Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui
2017-02-06
A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.
A combined reconstruction-classification method for diffuse optical tomography.
Hiltunen, P; Prince, S J D; Arridge, S
2009-11-07
We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.
Abramoff, Michael D.; Fort, Patrice E.; Han, Ian C.; Jayasundera, K. Thiran; Sohn, Elliott H.; Gardner, Thomas W.
2018-01-01
The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD. PMID:29372250
Abramoff, Michael D; Fort, Patrice E; Han, Ian C; Jayasundera, K Thiran; Sohn, Elliott H; Gardner, Thomas W
2018-01-01
The Early Treatment Diabetic Retinopathy Study (ETDRS) and other standardized classification schemes have laid a foundation for tremendous advances in the understanding and management of diabetic retinopathy (DR). However, technological advances in optics and image analysis, especially optical coherence tomography (OCT), OCT angiography (OCTa), and ultra-widefield imaging, as well as new discoveries in diabetic retinal neuropathy (DRN), are exposing the limitations of ETDRS and other classification systems to completely characterize retinal changes in diabetes, which we term diabetic retinal disease (DRD). While it may be most straightforward to add axes to existing classification schemes, as diabetic macular edema (DME) was added as an axis to earlier DR classifications, doing so may make these classifications increasingly complicated and thus clinically intractable. Therefore, we propose future research efforts to develop a new, comprehensive, and clinically useful classification system that will identify multimodal biomarkers to reflect the complex pathophysiology of DRD and accelerate the development of therapies to prevent vision-threatening DRD.
Fuzzy Classification of Ocean Color Satellite Data for Bio-optical Algorithm Constituent Retrievals
NASA Technical Reports Server (NTRS)
Campbell, Janet W.
1998-01-01
The ocean has been traditionally viewed as a 2 class system. Morel and Prieur (1977) classified ocean water according to the dominant absorbent particle suspended in the water column. Case 1 is described as having a high concentration of phytoplankton (and detritus) relative to other particles. Conversely, case 2 is described as having inorganic particles such as suspended sediments in high concentrations. Little work has gone into the problem of mixing bio-optical models for these different water types. An approach is put forth here to blend bio-optical algorithms based on a fuzzy classification scheme. This scheme involves two procedures. First, a clustering procedure identifies classes and builds class statistics from in-situ optical measurements. Next, a classification procedure assigns satellite pixels partial memberships to these classes based on their ocean color reflectance signature. These membership assignments can be used as the basis for a weighting retrievals from class-specific bio-optical algorithms. This technique is demonstrated with in-situ optical measurements and an image from the SeaWiFS ocean color satellite.
A new scheme for urban impervious surface classification from SAR images
NASA Astrophysics Data System (ADS)
Zhang, Hongsheng; Lin, Hui; Wang, Yunpeng
2018-05-01
Urban impervious surfaces have been recognized as a significant indicator for various environmental and socio-economic studies. There is an increasingly urgent demand for timely and accurate monitoring of the impervious surfaces with satellite technology from local to global scales. In the past decades, optical remote sensing has been widely employed for this task with various techniques. However, there are still a range of challenges, e.g. handling cloud contamination on optical data. Therefore, the Synthetic Aperture Radar (SAR) was introduced for the challenging task because it is uniquely all-time- and all-weather-capable. Nevertheless, with an increasing number of SAR data applied, the methodology used for impervious surfaces classification remains unchanged from the methods used for optical datasets. This shortcoming has prevented the community from fully exploring the potential of using SAR data for impervious surfaces classification. We proposed a new scheme that is comparable to the well-known and fundamental Vegetation-Impervious surface-Soil (V-I-S) model for mapping urban impervious surfaces. Three scenes of fully polarimetric Radsarsat-2 data for the cities of Shenzhen, Hong Kong and Macau were employed to test and validate the proposed methodology. Experimental results indicated that the overall accuracy and Kappa coefficient were 96.00% and 0.8808 in Shenzhen, 93.87% and 0.8307 in Hong Kong and 97.48% and 0.9354 in Macau, indicating the applicability and great potential of the new scheme for impervious surfaces classification using polarimetric SAR data. Comparison with the traditional scheme indicated that this new scheme was able to improve the overall accuracy by up to 4.6% and Kappa coefficient by up to 0.18.
Classifying aerosol type using in situ surface spectral aerosol optical properties
NASA Astrophysics Data System (ADS)
Schmeisser, Lauren; Andrews, Elisabeth; Ogren, John A.; Sheridan, Patrick; Jefferson, Anne; Sharma, Sangeeta; Kim, Jeong Eun; Sherman, James P.; Sorribas, Mar; Kalapov, Ivo; Arsov, Todor; Angelov, Christo; Mayol-Bracero, Olga L.; Labuschagne, Casper; Kim, Sang-Woo; Hoffer, András; Lin, Neng-Huei; Chia, Hao-Ping; Bergin, Michael; Sun, Junying; Liu, Peng; Wu, Hao
2017-10-01
Knowledge of aerosol size and composition is important for determining radiative forcing effects of aerosols, identifying aerosol sources and improving aerosol satellite retrieval algorithms. The ability to extrapolate aerosol size and composition, or type, from intensive aerosol optical properties can help expand the current knowledge of spatiotemporal variability in aerosol type globally, particularly where chemical composition measurements do not exist concurrently with optical property measurements. This study uses medians of the scattering Ångström exponent (SAE), absorption Ångström exponent (AAE) and single scattering albedo (SSA) from 24 stations within the NOAA/ESRL Federated Aerosol Monitoring Network to infer aerosol type using previously published aerosol classification schemes.Three methods are implemented to obtain a best estimate of dominant aerosol type at each station using aerosol optical properties. The first method plots station medians into an AAE vs. SAE plot space, so that a unique combination of intensive properties corresponds with an aerosol type. The second typing method expands on the first by introducing a multivariate cluster analysis, which aims to group stations with similar optical characteristics and thus similar dominant aerosol type. The third and final classification method pairs 3-day backward air mass trajectories with median aerosol optical properties to explore the relationship between trajectory origin (proxy for likely aerosol type) and aerosol intensive parameters, while allowing for multiple dominant aerosol types at each station.The three aerosol classification methods have some common, and thus robust, results. In general, estimating dominant aerosol type using optical properties is best suited for site locations with a stable and homogenous aerosol population, particularly continental polluted (carbonaceous aerosol), marine polluted (carbonaceous aerosol mixed with sea salt) and continental dust/biomass sites (dust and carbonaceous aerosol); however, current classification schemes perform poorly when predicting dominant aerosol type at remote marine and Arctic sites and at stations with more complex locations and topography where variable aerosol populations are not well represented by median optical properties. Although the aerosol classification methods presented here provide new ways to reduce ambiguity in typing schemes, there is more work needed to find aerosol typing methods that are useful for a larger range of geographic locations and aerosol populations.
Optical tomographic detection of rheumatoid arthritis with computer-aided classification schemes
NASA Astrophysics Data System (ADS)
Klose, Christian D.; Klose, Alexander D.; Netz, Uwe; Beuthan, Jürgen; Hielscher, Andreas H.
2009-02-01
A recent research study has shown that combining multiple parameters, drawn from optical tomographic images, leads to better classification results to identifying human finger joints that are affected or not affected by rheumatic arthritis RA. Building up on the research findings of the previous study, this article presents an advanced computer-aided classification approach for interpreting optical image data to detect RA in finger joints. Additional data are used including, for example, maximum and minimum values of the absorption coefficient as well as their ratios and image variances. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index and area under the curve AUC. Results were compared to different benchmarks ("gold standard"): magnet resonance, ultrasound and clinical evaluation. Maximum accuracies (AUC=0.88) were reached when combining minimum/maximum-ratios and image variances and using ultrasound as gold standard.
NASA Astrophysics Data System (ADS)
Cruz, Kelle L.; Núñez, Alejandro; Burgasser, Adam J.; Abrahams, Ellianna; Rice, Emily L.; Reid, I. Neill; Looper, Dagny
2018-01-01
Discrepancies between competing optical and near-infrared (NIR) spectral typing systems for L dwarfs have motivated us to search for a classification scheme that ties the optical and NIR schemes together, and addresses complexities in the spectral morphology. We use new and extant optical and NIR spectra to compile a sample of 171 L dwarfs, including 27 low-gravity β and γ objects, with spectral coverage from 0.6–2.4 μm. We present 155 new low-resolution NIR spectra and 19 new optical spectra. We utilize a method for analyzing NIR spectra that partially removes the broad-band spectral slope and reveals similarities in the absorption features between objects of the same optical spectral type. Using the optical spectra as an anchor, we generate near-infrared spectral average templates for L0–L8, L0–L4γ, and L0–L1β type dwarfs. These templates reveal that NIR spectral morphologies are correlated with the optical types. They also show the range of spectral morphologies spanned by each spectral type. We compare low-gravity and field-gravity templates to provide recommendations on the minimum required observations for credibly classifying low-gravity spectra using low-resolution NIR data. We use the templates to evaluate the existing NIR spectral standards and propose new ones where appropriate. Finally, we build on the work of Kirkpatrick et al. to provide a spectral typing method that is tied to the optical and can be used when only H or K band data are available. The methods we present here provide resolutions to several long-standing issues with classifying L dwarf spectra and could also be the foundation for a spectral classification scheme for cloudy exoplanets.
Slaughter, Susan E; Zimmermann, Gabrielle L; Nuspl, Megan; Hanson, Heather M; Albrecht, Lauren; Esmail, Rosmin; Sauro, Khara; Newton, Amanda S; Donald, Maoliosa; Dyson, Michele P; Thomson, Denise; Hartling, Lisa
2017-12-06
As implementation science advances, the number of interventions to promote the translation of evidence into healthcare, health systems, or health policy is growing. Accordingly, classification schemes for these knowledge translation (KT) interventions have emerged. A recent scoping review identified 51 classification schemes of KT interventions to integrate evidence into healthcare practice; however, the review did not evaluate the quality of the classification schemes or provide detailed information to assist researchers in selecting a scheme for their context and purpose. This study aimed to further examine and assess the quality of these classification schemes of KT interventions, and provide information to aid researchers when selecting a classification scheme. We abstracted the following information from each of the original 51 classification scheme articles: authors' objectives; purpose of the scheme and field of application; socioecologic level (individual, organizational, community, system); adaptability (broad versus specific); target group (patients, providers, policy-makers), intent (policy, education, practice), and purpose (dissemination versus implementation). Two reviewers independently evaluated the methodological quality of the development of each classification scheme using an adapted version of the AGREE II tool. Based on these assessments, two independent reviewers reached consensus about whether to recommend each scheme for researcher use, or not. Of the 51 original classification schemes, we excluded seven that were not specific classification schemes, not accessible or duplicates. Of the remaining 44 classification schemes, nine were not recommended. Of the 35 recommended classification schemes, ten focused on behaviour change and six focused on population health. Many schemes (n = 29) addressed practice considerations. Fewer schemes addressed educational or policy objectives. Twenty-five classification schemes had broad applicability, six were specific, and four had elements of both. Twenty-three schemes targeted health providers, nine targeted both patients and providers and one targeted policy-makers. Most classification schemes were intended for implementation rather than dissemination. Thirty-five classification schemes of KT interventions were developed and reported with sufficient rigour to be recommended for use by researchers interested in KT in healthcare. Our additional categorization and quality analysis will aid in selecting suitable classification schemes for research initiatives in the field of implementation science.
In-vivo determination of chewing patterns using FBG and artificial neural networks
NASA Astrophysics Data System (ADS)
Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael
2015-09-01
This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.
Cross-ontological analytics for alignment of different classification schemes
Posse, Christian; Sanfilippo, Antonio P; Gopalan, Banu; Riensche, Roderick M; Baddeley, Robert L
2010-09-28
Quantification of the similarity between nodes in multiple electronic classification schemes is provided by automatically identifying relationships and similarities between nodes within and across the electronic classification schemes. Quantifying the similarity between a first node in a first electronic classification scheme and a second node in a second electronic classification scheme involves finding a third node in the first electronic classification scheme, wherein a first product value of an inter-scheme similarity value between the second and third nodes and an intra-scheme similarity value between the first and third nodes is a maximum. A fourth node in the second electronic classification scheme can be found, wherein a second product value of an inter-scheme similarity value between the first and fourth nodes and an intra-scheme similarity value between the second and fourth nodes is a maximum. The maximum between the first and second product values represents a measure of similarity between the first and second nodes.
NASA Astrophysics Data System (ADS)
Lazri, Mourad; Ameur, Soltane
2016-09-01
In this paper, an algorithm based on the probability of rainfall intensities classification for rainfall estimation from Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) has been developed. The classification scheme uses various spectral parameters of SEVIRI that provide information about cloud top temperature and optical and microphysical cloud properties. The presented method is developed and trained for the north of Algeria. The calibration of the method is carried out using as a reference rain classification fields derived from radar for rainy season from November 2006 to March 2007. Rainfall rates are assigned to rain areas previously identified and classified according to the precipitation formation processes. The comparisons between satellite-derived precipitation estimates and validation data show that the developed scheme performs reasonably well. Indeed, the correlation coefficient presents a significant level (r:0.87). The values of POD, POFD and FAR are 80%, 13% and 25%, respectively. Also, for a rainfall estimation of about 614 mm, the RMSD, Bias, MAD and PD indicate 102.06(mm), 2.18(mm), 68.07(mm) and 12.58, respectively.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2011-07-01
A novel technique for the label-free analysis of micro and nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Various schemes of the method using both standard and specially produced microspheres have been investigated to make further development for microbial application. It was demonstrated that optical resonance under optimal geometry could be detected under the laser power of less 1 microwatt. The sensitivity of developed schemes has been tested by monitoring the spectral shift of the whispering gallery modes. Water solutions of ethanol, ascorbic acid, blood phantoms including albumin and HCl, glucose, biotin, biomarker like C reactive protein so as bacteria and virus phantoms (gels of silica micro and nanoparticles) have been used. Structure of resonance spectra of the solutions was a specific subject of investigation. Probabilistic neural network classifier for biological agents and micro/nano particles classification has been developed. Several parameters of resonance spectra as spectral shift, broadening, diffuseness and others have been used as input parameters to develop a network classifier for micro and nanoparticles and biological agents in solution. Classification probability of approximately 98% for probes under investigation have been achieved. Developed approach have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.
Code of Federal Regulations, 2012 CFR
2012-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Code of Federal Regulations, 2013 CFR
2013-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Code of Federal Regulations, 2014 CFR
2014-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
Code of Federal Regulations, 2011 CFR
2011-01-01
... System biogeographic classification scheme and estuarine typologies. 921.3 Section 921.3 Commerce and... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... classification scheme based on regional variations in the nation's coastal zone has been developed. The...
NASA Astrophysics Data System (ADS)
Sukuta, Sydney; Bruch, Reinhard F.
2002-05-01
The goal of this study is to test the feasibility of using noise factor/eigenvector bands as general clinical analytical tools for diagnoses. We developed a new technique, Noise Band Factor Cluster Analysis (NBFCA), to diagnose benign tumors via their Fourier transform IR fiber optic evanescent wave spectral data for the first time. The middle IR region of human normal skin tissue and benign and melanoma tumors, were analyzed using this new diagnostic technique. Our results are not in full-agreement with pathological classifications hence there is a possibility that our approaches could complement or improve these traditional classification schemes. Moreover, the use of NBFCA make it much easier to delineate class boundaries hence this method provides results with much higher certainty.
Computer-aided interpretation approach for optical tomographic images
NASA Astrophysics Data System (ADS)
Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.
2010-11-01
A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.
Muench, Eugene V.
1971-01-01
A computerized English/Spanish correlation index to five biomedical library classification schemes and a computerized English/Spanish, Spanish/English listings of MeSH are described. The index was accomplished by supplying appropriate classification numbers of five classification schemes (National Library of Medicine; Library of Congress; Dewey Decimal; Cunningham; Boston Medical) to MeSH and a Spanish translation of MeSH The data were keypunched, merged on magnetic tape, and sorted in a computer alphabetically by English and Spanish subject headings and sequentially by classification number. Some benefits and uses of the index are: a complete index to classification schemes based on MeSH terms; a tool for conversion of classification numbers when reclassifying collections; a Spanish index and a crude Spanish translation of five classification schemes; a data base for future applications, e.g., automatic classification. Other classification schemes, such as the UDC, and translations of MeSH into other languages can be added. PMID:5172471
NASA Astrophysics Data System (ADS)
Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.
2015-08-01
In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.
Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra
2018-03-01
The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Urbanek, Benedikt; Groß, Silke; Wirth, Martin
2017-04-01
Cirrus clouds impose high uncertainties on weather and climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud optical, microphysical, and radiative properties change as the cirrus evolves. To gain better understanding of cirrus clouds, their optical and microphysical properties and their changes with cirrus cloud evolution the ML-CIRRUS campaign was conducted in March and April 2014. Measurements with a combined in-situ and remote sensing payload were performed with the German research aircraft HALO based in Oberpfaffenhofen. 16 research flights with altogether 88 flight hours were performed over the North-Atlantic, western and central Europe to probe different cirrus cloud regimes and cirrus clouds at different stages of evolution. One of the key remotes sensing instruments during ML-CIRRUS was the airborne differential absorption and high spectral lidar system WALES. It measures the 2-dimensional distribution of water vapor inside and outside of cirrus clouds as well as the optical properties of the clouds. Bases on these airborne lidar measurements a novel classification scheme to derive the stage of cirrus cloud evolution was developed. It identifies regions of ice nucleation, particle growth by deposition of water vapor, and ice sublimation. This method is used to investigate differences in the distribution and value of optical properties as well as in the distribution of water vapor and relative humidity depending on the stage of evolution of the cloud. We will present the lidar based classification scheme and its application on a wave driven cirrus cloud case, and we will show first results of the dependence of optical cloud properties and relative humidity distributions on the determined stage of evolution.
NASA Astrophysics Data System (ADS)
Shupe, Scott Marshall
2000-10-01
Vegetation mapping in and regions facilitates ecological studies, land management, and provides a record to which future land changes can be compared. Accurate and representative mapping of desert vegetation requires a sound field sampling program and a methodology to transform the data collected into a representative classification system. Time and cost constraints require that a remote sensing approach be used if such a classification system is to be applied on a regional scale. However, desert vegetation may be sparse and thus difficult to sense at typical satellite resolutions, especially given the problem of soil reflectance. This study was designed to address these concerns by conducting vegetation mapping research using field and satellite data from the US Army Yuma Proving Ground (USYPG) in Southwest Arizona. Line and belt transect data from the Army's Land Condition Trend Analysis (LCTA) Program were transformed into relative cover and relative density classification schemes using cluster analysis. Ordination analysis of the same data produced two and three-dimensional graphs on which the homogeneity of each vegetation class could be examined. It was found that the use of correspondence analysis (CA), detrended correspondence analysis (DCA), and non-metric multidimensional scaling (NMS) ordination methods was superior to the use of any single ordination method for helping to clarify between-class and within-class relationships in vegetation composition. Analysis of these between-class and within-class relationships were of key importance in examining how well relative cover and relative density schemes characterize the USYPG vegetation. Using these two classification schemes as reference data, maximum likelihood and artificial neural net classifications were then performed on a coregistered dataset consisting of a summer Landsat Thematic Mapper (TM) image, one spring and one summer ERS-1 microwave image, and elevation, slope, and aspect layers. Classifications using a combination of ERS-1 imagery and elevation, slope, and aspect data were superior to classifications carried out using Landsat TM data alone. In all classification iterations it was consistently found that the highest classification accuracy was obtained by using a combination of Landsat TM, ERS-1, and elevation, slope, and aspect data. Maximum likelihood classification accuracy was found to be higher than artificial neural net classification in all cases.
Karayannis, Nicholas V; Jull, Gwendolen A; Hodges, Paul W
2012-02-20
Several classification schemes, each with its own philosophy and categorizing method, subgroup low back pain (LBP) patients with the intent to guide treatment. Physiotherapy derived schemes usually have a movement impairment focus, but the extent to which other biological, psychological, and social factors of pain are encompassed requires exploration. Furthermore, within the prevailing 'biological' domain, the overlap of subgrouping strategies within the orthopaedic examination remains unexplored. The aim of this study was "to review and clarify through developer/expert survey, the theoretical basis and content of physical movement classification schemes, determine their relative reliability and similarities/differences, and to consider the extent of incorporation of the bio-psycho-social framework within the schemes". A database search for relevant articles related to LBP and subgrouping or classification was conducted. Five dominant movement-based schemes were identified: Mechanical Diagnosis and Treatment (MDT), Treatment Based Classification (TBC), Pathoanatomic Based Classification (PBC), Movement System Impairment Classification (MSI), and O'Sullivan Classification System (OCS) schemes. Data were extracted and a survey sent to the classification scheme developers/experts to clarify operational criteria, reliability, decision-making, and converging/diverging elements between schemes. Survey results were integrated into the review and approval obtained for accuracy. Considerable diversity exists between schemes in how movement informs subgrouping and in the consideration of broader neurosensory, cognitive, emotional, and behavioural dimensions of LBP. Despite differences in assessment philosophy, a common element lies in their objective to identify a movement pattern related to a pain reduction strategy. Two dominant movement paradigms emerge: (i) loading strategies (MDT, TBC, PBC) aimed at eliciting a phenomenon of centralisation of symptoms; and (ii) modified movement strategies (MSI, OCS) targeted towards documenting the movement impairments associated with the pain state. Schemes vary on: the extent to which loading strategies are pursued; the assessment of movement dysfunction; and advocated treatment approaches. A biomechanical assessment predominates in the majority of schemes (MDT, PBC, MSI), certain psychosocial aspects (fear-avoidance) are considered in the TBC scheme, certain neurophysiologic (central versus peripherally mediated pain states) and psychosocial (cognitive and behavioural) aspects are considered in the OCS scheme.
On Classification in the Study of Failure, and a Challenge to Classifiers
NASA Technical Reports Server (NTRS)
Wasson, Kimberly S.
2003-01-01
Classification schemes are abundant in the literature of failure. They serve a number of purposes, some more successfully than others. We examine several classification schemes constructed for various purposes relating to failure and its investigation, and discuss their values and limits. The analysis results in a continuum of uses for classification schemes, that suggests that the value of certain properties of these schemes is dependent on the goals a classification is designed to forward. The contrast in the value of different properties for different uses highlights a particular shortcoming: we argue that while humans are good at developing one kind of scheme: dynamic, flexible classifications used for exploratory purposes, we are not so good at developing another: static, rigid classifications used to trap and organize data for specific analytic goals. Our lack of strong foundation in developing valid instantiations of the latter impedes progress toward a number of investigative goals. This shortcoming and its consequences pose a challenge to researchers in the study of failure: to develop new methods for constructing and validating static classification schemes of demonstrable value in promoting the goals of investigations. We note current productive activity in this area, and outline foundations for more.
Proposed new classification scheme for chemical injury to the human eye.
Bagley, Daniel M; Casterton, Phillip L; Dressler, William E; Edelhauser, Henry F; Kruszewski, Francis H; McCulley, James P; Nussenblatt, Robert B; Osborne, Rosemarie; Rothenstein, Arthur; Stitzel, Katherine A; Thomas, Karluss; Ward, Sherry L
2006-07-01
Various ocular alkali burn classification schemes have been published and used to grade human chemical eye injuries for the purpose of identifying treatments and forecasting outcomes. The ILSI chemical eye injury classification scheme was developed for the additional purpose of collecting detailed human eye injury data to provide information on the mechanisms associated with chemical eye injuries. This information will have clinical application, as well as use in the development and validation of new methods to assess ocular toxicity. A panel of ophthalmic researchers proposed the new classification scheme based upon current knowledge of the mechanisms of eye injury, and their collective clinical and research experience. Additional ophthalmologists and researchers were surveyed to critique the scheme. The draft scheme was revised, and the proposed scheme represents the best consensus from at least 23 physicians and scientists. The new scheme classifies chemical eye injury into five categories based on clinical signs, symptoms, and expected outcomes. Diagnostic classification is based primarily on two clinical endpoints: (1) the extent (area) of injury at the limbus, and (2) the degree of injury (area and depth) to the cornea. The new classification scheme provides a uniform system for scoring eye injury across chemical classes, and provides enough detail for the clinician to collect data that will be relevant to identifying the mechanisms of ocular injury.
This paper utilizes a two-stage clustering approach as part of an objective classification scheme designed to elucidate 03's dependence on meteorology. hen applied to ten years (1981-1990) of meteorological data for Birmingham, Alabama, the classification scheme identified seven ...
What is the longitudinal magneto-optical Kerr effect?
NASA Astrophysics Data System (ADS)
Ander Arregi, Jon; Riego, Patricia; Berger, Andreas
2017-01-01
We explore the commonly used classification scheme for the magneto-optical Kerr effect (MOKE), which essentially utilizes a dual definition based simultaneously on the Cartesian coordinate components of the magnetization vector with respect to the plane of incidence reference frame and specific elements of the reflection matrix, which describes light reflection from a ferromagnetic surface. We find that an unambiguous correspondence in between reflection matrix elements and magnetization components is valid only in special cases, while in more general cases, it leads to inconsistencies due to an intermixing of the presumed separate effects of longitudinal, transverse and polar MOKE. As an example, we investigate in this work both theoretically and experimentally a material that possesses anisotropic magneto-optical properties in accordance with its crystal symmetry. The derived equations, which specifically predict a so-far unknown polarization effect for the transverse magnetization component, are confirmed by detailed experiments on epitaxial hcp Co films. The results indicate that magneto-optical anisotropy causes significant deviations from the commonly employed MOKE data interpretation. Our work addresses the associated anomalies, provides a suitable analysis route for reliable MOKE magnetometry procedures, and proposes a revised MOKE terminology scheme.
Development of a methodology for classifying software errors
NASA Technical Reports Server (NTRS)
Gerhart, S. L.
1976-01-01
A mathematical formalization of the intuition behind classification of software errors is devised and then extended to a classification discipline: Every classification scheme should have an easily discernible mathematical structure and certain properties of the scheme should be decidable (although whether or not these properties hold is relative to the intended use of the scheme). Classification of errors then becomes an iterative process of generalization from actual errors to terms defining the errors together with adjustment of definitions according to the classification discipline. Alternatively, whenever possible, small scale models may be built to give more substance to the definitions. The classification discipline and the difficulties of definition are illustrated by examples of classification schemes from the literature and a new study of observed errors in published papers of programming methodologies.
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands...
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme for two case studies involving 1)Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...
Enriching User-Oriented Class Associations for Library Classification Schemes.
ERIC Educational Resources Information Center
Pu, Hsiao-Tieh; Yang, Chyan
2003-01-01
Explores the possibility of adding user-oriented class associations to hierarchical library classification schemes. Analyses a log of book circulation records from a university library in Taiwan and shows that classification schemes can be made more adaptable by analyzing circulation patterns of similar users. (Author/LRW)
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
15 CFR Appendix I to Part 921 - Biogeographic Classification Scheme
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Biogeographic Classification Scheme I Appendix I to Part 921 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Part 921—Biogeographic Classification Scheme Acadian 1. Northern of Maine (Eastport to the Sheepscot...
A Classification Methodology and Retrieval Model to Support Software Reuse
1988-01-01
Dewey Decimal Classification ( DDC 18), an enumerative scheme, occupies 40 pages [Buchanan 19791. Langridge [19731 states that the facets listed in the...sense of historical importance or wide spread use. The schemes are: Dewey Decimal Classification ( DDC ), Universal Decimal Classification (UDC...Classification Systems ..... ..... 2.3.3 Library Classification__- .52 23.3.1 Dewey Decimal Classification -53 2.33.2 Universal Decimal Classification 55 2333
Classification of close binary systems by Svechnikov
NASA Astrophysics Data System (ADS)
Dryomova, G. N.
The paper presents the historical overview of classification schemes of eclipsing variable stars with the foreground of advantages of the classification scheme by Svechnikov being widely appreciated for Close Binary Systems due to simplicity of classification criteria and brevity.
State of the Art in the Cramer Classification Scheme and ...
Slide presentation at the SOT FDA Colloquium on State of the Art in the Cramer Classification Scheme and Threshold of Toxicological Concern in College Park, MD. Slide presentation at the SOT FDA Colloquium on State of the Art in the Cramer Classification Scheme and Threshold of Toxicological Concern in College Park, MD.
Four years of meteor spectra patrol
NASA Technical Reports Server (NTRS)
Harvey, G. A.
1974-01-01
The development of the NASA-Langley Research Center meteor spectra patrol is described in general terms. The recording of very faint meteors was made possible by three great strides in optical and photographic technology in the 1960's: (1) the availability of optical-grade fused silica at modest cost, (2) the development of large transmission gratings with high blaze efficiency, and (3) the development of a method for avoiding plate fogging due to background skylight, which consisted of using a photoelectric meteor detector which actuates the spectrograph shutter when a meteor occurs in the field. The classification scheme for meteor spectra developed by Peter M. Millman is described.
MeMoVolc report on classification and dynamics of volcanic explosive eruptions
NASA Astrophysics Data System (ADS)
Bonadonna, C.; Cioni, R.; Costa, A.; Druitt, T.; Phillips, J.; Pioli, L.; Andronico, D.; Harris, A.; Scollo, S.; Bachmann, O.; Bagheri, G.; Biass, S.; Brogi, F.; Cashman, K.; Dominguez, L.; Dürig, T.; Galland, O.; Giordano, G.; Gudmundsson, M.; Hort, M.; Höskuldsson, A.; Houghton, B.; Komorowski, J. C.; Küppers, U.; Lacanna, G.; Le Pennec, J. L.; Macedonio, G.; Manga, M.; Manzella, I.; Vitturi, M. de'Michieli; Neri, A.; Pistolesi, M.; Polacci, M.; Ripepe, M.; Rossi, E.; Scheu, B.; Sulpizio, R.; Tripoli, B.; Valade, S.; Valentine, G.; Vidal, C.; Wallenstein, N.
2016-11-01
Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.
NASA Astrophysics Data System (ADS)
Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.
2017-09-01
Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91 %, while that with the conventional classification scheme is 93.70 %. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08 %, which is much higher than the 87.79 % from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.
A Classification Scheme for Smart Manufacturing Systems’ Performance Metrics
Lee, Y. Tina; Kumaraguru, Senthilkumaran; Jain, Sanjay; Robinson, Stefanie; Helu, Moneer; Hatim, Qais Y.; Rachuri, Sudarsan; Dornfeld, David; Saldana, Christopher J.; Kumara, Soundar
2017-01-01
This paper proposes a classification scheme for performance metrics for smart manufacturing systems. The discussion focuses on three such metrics: agility, asset utilization, and sustainability. For each of these metrics, we discuss classification themes, which we then use to develop a generalized classification scheme. In addition to the themes, we discuss a conceptual model that may form the basis for the information necessary for performance evaluations. Finally, we present future challenges in developing robust, performance-measurement systems for real-time, data-intensive enterprises. PMID:28785744
NASA Astrophysics Data System (ADS)
Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra
2018-03-01
The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task.
Visual Impairment/lntracranial Pressure Risk Clinical Care Data Tools
NASA Technical Reports Server (NTRS)
Van Baalen, Mary; Mason, Sara S.; Taiym, Wafa; Wear, Mary L.; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William
2014-01-01
Prior to 2010, several ISS crewmembers returned from spaceflight with changes to their vision, ranging from a mild hyperopic shift to frank disc edema. As a result, NASA expanded clinical vision testing to include more comprehensive medical imaging, including Optical Coherence Tomography and 3 Tesla Brain and Orbit MRIs. The Space and Clinical Operations (SCO) Division developed a clinical practice guideline that classified individuals based on their symptoms and diagnoses to facilitate clinical care. For the purposes of clinical surveillance, this classification was applied retrospectively to all crewmembers who had sufficient testing for classification. This classification is also a tool that has been leveraged for researchers to identify potential risk factors. In March 2014, driven in part by a more comprehensive understanding of the imaging data and increased imaging capability on orbit, the SCO Division revised their clinical care guidance to outline in-flight care and increase post-flight follow up. The new clinical guidance does not include a classification scheme
CLASSIFICATION FRAMEWORK FOR COASTAL ECOSYSTEM RESPONSES TO AQUATIC STRESSORS
Many classification schemes have been developed to group ecosystems based on similar characteristics. To date, however, no single scheme has addressed coastal ecosystem responses to multiple stressors. We developed a classification framework for coastal ecosystems to improve the ...
SWIFT Detects a remarkable Gamma-ray Burst, GRB 060514, that introduces a New Classification Scheme
NASA Technical Reports Server (NTRS)
Gehrels, N.; Norris, J. P.; Mangano, V.; Barthelmy, S. D.; Burrows, D. N.; Granot, J.; Kaneko, Y.; Kouveliotou, C.; Markwardt, C. B.; Meszaros, P.;
2007-01-01
Gamma ray bursts (GFU3s) are known to come in two duration classes, separated at approx.2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates, consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its approx.102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts.
THE ROLE OF WATERSHED CLASSIFICATION IN DIAGNOSING CAUSES OF BIOLOGICAL IMPAIRMENT
We compared classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmention with a gewographically-based classification scheme for two case studies involving 1) Lake Superior tributaries and 2) watersheds of riverine coastal wetlands ...
Glaucoma risk index: automated glaucoma detection from color fundus images.
Bock, Rüdiger; Meier, Jörg; Nyúl, László G; Hornegger, Joachim; Michelson, Georg
2010-06-01
Glaucoma as a neurodegeneration of the optic nerve is one of the most common causes of blindness. Because revitalization of the degenerated nerve fibers of the optic nerve is impossible early detection of the disease is essential. This can be supported by a robust and automated mass-screening. We propose a novel automated glaucoma detection system that operates on inexpensive to acquire and widely used digital color fundus images. After a glaucoma specific preprocessing, different generic feature types are compressed by an appearance-based dimension reduction technique. Subsequently, a probabilistic two-stage classification scheme combines these features types to extract the novel Glaucoma Risk Index (GRI) that shows a reasonable glaucoma detection performance. On a sample set of 575 fundus images a classification accuracy of 80% has been achieved in a 5-fold cross-validation setup. The GRI gains a competitive area under ROC (AUC) of 88% compared to the established topography-based glaucoma probability score of scanning laser tomography with AUC of 87%. The proposed color fundus image-based GRI achieves a competitive and reliable detection performance on a low-priced modality by the statistical analysis of entire images of the optic nerve head. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Parallel processing using an optical delay-based reservoir computer
NASA Astrophysics Data System (ADS)
Van der Sande, Guy; Nguimdo, Romain Modeste; Verschaffelt, Guy
2016-04-01
Delay systems subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By implementing a neuro-inspired computational scheme relying on the transient response to optical data injection, high processing speeds have been demonstrated. However, reservoir computing systems based on delay dynamics discussed in the literature are designed by coupling many different stand-alone components which lead to bulky, lack of long-term stability, non-monolithic systems. Here we numerically investigate the possibility of implementing reservoir computing schemes based on semiconductor ring lasers. Semiconductor ring lasers are semiconductor lasers where the laser cavity consists of a ring-shaped waveguide. SRLs are highly integrable and scalable, making them ideal candidates for key components in photonic integrated circuits. SRLs can generate light in two counterpropagating directions between which bistability has been demonstrated. We demonstrate that two independent machine learning tasks , even with different nature of inputs with different input data signals can be simultaneously computed using a single photonic nonlinear node relying on the parallelism offered by photonics. We illustrate the performance on simultaneous chaotic time series prediction and a classification of the Nonlinear Channel Equalization. We take advantage of different directional modes to process individual tasks. Each directional mode processes one individual task to mitigate possible crosstalk between the tasks. Our results indicate that prediction/classification with errors comparable to the state-of-the-art performance can be obtained even with noise despite the two tasks being computed simultaneously. We also find that a good performance is obtained for both tasks for a broad range of the parameters. The results are discussed in detail in [Nguimdo et al., IEEE Trans. Neural Netw. Learn. Syst. 26, pp. 3301-3307, 2015
Selective classification for improved robustness of myoelectric control under nonideal conditions.
Scheme, Erik J; Englehart, Kevin B; Hudgins, Bernard S
2011-06-01
Recent literature in pattern recognition-based myoelectric control has highlighted a disparity between classification accuracy and the usability of upper limb prostheses. This paper suggests that the conventionally defined classification accuracy may be idealistic and may not reflect true clinical performance. Herein, a novel myoelectric control system based on a selective multiclass one-versus-one classification scheme, capable of rejecting unknown data patterns, is introduced. This scheme is shown to outperform nine other popular classifiers when compared using conventional classification accuracy as well as a form of leave-one-out analysis that may be more representative of real prosthetic use. Additionally, the classification scheme allows for real-time, independent adjustment of individual class-pair boundaries making it flexible and intuitive for clinical use.
A classification scheme for edge-localized modes based on their probability distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Max Planck Institute for Plasma Physics, D-85748 Garching; Hornung, G.
