, Humphrey J

    2001-01-01

    A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

  7. Exploring Novel Crystals and Designs for Acousto-Optic Devices

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Jonathan B.

    Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency shifter that was designed based on the culmination my research effort.

  8. Infrared Cloud Imager Development for Atmospheric Optical Communication Characterization, and Measurements at the JPL Table Mountain Facility

    NASA Astrophysics Data System (ADS)

    Nugent, P. W.; Shaw, J. A.; Piazzolla, S.

    2013-02-01

    The continuous demand for high data return in deep space and near-Earth satellite missions has led NASA and international institutions to consider alternative technologies for high-data-rate communications. One solution is the establishment of wide-bandwidth Earth-space optical communication links, which require (among other things) a nearly obstruction-free atmospheric path. Considering the atmospheric channel, the most common and most apparent impairments on Earth-space optical communication paths arise from clouds. Therefore, the characterization of the statistical behavior of cloud coverage for optical communication ground station candidate sites is of vital importance. In this article, we describe the development and deployment of a ground-based, long-wavelength infrared cloud imaging system able to monitor and characterize the cloud coverage. This system is based on a commercially available camera with a 62-deg diagonal field of view. A novel internal-shutter-based calibration technique allows radiometric calibration of the camera, which operates without a thermoelectric cooler. This cloud imaging system provides continuous day-night cloud detection with constant sensitivity. The cloud imaging system also includes data-processing algorithms that calculate and remove atmospheric emission to isolate cloud signatures, and enable classification of clouds according to their optical attenuation. Measurements of long-wavelength infrared cloud radiance are used to retrieve the optical attenuation (cloud optical depth due to absorption and scattering) in the wavelength range of interest from visible to near-infrared, where the cloud attenuation is quite constant. This article addresses the specifics of the operation, calibration, and data processing of the imaging system that was deployed at the NASA/JPL Table Mountain Facility (TMF) in California. Data are reported from July 2008 to July 2010. These data describe seasonal variability in cloud cover at the TMF site, with cloud amount (percentage of cloudy pixels) peaking at just over 51 percent during February, of which more than 60 percent had optical attenuation exceeding 12 dB at wavelengths in the range from the visible to the near-infrared. The lowest cloud amount was found during August, averaging 19.6 percent, and these clouds were mostly optically thin, with low attenuation.

  9. The Physics Analysis of a Gas Attenuator with Argon as a Working Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov,, D.D.

    2010-12-07

    A gas attenuator is an important element of the LCLS facility. The attenuator must operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. S. Shen has recently carried out a detailed design study of the attenuator based on the use of nitrogen as a working gas. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues, not the design features.

  10. Effects of graphene quantum dots on linear and nonlinear optical behavior of malignant ovarian cells

    NASA Astrophysics Data System (ADS)

    Mohajer, Salman; Ara, Mohammad Hossein Majles; Serahatjoo, Leila

    2016-07-01

    We investigate linear and nonlinear optical properties of standard human ovarian cancer cells (cell line: A2780cp) in vitro. Cells were treated by graphene quantum dots (GQDs) with two special concentrations. Nontoxicity of GQDs was examined in standard biological viability tests. Cancerous cells were fixed on a glass slide; then, interaction of light with biofilms was studied in linear and nonlinear regimes. Absorption spectra of untreated biofilms and biofilms with two different concentrations of GQDs was studied by UV-visible spectrophotometer. Optical behavior of biofilms in a linear regime of intensity (with low-intensity laser exposure) was reported using a simple optical setup. After that, we compared the attenuation of light in biofilm of cancerous cells with and without GQDs. Nonlinear behavior of these biofilms was investigated by a Z-scan setup using a continued wave He-Ne laser. Results showed that GQDs decreased the extinction coefficient and changed the sign and exact value of the nonlinear refractive index of malignant ovarian cells noticeably. The nonlinear refractive index of studied cells with no GQDs treatment was in the order of 10-8 (cm2/w) with a positive sign. This quantity changed to the same order of magnitude with a negative sign after GQDs treatment. Thus, GQDs can be used for cancer diagnosis under laser irradiation.

  11. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images

    PubMed Central

    Ughi, Giovanni Jacopo; Adriaenssens, Tom; Sinnaeve, Peter; Desmet, Walter; D’hooge, Jan

    2013-01-01

    Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for the in vivo investigation of coronary artery disease. While IVOCT visualizes atherosclerotic plaques with a resolution <20µm, image analysis in terms of tissue composition is currently performed by a time-consuming manual procedure based on the qualitative interpretation of image features. We illustrate an algorithm for the automated and systematic characterization of IVOCT atherosclerotic tissue. The proposed method consists in a supervised classification of image pixels according to textural features combined with the estimated value of the optical attenuation coefficient. IVOCT images of 64 plaques, from 49 in vivo IVOCT data sets, constituted the algorithm’s training and testing data sets. Validation was obtained by comparing automated analysis results to the manual assessment of atherosclerotic plaques. An overall pixel-wise accuracy of 81.5% with a classification feasibility of 76.5% and per-class accuracy of 89.5%, 72.1% and 79.5% for fibrotic, calcified and lipid-rich tissue respectively, was found. Moreover, measured optical properties were in agreement with previous results reported in literature. As such, an algorithm for automated tissue characterization was developed and validated using in vivo human data, suggesting that it can be applied to clinical IVOCT data. This might be an important step towards the integration of IVOCT in cardiovascular research and routine clinical practice. PMID:23847728

  12. Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei

    2009-10-01

    The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.

  13. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, S; Dewhirst, M; Oldham, M

    2016-06-15

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm{sup 3}) ex vivo tissue samples at a resolution of 12.9µm{sup 3} per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10,more » 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied to study metastasis and immunologic responses via fluorescence staining.« less

  14. Bidirectional reflection functions from surface bump maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabral, B.; Max, N.; Springmeyer, R.

    1987-04-29

    The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less

  15. Dependence of particle volume fraction on sound velocity and attenuation of EPDM composites.

    PubMed

    Kim, K S; Lee, K I; Kim, H Y; Yoon, S W; Hong, S H

    2007-05-01

    The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp's) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.

  16. Analysis of dispersion and attenuation of surface waves in poroelastic media in the exploration-seismic frequency band

    USGS Publications Warehouse

    Zhang, Y.; Xu, Y.; Xia, J.

    2011-01-01

    We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.

  17. Relative validity of an FFQ to estimate daily food and nutrient intakes for Chilean adults.

    PubMed

    Dehghan, Mahshid; Martinez, Solange; Zhang, Xiaohe; Seron, Pamela; Lanas, Fernando; Islam, Shofiqul; Merchant, Anwar T

    2013-10-01

    FFQ are commonly used to rank individuals by their food and nutrient intakes in large epidemiological studies. The purpose of the present study was to develop and validate an FFQ to rank individuals participating in an ongoing Prospective Urban and Rural Epidemiological (PURE) study in Chile. An FFQ and four 24 h dietary recalls were completed over 1 year. Pearson correlation coefficients, energy-adjusted and de-attenuated correlations and weighted kappa were computed between the dietary recalls and the FFQ. The level of agreement between the two dietary assessment methods was evaluated by Bland-Altman analysis. Temuco, Chile. Overall, 166 women and men enrolled in the present study. One hundred men and women participated in FFQ development and sixty-six individuals participated in FFQ validation. The FFQ consisted of 109 food items. For nutrients, the crude correlation coefficients between the dietary recalls and FFQ varied from 0.14 (protein) to 0.44 (fat). Energy adjustment and de-attenuation improved correlation coefficients and almost all correlation coefficients exceeded 0.40. Similar correlation coefficients were observed for food groups; the highest de-attenuated energy adjusted correlation coefficient was found for margarine and butter (0.75) and the lowest for potatoes (0.12). The FFQ showed moderate to high agreement for most nutrients and food groups, and can be used to rank individuals based on energy, nutrient and food intakes. The validation study was conducted in a unique setting and indicated that the tool is valid for use by adults in Chile.