We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, themore » classification scheme is general and can be applied to various other plasma phenomena as well.« less
Mapping Mangrove Density from Rapideye Data in Central America
NASA Astrophysics Data System (ADS)
Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru
2017-06-01
Mangrove forests provide a wide range of socioeconomic and ecological services for coastal communities. Extensive aquaculture development of mangrove waters in many developing countries has constantly ignored services of mangrove ecosystems, leading to unintended environmental consequences. Monitoring the current status and distribution of mangrove forests is deemed important for evaluating forest management strategies. This study aims to delineate the density distribution of mangrove forests in the Gulf of Fonseca, Central America with Rapideye data using the support vector machines (SVM). The data collected in 2012 for density classification of mangrove forests were processed based on four different band combination schemes: scheme-1 (bands 1-3, 5 excluding the red-edge band 4), scheme-2 (bands 1-5), scheme-3 (bands 1-3, 5 incorporating with the normalized difference vegetation index, NDVI), and scheme-4 (bands 1-3, 5 incorporating with the normalized difference red-edge index, NDRI). We also hypothesized if the obvious contribution of Rapideye red-edge band could improve the classification results. Three main steps of data processing were employed: (1), data pre-processing, (2) image classification, and (3) accuracy assessment to evaluate the contribution of red-edge band in terms of the accuracy of classification results across these four schemes. The classification maps compared with the ground reference data indicated the slightly higher accuracy level observed for schemes 2 and 4. The overall accuracies and Kappa coefficients were 97% and 0.95 for scheme-2 and 96.9% and 0.95 for scheme-4, respectively.
Realistic Expectations for Rock Identification.
ERIC Educational Resources Information Center
Westerback, Mary Elizabeth; Azer, Nazmy
1991-01-01
Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…
A Philosophical Approach to Describing Science Content: An Example From Geologic Classification.
ERIC Educational Resources Information Center
Finley, Fred N.
1981-01-01
Examines how research of philosophers of science may be useful to science education researchers and curriculum developers in the development of descriptions of science content related to classification schemes. Provides examples of concept analysis of two igneous rock classification schemes. (DS)
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Scheme, Erik J; Englehart, Kevin B
2013-07-01
When controlling a powered upper limb prosthesis it is important not only to know how to move the device, but also when not to move. A novel approach to pattern recognition control, using a selective multiclass one-versus-one classification scheme has been shown to be capable of rejecting unintended motions. This method was shown to outperform other popular classification schemes when presented with muscle contractions that did not correspond to desired actions. In this work, a 3-D Fitts' Law test is proposed as a suitable alternative to using virtual limb environments for evaluating real-time myoelectric control performance. The test is used to compare the selective approach to a state-of-the-art linear discriminant analysis classification based scheme. The framework is shown to obey Fitts' Law for both control schemes, producing linear regression fittings with high coefficients of determination (R(2) > 0.936). Additional performance metrics focused on quality of control are discussed and incorporated in the evaluation. Using this framework the selective classification based scheme is shown to produce significantly higher efficiency and completion rates, and significantly lower overshoot and stopping distances, with no significant difference in throughput.
Stratified random selection of watersheds allowed us to compare geographically-independent classification schemes based on watershed storage (wetland + lake area/watershed area) and forest fragmentation with a geographically-based classification scheme within the Northern Lakes a...
Target identification using Zernike moments and neural networks
NASA Astrophysics Data System (ADS)
Azimi-Sadjadi, Mahmood R.; Jamshidi, Arta A.; Nevis, Andrew J.
2001-10-01
The development of an underwater target identification algorithm capable of identifying various types of underwater targets, such as mines, under different environmental conditions pose many technical problems. Some of the contributing factors are: targets have diverse sizes, shapes and reflectivity properties. Target emplacement environment is variable; targets may be proud or partially buried. Environmental properties vary significantly from one location to another. Bottom features such as sand, rocks, corals, and vegetation can conceal a target whether it is partially buried or proud. Competing clutter with responses that closely resemble those of the targets may lead to false positives. All the problems mentioned above contribute to overly difficult and challenging conditions that could lead to unreliable algorithm performance with existing methods. In this paper, we developed and tested a shape-dependent feature extraction scheme that provides features invariant to rotation, size scaling and translation; properties that are extremely useful for any target classification problem. The developed schemes were tested on an electro-optical imagery data set collected under different environmental conditions with variable background, range and target types. The electro-optic data set was collected using a Laser Line Scan (LLS) sensor by the Coastal Systems Station (CSS), located in Panama City, Florida. The performance of the developed scheme and its robustness to distortion, rotation, scaling and translation was also studied.
Heerkens, Yvonne F; de Weerd, Marjolein; Huber, Machteld; de Brouwer, Carin P M; van der Veen, Sabina; Perenboom, Rom J M; van Gool, Coen H; Ten Napel, Huib; van Bon-Martens, Marja; Stallinga, Hillegonda A; van Meeteren, Nico L U
2018-03-01
The ICF (International Classification of Functioning, Disability and Health) framework (used worldwide to describe 'functioning' and 'disability'), including the ICF scheme (visualization of functioning as result of interaction with health condition and contextual factors), needs reconsideration. The purpose of this article is to discuss alternative ICF schemes. Reconsideration of ICF via literature review and discussions with 23 Dutch ICF experts. Twenty-six experts were invited to rank the three resulting alternative schemes. The literature review provided five themes: 1) societal developments; 2) health and research influences; 3) conceptualization of health; 4) models/frameworks of health and disability; and 5) ICF-criticism (e.g. position of 'health condition' at the top and role of 'contextual factors'). Experts concluded that the ICF scheme gives the impression that the medical perspective is dominant instead of the biopsychosocial perspective. Three alternative ICF schemes were ranked by 16 (62%) experts, resulting in one preferred scheme. There is a need for a new ICF scheme, better reflecting the ICF framework, for further (inter)national consideration. These Dutch schemes should be reviewed on a global scale, to develop a scheme that is more consistent with current and foreseen developments and changing ideas on health. Implications for Rehabilitation We propose policy makers on community, regional and (inter)national level to consider the use of the alternative schemes of the International Classification of Functioning, Disability and Health within their plans to promote functioning and health of their citizens and researchers and teachers to incorporate the alternative schemes into their research and education to emphasize the biopsychosocial paradigm. We propose to set up an international Delphi procedure involving citizens (including patients), experts in healthcare, occupational care, research, education and policy, and planning to get consensus on an alternative scheme of the International Classification of Functioning, Disability and Health. We recommend to discuss the alternatives for the present scheme of the International Classification of Functioning, Disability and Health in the present update and revision process within the World Health Organization as a part of the discussion on the future of the International Classification of Functioning, Disability and Health framework (including ontology, title and relation with the International Classification of Diseases). We recommend to revise the definition of personal factors and to draft a list of personal factors that can be used in policy making, clinical practice, research, and education and to put effort in the revision of the present list of environmental factors to make it more useful in, e.g., occupational health care.
Towards a Collaborative Intelligent Tutoring System Classification Scheme
ERIC Educational Resources Information Center
Harsley, Rachel
2014-01-01
This paper presents a novel classification scheme for Collaborative Intelligent Tutoring Systems (CITS), an emergent research field. The three emergent classifications of CITS are unstructured, semi-structured, and fully structured. While all three types of CITS offer opportunities to improve student learning gains, the full extent to which these…
NASA Astrophysics Data System (ADS)
Davies, J. S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S. H.; Smith, C. J.; Fosså, J. H.; van den Beld, I. M. J.; Savini, A.; Rengstorf, A.; Bayle, C.; Bourillet, J.-F.; Arnaud-Haond, S.; Grehan, A.
2017-11-01
Cold-water corals (CWC) can form complex structures which provide refuge, nursery grounds and physical support for a diversity of other living organisms. However, irrespectively from such ecological significance, CWCs are still vulnerable to human pressures such as fishing, pollution, ocean acidification and global warming Providing coherent and representative conservation of vulnerable marine ecosystems including CWCs is one of the aims of the Marine Protected Areas networks being implemented across European seas and oceans under the EC Habitats Directive, the Marine Strategy Framework Directive and the OSPAR Convention. In order to adequately represent ecosystem diversity, these initiatives require a standardised habitat classification that organises the variety of biological assemblages and provides consistent and functional criteria to map them across European Seas. One such classification system, EUNIS, enables a broad level classification of the deep sea based on abiotic and geomorphological features. More detailed lower biotope-related levels are currently under-developed, particularly with regards to deep-water habitats (>200 m depth). This paper proposes a hierarchical CWC biotope classification scheme that could be incorporated by existing classification schemes such as EUNIS. The scheme was developed within the EU FP7 project CoralFISH to capture the variability of CWC habitats identified using a wealth of seafloor imagery datasets from across the Northeast Atlantic and Mediterranean. Depending on the resolution of the imagery being interpreted, this hierarchical scheme allows data to be recorded from broad CWC biotope categories down to detailed taxonomy-based levels, thereby providing a flexible yet valuable information level for management. The CWC biotope classification scheme identifies 81 biotopes and highlights the limitations of the classification framework and guidance provided by EUNIS, the EC Habitats Directive, OSPAR and FAO; which largely underrepresent CWC habitats.
ERIC Educational Resources Information Center
Merrett, Christopher E.
This guide to the theory and practice of map classification begins with a discussion of the filing of maps and the function of map classification based on area and theme as illustrated by four maps of Africa. The description of the various classification systems which follows is divided into book schemes with provision for maps (including Dewey…
Predominant-period site classification for response spectra prediction equations in Italy
Di Alessandro, Carola; Bonilla, Luis Fabian; Boore, David M.; Rovelli, Antonio; Scotti, Oona
2012-01-01
We propose a site‐classification scheme based on the predominant period of the site, as determined from the average horizontal‐to‐vertical (H/V) spectral ratios of ground motion. Our scheme extends Zhao et al. (2006) classifications by adding two classes, the most important of which is defined by flat H/V ratios with amplitudes less than 2. The proposed classification is investigated by using 5%‐damped response spectra from Italian earthquake records. We select a dataset of 602 three‐component analog and digital recordings from 120 earthquakes recorded at 214 seismic stations within a hypocentral distance of 200 km. Selected events are in the moment‐magnitude range 4.0≤Mw≤6.8 and focal depths from a few kilometers to 46 km. We computed H/V ratios for these data and used them to classify each site into one of six classes. We then investigate the impact of this classification scheme on empirical ground‐motion prediction equations (GMPEs) by comparing its performance with that of the conventional rock/soil classification. Although the adopted approach results in only a small reduction of the overall standard deviation, the use of H/V spectral ratios in site classification does capture the signature of sites with flat frequency‐response, as well as deep and shallow‐soil profiles, characterized by long‐ and short‐period resonance, respectively; in addition, the classification scheme is relatively quick and inexpensive, which is an advantage over schemes based on measurements of shear‐wave velocity.
Castorina, P; Delsanto, P P; Guiot, C
2006-05-12
A classification in universality classes of broad categories of phenomenologies, belonging to physics and other disciplines, may be very useful for a cross fertilization among them and for the purpose of pattern recognition and interpretation of experimental data. We present here a simple scheme for the classification of nonlinear growth problems. The success of the scheme in predicting and characterizing the well known Gompertz, West, and logistic models, suggests to us the study of a hitherto unexplored class of nonlinear growth problems.
Real-time ultrasonic weld evaluation system
NASA Astrophysics Data System (ADS)
Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.
1996-11-01
Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.
Enhancing Vocabulary Acquisition through Reading: A Hierarchy of Text-Related Exercise Types.
ERIC Educational Resources Information Center
Wesche, M.; Paribakht, T. Sima
This paper describes a classification scheme developed to examine the effects of extensive reading on primary and second language vocabulary acquisition and reports on an experiment undertaken to test the model scheme. The classification scheme represents a hypothesized hierarchy of the degree and type of mental processing required by various…
ERIC Educational Resources Information Center
Schatschneider, Christopher; Wagner, Richard K.; Hart, Sara A.; Tighe, Elizabeth L.
2016-01-01
The present study employed data simulation techniques to investigate the 1-year stability of alternative classification schemes for identifying children with reading disabilities. Classification schemes investigated include low performance, unexpected low performance, dual-discrepancy, and a rudimentary form of constellation model of reading…
NASA Astrophysics Data System (ADS)
Adi Putra, Januar
2018-04-01
In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.
Time-reversal optical tomography: detecting and locating extended targets in a turbid medium
NASA Astrophysics Data System (ADS)
Wu, Binlin; Cai, W.; Xu, M.; Gayen, S. K.
2012-03-01
Time Reversal Optical Tomography (TROT) is developed to locate extended target(s) in a highly scattering turbid medium, and estimate their optical strength and size. The approach uses Diffusion Approximation of Radiative Transfer Equation for light propagation along with Time Reversal (TR) Multiple Signal Classification (MUSIC) scheme for signal and noise subspaces for assessment of target location. A MUSIC pseudo spectrum is calculated using the eigenvectors of the TR matrix T, whose poles provide target locations. Based on the pseudo spectrum contours, retrieval of target size is modeled as an optimization problem, using a "local contour" method. The eigenvalues of T are related to optical strengths of targets. The efficacy of TROT to obtain location, size, and optical strength of one absorptive target, one scattering target, and two absorptive targets, all for different noise levels was tested using simulated data. Target locations were always accurately determined. Error in optical strength estimates was small even at 20% noise level. Target size and shape were more sensitive to noise. Results from simulated data demonstrate high potential for application of TROT in practical biomedical imaging applications.
Pulley, Simon; Foster, Ian; Collins, Adrian L
2017-06-01
The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Waltman, Ludo; Yan, Erjia; van Eck, Nees Jan
2011-10-01
Two commonly used ideas in the development of citation-based research performance indicators are the idea of normalizing citation counts based on a field classification scheme and the idea of recursive citation weighing (like in PageRank-inspired indicators). We combine these two ideas in a single indicator, referred to as the recursive mean normalized citation score indicator, and we study the validity of this indicator. Our empirical analysis shows that the proposed indicator is highly sensitive to the field classification scheme that is used. The indicator also has a strong tendency to reinforce biases caused by the classification scheme. Based on these observations, we advise against the use of indicators in which the idea of normalization based on a field classification scheme and the idea of recursive citation weighing are combined.
Singular Atom Optics with Spinor BECs
NASA Astrophysics Data System (ADS)
Schultz, Justin T.; Hansen, Azure; Bigelow, Nicholas P.
2015-05-01
We create and study singular spin textures in pseudo-spin-1/2 BECs. A series of two-photon Raman interactions allows us to not only engineer the spinor wavefunction but also perform the equivalent of atomic polarimetry on the BEC. Adapting techniques from optical polarimetry, we can image two-dimensional maps of the atomic Stokes parameters, thereby fully reconstructing the atomic wavefunction. In a spin-1/2 system, we can represent the local spin superposition with ellipses in a Cartesian basis. The patterns that emerge from the major axes of the ellipses provide fingerprints of the singularities that enable us to classify them as lemons, stars, saddles, or spirals similar to classification schemes for singularities in singular optics, condensed matter, and liquid crystals. These techniques may facilitate the study of geometric Gouy phases in matter waves as well as provide an avenue for utilizing topological structures as quantum gates.
A new gamma-ray burst classification scheme from GRB 060614.
Gehrels, N; Norris, J P; Barthelmy, S D; Granot, J; Kaneko, Y; Kouveliotou, C; Markwardt, C B; Mészáros, P; Nakar, E; Nousek, J A; O'Brien, P T; Page, M; Palmer, D M; Parsons, A M; Roming, P W A; Sakamoto, T; Sarazin, C L; Schady, P; Stamatikos, M; Woosley, S E
2006-12-21
Gamma-ray bursts (GRBs) are known to come in two duration classes, separated at approximately 2 s. Long-duration bursts originate from star-forming regions in galaxies, have accompanying supernovae when these are near enough to observe and are probably caused by massive-star collapsars. Recent observations show that short-duration bursts originate in regions within their host galaxies that have lower star-formation rates, consistent with binary neutron star or neutron star-black hole mergers. Moreover, although their hosts are predominantly nearby galaxies, no supernovae have been so far associated with short-duration GRBs. Here we report that the bright, nearby GRB 060614 does not fit into either class. Its approximately 102-s duration groups it with long-duration GRBs, while its temporal lag and peak luminosity fall entirely within the short-duration GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short-duration GRBs. This combination of a long-duration event without an accompanying supernova poses a challenge to both the collapsar and the merging-neutron-star interpretations and opens the door to a new GRB classification scheme that straddles both long- and short-duration bursts.
Defining functional biomes and monitoring their change globally.
Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R
2016-11-01
Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function. © 2016 John Wiley & Sons Ltd.
Gökçal, Elif; Niftaliyev, Elvin; Asil, Talip
2017-09-01
Analysis of stroke subtypes is important for making treatment decisions and prognostic evaluations. The TOAST classification system is most commonly used, but the CCS and ASCO classification systems might be more useful to identify stroke etiologies in young patients whose strokes have a wide range of different causes. In this manuscript, we aim to compare the differences in subtype classification between TOAST, CCS, and ASCO in young stroke patients. The TOAST, CCS, and ASCO classification schemes were applied to 151 patients with ischemic stroke aged 18-49 years old and the proportion of subtypes classified by each scheme was compared. For comparison, determined etiologies were defined as cases with evident and probable subtypes when using the CCS scheme and cases with grade 1 and 2 subtypes but no other grade 1 subtype when using the ASCO scheme. The McNemar test with Bonferroni correction was used to assess significance. By TOAST, 41.1% of patients' stroke etiology was classified as undetermined etiology, 19.2% as cardioembolic, 13.2% as large artery atherosclerosis, 11.3% as small vessel occlusion, and 15.2% as other causes. Compared with TOAST, both CCS and ASCO assigned fewer patients to the undetermined etiology group (30.5% p < 0.001 and 26.5% p < 0.001, respectively) and assigned more patients to the small vessel occlusion category (19.9%, p < 0.001, and 21.9%, p < 0.001, respectively). Additionally, both schemes assigned more patients to the large artery atherosclerosis group (15.9 and 16.6%, respectively). The proportion of patients assigned to either the cardioembolic or the other causes etiology did not differ significantly between the three schemes. Application of the CCS and ASCO classification schemes in young stroke patients seems feasible, and using both schemes may result in fewer patients being classified as undetermined etiology. New studies with more patients and a prospective design are needed to explore this topic further.
NASA Astrophysics Data System (ADS)
Makowski, Christopher
The coastal (terrestrial) and benthic environments along the southeast Florida continental shelf show a unique biophysical succession of marine features from a highly urbanized, developed coastal region in the north (i.e. northern Miami-Dade County) to a protective marine sanctuary in the southeast (i.e. Florida Keys National Marine Sanctuary). However, the establishment of a standard bio-geomorphological classification scheme for this area of coastal and benthic environments is lacking. The purpose of this study was to test the hypothesis and answer the research question of whether new parameters of integrating geomorphological components with dominant biological covers could be developed and applied across multiple remote sensing platforms for an innovative way to identify, interpret, and classify diverse coastal and benthic environments along the southeast Florida continental shelf. An ordered manageable hierarchical classification scheme was developed to incorporate the categories of Physiographic Realm, Morphodynamic Zone, Geoform, Landform, Dominant Surface Sediment, and Dominant Biological Cover. Six different remote sensing platforms (i.e. five multi-spectral satellite image sensors and one high-resolution aerial orthoimagery) were acquired, delineated according to the new classification scheme, and compared to determine optimal formats for classifying the study area. Cognitive digital classification at a nominal scale of 1:6000 proved to be more accurate than autoclassification programs and therefore used to differentiate coastal marine environments based on spectral reflectance characteristics, such as color, tone, saturation, pattern, and texture of the seafloor topology. In addition, attribute tables were created in conjugation with interpretations to quantify and compare the spatial relationships between classificatory units. IKONOS-2 satellite imagery was determined to be the optimal platform for applying the hierarchical classification scheme. However, each remote sensing platform had beneficial properties depending on research goals, logistical restrictions, and financial support. This study concluded that a new hierarchical comprehensive classification scheme for identifying coastal marine environments along the southeast Florida continental shelf could be achieved by integrating geomorphological features with biological coverages. This newly developed scheme, which can be applied across multiple remote sensing platforms with GIS software, establishes an innovative classification protocol to be used in future research studies.
2012-05-01
GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S...2.3.3 Classification using template matching ...................................................... 7 2.4 Details of classification schemes... 7 2.4.1 Camp Butner TEMTADS data inversion and classification scheme .......... 9
All-optical OFDM network coding scheme for all-optical virtual private communication in PON
NASA Astrophysics Data System (ADS)
Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong
2014-03-01
A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.
Transporter taxonomy - a comparison of different transport protein classification schemes.
Viereck, Michael; Gaulton, Anna; Digles, Daniela; Ecker, Gerhard F
2014-06-01
Currently, there are more than 800 well characterized human membrane transport proteins (including channels and transporters) and there are estimates that about 10% (approx. 2000) of all human genes are related to transport. Membrane transport proteins are of interest as potential drug targets, for drug delivery, and as a cause of side effects and drug–drug interactions. In light of the development of Open PHACTS, which provides an open pharmacological space, we analyzed selected membrane transport protein classification schemes (Transporter Classification Database, ChEMBL, IUPHAR/BPS Guide to Pharmacology, and Gene Ontology) for their ability to serve as a basis for pharmacology driven protein classification. A comparison of these membrane transport protein classification schemes by using a set of clinically relevant transporters as use-case reveals the strengths and weaknesses of the different taxonomy approaches.
A scheme for a flexible classification of dietary and health biomarkers.
Gao, Qian; Praticò, Giulia; Scalbert, Augustin; Vergères, Guy; Kolehmainen, Marjukka; Manach, Claudine; Brennan, Lorraine; Afman, Lydia A; Wishart, David S; Andres-Lacueva, Cristina; Garcia-Aloy, Mar; Verhagen, Hans; Feskens, Edith J M; Dragsted, Lars O
2017-01-01
Biomarkers are an efficient means to examine intakes or exposures and their biological effects and to assess system susceptibility. Aided by novel profiling technologies, the biomarker research field is undergoing rapid development and new putative biomarkers are continuously emerging in the scientific literature. However, the existing concepts for classification of biomarkers in the dietary and health area may be ambiguous, leading to uncertainty about their application. In order to better understand the potential of biomarkers and to communicate their use and application, it is imperative to have a solid scheme for biomarker classification that will provide a well-defined ontology for the field. In this manuscript, we provide an improved scheme for biomarker classification based on their intended use rather than the technology or outcomes (six subclasses are suggested: food compound intake biomarkers (FCIBs), food or food component intake biomarkers (FIBs), dietary pattern biomarkers (DPBs), food compound status biomarkers (FCSBs), effect biomarkers, physiological or health state biomarkers). The application of this scheme is described in detail for the dietary and health area and is compared with previous biomarker classification for this field of research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilcher, Levi F
Model Validation and Site Characterization for Early Deployment Marine and Hydrokinetic Energy Sites and Establishment of Wave Classification Scheme presentation from from Water Power Technologies Office Peer Review, FY14-FY16.
NASA Astrophysics Data System (ADS)
Kazakova, E. I.; Medvedev, A. N.; Kolomytseva, A. O.; Demina, M. I.
2017-11-01
The paper presents a mathematical model of blasting schemes management in presence of random disturbances. Based on the lemmas and theorems proved, a control functional is formulated, which is stable. A universal classification of blasting schemes is developed. The main classification attributes are suggested: the orientation in plan the charging wells rows relatively the block of rocks; the presence of cuts in the blasting schemes; the separation of the wells series onto elements; the sequence of the blasting. The periodic regularity of transition from one Short-delayed scheme of blasting to another is proved.
Khoo, Teik-Beng
2013-01-01
In its 2010 report, the International League Against Epilepsy Commission on Classification and Terminology had made a number of changes to the organization, terminology, and classification of seizures and epilepsies. This study aims to test the usefulness of this revised classification scheme on children with epilepsies aged between 0 and 18 years old. Of 527 patients, 75.1% only had 1 type of seizure and the commonest was focal seizure (61.9%). A specific electroclinical syndrome diagnosis could be made in 27.5%. Only 2.1% had a distinctive constellation. In this cohort, 46.9% had an underlying structural, metabolic, or genetic etiology. Among the important causes were pre-/perinatal insults, malformation of cortical development, intracranial infections, and neurocutaneous syndromes. However, 23.5% of the patients in our cohort were classified as having "epilepsies of unknown cause." The revised classification scheme is generally useful for pediatric patients. To make it more inclusive and clinically meaningful, some local customizations are required.
Toward an endovascular internal carotid artery classification system.
Shapiro, M; Becske, T; Riina, H A; Raz, E; Zumofen, D; Jafar, J J; Huang, P P; Nelson, P K
2014-02-01
Does the world need another ICA classification scheme? We believe so. The purpose of proposed angiography-driven classification is to optimize description of the carotid artery from the endovascular perspective. A review of existing, predominantly surgically-driven classifications is performed, and a new scheme, based on the study of NYU aneurysm angiographic and cross-sectional databases is proposed. Seven segments - cervical, petrous, cavernous, paraophthlamic, posterior communicating, choroidal, and terminus - are named. This nomenclature recognizes intrinsic uncertainty in precise angiographic and cross-sectional localization of aneurysms adjacent to the dural rings, regarding all lesions distal to the cavernous segment as potentially intradural. Rather than subdividing various transitional, ophthalmic, and hypophyseal aneurysm subtypes, as necessitated by their varied surgical approaches and risks, the proposed classification emphasizes their common endovascular treatment features, while recognizing that many complex, trans-segmental, and fusiform aneurysms not readily classifiable into presently available, saccular aneurysm-driven schemes, are being increasingly addressed by endovascular means. We believe this classification may find utility in standardizing nomenclature for outcome tracking, treatment trials and physician communication.
Underwater target classification using wavelet packets and neural networks.
Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J
2000-01-01
In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.
Urrutia, Julio; Zamora, Tomas; Klaber, Ianiv; Carmona, Maximiliano; Palma, Joaquin; Campos, Mauricio; Yurac, Ratko
2016-04-01
It has been postulated that the complex patterns of spinal injuries have prevented adequate agreement using thoraco-lumbar spinal injuries (TLSI) classifications; however, limb fracture classifications have also shown variable agreements. This study compared agreement using two TLSI classifications with agreement using two classifications of fractures of the trochanteric area of the proximal femur (FTAPF). Six evaluators classified the radiographs and computed tomography scans of 70 patients with acute TLSI using the Denis and the new AO Spine thoraco-lumbar injury classifications. Additionally, six evaluators classified the radiographs of 70 patients with FTAPF using the Tronzo and the AO schemes. Six weeks later, all cases were presented in a random sequence for repeat assessment. The Kappa coefficient (κ) was used to determine agreement. Inter-observer agreement: For TLSI, using the AOSpine classification, the mean κ was 0.62 (0.57-0.66) considering fracture types, and 0.55 (0.52-0.57) considering sub-types; using the Denis classification, κ was 0.62 (0.59-0.65). For FTAPF, with the AO scheme, the mean κ was 0.58 (0.54-0.63) considering fracture types and 0.31 (0.28-0.33) considering sub-types; for the Tronzo classification, κ was 0.54 (0.50-0.57). Intra-observer agreement: For TLSI, using the AOSpine scheme, the mean κ was 0.77 (0.72-0.83) considering fracture types, and 0.71 (0.67-0.76) considering sub-types; for the Denis classification, κ was 0.76 (0.71-0.81). For FTAPF, with the AO scheme, the mean κ was 0.75 (0.69-0.81) considering fracture types and 0.45 (0.39-0.51) considering sub-types; for the Tronzo classification, κ was 0.64 (0.58-0.70). Using the main types of AO classifications, inter- and intra-observer agreement of TLSI were comparable to agreement evaluating FTAPF; including sub-types, inter- and intra-observer agreement evaluating TLSI were significantly better than assessing FTAPF. Inter- and intra-observer agreements using the Denis classification were also significantly better than agreement using the Tronzo scheme. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qiu, Kun; Zhang, Chongfu; Ling, Yun; Wang, Yibo
2007-11-01
This paper proposes an all-optical label processing scheme using multiple optical orthogonal codes sequences (MOOCS) for optical packet switching (OPS) (MOOCS-OPS) networks, for the first time to the best of our knowledge. In this scheme, the multiple optical orthogonal codes (MOOC) from multiple-groups optical orthogonal codes (MGOOC) are permuted and combined to obtain the MOOCS for the optical labels, which are used to effectively enlarge the capacity of available optical codes for optical labels. The optical label processing (OLP) schemes are reviewed and analyzed, the principles of MOOCS-based optical labels for OPS networks are given, and analyzed, then the MOOCS-OPS topology and the key realization units of the MOOCS-based optical label packets are studied in detail, respectively. The performances of this novel all-optical label processing technology are analyzed, the corresponding simulation is performed. These analysis and results show that the proposed scheme can overcome the lack of available optical orthogonal codes (OOC)-based optical labels due to the limited number of single OOC for optical label with the short code length, and indicate that the MOOCS-OPS scheme is feasible.
Urrutia, Julio; Zamora, Tomas; Campos, Mauricio; Yurac, Ratko; Palma, Joaquin; Mobarec, Sebastian; Prada, Carlos
2016-07-01
We performed an agreement study using two subaxial cervical spine classification systems: the AOSpine and the Allen and Ferguson (A&F) classifications. We sought to determine which scheme allows better agreement by different evaluators and by the same evaluator on different occasions. Complete imaging studies of 65 patients with subaxial cervical spine injuries were classified by six evaluators (three spine sub-specialists and three senior orthopaedic surgery residents) using the AOSpine subaxial cervical spine classification system and the A&F scheme. The cases were displayed in a random sequence after a 6-week interval for repeat evaluation. The Kappa coefficient (κ) was used to determine inter- and intra-observer agreement. Inter-observer: considering the main AO injury types, the agreement was substantial for the AOSpine classification [κ = 0.61 (0.57-0.64)]; using AO sub-types, the agreement was moderate [κ = 0.57 (0.54-0.60)]. For the A&F classification, the agreement [κ = 0.46 (0.42-0.49)] was significantly lower than using the AOSpine scheme. Intra-observer: the agreement was substantial considering injury types [κ = 0.68 (0.62-0.74)] and considering sub-types [κ = 0.62 (0.57-0.66)]. Using the A&F classification, the agreement was also substantial [κ = 0.66 (0.61-0.71)]. No significant differences were observed between spine surgeons and orthopaedic residents in the overall inter- and intra-observer agreement, or in the inter- and intra-observer agreement of specific type of injuries. The AOSpine classification (using the four main injury types or at the sub-types level) allows a significantly better agreement than the A&F classification. The A&F scheme does not allow reliable communication between medical professionals.
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Schweiger, Gustav; Ostendorf, Andreas
2012-04-01
A novel emerging technique for the label-free analysis of nanoparticles and biomolecules in liquid fluids using optical micro cavity resonance of whispering-gallery-type modes is being developed.A scheme based on polymer microspheres fixed by adhesive on the evanescence wave coupling element has been used. We demonstrated that the only spectral shift can't be used for identification of biological agents by developed approach. So neural network classifier for biological agents and micro/nano particles classification has been developed. The developed technique is the following. While tuning the laser wavelength images were recorded as avi-file. All sequences were broken into single frames and the location of the resonance was allocated in each frame. The image was filtered for noise reduction and integrated over two coordinates for evaluation of integrated energy of a measured signal. As input data normalized resonance shift of whispering-gallery modes and the relative efficiency of whispering-gallery modes excitation were used. Other parameters such as polarization of excited light, "center of gravity" of a resonance spectra etc. are also tested as input data for probabilistic neural network. After network designing and training we estimated the accuracy of classification. The classification of antibiotics such as penicillin and cephasolin have been performed with the accuracy of not less 97 %. Developed techniques can be used for lab-on-chip sensor based diagnostic tools as for identification of different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells and for dynamics of a delivery of medicines to bodies.
Goode, N; Salmon, P M; Taylor, N Z; Lenné, M G; Finch, C F
2017-10-01
One factor potentially limiting the uptake of Rasmussen's (1997) Accimap method by practitioners is the lack of a contributing factor classification scheme to guide accident analyses. This article evaluates the intra- and inter-rater reliability and criterion-referenced validity of a classification scheme developed to support the use of Accimap by led outdoor activity (LOA) practitioners. The classification scheme has two levels: the system level describes the actors, artefacts and activity context in terms of 14 codes; the descriptor level breaks the system level codes down into 107 specific contributing factors. The study involved 11 LOA practitioners using the scheme on two separate occasions to code a pre-determined list of contributing factors identified from four incident reports. Criterion-referenced validity was assessed by comparing the codes selected by LOA practitioners to those selected by the method creators. Mean intra-rater reliability scores at the system (M = 83.6%) and descriptor (M = 74%) levels were acceptable. Mean inter-rater reliability scores were not consistently acceptable for both coding attempts at the system level (M T1 = 68.8%; M T2 = 73.9%), and were poor at the descriptor level (M T1 = 58.5%; M T2 = 64.1%). Mean criterion referenced validity scores at the system level were acceptable (M T1 = 73.9%; M T2 = 75.3%). However, they were not consistently acceptable at the descriptor level (M T1 = 67.6%; M T2 = 70.8%). Overall, the results indicate that the classification scheme does not currently satisfy reliability and validity requirements, and that further work is required. The implications for the design and development of contributing factors classification schemes are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gavish, Yoni; O'Connell, Jerome; Marsh, Charles J.; Tarantino, Cristina; Blonda, Palma; Tomaselli, Valeria; Kunin, William E.
2018-02-01
The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre-defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2-3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into "black-box" based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps.
Automated training site selection for large-area remote-sensing image analysis
NASA Astrophysics Data System (ADS)
McCaffrey, Thomas M.; Franklin, Steven E.
1993-11-01
A computer program is presented to select training sites automatically from remotely sensed digital imagery. The basic ideas are to guide the image analyst through the process of selecting typical and representative areas for large-area image classifications by minimizing bias, and to provide an initial list of potential classes for which training sites are required to develop a classification scheme or to verify classification accuracy. Reducing subjectivity in training site selection is achieved by using a purely statistical selection of homogeneous sites which then can be compared to field knowledge, aerial photography, or other remote-sensing imagery and ancillary data to arrive at a final selection of sites to be used to train the classification decision rules. The selection of the homogeneous sites uses simple tests based on the coefficient of variance, the F-statistic, and the Student's i-statistic. Comparisons of site means are conducted with a linear growing list of previously located homogeneous pixels. The program supports a common pixel-interleaved digital image format and has been tested on aerial and satellite optical imagery. The program is coded efficiently in the C programming language and was developed under AIX-Unix on an IBM RISC 6000 24-bit color workstation.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun
2008-05-01
This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.
New Course Design: Classification Schemes and Information Architecture.
ERIC Educational Resources Information Center
Weinberg, Bella Hass
2002-01-01
Describes a course developed at St. John's University (New York) in the Division of Library and Information Science that relates traditional classification schemes to information architecture and Web sites. Highlights include functional aspects of information architecture, that is, the way content is structured; assignments; student reactions; and…
Classification of Dust Days by Satellite Remotely Sensed Aerosol Products
NASA Technical Reports Server (NTRS)
Sorek-Hammer, M.; Cohen, A.; Levy, Robert C.; Ziv, B.; Broday, D. M.
2013-01-01
Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 nm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88 percent occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary variables, demonstrated 93.2 percent correct classifications of DD and NDD. Evaluation of the combined CART-logistic regression scheme in an adjacent geographical region (Gush Dan) demonstrated good results. Using SRS aerosol products for DD and NDD, identification may enable us to distinguish between health, ecological, and environmental effects that result from exposure to these distinct particle populations.
NASA Technical Reports Server (NTRS)
Ashby, Matthew; Houck, J. R.; Hacking, Perry B.
1992-01-01
High signal-to-noise ratio optical spectra of 17 infrared-bright emission-line galaxies near the north ecliptic pole are presented. Reddening-corrected line ratios forbidden O III 5007/H-beta, N II 6583/H-alpha, S II (6716 + 6731)/H-alpha, and O I 6300/H-alpha are used to discriminate between candidate energy generation mechanisms in each galaxy. These criteria have frequently been applied to optically selected samples of galaxies in the past, but this is the first time they have been applied to a set of faint flux-limited infrared-selected objects. The analysis indicates the sample contains seven starburst galaxies and three (AGN). However, seven galaxies in the present sample elude the classification scheme based on these line ratios. It is concluded that a two-component (starburst plus AGN) model for energy generation is inadequate for infrared galaxies.
Enhancing Vocabulary Acquisition Through Reading: A Hierarchy of Text-Related Exercise Types.
ERIC Educational Resources Information Center
Paribakht, T. Sima; Wesche, Marjorie
1996-01-01
Presents a classification scheme for reading-related exercises advocated in English-as-a-Foreign-Language textbooks. The scheme proposes a hierarchy of the degree and type of mental processing required by various vocabulary exercises. The categories of classification are selective attention, recognition, manipulation, interpretation and…
Comparing ecoregional classifications for natural areas management in the Klamath Region, USA
Sarr, Daniel A.; Duff, Andrew; Dinger, Eric C.; Shafer, Sarah L.; Wing, Michael; Seavy, Nathaniel E.; Alexander, John D.
2015-01-01
We compared three existing ecoregional classification schemes (Bailey, Omernik, and World Wildlife Fund) with two derived schemes (Omernik Revised and Climate Zones) to explore their effectiveness in explaining species distributions and to better understand natural resource geography in the Klamath Region, USA. We analyzed presence/absence data derived from digital distribution maps for trees, amphibians, large mammals, small mammals, migrant birds, and resident birds using three statistical analyses of classification accuracy (Analysis of Similarity, Canonical Analysis of Principal Coordinates, and Classification Strength). The classifications were roughly comparable in classification accuracy, with Omernik Revised showing the best overall performance. Trees showed the strongest fidelity to the classifications, and large mammals showed the weakest fidelity. We discuss the implications for regional biogeography and describe how intermediate resolution ecoregional classifications may be appropriate for use as natural areas management domains.
NASA Astrophysics Data System (ADS)
Burton, Dallas Jonathan
The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques with regards to regression error and classification.
NASA Astrophysics Data System (ADS)
Jürgens, Björn; Herrero-Solana, Victor
2017-04-01
Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.
LDPC-PPM Coding Scheme for Optical Communication
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael
2009-01-01
In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.
McClements, David Julian; Li, Fang; Xiao, Hang
2015-01-01
The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (B*), absorption (A*), and transformation (T*) within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation (B*A*T*).
Thompson, Bryony A; Spurdle, Amanda B; Plazzer, John-Paul; Greenblatt, Marc S; Akagi, Kiwamu; Al-Mulla, Fahd; Bapat, Bharati; Bernstein, Inge; Capellá, Gabriel; den Dunnen, Johan T; du Sart, Desiree; Fabre, Aurelie; Farrell, Michael P; Farrington, Susan M; Frayling, Ian M; Frebourg, Thierry; Goldgar, David E; Heinen, Christopher D; Holinski-Feder, Elke; Kohonen-Corish, Maija; Robinson, Kristina Lagerstedt; Leung, Suet Yi; Martins, Alexandra; Moller, Pal; Morak, Monika; Nystrom, Minna; Peltomaki, Paivi; Pineda, Marta; Qi, Ming; Ramesar, Rajkumar; Rasmussen, Lene Juel; Royer-Pokora, Brigitte; Scott, Rodney J; Sijmons, Rolf; Tavtigian, Sean V; Tops, Carli M; Weber, Thomas; Wijnen, Juul; Woods, Michael O; Macrae, Finlay; Genuardi, Maurizio
2014-02-01
The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases.
Cheese Classification, Characterization, and Categorization: A Global Perspective.
Almena-Aliste, Montserrat; Mietton, Bernard
2014-02-01
Cheese is one of the most fascinating, complex, and diverse foods enjoyed today. Three elements constitute the cheese ecosystem: ripening agents, consisting of enzymes and microorganisms; the composition of the fresh cheese; and the environmental conditions during aging. These factors determine and define not only the sensory quality of the final cheese product but also the vast diversity of cheeses produced worldwide. How we define and categorize cheese is a complicated matter. There are various approaches to cheese classification, and a global approach for classification and characterization is needed. We review current cheese classification schemes and the limitations inherent in each of the schemes described. While some classification schemes are based on microbiological criteria, others rely on descriptions of the technologies used for cheese production. The goal of this review is to present an overview of comprehensive and practical integrative classification models in order to better describe cheese diversity and the fundamental differences within cheeses, as well as to connect fundamental technological, microbiological, chemical, and sensory characteristics to contribute to an overall characterization of the main families of cheese, including the expanding world of American artisanal cheeses.
New KF-PP-SVM classification method for EEG in brain-computer interfaces.
Yang, Banghua; Han, Zhijun; Zan, Peng; Wang, Qian
2014-01-01
Classification methods are a crucial direction in the current study of brain-computer interfaces (BCIs). To improve the classification accuracy for electroencephalogram (EEG) signals, a novel KF-PP-SVM (kernel fisher, posterior probability, and support vector machine) classification method is developed. Its detailed process entails the use of common spatial patterns to obtain features, based on which the within-class scatter is calculated. Then the scatter is added into the kernel function of a radial basis function to construct a new kernel function. This new kernel is integrated into the SVM to obtain a new classification model. Finally, the output of SVM is calculated based on posterior probability and the final recognition result is obtained. To evaluate the effectiveness of the proposed KF-PP-SVM method, EEG data collected from laboratory are processed with four different classification schemes (KF-PP-SVM, KF-SVM, PP-SVM, and SVM). The results showed that the overall average improvements arising from the use of the KF-PP-SVM scheme as opposed to KF-SVM, PP-SVM and SVM schemes are 2.49%, 5.83 % and 6.49 % respectively.
Plazzer, John-Paul; Greenblatt, Marc S.; Akagi, Kiwamu; Al-Mulla, Fahd; Bapat, Bharati; Bernstein, Inge; Capellá, Gabriel; den Dunnen, Johan T.; du Sart, Desiree; Fabre, Aurelie; Farrell, Michael P.; Farrington, Susan M.; Frayling, Ian M.; Frebourg, Thierry; Goldgar, David E.; Heinen, Christopher D.; Holinski-Feder, Elke; Kohonen-Corish, Maija; Robinson, Kristina Lagerstedt; Leung, Suet Yi; Martins, Alexandra; Moller, Pal; Morak, Monika; Nystrom, Minna; Peltomaki, Paivi; Pineda, Marta; Qi, Ming; Ramesar, Rajkumar; Rasmussen, Lene Juel; Royer-Pokora, Brigitte; Scott, Rodney J.; Sijmons, Rolf; Tavtigian, Sean V.; Tops, Carli M.; Weber, Thomas; Wijnen, Juul; Woods, Michael O.; Macrae, Finlay; Genuardi, Maurizio
2015-01-01
Clinical classification of sequence variants identified in hereditary disease genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch Syndrome genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist variant classification, and recognized by microattribution. The scheme was refined by multidisciplinary expert committee review of clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants not obviously protein-truncating from nomenclature. This large-scale endeavor will facilitate consistent management of suspected Lynch Syndrome families, and demonstrates the value of multidisciplinary collaboration for curation and classification of variants in public locus-specific databases. PMID:24362816
Sunspot Pattern Classification using PCA and Neural Networks (Poster)
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Thompson, D. E.; Slater, G. L.
2005-01-01
The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.
NASA Astrophysics Data System (ADS)
Bianconi, Francesco; Bello-Cerezo, Raquel; Napoletano, Paolo
2018-01-01
Texture classification plays a major role in many computer vision applications. Local binary patterns (LBP) encoding schemes have largely been proven to be very effective for this task. Improved LBP (ILBP) are conceptually simple, easy to implement, and highly effective LBP variants based on a point-to-average thresholding scheme instead of a point-to-point one. We propose the use of this encoding scheme for extracting intra- and interchannel features for color texture classification. We experimentally evaluated the resulting improved opponent color LBP alone and in concatenation with the ILBP of the local color contrast map on a set of image classification tasks over 9 datasets of generic color textures and 11 datasets of biomedical textures. The proposed approach outperformed other grayscale and color LBP variants in nearly all the datasets considered and proved competitive even against image features from last generation convolutional neural networks, particularly for the classification of biomedical images.
TFM classification and staging of oral submucous fibrosis: A new proposal.
Arakeri, Gururaj; Thomas, Deepak; Aljabab, Abdulsalam S; Hunasgi, Santosh; Rai, Kirthi Kumar; Hale, Beverley; Fonseca, Felipe Paiva; Gomez, Ricardo Santiago; Rahimi, Siavash; Merkx, Matthias A W; Brennan, Peter A
2018-04-01
We have evaluated the rationale of existing grading and staging schemes of oral submucous fibrosis (OSMF) based on how they are categorized. A novel classification and staging scheme is proposed. A total of 300 OSMF patients were evaluated for agreement between functional, clinical, and histopathological staging. Bilateral biopsies were assessed in 25 patients to evaluate for any differences in histopathological staging of OSMF in the same mouth. Extent of clinician agreement for categorized staging data was evaluated using Cohen's weighted kappa analysis. Cross-tabulation was performed on categorical grading data to understand the intercorrelation, and the unweighted kappa analysis was used to assess the bilateral grade agreement. Probabilities of less than 0.05 were considered significant. Data were analyzed using SPSS Statistics (version 25.0, IBM, USA). A low agreement was found between all the stages depicting the independent nature of trismus, clinical features, and histopathological components (K = 0.312, 0.167, 0.152) in OSMF. Following analysis, a three-component classification scheme (TFM classification) was developed that describes the severity of each independently, grouping them using a novel three-tier staging scheme as a guide to the treatment plan. The proposed classification and staging could be useful for effective communication, categorization, and for recording data and prognosis, and for guiding treatment plans. Furthermore, the classification considers OSMF malignant transformation in detail. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Discovery of User-Oriented Class Associations for Enriching Library Classification Schemes.
ERIC Educational Resources Information Center
Pu, Hsiao-Tieh
2002-01-01
Presents a user-based approach to exploring the possibility of adding user-oriented class associations to hierarchical library classification schemes. Classes not grouped in the same subject hierarchies yet relevant to users' knowledge are obtained by analyzing a log book of a university library's circulation records, using collaborative filtering…
Social Constructivism: Botanical Classification Schemes of Elementary School Children.
ERIC Educational Resources Information Center
Tull, Delena
The assertion that there is a social component to children's construction of knowledge about natural phenomena is supported by evidence from an examination of children's classification schemes for plants. An ethnographic study was conducted with nine sixth grade children in central Texas. The children classified plants in the outdoors, in a…
A Classification Scheme for Career Education Resource Materials.
ERIC Educational Resources Information Center
Koontz, Ronald G.
The introductory section of the paper expresses its purpose: to devise a classification scheme for career education resource material, which will be used to develop the USOE Office of Career Education Resource Library and will be disseminated to interested State departments of education and local school districts to assist them in classifying…
ERIC Educational Resources Information Center
Mertler, Craig A.
This study attempted to (1) expand the dichotomous classification scheme typically used by educators and researchers to describe teaching incentives and (2) offer administrators and teachers an alternative framework within which to develop incentive systems. Elementary, middle, and high school teachers in Ohio rated 10 commonly instituted teaching…
A Classification Scheme for Adult Education. Education Libraries Bulletin, Supplement Twelve.
ERIC Educational Resources Information Center
Greaves, Monica A., Comp.
This classification scheme, based on the 'facet formula' theory of Ranganathan, is designed primarily for the library of the National Institute of Adult Education in London, England. Kinds of persons being educated (educands), methods and problems of education, specific countries, specific organizations, and forms in which the information is…
A Computer Oriented Scheme for Coding Chemicals in the Field of Biomedicine.
ERIC Educational Resources Information Center
Bobka, Marilyn E.; Subramaniam, J.B.
The chemical coding scheme of the Medical Coding Scheme (MCS), developed for use in the Comparative Systems Laboratory (CSL), is outlined and evaluated in this report. The chemical coding scheme provides a classification scheme and encoding method for drugs and chemical terms. Using the scheme complicated chemical structures may be expressed…
Hyperspectral imaging of colonic polyps in vivo (Conference Presentation)
NASA Astrophysics Data System (ADS)
Clancy, Neil T.; Elson, Daniel S.; Teare, Julian
2017-02-01
Standard endoscopic tools restrict clinicians to making subjective visual assessments of lesions detected in the bowel, with classification results depending strongly on experience level and training. Histological examination of resected tissue remains the diagnostic gold standard, meaning that all detected lesions are routinely removed. This subjects the patient to risk of polypectomy-related injury, and places significant workload and economic burdens on the hospital. An objective endoscopic classification method would allow hyperplastic polyps, with no malignant potential, to be left in situ, or low grade adenomas to be resected and discarded without histology. A miniature multimodal flexible endoscope is proposed to obtain hyperspectral reflectance and dual excitation autofluorescence information from polyps in vivo. This is placed inside the working channel of a conventional colonoscope, with the external scanning and detection optics on a bedside trolley. A blue and violet laser diode pair excite endogenous fluorophores in the respiration chain, while the colonoscope's xenon light source provides broadband white light for diffuse reflectance measurements. A push-broom HSI scanner collects the hypercube. System characterisation experiments are presented, defining resolution limits as well as acquisition settings for optimal spectral, spatial and temporal performance. The first in vivo results in human subjects are presented, demonstrating the clinical utility of the device. The optical properties (reflectance and autofluorescence) of imaged polyps are quantified and compared to the histologically-confirmed tissue type as well as the clinician's visual assessment. Further clinical studies will allow construction of a full robust training dataset for development of classification schemes.
A Noise-Filtered Under-Sampling Scheme for Imbalanced Classification.
Kang, Qi; Chen, XiaoShuang; Li, SiSi; Zhou, MengChu
2017-12-01
Under-sampling is a popular data preprocessing method in dealing with class imbalance problems, with the purposes of balancing datasets to achieve a high classification rate and avoiding the bias toward majority class examples. It always uses full minority data in a training dataset. However, some noisy minority examples may reduce the performance of classifiers. In this paper, a new under-sampling scheme is proposed by incorporating a noise filter before executing resampling. In order to verify the efficiency, this scheme is implemented based on four popular under-sampling methods, i.e., Undersampling + Adaboost, RUSBoost, UnderBagging, and EasyEnsemble through benchmarks and significance analysis. Furthermore, this paper also summarizes the relationship between algorithm performance and imbalanced ratio. Experimental results indicate that the proposed scheme can improve the original undersampling-based methods with significance in terms of three popular metrics for imbalanced classification, i.e., the area under the curve, -measure, and -mean.
A Theoretical Analysis of a New Polarimetric Optical Scheme for Glucose Sensing in the Human Eye
NASA Technical Reports Server (NTRS)
Rovati, Luigi L.; Boeckle, Stefan; Ansari, Rafat R.; Salzman, Jack A. (Technical Monitor)
2002-01-01
The challenging task of in vivo polarimetric glucose sensing is the identification and selection of a scheme to optically access the aqueous humor of the human eye. In this short communication an earlier approach of Cote et al. is theoretically compared with our new optical scheme. Simulations of the new scheme using the eye model of Navarro, suggest that the new optical geometry can overcome the limitations of the previous approach for in vivo measurements of glucose in a human eye.
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.
Jordan, Alan; Rees, Tony; Gowlett-Holmes, Karen
2015-01-01
Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme’s utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use. PMID:26509918
NASA Astrophysics Data System (ADS)
Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin
2015-03-01
The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.
Sheehan, D V; Sheehan, K H
1982-08-01
The history of the classification of anxiety, hysterical, and hypochondriacal disorders is reviewed. Problems in the ability of current classification schemes to predict, control, and describe the relationship between the symptoms and other phenomena are outlined. Existing classification schemes failed the first test of a good classification model--that of providing categories that are mutually exclusive. The independence of these diagnostic categories from each other does not appear to hold up on empirical testing. In the absence of inherently mutually exclusive categories, further empirical investigation of these classes is obstructed since statistically valid analysis of the nominal data and any useful multivariate analysis would be difficult if not impossible. It is concluded that the existing classifications are unsatisfactory and require some fundamental reconceptualization.
Vijay, G S; Kumar, H S; Srinivasa Pai, P; Sriram, N S; Rao, Raj B K N
2012-01-01
The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.
NASA Astrophysics Data System (ADS)
Ani, Adi Irfan Che; Sairi, Ahmad; Tawil, Norngainy Mohd; Wahab, Siti Rashidah Hanum Abd; Razak, Muhd Zulhanif Abd
2016-08-01
High demand for housing and limited land in town area has increasing the provision of high-rise residential scheme. This type of housing has different owners but share the same land lot and common facilities. Thus, maintenance works of the buildings and common facilities must be well organized. The purpose of this paper is to identify and classify basic facilities for high-rise residential building hoping to improve the management of the scheme. The method adopted is a survey on 100 high-rise residential schemes that ranged from affordable housing to high cost housing by using a snowball sampling. The scope of this research is within Kajang area, which is rapidly developed with high-rise housing. The objective of the survey is to list out all facilities in every sample of the schemes. The result confirmed that pre-determined 11 classifications hold true and can provide the realistic classification for high-rise residential scheme. This paper proposed for redefinition of facilities provided to create a better management system and give a clear definition on the type of high-rise residential based on its facilities.
ERIC Educational Resources Information Center
Kinkead, J. Clint.; Katsinas, Stephen G.
2011-01-01
This work brings forward the geographically-based classification scheme for the public Master's Colleges and Universities sector. Using the same methodology developed by Katsinas and Hardy (2005) to classify community colleges, this work classifies Master's Colleges and Universities. This work has four major findings and conclusions. First, a…
What's in a Name? A Comparison of Methods for Classifying Predominant Type of Maltreatment
ERIC Educational Resources Information Center
Lau, A.S.; Leeb, R.T.; English, D.; Graham, J.C.; Briggs, E.C.; Brody, K.E.; Marshall, J.M.
2005-01-01
Objective:: The primary aim of the study was to identify a classification scheme, for determining the predominant type of maltreatment in a child's history that best predicts differences in developmental outcomes. Method:: Three different predominant type classification schemes were examined in a sample of 519 children with a history of alleged…
SCAT Classification of 4 Optical Transients
NASA Astrophysics Data System (ADS)
Tucker, Michael A.; Rowan, Dominick M.; Shappee, Benjamin J.; Dong, Subo; Bose, Subhash; Stanek, K. Z.
2018-06-01
The Spectral Classification of Astronomical Transients (SCAT) survey (ATel #11444) presents the classification of 4 optical transients. We report optical spectroscopy (330-970nm) taken with the University of Hawaii 88-inch (UH88) telescope using the SuperNova Integral Field Spectrograph (SNIFS).
G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio
2018-06-01
A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri-implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri-implant diseases and conditions and briefly highlights changes made to the 1999 classification. It cannot present the wealth of information included in the reviews, case definition papers, and consensus reports that has guided the development of the new classification, and reference to the consensus and case definition papers is necessary to provide a thorough understanding of its use for either case management or scientific investigation. Therefore, it is strongly recommended that the reader use this overview as an introduction to these subjects. Accessing this publication online will allow the reader to use the links in this overview and the tables to view the source papers (Table ). © 2018 American Academy of Periodontology and European Federation of Periodontology.
G Caton, Jack; Armitage, Gary; Berglundh, Tord; Chapple, Iain L C; Jepsen, Søren; S Kornman, Kenneth; L Mealey, Brian; Papapanou, Panos N; Sanz, Mariano; S Tonetti, Maurizio
2018-06-01
A classification scheme for periodontal and peri-implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions. The workshop was co-sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015. An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri-implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus. This introductory paper presents an overview for the new classification of periodontal and peri-implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable. The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri-implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri-implant diseases and conditions and briefly highlights changes made to the 1999 classification. It cannot present the wealth of information included in the reviews, case definition papers, and consensus reports that has guided the development of the new classification, and reference to the consensus and case definition papers is necessary to provide a thorough understanding of its use for either case management or scientific investigation. Therefore, it is strongly recommended that the reader use this overview as an introduction to these subjects. Accessing this publication online will allow the reader to use the links in this overview and the tables to view the source papers (Table 1). © 2018 American Academy of Periodontology and European Federation of Periodontology.
NASA Astrophysics Data System (ADS)
Liu, Maw-Yang; Hsu, Yi-Kai
2017-03-01
Three-arm dual-balanced detection scheme is studied in an optical code division multiple access system. As the MAI and beat noise are the main deleterious source of system performance, we utilize optical hard-limiters to alleviate such channel impairment. In addition, once the channel condition is improved effectively, the proposed two-dimensional error correction code can remarkably enhance the system performance. In our proposed scheme, the optimal thresholds of optical hard-limiters and decision circuitry are fixed, and they will not change with other system parameters. Our proposed scheme can accommodate a large number of users simultaneously and is suitable for burst traffic with asynchronous transmission. Therefore, it is highly recommended as the platform for broadband optical access network.
NASA Astrophysics Data System (ADS)
Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.
2006-01-01
We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.
1989-12-01
Ohio ’aPw iorlipuab muo i 0I2, AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL...ENG/89D- 10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL NEURAL NETWORKS THESIS John W. DeBerry...Captain, USAF AFIT/GE/ENG/89D- 10 Approved for public release; distribution unlimited. AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION
NASA Astrophysics Data System (ADS)
Yunguo, Gao
1996-12-01
This scheme structure is for positioning 4000 optical fibres of LAMOST telescope. It adopts the swing rods adjusted parallel and simultaneously by many small tables. The problems, for example, positioning accuracy of the optical fibers, the time to readjust all the 4000 optical fibres and error correction, etc. have been considered in the scheme. The structure has no blind area.
Automatic classification of protein structures using physicochemical parameters.
Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam
2014-09-01
Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.
A classification scheme for risk assessment methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamp, Jason Edwin; Campbell, Philip LaRoche
2004-08-01
This report presents a classification scheme for risk assessment methods. This scheme, like all classification schemes, provides meaning by imposing a structure that identifies relationships. Our scheme is based on two orthogonal aspects--level of detail, and approach. The resulting structure is shown in Table 1 and is explained in the body of the report. Each cell in the Table represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that amore » method chosen is optimal for a situation given. This report imposes structure on the set of risk assessment methods in order to reveal their relationships and thus optimize their usage.We present a two-dimensional structure in the form of a matrix, using three abstraction levels for the rows and three approaches for the columns. For each of the nine cells in the matrix we identify the method type by name and example. The matrix helps the user understand: (1) what to expect from a given method, (2) how it relates to other methods, and (3) how best to use it. Each cell in the matrix represent a different arrangement of strengths and weaknesses. Those arrangements shift gradually as one moves through the table, each cell optimal for a particular situation. The intention of this report is to enable informed use of the methods so that a method chosen is optimal for a situation given. The matrix, with type names in the cells, is introduced in Table 2 on page 13 below. Unless otherwise stated we use the word 'method' in this report to refer to a 'risk assessment method', though often times we use the full phrase. The use of the terms 'risk assessment' and 'risk management' are close enough that we do not attempt to distinguish them in this report. The remainder of this report is organized as follows. In Section 2 we provide context for this report--what a 'method' is and where it fits. In Section 3 we present background for our classification scheme--what other schemes we have found, the fundamental nature of methods and their necessary incompleteness. In Section 4 we present our classification scheme in the form of a matrix, then we present an analogy that should provide an understanding of the scheme, concluding with an explanation of the two dimensions and the nine types in our scheme. In Section 5 we present examples of each of our classification types. In Section 6 we present conclusions.« less
Abdelfattah, Adham; Otto, Randall J; Simon, Peter; Christmas, Kaitlyn N; Tanner, Gregory; LaMartina, Joey; Levy, Jonathan C; Cuff, Derek J; Mighell, Mark A; Frankle, Mark A
2018-04-01
Revision of unstable reverse shoulder arthroplasty (RSA) remains a significant challenge. The purpose of this study was to determine the reliability of a new treatment-guiding classification for instability after RSA, to describe the clinical outcomes of patients stabilized operatively, and to identify those with higher risk of recurrence. All patients undergoing revision for instability after RSA were identified at our institution. Demographic, clinical, radiographic, and intraoperative data were collected. A classification was developed using all identified causes of instability after RSA and allocating them to 1 of 3 defined treatment-guiding categories. Eight surgeons reviewed all data and applied the classification scheme to each case. Interobserver and intraobserver reliability was used to evaluate the classification scheme. Preoperative clinical outcomes were compared with final follow-up in stabilized shoulders. Forty-three revision cases in 34 patients met the inclusion for study. Five patients remained unstable after revision. Persistent instability most commonly occurred in persistent deltoid dysfunction and postoperative acromial fractures but also in 1 case of soft tissue impingement. Twenty-one patients remained stable at minimum 2 years of follow-up and had significant improvement of clinical outcome scores and range of motion. Reliability of the classification scheme showed substantial and almost perfect interobserver and intraobserver agreement among all the participants (κ = 0.699 and κ = 0.851, respectively). Instability after RSA can be successfully treated with revision surgery using the reliable treatment-guiding classification scheme presented herein. However, more understanding is needed for patients with greater risk of recurrent instability after revision surgery. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-06-01
Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research.
Parametric Amplification For Detecting Weak Optical Signals
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash
1996-01-01
Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.
Thoe, W; Lee, Olive H K; Leung, K F; Lee, T; Ashbolt, Nicholas J; Yang, Ron R; Chui, Samuel H K
2018-06-01
Hong Kong's beach water quality classification scheme, used effectively for >25 years in protecting public health, was first established in local epidemiology studies during the late 1980s where Escherichia coli (E. coli) was identified as the most suitable faecal indicator bacteria. To review and further substantiate the scheme's robustness, a performance check was carried out to classify water quality of 37 major local beaches in Hong Kong during four bathing seasons (March-October) from 2010 to 2013. Given the enterococci and E. coli data collected, beach classification by the local scheme was found to be in line with the prominent international benchmarks recommended by the World Health Organization and the European Union. Local bacteriological studies over the last 15 years further confirmed that E. coli is the more suitable faecal indicator bacteria than enterococci in the local context. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nadarajah, Nishaanthan; Attygalle, Manik; Wong, Elaine; Nirmalathas, Ampalavanapillai
2005-10-01
This paper proposes two novel optical layer schemes for intercommunication between customers in a passive optical network (PON). The proposed schemes use radio frequency (RF) subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office (CO) at baseband. One scheme employs a narrowband fiber Bragg grating (FBG) placed close to the star coupler in the feeder fiber of the PON, while the other uses an additional short-length distribution fiber from the star coupler to each customer unit for the redirection of customer traffic. In both schemes, only one optical transmitter is required at each optical network unit (ONU) for the transmission of customer traffic and upstream access traffic. Moreover, downstream bandwidth is not consumed by customer traffic unlike in previously reported techniques. The authors experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the CO and 155 Mb/s customer data transmission on the RF carrier. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme. Further, the proposed schemes were discussed in terms of upgradability of the transmission bit rates for the upstream access traffic, bandwidth requirements at the customer premises, dispersion tolerance, and stability issues for the practical implementations of the network.
Update on diabetes classification.
Thomas, Celeste C; Philipson, Louis H
2015-01-01
This article highlights the difficulties in creating a definitive classification of diabetes mellitus in the absence of a complete understanding of the pathogenesis of the major forms. This brief review shows the evolving nature of the classification of diabetes mellitus. No classification scheme is ideal, and all have some overlap and inconsistencies. The only diabetes in which it is possible to accurately diagnose by DNA sequencing, monogenic diabetes, remains undiagnosed in more than 90% of the individuals who have diabetes caused by one of the known gene mutations. The point of classification, or taxonomy, of disease, should be to give insight into both pathogenesis and treatment. It remains a source of frustration that all schemes of diabetes mellitus continue to fall short of this goal. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification of terrain cover using the optimum polarimetric classifier
NASA Technical Reports Server (NTRS)
Kong, J. A.; Swartz, A. A.; Yueh, H. A.; Novak, L. M.; Shin, R. T.
1988-01-01
A systematic approach for the identification of terrain media such as vegetation canopy, forest, and snow-covered fields is developed using the optimum polarimetric classifier. The covariance matrices for various terrain cover are computed from theoretical models of random medium by evaluating the scattering matrix elements. The optimal classification scheme makes use of a quadratic distance measure and is applied to classify a vegetation canopy consisting of both trees and grass. Experimentally measured data are used to validate the classification scheme. Analytical and Monte Carlo simulated classification errors using the fully polarimetric feature vector are compared with classification based on single features which include the phase difference between the VV and HH polarization returns. It is shown that the full polarimetric results are optimal and provide better classification performance than single feature measurements.
A proposed classification scheme for Ada-based software products
NASA Technical Reports Server (NTRS)
Cernosek, Gary J.
1986-01-01
As the requirements for producing software in the Ada language become a reality for projects such as the Space Station, a great amount of Ada-based program code will begin to emerge. Recognizing the potential for varying levels of quality to result in Ada programs, what is needed is a classification scheme that describes the quality of a software product whose source code exists in Ada form. A 5-level classification scheme is proposed that attempts to decompose this potentially broad spectrum of quality which Ada programs may possess. The number of classes and their corresponding names are not as important as the mere fact that there needs to be some set of criteria from which to evaluate programs existing in Ada. An exact criteria for each class is not presented, nor are any detailed suggestions of how to effectively implement this quality assessment. The idea of Ada-based software classification is introduced and a set of requirements from which to base further research and development is suggested.
Emerging optical nanoscopy techniques
Montgomery, Paul C; Leong-Hoi, Audrey
2015-01-01
To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270
NASA Astrophysics Data System (ADS)
Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Pandarinath, Kailasa; Amezcua-Valdez, Alejandra; Rosales-Rivera, Mauricio; Verma, Sanjeet K.; Quiroz-Ruiz, Alfredo; Armstrong-Altrin, John S.
2017-05-01
A new multidimensional scheme consistent with the International Union of Geological Sciences (IUGS) is proposed for the classification of igneous rocks in terms of four magma types: ultrabasic, basic, intermediate, and acid. Our procedure is based on an extensive database of major element composition of a total of 33,868 relatively fresh rock samples having a multinormal distribution (initial database with 37,215 samples). Multinormally distributed database in terms of log-ratios of samples was ascertained by a new computer program DOMuDaF, in which the discordancy test was applied at the 99.9% confidence level. Isometric log-ratio (ilr) transformation was used to provide overall percent correct classification of 88.7%, 75.8%, 88.0%, and 80.9% for ultrabasic, basic, intermediate, and acid rocks, respectively. Given the known mathematical and uncertainty propagation properties, this transformation could be adopted for routine applications. The incorrect classification was mainly for the "neighbour" magma types, e.g., basic for ultrabasic and vice versa. Some of these misclassifications do not have any effect on multidimensional tectonic discrimination. For an efficient application of this multidimensional scheme, a new computer program MagClaMSys_ilr (MagClaMSys-Magma Classification Major-element based System) was written, which is available for on-line processing on http://tlaloc.ier.unam.mx/index.html. This classification scheme was tested from newly compiled data for relatively fresh Neogene igneous rocks and was found to be consistent with the conventional IUGS procedure. The new scheme was successfully applied to inter-laboratory data for three geochemical reference materials (basalts JB-1 and JB-1a, and andesite JA-3) from Japan and showed that the inferred magma types are consistent with the rock name (basic for basalts JB-1 and JB-1a and intermediate for andesite JA-3). The scheme was also successfully applied to five case studies of older Archaean to Mesozoic igneous rocks. Similar or more reliable results were obtained from existing tectonomagmatic discrimination diagrams when used in conjunction with the new computer program as compared to the IUGS scheme. The application to three case studies of igneous provenance of sedimentary rocks was demonstrated as a novel approach. Finally, we show that the new scheme is more robust for post-emplacement compositional changes than the conventional IUGS procedure.
Dubow, Michael; Pinhas, Alexander; Shah, Nishit; Cooper, Robert F.; Gan, Alexander; Gentile, Ronald C.; Hendrix, Vernon; Sulai, Yusufu N.; Carroll, Joseph; Chui, Toco Y. P.; Walsh, Joseph B.; Weitz, Rishard; Dubra, Alfredo; Rosen, Richard B.
2014-01-01
Purpose. Microaneurysms (MAs) are considered a hallmark of retinal vascular disease, yet what little is known about them is mostly based upon histology, not clinical observation. Here, we use the recently developed adaptive optics scanning light ophthalmoscope (AOSLO) fluorescein angiography (FA) to image human MAs in vivo and to expand on previously described MA morphologic classification schemes. Methods. Patients with vascular retinopathies (diabetic, hypertensive, and branch and central retinal vein occlusion) were imaged with reflectance AOSLO and AOSLO FA. Ninety-three MAs, from 14 eyes, were imaged and classified according to appearance into six morphologic groups: focal bulge, saccular, fusiform, mixed, pedunculated, and irregular. The MA perimeter, area, and feret maximum and minimum were correlated to morphology and retinal pathology. Select MAs were imaged longitudinally in two eyes. Results. Adaptive optics scanning light ophthalmoscope fluorescein angiography imaging revealed microscopic features of MAs not appreciated on conventional images. Saccular MAs were most prevalent (47%). No association was found between the type of retinal pathology and MA morphology (P = 0.44). Pedunculated and irregular MAs were among the largest MAs with average areas of 4188 and 4116 μm2, respectively. Focal hypofluorescent regions were noted in 30% of MAs and were more likely to be associated with larger MAs (3086 vs. 1448 μm2, P = 0.0001). Conclusions. Retinal MAs can be classified in vivo into six different morphologic types, according to the geometry of their two-dimensional (2D) en face view. Adaptive optics scanning light ophthalmoscope fluorescein angiography imaging of MAs offers the possibility of studying microvascular change on a histologic scale, which may help our understanding of disease progression and treatment response. PMID:24425852
Classification of proteins: available structural space for molecular modeling.
Andreeva, Antonina
2012-01-01
The wealth of available protein structural data provides unprecedented opportunity to study and better understand the underlying principles of protein folding and protein structure evolution. A key to achieving this lies in the ability to analyse these data and to organize them in a coherent classification scheme. Over the past years several protein classifications have been developed that aim to group proteins based on their structural relationships. Some of these classification schemes explore the concept of structural neighbourhood (structural continuum), whereas other utilize the notion of protein evolution and thus provide a discrete rather than continuum view of protein structure space. This chapter presents a strategy for classification of proteins with known three-dimensional structure. Steps in the classification process along with basic definitions are introduced. Examples illustrating some fundamental concepts of protein folding and evolution with a special focus on the exceptions to them are presented.
Inter-sectoral costs and benefits of mental health prevention: towards a new classification scheme.
Drost, Ruben M W A; Paulus, Aggie T G; Ruwaard, Dirk; Evers, Silvia M A A
2013-12-01
Many preventive interventions for mental disorders have costs and benefits that spill over to sectors outside the healthcare sector. Little is known about these "inter-sectoral costs and benefits" (ICBs) of prevention. However, to achieve an efficient allocation of scarce resources, insights on ICBs are indispensable. The main aim was to identify the ICBs related to the prevention of mental disorders and provide a sector-specific classification scheme for these ICBs. Using PubMed, a literature search was conducted for ICBs of mental disorders and related (psycho)social effects. A policy perspective was used to build the scheme's structure, which was adapted to the outcomes of the literature search. In order to validate the scheme's international applicability inside and outside the mental health domain, semi-structured interviews were conducted with (inter)national experts in the broad fields of health promotion and disease prevention. The searched-for items appeared in a total of 52 studies. The ICBs found were classified in one of four sectors: "Education", "Labor and Social Security", "Household and Leisure" or "Criminal Justice System". Psycho(social) effects were placed in a separate section under "Individual and Family". Based on interviews, the scheme remained unadjusted, apart from adding a population-based dimension. This is the first study which offers a sector-specific classification of ICBs. Given the explorative nature of the study, no guidelines on sector-specific classification of ICBs were available. Nevertheless, the classification scheme was acknowledged by an international audience and could therefore provide added value to researchers and policymakers in the field of mental health economics and prevention. The identification and classification of ICBs offers decision makers supporting information on how to optimally allocate scarce resources with respect to preventive interventions for mental disorders. By exploring a new area of research, which has remained largely unexplored until now, the current study has an added value as it may form the basis for the development of a tool which can be used to calculate the ICBs of specific mental health related preventive interventions.
The Ultracool Typing Kit - An Open-Source, Qualitative Spectral Typing GUI for L Dwarfs
NASA Astrophysics Data System (ADS)
Schwab, Ellianna; Cruz, Kelle; Núñez, Alejandro; Burgasser, Adam J.; Rice, Emily; Reid, Neill; Faherty, Jacqueline K.; BDNYC
2018-01-01
The Ultracool Typing Kit (UTK) is an open-source graphical user interface for classifying the NIR spectral types of L dwarfs, including field and low-gravity dwarfs spanning L0-L9. The user is able to input an NIR spectrum and qualitatively compare the input spectrum to a full suite of spectral templates, including low-gravity beta and gamma templates. The user can choose to view the input spectrum as both a band-by-band comparison with the templates and a full bandwidth comparison with NIR spectral standards. Once an optimal qualitative comparison is selected, the user can save their spectral type selection both graphically and to a database. Using UTK to classify 78 previously typed L dwarfs, we show that a band-by-band classification method more accurately agrees with optical spectral typing systems than previous L dwarf NIR classification schemes. UTK is written in python, released on Zenodo with a BSD-3 clause license and publicly available on the BDNYC Github page.