  18. Underway Sampling of Marine Inherent Optical Properties on the Tara Oceans Expedition as a Novel Resource for Ocean Color Satellite Data Product Validation

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Proctor, Christopher W.; Boss, Emmanuel; Leeuw, Thomas; Ouhssain, Mustapha

    2013-01-01

    Developing and validating data records from operational ocean color satellite instruments requires substantial volumes of high quality in situ data. In the absence of broad, institutionally supported field programs, organizations such as the NASA Ocean Biology Processing Group seek opportunistic datasets for use in their operational satellite calibration and validation activities. The publicly available, global biogeochemical dataset collected as part of the two and a half year Tara Oceans expedition provides one such opportunity. We showed how the inline measurements of hyperspectral absorption and attenuation coefficients collected onboard the R/V Tara can be used to evaluate near-surface estimates of chlorophyll-a, spectral particulate backscattering coefficients, particulate organic carbon, and particle size classes derived from the NASA Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA). The predominant strength of such flow-through measurements is their sampling rate-the 375 days of measurements resulted in 165 viable MODISA-to-in situ match-ups, compared to 13 from discrete water sampling. While the need to apply bio-optical models to estimate biogeochemical quantities of interest from spectroscopy remains a weakness, we demonstrated how discrete samples can be used in combination with flow-through measurements to create data records of sufficient quality to conduct first order evaluations of satellite-derived data products. Given an emerging agency desire to rapidly evaluate new satellite missions, our results have significant implications on how calibration and validation teams for these missions will be constructed.

  19. Optical properties of size fractions of suspended particulate matter in littoral waters of Québec

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Gholamreza; Gagné, Jean-Pierre; Larouche, Pierre; Montes-Hugo, Martin A.

    2017-11-01

    Mass-specific absorption (ai∗(λ)) and scattering (bi∗(λ)) coefficients were derived for four size fractions (i = 0.2-0.4, 0.4-0.7, 0.7-10, and > 10 µm, λ = wavelength in nm) of suspended particulate matter (SPM) and with samples obtained from surface waters (i.e., 0-2 m depth) of the Saint Lawrence Estuary and Saguenay Fjord (SLE-SF) during June of 2013. For the visible-near-infrared spectral range (i.e., λ = 400-710 nm), mass-specific absorption coefficients of total SPM (i.e., particulates > 0.2 µm) (hereafter aSPM∗) had low values (e.g., < 0.01 m2 g-1 at λ = 440 nm) in areas of the lower estuary dominated by particle assemblages with relatively large mean grain size and high particulate organic carbon and chlorophyll a per unit of mass of SPM. Conversely, largest aSPM∗ values (i.e., > 0.05 m2 g-1 at λ = 440 nm) corresponded with locations of the upper estuary and SF where particulates were mineral-rich and/or their mean diameter was relatively small. The variability of two optical proxies (the spectral slope of particulate beam attenuation coefficient and the mass-specific particulate absorption coefficient, hereafter γ and Svis, respectively) with respect to changes in particle size distribution (PSD) and chemical composition was also examined. The slope of the PSD was correlated with bi∗(550) (Spearman rank correlation coefficient ρs up to 0.37) and ai∗(440) estimates (ρs up to 0.32) in a comparable way. Conversely, the contribution of particulate inorganic matter to total mass of SPM (FSPMPIM) had a stronger correlation with ai∗ coefficients at a wavelength of 440 nm (ρs up to 0.50). The magnitude of γ was positively related to FSPMi or the contribution of size fraction i to the total mass of SPM (ρs up to 0.53 for i = 0.2-0.4 µm). Also, the relation between γ and FSPMPIM variability was secondary (ρs = -0.34, P > 0.05). Lastly, the magnitude of Svis was inversely correlated with aSPM∗(440) (ρs = -0.55, P = 0.04) and FSPMPIM (ρs = -0.62, P = 0.018) in sampling locations with a larger marine influence (i.e., lower estuary).

  20. Development of BaO-ZnO-B2O3 glasses as a radiation shielding material

    NASA Astrophysics Data System (ADS)

    Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P.

    2017-08-01

    The effects of the BaO on the optical, physical and radiation shielding properties of the xBaO: 20ZnO: (80-x)B2O3, where x=5, 10, 15, 20 and 25 mol%, were investigated. The glasses were developed by the conventional melt-quenching technique at 1400 °C with high purity chemicals of H3BO3, ZnO, and BaSO4. The optical transparency of the glasses indicated that the glasses samples were high, as observed by visual inspections. The mass attenuation coefficients (μm), the effective atomic numbers (Zeff), and the effective electron densities (Ne) were increased with the increase of BaO concentrations, and the decrease of gamma-ray energy. The developed glass samples were investigated and compared with the shielding concretes and glasses in terms of half value layer (HVL). The overall results demonstrated that the developed glasses had good shielding properties, and highly practical potentials in the environmental friendly radiation shielding materials without an additional of Pb.

  1. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  2. Structural and luminescent properties of a NaYF4-aerogel composite

    NASA Astrophysics Data System (ADS)

    Alattar, Ashraf M.; Drexler, Matthew; Twej, Wesam A. A.; Alamgir, Faisal M.

    2018-07-01

    Upconversion materials, capable of energy-shifting light, have direct application in devices where the tunability of the optical spectrum can result in higher performance. Due to the low transparency of upconversion nanomaterials, it is beneficial to disperse them in a medium with a low optical attenuation coefficient in order to allow light to reach and increase the contributions from each individual particle. Silica aerogels, with their high transparency and open porosity, are ideal media for the dispersion of the nanomaterials throughout a volume. NaYF4-based nanocrystals with differing dopants were incorporated into silica xerogels and aerogels to observe the effect of the composites on the properties of each. It was observed that, while the average surface area of the aerogel decreased in the composite, the shape and phase of the nanocrystals were preserved during xerogel processing. The luminescence of the nanoparticles increased upon incorporation into the xerogel composites. By accounting for effects emerging from collection geometry and the composite morphology, it is argued that the increase in the composite luminescent intensity is due to the nanoparticles being shielded from quenching effects by the silica matrix.

  3. PROPERTIES OF PHANTOM TISSUE-LIKE POLYMETHYLPENTENE IN THE FREQUENCY RANGE 20–70 MHZ

    PubMed Central

    Madsen, Ernest L; Deaner, Meagan E; Mehi, James

    2011-01-01

    Quantitative ultrasound (QUS) has been employed to characterize soft tissues at ordinary abdominal ultrasound frequencies (2–15 MHz) and is beginning application at high frequencies (20–70 MHz). For example, backscatter and attenuation coefficients can be estimated in vivo using a reference phantom. At high frequencies it is crucial that reverberations do not compromise the measurements. Such reverberations can occur between the phantom's scanning window and transducer components as well as within the scanning window between its surfaces. Transducers are designed to minimize reverberations between the transducer and soft tissue. Thus, the acoustic impedance of a phantom scanning window should be tissue-like; polymethylpentene (TPX) is commonly used because of its tissue-like acoustic impedance. For QUS it is also crucial to correct for the transmission coefficient of the scanning window. Computation of the latter requires knowledge of the ultrasonic properties, viz, density, speed and attenuation coefficients. This work reports values for the ultrasonic properties of two versions of TPX over the high frequency range. One form (TPX film) is used as a scanning window on high frequency phantoms, and at 40 MHz and 22°C was found to have an attenuation coefficient of 120 dB/cm and a propagation speed of 2093 m/s. PMID:21723451

  4. Novel experimental technique for 3D investigation of high-speed cavitating diesel fuel flows by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lorenzi, M.; Mitroglou, N.; Santini, M.; Gavaises, M.

    2017-03-01

    An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.

  5. Novel experimental technique for 3D investigation of high-speed cavitating diesel fuel flows by X-ray micro computed tomography.

    PubMed

    Lorenzi, M; Mitroglou, N; Santini, M; Gavaises, M

    2017-03-01

    An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.

  6. Glacial influences on solar radiation in a subarctic sea.

    PubMed

    Barron, Mace G; Barron, Kyle J

    2005-01-01

    Understanding macroscale processes controlling solar radiation in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV in the water column of Prince William Sound, a subarctic, semienclosed sea surrounded by mountains, glaciers, rivers, bays and fjords in south central Alaska. Glacial influences on diffuse attenuation coefficients (Kd) were determined along an approximate 120 km transect running NE (61 degrees 07'43''N, 146 degrees 17'1''W) to SW (60 degrees 27'25''N, 148 degrees 05'27'' W). Glacial meltwater and flour caused a 10-fold increase in Kd for visible light, UV-A and UV-B, whereas high optical clarity was present in a diversity of areas away from glacial influences. Transition areas and locations affected by calving of a tidewater glacier had intermediate Kd values. Depths at 99% attenuation ranged from less than 0.2 m near glacial streams to greater than 5 m in bays and open ocean distant from sources of glacial sediments. These results suggest that potential global change from increasing UV and glacial retreat may have heterogeneous effects on subarctic marine systems.

  7. Ex vivo optical characterization of in vivo grown tissues on dummy sensor implants using double integrating spheres measurement

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Goodarzi, Mohammad; Aernouts, Ben; Gellynck, Karolien; Vlaminck, Lieven; Bockstaele, Ronny; Cornelissen, Maria; Ramon, Herman; Saeys, Wouter

    2014-05-01

    Near infrared spectroscopy offers a promising technological platform for continuous glucose monitoring in the human body. NIR measurements can be performed in vivo with an implantable single-chip based optical NIR sensor. However, the application of NIR spectroscopy for accurate estimation of the analyte concentration in highly scattering biological systems still remains a challenge. For instance, a thin tissue layer may grow in the optical path of the sensor. As most biological tissues allow only a small fraction of the collimated light to pass, this might result in a large reduction of the light throughput. To quantify the effect of presence of a thin tissue layer in the optical path, the bulk optical properties of tissue samples grown on sensor dummies which had been implanted for several months in goats were characterized using Double Integrating Spheres and unscattered transmittance measurements. The measured values of diffuse reflectance, diffuse transmittance and collimated transmittance were used as input to Inverse Adding-Doubling algorithm to estimate the bulk optical properties of the samples. The estimates of absorption and scattering coefficients were then used to calculate the light attenuation through a thin tissue layer. Based on the lower reduction in unscattered transmittance and higher absorptivity of glucose molecules, the measurement in the combination band was found to be the better option for the implantable sensor. As the tissues were found to be highly forward scattering with very low unscattered transmittance, the diffuse transmittance measurement based sensor configuration was recommended for the implantable glucose sensor.

  8. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    PubMed

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p < 0.0001) and ultrasound pachymetry (p = < .0001). Ultrasound pachymetry readings had better 95% limits of agreement with swept source optical coherence tomography than slit scanning topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p < 0.05 for all). Overall, reproducibility coefficients and intraclass correlation coefficients were significantly better with swept source optical coherence tomography for measurement of central corneal thickness, anterior best-fit sphere and, posterior best-fit sphere (all p < 0.001). Corneal thickness and elevation measurements were significantly different between swept source optical coherence tomography and slit scanning topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  9. An apparatus to measure water optical attenuation length for LHAASO-MD

    NASA Astrophysics Data System (ADS)

    Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration

    2018-06-01

    The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.

  10. Influence of laser beam profiles on received power fluctuation

    NASA Astrophysics Data System (ADS)

    Dordova, Lucie; Diblik, Jan

    2011-09-01

    Gaussian beam is very often used for the transmission of information in optical wireless links. The usage of this optical beam has its advantages and, of course, disadvantages. This work focuses on possibilities of using laser beams with different distribution of optical intensity - Top Hat beam. Creation of the optical beam with selected optical intensity profile will be briefly described. Optical beams will propagate through the "clear" and stationary atmosphere in the experimental part of this work. These results will be compared with the data obtained after a laser beam is passed through the turbulent and attenuated atmosphere. We will use an ultrasound fog generator for laser beam attenuation testing. To create the turbulence, infra radiators will be applied. Particular results obtained from different atmospheric conditions will be compared and using different types of optical beams will be assessed.

  11. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  12. Photon interaction studies using 241Am g-rays

    NASA Astrophysics Data System (ADS)

    Ramachandran, N.; Karunakaran Nair, K.; Abdullah, K. K.; Varier, K. M.

    2006-09-01

    We have carried out some photon interaction measurements using 59.54 keV γ-rays from a ^{241}Am source. These include γ attenuation studies as well as photoelectric absorption studies in various samples. The attenuation studies have been made using leaf and wood samples, samples like sand, sugar etc., which contain particles of varying sizes as well as pellets and aqueous solutions of rare earth compounds. In the case of the leaf and wood samples, we have used the γ-ray attenuation technique for the determination of the water content in fresh and dried samples. The variation of the attenuation coefficient with particle size has been investigated for sand and sugar samples. The attenuation studies as well as the photoelectric studies in the case of rare earth elements have been carried out on samples containing such elements whose K-absorption edge energies lie below and close to the γ-energy used. Suitable compounds of the rare earth elements have been chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. A well-shielded scattering geometry was used for the photoelectric measurements. The mixture rule was invoked to extract the values of the mass attenuation coefficients for the elements from those of the corresponding compounds. The results are consistent with theoretical values derived from the XCOM package.

  13. Studies on mass attenuation coefficient, effective atomic number and electron density of some thermoluminescent dosimetric compounds

    NASA Astrophysics Data System (ADS)

    Önder, P.; Turşucu, A.; Demir, D.; Gürol, A.

    2012-12-01

    Mass attenuation coefficient, μm , effective atomic number, Zeff, and effective electron density, Nel, were determined experimentally and theoretically for some thermoluminescent dosimetric (TLD) compounds such as MgSO4, CdSO4, Al2O3, Mg2SiO4, ZnSO4, CaSO4, CaF2, NaSO4, Na4P2O7, Ca5F(PO4)3, SiO2, CaCO3 and BaSO4 at 8.04, 8.91, 13.37, 14.97, 17.44, 19.63, 22.10, 24.90, 30.82, 32.06, 35.40, 36.39, 37.26, 43.74, 44.48, 50.38, 51.70, 53.16, 80.99, 276.40, 302.85, 356.01, 383.85 and 661.66 keV photon energies by using an HPGe detector with a resolution of 182 eV at 5.9 keV. The theoretical mass attenuation coefficients were estimated using mixture rule. The calculated values were compared with the experimental values for all compounds. Good agreement has been observed between experimental and theoretical values within experimental uncertainties.

  14. Method for non-intrusively identifying a contained material utilizing uncollided nuclear transmission measurements

    DOEpatents

    Morrison, John L.; Stephens, Alan G.; Grover, S. Blaine

    2001-11-20

    An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.

  15. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.

    PubMed

    Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G

    2011-10-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. © 2011 Acoustical Society of America

  16. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone

    PubMed Central

    Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.

    2011-01-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378

  17. Measurement of Attenuation with Airborne and Ground-Based Radar in Convective Storms Over Land and Its Microphysical Implications

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.; Starr, D. OC. (Technical Monitor)

    2001-01-01

    Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-POL) radar from two field experiments are used to evaluate the Surface ref'ercnce technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in vxo deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at. the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and dry ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level, and that the data are not readil explained in terms of a gamma function raindrop size distribution.

  18. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    PubMed

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing and climatic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    NASA Astrophysics Data System (ADS)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : fDOM absorption ratios at each site demonstrates the relationship between source and optical properties. Samples with 13C-enriched carbon isotope values, indicating a greater contribution from marsh organic material, had higher CDOM : fDOM absorption ratios than samples with greater contribution from terrestrial organic material. Applying a uniform CDOM : fDOM absorption ratio and spectral slope within a given estuary yields errors in modeled light attenuation ranging from 11 to 33 % depending on estuary. The application of a uniform absorption ratio across all estuaries doubles this error. This study demonstrates that light attenuation coefficients for CDOM based on continuous fDOM records are highly dependent on the source of DOM present in the estuary. Thus, light attenuation models for estuaries would be improved by quantification of CDOM absorption and DOM source identification.