Secure communication in fiber optic systems via transmission of broad-band optical noise.
Buskila, O; Eyal, A; Shtaif, M
2008-03-03
We propose a new scheme for data encryption in the physical layer. Our scheme is based on the distribution of a broadband optical noise-like signal between Alice and Bob. The broadband signal is used for the establishment of a secret key that can be used for the secure transmission of information by using the one-time-pad method. We characterize the proposed scheme and study its applicability to the existing fiber-optics communications infrastructure.
Physical-Layer Network Coding for VPN in TDM-PON
NASA Astrophysics Data System (ADS)
Wang, Qike; Tse, Kam-Hon; Chen, Lian-Kuan; Liew, Soung-Chang
2012-12-01
We experimentally demonstrate a novel optical physical-layer network coding (PNC) scheme over time-division multiplexing (TDM) passive optical network (PON). Full-duplex error-free communications between optical network units (ONUs) at 2.5 Gb/s are shown for all-optical virtual private network (VPN) applications. Compared to the conventional half-duplex communications set-up, our scheme can increase the capacity by 100% with power penalty smaller than 3 dB. Synchronization of two ONUs is not required for the proposed VPN scheme
Classifying GRB 170817A/GW170817 in a Fermi duration-hardness plane
NASA Astrophysics Data System (ADS)
Horváth, I.; Tóth, B. G.; Hakkila, J.; Tóth, L. V.; Balázs, L. G.; Rácz, I. I.; Pintér, S.; Bagoly, Z.
2018-03-01
GRB 170817A, associated with the LIGO-Virgo GW170817 neutron-star merger event, lacks the short duration and hard spectrum of a Short gamma-ray burst (GRB) expected from long-standing classification models. Correctly identifying the class to which this burst belongs requires comparison with other GRBs detected by the Fermi GBM. The aim of our analysis is to classify Fermi GRBs and to test whether or not GRB 170817A belongs—as suggested—to the Short GRB class. The Fermi GBM catalog provides a large database with many measured variables that can be used to explore gamma-ray burst classification. We use statistical techniques to look for clustering in a sample of 1298 gamma-ray bursts described by duration and spectral hardness. Classification of the detected bursts shows that GRB 170817A most likely belongs to the Intermediate, rather than the Short GRB class. We discuss this result in light of theoretical neutron-star merger models and existing GRB classification schemes. It appears that GRB classification schemes may not yet be linked to appropriate theoretical models, and that theoretical models may not yet adequately account for known GRB class properties. We conclude that GRB 170817A may not fit into a simple phenomenological classification scheme.
A novel protection scheme for a hybrid WDM/TDM PON
NASA Astrophysics Data System (ADS)
Chen, Jiajia; Wosinska, Lena; He, Sailing
2007-11-01
This paper proposes a novel protection scheme based on the cyclic property of an array waveguide grating (AWG) and neighboring connection pattern between two adjacent optical network units (ONUs) for the hybrid WDM/TDM passive optical networks (PONs). Our scheme uses 50% fewer wavelengths while offering one order of magnitude better connection availability than the existing scheme.
Fan, Leland L; Dishop, Megan K; Galambos, Csaba; Askin, Frederic B; White, Frances V; Langston, Claire; Liptzin, Deborah R; Kroehl, Miranda E; Deutsch, Gail H; Young, Lisa R; Kurland, Geoffrey; Hagood, James; Dell, Sharon; Trapnell, Bruce C; Deterding, Robin R
2015-10-01
Children's Interstitial and Diffuse Lung Disease (chILD) is a heterogeneous group of disorders that is challenging to categorize. In previous study, a classification scheme was successfully applied to children 0 to 2 years of age who underwent lung biopsies for chILD. This classification scheme has not been evaluated in children 2 to 18 years of age. This multicenter interdisciplinary study sought to describe the spectrum of biopsy-proven chILD in North America and to apply a previously reported classification scheme in children 2 to 18 years of age. Mortality and risk factors for mortality were also assessed. Patients 2 to 18 years of age who underwent lung biopsies for diffuse lung disease from 12 North American institutions were included. Demographic and clinical data were collected and described. The lung biopsies were reviewed by pediatric lung pathologists with expertise in diffuse lung disease and were classified by the chILD classification scheme. Logistic regression was used to determine risk factors for mortality. A total of 191 cases were included in the final analysis. Number of biopsies varied by center (5-49 biopsies; mean, 15.8) and by age (2-18 yr; mean, 10.6 yr). The most common classification category in this cohort was Disorders of the Immunocompromised Host (40.8%), and the least common was Disorders of Infancy (4.7%). Immunocompromised patients suffered the highest mortality (52.8%). Additional associations with mortality included mechanical ventilation, worse clinical status at time of biopsy, tachypnea, hemoptysis, and crackles. Pulmonary hypertension was found to be a risk factor for mortality but only in the immunocompetent patients. In patients 2 to 18 years of age who underwent lung biopsies for diffuse lung disease, there were far fewer diagnoses prevalent in infancy and more overlap with adult diagnoses. Immunocompromised patients with diffuse lung disease who underwent lung biopsies had less than 50% survival at time of last follow-up.
NASA Astrophysics Data System (ADS)
Cialone, Claudia; Stock, Kristin
2010-05-01
EuroGEOSS is a European Commission funded project. It aims at improving a scientific understanding of the complex mechanisms which drive changes affecting our planet, identifying and establishing interoperable arrangements between environmental information systems. These systems would be sustained and operated by organizations with a clear mandate and resources and rendered available following the specifications of already existent frameworks such as GEOSS (the Global Earth Observation System of systems)1 and INSPIRE (the Infrastructure for Spatial Information in the European Community)2. The EuroGEOSS project's infrastructure focuses on three thematic areas: forestry, drought and biodiversity. One of the important activities in the project is the retrieval, parsing and harmonization of the large amount of heterogeneous environmental data available at local, regional and global levels between these strategic areas. The challenge is to render it semantically and technically interoperable in a simple way. An initial step in achieving this semantic and technical interoperability involves the selection of appropriate classification schemes (for example, thesauri, ontologies and controlled vocabularies) to describe the resources in the EuroGEOSS framework. These classifications become a crucial part of the interoperable framework scaffolding because they allow data providers to describe their resources and thus support resource discovery, execution and orchestration of varying levels of complexity. However, at present, given the diverse range of environmental thesauri, controlled vocabularies and ontologies and the large number of resources provided by project participants, the selection of appropriate classification schemes involves a number of considerations. First of all, there is the semantic difficulty of selecting classification schemes that contain concepts that are relevant to each thematic area. Secondly, EuroGEOSS is intended to accommodate a number of existing environmental projects (for example, GEOSS and INSPIRE). This requirement imposes constraints on the selection. Thirdly, the selected classification scheme or group of schemes (if more than one) must be capable of alignment (establishing different kinds of mappings between concepts, hence preserving intact the original knowledge schemes) or merging (the creation of another unique ontology from the original ontological sources) (Pérez-Gómez et al., 2004). Last but not least, there is the issue of including multi-lingual schemes that are based on free, open standards (non-proprietary). Using these selection criteria, we aim to support open and convenient data discovery and exchange for users who speak different languages (particularly the European ones for the broad scopes of EuroGEOSS). In order to support the project, we have developed a solution that employs two classification schemes: the Societal Benefit Areas (SBAs)3: the upper-level environmental categorization developed for the GEOSS project and the GEneral Multilingual Environmental Thesaurus (GEMET)4: a general environmental thesaurus whose conceptual structure has already been integrated with the spatial data themes proposed by the INSPIRE project. The former seems to provide the spatial data keywords relevant to the INSPIRE's Directive (JRC, 2008). In this way, we provide users with a basic set of concepts to support resource description and discovery in the thematic areas while supporting the requirements of INSPIRE and GEOSS. Furthermore, the use of only two classification schemes together with the fact that the SBAs are very general categories while GEMET includes much more detailed, yet still top-level, concepts, makes alignment an achievable task. Alignment was selected over merging because it leaves the existing classification schemes intact and requires only a simple activity of defining mappings from GEMET to the SBAs. In order to accomplish this task we are developing a simple, automated, open-source application to assist thematic experts in defining the mappings between concepts in the two classification schemes. The application will then generate SKOS mappings (exactMatch, closeMatch, broadMatch, narrowMatch, relatedMatch) based on thematic expert selections between the concepts in GEMET with the SBAs (including both the general Societal Benefit Areas and their subcategories). Once these mappings are defined and the SKOS files generated, resource providers will be able to select concepts from either GEMET or the SBAs (or a mixture) to describe their resources, and discovery approaches will support selection of concepts from either classification scheme, also returning results classified using the other scheme. While the focus of our work has been on the SBAs and GEMET, we also plan to provide a method for resource providers to further extend the semantic infrastructure by defining alignments to new classification schemes if these are required to support particular specialized thematic areas that are not covered by GEMET. In this way, the approach is flexible and suited to the general scope of EuroGEOSS, allowing specialists to increase at will the level of semantic quality and specificity of data to the initial infrastructural skeleton of the project. References ____________________________________________ Joint research Centre (JRC), 2008. INSPIRE Metadata Editor User Guide Pérez-Gómez A., Fernandez-Lopez M., Corcho O. Ontological engineering: With Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web.Spinger: London, 2004
Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.
2012-01-01
Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.
Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai
2015-12-01
Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
Toward functional classification of neuronal types.
Sharpee, Tatyana O
2014-09-17
How many types of neurons are there in the brain? This basic neuroscience question remains unsettled despite many decades of research. Classification schemes have been proposed based on anatomical, electrophysiological, or molecular properties. However, different schemes do not always agree with each other. This raises the question of whether one can classify neurons based on their function directly. For example, among sensory neurons, can a classification scheme be devised that is based on their role in encoding sensory stimuli? Here, theoretical arguments are outlined for how this can be achieved using information theory by looking at optimal numbers of cell types and paying attention to two key properties: correlations between inputs and noise in neural responses. This theoretical framework could help to map the hierarchical tree relating different neuronal classes within and across species. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Haixia; Zhang, Jing
We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less
Zhang, Jiang; Wang, James Z; Yuan, Zhen; Sobel, Eric S; Jiang, Huabei
2011-01-01
This study presents a computer-aided classification method to distinguish osteoarthritis finger joints from healthy ones based on the functional images captured by x-ray guided diffuse optical tomography. Three imaging features, joint space width, optical absorption, and scattering coefficients, are employed to train a Least Squares Support Vector Machine (LS-SVM) classifier for osteoarthritis classification. The 10-fold validation results show that all osteoarthritis joints are clearly identified and all healthy joints are ruled out by the LS-SVM classifier. The best sensitivity, specificity, and overall accuracy of the classification by experienced technicians based on manual calculation of optical properties and visual examination of optical images are only 85%, 93%, and 90%, respectively. Therefore, our LS-SVM based computer-aided classification is a considerably improved method for osteoarthritis diagnosis.
NASA Astrophysics Data System (ADS)
Ness, P. H.; Jacobson, H.
1984-10-01
The thrust of 'group technology' is toward the exploitation of similarities in component design and manufacturing process plans to achieve assembly line flow cost efficiencies for small batch production. The systematic method devised for the identification of similarities in component geometry and processing steps is a coding and classification scheme implemented by interactive CAD/CAM systems. This coding and classification scheme has led to significant increases in computer processing power, allowing rapid searches and retrievals on the basis of a 30-digit code together with user-friendly computer graphics.
Rahman, Md Mostafizur; Fattah, Shaikh Anowarul
2017-01-01
In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.
On the usefulness of optical maturity for relative age classification of fresh craters
NASA Astrophysics Data System (ADS)
Ravi, S.; Meyer, H. M.; Mahanti, P.; Robinson, M. S.
2016-12-01
Copernican and Eratosthenian craters represent the two most recent geologic periods in the lunar timescale, and their characterization is essential for understanding impact crater flux over the last 3 Gy. Craters from both periods exhibit crisp morphologies, but Copernican craters are 'rayed craters' per Wilhelms (1) classification scheme. Distinguishing compositional from maturity rays is possible using compositional estimates and the optical maturity parameter (OMAT; 2). From OMAT estimates, Grier et al. (3) classified 50 fresh craters (diameter (D) > 20 km) into young (OMAT > 0.22), intermediate, and old (OMAT < 0.16) classes. In this work we analyze morphology and optical maturity for a population of 12,000 craters (D> 10 km; 60 to investigate the applicability of OMAT for relative age classification among Copernican craters. Craters obtained from (4,5) were initially classified based on crispness of morphology (LROC WAC observations (6)) and then were then analyzed based on OMAT values averaged from rim out to one crater radius (n=2000). We found that typically craters larger than Copernicus (D = 95 km) were had lower OMAT values than Copernicus (OMAT = 0.17) except for Vavilov, Pythagorus, Fizeau and Moretus which had OMAT > 0.17. These large craters are clearly affected by rays from small, nearby craters. We estimate that at least 250 craters (D > 10 km; OMAT > 0.22) on the Moon are Copernican (> 2% of all craters analyzed) and of these at least 100 are as optically immature (or more so) than Tycho crater (OMAT >= 0.24). A calibration curve (OMAT vs Absolute Model Age) obtained for craters with known ages showed that OMAT <=0.15 displays little change with AMA and are thus unsuitable for estimating relative ages. Normalization by crater size was found to reduce the uncertainty associated with the relation between AMA and OMAT. 1) Wilhelms (1987), The Geologic History of the Moon, USGS, pp. 1348. 2) Lucey et al (2000), JGR, 105, 20377-20386. 3) Grier et al. (2001), JGR, 106, 847-862. 4) Povilaitis et al. (2013), NLSI, Session 5B. 5) Head et al. (2010), Science, 239, 1504-1506. 6) Boyd et al. (2013), AGU, P13B-1744.
All-optical virtual private network and ONUs communication in optical OFDM-based PON system.
Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun
2011-11-21
We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. © 2011 Optical Society of America
ONU Power Saving Scheme for EPON System
NASA Astrophysics Data System (ADS)
Mukai, Hiroaki; Tano, Fumihiko; Tanaka, Masaki; Kozaki, Seiji; Yamanaka, Hideaki
PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.
NASA Technical Reports Server (NTRS)
Sears, Derek W. G.; Shaoxiong, Huang; Benoit, Paul H.
1995-01-01
The recently proposed compositional classification scheme for meteoritic chondrules divides the chondrules into groups depending on the composition of their two major phases, olivine (or pyroxene) and the mesostasis, both of which are genetically important. The scheme is here applied to discussions of three topics: the petrographic classification of Roosevelt County 075 (the least-metamorphosed H chondrite known), brecciation (an extremely important and ubiquitous process probably experienced by greater than 40% of all unequilibrated ordinary chondrites), and the group A5 chondrules in the least metamorphosed ordinary chondrites which have many similarities to chondrules in the highly metamorphosed 'equilibrated' chondrites. Since composition provides insights into both primary formation properties of the chondruies and the effects of metamorphism on the entire assemblage it is possible to determine the petrographic type of RC075 as 3.1 with unique certainty. Similarly, the near scheme can be applied to individual chondrules without knowledge of the petrographic type of the host chondrite, which makes it especially suitable for studying breccias. Finally, the new scheme has revealed the existence of chondrules not identified by previous techniques and which appear to be extremely important. Like group A1 and A2 chondrules (but unlike group B1 chondrules) the primitive group A5 chondruies did not supercool during formation, but unlike group A1 and A2 chondrules (and like group B1 chondrules) they did not suffer volatile loss and reduction during formation. It is concluded that the compositional classification scheme provides important new insights into the formation and history of chondrules and chondrites which would be overlooked by previous schemes.
Carnegie's New Community Engagement Classification: Affirming Higher Education's Role in Community
ERIC Educational Resources Information Center
Driscoll, Amy
2009-01-01
In 2005, the Carnegie Foundation for the Advancement of Teaching (CFAT) stirred the higher education world with the announcement of a new classification for institutions that engage with community. The classification, community engagement, is the first in a set of planned classification schemes resulting from the foundation's reexamination of the…
MPNACK: an optical switching scheme enabling the buffer-less reliable transmission
NASA Astrophysics Data System (ADS)
Yu, Xiaoshan; Gu, Huaxi; Wang, Kun; Xu, Meng; Guo, Yantao
2016-01-01
Optical data center networks are becoming an increasingly promising solution to solve the bottlenecks faced by electrical networks, such as low transmission bandwidth, high wiring complexity, and unaffordable power consumption. However, the optical circuit switching (OCS) network is not flexible enough to carry the traffic burst while the optical packet switching (OPS) network cannot solve the packet contention in an efficient way. To this end, an improved switching strategy named OPS with multi-hop Negative Acknowledgement (MPNACK) is proposed. This scheme uses a feedback mechanism, rather than the buffering structure, to handle the optical packet contention. The collided packet is treated as a NACK packet and sent back to the source server. When the sender receives this NACK packet, it knows a collision happens in the transmission path and a retransmission procedure is triggered. Overall, the OPS-NACK scheme enables a reliable transmission in the buffer-less optical network. Furthermore, with this scheme, the expensive and energy-hungry elements, optical or electrical buffers, can be removed from the optical interconnects, thus a more scalable and cost-efficient network can be constructed for cloud computing data centers.
A new classification of glaucomas
Bordeianu, Constantin-Dan
2014-01-01
Purpose To suggest a new glaucoma classification that is pathogenic, etiologic, and clinical. Methods After discussing the logical pathway used in criteria selection, the paper presents the new classification and compares it with the classification currently in use, that is, the one issued by the European Glaucoma Society in 2008. Results The paper proves that the new classification is clear (being based on a coherent and consistently followed set of criteria), is comprehensive (framing all forms of glaucoma), and helps in understanding the sickness understanding (in that it uses a logical framing system). The great advantage is that it facilitates therapeutic decision making in that it offers direct therapeutic suggestions and avoids errors leading to disasters. Moreover, the scheme remains open to any new development. Conclusion The suggested classification is a pathogenic, etiologic, and clinical classification that fulfills the conditions of an ideal classification. The suggested classification is the first classification in which the main criterion is consistently used for the first 5 to 7 crossings until its differentiation capabilities are exhausted. Then, secondary criteria (etiologic and clinical) pick up the relay until each form finds its logical place in the scheme. In order to avoid unclear aspects, the genetic criterion is no longer used, being replaced by age, one of the clinical criteria. The suggested classification brings only benefits to all categories of ophthalmologists: the beginners will have a tool to better understand the sickness and to ease their decision making, whereas the experienced doctors will have their practice simplified. For all doctors, errors leading to therapeutic disasters will be less likely to happen. Finally, researchers will have the object of their work gathered in the group of glaucoma with unknown or uncertain pathogenesis, whereas the results of their work will easily find a logical place in the scheme, as the suggested classification remains open to any new development. PMID:25246759
Classification for Estuarine Ecosystems: A Review and Comparison of Selected Classification Schemes
Estuarine scientists have devoted considerable effort to classifying coastal, estuarine and marine environments and their watersheds, for a variety of purposes. These classifications group systems with similarities – most often in physical and hydrodynamic properties – in order ...
NASA Astrophysics Data System (ADS)
Lin, Wen-Piao; Wu, He-Long
2005-08-01
We propose a fiber-Bragg-grating (FBG)-based optical code-division multiple access passive optical network (OCDMA-PON) using a dual-baseband modulation scheme. A mathematical model is developed to study the performance of this scheme. According to the analyzed results, this scheme can allow a tolerance of the spectral power distortion (SPD) ratio of 25% with a bit error rate (BER) of 10-9 when the modified pseudorandom noise (PN) code length is 16. Moreover, we set up a simulated system to evaluate the baseband and radio frequency (RF) band transmission characteristics. The simulation results demonstrate that our proposed OCDMA-PON can provide a cost-effective and scalable fiber-to-the-home solution.
Mitry, Danny; Peto, Tunde; Hayat, Shabina; Blows, Peter; Morgan, James; Khaw, Kay-Tee; Foster, Paul J
2015-01-01
Crowdsourcing is the process of simplifying and outsourcing numerous tasks to many untrained individuals. Our aim was to assess the performance and repeatability of crowdsourcing in the classification of normal and glaucomatous discs from optic disc images. Optic disc images (N = 127) with pre-determined disease status were selected by consensus agreement from grading experts from a large cohort study. After reading brief illustrative instructions, we requested that knowledge workers (KWs) from a crowdsourcing platform (Amazon MTurk) classified each image as normal or abnormal. Each image was classified 20 times by different KWs. Two study designs were examined to assess the effect of varying KW experience and both study designs were conducted twice for consistency. Performance was assessed by comparing the sensitivity, specificity and area under the receiver operating characteristic curve (AUC). Overall, 2,540 classifications were received in under 24 hours at minimal cost. The sensitivity ranged between 83-88% across both trials and study designs, however the specificity was poor, ranging between 35-43%. In trial 1, the highest AUC (95%CI) was 0.64(0.62-0.66) and in trial 2 it was 0.63(0.61-0.65). There were no significant differences between study design or trials conducted. Crowdsourcing represents a cost-effective method of image analysis which demonstrates good repeatability and a high sensitivity. Optimisation of variables such as reward schemes, mode of image presentation, expanded response options and incorporation of training modules should be examined to determine their effect on the accuracy and reliability of this technique in retinal image analysis.
Optical realization of optimal symmetric real state quantum cloning machine
NASA Astrophysics Data System (ADS)
Hu, Gui-Yu; Zhang, Wen-Hai; Ye, Liu
2010-01-01
We present an experimentally uniform linear optical scheme to implement the optimal 1→2 symmetric and optimal 1→3 symmetric economical real state quantum cloning machine of the polarization state of the single photon. This scheme requires single-photon sources and two-photon polarization entangled state as input states. It also involves linear optical elements and three-photon coincidence. Then we consider the realistic realization of the scheme by using the parametric down-conversion as photon resources. It is shown that under certain condition, the scheme is feasible by current experimental technology.
Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.
Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang
2013-12-02
We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions.
Murphy, I G; Collins, J; Powell, A; Markl, M; McCarthy, P; Malaisrie, S C; Carr, J C; Barker, A J
2017-08-01
Bicuspid aortic valve (BAV) disease is heterogeneous and related to valve dysfunction and aortopathy. Appropriate follow up and surveillance of patients with BAV may depend on correct phenotypic categorization. There are multiple classification schemes, however a need exists to comprehensively capture commissure fusion, leaflet asymmetry, and valve orifice orientation. Our aim was to develop a BAV classification scheme for use at MRI to ascertain the frequency of different phenotypes and the consistency of BAV classification. The BAV classification scheme builds on the Sievers surgical BAV classification, adding valve orifice orientation, partial leaflet fusion and leaflet asymmetry. A single observer successfully applied this classification to 386 of 398 Cardiac MRI studies. Repeatability of categorization was ascertained with intraobserver and interobserver kappa scores. Sensitivity and specificity of MRI findings was determined from operative reports, where available. Fusion of the right and left leaflets accounted for over half of all cases. Partial leaflet fusion was seen in 46% of patients. Good interobserver agreement was seen for orientation of the valve opening (κ = 0.90), type (κ = 0.72) and presence of partial fusion (κ = 0.83, p < 0.0001). Retrospective review of operative notes showed sensitivity and specificity for orientation (90, 93%) and for Sievers type (73, 87%). The proposed BAV classification schema was assessed by MRI for its reliability to classify valve morphology in addition to illustrating the wide heterogeneity of leaflet size, orifice orientation, and commissural fusion. The classification may be helpful in further understanding the relationship between valve morphology, flow derangement and aortopathy.
NASA Astrophysics Data System (ADS)
Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan
2018-05-01
A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.
Centrifuge: rapid and sensitive classification of metagenomic sequences
Song, Li; Breitwieser, Florian P.
2016-01-01
Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. PMID:27852649
Modern radiosurgical and endovascular classification schemes for brain arteriovenous malformations.
Tayebi Meybodi, Ali; Lawton, Michael T
2018-05-04
Stereotactic radiosurgery (SRS) and endovascular techniques are commonly used for treating brain arteriovenous malformations (bAVMs). They are usually used as ancillary techniques to microsurgery but may also be used as solitary treatment options. Careful patient selection requires a clear estimate of the treatment efficacy and complication rates for the individual patient. As such, classification schemes are an essential part of patient selection paradigm for each treatment modality. While the Spetzler-Martin grading system and its subsequent modifications are commonly used for microsurgical outcome prediction for bAVMs, the same system(s) may not be easily applicable to SRS and endovascular therapy. Several radiosurgical- and endovascular-based grading scales have been proposed for bAVMs. However, a comprehensive review of these systems including a discussion on their relative advantages and disadvantages is missing. This paper is dedicated to modern classification schemes designed for SRS and endovascular techniques.
Sarkar, Sankho Turjo; Bhondekar, Amol P; Macaš, Martin; Kumar, Ritesh; Kaur, Rishemjit; Sharma, Anupma; Gulati, Ashu; Kumar, Amod
2015-11-01
The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Wen; Zhu, Jin-Yong; Lu, Kai-Hong; Wan, Li; Mao, Xiao-Hua
2014-06-01
Appropriate schemes for classification of freshwater phytoplankton are prerequisites and important tools for revealing phytoplanktonic succession and studying freshwater ecosystems. An alternative approach, functional group of freshwater phytoplankton, has been proposed and developed due to the deficiencies of Linnaean and molecular identification in ecological applications. The functional group of phytoplankton is a classification scheme based on autoecology. In this study, the theoretical basis and classification criterion of functional group (FG), morpho-functional group (MFG) and morphology-based functional group (MBFG) were summarized, as well as their merits and demerits. FG was considered as the optimal classification approach for the aquatic ecology research and aquatic environment evaluation. The application status of FG was introduced, with the evaluation standards and problems of two approaches to assess water quality on the basis of FG, index methods of Q and QR, being briefly discussed.
Fernandes, Melissa A; Verstraete, Sofia G; Garnett, Elizabeth A; Heyman, Melvin B
2016-02-01
The aim of the study was to investigate the value of microscopic findings in the classification of pediatric Crohn disease (CD) by determining whether classification of disease changes significantly with inclusion of histologic findings. Sixty patients were randomly selected from a cohort of patients studied at the Pediatric Inflammatory Bowel Disease Clinic at the University of California, San Francisco Benioff Children's Hospital. Two physicians independently reviewed the electronic health records of the included patients to determine the Paris classification for each patient by adhering to present guidelines and then by including microscopic findings. Macroscopic and combined disease location classifications were discordant in 34 (56.6%), with no statistically significant differences between groups. Interobserver agreement was higher in the combined classification (κ = 0.73, 95% confidence interval 0.65-0.82) as opposed to when classification was limited to macroscopic findings (κ = 0.53, 95% confidence interval 0.40-0.58). When evaluating the proximal upper gastrointestinal tract (Paris L4a), the interobserver agreement was better in macroscopic compared with the combined classification. Disease extent classifications differed significantly when comparing isolated macroscopic findings (Paris classification) with the combined scheme that included microscopy. Further studies are needed to determine which scheme provides more accurate representation of disease extent.
The search for structure - Object classification in large data sets. [for astronomers
NASA Technical Reports Server (NTRS)
Kurtz, Michael J.
1988-01-01
Research concerning object classifications schemes are reviewed, focusing on large data sets. Classification techniques are discussed, including syntactic, decision theoretic methods, fuzzy techniques, and stochastic and fuzzy grammars. Consideration is given to the automation of MK classification (Morgan and Keenan, 1973) and other problems associated with the classification of spectra. In addition, the classification of galaxies is examined, including the problems of systematic errors, blended objects, galaxy types, and galaxy clusters.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-01-01
Introduction: Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. Aim: The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. Methods: first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. Results: There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. Conclusion: The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research. PMID:28883671
Classification and reduction of pilot error
NASA Technical Reports Server (NTRS)
Rogers, W. H.; Logan, A. L.; Boley, G. D.
1989-01-01
Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses.
Local readout enhancement for detuned signal-recycling interferometers
NASA Astrophysics Data System (ADS)
Rehbein, Henning; Müller-Ebhardt, Helge; Somiya, Kentaro; Li, Chao; Schnabel, Roman; Danzmann, Karsten; Chen, Yanbei
2007-09-01
High power detuned signal-recycling interferometers currently planned for second-generation interferometric gravitational-wave detectors (for example Advanced LIGO) are characterized by two resonances in the detection band, an optical resonance and an optomechanical resonance which is upshifted from the suspension pendulum frequency due to the so-called optical-spring effect. The detector’s sensitivity is enhanced around these two resonances. However, at frequencies below the optomechanical resonance frequency, the sensitivity of such interferometers is significantly lower than non-optical-spring configurations with comparable circulating power; such a drawback can also compromise high-frequency sensitivity, when an optimization is performed on the overall sensitivity of the interferometer to a class of sources. In this paper, we clarify the reason for such a low sensitivity, and propose a way to fix this problem. Motivated by the optical-bar scheme of Braginsky, Gorodetsky, and Khalili, we propose to add a local readout scheme which measures the motion of the arm-cavity front mirror, which at low frequencies moves together with the arm-cavity end mirror, under the influence of gravitational waves. This scheme improves the low-frequency quantum-noise-limited sensitivity of optical-spring interferometers significantly and can be considered as an incorporation of the optical-bar scheme into currently planned second-generation interferometers. On the other hand it can be regarded as an extension of the optical-bar scheme. Taking compact binary inspiral signals as an example, we illustrate how this scheme can be used to improve the sensitivity of the planned Advanced LIGO interferometer, in various scenarios, using a realistic classical-noise budget. We also discuss how this scheme can be implemented in Advanced LIGO with relative ease.
A Visual Basic program to plot sediment grain-size data on ternary diagrams
Poppe, L.J.; Eliason, A.H.
2008-01-01
Sedimentologic datasets are typically large and compiled into tables or databases, but pure numerical information can be difficult to understand and interpret. Thus, scientists commonly use graphical representations to reduce complexities, recognize trends and patterns in the data, and develop hypotheses. Of the graphical techniques, one of the most common methods used by sedimentologists is to plot the basic gravel, sand, silt, and clay percentages on equilateral triangular diagrams. This means of presenting data is simple and facilitates rapid classification of sediments and comparison of samples.The original classification scheme developed by Shepard (1954) used a single ternary diagram with sand, silt, and clay in the corners and 10 categories to graphically show the relative proportions among these three grades within a sample. This scheme, however, did not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme was later modified by the addition of a second ternary diagram with two categories to account for gravel and gravelly sediment (Schlee, 1973). The system devised by Folk (1954, 1974)\\ is also based on two triangular diagrams, but it has 21 categories and uses the term mud (defined as silt plus clay). Patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of the highest current velocity at the time of deposition as is the maximum grain size of the detritus that is available; Shepard's classification scheme emphasizes the ratios of sand, silt, and clay because they reflect sorting and reworking (Poppe et al., 2005).The program described herein (SEDPLOT) generates verbal equivalents and ternary diagrams to characterize sediment grain-size distributions. It is written in Microsoft Visual Basic 6.0 and provides a window to facilitate program execution. The inputs for the sediment fractions are percentages of gravel, sand, silt, and clay in the Wentworth (1922) grade scale, and the program permits the user to select output in either the Shepard (1954) classification scheme, modified as described above, or the Folk (1954, 1974) scheme. Users select options primarily with mouse-click events and through interactive dialogue boxes. This program is intended as a companion to other Visual Basic software we have developed to process sediment data (Poppe et al., 2003, 2004).
NASA Astrophysics Data System (ADS)
Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard
2012-03-01
The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.
NASA Astrophysics Data System (ADS)
Maiti, Anup Kumar; Nath Roy, Jitendra; Mukhopadhyay, Sourangshu
2007-08-01
In the field of optical computing and parallel information processing, several number systems have been used for different arithmetic and algebraic operations. Therefore an efficient conversion scheme from one number system to another is very important. Modified trinary number (MTN) has already taken a significant role towards carry and borrow free arithmetic operations. In this communication, we propose a tree-net architecture based all optical conversion scheme from binary number to its MTN form. Optical switch using nonlinear material (NLM) plays an important role.
High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.
Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K
2010-03-29
A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.
NASA Astrophysics Data System (ADS)
Broderick, Ciaran; Fealy, Rowan
2013-04-01
Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.
The Classification of Hysteria and Related Disorders: Historical and Phenomenological Considerations
North, Carol S.
2015-01-01
This article examines the history of the conceptualization of dissociative, conversion, and somatoform syndromes in relation to one another, chronicles efforts to classify these and other phenomenologically-related psychopathology in the American diagnostic system for mental disorders, and traces the subsequent divergence in opinions of dissenting sectors on classification of these disorders. This article then considers the extensive phenomenological overlap across these disorders in empirical research, and from this foundation presents a new model for the conceptualization of these disorders. The classification of disorders formerly known as hysteria and phenomenologically-related syndromes has long been contentious and unsettled. Examination of the long history of the conceptual difficulties, which remain inherent in existing classification schemes for these disorders, can help to address the continuing controversy. This review clarifies the need for a major conceptual revision of the current classification of these disorders. A new phenomenologically-based classification scheme for these disorders is proposed that is more compatible with the agnostic and atheoretical approach to diagnosis of mental disorders used by the current classification system. PMID:26561836
Hazrati, Mehrnaz Kh; Erfanian, Abbas
2008-01-01
This paper presents a new EEG-based Brain-Computer Interface (BCI) for on-line controlling the sequence of hand grasping and holding in a virtual reality environment. The goal of this research is to develop an interaction technique that will allow the BCI to be effective in real-world scenarios for hand grasp control. Moreover, for consistency of man-machine interface, it is desirable the intended movement to be what the subject imagines. For this purpose, we developed an on-line BCI which was based on the classification of EEG associated with imagination of the movement of hand grasping and resting state. A classifier based on probabilistic neural network (PNN) was introduced for classifying the EEG. The PNN is a feedforward neural network that realizes the Bayes decision discriminant function by estimating probability density function using mixtures of Gaussian kernels. Two types of classification schemes were considered here for on-line hand control: adaptive and static. In contrast to static classification, the adaptive classifier was continuously updated on-line during recording. The experimental evaluation on six subjects on different days demonstrated that by using the static scheme, a classification accuracy as high as the rate obtained by the adaptive scheme can be achieved. At the best case, an average classification accuracy of 93.0% and 85.8% was obtained using adaptive and static scheme, respectively. The results obtained from more than 1500 trials on six subjects showed that interactive virtual reality environment can be used as an effective tool for subject training in BCI.
In-TFT-array-process micro defect inspection using nonlinear principal component analysis.
Liu, Yi-Hung; Wang, Chi-Kai; Ting, Yung; Lin, Wei-Zhi; Kang, Zhi-Hao; Chen, Ching-Shun; Hwang, Jih-Shang
2009-11-20
Defect inspection plays a critical role in thin film transistor liquid crystal display (TFT-LCD) manufacture, and has received much attention in the field of automatic optical inspection (AOI). Previously, most focus was put on the problems of macro-scale Mura-defect detection in cell process, but it has recently been found that the defects which substantially influence the yield rate of LCD panels are actually those in the TFT array process, which is the first process in TFT-LCD manufacturing. Defect inspection in TFT array process is therefore considered a difficult task. This paper presents a novel inspection scheme based on kernel principal component analysis (KPCA) algorithm, which is a nonlinear version of the well-known PCA algorithm. The inspection scheme can not only detect the defects from the images captured from the surface of LCD panels, but also recognize the types of the detected defects automatically. Results, based on real images provided by a LCD manufacturer in Taiwan, indicate that the KPCA-based defect inspection scheme is able to achieve a defect detection rate of over 99% and a high defect classification rate of over 96% when the imbalanced support vector machine (ISVM) with 2-norm soft margin is employed as the classifier. More importantly, the inspection time is less than 1 s per input image.
Classification of Instructional Programs: 2000 Edition.
ERIC Educational Resources Information Center
Morgan, Robert L.; Hunt, E. Stephen
This third revision of the Classification of Instructional Programs (CIP) updates and modifies education program classifications, providing a taxonomic scheme that supports the accurate tracking, assessment, and reporting of field of study and program completions activity. This edition has also been adopted as the standard field of study taxonomy…
Attribution of local climate zones using a multitemporal land use/land cover classification scheme
NASA Astrophysics Data System (ADS)
Wicki, Andreas; Parlow, Eberhard
2017-04-01
Worldwide, the number of people living in an urban environment exceeds the rural population with increasing tendency. Especially in relation to global climate change, cities play a major role considering the impacts of extreme heat waves on the population. For urban planners, it is important to know which types of urban structures are beneficial for a comfortable urban climate and which actions can be taken to improve urban climate conditions. Therefore, it is essential to differ between not only urban and rural environments, but also between different levels of urban densification. To compare these built-up types within different cities worldwide, Stewart and Oke developed the concept of local climate zones (LCZ) defined by morphological characteristics. The original LCZ scheme often has considerable problems when adapted to European cities with historical city centers, including narrow streets and irregular patterns. In this study, a method to bridge the gap between a classical land use/land cover (LULC) classification and the LCZ scheme is presented. Multitemporal Landsat 8 data are used to create a high accuracy LULC map, which is linked to the LCZ by morphological parameters derived from a high-resolution digital surface model and cadastral data. A bijective combination of the different classification schemes could not be achieved completely due to overlapping threshold values and the spatially homogeneous distribution of morphological parameters, but the attribution of LCZ to the LULC classification was successful.