  20. Design and prototype tests of a seismic attenuation system for the advanced-LIGO output mode cleaner

    NASA Astrophysics Data System (ADS)

    Bertolini, A.; DeSalvo, R.; Galli, C.; Gennaro, G.; Mantovani, M.; Márka, S.; Sannibale, V.; Takamori, A.; Torrie, C.

    2006-04-01

    Both present LIGO and advanced LIGO (Ad-LIGO) will need an output mode cleaner (OMC) to reach the desired sensitivity. We designed a suitable OMC seismically attenuated optical table fitting to the existing vacuum chambers (horizontal access module, HAM chambers). The most straightforward and cost-effective solution satisfying the Ad-LIGO seismic attenuation specifications was to implement a single passive seismic attenuation stage, derived from the 'seismic attenuation system' (SAS) concept. We built and tested prototypes of all critical components. On the basis of these tests and past experience, we expect that the passive attenuation performance of this new design, called HAM-SAS, will match all requirements for the LIGO OMC, and all Ad-LIGO optical tables. Its performance can be improved, if necessary, by implementation of a simple active attenuation loop at marginal additional cost. The design can be easily modified to equip the LIGO basic symmetric chamber (BSC) chambers and leaves space for extensive performance upgrades for future evolutions of Ad-LIGO. Design parameters and prototype test results are presented.

  1. Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection

    NASA Astrophysics Data System (ADS)

    Sibai, Mira; Fisher, Carl; Veilleux, Israel; Elliott, Jonathan T.; Leblond, Frederic; Roberts, David W.; Wilson, Brian C.

    2017-07-01

    5-Aminolevelunic acid-induced protoporphyrin IX (PpIX) fluorescence-guided resection (FGR) enables maximum safe resection of glioma by providing real-time tumor contrast. However, the subjective visual assessment and the variable intrinsic optical attenuation of tissue limit this technique to reliably delineating only high-grade tumors that display strong fluorescence. We have previously shown, using a fiber-optic probe, that quantitative assessment using noninvasive point spectroscopic measurements of the absolute PpIX concentration in tissue further improves the accuracy of FGR, extending it to surgically curable low-grade glioma. More recently, we have shown that implementing spatial frequency domain imaging with a fluorescent-light transport model enables recovery of two-dimensional images of [PpIX], alleviating the need for time-consuming point sampling of the brain surface. We present first results of this technique modified for in vivo imaging on an RG2 rat brain tumor model. Despite the moderate errors in retrieving the absorption and reduced scattering coefficients in the subdiffusive regime of 14% and 19%, respectively, the recovered [PpIX] maps agree within 10% of the point [PpIX] values measured by the fiber-optic probe, validating its potential as an extension or an alternative to point sampling during glioma resection.

  2. Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables

    NASA Astrophysics Data System (ADS)

    Kamikawa, Neil T.; Nakagawa, Arthur T.

    1984-12-01

    Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.

  3. Infrared cloud imaging in support of Earth-space optical communication.

    PubMed

    Nugent, Paul W; Shaw, Joseph A; Piazzolla, Sabino

    2009-05-11

    The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.

  4. Computed tomography of the liver and kidneys in glycogen storage disease.

    PubMed

    Doppman, J L; Cornblath, M; Dwyer, A J; Adams, A J; Girton, M E; Sidbury, J

    1982-02-01

    Glycogen, in concentrations encountered in von Gierke's disease, has computed tomography (CT) attenuation coefficients in the 50 to 70 Hounsfield unit (HU: 1,000 scale) range and accounts for the increased density of the liver. However, in eight patients with Type I glycogen storage disease, simultaneous hepatic infiltration with fat and glycogen led to a range of liver CT densities from 13 to 80 HU. Fatty infiltration may facilitate the demonstration of hepatic tumors in older patients with this disease. Half the patients showed increased attenuation coefficients of the renal cortex, indicating glycogen deposition in the kidneys.

  5. Photon Interaction Parameters for Some Borate Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  6. Spatial attenuation of different sound field components in a water layer and shallow-water sediments

    NASA Astrophysics Data System (ADS)

    Belov, A. I.; Kuznetsov, G. N.

    2017-11-01

    The paper presents the results of an experimental study of spatial attenuation of low-frequency vector-scalar sound fields in shallow water. The experiments employed a towed pneumatic cannon and spatially separated four-component vector-scalar receiver modules. Narrowband analysis of received signals made it possible to estimate the attenuation coefficients of the first three modes in the frequency of range of 26-182 Hz and calculate the frequency dependences of the sound absorption coefficients in the upper part of bottom sediments. We analyze the experimental and calculated (using acoustic calibration of the waveguide) laws of the drop in sound pressure and orthogonal vector projections of the oscillation velocity. It is shown that the vertical projection of the oscillation velocity vector decreases significantly faster than the sound pressure field.

  7. Utilization of barite/cement composites for gamma rays attenuation

    NASA Astrophysics Data System (ADS)

    Sakr, Khaled; Ramadan, Wageeh; Sayed, Magda; El-Zakla, Tarek; El-Desouqy, Mohamed; El-Faramawy, Nabil

    2018-04-01

    The present work is directed to investigate the contribution of adding barite aggregates to cement as a shielding material for radioactive wastes disposal facilities. The percentages of barite from 5% up to 20% mixed with cement with different grain sizes were examined. Mechanical and physical properties such as compressive strength, wet and dry densities, water absorption, and porosity have been investigated. The thermogravimetric analysis and X-ray diffraction were used to examine the thermal stability and the characterizations of studied samples, respectively. The linear attenuation coefficient, mean free path, half value layer, and transmission fraction were evaluated. All the nuclear shielding parameters revealed the uppermost values for cement mixed with 5% barite of size range 250-600 µm. The attenuation coefficient of the investigated samples displayed an increase by more than 125% than that of neat cement.

  8. Attenuation correction for brain PET imaging using deep neural network based on dixon and ZTE MR images.

    PubMed

    Gong, Kuang; Yang, Jaewon; Kim, Kyungsang; El Fakhri, Georges; Seo, Youngho; Li, Quanzheng

    2018-05-23

    Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure. © 2018 Institute of Physics and Engineering in Medicine.

  9. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    PubMed

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-09

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  10. Acoustic parameters inversion and sediment properties in the Yellow River reservoir

    NASA Astrophysics Data System (ADS)

    Li, Chang-Zheng; Yang, Yong; Wang, Rui; Yan, Xiao-Fei

    2018-03-01

    The physical properties of silt in river reservoirs are important to river dynamics. Unfortunately, traditional techniques yield insufficient data. Based on porous media acoustic theory, we invert the acoustic parameters for the top river-bottom sediments. An explicit form of the acoustic reflection coefficient at the water-sediment interface is derived based on Biot's theory. The choice of parameters in the Biot model is discussed and the relation between acoustic and geological parameters is studied, including that between the reflection coefficient and porosity and the attenuation coefficient and permeability. The attenuation coefficient of the sound wave in the sediments is obtained by analyzing the shift of the signal frequency. The acoustic reflection coefficient at the water-sediment interface is extracted from the sonar signal. Thus, an inversion method of the physical parameters of the riverbottom surface sediments is proposed. The results of an experiment at the Sanmenxia reservoir suggest that the estimated grain size is close to the actual data. This demonstrates the ability of the proposed method to determine the physical parameters of sediments and estimate the grain size.

  11. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code.

    PubMed

    Tekin, H O; Singh, V P; Manici, T

    2017-03-01

    In the present work the effect of tungsten oxide (WO 3 ) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO 3 and micro-WO 3 into concrete sample. The mass attenuation coefficients of pure concrete and WO 3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO 3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO 3 significanlty improve shielding properties than micro-WO 3 . It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source.

    PubMed

    Mollet, Pieter; Keereman, Vincent; Bini, Jason; Izquierdo-Garcia, David; Fayad, Zahi A; Vandenberghe, Stefaan

    2014-02-01

    Quantitative PET imaging relies on accurate attenuation correction. Recently, there has been growing interest in combining state-of-the-art PET systems with MR imaging in a sequential or fully integrated setup. As CT becomes unavailable for these systems, an alternative approach to the CT-based reconstruction of attenuation coefficients (μ values) at 511 keV must be found. Deriving μ values directly from MR images is difficult because MR signals are related to the proton density and relaxation properties of tissue. Therefore, most research groups focus on segmentation or atlas registration techniques. Although studies have shown that these methods provide viable solutions in particular applications, some major drawbacks limit their use in whole-body PET/MR. Previously, we used an annulus-shaped PET transmission source inside the field of view of a PET scanner to measure attenuation coefficients at 511 keV. In this work, we describe the use of this method in studies of patients with the sequential time-of-flight (TOF) PET/MR scanner installed at the Icahn School of Medicine at Mount Sinai, New York, NY. Five human PET/MR and CT datasets were acquired. The transmission-based attenuation correction method was compared with conventional CT-based attenuation correction and the 3-segment, MR-based attenuation correction available on the TOF PET/MR imaging scanner. The transmission-based method overcame most problems related to the MR-based technique, such as truncation artifacts of the arms, segmentation artifacts in the lungs, and imaging of cortical bone. Additionally, the TOF capabilities of the PET detectors allowed the simultaneous acquisition of transmission and emission data. Compared with the MR-based approach, the transmission-based method provided average improvements in PET quantification of 6.4%, 2.4%, and 18.7% in volumes of interest inside the lung, soft tissue, and bone tissue, respectively. In conclusion, a transmission-based technique with an annulus-shaped transmission source will be more accurate than a conventional MR-based technique for measuring attenuation coefficients at 511 keV in future whole-body PET/MR studies.

  13. Femtosecond laser corneal surgery with in situ determination of the laser attenuation and ablation threshold by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Nuzzo, Valeria; Albert, Olivier; Mourou, Gérard A.; Savoldelli, Michèle; Dagonet, Françoise; Donate, David; Legeais, Jean-Marc

    2007-02-01

    Femtosecond lasers start to be routinely used in refractive eye surgery. Current research focuses on their application to glaucoma and cataract surgery as well as cornea transplant procedures. To avoid unwanted tissue damage during the surgical intervention it is of utmost importance to maintain a working energy just above the ablation threshold and maintain the laser energy at this working point independently of the local and global tissue properties. To quantify the attenuation of the laser power density in the tissue by absorption, scattering and modification of the point spread function we monitor the second harmonic radiation generated in the collagen matrix of the cornea when exposed to ultrashort laser pulses. We use a CPA system with a regenerative amplifier delivering pulses at a wavelength of 1.06 μm, pulse durations of 400 fs and a maximum energy of 60 μJ. The repetition rate is adjustable from single shot up to 10 kHz. The experiments are performed on human corneas provided by the French Eye bank. To capture the SHG radiation we use a photomultiplier tube connected to a lockin amplifier tuned to the laser repetition rate. The measured data indicates an exponential decay of the laser beam intensity in the volume of the sample and allows for the quantification of the attenuation coefficient and its correlation with the optical properties of the cornea. Complementary analyses were performed on the samples by ultrastructural histology.

  14. Optical analysis of thermal induced structural distortions

    NASA Technical Reports Server (NTRS)

    Weinswig, Shepard; Hookman, Robert A.

    1991-01-01

    The techniques used for the analysis of thermally induced structural distortions of optical components such as scanning mirrors and telescope optics are outlined. Particular attention is given to the methodology used in the thermal and structural analysis of the GOES scan mirror, the optical analysis using Zernike coefficients, and the optical system performance evaluation. It is pointed out that the use of Zernike coefficients allows an accurate, effective, and simple linkage between thermal/mechanical effects and the optical design.

  15. Improved Modeling and Prediction of Surface Wave Amplitudes

    DTIC Science & Technology

    2017-05-31

    structures and derived attenuation coefficients from the Eurasian Q inversion study. 15. SUBJECT TERMS nuclear explosion monitoring, surface waves, membrane...24 4.6 Inversion of Eurasian Attenuation Data for Q Structure ........................................ 31 4.6.1 Data used in the Q Inversion ...33 4.6.2 Q Inversion Results

  16. Towards a nanoscale mammographic contrast agent: development of a modular pre-clinical dual optical/x-ray agent

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Gorelikov, Ivan; Niroui, Farnaz; Levitin, Ronald B.; Mainprize, James G.; Yaffe, Martin J.; Rowlands, J. A.; Matsuura, Naomi

    2013-08-01

    Contrast-enhanced digital mammography (CEDM) can provide improved breast cancer detection and characterization compared to conventional mammography by imaging the effects of tumour angiogenesis. Current small-molecule contrast agents used for CEDM are limited by a short plasma half-life and rapid extravasation into tissue interstitial space. To address these limitations, nanoscale agents that can remain intravascular except at sites of tumour angiogenesis can be used. For CEDM, this agent must be both biocompatible and strongly attenuate mammographic energy x-rays. Nanoscale perfluorooctylbromide (PFOB) droplets have good x-ray attenuation and have been used in patients for other applications. However, the macroscopic scale of x-ray imaging (50-100 µm) is inadequate for direct verification that PFOB droplets localize at sites of breast tumour angiogenesis. For efficient pre-clinical optimization for CEDM, we integrated an optical marker into PFOB droplets for microscopic assessment (≪50 µm). To develop PFOB droplets as a new nanoscale mammographic contrast agent, PFOB droplets were labelled with fluorescent quantum dots (QDs). The droplets had mean diameters of 160 nm, fluoresced at 635 nm and attenuated x-ray spectra at 30.5 keV mean energy with a relative attenuation of 5.6 ± 0.3 Hounsfield units (HU) mg-1 mL-1 QD-PFOB. With the agent loaded into tissue phantoms, good correlation between x-ray attenuation and optical fluorescence was found (R2 = 0.96), confirming co-localization of the QDs with PFOB for quantitative assessment using x-ray or optical methods. Furthermore, the QDs can be removed from the PFOB agent without affecting its x-ray attenuation or structural properties for expedited translation of optimized PFOB droplet formulations into patients.

  17. Innovative acoustic techniques for studying new materials and new developments in solid state physics

    NASA Astrophysics Data System (ADS)

    Maynard, Julian D.

    1994-06-01

    The goals of this project involve the use of innovative acoustic techniques to study new materials and new developments in solid state physics. Major accomplishments include (a) the preparation and publication of a number of papers and book chapters, (b) the measurement and new analysis of more samples of aluminum quasicrystal and its cubic approximant to eliminate the possibility of sample artifacts, (c) the use of resonant ultrasound to measure acoustic attenuation and determine the effects of heat treatment on ceramics, (d) the extension of our technique for measuring even lower (possibly the lowest) infrared optical absorption coefficient, and (e) the measurement of the effects of disorder on the propagation of a nonlinear pulse, and (f) the observation of statistical effects in measurements of individual bond breaking events in fracture.

  18. A ray tracing model for leaf bidirectional scattering studies

    NASA Technical Reports Server (NTRS)

    Brakke, T. W.; Smith, J. A.

    1987-01-01

    A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.

  19. Retrieval of Macro- and Micro-Physical Properties of Oceanic Hydrosols from Polarimetric Observations

    NASA Technical Reports Server (NTRS)

    Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir

    2016-01-01

    Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.