Self-match based on polling scheme for passive optical network monitoring
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Guo, Hao; Jia, Xinhong; Liao, Qinghua
2018-06-01
We propose a self-match based on polling scheme for passive optical network monitoring. Each end-user is equipped with an optical matcher that exploits only the specific length patchcord and two different fiber Bragg gratings with 100% reflectivity. The simple and low-cost scheme can greatly simplify the final recognition processing of the network link status and reduce the sensitivity of the photodetector. We analyze the time-domain relation between reflected pulses and establish the calculation model to evaluate the false alarm rate. The feasibility of the proposed scheme and the validity of the time-domain relation analysis are experimentally demonstrated.
Optical burst switching for the next generation Optical Internet
NASA Astrophysics Data System (ADS)
Yoo, Myungsik
2000-11-01
In recent years, Internet Protocol (IP) over Wavelength Division Multiplexing (WDM) networks for the next generation Internet (or the so-called Optical Internet) have received enormous attention. There are two main drivers for an Optical Internet. One is the explosion of Internet traffic, which seems to keep growing exponentially. The other driver is the rapid advance in the WDM optical networking technology. In this study, key issues in the optical (WDM) layer will be investigated. As a novel switching paradigm for Optical Internet, Optical Burst Switching (OBS) is discussed. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS can combine the best of optical circuit-switching and packet/cell switching. The general concept of JET-based OBS protocol is described, including offset time and delayed reservation. In the next generation Optical Internet, one must address how to support Quality of Service (QoS) at the WDM layer since current IP provides only best effort services. The offset-time- based QoS scheme is proposed as a way of supporting QoS at the WDM layer. Unlike existing QoS schemes, offset- time-based QoS scheme does not mandate the use of buffer to differentiate services. For the bufferless WDM switch, the performance of offset- time-based QoS scheme is evaluated in term of blocking probability. In addition, the extra offset time required for class isolation is quantified and the theoretical bounds on blocking probability are analyzed. The offset-time-based scheme is applied to WDM switch with limited fiber delay line (FDL) buffer. We evaluate the effect of having a FDL buffer on the QoS performance of the offset-time-based scheme in terms of the loss probability and queuing delay of bursts. Finally, in order to dimension the network resources in Optical Internet backbone networks, the performance of the offset-time-based QoS scheme is evaluated for the multi-hop case. In particular, we consider very high performance Backbone Network Service (vBNS) backbone network. Various policies such as drop, retransmission, deflection routing and buffering are considered for performance evaluation. The performance results obtained under these policies are compared to decide the most efficient policy for the WDM backbone network.
Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver
NASA Astrophysics Data System (ADS)
Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra
2018-05-01
We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.
A new precoding scheme for spectral efficient optical OFDM systems
NASA Astrophysics Data System (ADS)
Hardan, Saad Mshhain; Bayat, Oguz; Abdulkafi, Ayad Atiyah
2018-07-01
Achieving high spectral efficiency is the key requirement of 5G and optical wireless communication systems and has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in communications systems. In this paper, we propose a new precoding/decoding algorithm for spectral efficient optical orthogonal frequency division multiplexing (OFDM) scheme based visible light communication (VLC) systems. The proposed coded modulated optical (CMO) based OFDM system can be applied for both single input single output (SISO) and multiple input multiple-output (MIMO) architectures. Firstly, the real OFDM time domain signal is obtained through invoking the precoding/decoding algorithm without the Hermitian symmetry. After that, the positive signal is achieved either by adding a DC-bias or by using the spatial multiplexing technique. The proposed CMO-OFDM scheme efficiently improves the spectral efficiency of the VLC system as it does not require the Hermitian symmetry constraint to yield real signals. A comparison of the performance improvement of the proposed scheme with other OFDM approaches is also presented in this work. Simulation results show that the proposed CMO-OFDM scheme can not only enhance the spectral efficiency of OFDM-based VLC systems but also improve bit error rate (BER) performance compared with other optical OFDM schemes.
NASA Astrophysics Data System (ADS)
Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.
2014-12-01
According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa
2018-07-01
Automatic text classification techniques are useful for classifying plaintext medical documents. This study aims to automatically predict the cause of death from free text forensic autopsy reports by comparing various schemes for feature extraction, term weighing or feature value representation, text classification, and feature reduction. For experiments, the autopsy reports belonging to eight different causes of death were collected, preprocessed and converted into 43 master feature vectors using various schemes for feature extraction, representation, and reduction. The six different text classification techniques were applied on these 43 master feature vectors to construct a classification model that can predict the cause of death. Finally, classification model performance was evaluated using four performance measures i.e. overall accuracy, macro precision, macro-F-measure, and macro recall. From experiments, it was found that that unigram features obtained the highest performance compared to bigram, trigram, and hybrid-gram features. Furthermore, in feature representation schemes, term frequency, and term frequency with inverse document frequency obtained similar and better results when compared with binary frequency, and normalized term frequency with inverse document frequency. Furthermore, the chi-square feature reduction approach outperformed Pearson correlation, and information gain approaches. Finally, in text classification algorithms, support vector machine classifier outperforms random forest, Naive Bayes, k-nearest neighbor, decision tree, and ensemble-voted classifier. Our results and comparisons hold practical importance and serve as references for future works. Moreover, the comparison outputs will act as state-of-art techniques to compare future proposals with existing automated text classification techniques. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
DREAM: Classification scheme for dialog acts in clinical research query mediation.
Hoxha, Julia; Chandar, Praveen; He, Zhe; Cimino, James; Hanauer, David; Weng, Chunhua
2016-02-01
Clinical data access involves complex but opaque communication between medical researchers and query analysts. Understanding such communication is indispensable for designing intelligent human-machine dialog systems that automate query formulation. This study investigates email communication and proposes a novel scheme for classifying dialog acts in clinical research query mediation. We analyzed 315 email messages exchanged in the communication for 20 data requests obtained from three institutions. The messages were segmented into 1333 utterance units. Through a rigorous process, we developed a classification scheme and applied it for dialog act annotation of the extracted utterances. Evaluation results with high inter-annotator agreement demonstrate the reliability of this scheme. This dataset is used to contribute preliminary understanding of dialog acts distribution and conversation flow in this dialog space. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi
2006-05-01
This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.
OSLG: A new granting scheme in WDM Ethernet passive optical networks
NASA Astrophysics Data System (ADS)
Razmkhah, Ali; Rahbar, Akbar Ghaffarpour
2011-12-01
Several granting schemes have been proposed to grant transmission window and dynamic bandwidth allocation (DBA) in passive optical networks (PON). Generally, granting schemes suffer from bandwidth wastage of granted windows. Here, we propose a new granting scheme for WDM Ethernet PONs, called optical network unit (ONU) Side Limited Granting (OSLG) that conserves upstream bandwidth, thus resulting in decreasing queuing delay and packet drop ratio. In OSLG instead of optical line terminal (OLT), each ONU determines its transmission window. Two OSLG algorithms are proposed in this paper: the OSLG_GA algorithm that determines the size of its transmission window in such a way that the bandwidth wastage problem is relieved, and the OSLG_SC algorithm that saves unused bandwidth for more bandwidth utilization later on. The OSLG can be used as granting scheme of any DBA to provide better performance in the terms of packet drop ratio and queuing delay. Our performance evaluations show the effectiveness of OSLG in reducing packet drop ratio and queuing delay under different DBA techniques.
Rapid evaluation of high-performance systems
NASA Astrophysics Data System (ADS)
Forbes, G. W.; Ruoff, J.
2017-11-01
System assessment for design often involves averages, such as rms wavefront error, that are estimated by ray tracing through a sample of points within the pupil. Novel general-purpose sampling and weighting schemes are presented and it is also shown that optical design can benefit from tailored versions of these schemes. It turns out that the type of Gaussian quadrature that has long been recognized for efficiency in this domain requires about 40-50% more ray tracing to attain comparable accuracy to generic versions of the new schemes. Even greater efficiency gains can be won, however, by tailoring such sampling schemes to the optical context where azimuthal variation in the wavefront is generally weaker than the radial variation. These new schemes are special cases of what is known in the mathematical world as cubature. Our initial results also led to the consideration of simpler sampling configurations that approximate the newfound cubature schemes. We report on the practical application of a selection of such schemes and make observations that aid in the discovery of novel cubature schemes relevant to optical design of systems with circular pupils.
NASA Astrophysics Data System (ADS)
Fu, Meixia; Zhang, Min; Wang, Danshi; Cui, Yue; Han, Huanhuan
2016-10-01
We propose a scheme of optical duobinary-modulated upstream transmission system for reflective semiconductor optical amplifier-based colorless optical network units in 10-Gbps wavelength-division multiplexed passive optical network (WDM-PON), where a fiber Bragg grating (FBG) is adopted as an optical equalizer for better performance. The demodulation module is extremely simple, only needing a binary intensity modulation direct detection receiver. A better received sensitivity of -16.98 dBm at bit rate error (BER)=1.0×10-4 can be achieved at 120 km without FBG, and the BER at the sensitivity of -18.49 dBm can be up to 2.1×10-5 at the transmission distance of 160 km with FBG, which demonstrates the feasibility of our proposed scheme. Moreover, it could be a high cost-effectiveness scheme for WDM-PON in the future.
NASA Technical Reports Server (NTRS)
Moore, Timothy; Dowell, Mark; Franz, Bryan A.
2012-01-01
A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.
QR code based noise-free optical encryption and decryption of a gray scale image
NASA Astrophysics Data System (ADS)
Jiao, Shuming; Zou, Wenbin; Li, Xia
2017-03-01
In optical encryption systems, speckle noise is one major challenge in obtaining high quality decrypted images. This problem can be addressed by employing a QR code based noise-free scheme. Previous works have been conducted for optically encrypting a few characters or a short expression employing QR codes. This paper proposes a practical scheme for optically encrypting and decrypting a gray-scale image based on QR codes for the first time. The proposed scheme is compatible with common QR code generators and readers. Numerical simulation results reveal the proposed method can encrypt and decrypt an input image correctly.
New optical scheme for a polarimetric-based glucose sensor
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Bockle, Stefan; Rovati, Luigi
2004-01-01
A new optical scheme to detect glucose concentration in the aqueous humor of the eye is presented. The ultimate aim is to apply this technique in designing a new instrument for, routinely and frequently, noninvasively monitoring blood glucose levels in diabetic patients without contact (no index matching) between the eye and the instrument. The optical scheme exploits the Brewster reflection of circularly polarized light off of the lens of the eye. Theoretically, this reflected linearly polarized light on its way to the detector is expected to rotate its state of polarization, owing to the presence of glucose molecules in the aqueous humor of a patient's eye. An experimental laboratory setup based on this scheme was designed and tested by measuring a range of known concentrations of glucose solutions dissolved in water. (c) 2004 Society of Photo-Optical Instrumentation Engineers.
Acute Oral Toxicity of Trimethylolethane Trinitrate (TMETN) in Sprague- Dawley Rats
1989-07-01
classification scheme of Hodge and Steiner, these results indicate that TMETN is a slightly toxic compound.1 20. ON-RIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT...the classification scheme of Hodge and Sterner, these results indcate that TMETN is a slightly toxic compound. KEY WORDS: Acute Oral Toxicit-y...Dawley rats and 1027.4 63.7 mg/kg in female Sprague-Dawley rats. These MLD values place TMETN in the "slightly toxic" range by the system of Hodge and
NASA Astrophysics Data System (ADS)
Kim, Jungho
2013-11-01
We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.
NASA Scope and Subject Category Guide
NASA Technical Reports Server (NTRS)
2011-01-01
This guide provides a simple, effective tool to assist aerospace information analysts and database builders in the high-level subject classification of technical materials. Each of the 76 subject categories comprising the classification scheme is presented with a description of category scope, a listing of subtopics, cross references, and an indication of particular areas of NASA interest. The guide also includes an index of nearly 3,000 specific research topics cross referenced to the subject categories. The portable document format (PDF) version of the guide contains links in the index from each input subject to its corresponding categories. In addition to subject classification, the guide can serve as an aid to searching databases that use the classification scheme, and is also an excellent selection guide for those involved in the acquisition of aerospace literature. The CD-ROM contains both HTML and PDF versions.
Chao, Eunice; Krewski, Daniel
2008-12-01
This paper presents an exploratory evaluation of four functional components of a proposed risk-based classification scheme (RBCS) for crop-derived genetically modified (GM) foods in a concordance study. Two independent raters assigned concern levels to 20 reference GM foods using a rating form based on the proposed RBCS. The four components of evaluation were: (1) degree of concordance, (2) distribution across concern levels, (3) discriminating ability of the scheme, and (4) ease of use. At least one of the 20 reference foods was assigned to each of the possible concern levels, demonstrating the ability of the scheme to identify GM foods of different concern with respect to potential health risk. There was reasonably good concordance between the two raters for the three separate parts of the RBCS. The raters agreed that the criteria in the scheme were sufficiently clear in discriminating reference foods into different concern levels, and that with some experience, the scheme was reasonably easy to use. Specific issues and suggestions for improvements identified in the concordance study are discussed.
A new local-global approach for classification.
Peres, R T; Pedreira, C E
2010-09-01
In this paper, we propose a new local-global pattern classification scheme that combines supervised and unsupervised approaches, taking advantage of both, local and global environments. We understand as global methods the ones concerned with the aim of constructing a model for the whole problem space using the totality of the available observations. Local methods focus into sub regions of the space, possibly using an appropriately selected subset of the sample. In the proposed method, the sample is first divided in local cells by using a Vector Quantization unsupervised algorithm, the LBG (Linde-Buzo-Gray). In a second stage, the generated assemblage of much easier problems is locally solved with a scheme inspired by Bayes' rule. Four classification methods were implemented for comparison purposes with the proposed scheme: Learning Vector Quantization (LVQ); Feedforward Neural Networks; Support Vector Machine (SVM) and k-Nearest Neighbors. These four methods and the proposed scheme were implemented in eleven datasets, two controlled experiments, plus nine public available datasets from the UCI repository. The proposed method has shown a quite competitive performance when compared to these classical and largely used classifiers. Our method is simple concerning understanding and implementation and is based on very intuitive concepts. Copyright 2010 Elsevier Ltd. All rights reserved.
A novel encoding scheme for effective biometric discretization: Linearly Separable Subcode.
Lim, Meng-Hui; Teoh, Andrew Beng Jin
2013-02-01
Separability in a code is crucial in guaranteeing a decent Hamming-distance separation among the codewords. In multibit biometric discretization where a code is used for quantization-intervals labeling, separability is necessary for preserving distance dissimilarity when feature components are mapped from a discrete space to a Hamming space. In this paper, we examine separability of Binary Reflected Gray Code (BRGC) encoding and reveal its inadequacy in tackling interclass variation during the discrete-to-binary mapping, leading to a tradeoff between classification performance and entropy of binary output. To overcome this drawback, we put forward two encoding schemes exhibiting full-ideal and near-ideal separability capabilities, known as Linearly Separable Subcode (LSSC) and Partially Linearly Separable Subcode (PLSSC), respectively. These encoding schemes convert the conventional entropy-performance tradeoff into an entropy-redundancy tradeoff in the increase of code length. Extensive experimental results vindicate the superiority of our schemes over the existing encoding schemes in discretization performance. This opens up possibilities of achieving much greater classification performance with high output entropy.
Generation and coherent detection of QPSK signal using a novel method of digital signal processing
NASA Astrophysics Data System (ADS)
Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui
2018-02-01
We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.
Interpretation for scales of measurement linking with abstract algebra
2014-01-01
The Stevens classification of levels of measurement involves four types of scale: “Nominal”, “Ordinal”, “Interval” and “Ratio”. This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; ‘Abelian modulo additive group’ for “Ordinal scale” accompanied with ‘zero’, ‘Abelian additive group’ for “Interval scale”, and ‘field’ for “Ratio scale”. Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected. PMID:24987515
Interpretation for scales of measurement linking with abstract algebra.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2014-01-01
THE STEVENS CLASSIFICATION OF LEVELS OF MEASUREMENT INVOLVES FOUR TYPES OF SCALE: "Nominal", "Ordinal", "Interval" and "Ratio". This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; 'Abelian modulo additive group' for "Ordinal scale" accompanied with 'zero', 'Abelian additive group' for "Interval scale", and 'field' for "Ratio scale". Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected.
FORUM: A Suggestion for an Improved Vegetation Scheme for Local and Global Mapping and Monitoring.
ADAMS
1999-01-01
/ Understanding of global ecological problems is at least partly dependent on clear assessments of vegetation change, and such assessment is always dependent on the use of a vegetation classification scheme. Use of satellite remotely sensed data is the only practical means of carrying out any global-scale vegetation mapping exercise, but if the resulting maps are to be useful to most ecologists and conservationists, they must be closely tied to clearly defined features of vegetation on the ground. Furthermore, much of the mapping that does take place involves more local-scale description of field sites; for purposes of cost and practicality, such studies usually do not involve remote sensing using satellites. There is a need for a single scheme that integrates the smallest to the largest scale in a way that is meaningful to most environmental scientists. Existing schemes are unsatisfactory for this task; they are ambiguous, unnecessarily complex, and their categories do not correspond to common-sense definitions. In response to these problems, a simple structural-physiognomically based scheme with 23 fundamental categories is proposed here for mapping and monitoring on any scale, from local to global. The fundamental categories each subdivide into more specific structural categories for more detailed mapping, but all the categories can be used throughout the world and at any scale, allowing intercomparison between regions. The next stage in the process will be to obtain the views of as many people working in as many different fields as possible, to see whether the proposed scheme suits their needs and how it should be modified. With a few modifications, such a scheme could easily be appended to an existing land cover classification scheme, such as the FAO system, greatly increasing the usefulness and accessability of the results of the landcover classification. KEY WORDS: Vegetation scheme; Mapping; Monitoring; Land cover
Paschalidou, A K; Kassomenos, P A
2016-01-01
Wildfire management is closely linked to robust forecasts of changes in wildfire risk related to meteorological conditions. This link can be bridged either through fire weather indices or through statistical techniques that directly relate atmospheric patterns to wildfire activity. In the present work the COST-733 classification schemes are applied in order to link wildfires in Greece with synoptic circulation patterns. The analysis reveals that the majority of wildfire events can be explained by a small number of specific synoptic circulations, hence reflecting the synoptic climatology of wildfires. All 8 classification schemes used, prove that the most fire-dangerous conditions in Greece are characterized by a combination of high atmospheric pressure systems located N to NW of Greece, coupled with lower pressures located over the very Eastern part of the Mediterranean, an atmospheric pressure pattern closely linked to the local Etesian winds over the Aegean Sea. During these events, the atmospheric pressure has been reported to be anomalously high, while anomalously low 500hPa geopotential heights and negative total water column anomalies were also observed. Among the various classification schemes used, the 2 Principal Component Analysis-based classifications, namely the PCT and the PXE, as well as the Leader Algorithm classification LND proved to be the best options, in terms of being capable to isolate the vast amount of fire events in a small number of classes with increased frequency of occurrence. It is estimated that these 3 schemes, in combination with medium-range to seasonal climate forecasts, could be used by wildfire risk managers to provide increased wildfire prediction accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
Computer-aided diagnosis of pulmonary diseases using x-ray darkfield radiography
NASA Astrophysics Data System (ADS)
Einarsdóttir, Hildur; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Hellbach, Katharina; Auweter, Sigrid; Yildirim, Önder; Meinel, Felix G.; Eickelberg, Oliver; Reiser, Maximilian; Larsen, Rasmus; Kjær Ersbøll, Bjarne; Pfeiffer, Franz
2015-12-01
In this work we develop a computer-aided diagnosis (CAD) scheme for classification of pulmonary disease for grating-based x-ray radiography. In addition to conventional transmission radiography, the grating-based technique provides a dark-field imaging modality, which utilizes the scattering properties of the x-rays. This modality has shown great potential for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. The CAD scheme is developed to assist radiologists and other medical experts to develop new diagnostic methods when evaluating grating-based images. The scheme consists of three stages: (i) automatic lung segmentation; (ii) feature extraction from lung shape and dark-field image intensities; (iii) classification between healthy, emphysema and fibrosis lungs. A study of 102 mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. Each image was manually annotated to build an experimental dataset. System performance was assessed by: (i) determining the quality of the segmentations; (ii) validating emphysema and fibrosis recognition by a linear support vector machine using leave-one-out cross-validation. In terms of segmentation quality, we obtained an overlap percentage (Ω) 92.63 ± 3.65%, Dice Similarity Coefficient (DSC) 89.74 ± 8.84% and Jaccard Similarity Coefficient 82.39 ± 12.62%. For classification, the accuracy, sensitivity and specificity of diseased lung recognition was 100%. Classification between emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity was 94% and specificity 88%. In addition to the automatic classification of lungs, deviation maps created by the CAD scheme provide a visual aid for medical experts to further assess the severity of pulmonary disease in the lung, and highlights regions affected.
Spectroscopic Classifications of Optical Transients with Keck I/LRIS
NASA Astrophysics Data System (ADS)
Foley, R. J.; Rojas-Bravo, C.
2018-05-01
We report the following classifications of optical transients from spectroscopic observations with LRIS on the Keck I 10-m telescope. Targets were supplied by the ASAS-SN and PSH. All observations were made on 2018 May 10 UT. Classifications were performed with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).
Centrifuge: rapid and sensitive classification of metagenomic sequences.
Kim, Daehwan; Song, Li; Breitwieser, Florian P; Salzberg, Steven L
2016-12-01
Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. © 2016 Kim et al.; Published by Cold Spring Harbor Laboratory Press.
"Interactive Classification Technology"
NASA Technical Reports Server (NTRS)
deBessonet, Cary
1999-01-01
The investigators are upgrading a knowledge representation language called SL (Symbolic Language) and an automated reasoning system called SMS (Symbolic Manipulation System) to enable the technologies to be used in automated reasoning and interactive classification systems. The overall goals of the project are: a) the enhancement of the representation language SL to accommodate multiple perspectives and a wider range of meaning; b) the development of a sufficient set of operators to enable the interpreter of SL to handle representations of basic cognitive acts; and c) the development of a default inference scheme to operate over SL notation as it is encoded. As to particular goals the first-year work plan focused on inferencing and.representation issues, including: 1) the development of higher level cognitive/ classification functions and conceptual models for use in inferencing and decision making; 2) the specification of a more detailed scheme of defaults and the enrichment of SL notation to accommodate the scheme; and 3) the adoption of additional perspectives for inferencing.
NASA Astrophysics Data System (ADS)
Lazri, Mourad; Ameur, Soltane
2018-05-01
A model combining three classifiers, namely Support vector machine, Artificial neural network and Random forest (SAR) is designed for improving the classification of convective and stratiform rain. This model (SAR model) has been trained and then tested on a datasets derived from MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager). Well-classified, mid-classified and misclassified pixels are determined from the combination of three classifiers. Mid-classified and misclassified pixels that are considered unreliable pixels are reclassified by using a novel training of the developed scheme. In this novel training, only the input data corresponding to the pixels in question to are used. This whole process is repeated a second time and applied to mid-classified and misclassified pixels separately. Learning and validation of the developed scheme are realized against co-located data observed by ground radar. The developed scheme outperformed different classifiers used separately and reached 97.40% of overall accuracy of classification.
Gangodagamage, Chandana; Wullschleger, Stan
2014-07-03
The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Liu, Ji-Zhen
2017-02-01
It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch-Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.
Self-healing ring-based WDM-PON
NASA Astrophysics Data System (ADS)
Zhou, Yang; Gan, Chaoqin; Zhu, Long
2010-05-01
In this paper, a survivable ring-based wavelength-division-multiplexing (WDM)-passive optical network (PON) for fiber protection is proposed. Protections for feeder fiber and distributed fiber are independent in the scheme. Optical line terminal (OLT) and optical network units (ONUs) can automatically switch to protection link when fiber failure occurs. Protection distributed fiber is not required in the scheme. Cost-effective components are used in ONUs to minimize costs of network. A simulation study is performed to demonstrate the scheme. Its result shows good performance of upstream and downstream signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Hai-Rui, E-mail: hrwei@ustb.edu.cn; Liu, Ji-Zhen
2017-02-15
It is very important to seek an efficient and robust quantum algorithm demanding less quantum resources. We propose one-photon three-qubit original and refined Deutsch–Jozsa algorithms with polarization and two linear momentums degrees of freedom (DOFs). Our schemes are constructed by solely using linear optics. Compared to the traditional ones with one DOF, our schemes are more economic and robust because the necessary photons are reduced from three to one. Our linear-optic schemes are working in a determinate way, and they are feasible with current experimental technology.
On a two-pass scheme without a faraday mirror for free-space relativistic quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravtsov, K. S.; Radchenko, I. V.; Korol'kov, A. V.
2013-05-15
The stability of destructive interference independent of the input polarization and the state of a quantum communication channel in fiber optic systems used in quantum cryptography plays a principal role in providing the security of communicated keys. A novel optical scheme is proposed that can be used both in relativistic quantum cryptography for communicating keys in open space and for communicating them over fiber optic lines. The scheme ensures stability of destructive interference and admits simple automatic balancing of a fiber interferometer.
Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted
2010-09-13
We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).
Dewey Decimal Classification for U. S. Conn: An Advantage?
ERIC Educational Resources Information Center
Marek, Kate
This paper examines the use of the Dewey Decimal Classification (DDC) system at the U. S. Conn Library at Wayne State College (WSC) in Nebraska. Several developments in the last 20 years which have eliminated the trend toward reclassification of academic library collections from DDC to the Library of Congress (LC) classification scheme are…
A Global Classification System for Catchment Hydrology
NASA Astrophysics Data System (ADS)
Woods, R. A.
2004-05-01
It is a shocking state of affairs - there is no underpinning scientific taxonomy of catchments. There are widely used global classification systems for climate, river morphology, lakes and wetlands, but for river catchments there exists only a plethora of inconsistent, incomplete regional schemes. By proceeding without a common taxonomy for catchments, freshwater science has missed one of its key developmental stages, and has leapt from definition of phenomena to experiments, theories and models, without the theoretical framework of a classification. I propose the development of a global hierarchical classification system for physical aspects of river catchments, to help underpin physical science in the freshwater environment and provide a solid foundation for classification of river ecosystems. Such a classification scheme can open completely new vistas in hydrology: for example it will be possible to (i) rationally transfer experimental knowledge of hydrological processes between basins anywhere in the world, provided they belong to the same class; (ii) perform meaningful meta-analyses in order to reconcile studies that show inconsistent results (iii) generate new testable hypotheses which involve locations worldwide.
NASA Astrophysics Data System (ADS)
Kim, Jungho; Yu, Bong-Ahn
2015-03-01
We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases.
Guidelines for a priori grouping of species in hierarchical community models
Pacifici, Krishna; Zipkin, Elise; Collazo, Jaime; Irizarry, Julissa I.; DeWan, Amielle A.
2014-01-01
Recent methodological advances permit the estimation of species richness and occurrences for rare species by linking species-level occurrence models at the community level. The value of such methods is underscored by the ability to examine the influence of landscape heterogeneity on species assemblages at large spatial scales. A salient advantage of community-level approaches is that parameter estimates for data-poor species are more precise as the estimation process borrows from data-rich species. However, this analytical benefit raises a question about the degree to which inferences are dependent on the implicit assumption of relatedness among species. Here, we assess the sensitivity of community/group-level metrics, and individual-level species inferences given various classification schemes for grouping species assemblages using multispecies occurrence models. We explore the implications of these groupings on parameter estimates for avian communities in two ecosystems: tropical forests in Puerto Rico and temperate forests in northeastern United States. We report on the classification performance and extent of variability in occurrence probabilities and species richness estimates that can be observed depending on the classification scheme used. We found estimates of species richness to be most precise and to have the best predictive performance when all of the data were grouped at a single community level. Community/group-level parameters appear to be heavily influenced by the grouping criteria, but were not driven strictly by total number of detections for species. We found different grouping schemes can provide an opportunity to identify unique assemblage responses that would not have been found if all of the species were analyzed together. We suggest three guidelines: (1) classification schemes should be determined based on study objectives; (2) model selection should be used to quantitatively compare different classification approaches; and (3) sensitivity of results to different classification approaches should be assessed. These guidelines should help researchers apply hierarchical community models in the most effective manner.
2015-09-17
the literature, such as mode-locked lasers, optoelectronic oscillators , and laser optical heterodyne, our scheme is (1) up to 100 times better in... Optoelectronic oscillator : This scheme generates microwaves that are tunable only within a few gigahertz and that are stable with a linewidth down to 1 Hz... oscillation frequency, which can be easily adjusted by changing the power and frequency of the optical input. Tens to hundreds of GHz or even THz of
Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.
Malehi, Amal Saki
2014-01-01
The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.
Cooling schemes for two-component fermions in layered optical lattices
NASA Astrophysics Data System (ADS)
Goto, Shimpei; Danshita, Ippei
2017-12-01
Recently, a cooling scheme for ultracold atoms in a bilayer optical lattice has been proposed (A. Kantian et al., arXiv:1609.03579). In their scheme, the energy offset between the two layers is increased dynamically such that the entropy of one layer is transferred to the other layer. Using the full-Hilbert-space approach, we compute cooling dynamics subjected to the scheme in order to show that their scheme fails to cool down two-component fermions. We develop an alternative cooling scheme for two-component fermions, in which the spin-exchange interaction of one layer is significantly reduced. Using both full-Hilbert-space and matrix-product-state approaches, we find that our scheme can decrease the temperature of the other layer by roughly half.
Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.
Hoya, T; Chambers, J A
2001-01-01
In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.
Particle-size distribution models for the conversion of Chinese data to FAO/USDA system.
Shangguan, Wei; Dai, YongJiu; García-Gutiérrez, Carlos; Yuan, Hua
2014-01-01
We investigated eleven particle-size distribution (PSD) models to determine the appropriate models for describing the PSDs of 16349 Chinese soil samples. These data are based on three soil texture classification schemes, including one ISSS (International Society of Soil Science) scheme with four data points and two Katschinski's schemes with five and six data points, respectively. The adjusted coefficient of determination r (2), Akaike's information criterion (AIC), and geometric mean error ratio (GMER) were used to evaluate the model performance. The soil data were converted to the USDA (United States Department of Agriculture) standard using PSD models and the fractal concept. The performance of PSD models was affected by soil texture and classification of fraction schemes. The performance of PSD models also varied with clay content of soils. The Anderson, Fredlund, modified logistic growth, Skaggs, and Weilbull models were the best.
Coherence rephasing combined with spin-wave storage using chirped control pulses
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2014-06-01
Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.
Fast auto-focus scheme based on optical defocus fitting model
NASA Astrophysics Data System (ADS)
Wang, Yeru; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting; Cen, Min
2018-04-01
An optical defocus fitting model-based (ODFM) auto-focus scheme is proposed. Considering the basic optical defocus principle, the optical defocus fitting model is derived to approximate the potential-focus position. By this accurate modelling, the proposed auto-focus scheme can make the stepping motor approach the focal plane more accurately and rapidly. Two fitting positions are first determined for an arbitrary initial stepping motor position. Three images (initial image and two fitting images) at these positions are then collected to estimate the potential-focus position based on the proposed ODFM method. Around the estimated potential-focus position, two reference images are recorded. The auto-focus procedure is then completed by processing these two reference images and the potential-focus image to confirm the in-focus position using a contrast based method. Experimental results prove that the proposed scheme can complete auto-focus within only 5 to 7 steps with good performance even under low-light condition.
Optical sectioning in induced coherence tomography with frequency-entangled photons
NASA Astrophysics Data System (ADS)
Vallés, Adam; Jiménez, Gerard; Salazar-Serrano, Luis José; Torres, Juan P.
2018-02-01
We demonstrate a different scheme to perform optical sectioning of a sample based on the concept of induced coherence [Zou et al., Phys. Rev. Lett. 67, 318 (1991), 10.1103/PhysRevLett.67.318]. This can be viewed as a different type of optical coherence tomography scheme where the varying reflectivity of the sample along the direction of propagation of an optical beam translates into changes of the degree of first-order coherence between two beams. As a practical advantage the scheme allows probing the sample with one wavelength and measuring photons with another wavelength. In a bio-imaging scenario, this would result in a deeper penetration into the sample because of probing with longer wavelengths, while still using the optimum wavelength for detection. The scheme proposed here could achieve submicron axial resolution by making use of nonlinear parametric sources with broad spectral bandwidth emission.
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
NASA Astrophysics Data System (ADS)
Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Quiroz-Ruiz, Alfredo
2016-12-01
A new multidimensional classification scheme consistent with the chemical classification of the International Union of Geological Sciences (IUGS) is proposed for the nomenclature of High-Mg altered rocks. Our procedure is based on an extensive database of major element (SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, and P2O5) compositions of a total of 33,868 (920 High-Mg and 32,948 "Common") relatively fresh igneous rock samples. The database consisting of these multinormally distributed samples in terms of their isometric log-ratios was used to propose a set of 11 discriminant functions and 6 diagrams to facilitate High-Mg rock classification. The multinormality required by linear discriminant and canonical analysis was ascertained by a new computer program DOMuDaF. One multidimensional function can distinguish the High-Mg and Common igneous rocks with high percent success values of about 86.4% and 98.9%, respectively. Similarly, from 10 discriminant functions the High-Mg rocks can also be classified as one of the four rock types (komatiite, meimechite, picrite, and boninite), with high success values of about 88%-100%. Satisfactory functioning of this new classification scheme was confirmed by seven independent tests. Five further case studies involving application to highly altered rocks illustrate the usefulness of our proposal. A computer program HMgClaMSys was written to efficiently apply the proposed classification scheme, which will be available for online processing of igneous rock compositional data. Monte Carlo simulation modeling and mass-balance computations confirmed the robustness of our classification with respect to analytical errors and postemplacement compositional changes.
Adaptive video-based vehicle classification technique for monitoring traffic.
DOT National Transportation Integrated Search
2015-08-01
This report presents a methodology for extracting two vehicle features, vehicle length and number of axles in order : to classify the vehicles from video, based on Federal Highway Administration (FHWA)s recommended vehicle : classification scheme....
NASA Astrophysics Data System (ADS)
Li, Ze; Zhang, Min; Wang, Danshi; Cui, Yue
2017-09-01
We propose a flexible and reconfigurable wavelength-division multiplexing (WDM) multicast scheme supporting downstream emergency multicast communication for WDM optical access network (WDM-OAN) via a multicast module (MM) based on four-wave mixing (FWM) in a semiconductor optical amplifier. It serves as an emergency measure to dispose of the burst, large bandwidth, and real-time multicast service with fast service provisioning and high resource efficiency. It also plays the role of physical backup in cases of big data migration or network disaster caused by invalid lasers or modulator failures. It provides convenient and reliable multicast service and emergency protection for WDM-OAN without modifying WDM-OAN structure. The strategies of an MM setting at the optical line terminal and remote node are discussed to apply this scheme to passive optical networks and active optical networks, respectively. Utilizing the proposed scheme, we demonstrate a proof-of-concept experiment in which one-to-six/eight 10-Gbps nonreturn-to-zero-differential phase-shift keying WDM multicasts in both strategies are successfully transmitted over single-mode fiber of 20.2 km. One-to-many reconfigurable WDM multicasts dealing with higher data rate and other modulation formats of multicast service are possible through the proposed scheme. It can be applied to different WDM access technologies, e.g., time-wavelength-division multiplexing-OAN and coherent WDM-OAN, and upgraded smoothly.
NASA Astrophysics Data System (ADS)
Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.
1986-09-01
The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.
Optical flip-flops in a polarization-encoded optical shadow-casting scheme.
Rizvi, R A; Zubairy, M S
1994-06-10
We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.
Stygoregions – a promising approach to a bioregional classification of groundwater systems
Stein, Heide; Griebler, Christian; Berkhoff, Sven; Matzke, Dirk; Fuchs, Andreas; Hahn, Hans Jürgen
2012-01-01
Linked to diverse biological processes, groundwater ecosystems deliver essential services to mankind, the most important of which is the provision of drinking water. In contrast to surface waters, ecological aspects of groundwater systems are ignored by the current European Union and national legislation. Groundwater management and protection measures refer exclusively to its good physicochemical and quantitative status. Current initiatives in developing ecologically sound integrative assessment schemes by taking groundwater fauna into account depend on the initial classification of subsurface bioregions. In a large scale survey, the regional and biogeographical distribution patterns of groundwater dwelling invertebrates were examined for many parts of Germany. Following an exploratory approach, our results underline that the distribution patterns of invertebrates in groundwater are not in accordance with any existing bioregional classification system established for surface habitats. In consequence, we propose to develope a new classification scheme for groundwater ecosystems based on stygoregions. PMID:22993698
Application of holographic elements in displays and planar illuminators
NASA Astrophysics Data System (ADS)
Putilin, Andrew; Gustomiasov, Igor
2007-05-01
Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Miller, J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-04-01
We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST).