  20. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  1. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Weining; Yu, Qian; Tian, Yong Q.; Chen, Robert F.; Gardner, G. Bernard

    2011-02-01

    A method for the inversion of hyperspectral remote sensing was developed to determine the absorption coefficient for chromophoric dissolved organic matter (CDOM) in the Mississippi and Atchafalaya river plume regions and the northern Gulf of Mexico, where water types vary from Case 1 to turbid Case 2. Above-surface hyperspectral remote sensing data were measured by a ship-mounted spectroradiometer and then used to estimate CDOM. Simultaneously, water absorption and attenuation coefficients, CDOM and chlorophyll fluorescence, turbidities, and other related water properties were also measured at very high resolution (0.5-2 m) using in situ, underwater, and flow-through (shipboard, pumped) optical sensors. We separate ag, the absorption coefficient a of CDOM, from adg (a of CDOM and nonalgal particles) based on two absorption-backscattering relationships. The first is between ad (a of nonalgal particles) and bbp (total particulate backscattering coefficient), and the second is between ap (a of total particles) and bbp. These two relationships are referred as ad-based and ap-based methods, respectively. Consequently, based on Lee's quasi-analytical algorithm (QAA), we developed the so-called Extended Quasi-Analytical Algorithm (QAA-E) to decompose adg, using both ad-based and ap-based methods. The absorption-backscattering relationships and the QAA-E were tested using synthetic and in situ data from the International Ocean-Colour Coordinating Group (IOCCG) as well as our own field data. The results indicate the ad-based method is relatively better than the ap-based method. The accuracy of CDOM estimation is significantly improved by separating ag from adg (R2 = 0.81 and 0.65 for synthetic and in situ data, respectively). The sensitivities of the newly introduced coefficients were also analyzed to ensure QAA-E is robust.

  2. Seasonal And Regional Differentiation Of Bio-Optical Properties Within The North Polar Atlantic

    NASA Technical Reports Server (NTRS)

    Stramska, Malgorzata; Stramski, Dariusz; Kaczmarek, Slawomir; Allison, David B.; Schwarz, Jill

    2005-01-01

    Using data collected during spring and summer seasons in the north polar Atlantic we examined the variability of the spectral absorption, a(lambda), and backscattering, b(sub b)(lambda), coefficients of surface waters and its relation to phytoplankton pigment concentration and composition. For a given chlorophyll a concentration (TChla), the concentrations of photosynthetic carotenoids (PSC), photoprotective carotenoids (PPC), and total accessory pigments (AP) were consistently lower in spring than in summer. The chlorophyll-specific absorption coefficients of phytoplankton and total particulate matter were also lower in spring, which can be partly attributed to lower proportions of PPC, PSC, and AP in spring. The spring values of the green-to-blue band ratio of the absorption coefficient were higher than the summer ratios. The blue-to-green ratios of backscattering coefficient were also higher in spring. The higher b(sub b) values and lower blue-to-green b(sub b) ratios in summer were likely associated with higher concentrations of detrital particles in summer compared to spring. Because the product of the green-to-blue absorption ratio and the blue-to-green backscattering ratio is a proxy for the blue-to-green ratio of remote-sensing reflectance, we conclude that the performance of ocean color band-ratio algorithms for estimating pigments in the north polar Atlantic is significantly affected by seasonal shifts in the relationships between absorption and TChla as well as between backscattering and TChla. Intriguingly, however, fairly good estimate of the particulate beam attenuation coefficient at 660 nm (potential measure of total particulate matter or particulate organic carbon concentration) can be obtained by applying a single blue-to-green band-ratio algorithm for both spring and summer seasons.

  3. Strain sensing using optical fibers

    NASA Technical Reports Server (NTRS)

    Houghton, Richard; Hiles, Steven

    1994-01-01

    The main source of attenuation which will be studied is the optical fiber's sensitivity to bending at radii that are much larger than the radius of the fiber. This type of environmental attenuation causes losses that are a function of the severity of the bend. The average attenuation caused by bending varies exponentially with the bend radius. There are many different fibers, sources, and testing equipment available. This thesis describes tests that were performed to evaluate the variables that effect bending related attenuation and will discuss the consistency of the results. Descriptions and comparisons will be made between single mode and multimode fibers as well as instrumentation comparisons between detection equipment. Detailed analysis of the effects of the whispering gallery mode will be performed along with theorized methods for characterization of these modes.

  4. Controllable optical rogue waves via nonlinearity management.

    PubMed

    Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2018-03-19

    Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

  5. Device for imaging scenes with very large ranges of intensity

    DOEpatents

    Deason, Vance Albert [Idaho Falls, ID

    2011-11-15

    A device for imaging scenes with a very large range of intensity having a pair of polarizers, a primary lens, an attenuating mask, and an imaging device optically connected along an optical axis. Preferably, a secondary lens, positioned between the attenuating mask and the imaging device is used to focus light on the imaging device. The angle between the first polarization direction and the second polarization direction is adjustable.

  6. Tunable Optical Sources.

    DTIC Science & Technology

    1980-11-01

    finite aperture size 5. A. E. Siegman , "Unstable optical resonators for laser of the YAG rod, applications," Proc. IEEE 53, 217-287 (1965); "Unstable...Pumped LiNbO3 Tunable Source Radial Birefringent Element Computer Controlled Laser Attenuator Slab Configuration Laser Source 20. ABSTRACT (Continue on...have invented and demonstrated a computer controlled laser attenu- ator. .... Cont inued DD Il 7 1473 EDITION OF I NOV 01 IS OBSOLETE UNCLASSIFIEDAN

  7. Highly Concentrated Seed-Mediated Synthesis of Monodispersed Gold Nanorods (Postprint)

    DTIC Science & Technology

    2017-07-17

    imaging, therapeutics and sensors, to large area coatings, filters , and optical attenuators. Development of the latter technologies has been hindered by...sensors, to large area coatings, filters , and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective...challenges the utilization of Au-NRs in a diverse array of technologies, ranging from therapeutics, imaging and sensors, to large area coatings, filters and

  8. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  9. Optical switch based on electrowetting liquid lens

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Peng, Hua-Rong; Wang, Qiong-Hua

    2012-05-01

    In this paper, we propose an optical switch based on an electrowetting liquid lens. The device consists of an electrowetting liquid lens and a non-transparent cap with a pin hole. When the lens is actuated to be positive, the incident light can be converged on the pin hole and pass through the hole with less attenuation. When the lens is deformed to be negative, the incident light is diverged and most of light is blocked by the cap. Our results show that the system can provide high contrast ratio (˜800:1) and reasonable response time (˜88 ms). The proposed optical switch has potential application in light shutters, variable optical attenuators, and adaptive irises.

  10. Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra.

    PubMed

    Boulet-Audet, Maxime; Buffeteau, Thierry; Boudreault, Simon; Daugey, Nicolas; Pézolet, Michel

    2010-06-24

    Due to its unmatched hardness and chemical inertia, diamond offers many advantages over other materials for extreme conditions and routine analysis by attenuated total reflection (ATR) infrared spectroscopy. Its low refractive index can offer up to a 6-fold absorbance increase compared to germanium. Unfortunately, it also results for strong bands in spectral distortions compared to transmission experiments. The aim of this paper is to present a methodological approach to determine quantitatively the degree of the spectral distortions in ATR spectra. This approach requires the determination of the optical constants (refractive index and extinction coefficient) of the investigated sample. As a typical example, the optical constants of the fibroin protein of the silk worm Bombyx mori have been determined from the polarized ATR spectra obtained using both diamond and germanium internal reflection elements. The positions found for the amide I band by germanium and diamond ATR are respectively 6 and 17 cm(-1) lower than the true value dtermined from the k(nu) spectrum, which is calculated to be 1659 cm(-1). To determine quantitatively the effect of relevant parameters such as the film thickness and the protein concentration, various spectral simulations have also been performed. The use of a thinner film probed by light polarized in the plane of incidence and diluting the protein sample can help in obtaining ATR spectra that are closer to their transmittance counterparts. To extend this study to any system, the ATR distortion amplitude has been evaluated using spectral simulations performed for bands of various intensities and widths. From these simulations, a simple empirical relationship has been found to estimate the band shift from the experimental band height and width that could be of practical use for ATR users. This paper shows that the determination of optical constants provides an efficient way to recover the true spectrum shape and band frequencies of distorted ATR spectra.

  11. Characterization of photoacoustic sources in tissue using time domain measurements

    NASA Astrophysics Data System (ADS)

    Viator, John Andrew

    Photoacoustic phenomenon in tissue and tissue phantoms is investigated with the particular goal of discrimination of diseased and healthy tissue. Propagation of broadband photoacoustic sources in tissue phantoms is studied with emphasis on attenuation, dispersion, and diffraction. Attenuation of photoacoustic waves induced by a circular laser spot on an absorber/air interface is modeled by the on-axis approximation of the acoustic field of a baffled piston source. Dispersion is studied in a diffraction free situation, where the disk of irradiation was created by a 5 mm laser spot on a 200 cm -1 solution. The genesis of diffraction in an absorbing solution was displayed by showing the merging of a boundary wave with a plane wave from a circular laser spot on an absorbing solution. Depth profiling of absorbing tissue phantoms and stained tissue was shown using a photoacoustic method. Acrylamide gels with layers of different optical absorption and stained elastin biomaterials were irradiated with stress confined laser pulses. The resulting acoustic waves were detected with a lithium niobate wideband acoustic transducer and processed in an algorithm to determine absorption coefficient as a function of depth. Spherical photoacoustic sources were generated in optically clear and turbid tissue phantoms. Propagation time and acoustic pulse duration were used to determine location and size, respectively. The photoacoustic sources were imaged using a multiplicative backprojection scheme. Image sources from acoustic boundaries were detected and dipole sources were detected and imaged. Finally an endoscopic photoacoustic probe was designed, built, and tested for use in determining treatment depth after palliative photodynamic therapy of esophageal cancer. The probe was less than 2.5 mm in diameter and consisted of a side firing 600 mum optical fiber to deliver laser energy and a 890 mum diameter, side viewing piezoelectric detector. The sensitivity of the probe was determined. The probe was also tested on coagulated and non-coagulated liver, ex vivo and on normally perfused and underperfused human skin, in vivo.

  12. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  13. Effective atomic number and electron density of amino acids within the energy range of 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.

    2016-08-01

    Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.

  14. Inversion of In Situ Light Absorption and Attenuation Measurements to Estimate Constituent Concentrations in Optically Complex Shelf Seas

    NASA Astrophysics Data System (ADS)

    Ramírez-Pérez, M.; Twardowski, M.; Trees, C.; Piera, J.; McKee, D.

    2018-01-01

    A deconvolution approach is presented to use spectral light absorption and attenuation data to estimate the concentration of the major nonwater compounds in complex shelf sea waters. The inversion procedure requires knowledge of local material-specific inherent optical properties (SIOPs) which are determined from natural samples using a bio-optical model that differentiates between Case I and Case II waters and uses least squares linear regression analysis to provide optimal SIOP values. A synthetic data set is used to demonstrate that the approach is fundamentally consistent and to test the sensitivity to injection of controlled levels of artificial noise into the input data. Self-consistency of the approach is further demonstrated by application to field data collected in the Ligurian Sea, with chlorophyll (Chl), the nonbiogenic component of total suspended solids (TSSnd), and colored dissolved organic material (CDOM) retrieved with RMSE of 0.61 mg m-3, 0.35 g m-3, and 0.02 m-1, respectively. The utility of the approach is finally demonstrated by application to depth profiles of in situ absorption and attenuation data resulting in profiles of optically significant constituents with associated error bar estimates. The advantages of this procedure lie in the simple input requirements, the avoidance of error amplification, full exploitation of the available spectral information from both absorption and attenuation channels, and the reasonably successful retrieval of constituent concentrations in an optically complex shelf sea.

  15. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-06-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging.

  16. Random noise attenuation of non-uniformly sampled 3D seismic data along two spatial coordinates using non-equispaced curvelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi

    2018-04-01

    The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.

  17. Photoconductive and electro-optic effects in (Cd,Mg)Te single crystals measured in an experiment-on-chip configuration

    NASA Astrophysics Data System (ADS)

    Serafini, John; Hossain, A.; James, R. B.; Guziewicz, M.; Kruszka, R.; Słysz, W.; Kochanowska, D.; Domagala, J. Z.; Mycielski, A.; Sobolewski, Roman

    2017-07-01

    We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd0.92Mg0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelengths of 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms at different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ˜500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, apparently, due to the disorientation of the tested crystal that resulted in the non-optimal EO measurement condition.

  18. Photoconductive and electro-optic effects in (Cd,Mg)Te single crystals measured in an experiment-on-chip configuration

    DOE PAGES

    Serafini, John; Hossain, A.; James, R. B.; ...

    2017-07-03

    We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd 0.92Mg 0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelength 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms atmore » different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ~500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, due to a twinned structure and misalignment of the tested (Cd,Mg)Te crystal.« less

  19. 2-μm optical time domain reflectometry measurements from novel Al-, Ge-, CaAlSi- doped and standard single-mode fibers

    NASA Astrophysics Data System (ADS)

    Rodriguez-Novelo, J. C.; Sanchez-Nieves, J. A.; Sierra-Calderon, A.; Sanchez-Lara, R.; Alvarez-Chavez, J. A.

    2017-08-01

    The development of novel Al-, Ge- doped and un-doped standard single mode fibers for future optical communication at 2μm requires the integration of, among other pieces of equipment, an optical time domain reflectometry (OTDR) technique for precise spectral attenuation characterization, including the well-known cut-back method. The integration of a state of the art OTDR at 2μm could provide valuable attenuation information from the aforementioned novel fibers. The proposed setup consists of a 1.7 mW, 1960nm pump source, a 30 dB gain Thulium doped fibre amplifier at 2μm, an 0.8mm focal length lens with a 0.5 NA, a 30 MHz acusto-optic modulator, a 3.1 focal length lens with a 0.68NA, an optical circulator at 2μm, an InGaAs photodetector for 1.2 nm-2.6 nm range, a voltage amplifier and an oscilloscope. The propagated pulse rate is 50 KHz, with 500 ns, 200 ns, 100 ns and 50 ns pulse widths. Attenuation versus novel fibers types for lengths ranging from 400- to 1000- meter samples were obtained using the proposed setup.

  20. Sound propagation in urban areas: a periodic disposition of buildings.

    PubMed

    Picaut, J; Hardy, J; Simon, L

    1999-10-01

    A numerical simulation of background noise propagation is performed for a network of hexagonal buildings. The obtained results suggest that the prediction of background noise in urban spaces is possible by means of a modified diffusion equation using two parameters: the diffusion coefficient that expresses the spreading out of noise resulting from diffuse scattering and multiple reflections by buildings, and an attenuation term accounting for the wall absorption, atmospheric attenuation, and absorption by the open top. The dependence of the diffusion coefficient with geometrical shapes and the diffusive nature of the buildings are investigated in the case of a periodic disposition of hexagonal buildings.

  1. Determination of particles concentration in Black Sea waters from spectral beam attenuation coefficient

    NASA Astrophysics Data System (ADS)

    Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.

    2017-11-01

    The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.

  2. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com; Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com

    2016-05-06

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi{sub 2}O{sub 3} + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μ{sub m}) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Z{sub eff}) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  3. Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.

    2014-05-01

    The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.

  4. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    NASA Astrophysics Data System (ADS)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  5. Effective Atomic Number, Mass Attenuation Coefficient Parameterization, and Implications for High-Energy X-Ray Cargo Inspection Systems

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.