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Narayan, G.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.
2015-04-01
We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST).
Harmonic oscillator states in aberration optics
NASA Technical Reports Server (NTRS)
Wolf, Kurt Bernardo
1993-01-01
The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.
Tayebi Meybodi, Ali; Lawton, Michael T
2018-02-23
Brain arteriovenous malformations (bAVM) are challenging lesions. Part of this challenge stems from the infinite diversity of these lesions regarding shape, location, anatomy, and physiology. This diversity has called on a variety of treatment modalities for these lesions, of which microsurgical resection prevails as the mainstay of treatment. As such, outcome prediction and managing strategy mainly rely on unraveling the nature of these complex tangles and ways each lesion responds to various therapeutic modalities. This strategy needs the ability to decipher each lesion through accurate and efficient categorization. Therefore, classification schemes are essential parts of treatment planning and outcome prediction. This article summarizes different surgical classification schemes and outcome predictors proposed for bAVMs.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Siebert, M. R.; Foley, R. J.; Pan, Y.-C.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-08-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by Shunsuke Nagata, POSS, and ASAS-SN.
Fesharaki, Nooshin Jafari; Pourghassem, Hossein
2013-07-01
Due to the daily mass production and the widespread variation of medical X-ray images, it is necessary to classify these for searching and retrieving proposes, especially for content-based medical image retrieval systems. In this paper, a medical X-ray image hierarchical classification structure based on a novel merging and splitting scheme and using shape and texture features is proposed. In the first level of the proposed structure, to improve the classification performance, similar classes with regard to shape contents are grouped based on merging measures and shape features into the general overlapped classes. In the next levels of this structure, the overlapped classes split in smaller classes based on the classification performance of combination of shape and texture features or texture features only. Ultimately, in the last levels, this procedure is also continued forming all the classes, separately. Moreover, to optimize the feature vector in the proposed structure, we use orthogonal forward selection algorithm according to Mahalanobis class separability measure as a feature selection and reduction algorithm. In other words, according to the complexity and inter-class distance of each class, a sub-space of the feature space is selected in each level and then a supervised merging and splitting scheme is applied to form the hierarchical classification. The proposed structure is evaluated on a database consisting of 2158 medical X-ray images of 18 classes (IMAGECLEF 2005 database) and accuracy rate of 93.6% in the last level of the hierarchical structure for an 18-class classification problem is obtained.
NASA Astrophysics Data System (ADS)
Liu, F.; Chen, T.; He, J.; Wen, Q.; Yu, F.; Gu, X.; Wang, Z.
2018-04-01
In recent years, the quick upgrading and improvement of SAR sensors provide beneficial complements for the traditional optical remote sensing in the aspects of theory, technology and data. In this paper, Sentinel-1A SAR data and GF-1 optical data were selected for image fusion, and more emphases were put on the dryland crop classification under a complex crop planting structure, regarding corn and cotton as the research objects. Considering the differences among various data fusion methods, the principal component analysis (PCA), Gram-Schmidt (GS), Brovey and wavelet transform (WT) methods were compared with each other, and the GS and Brovey methods were proved to be more applicable in the study area. Then, the classification was conducted based on the object-oriented technique process. And for the GS, Brovey fusion images and GF-1 optical image, the nearest neighbour algorithm was adopted to realize the supervised classification with the same training samples. Based on the sample plots in the study area, the accuracy assessment was conducted subsequently. The values of overall accuracy and kappa coefficient of fusion images were all higher than those of GF-1 optical image, and GS method performed better than Brovey method. In particular, the overall accuracy of GS fusion image was 79.8 %, and the Kappa coefficient was 0.644. Thus, the results showed that GS and Brovey fusion images were superior to optical images for dryland crop classification. This study suggests that the fusion of SAR and optical images is reliable for dryland crop classification under a complex crop planting structure.
Ecosystem classifications based on summer and winter conditions.
Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q
2013-04-01
Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.
NASA Technical Reports Server (NTRS)
Huang, S.-S.
1973-01-01
The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.
A Visual Basic program to classify sediments based on gravel-sand-silt-clay ratios
Poppe, L.J.; Eliason, A.H.; Hastings, M.E.
2003-01-01
Nomenclature describing size distributions is important to geologists because grain size is the most basic attribute of sediments. Traditionally, geologists have divided sediments into four size fractions that include gravel, sand, silt, and clay, and classified these sediments based on ratios of the various proportions of the fractions. Definitions of these fractions have long been standardized to the grade scale described by Wentworth (1922), and two main classification schemes have been adopted to describe the approximate relationship between the size fractions.Specifically, according to the Wentworth grade scale gravel-sized particles have a nominal diameter of ⩾2.0 mm; sand-sized particles have nominal diameters from <2.0 mm to ⩾62.5 μm; silt-sized particles have nominal diameters from <62.5 to ⩾4.0 μm; and clay is <4.0 μm. As for sediment classification, most sedimentologists use one of the systems described either by Shepard (1954) or Folk (1954, 1974). The original scheme devised by Shepard (1954) utilized a single ternary diagram with sand, silt, and clay in the corners to graphically show the relative proportions among these three grades within a sample. This scheme, however, does not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme (Fig. 1) was subsequently modified by the addition of a second ternary diagram to account for the gravel fraction (Schlee, 1973). The system devised by Folk (1954, 1974) is also based on two triangular diagrams (Fig. 2), but it has 23 major categories, and uses the term mud (defined as silt plus clay). The patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of the highest current velocity at the time of deposition, together with the maximum grain size of the detritus that is available; Shepard's classification scheme emphasizes the ratios of sand, silt, and clay because they reflect sorting and reworking (Poppe et al., 2000).
Desai, Jamsheed A; Abuzinadah, Ahmad R; Imoukhuede, Oje; Bernbaum, Manya L; Modi, Jayesh; Demchuk, Andrew M; Coutts, Shelagh B
2014-01-01
The assortment of patients based on the underlying pathophysiology is central to preventing recurrent stroke after a transient ischemic attack and minor stroke (TIA-MS). The causative classification of stroke (CCS) and the A-S-C-O (A for atherosclerosis, S for small vessel disease, C for Cardiac source, O for other cause) classification schemes have recently been developed. These systems have not been specifically applied to the TIA-MS population. We hypothesized that both CCS and A-S-C-O would increase the proportion of patients with a definitive etiologic mechanism for TIA-MS as compared with TOAST. Patients were analyzed from the CATCH study. A single-stroke physician assigned all patients to an etiologic subtype using published algorithms for TOAST, CCS and ASCO. We compared the proportions in the various categories for each classification scheme and then the association with stroke progression or recurrence was assessed. TOAST, CCS and A-S-C-O classification schemes were applied in 469 TIA-MS patients. When compared to TOAST both CCS (58.0 vs. 65.3%; p < 0.0001) and ASCO grade 1 or 2 (37.5 vs. 65.3%; p < 0.0001) assigned fewer patients as cause undetermined. CCS had increased assignment of cardioembolism (+3.8%, p = 0.0001) as compared with TOAST. ASCO grade 1 or 2 had increased assignment of cardioembolism (+8.5%, p < 0.0001), large artery atherosclerosis (+14.9%, p < 0.0001) and small artery occlusion (+4.3%, p < 0.0001) as compared with TOAST. Compared with CCS, using ASCO resulted in a 20.5% absolute reduction in patients assigned to the 'cause undetermined' category (p < 0.0001). Patients who had multiple high-risk etiologies either by CCS or ASCO classification or an ASCO undetermined classification had a higher chance of having a recurrent event. Both CCS and ASCO schemes reduce the proportion of TIA and minor stroke patients classified as 'cause undetermined.' ASCO resulted in the fewest patients classified as cause undetermined. Stroke recurrence after TIA-MS is highest in patients with multiple high-risk etiologies or cryptogenic stroke classified by ASCO. © 2014 S. Karger AG, Basel.
Spectroscopic Classifications of Optical Transients with the Lick Shane telescope
NASA Astrophysics Data System (ADS)
Rojas-Bravo, C.; Xhakaj, E.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.
2017-07-01
We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane telescope. Targets were supplied by ASAS-SN, ATLAS, Gaia, and POSS.
ATel 7534: Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Downing, S.; Jha, S. W.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.
2015-05-01
We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST). ...
Everstine, Karen; Abt, Eileen; McColl, Diane; Popping, Bert; Morrison-Rowe, Sara; Lane, Richard W; Scimeca, Joseph; Winter, Carl; Ebert, Andrew; Moore, Jeffrey C; Chin, Henry B
2018-01-01
Food fraud, the intentional misrepresentation of the true identity of a food product or ingredient for economic gain, is a threat to consumer confidence and public health and has received increased attention from both regulators and the food industry. Following updates to food safety certification standards and publication of new U.S. regulatory requirements, we undertook a project to (i) develop a scheme to classify food fraud-related adulterants based on their potential health hazard and (ii) apply this scheme to the adulterants in a database of 2,970 food fraud records. The classification scheme was developed by a panel of experts in food safety and toxicology from the food industry, academia, and the U.S. Food and Drug Administration. Categories and subcategories were created through an iterative process of proposal, review, and validation using a subset of substances known to be associated with the fraudulent adulteration of foods. Once developed, the scheme was applied to the adulterants in the database. The resulting scheme included three broad categories: 1, potentially hazardous adulterants; 2, adulterants that are unlikely to be hazardous; and 3, unclassifiable adulterants. Categories 1 and 2 consisted of seven subcategories intended to further define the range of hazard potential for adulterants. Application of the scheme to the 1,294 adulterants in the database resulted in 45% of adulterants classified in category 1 (potentially hazardous). Twenty-seven percent of the 1,294 adulterants had a history of causing consumer illness or death, were associated with safety-related regulatory action, or were classified as allergens. These results reinforce the importance of including a consideration of food fraud-related adulterants in food safety systems. This classification scheme supports food fraud mitigation efforts and hazard identification as required in the U.S. Food Safety Modernization Act Preventive Controls Rules.
JOURNAL SCOPE GUIDELINES: Paper classification scheme
NASA Astrophysics Data System (ADS)
2005-06-01
This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas
Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P. K. A.
2014-01-01
All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W−1/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems. PMID:25417847
Kang, Zhe; Yuan, Jinhui; Zhang, Xianting; Wu, Qiang; Sang, Xinzhu; Farrell, Gerald; Yu, Chongxiu; Li, Feng; Tam, Hwa Yaw; Wai, P K A
2014-11-24
All-optical analog-to-digital converters based on the third-order nonlinear effects in silicon waveguide are a promising candidate to overcome the limitation of electronic devices and are suitable for photonic integration. In this paper, a 2-bit optical spectral quantization scheme for on-chip all-optical analog-to-digital conversion is proposed. The proposed scheme is realized by filtering the broadened and split spectrum induced by the self-phase modulation effect in a silicon horizontal slot waveguide filled with silicon-nanocrystal. Nonlinear coefficient as high as 8708 W(-1)/m is obtained because of the tight mode confinement of the horizontal slot waveguide and the high nonlinear refractive index of the silicon-nanocrystal, which provides the enhanced nonlinear interaction and accordingly low power threshold. The results show that a required input peak power level less than 0.4 W can be achieved, along with the 1.98-bit effective-number-of-bit and Gray code output. The proposed scheme can find important applications in on-chip all-optical digital signal processing systems.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Coulter, D. A.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.
2017-06-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST) and Gaia.
Functional traits, convergent evolution, and periodic tables of niches.
Winemiller, Kirk O; Fitzgerald, Daniel B; Bower, Luke M; Pianka, Eric R
2015-08-01
Ecology is often said to lack general theories sufficiently predictive for applications. Here, we examine the concept of a periodic table of niches and feasibility of niche classification schemes from functional trait and performance data. Niche differences and their influence on ecological patterns and processes could be revealed effectively by first performing data reduction/ordination analyses separately on matrices of trait and performance data compiled according to logical associations with five basic niche 'dimensions', or aspects: habitat, life history, trophic, defence and metabolic. Resultant patterns then are integrated to produce interpretable niche gradients, ordinations and classifications. Degree of scheme periodicity would depend on degrees of niche conservatism and convergence causing species clustering across multiple niche dimensions. We analysed a sample data set containing trait and performance data to contrast two approaches for producing niche schemes: species ordination within niche gradient space, and niche categorisation according to trait-value thresholds. Creation of niche schemes useful for advancing ecological knowledge and its applications will depend on research that produces functional trait and performance datasets directly related to niche dimensions along with criteria for data standardisation and quality. As larger databases are compiled, opportunities will emerge to explore new methods for data reduction, ordination and classification. © 2015 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
In-TFT-Array-Process Micro Defect Inspection Using Nonlinear Principal Component Analysis
Liu, Yi-Hung; Wang, Chi-Kai; Ting, Yung; Lin, Wei-Zhi; Kang, Zhi-Hao; Chen, Ching-Shun; Hwang, Jih-Shang
2009-01-01
Defect inspection plays a critical role in thin film transistor liquid crystal display (TFT-LCD) manufacture, and has received much attention in the field of automatic optical inspection (AOI). Previously, most focus was put on the problems of macro-scale Mura-defect detection in cell process, but it has recently been found that the defects which substantially influence the yield rate of LCD panels are actually those in the TFT array process, which is the first process in TFT-LCD manufacturing. Defect inspection in TFT array process is therefore considered a difficult task. This paper presents a novel inspection scheme based on kernel principal component analysis (KPCA) algorithm, which is a nonlinear version of the well-known PCA algorithm. The inspection scheme can not only detect the defects from the images captured from the surface of LCD panels, but also recognize the types of the detected defects automatically. Results, based on real images provided by a LCD manufacturer in Taiwan, indicate that the KPCA-based defect inspection scheme is able to achieve a defect detection rate of over 99% and a high defect classification rate of over 96% when the imbalanced support vector machine (ISVM) with 2-norm soft margin is employed as the classifier. More importantly, the inspection time is less than 1 s per input image. PMID:20057957
Face recognition by applying wavelet subband representation and kernel associative memory.
Zhang, Bai-Ling; Zhang, Haihong; Ge, Shuzhi Sam
2004-01-01
In this paper, we propose an efficient face recognition scheme which has two features: 1) representation of face images by two-dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalised classification method based on kernel associative memory models. Compared to PCA projections and low resolution "thumb-nail" image representations, wavelet subband coefficients can efficiently capture substantial facial features while keeping computational complexity low. As there are usually very limited samples, we constructed an associative memory (AM) model for each person and proposed to improve the performance of AM models by kernel methods. Specifically, we first applied kernel transforms to each possible training pair of faces sample and then mapped the high-dimensional feature space back to input space. Our scheme using modular autoassociative memory for face recognition is inspired by the same motivation as using autoencoders for optical character recognition (OCR), for which the advantages has been proven. By associative memory, all the prototypical faces of one particular person are used to reconstruct themselves and the reconstruction error for a probe face image is used to decide if the probe face is from the corresponding person. We carried out extensive experiments on three standard face recognition datasets, the FERET data, the XM2VTS data, and the ORL data. Detailed comparisons with earlier published results are provided and our proposed scheme offers better recognition accuracy on all of the face datasets.
Veselka, Walter; Anderson, James T; Kordek, Walter S
2010-05-01
Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that "biological integrity" is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland's position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.
A Critical Review of Mode of Action (MOA) Assignment ...
There are various structure-based classification schemes to categorize chemicals based on mode of action (MOA) which have been applied for both eco and human health toxicology. With increasing calls to assess thousands of chemicals, some of which have little available information other than structure, clear understanding how each of these MOA schemes was devised, what information they are based on, and the limitations of each approach is critical. Several groups are developing low-tier methods to more easily classify or assess chemicals, using approaches such as the ecological threshold of concern (eco-TTC) and chemical-activity. Evaluation of these approaches and determination of their domain of applicability is partly dependent on the MOA classification that is used. The most commonly used MOA classification schemes for ecotoxicology include Verhaar and Russom (included in ASTER), both of which are used to predict acute aquatic toxicity MOA. Verhaar is a QSAR-based system that classifies chemicals into one of 4 classes, with a 5th class specified for those chemicals that are not classified in the other 4. ASTER/Russom includes 8 classifications: narcotics (3 groups), oxidative phosphorylation uncouplers, respiratory inhibitors, electrophiles/proelectrophiles, AChE inhibitors, or CNS seizure agents. Other methodologies include TEST (Toxicity Estimation Software Tool), a computational chemistry-based application that allows prediction to one of 5 broad MOA
Global land cover mapping: a review and uncertainty analysis
Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu
2014-01-01
Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.
Khadke, Piyush; Patne, Nita; Singh, Arvind; Shinde, Gulab
2016-01-01
In this article, a novel and accurate scheme for fault detection, classification and fault distance estimation for a fixed series compensated transmission line is proposed. The proposed scheme is based on artificial neural network (ANN) and metal oxide varistor (MOV) energy, employing Levenberg-Marquardt training algorithm. The novelty of this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to train the ANN. Such approach has never been used in any earlier fault analysis algorithms in the last few decades. Proposed scheme uses only single end measurement energy signals of MOV in all the 3 phases over one cycle duration from the occurrence of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault distance estimation. Feasibility and reliability of the proposed scheme have been evaluated for all ten types of fault in test power system model at different fault inception angles over numerous fault locations. Real transmission system parameters of 3-phase 400 kV Wardha-Aurangabad transmission line (400 km) with 40 % FSC at Power Grid Wardha Substation, India is considered for this research. Extensive simulation experiments show that the proposed scheme provides quite accurate results which demonstrate complete protection scheme with high accuracy, simplicity and robustness.
Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou
2015-01-01
Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits. PMID:26225781
Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou
2015-07-30
Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits.
Pozo-Aguilar, Jorge O; Monroy-Martínez, Verónica; Díaz, Daniel; Barrios-Palacios, Jacqueline; Ramos, Celso; Ulloa-García, Armando; García-Pillado, Janet; Ruiz-Ordaz, Blanca H
2014-12-11
Dengue fever (DF) is the most prevalent arthropod-borne viral disease affecting humans. The World Health Organization (WHO) proposed a revised classification in 2009 to enable the more effective identification of cases of severe dengue (SD). This was designed primarily as a clinical tool, but it also enables cases of SD to be differentiated into three specific subcategories (severe vascular leakage, severe bleeding, and severe organ dysfunction). However, no study has addressed whether this classification has advantage in estimating factors associated with the progression of disease severity or dengue pathogenesis. We evaluate in a dengue outbreak associated risk factors that could contribute to the development of SD according to the 2009 WHO classification. A prospective cross-sectional study was performed during an epidemic of dengue in 2009 in Chiapas, Mexico. Data were analyzed for host and viral factors associated with dengue cases, using the 1997 and 2009 WHO classifications. The cost-benefit ratio (CBR) was also estimated. The sensitivity in the 1997 WHO classification for determining SD was 75%, and the specificity was 97.7%. For the 2009 scheme, these were 100% and 81.1%, respectively. The 2009 classification showed a higher benefit (537%) with a lower cost (10.2%) than the 1997 WHO scheme. A secondary antibody response was strongly associated with SD. Early viral load was higher in cases of SD than in those with DF. Logistic regression analysis identified predictive SD factors (secondary infection, disease phase, viral load) within the 2009 classification. However, within the 1997 scheme it was not possible to differentiate risk factors between DF and dengue hemorrhagic fever or dengue shock syndrome. The critical clinical stage for determining SD progression was the transition from fever to defervescence in which plasma leakage can occur. The clinical phenotype of SD is influenced by the host (secondary response) and viral factors (viral load). The 2009 WHO classification showed greater sensitivity to identify SD in real time. Timely identification of SD enables accurate early decisions, allowing proper management of health resources for the benefit of patients at risk for SD. This is possible based on the 2009 WHO classification.
COMPARISON OF GEOGRAPHIC CLASSIFICATION SCHEMES FOR MID-ATLANTIC STREAM FISH ASSEMBLAGES
Understanding the influence of geographic factors in structuring fish assemblages is crucial to developing a comprehensive assessment of stream conditions. We compared the classification strengths (CS) of geographic groups (ecoregions and catchments), stream order, and groups bas...
Sorting Potatoes for Miss Bonner.
ERIC Educational Resources Information Center
Herreid, Clyde Freeman
1998-01-01
Discusses the basis of a classification scheme for types of case studies. Four major classification headings are identified: (1) individual assignment; (2) lecture; (3) discussion; and (4) small group activities. Describes each heading from the point of view of several teaching methods. (DDR)
SOM Classification of Martian TES Data
NASA Technical Reports Server (NTRS)
Hogan, R. C.; Roush, T. L.
2002-01-01
A classification scheme based on unsupervised self-organizing maps (SOM) is described. Results from its application to the ASU mineral spectral database are presented. Applications to the Martian Thermal Emission Spectrometer data are discussed. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, S. N.
Scheme of optical image encryption with digital information input and dynamic encryption key based on two liquid crystal spatial light modulators and operating with spatially-incoherent monochromatic illumination is experimentally implemented. Results of experiments on images optical encryption and numerical decryption are presented. Satisfactory decryption error of 0.20÷0.27 is achieved.
NASA Astrophysics Data System (ADS)
Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco
2016-10-01
The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.
Vision communications based on LED array and imaging sensor
NASA Astrophysics Data System (ADS)
Yoo, Jong-Ho; Jung, Sung-Yoon
2012-11-01
In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.
Classification of extraterrestrial civilizations
NASA Astrophysics Data System (ADS)
Tang, Tong B.; Chang, Grace
1991-06-01
A scheme of classification of extraterrestrial intelligence (ETI) communities based on the scope of energy accessible to the civilization in question is proposed as an alternative to the Kardeshev (1964) scheme that includes three types of civilization, as determined by their levels of energy expenditure. The proposed scheme includes six classes: (1) a civilization that runs essentially on energy exerted by individual beings or by domesticated lower life forms, (2) harnessing of natural sources on planetary surface with artificial constructions, like water wheels and wind sails, (3) energy from fossils and fissionable isotopes, mined beneath the planet surface, (4) exploitation of nuclear fusion on a large scale, whether on the planet, in space, or from primary solar energy, (5) extensive use of antimatter for energy storage, and (6) energy from spacetime, perhaps via the action of naked singularities.
High-dimensional free-space optical communications based on orbital angular momentum coding
NASA Astrophysics Data System (ADS)
Zou, Li; Gu, Xiaofan; Wang, Le
2018-03-01
In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.
Zhou, Ji; Qiao, Yaojun
2015-09-01
In this Letter, we propose a discrete Hartley transform (DHT)-spread asymmetrically clipped optical orthogonal frequency-division multiplexing (DHT-S-ACO-OFDM) uplink transmission scheme in which the multiplexing/demultiplexing process also uses the DHT algorithm. By designing a simple encoding structure, the computational complexity of the transmitter can be reduced from O(Nlog(2)(N)) to O(N). At the probability of 10(-3), the peak-to-average power ratio (PAPR) of 2-ary pulse amplitude modulation (2-PAM)-modulated DHT-S-ACO-OFDM is approximately 9.7 dB lower than that of 2-PAM-modulated conventional ACO-OFDM. To verify the feasibility of the proposed scheme, a 4-Gbit/s DHT-S-ACO-OFDM uplink transmission scheme with a 1∶64 way split has been experimentally implemented using 100-km standard single-mode fiber (SSMF) for a long-reach passive optical network (LR-PON).
A Job Classification Scheme for Health Manpower
Weiss, Jeffrey H.
1968-01-01
The Census Bureau's occupational classification scheme and concept of the “health services industry” are inadequate tools for analysis of the changing job structure of health manpower. In an attempt to remedy their inadequacies, a new analytical framework—drawing upon the work of James Scoville on the job content of the U.S. economy—was devised. The first stage in formulating this new framework was to determine which jobs should be considered health jobs. The overall health care job family was designed to encompass jobs in which the primary technical focus or function is oriented toward the provision of health services. There are two dimensions to the job classification scheme presented here. The first describes each job in terms of job content; relative income data and minimum education and training requirements were employed as surrogate measures. By this means, health care jobs were grouped by three levels of job content: high, medium, and low. The other dimension describes each job in terms of its technical focus or function; by this means, health care jobs were grouped into nine job families. PMID:5673666
NASA Astrophysics Data System (ADS)
Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.
2009-07-01
Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP
A Classification Scheme for Analyzing Mobile Apps Used to Prevent and Manage Disease in Late Life
Wang, Aiguo; Lu, Xin; Chen, Hongtu; Li, Changqun; Levkoff, Sue
2014-01-01
Background There are several mobile apps that offer tools for disease prevention and management among older adults, and promote health behaviors that could potentially reduce or delay the onset of disease. A classification scheme that categorizes apps could be useful to both older adult app users and app developers. Objective The objective of our study was to build and evaluate the effectiveness of a classification scheme that classifies mobile apps available for older adults in the “Health & Fitness” category of the iTunes App Store. Methods We constructed a classification scheme for mobile apps according to three dimensions: (1) the Precede-Proceed Model (PPM), which classifies mobile apps in terms of predisposing, enabling, and reinforcing factors for behavior change; (2) health care process, specifically prevention versus management of disease; and (3) health conditions, including physical health and mental health. Content analysis was conducted by the research team on health and fitness apps designed specifically for older adults, as well as those applicable to older adults, released during the months of June and August 2011 and August 2012. Face validity was assessed by a different group of individuals, who were not related to the study. A reliability analysis was conducted to confirm the accuracy of the coding scheme of the sample apps in this study. Results After applying sample inclusion and exclusion criteria, a total of 119 apps were included in the study sample, of which 26/119 (21.8%) were released in June 2011, 45/119 (37.8%) in August 2011, and 48/119 (40.3%) in August 2012. Face validity was determined by interviewing 11 people, who agreed that this scheme accurately reflected the nature of this application. The entire study sample was successfully coded, demonstrating satisfactory inter-rater reliability by two independent coders (95.8% initial concordance and 100% concordance after consensus was reached). The apps included in the study sample were more likely to be used for the management of disease than prevention of disease (109/119, 91.6% vs 15/119, 12.6%). More apps contributed to physical health rather than mental health (81/119, 68.1% vs 47/119, 39.5%). Enabling apps (114/119, 95.8%) were more common than reinforcing (20/119, 16.8%) or predisposing apps (10/119, 8.4%). Conclusions The findings, including face validity and inter-rater reliability, support the integrity of the proposed classification scheme for categorizing mobile apps for older adults in the “Health and Fitness” category available in the iTunes App Store. Using the proposed classification system, older adult app users would be better positioned to identify apps appropriate for their needs, and app developers would be able to obtain the distributions of available mobile apps for health-related concerns of older adults more easily. PMID:25098687
Arensburger, Peter; Piégu, Benoît; Bigot, Yves
2016-01-01
Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.
Branch classification: A new mechanism for improving branch predictor performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, P.Y.; Hao, E.; Patt, Y.
There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows anmore » individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.« less
Discriminative Hierarchical K-Means Tree for Large-Scale Image Classification.
Chen, Shizhi; Yang, Xiaodong; Tian, Yingli
2015-09-01
A key challenge in large-scale image classification is how to achieve efficiency in terms of both computation and memory without compromising classification accuracy. The learning-based classifiers achieve the state-of-the-art accuracies, but have been criticized for the computational complexity that grows linearly with the number of classes. The nonparametric nearest neighbor (NN)-based classifiers naturally handle large numbers of categories, but incur prohibitively expensive computation and memory costs. In this brief, we present a novel classification scheme, i.e., discriminative hierarchical K-means tree (D-HKTree), which combines the advantages of both learning-based and NN-based classifiers. The complexity of the D-HKTree only grows sublinearly with the number of categories, which is much better than the recent hierarchical support vector machines-based methods. The memory requirement is the order of magnitude less than the recent Naïve Bayesian NN-based approaches. The proposed D-HKTree classification scheme is evaluated on several challenging benchmark databases and achieves the state-of-the-art accuracies, while with significantly lower computation cost and memory requirement.
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.
ERTS-1 data applications to Minnesota forest land use classification
NASA Technical Reports Server (NTRS)
Sizer, J. E. (Principal Investigator); Eller, R. G.; Meyer, M. P.; Ulliman, J. J.
1973-01-01
The author has identified the following significant results. Color-combined ERTS-1 MSS spectral slices were analyzed to determine the maximum (repeatable) level of meaningful forest resource classification data visually attainable by skilled forest photointerpreters for the following purposes: (1) periodic updating of the Minnesota Land Management Information System (MLMIS) statewide computerized land use data bank, and (2) to provide first-stage forest resources survey data for large area forest land management planning. Controlled tests were made of two forest classification schemes by experienced professional foresters with special photointerpretation training and experience. The test results indicate it is possible to discriminate the MLMIS forest class from the MLMIS nonforest classes, but that it is not possible, under average circumstances, to further stratify the forest classification into species components with any degree of reliability with ERTS-1 imagery. An ongoing test of the resulting classification scheme involves the interpretation, and mapping, of the south half of Itasca County, Minnesota, with ERTS-1 imagery. This map is undergoing field checking by on the ground field cooperators, whose evaluation will be completed in the fall of 1973.
Spectral analysis for automated exploration and sample acquisition
NASA Technical Reports Server (NTRS)
Eberlein, Susan; Yates, Gigi
1992-01-01
Future space exploration missions will rely heavily on the use of complex instrument data for determining the geologic, chemical, and elemental character of planetary surfaces. One important instrument is the imaging spectrometer, which collects complete images in multiple discrete wavelengths in the visible and infrared regions of the spectrum. Extensive computational effort is required to extract information from such high-dimensional data. A hierarchical classification scheme allows multispectral data to be analyzed for purposes of mineral classification while limiting the overall computational requirements. The hierarchical classifier exploits the tunability of a new type of imaging spectrometer which is based on an acousto-optic tunable filter. This spectrometer collects a complete image in each wavelength passband without spatial scanning. It may be programmed to scan through a range of wavelengths or to collect only specific bands for data analysis. Spectral classification activities employ artificial neural networks, trained to recognize a number of mineral classes. Analysis of the trained networks has proven useful in determining which subsets of spectral bands should be employed at each step of the hierarchical classifier. The network classifiers are capable of recognizing all mineral types which were included in the training set. In addition, the major components of many mineral mixtures can also be recognized. This capability may prove useful for a system designed to evaluate data in a strange environment where details of the mineral composition are not known in advance.
A fast and efficient segmentation scheme for cell microscopic image.
Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H
2007-04-27
Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-11-01
Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.
Filter Bank Multicarrier (FBMC) for long-reach intensity modulated optical access networks
NASA Astrophysics Data System (ADS)
Saljoghei, Arsalan; Gutiérrez, Fernando A.; Perry, Philip; Barry, Liam P.
2017-04-01
Filter Bank Multi Carrier (FBMC) is a modulation scheme which has recently attracted significant interest in both wireless and optical communications. The interest in optical communications arises due to FBMC's capability to operate without a Cyclic Prefix (CP) and its high resilience to synchronisation errors. However, the operation of FBMC in optical access networks has not been extensively studied either in downstream or upstream. In this work we use experimental work to investigate the operation of FBMC in intensity modulated Passive Optical Networks (PONs) employing direct detection in conjunction with both direct and external modulation schemes. The data rates and propagation lengths employed here vary from 8.4 to 14.8 Gb/s and 0-75 km. The results suggest that by using FBMC it is possible to accomplish CP-Less transmission up to 75 km of SSMF in passive links using cost effective intensity modulation and detection schemes.
Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.
Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José
2015-12-14
We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme.
Optical Neural Classification Of Binary Patterns
NASA Astrophysics Data System (ADS)
Gustafson, Steven C.; Little, Gordon R.
1988-05-01
Binary pattern classification that may be implemented using optical hardware and neural network algorithms is considered. Pattern classification problems that have no concise description (as in classifying handwritten characters) or no concise computation (as in NP-complete problems) are expected to be particularly amenable to this approach. For example, optical processors that efficiently classify binary patterns in accordance with their Boolean function complexity might be designed. As a candidate for such a design, an optical neural network model is discussed that is designed for binary pattern classification and that consists of an optical resonator with a dynamic multiplex-recorded reflection hologram and a phase conjugate mirror with thresholding and gain. In this model, learning or training examples of binary patterns may be recorded on the hologram such that one bit in each pattern marks the pattern class. Any input pattern, including one with an unknown class or marker bit, will be modified by a large number of parallel interactions with the reflection hologram and nonlinear mirror. After perhaps several seconds and 100 billion interactions, a steady-state pattern may develop with a marker bit that represents a minimum-Boolean-complexity classification of the input pattern. Computer simulations are presented that illustrate progress in understanding the behavior of this model and in developing a processor design that could have commanding and enduring performance advantages compared to current pattern classification techniques.
Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms
NASA Astrophysics Data System (ADS)
Juo, Jz-Yuan; Lin, Jia-Kang; Cheng, Chin-Yao; Liu, Zi-Yu; Yu, Ite A.; Chen, Yong-Fan
2018-05-01
Long-distance quantum optical communications usually require efficient wave-mixing processes to convert the wavelengths of single photons. Many quantum applications based on electromagnetically induced transparency (EIT) have been proposed and demonstrated at the single-photon level, such as quantum memories, all-optical transistors, and cross-phase modulations. However, EIT-based four-wave mixing (FWM) in a resonant double-Λ configuration has a maximum conversion efficiency (CE) of 25% because of absorptive loss due to spontaneous emission. An improved scheme using spatially modulated intensities of two control fields has been theoretically proposed to overcome this conversion limit. In this study, we first demonstrate wavelength conversion from 780 to 795 nm with a 43% CE by using this scheme at an optical density (OD) of 19 in cold 87Rb atoms. According to the theoretical model, the CE in the proposed scheme can further increase to 96% at an OD of 240 under ideal conditions, thereby attaining an identical CE to that of the previous nonresonant double-Λ scheme at half the OD. This spatial-light-modulation-based FWM scheme can achieve a near-unity CE, thus providing an easy method of implementing an efficient quantum wavelength converter for all-optical quantum information processing.
SU-D-210-03: Limited-View Multi-Source Quantitative Photoacoustic Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, J; Gao, H
2015-06-15
Purpose: This work is to investigate a novel limited-view multi-source acquisition scheme for the direct and simultaneous reconstruction of optical coefficients in quantitative photoacoustic tomography (QPAT), which has potentially improved signal-to-noise ratio and reduced data acquisition time. Methods: Conventional QPAT is often considered in two steps: first to reconstruct the initial acoustic pressure from the full-view ultrasonic data after each optical illumination, and then to quantitatively reconstruct optical coefficients (e.g., absorption and scattering coefficients) from the initial acoustic pressure, using multi-source or multi-wavelength scheme.Based on a novel limited-view multi-source scheme here, We have to consider the direct reconstruction of opticalmore » coefficients from the ultrasonic data, since the initial acoustic pressure can no longer be reconstructed as an intermediate variable due to the incomplete acoustic data in the proposed limited-view scheme. In this work, based on a coupled photo-acoustic forward model combining diffusion approximation and wave equation, we develop a limited-memory Quasi-Newton method (LBFGS) for image reconstruction that utilizes the adjoint forward problem for fast computation of gradients. Furthermore, the tensor framelet sparsity is utilized to improve the image reconstruction which is solved by Alternative Direction Method of Multipliers (ADMM). Results: The simulation was performed on a modified Shepp-Logan phantom to validate the feasibility of the proposed limited-view scheme and its corresponding image reconstruction algorithms. Conclusion: A limited-view multi-source QPAT scheme is proposed, i.e., the partial-view acoustic data acquisition accompanying each optical illumination, and then the simultaneous rotations of both optical sources and ultrasonic detectors for next optical illumination. Moreover, LBFGS and ADMM algorithms are developed for the direct reconstruction of optical coefficients from the acoustic data. Jing Feng and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
QKD using polarization encoding with active measurement basis selection
NASA Astrophysics Data System (ADS)
Duplinskiy, A.; Ustimchik, V.; Kanapin, A.; Kurochkin, Y.
2017-11-01
We report a proof-of-principle quantum key distribution experiment using a one-way optical scheme with polarization encoding implementing the BB84 protocol. LiNbO3 phase modulators are used for generating polarization states for Alice and active basis selection for Bob. This allows the former to use a single laser source, while the latter needs only two single-photon detectors. The presented optical scheme is simple and consists of standard fiber components. Calibration algorithm for three polarization controllers used in the scheme has been developed. The experiment was carried with 10 MHz repetition frequency laser pulses over a distance of 50 km of standard telecom optical fiber.
NASA Astrophysics Data System (ADS)
Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing
2018-06-01
A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.
Optical temperature compensation schemes of spectral modulation sensors for aircraft engine control
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul
1993-02-01
Optical temperature compensation schemes for the ratiometric interrogation of spectral modulation sensors for source temperature robustness are presented. We have obtained better than 50 - 100X decrease of the temperature coefficient of the sensitivity using these types of compensation. We have also developed a spectrographic interrogation scheme that provides increased source temperature robustness; this affords a significantly improved accuracy over FADEC temperature ranges as well as temperature coefficient of the sensitivity that is substantially and further reduced. This latter compensation scheme can be integrated in a small E/O package including the detection, analog and digital signal processing. We find that these interrogation schemes can be used within a detector spatially multiplexed architecture.
Aflatouni, Firooz; Hashemi, Hossein
2012-01-15
A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.
Song, Hajun; Hwang, Sejin; Song, Jong-In
2017-05-15
This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.
Macedo, Gleicy A.; Gonin, Michelle Luiza C.; Pone, Sheila M.; Cruz, Oswaldo G.; Nobre, Flávio F.; Brasil, Patrícia
2014-01-01
Background The clinical definition of severe dengue fever remains a challenge for researchers in hyperendemic areas like Brazil. The ability of the traditional (1997) as well as the revised (2009) World Health Organization (WHO) dengue case classification schemes to detect severe dengue cases was evaluated in 267 children admitted to hospital with laboratory-confirmed dengue. Principal Findings Using the traditional scheme, 28.5% of patients could not be assigned to any category, while the revised scheme categorized all patients. Intensive therapeutic interventions were used as the reference standard to evaluate the ability of both the traditional and revised schemes to detect severe dengue cases. Analyses of the classified cases (n = 183) demonstrated that the revised scheme had better sensitivity (86.8%, P<0.001), while the traditional scheme had better specificity (93.4%, P<0.001) for the detection of severe forms of dengue. Conclusions/Significance This improved sensitivity of the revised scheme allows for better case capture and increased ICU admission, which may aid pediatricians in avoiding deaths due to severe dengue among children, but, in turn, it may also result in the misclassification of the patients' condition as severe, reflected in the observed lower positive predictive value (61.6%, P<0.001) when compared with the traditional scheme (82.6%, P<0.001). The inclusion of unusual dengue manifestations in the revised scheme has not shifted the emphasis from the most important aspects of dengue disease and the major factors contributing to fatality in this study: shock with consequent organ dysfunction. PMID:24777054
Macedo, Gleicy A; Gonin, Michelle Luiza C; Pone, Sheila M; Cruz, Oswaldo G; Nobre, Flávio F; Brasil, Patrícia
2014-01-01
The clinical definition of severe dengue fever remains a challenge for researchers in hyperendemic areas like Brazil. The ability of the traditional (1997) as well as the revised (2009) World Health Organization (WHO) dengue case classification schemes to detect severe dengue cases was evaluated in 267 children admitted to hospital with laboratory-confirmed dengue. Using the traditional scheme, 28.5% of patients could not be assigned to any category, while the revised scheme categorized all patients. Intensive therapeutic interventions were used as the reference standard to evaluate the ability of both the traditional and revised schemes to detect severe dengue cases. Analyses of the classified cases (n = 183) demonstrated that the revised scheme had better sensitivity (86.8%, P<0.001), while the traditional scheme had better specificity (93.4%, P<0.001) for the detection of severe forms of dengue. This improved sensitivity of the revised scheme allows for better case capture and increased ICU admission, which may aid pediatricians in avoiding deaths due to severe dengue among children, but, in turn, it may also result in the misclassification of the patients' condition as severe, reflected in the observed lower positive predictive value (61.6%, P<0.001) when compared with the traditional scheme (82.6%, P<0.001). The inclusion of unusual dengue manifestations in the revised scheme has not shifted the emphasis from the most important aspects of dengue disease and the major factors contributing to fatality in this study: shock with consequent organ dysfunction.
Assembling mesoscopic particles by various optical schemes
NASA Astrophysics Data System (ADS)
Fournier, Jean-Marc; Rohner, Johann; Jacquot, Pierre; Johann, Robert; Mias, Solon; Salathé, René-P.
2005-08-01
Shaping optical fields is the key issue in the control of optical forces that pilot the manipulation of mesoscopic polarizable dielectric particles. The latter can be positioned according to endless configurations. The scope of this paper is to review and discuss several unusual designs which produce what we think are among some of the most interesting arrangements. The simplest schemes result from interference between two or several coherent light beams, leading to periodic as well as pseudo-periodic arrays of optical traps. Complex assemblages of traps can be created with holographic-type set-ups; this case is widely used by the trapping community. Clusters of traps can also be configured through interferometric-type set-ups or by generating external standing waves by diffractive elements. The particularly remarkable possibilities of the Talbot effect to generate three-dimensional optical lattices and several schemes of self-organization represent further very interesting means for trapping. They will also be described and discussed. in this paper. The mechanisms involved in those trapping schemes do not require the use of high numerical aperture optics; by avoiding the need for bulky microscope objectives, they allow for more physical space around the trapping area to perform experiments. Moreover, very large regular arrays of traps can be manufactured, opening numerous possibilities for new applications.
Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J; Manolakos, Elias S
2013-09-01
A learning scheme based on random forests is used to discriminate between different reach to grasp movements in 3-D space, based on the myoelectric activity of human muscles of the upper-arm and the forearm. Task specificity for motion decoding is introduced in two different levels: Subspace to move toward and object to be grasped. The discrimination between the different reach to grasp strategies is accomplished with machine learning techniques for classification. The classification decision is then used in order to trigger an EMG-based task-specific motion decoding model. Task specific models manage to outperform "general" models providing better estimation accuracy. Thus, the proposed scheme takes advantage of a framework incorporating both a classifier and a regressor that cooperate advantageously in order to split the task space. The proposed learning scheme can be easily used to a series of EMG-based interfaces that must operate in real time, providing data-driven capabilities for multiclass problems, that occur in everyday life complex environments.
New technique for simulation of optical fiber amplifiers control schemes in dynamic WDM systems
NASA Astrophysics Data System (ADS)
Freitas, Marcio; Klein, Jackson; Givigi, Sidney, Jr.; Calmon, Luiz C.
2005-04-01
One topic that has attracted attention is related to the behavior of the optical amplifiers under dynamic conditions, specifically because amplifiers working in a saturated condition produce power transients in all-optical reconfigurable WDM networks, e.g. adding/dropping channels. The goal of this work is to introduce the multiwavelength time-driven simulations technique, capable of simulation and analysis of transient effects in all-optical WDM networks with optical amplifiers, and allow the use of control schemes to avoid or minimize the impacts of transient effects in the system performance.
NASA Astrophysics Data System (ADS)
Shinya, A.; Ishihara, T.; Inoue, K.; Nozaki, K.; Kita, S.; Notomi, M.
2018-02-01
We propose an optical parallel adder based on a binary decision diagram that can calculate simply by propagating light through electrically controlled optical pass gates. The CARRY and CARRY operations are multiplexed in one circuit by a wavelength division multiplexing scheme to reduce the number of optical elements, and only a single gate constitutes the critical path for one digit calculation. The processing time reaches picoseconds per digit when we use a 100-μm-long optical path gates, which is ten times faster than a CMOS circuit.
NASA Astrophysics Data System (ADS)
Cho, Minhaeng
2018-05-01
Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.
Cho, Minhaeng
2018-05-14
Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.
NASA Astrophysics Data System (ADS)
Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun
2018-05-01
This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.
FPGA design of correlation-based pattern recognition
NASA Astrophysics Data System (ADS)
Jridi, Maher; Alfalou, Ayman
2017-05-01
Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.
A novel 'Gold on Gold' biosensing scheme for an on-fiber immunoassay
NASA Astrophysics Data System (ADS)
Punjabi, N.; Satija, J.; Mukherji, S.
2015-05-01
In this paper, we propose a novel „gold on gold‟ biosensing scheme for absorbance based fiber-optic biosensor. First, a self-assembled monolayer of gold nanoparticles is formed at the sensing region of the fiber-optic probe by incubating an amino-silanized probe in a colloidal gold solution. Thereafter, the receptor moieties, i.e. Human immunoglobulin G (HIgG) were immobilized by using standard alkanethiol and classic carbodiimide coupling chemistry. Finally, biosensing experiments were performed with different concentrations of gold nanoparticle-tagged analyte, i.e. Goat anti- Human immunoglobulin G (Nanogold-GaHIgG). The sensor response was observed to be more than five-fold compared to the control bioassay, in which the sensor matrix was devoid of gold nanoparticle film. Also, the response was found to be ~10 times higher compared to the FITC-tagged scheme and ~14.5 times better compared to untagged scheme. This novel scheme also demonstrated the potential in improving the limit of detection for the fiber-optic biosensors.
The reliability of axis V of the multiaxial classification scheme.
van Goor-Lambo, G
1987-07-01
In a reliability study concerning axis V (abnormal psychosocial situations) of the Multiaxial classification scheme for psychiatric disorders in childhood and adolescence, it was found that the level of agreement in scoring was adequate for only 2 out of 12 categories. A proposal for a modification of axis V was made, including a differentiation and regrouping of the categories and an adjustment of the descriptions in the glossary. With this modification of axis V another reliability study was carried out, in which the level of agreement in scoring was adequate for 12 out of 16 categories.
Analysis of DSN software anomalies
NASA Technical Reports Server (NTRS)
Galorath, D. D.; Hecht, H.; Hecht, M.; Reifer, D. J.
1981-01-01
A categorized data base of software errors which were discovered during the various stages of development and operational use of the Deep Space Network DSN/Mark 3 System was developed. A study team identified several existing error classification schemes (taxonomies), prepared a detailed annotated bibliography of the error taxonomy literature, and produced a new classification scheme which was tuned to the DSN anomaly reporting system and encapsulated the work of others. Based upon the DSN/RCI error taxonomy, error data on approximately 1000 reported DSN/Mark 3 anomalies were analyzed, interpreted and classified. Next, error data are summarized and histograms were produced highlighting key tendencies.
Nosology, ontology and promiscuous realism.
Binney, Nicholas
2015-06-01
Medics may consider worrying about their metaphysics and ontology to be a waste of time. I will argue here that this is not the case. Promiscuous realism is a metaphysical position which holds that multiple, equally valid, classification schemes should be applied to objects (such as patients) to capture different aspects of their complex and heterogeneous nature. As medics at the bedside may need to capture different aspects of their patients' problems, they may need to use multiple classification schemes (multiple nosologies), and thus consider adopting a different metaphysics to the one commonly in use. © 2014 John Wiley & Sons, Ltd.
Understanding Homicide-Suicide.
Knoll, James L
2016-12-01
Homicide-suicide is the phenomenon in which an individual kills 1 or more people and commits suicide. Research on homicide-suicide has been hampered by a lack of an accepted classification scheme and reliance on media reports. Mass murder-suicide is gaining increasing attention particularly in the United States. This article reviews the research and literature on homicide-suicide, proposing a standard classification scheme. Preventive methods are discussed and sociocultural factors explored. For a more accurate and complete understanding of homicide-suicide, it is argued that future research should use the full psychological autopsy approach, to include collateral interviews. Copyright © 2016 Elsevier Inc. All rights reserved.
OLT-centralized sampling frequency offset compensation scheme for OFDM-PON.
Chen, Ming; Zhou, Hui; Zheng, Zhiwei; Deng, Rui; Chen, Qinghui; Peng, Miao; Liu, Cuiwei; He, Jing; Chen, Lin; Tang, Xionggui
2017-08-07
We propose an optical line terminal (OLT)-centralized sampling frequency offset (SFO) compensation scheme for adaptively-modulated OFDM-PON systems. By using the proposed SFO scheme, the phase rotation and inter-symbol interference (ISI) caused by SFOs between OLT and multiple optical network units (ONUs) can be centrally compensated in the OLT, which reduces the complexity of ONUs. Firstly, the optimal fast Fourier transform (FFT) size is identified in the intensity-modulated and direct-detection (IMDD) OFDM system in the presence of SFO. Then, the proposed SFO compensation scheme including phase rotation modulation (PRM) and length-adaptive OFDM frame has been experimentally demonstrated in the downlink transmission of an adaptively modulated optical OFDM with the optimal FFT size. The experimental results show that up to ± 300 ppm SFO can be successfully compensated without introducing any receiver performance penalties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jianfeng, E-mail: jianfeng.yang@student.unsw.edu.au; Zhang, Zhilong; Chen, Weijian
2016-04-21
As a promising charge carrier transfer scheme, optical coupling could potentially improve the performance of an optoelectronic device for energy harvesting based on well developed nanotechnology. By extracting carriers optically, the functional features of the nano-structured material could be better used by minimizing the concerns about its electrical properties. In this paper, we present a rigorous electromagnetic model to analyze the optical carrier transfer problem. The flow of the energy is analyzed carefully by the photon transfer spectrum, and the photon emitters (electron-hole pairs) are assumed in a thermal equilibrium described by Bose-Einstein distribution. The result shows that an energymore » selective carrier transfer can be optically achieved at the device level by integrating the emitter and receiver into a nano-optical resonator, where both the photon emission and absorption are significantly amplified by a near-field coupling around the resonant frequency. General design and optimization schemes in practice are addressed by examining the influence of the photonic design and an energy dependent emissivity of the emitter, which can be used to develop the optical contacting concept further.« less
NASA Astrophysics Data System (ADS)
Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2016-03-01
The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.
Spectroscopic Classifications of Optical Transients with the Lick Shane 3-m telescope
NASA Astrophysics Data System (ADS)
Dimitriadis, G.; Foley, R. J.
2018-05-01
We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane 3-m telescope. Targets were supplied by ATLAS, ASAS-SN, and the KEGS K2 SN search.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2017-01-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN) and the ATLAS project (ATel #8680).
Classification in Astronomy: Past and Present
NASA Astrophysics Data System (ADS)
Feigelson, Eric
2012-03-01
Astronomers have always classified celestial objects. The ancient Greeks distinguished between asteros, the fixed stars, and planetos, the roving stars. The latter were associated with the Gods and, starting with Plato in his dialog Timaeus, provided the first mathematical models of celestial phenomena. Giovanni Hodierna classified nebulous objects, seen with a Galilean refractor telescope in the mid-seventeenth century into three classes: "Luminosae," "Nebulosae," and "Occultae." A century later, Charles Messier compiled a larger list of nebulae, star clusters and galaxies, but did not attempt a classification. Classification of comets was a significant enterprise in the 19th century: Alexander (1850) considered two groups based on orbit sizes, Lardner (1853) proposed three groups of orbits, and Barnard (1891) divided them into two classes based on morphology. Aside from the segmentation of the bright stars into constellations, most stellar classifications were based on colors and spectral properties. During the 1860s, the pioneering spectroscopist Angelo Secchi classified stars into five classes: white, yellow, orange, carbon stars, and emission line stars. After many debates, the stellar spectral sequence was refined by the group at Harvard into the familiar OBAFGKM spectral types, later found to be a sequence on surface temperature (Cannon 1926). The spectral classification is still being extended with recent additions of O2 hot stars (Walborn et al. 2002) and L and T brown dwarfs (Kirkpatrick 2005). Townley (1913) reviews 30 years of variable star classification, emerging with six classes with five subclasses. The modern classification of variable stars has about 80 (sub)classes, and is still under debate (Samus 2009). Shortly after his confirmation that some nebulae are external galaxies, Edwin Hubble (1926) proposed his famous bifurcated classification of galaxy morphologies with three classes: ellipticals, spirals, and irregulars. These classes are still used today with many refinements by Gerard de Vaucouleurs and others. Supernovae, nearly all of which are found in external galaxies, have a complicated classification scheme:Type I with subtypes Ia, Ib, Ic, Ib/c pec and Type II with subtypes IIb, IIL, IIP, and IIn (Turatto 2003). The classification is based on elemental abundances in optical spectra and on optical light curve shapes. Tadhunter (2009) presents a three-dimensional classification of active galactic nuclei involving radio power, emission line width, and nuclear luminosity. These taxonomies have played enormously important roles in the development of astronomy, yet all were developed using heuristic methods. Many are based on qualitative and subjective assessments of spatial, temporal, or spectral properties. A qualitative, morphological approach to astronomical studies was explicitly promoted by Zwicky (1957). Other classifications are based on quantitative criteria, but these criteria were developed by subjective examination of training datasets. For example, starburst galaxies are discriminated from narrow-line Seyfert galaxies by a curved line in a diagramof the ratios of four emission lines (Veilleux and Osterbrock 1987). Class II young stellar objects have been defined by a rectangular region in a mid-infrared color-color diagram (Allen et al. 2004). Short and hard gamma-ray bursts are discriminated by a dip in the distribution of burst durations (Kouveliotou et al. 2000). In no case was a statistical or algorithmic procedure used to define the classes.
An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn; Jiang, Song, E-mail: jiang@iapcm.ac.cn; Xu, Kun, E-mail: makxu@ust.hk
The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transportmore » equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach.« less
Luk, Keith D K; Saw, Lim Beng; Grozman, Samuel; Cheung, Kenneth M C; Samartzis, Dino
2014-02-01
Assessment of skeletal maturity in patients with adolescent idiopathic scoliosis (AIS) is important to guide clinical management. Understanding growth peak and cessation is crucial to determine clinical observational intervals, timing to initiate or end bracing therapy, and when to instrument and fuse. The commonly used clinical or radiologic methods to assess skeletal maturity are still deficient in predicting the growth peak and cessation among adolescents, and bone age is too complicated to apply. To address these concerns, we describe a new distal radius and ulna (DRU) classification scheme to assess skeletal maturity. A prospective study. One hundred fifty young, female AIS patients with hand x-rays and no previous history of spine surgery from a single institute were assessed. Radius and ulna plain radiographs, and various anthropomorphic parameters were assessed. We identified various stages of radius and ulna epiphysis maturity, which were graded as R1-R11 for the radius and U1-U9 for the ulna. The bone age, development of sexual characteristics, standing height, sitting height, arm span, radius length, and tibia length were studied prospectively at each stage of these epiphysis changes. Standing height, sitting height, and arm span growth were at their peak during stages R7 (mean, 11.4 years old) and U5 (mean, 11.0 years old). The long bone growths also demonstrated a common peak at R7 and U5. Cessation of height and arm span growth was noted after stages R10 (mean, 15.6 years old) and U9 (mean, 17.3 years old). The new DRU classification is a practical and easy-to-use scheme that can provide skeletal maturation status. This classification scheme provides close relationship with adolescent growth spurt and cessation of growth. This classification may have a tremendous utility in improving clinical-decision making in the conservative and operative management of scoliosis patients. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Wiggins, Emilie, Ed.
Outlined is the National Library of Medicine classification system for medicine and related sciences. In this system each preclinical science, such as human anatomy, biochemistry or pathology, and each medical subject, such as infectious diseases or pediatrics, receives a two-letter classification. Under each of these main headings numbered minor…
Human Factors Engineering. Student Supplement,
1981-08-01
a job TASK TAXONOMY A classification scheme for the different levels of activities in a system, i.e., job - task - sub-task, etc. TASK-AN~ALYSIS...with the classification of learning objectives by learning category so as to identify learningPhas III guidelines necessary for optimum learning to...correct. .4... .the sequencing of all dependent tasks. .1.. .the classification of learning objectives by learning category and the Identification of
Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.
Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu
2014-10-01
Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.
NASA Astrophysics Data System (ADS)
Rampazzo, Roberto; D'Onofrio, Mauro; Zaggia, Simone; Elmegreen, Debra M.; Laurikainen, Eija; Duc, Pierre-Alain; Gallart, Carme; Fraix-Burnet, Didier
At the time of the Great Debate nebulæ where recognized to have different morphologies and first classifications, sometimes only descriptive, have been attempted. A review of these early classification systems are well documented by the Allan Sandage's review in 2005 (Sandage 2005). This review emphasized the debt, in term of continuity of forms of spiral galaxies, due by the Hubble's classification scheme to the Reynold's systems proposed in 1920 (Reynolds, 1920).
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Kilpatrick, C. D.; Siebert, M. R.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-08-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST) and the All-Sky Automated Survey for Supernovae (ASAS-SN).
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-06-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST), All-Sky Automated Survey for Supernovae (ASAS-SN) and MASTER.
NASA Astrophysics Data System (ADS)
Ahmed Mohamed, E. T.; Schubert, S.; Gilberger, T. W.; Kamanyi, A., Jr.; Wannemacher, R.; Grill, W.
2006-03-01
Acoustic and optical multiple contrast microscopy has been employed in order to explore characterizable parameters of red blood cells, including cells infected by the parasite Plasmodium falciparum, in order to investigate cellular modifications caused by the infection and to identify possible detection schemes for disease monitoring. Imaging schemes were based on fluorescence, optical transmission, optical reflection, and amplitude and phase of ultrasound reflected from the cells. Contrast variations observed in acoustic microscopy, but not in optical microscopy, were tentatively ascribed to changes caused by the infection.
NASA Astrophysics Data System (ADS)
Muller, Sybrand Jacobus; van Niekerk, Adriaan
2016-07-01
Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.
Neural network-based systems for handprint OCR applications.
Ganis, M D; Wilson, C L; Blue, J L
1998-01-01
Over the last five years or so, neural network (NN)-based approaches have been steadily gaining performance and popularity for a wide range of optical character recognition (OCR) problems, from isolated digit recognition to handprint recognition. We present an NN classification scheme based on an enhanced multilayer perceptron (MLP) and describe an end-to-end system for form-based handprint OCR applications designed by the National Institute of Standards and Technology (NIST) Visual Image Processing Group. The enhancements to the MLP are based on (i) neuron activations functions that reduce the occurrences of singular Jacobians; (ii) successive regularization to constrain the volume of the weight space; and (iii) Boltzmann pruning to constrain the dimension of the weight space. Performance characterization studies of NN systems evaluated at the first OCR systems conference and the NIST form-based handprint recognition system are also summarized.
A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers
Bennett, David A.; Blennow, Kaj; Carrillo, Maria C.; Feldman, Howard H.; Frisoni, Giovanni B.; Hampel, Harald; Jagust, William J.; Johnson, Keith A.; Knopman, David S.; Petersen, Ronald C.; Scheltens, Philip; Sperling, Reisa A.; Dubois, Bruno
2016-01-01
Biomarkers have become an essential component of Alzheimer disease (AD) research and because of the pervasiveness of AD pathology in the elderly, the same biomarkers are used in cognitive aging research. A number of current issues suggest that an unbiased descriptive classification scheme for these biomarkers would be useful. We propose the “A/T/N” system in which 7 major AD biomarkers are divided into 3 binary categories based on the nature of the pathophysiology that each measures. “A” refers to the value of a β-amyloid biomarker (amyloid PET or CSF Aβ42); “T,” the value of a tau biomarker (CSF phospho tau, or tau PET); and “N,” biomarkers of neurodegeneration or neuronal injury ([18F]-fluorodeoxyglucose–PET, structural MRI, or CSF total tau). Each biomarker category is rated as positive or negative. An individual score might appear as A+/T+/N−, or A+/T−/N−, etc. The A/T/N system includes the new modality tau PET. It is agnostic to the temporal ordering of mechanisms underlying AD pathogenesis. It includes all individuals in any population regardless of the mix of biomarker findings and therefore is suited to population studies of cognitive aging. It does not specify disease labels and thus is not a diagnostic classification system. It is a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use. Given the present lack of consensus among AD specialists on terminology across the clinically normal to dementia spectrum, a biomarker classification scheme will have broadest acceptance if it is independent from any one clinically defined diagnostic scheme. PMID:27371494
Taxonomy and Classification Scheme for Artificial Space Objects
2013-09-01
filter UVB and spectroscopic measurements) and albedo (including polarimetry ). Earliest classifications of asteroids [17] were based on the filter...similarities of the asteroid colors to K0 to K2V stars. The first more complete asteroid taxonomy was based on a synthesis of polarimetry , radiometry, and
A Critical Review of Mode of Action (MOA) Assignment Classifications for Ecotoxicology
There are various structure-based classification schemes to categorize chemicals based on mode of action (MOA) which have been applied for both eco and human health toxicology. With increasing calls to assess thousands of chemicals, some of which have little available informatio...
Design scheme for optical manufacturing support system of TMT M3 prototype
NASA Astrophysics Data System (ADS)
Hu, Haifei; Luo, Xiao
2014-09-01
Thirty Meter Telescope's Tertiary Mirror Cell Assembly (TMTM3-CA) will be manufactured in Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP). To reduce the risk of fabricating TMTM3, a prototype made of Zerodur with a d/t ratio of 72 is planned to be polished. Here the focus is on the design scheme of the prototype's optical manufacturing support system. Firstly the number of support points was estimated, then structural design scheme for equal-force polishing support system are drawn, and finally layout optimization of support points was carried out. As its high performance and efficiency, the work will be beneficial to manufacturing large thin mirrors.
Solar wind classification from a machine learning perspective
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, V.; Wimmer-Schweingruber, R. F.
2017-12-01
It is a very well known fact that the ubiquitous solar wind comes in at least two varieties, the slow solar wind and the coronal hole wind. The simplified view of two solar wind types has been frequently challenged. Existing solar wind categorization schemes rely mainly on different combinations of the solar wind proton speed, the O and C charge state ratios, the Alfvén speed, the expected proton temperature and the specific proton entropy. In available solar wind classification schemes, solar wind from stream interaction regimes is often considered either as coronal hole wind or slow solar wind, although their plasma properties are different compared to "pure" coronal hole or slow solar wind. As shown in Neugebauer et al. (2016), even if only two solar wind types are assumed, available solar wind categorization schemes differ considerably for intermediate solar wind speeds. Thus, the decision boundary between the coronal hole and the slow solar wind is so far not well defined.In this situation, a machine learning approach to solar wind classification can provide an additional perspective.We apply a well-known machine learning method, k-means, to the task of solar wind classification in order to answer the following questions: (1) How many solar wind types can reliably be identified in our data set comprised of ten years of solar wind observations from the Advanced Composition Explorer (ACE)? (2) Which combinations of solar wind parameters are particularly useful for solar wind classification?Potential subtypes of slow solar wind are of particular interest because they can provide hints of respective different source regions or release mechanisms of slow solar wind.
Rao, Harsha L; Yadav, Ravi K; Addepalli, Uday K; Begum, Viquar U; Senthil, Sirisha; Choudhari, Nikhil S; Garudadri, Chandra S
2015-08-01
To evaluate the relationship between the reference standard used to diagnose glaucoma and the diagnostic ability of spectral domain optical coherence tomograph (SDOCT). In a cross-sectional study, 280 eyes of 175 consecutive subjects, referred to a tertiary eye care center for glaucoma evaluation, underwent optic disc photography, visual field (VF) examination, and SDOCT examination. The cohort was divided into glaucoma and control groups based on 3 reference standards for glaucoma diagnosis: first based on the optic disc classification (179 glaucoma and 101 control eyes), second on VF classification (glaucoma hemifield test outside normal limits and pattern SD with P-value of <5%, 130 glaucoma and 150 control eyes), and third on the presence of both glaucomatous optic disc and glaucomatous VF (125 glaucoma and 155 control eyes). Relationship between the reference standards and the diagnostic parameters of SDOCT were evaluated using areas under the receiver operating characteristic curve, sensitivity, and specificity. Areas under the receiver operating characteristic curve and sensitivities of most of the SDOCT parameters obtained with the 3 reference standards (ranging from 0.74 to 0.88 and 72% to 88%, respectively) were comparable (P>0.05). However, specificities of SDOCT parameters were significantly greater (P<0.05) with optic disc classification as reference standard (74% to 88%) compared with VF classification as reference standard (57% to 74%). Diagnostic parameters of SDOCT that was significantly affected by reference standard was the specificity, which was greater with optic disc classification as the reference standard. This has to be considered when comparing the diagnostic ability of SDOCT across studies.
NASA Astrophysics Data System (ADS)
Gautam, Nitin
The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global distribution of these six classes is also compared with the earlier results obtained from Comprehensive Ocean Atmosphere Data Sets (COADS). It is found that the gross pattern of the distributions obtained from SSM/I and COADS data match remarkably well with each other.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Siebert, M. R.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.
2017-07-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Asteroid Terrestrial-impact Last Alert System (ATLAS; ATel #8680), the Pan-STARRS Survey for Transients (PSST) and Gaia.
Optical authentication based on moiré effect of nonlinear gratings in phase space
NASA Astrophysics Data System (ADS)
Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang
2015-12-01
An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme.
Characterization of palmprints by wavelet signatures via directional context modeling.
Zhang, Lei; Zhang, David
2004-06-01
The palmprint is one of the most reliable physiological characteristics that can be used to distinguish between individuals. Current palmprint-based systems are more user friendly, more cost effective, and require fewer data signatures than traditional fingerprint-based identification systems. The principal lines and wrinkles captured in a low-resolution palmprint image provide more than enough information to uniquely identify an individual. This paper presents a palmprint identification scheme that characterizes a palmprint using a set of statistical signatures. The palmprint is first transformed into the wavelet domain, and the directional context of each wavelet subband is defined and computed in order to collect the predominant coefficients of its principal lines and wrinkles. A set of statistical signatures, which includes gravity center, density, spatial dispersivity and energy, is then defined to characterize the palmprint with the selected directional context values. A classification and identification scheme based on these signatures is subsequently developed. This scheme exploits the features of principal lines and prominent wrinkles sufficiently and achieves satisfactory results. Compared with the line-segments-matching or interesting-points-matching based palmprint verification schemes, the proposed scheme uses a much smaller amount of data signatures. It also provides a convenient classification strategy and more accurate identification.
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.
2017-09-01
Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.
A study of topologies and protocols for fiber optic local area network
NASA Technical Reports Server (NTRS)
Yeh, C.; Gerla, M.; Rodrigues, P.
1985-01-01
The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways.
Classification of Active Microwave and Passive Optical Data Based on Bayesian Theory and Mrf
NASA Astrophysics Data System (ADS)
Yu, F.; Li, H. T.; Han, Y. S.; Gu, H. Y.
2012-08-01
A classifier based on Bayesian theory and Markov random field (MRF) is presented to classify the active microwave and passive optical remote sensing data, which have demonstrated their respective advantages in inversion of surface soil moisture content. In the method, the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. And the model is validated for the necessities of integration of TM and ASAR, it shows that, the total precision of classification in this paper is 89.4%. Comparing with the classification with single TM, the accuracy increase 11.5%, illustrating that synthesis of active and passive optical remote sensing data is efficient and potential in classification.
Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing; Evans, Philip G.; Grice, Warren P.
In the Gaussian-modulated coherent-states (GMCS) quantum key distribution (QKD) protocol, Alice prepares quantum states actively: For each transmission, Alice generates a pair of Gaussian-distributed random numbers, encodes them on a weak coherent pulse using optical amplitude and phase modulators, and then transmits the Gaussian-modulated weak coherent pulse to Bob. Here we propose a passive state preparation scheme using a thermal source. In our scheme, Alice splits the output of a thermal source into two spatial modes using a beam splitter. She measures one mode locally using conjugate optical homodyne detectors, and transmits the other mode to Bob after applying appropriatemore » optical attenuation. Under normal conditions, Alice's measurement results are correlated to Bob's, and they can work out a secure key, as in the active state preparation scheme. Given the initial thermal state generated by the source is strong enough, this scheme can tolerate high detector noise at Alice's side. Furthermore, the output of the source does not need to be single mode, since an optical homodyne detector can selectively measure a single mode determined by the local oscillator. Preliminary experimental results suggest that the proposed scheme could be implemented using an off-the-shelf amplified spontaneous emission source.« less
From Three-Photon Greenberger-Horne-Zeilinger States to Ballistic Universal Quantum Computation.
Gimeno-Segovia, Mercedes; Shadbolt, Pete; Browne, Dan E; Rudolph, Terry
2015-07-10
Single photons, manipulated using integrated linear optics, constitute a promising platform for universal quantum computation. A series of increasingly efficient proposals have shown linear-optical quantum computing to be formally scalable. However, existing schemes typically require extensive adaptive switching, which is experimentally challenging and noisy, thousands of photon sources per renormalized qubit, and/or large quantum memories for repeat-until-success strategies. Our work overcomes all these problems. We present a scheme to construct a cluster state universal for quantum computation, which uses no adaptive switching, no large memories, and which is at least an order of magnitude more resource efficient than previous passive schemes. Unlike previous proposals, it is constructed entirely from loss-detecting gates and offers a robustness to photon loss. Even without the use of an active loss-tolerant encoding, our scheme naturally tolerates a total loss rate ∼1.6% in the photons detected in the gates. This scheme uses only 3 Greenberger-Horne-Zeilinger states as a resource, together with a passive linear-optical network. We fully describe and model the iterative process of cluster generation, including photon loss and gate failure. This demonstrates that building a linear-optical quantum computer needs to be less challenging than previously thought.
Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution
Qi, Bing; Evans, Philip G.; Grice, Warren P.
2018-01-01
In the Gaussian-modulated coherent-states (GMCS) quantum key distribution (QKD) protocol, Alice prepares quantum states actively: For each transmission, Alice generates a pair of Gaussian-distributed random numbers, encodes them on a weak coherent pulse using optical amplitude and phase modulators, and then transmits the Gaussian-modulated weak coherent pulse to Bob. Here we propose a passive state preparation scheme using a thermal source. In our scheme, Alice splits the output of a thermal source into two spatial modes using a beam splitter. She measures one mode locally using conjugate optical homodyne detectors, and transmits the other mode to Bob after applying appropriatemore » optical attenuation. Under normal conditions, Alice's measurement results are correlated to Bob's, and they can work out a secure key, as in the active state preparation scheme. Given the initial thermal state generated by the source is strong enough, this scheme can tolerate high detector noise at Alice's side. Furthermore, the output of the source does not need to be single mode, since an optical homodyne detector can selectively measure a single mode determined by the local oscillator. Preliminary experimental results suggest that the proposed scheme could be implemented using an off-the-shelf amplified spontaneous emission source.« less
Nakarmi, Bikash; Hoai, Tran Quoc; Won, Yong-Hyub; Zhang, Xuping
2014-06-30
We propose and demonstrate a novel scheme for short pulse controlled all-optical switch using external cavity based single mode Fabry- Pérot laser diode (SMFP-LD). The proposed scheme consists of control unit and switching unit as two essential blocks. The basic principle of the proposed scheme is the optical bistability property of SMFP-LD for the control unit and the suppression of the dominant beam of SMFP-LD with injection locking for the switching unit. We also present the analysis of hysteresis width and rising/falling time with change in wavelength detuning which helps to find the optimum wavelength detuning value and power of light beams at different stages of the proposed scheme that gives wide input dynamic power range, high ON/OFF contrast ratio, and low rising/falling time. Input data of 10 Gb/s Non Return to Zero (NRZ) signal is switched at output ports depending upon the control signal generated by the control unit, which comprises of optical SR latch. Output waveforms, clear eye diagrams with extinction ratio of about 11 dB, rising/falling time of about 30 ps and 40 ps, and bit error rate (BER) are measured to validate proposed scheme. No noise floor is observed at output ports up to BER of 10-(12) and the maximum power penalty recorded is about 1.7 dB at a BER of 10-(9) which shows good performance of the proposed short pulse controlled optical switch using SMFP-LDs.
Classification of diffuse lung diseases: why and how.
Hansell, David M
2013-09-01
The understanding of complex lung diseases, notably the idiopathic interstitial pneumonias and small airways diseases, owes as much to repeated attempts over the years to classify them as to any single conceptual breakthrough. One of the many benefits of a successful classification scheme is that it allows workers, within and between disciplines, to be clear that they are discussing the same disease. This may be of particular importance in the recruitment of individuals for a clinical trial that requires a standardized and homogeneous study population. Different specialties require fundamentally different things from a classification: for epidemiologic studies, a classification that requires categorization of individuals according to histopathologic pattern is not usually practicable. Conversely, a scheme that simply divides diffuse parenchymal disease into inflammatory and noninflammatory categories is unlikely to further the understanding about the pathogenesis of disease. Thus, for some disease groupings, for example, pulmonary vasculopathies, there may be several appropriate classifications, each with its merits and demerits. There has been an interesting shift in the past few years, from the accepted primacy of histopathology as the sole basis on which the classification of parenchymal lung disease has rested, to new ways of considering how these entities relate to each other. Some inventive thinking has resulted in new classifications that undoubtedly benefit patients and clinicians in their endeavor to improve management and outcome. The challenge of understanding the logic behind current classifications and their shortcomings are explored in various examples of lung diseases.
Video Games: Instructional Potential and Classification.
ERIC Educational Resources Information Center
Nawrocki, Leon H.; Winner, Janet L.
1983-01-01
Intended to provide a framework and impetus for future investigations of video games, this paper summarizes activities investigating the instructional use of such games, observations by the authors, and a proposed classification scheme and a paradigm to assist in the preliminary selection of instructional video games. Nine references are listed.…
USDA-ARS?s Scientific Manuscript database
This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...