    The most widely used technology for the non-intrusive active inspection of cargo containers and trucks is x-ray radiography at high energies (4-9 MeV). Technologies such as dual-energy imaging, spectroscopy, and statistical waveform analysis can be used to estimate the effective atomic number (Zeff) of the cargo from the x-ray transmission data, because the mass attenuation coefficient depends on energy as well as atomic number Z. The estimated effective atomic number, Zeff, of the cargo then leads to improved detection capability of contraband and threats, including special nuclear materials (SNM) and shielding. In this context, the exact meaning of effective atomic number (for mixtures and compounds) is generally not well-defined. Physics-based parameterizations of the mass attenuation coefficient have been given in the past, but usually for a limited low-energy range. Definitions of Zeff have been based, in part, on such parameterizations. Here, we give an improved parameterization at low energies (20-1000 keV) which leads to a well-defined Zeff. We then extend this parameterization up to energies relevant for cargo inspection (10 MeV), and examine what happens to the Zeff definition at these higher energies.

  6. Effect of fog on free-space optical links employing imaging receivers.

    PubMed

    Mahalati, Reza Nasiri; Kahn, Joseph M

    2012-01-16

    We analyze free-space optical links employing imaging receivers in the presence of misalignment and atmospheric effects, such as haze, fog or rain. We present a detailed propagation model based on the radiative transfer equation. We also compare the relative importance of two mechanisms by which these effects degrade link performance: signal attenuation and image blooming. We show that image blooming dominates over attenuation, except under medium-to-heavy fog conditions.

  7. Apparatus and process for active pulse intensity control of laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    An optically controlled laser pulse energy control apparatus and process is disclosed wherein variations in the energy of a portion of the laser beam are used to vary the resistance of a photodetector such as a photoresistor through which a control voltage is fed to a light intensity controlling device through which a second portion of the laser beam passes. Light attenuation means are provided to vary the intensity of the laser light used to control the resistance of the photodetector. An optical delay path is provided through which the second portion of the beam travels before reaching the light intensity controlling device. The control voltage is supplied by a variable power supply. The apparatus may be tuned to properly attenuate the laser beam passing through the intensity controlling device by adjusting the power supply, the optical delay path, or the light attenuating means.

  8. Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway

    NASA Astrophysics Data System (ADS)

    Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.

    2017-05-01

    Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.

  9. New method for calculating the coupling coefficient in graded index optical fibers

    NASA Astrophysics Data System (ADS)

    Savović, Svetislav; Djordjevich, Alexandar

    2018-05-01

    A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.

  10. Effect of Yb doping on the refractive index and thermo-optic coefficient of YVO4 single crystals.

    PubMed

    Soharab, M; Bhaumik, Indranil; Bhatt, R; Saxena, A; Karnal, A K; Gupta, P K

    2017-02-20

    Single crystals of YVO4 with different doping concentrations of Yb (1.5, 3.0, 8.0, and 15.0 at. %) and with good crystalline quality (FWHM ∼43-55 arc sec of rocking curve) were grown by the optical floating zone technique. Refractive index measurements were carried out at four wavelengths as a function of temperature. The measurements show that as the doping concentration of Yb is increased, the refractive index varies marginally for ne whereas there is a significant change in the value of no. The thermo-optic coefficient (dn/dT) was found to be positive with a value ∼10-5/°C, which is 1 order higher than that for the undoped YVO4 crystal. The thermo-optic coefficient is higher for ne compared to that of no. Also, a set of relations describing the wavelength dependence of the thermo-optic coefficient were established that are useful for calculating the thermo-optic coefficient at any temperature in the range 30°C-150°C and at any wavelength in the range 532-1551 nm.

  11. X-ray tube voltage and image quality in adult and pediatric CT

    NASA Astrophysics Data System (ADS)

    Huda, W.; Ogden, K. M.; Scalzetti, E. M.; Lavallee, R. L.; Samei, E.

    2006-03-01

    The purpose of this study was to investigate how tissue x-ray attenuation coefficients, and their uncertainties, vary with x-ray tube voltage in different sized patients. Anthropomorphic phantoms (newborn, 10 year old, adult) were scanned a GE LightSpeed scanner at four x-ray tube voltages. Measurements were made of tissue attenuation in the head, chest and abdomen regions, as well as the corresponding noise values. Tissue signal to noise ratios (SNR) were obtained by dividing the average attenuation coefficient by the corresponding standard deviation. Soft tissue attenuation coefficients, relative to water, showed little variation with patient location or x-ray voltage (< 0.5%), but increasing the x-ray tube voltage from 80 to 140 kV reduced bone x-ray attenuation by ~14%. All tissues except adult bone showed a reduction of noise with increasing x-ray tube voltage (kV); the noise was found to be proportional to kV n and the average value of n for all tissues was -1.19 +/- 0.57. In pediatric patients at a constant x-ray tube voltage, SNR values were approximately independent of the body region, but the adult abdomen soft tissue SNR values were ~40% lower than the adult head. SNR values in the newborn were more than double the corresponding SNR soft tissue values in adults. SNR values for lung and bone were generally lower than those for soft tissues. For soft tissues, increasing the x-ray tube voltage from 80 to 140 kV increased the SNR by an average of ~90%. Data in this paper can be used to help design CT imaging protocols that take into account patient size and diagnostic imaging task.

  12. Attenuation analysis of long-haul NLOS atmospheric optical scattering communication

    NASA Astrophysics Data System (ADS)

    Zhang, Shihua; Wang, Jingyuan; Xu, Zhiyong; Song, Chao; Wang, Rong; Chen, Yiwang; Zhao, Jiyong; Wei, Yimei

    2016-06-01

    The attenuation characteristics of ultraviolet (UV) and infrared transmitting in the atmosphere is analyzed, when long-haul Non-Line-of-Sight (NLOS) optical scattering communication is considered. The effects of Rayleigh and Mie scattering to link performance are presented. Under given geometric configurations, a critical range RC is found. When communication range is shorter than RC, the attenuation of UV is lower than that of infrared. But the path loss of UV increases rapidly, while the path loss of infrared increases much slower. When communication range is longer than RC, the attenuation of UV is higher than that of infrared. Numerical values of RC under different geometries are analyzed. It is also indicated that, under arbitrary geometric configurations, the impact of the Rayleigh scattering to infrared scattering communication is weak, but to UV scattering, the Rayleigh scattering effect cannot be ignored.

  13. Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study

    PubMed Central

    Wanniarachchi, W. A. M.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.

    2017-01-01

    The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1–1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43–4.61 km s−1 and 1.43–2.41 km h−1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests. PMID:29134090

  14. Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study.

    PubMed

    Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B

    2017-10-01

    The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.

  15. Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study

    NASA Astrophysics Data System (ADS)

    Wanniarachchi, W. A. M.; Ranjith, P. G.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.

    2017-10-01

    The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s-1 and 1.43-2.41 km h-1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.

  16. Investigation of semiconductor clad optical waveguides

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.; Mcwright, G.

    1981-01-01

    The properties of semiconductor-clad optical waveguides based on glass substrates were investigated. Computer modeling studies on four-layer silicon-clad planar dielectric waveguides indicated that the attenuation and mode index should behave as exponentially damped sinusoids as the silicon thickness is decreased below one micrometer. This effect can be explained as a periodic coupling between the guided modes of the lossless structure and the lossy modes supported by the high refractive index silicon. The computer studies also show that both the attenuation and mode index of the propagating mode are significantly altered by conductivity charges in the silicon. Silicon claddings were RF sputtered onto AgNO3-NaNO3 ion exchanged waveguides and preliminary measurements of attenuation were made. An expression was developed which predicts the attenuation of the silicon clad waveguide from the attenuation and phase characteristics of a silicon waveguide. Several applications of these clad waveguides are suggested and methods for increasing the photo response of the RF sputtered silicon films are described.

  17. Effect of the concentration of magnetic grains on the linear-optical-absorption coefficient of ferrofluid-doped lyotropic mesophases: deviation from the Beer-Lambert law.

    PubMed

    Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M

    2004-04-01

    In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.

  18. Optical properties of nasal septum cartilage

    NASA Astrophysics Data System (ADS)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  19. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. All-optical computation system for solving differential equations based on optical intensity differentiator.

    PubMed

    Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang

    2013-03-25

    We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.

Top