Mode of Action (MOA) Assignment Classifications for Ecotoxicology: Evaluation of Available Methods
There are various structure-based classification schemes to categorize chemicals based on mode of action (MOA) which have been applied for both eco and human toxicology. With increasing calls to assess 1000s of chemicals, some of which have little available information other tha...
Surveillance system and method having an operating mode partitioned fault classification model
NASA Technical Reports Server (NTRS)
Bickford, Randall L. (Inventor)
2005-01-01
A system and method which partitions a parameter estimation model, a fault detection model, and a fault classification model for a process surveillance scheme into two or more coordinated submodels together providing improved diagnostic decision making for at least one determined operating mode of an asset.
ERIC Educational Resources Information Center
Hamel, B. Remmo; Van Der Veer, M. A. A.
1972-01-01
A significant positive correlation between multiple classification was found, in testing 65 children aged 6 to 8 years, at the stage of concrete operations. This is interpreted as support for the existence of a structure d'ensemble of operational schemes in the period of concrete operations. (Authors)
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Pan, Y.-C.; Downing, S.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2016-01-01
We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN), Catalina Real-Time Transient Survey (CRTS) and the CBAT Transient Object Followup Reports.
NASA Technical Reports Server (NTRS)
Eigen, D. J.; Fromm, F. R.; Northouse, R. A.
1974-01-01
A new clustering algorithm is presented that is based on dimensional information. The algorithm includes an inherent feature selection criterion, which is discussed. Further, a heuristic method for choosing the proper number of intervals for a frequency distribution histogram, a feature necessary for the algorithm, is presented. The algorithm, although usable as a stand-alone clustering technique, is then utilized as a global approximator. Local clustering techniques and configuration of a global-local scheme are discussed, and finally the complete global-local and feature selector configuration is shown in application to a real-time adaptive classification scheme for the analysis of remote sensed multispectral scanner data.
GRB 060614: a Fake Short Gamma-Ray Burst
NASA Astrophysics Data System (ADS)
Caito, L.; Bernardini, M. G.; Bianco, C. L.; Dainotti, M. G.; Guida, R.; Ruffini, R.
2008-05-01
The explosion of GRB 060614 produced a deep break in the GRB scenario and opened new horizons of investigation because it can't be traced back to any traditional scheme of classification. In fact, it has features both of long bursts and of short bursts and, above all, it is the first case of long duration near GRB without any bright Ib/c associated Supernova. We will show that, in our canonical GRB scenario [1], this ``anomalous'' situation finds a natural interpretation and allows us to discuss a possible variation to the traditional classification scheme, introducing the distinction between ``genuine'' and ``fake'' short bursts.
NASA Astrophysics Data System (ADS)
Caito, L.; Bernardini, M. G.; Bianco, C. L.; Dainotti, M. G.; Guida, R.; Ruffini, R.
2008-01-01
The explosion of GRB 060614, detected by the Swift satellite, produced a deep break in the GRB scenario opening new horizons of investigation, because it can't be traced back to any traditional scheme of classification. In fact, it manifests peculiarities both of long bursts and of short bursts. Above all, it is the first case of long duration near GRB without any bright Ib/c associated Supernova. We will show that, in our canonical GRB scenario ([l]), this ``anomalous'' situation finds a natural interpretation and allows us to discuss a possible variation to the traditional classification scheme, introducing the distinction between ``genuine'' and ``fake'' short bursts.
Hierarchy Bayesian model based services awareness of high-speed optical access networks
NASA Astrophysics Data System (ADS)
Bai, Hui-feng
2018-03-01
As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit (ONU) and to perform complex services awareness from the whole view of system in optical line terminal (OLT). Simulation results show that the proposed scheme is able to achieve better quality of services (QoS), in terms of packet loss rate and time delay.
Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network.
Calosso, C E; Bertacco, E; Calonico, D; Clivati, C; Costanzo, G A; Frittelli, M; Levi, F; Mura, A; Godone, A
2014-03-01
We performed a two-way remote optical phase comparison on optical fiber. Two optical frequency signals were launched in opposite directions in an optical fiber and their phases were simultaneously measured at the other end. In this technique, the fiber noise is passively canceled, and we compared two optical frequencies at the ultimate 10(-21) stability level. The experiment was performed on a 47 km fiber that is part of the metropolitan network for Internet traffic. The technique relies on the synchronous measurement of the optical phases at the two ends of the link, which is here performed by digital electronics. This scheme offers some advantages with respect to active noise cancellation schemes, as the light travels only once in the fiber.
Planetree health information services: public access to the health information people want.
Cosgrove, T L
1994-01-01
In July 1981, the Planetree Health Resource Center opened on the San Francisco campus of California Pacific Medical Center (Pacific Presbyterian Medical Center). Planetree was founded on the belief that access to information can empower people and help them face health and medical challenges. The Health Resource Center was created to provide medical library and health information resources to the general public. Over the last twelve years, Planetree has tried to develop a consumer health library collection and information service that is responsive to the needs and interests of a diverse public. In an effort to increase accessibility to the medical literature, a consumer health library classification scheme was created for the organization of library materials. The scheme combines the specificity and sophistication of the National Library of Medicine classification scheme with the simplicity of common lay terminology. PMID:8136762
User oriented ERTS-1 images. [vegetation identification in Canada through image enhancement
NASA Technical Reports Server (NTRS)
Shlien, S.; Goodenough, D.
1974-01-01
Photographic reproduction of ERTS-1 images are capable of displaying only a portion of the total information available from the multispectral scanner. Methods are being developed to generate ERTS-1 images oriented towards special users such as agriculturists, foresters, and hydrologists by applying image enhancement techniques and interactive statistical classification schemes. Spatial boundaries and linear features can be emphasized and delineated using simple filters. Linear and nonlinear transformations can be applied to the spectral data to emphasize certain ground information. An automatic classification scheme was developed to identify particular ground cover classes such as fallow, grain, rape seed or various vegetation covers. The scheme applies the maximum likelihood decision rule to the spectral information and classifies the ERTS-1 image on a pixel by pixel basis. Preliminary results indicate that the classifier has limited success in distinguishing crops, but is well adapted for identifying different types of vegetation.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun
2016-02-01
We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.
Reset Tree-Based Optical Fault Detection
Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon
2013-01-01
In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267
NASA Astrophysics Data System (ADS)
Khan, Yousaf; Afridi, Muhammad Idrees; Khan, Ahmed Mudassir; Rehman, Waheed Ur; Khan, Jahanzeb
2014-09-01
Hybrid wavelength-division multiplexed/time-division multiplexed passive optical access networks (WDM/TDM-PONs) combine the advance features of both WDM and TDM PONs to provide a cost-effective access network solution. We demonstrate and analyze the transmission performances and power budget issues of a colorless hybrid WDM/TDM-PON scheme. A 10-Gb/s downstream differential phase shift keying (DPSK) and remodulated upstream on/off keying (OOK) data signals are transmitted over 25 km standard single mode fiber. Simulation results show error free transmission having adequate power margins in both downstream and upstream transmission, which prove the applicability of the proposed scheme to future passive optical access networks. The power budget confines both the PON splitting ratio and the distance between the Optical Line Terminal (OLT) and Optical Network Unit (ONU).
Image communication scheme based on dynamic visual cryptography and computer generated holography
NASA Astrophysics Data System (ADS)
Palevicius, Paulius; Ragulskis, Minvydas
2015-01-01
Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.
Scattering-free optical levitation of a cavity mirror.
Guccione, G; Hosseini, M; Adlong, S; Johnsson, M T; Hope, J; Buchler, B C; Lam, P K
2013-11-01
We demonstrate the feasibility of levitating a small mirror using only radiation pressure. In our scheme, the mirror is supported by a tripod where each leg of the tripod is a Fabry-Perot cavity. The macroscopic state of the mirror is coherently coupled to the supporting cavity modes allowing coherent interrogation and manipulation of the mirror motion. The proposed scheme is an extreme example of the optical spring, where a mechanical oscillator is isolated from the environment and its mechanical frequency and macroscopic state can be manipulated solely through optical fields. We model the stability of the system and find a three-dimensional lattice of trapping points where cavity resonances allow for buildup of optical field sufficient to support the weight of the mirror. Our scheme offers a unique platform for studying quantum and classical optomechanics and can potentially be used for precision gravitational field sensing and quantum state generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalili, Farid; Danilishin, Stefan; Mueller-Ebhardt, Helge
We consider enhancing the sensitivity of future gravitational-wave detectors by using double optical spring. When the power, detuning and bandwidth of the two carriers are chosen appropriately, the effect of the double optical spring can be described as a 'negative inertia', which cancels the positive inertia of the test masses and thus increases their response to gravitational waves. This allows us to surpass the free-mass standard quantum limit (SQL) over a broad frequency band, through signal amplification, rather than noise cancellation, which has been the case for all broadband SQL-beating schemes so far considered for gravitational-wave detectors. The merit ofmore » such signal amplification schemes lies in the fact that they are less susceptible to optical losses than noise-cancellation schemes. We show that it is feasible to demonstrate such an effect with the Gingin High Optical Power Test Facility, and it can eventually be implemented in future advanced GW detectors.« less
Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.
Chen, Jingyuan; Li, Peili
2015-08-10
A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.
2017-02-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN), the ATLAS project (ATel #8680), and the Pan-STARRS Survey for Transients (PSST).
Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.
Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre
2014-06-15
We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.
Hielscher, Andreas H; Bartel, Sebastian
2004-02-01
Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.
A novel survivable WDM passive optical networks
NASA Astrophysics Data System (ADS)
Cheng, Xiaofei; Fang, Qin; Zhang, Yong; Chen, Bin; Lu, Fucai
2008-11-01
We propose a novel survivable wavelength-division multiplexed-passive optical network (WDM-PON) based on an N × N cyclic array waveguide grating (AWG) and reflective semiconductor optical amplifiers (RSOAs). ONUs are grouped and connected with extra connection fibres (CFs). Protection resources are provided mutually in ONU pairs. The characteristics of the proposed survivable WDM-PON and wavelength routing scheme are analyzed. Experiments of 10- Gb/s downstream and 1.25-Gb/s upstream transmission experiments are demonstrated to verify our proposed scheme.
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Maslanik, J. A.; Key, J. R.
1987-01-01
A definition is undertaken of the spectral and spatial characteristics of clouds and surface conditions in the polar regions, and to the creation of calibrated, geometrically correct data sets suitable for quantitative analysis. Ways are explored in which this information can be applied to cloud classifications as new methods or as extensions to existing classification schemes. A methodology is developed that uses automated techniques to merge Advanced Very High Resolution Radiometer (AVHRR) and Scanning Multichannel Microwave Radiometer (SMMR) data, and to apply first-order calibration and zenith angle corrections to the AVHRR imagery. Cloud cover and surface types are manually interpreted, and manual methods are used to define relatively pure training areas to describe the textural and multispectral characteristics of clouds over several surface conditions. The effects of viewing angle and bidirectional reflectance differences are studied for several classes, and the effectiveness of some key components of existing classification schemes is tested.
Olives, Casey; Pagano, Marcello; Deitchler, Megan; Hedt, Bethany L; Egge, Kari; Valadez, Joseph J
2009-04-01
Traditional lot quality assurance sampling (LQAS) methods require simple random sampling to guarantee valid results. However, cluster sampling has been proposed to reduce the number of random starting points. This study uses simulations to examine the classification error of two such designs, a 67x3 (67 clusters of three observations) and a 33x6 (33 clusters of six observations) sampling scheme to assess the prevalence of global acute malnutrition (GAM). Further, we explore the use of a 67x3 sequential sampling scheme for LQAS classification of GAM prevalence. Results indicate that, for independent clusters with moderate intracluster correlation for the GAM outcome, the three sampling designs maintain approximate validity for LQAS analysis. Sequential sampling can substantially reduce the average sample size that is required for data collection. The presence of intercluster correlation can impact dramatically the classification error that is associated with LQAS analysis.
Classification of Palmprint Using Principal Line
NASA Astrophysics Data System (ADS)
Prasad, Munaga V. N. K.; Kumar, M. K. Pramod; Sharma, Kuldeep
In this paper, a new classification scheme for palmprint is proposed. Palmprint is one of the reliable physiological characteristics that can be used to authenticate an individual. Palmprint classification provides an important indexing mechanism in a very large palmprint database. Here, the palmprint database is initially categorized into two groups, right hand group and left hand group. Then, each group is further classified based on the distance traveled by principal line i.e. Heart Line During pre processing, a rectangular Region of Interest (ROI) in which only heart line is present, is extracted. Further, ROI is divided into 6 regions and depending upon the regions in which the heart line traverses the palmprint is classified accordingly. Consequently, our scheme allows 64 categories for each group forming a total number of 128 possible categories. The technique proposed in this paper includes only 15 such categories and it classifies not more than 20.96% of the images into a single category.
Classification of topological phonons in linear mechanical metamaterials
Süsstrunk, Roman
2016-01-01
Topological phononic crystals, alike their electronic counterparts, are characterized by a bulk–edge correspondence where the interior of a material dictates the existence of stable surface or boundary modes. In the mechanical setup, such surface modes can be used for various applications such as wave guiding, vibration isolation, or the design of static properties such as stable floppy modes where parts of a system move freely. Here, we provide a classification scheme of topological phonons based on local symmetries. We import and adapt the classification of noninteracting electron systems and embed it into the mechanical setup. Moreover, we provide an extensive set of examples that illustrate our scheme and can be used to generate models in unexplored symmetry classes. Our work unifies the vast recent literature on topological phonons and paves the way to future applications of topological surface modes in mechanical metamaterials. PMID:27482105
Restoration of Wavelet-Compressed Images and Motion Imagery
2004-01-01
SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION...images is that they are global translates of each other, where 29 the global motion parameters are known. In a very simple sense , these five images form...Image Proc., vol. 1, Oct. 2001, pp. 185–188. [2] J. W. Woods and T. Naveen, “A filter based bit allocation scheme for subband compresion of HDTV,” IEEE
Hyun, S; Park, H A
2002-06-01
Nursing language plays an important role in describing and defining nursing phenomena and nursing actions. There are numerous vocabularies describing nursing diagnoses, interventions and outcomes in nursing. However, the lack of a standardized unified nursing language is considered a problem for further development of the discipline of nursing. In an effort to unify the nursing languages, the International Council of Nurses (ICN) has proposed the International Classification for Nursing Practice (ICNP) as a unified nursing language system. The purpose of this study was to evaluate the inclusiveness and expressiveness of the ICNP terms by cross-mapping them with the existing nursing terminologies, specifically the North American Nursing Diagnosis Association (NANDA) taxonomy I, the Omaha System, the Home Health Care Classification (HHCC) and the Nursing Interventions Classification (NIC). Nine hundred and seventy-four terms from these four classifications were cross-mapped with the ICNP terms. This was performed in accordance with the Guidelines for Composing a Nursing Diagnosis and Guidelines for Composing a Nursing Intervention, which were suggested by the ICNP development team. An expert group verified the results. The ICNP Phenomena Classification described 87.5% of the NANDA diagnoses, 89.7% of the HHCC diagnoses and 72.7% of the Omaha System problem classification scheme. The ICNP Action Classification described 79.4% of the NIC interventions, 80.6% of the HHCC interventions and 71.4% of the Omaha System intervention scheme. The results of this study suggest that the ICNP has a sound starting structure for a unified nursing language system and can be used to describe most of the existing terminologies. Recommendations for the addition of terms to the ICNP are provided.
NASA Astrophysics Data System (ADS)
Weller, Andrew F.; Harris, Anthony J.; Ware, J. Andrew; Jarvis, Paul S.
2006-11-01
The classification of sedimentary organic matter (OM) images can be improved by determining the saliency of image analysis (IA) features measured from them. Knowing the saliency of IA feature measurements means that only the most significant discriminating features need be used in the classification process. This is an important consideration for classification techniques such as artificial neural networks (ANNs), where too many features can lead to the 'curse of dimensionality'. The classification scheme adopted in this work is a hybrid of morphologically and texturally descriptive features from previous manual classification schemes. Some of these descriptive features are assigned to IA features, along with several others built into the IA software (Halcon) to ensure that a valid cross-section is available. After an image is captured and segmented, a total of 194 features are measured for each particle. To reduce this number to a more manageable magnitude, the SPSS AnswerTree Exhaustive CHAID (χ 2 automatic interaction detector) classification tree algorithm is used to establish each measurement's saliency as a classification discriminator. In the case of continuous data as used here, the F-test is used as opposed to the published algorithm. The F-test checks various statistical hypotheses about the variance of groups of IA feature measurements obtained from the particles to be classified. The aim is to reduce the number of features required to perform the classification without reducing its accuracy. In the best-case scenario, 194 inputs are reduced to 8, with a subsequent multi-layer back-propagation ANN recognition rate of 98.65%. This paper demonstrates the ability of the algorithm to reduce noise, help overcome the curse of dimensionality, and facilitate an understanding of the saliency of IA features as discriminators for sedimentary OM classification.
Looking at Citations: Using Corpora in English for Academic Purposes.
ERIC Educational Resources Information Center
Thompson, Paul; Tribble, Chris
2001-01-01
Presents a classification scheme and the results of applying this scheme to the coding of academic texts in a corpus. The texts are doctoral theses from agricultural botany and agricultural economics departments. Results lead to a comparison of the citation practices of writers in different disciplines and the different rhetorical practices of…
New coherent laser communication detection scheme based on channel-switching method.
Liu, Fuchuan; Sun, Jianfeng; Ma, Xiaoping; Hou, Peipei; Cai, Guangyu; Sun, Zhiwei; Lu, Zhiyong; Liu, Liren
2015-04-01
A new coherent laser communication detection scheme based on the channel-switching method is proposed. The detection front end of this scheme comprises a 90° optical hybrid and two balanced photodetectors which outputs the in-phase (I) channel and quadrature-phase (Q) channel signal current, respectively. With this method, the ultrahigh speed analog/digital transform of the signal of the I or Q channel is not required. The phase error between the signal and local lasers is obtained by simple analog circuit. Using the phase error signal, the signals of the I/Q channel are switched alternately. The principle of this detection scheme is presented. Moreover, the comparison of the sensitivity of this scheme with that of homodyne detection with an optical phase-locked loop is discussed. An experimental setup was constructed to verify the proposed detection scheme. The offline processing procedure and results are presented. This scheme could be realized through simple structure and has potential applications in cost-effective high-speed laser communication.
An unsupervised classification technique for multispectral remote sensing data.
NASA Technical Reports Server (NTRS)
Su, M. Y.; Cummings, R. E.
1973-01-01
Description of a two-part clustering technique consisting of (a) a sequential statistical clustering, which is essentially a sequential variance analysis, and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by traditional supervised maximum-likelihood classification techniques.
Unsupervised classification of earth resources data.
NASA Technical Reports Server (NTRS)
Su, M. Y.; Jayroe, R. R., Jr.; Cummings, R. E.
1972-01-01
A new clustering technique is presented. It consists of two parts: (a) a sequential statistical clustering which is essentially a sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. This unsupervised composite technique was employed for automatic classification of two sets of remote multispectral earth resource observations. The classification accuracy by the unsupervised technique is found to be comparable to that by existing supervised maximum liklihood classification technique.
LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.
Djordjevic, Ivan B; Arabaci, Murat
2010-11-22
An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.
Fairness of QoS supporting in optical burst switching
NASA Astrophysics Data System (ADS)
Xuan, Xuelei; Liu, Hua; Chen, Chunfeng; Zhang, Zhizhong
2004-04-01
In this paper we investigate the fairness problem of offset-time-based quality of service (QoS) scheme proposed by Qiao and Dixit in optical burst switching (OBS) networks. In the proposed schemes, QoS relies on the fact that the requests for reservation further into the future, but for practical, benchmark offset-time of data bursts at the intermediate nodes is not equal to each other. Here, a new offset-time-based QoS scheme is introduced, where data bursts are classified according to their offset-time and isolated in the wavelength domain or time domain to achieve the parallel reservation. Through simulation, it is found that this scheme achieves fairness among data bursts with different priority.
NASA Astrophysics Data System (ADS)
Nayak, P. K.; Subramaniam, A.; Choudhury, S.; Indu, G.; Sagar, Ram
2016-12-01
We have introduced a semi-automated quantitative method to estimate the age and reddening of 1072 star clusters in the Large Magellanic Cloud (LMC) using the Optical Gravitational Lensing Experiment III survey data. This study brings out 308 newly parametrized clusters. In a first of its kind, the LMC clusters are classified into groups based on richness/mass as very poor, poor, moderate and rich clusters, similar to the classification scheme of open clusters in the Galaxy. A major cluster formation episode is found to happen at 125 ± 25 Myr in the inner LMC. The bar region of the LMC appears prominently in the age range 60-250 Myr and is found to have a relatively higher concentration of poor and moderate clusters. The eastern and the western ends of the bar are found to form clusters initially, which later propagates to the central part. We demonstrate that there is a significant difference in the distribution of clusters as a function of mass, using a movie based on the propagation (in space and time) of cluster formation in various groups. The importance of including the low-mass clusters in the cluster formation history is demonstrated. The catalogue with parameters, classification, and cleaned and isochrone fitted colour-magnitude diagrams of 1072 clusters, which are available as online material, can be further used to understand the hierarchical formation of clusters in selected regions of the LMC.
AI-augmented time stretch microscopy
NASA Astrophysics Data System (ADS)
Mahjoubfar, Ata; Chen, Claire L.; Lin, Jiahao; Jalali, Bahram
2017-02-01
Cell reagents used in biomedical analysis often change behavior of the cells that they are attached to, inhibiting their native signaling. On the other hand, label-free cell analysis techniques have long been viewed as challenging either due to insufficient accuracy by limited features, or because of low throughput as a sacrifice of improved precision. We present a recently developed artificial-intelligence augmented microscope, which builds upon high-throughput time stretch quantitative phase imaging (TS-QPI) and deep learning to perform label-free cell classification with record high-accuracy. Our system captures quantitative optical phase and intensity images simultaneously by frequency multiplexing, extracts multiple biophysical features of the individual cells from these images fused, and feeds these features into a supervised machine learning model for classification. The enhanced performance of our system compared to other label-free assays is demonstrated by classification of white blood T-cells versus colon cancer cells and lipid accumulating algal strains for biofuel production, which is as much as five-fold reduction in inaccuracy. This system obtains the accuracy required in practical applications such as personalized drug development, while the cells remain intact and the throughput is not sacrificed. Here, we introduce a data acquisition scheme based on quadrature phase demodulation that enables interruptionless storage of TS-QPI cell images. Our proof of principle demonstration is capable of saving 40 TB of cell images in about four hours, i.e. pictures of every single cell in 10 mL of a sample.
Stabilizing Microwave Frequency of a Photonic Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan; Tu, Meirong
2006-01-01
A scheme for stabilizing the frequency of a microwave signal is proposed that exploits the operational characteristics of a coupled optoelectronic oscillator (COEO) and related optoelectronic equipment. An essential element in the scheme is a fiber mode-locked laser (MLL), the optical frequency of which is locked to an atomic transition. In this scheme, the optical frequency stability of the mode-locked laser is transferred to that of the microwave in the same device. Relative to prior schemes for using wideband optical frequency comb to stabilize microwave signals, this scheme is simpler and lends itself more readily to implementation in relatively compact, rugged equipment. The anticipated development of small, low-power, lightweight, highly stable microwave oscillators based on this scheme would afford great benefits in communication, navigation, metrology, and fundamental sciences. COEOs of various designs, at various stages of development, in some cases called by different names, have been described in a number of prior NASA Tech Briefs articles. A COEO is an optoelectronic apparatus that generates both short (picosecond) optical pulses and a steady microwave signal having an ultrahigh degree of spectral purity. The term "coupled optoelectronic" in the full name of such an apparatus signifies that its optical and electronic oscillations are coupled to each other in a single device. The present frequency-stabilization scheme is best described indirectly by describing the laboratory apparatus used to demonstrate it. The apparatus (see figure) includes a COEO that generates a comb-like optical spectrum, the various frequency components of which interfere, producing short optical pulses. This spectrum is centered at a nominal wavelength of 1,560 nm. The spectrum separation of this comb is about 10 GHz, as determined primarily by the length of an optical loop and the bandpass filter in the microwave feedback loop. The optical loop serves as microwave resonator having a very high value of the resonance quality factor (Q). The optical frequency of MLL is then stabilized by locking it to an atomic transition as described below. The COEO contains a tunable 1-nm band-pass optical filter and a piezoelectric-transducer (PZT) drum over which a stretch of fiber is wound. The 1-nm-wide pass band of the filter provides coarse tuning to overlap the frequency comb with the atomic transition frequency. Controlled stretching of the fiber by means of the PZT drum can be used in conjunction with temperature control for locking the laser frequency. To reference to an atomic resonance at 780 nm in this demonstration setup, the optical output of the COEO at 1,560 nm is fed through an erbium-doped-fiber amplifier (EDFA) to a frequency doubler in the form of a periodically poled lithium niobate (PPLN) crystal. The frequency-doubled output is combined with the output of a separate frequency-stabilized diode laser at a photodetector. As described thus far, the two 780-nm laser subsystems are nominally independent of each other and can, therefore, operate at different frequencies. Hence, at the photodetector, the two laser beams interfere, so that the output of the photodetector includes a beat note (a component at the difference between the two laser frequencies).
NASA Technical Reports Server (NTRS)
Walker, G.
1985-01-01
A great diversity of methods and mechanisms were devised to effect cryogenic refrigeration. The basic parameters and considerations affecting the selection of a particular system are reviewed. A classification scheme for mechanical cryocoolers is presented. An important distinguishing feature is the incorporation or not of a regenerative heat exchanger, of valves, and of the method for achieving a pressure variation.
Texture as a basis for acoustic classification of substrate in the nearshore region
NASA Astrophysics Data System (ADS)
Dennison, A.; Wattrus, N. J.
2016-12-01
Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.
Classifying machinery condition using oil samples and binary logistic regression
NASA Astrophysics Data System (ADS)
Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.
2015-08-01
The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.
Veselka, Walter; Rentch, James S; Grafton, William N; Kordek, Walter S; Anderson, James T
2010-11-01
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in "biological integrity." These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland's position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1-5 metrics that varied in their sensitivity to the disturbance gradient (R2=0.14-0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.
Pāhoehoe, `a`ā, and block lava: an illustrated history of the nomenclature
NASA Astrophysics Data System (ADS)
Harris, Andrew J. L.; Rowland, Scott K.; Villeneuve, Nicolas; Thordarson, Thor
2017-01-01
Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words `a`ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). `A`ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai`i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, `a`ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.
Evaluation of multicast schemes in optical burst-switched networks: the case with dynamic sessions
NASA Astrophysics Data System (ADS)
Jeong, Myoungki; Qiao, Chunming; Xiong, Yijun; Vandenhoute, Marc
2000-10-01
In this paper, we evaluate the performance of several multicast schemes in optical burst-switched WDM networks taking into accounts the overheads due to control packets and guard bands (Gbs) of bursts on separate channels (wavelengths). A straightforward scheme is called Separate Multicasting (S-MCAST) where each source node constructs separate bursts for its multicast (per each multicast session) and unicast traffic. To reduce the overhead due to Gbs (and control packets), one may piggyback the multicast traffic in bursts containing unicast traffic using a scheme called Multiple Unicasting (M-UCAST). The third scheme is called Tree-Shared Multicasting (TS-MCAST) wehreby multicast traffic belonging to multiple multicast sesions can be mixed together in a burst, which is delivered via a shared multicast tree. In [1], we have evaluated several multicast schemes with static sessions at the flow level. In this paper, we perform a simple analysis for the multicast schemes and evaluate the performance of three multicast schemes, focusing on the case with dynamic sessions in terms of the link utilization, bandwidth consumption, blocking (loss) probability, goodput and the processing loads.
Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme
NASA Astrophysics Data System (ADS)
Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping
2018-06-01
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
TFOS DEWS II Definition and Classification Report.
Craig, Jennifer P; Nichols, Kelly K; Akpek, Esen K; Caffery, Barbara; Dua, Harminder S; Joo, Choun-Ki; Liu, Zuguo; Nelson, J Daniel; Nichols, Jason J; Tsubota, Kazuo; Stapleton, Fiona
2017-07-01
The goals of the TFOS DEWS II Definition and Classification Subcommittee were to create an evidence-based definition and a contemporary classification system for dry eye disease (DED). The new definition recognizes the multifactorial nature of dry eye as a disease where loss of homeostasis of the tear film is the central pathophysiological concept. Ocular symptoms, as a broader term that encompasses reports of discomfort or visual disturbance, feature in the definition and the key etiologies of tear film instability, hyperosmolarity, and ocular surface inflammation and damage were determined to be important for inclusion in the definition. In the light of new data, neurosensory abnormalities were also included in the definition for the first time. In the classification of DED, recent evidence supports a scheme based on the pathophysiology where aqueous deficient and evaporative dry eye exist as a continuum, such that elements of each are considered in diagnosis and management. Central to the scheme is a positive diagnosis of DED with signs and symptoms, and this is directed towards management to restore homeostasis. The scheme also allows consideration of various related manifestations, such as non-obvious disease involving ocular surface signs without related symptoms, including neurotrophic conditions where dysfunctional sensation exists, and cases where symptoms exist without demonstrable ocular surface signs, including neuropathic pain. This approach is not intended to override clinical assessment and judgment but should prove helpful in guiding clinical management and research. Copyright © 2017 Elsevier Inc. All rights reserved.
Taxonomy of breast cancer based on normal cell phenotype predicts outcome
Santagata, Sandro; Thakkar, Ankita; Ergonul, Ayse; Wang, Bin; Woo, Terri; Hu, Rong; Harrell, J. Chuck; McNamara, George; Schwede, Matthew; Culhane, Aedin C.; Kindelberger, David; Rodig, Scott; Richardson, Andrea; Schnitt, Stuart J.; Tamimi, Rulla M.; Ince, Tan A.
2014-01-01
Accurate classification is essential for understanding the pathophysiology of a disease and can inform therapeutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a better definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 11 differentiation states for normal luminal cells. We then applied information from this analysis to classify human breast tumors based on normal cell types into 4 major subtypes, HR0–HR3, which were differentiated by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated with patient survival differences and provides actionable insights for treating breast tumors. PMID:24463450
OAM-labeled free-space optical flow routing.
Gao, Shecheng; Lei, Ting; Li, Yangjin; Yuan, Yangsheng; Xie, Zhenwei; Li, Zhaohui; Yuan, Xiaocong
2016-09-19
Space-division multiplexing allows unprecedented scaling of bandwidth density for optical communication. Routing spatial channels among transmission ports is critical for future scalable optical network, however, there is still no characteristic parameter to label the overlapped optical carriers. Here we propose a free-space optical flow routing (OFR) scheme by using optical orbital angular moment (OAM) states to label optical flows and simultaneously steer each flow according to their OAM states. With an OAM multiplexer and a reconfigurable OAM demultiplexer, massive individual optical flows can be routed to the demanded optical ports. In the routing process, the OAM beams act as data carriers at the same time their topological charges act as each carrier's labels. Using this scheme, we experimentally demonstrate switching, multicasting and filtering network functions by simultaneously steer 10 input optical flows on demand to 10 output ports. The demonstration of data-carrying OFR with nonreturn-to-zero signals shows that this process enables synchronous processing of massive spatial channels and flexible optical network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, G. Barratt, E-mail: barratt@mit.edu, E-mail: barratt.park@gmail.com; Womack, Caroline C.; Jiang, Jun
2015-04-14
Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens up new schemes for double resonance experiments. We demonstrate a multiplexed population labeling scheme for rapid acquisition of double resonance spectra, probing multiple rotational transitions simultaneously. We also demonstrate a millimeter-wave implementation of the coherence-converted population transfer scheme for background-free mmODR, which provides a ∼10-fold sensitivity improvement over the population labeling scheme.more » We analyze perturbations in the C{sup ~} state of SO{sub 2}, and we rotationally assign a b{sub 2} vibrational level at 45 328 cm{sup −1} that borrows intensity via a c-axis Coriolis interaction. We also demonstrate the effectiveness of our multiplexed mmODR scheme for rapid acquisition and assignment of three predissociated vibrational levels of the C{sup ~} state of SO{sub 2} between 46 800 and 47 650 cm{sup −1}.« less
The complete optical oscilloscope
NASA Astrophysics Data System (ADS)
Lei, Cheng; Goda, Keisuke
2018-04-01
Observing ultrafast transient dynamics in optics is a challenging task. Two teams in Europe have now independently developed `optical oscilloscopes' that can capture both amplitude and phase information of ultrafast optical signals. Their schemes yield new insights into the nonlinear physics that takes place inside optical fibres.
NASA Astrophysics Data System (ADS)
Nitze, Ingmar; Barrett, Brian; Cawkwell, Fiona
2015-02-01
The analysis and classification of land cover is one of the principal applications in terrestrial remote sensing. Due to the seasonal variability of different vegetation types and land surface characteristics, the ability to discriminate land cover types changes over time. Multi-temporal classification can help to improve the classification accuracies, but different constraints, such as financial restrictions or atmospheric conditions, may impede their application. The optimisation of image acquisition timing and frequencies can help to increase the effectiveness of the classification process. For this purpose, the Feature Importance (FI) measure of the state-of-the art machine learning method Random Forest was used to determine the optimal image acquisition periods for a general (Grassland, Forest, Water, Settlement, Peatland) and Grassland specific (Improved Grassland, Semi-Improved Grassland) land cover classification in central Ireland based on a 9-year time-series of MODIS Terra 16 day composite data (MOD13Q1). Feature Importances for each acquisition period of the Enhanced Vegetation Index (EVI) and Normalised Difference Vegetation Index (NDVI) were calculated for both classification scenarios. In the general land cover classification, the months December and January showed the highest, and July and August the lowest separability for both VIs over the entire nine-year period. This temporal separability was reflected in the classification accuracies, where the optimal choice of image dates outperformed the worst image date by 13% using NDVI and 5% using EVI on a mono-temporal analysis. With the addition of the next best image periods to the data input the classification accuracies converged quickly to their limit at around 8-10 images. The binary classification schemes, using two classes only, showed a stronger seasonal dependency with a higher intra-annual, but lower inter-annual variation. Nonetheless anomalous weather conditions, such as the cold winter of 2009/2010 can alter the temporal separability pattern significantly. Due to the extensive use of the NDVI for land cover discrimination, the findings of this study should be transferrable to data from other optical sensors with a higher spatial resolution. However, the high impact of outliers from the general climatic pattern highlights the limitation of spatial transferability to locations with different climatic and land cover conditions. The use of high-temporal, moderate resolution data such as MODIS in conjunction with machine-learning techniques proved to be a good base for the prediction of image acquisition timing for optimal land cover classification results.
High aperture off-axis parabolic mirror applied in digital holographic microscopy
NASA Astrophysics Data System (ADS)
Kalenkov, Georgy S.; Kalenkov, Sergey G.; Shtanko, Alexander E.
2018-04-01
An optical scheme of recording digital holograms of micro-objects based on high numerical aperture off-axis parabolic mirror forming a high aperture reference wave is suggested. Registration of digital holograms based on the proposed optical scheme is confirmed experimentally. Application of the proposed approach for hyperspectral holograms registration of micro-objects in incoherent light is discussed.
NASA Astrophysics Data System (ADS)
Grendár, Drahomír; Pottiez, Olivier; Dado, Milan; Müllerová, Jarmila; Dubovan, Jozef
2009-05-01
A new scheme of a control-beam-driven nonlinear optical loop mirror (NOLM) with a birefringent twisted fiber and a symmetrical coupler designed for optical time division demultiplexing (OTDM) is analyzed. The theoretical model of the proposed NOLM scheme considers the evolution of polarization states of data and control beams and the mutual interactions of the data and control beams due to the cross-phase modulation (XPM). Attention is given to the optical switching commanded by the control-beam power and by the manipulation of nonlinear polarization rotation of the data and control beam. The simulations of NOLM transmissions demonstrate that the cross talk between demultiplexed and nondemultiplexed beams as an important parameter for optical switching by the presented NOLM can be significantly reduced. The results show that the device can be of interest for all-optical signal manipulations in optical communication networks.
Sheng, Xinzhi; Feng, Zhen; Li, Bing
2013-04-20
We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.
Optic Nerve Lymphoma. Report of Two Cases and Review of the Literature
Kim, Jennifer L.; Mendoza, Pia; Rashid, Alia; Hayek, Brent; Grossniklaus, Hans E.
2014-01-01
Lymphoma may involve the optic nerve as isolated optic nerve lymphoma or in association with CNS or systemic lymphoma. We present two biopsy-proven non-Hodgkin lymphomas of the optic nerve and compare our findings with previously reported cases. We discuss the mechanism of metastasis, classification of optic nerve involvement, clinical features, radiologic findings, optic nerve biopsy indications and techniques, histologic features, and treatments. We propose a classification system of optic nerve lymphoma: isolated optic nerve involvement, optic nerve involvement with CNS disease, optic nerve involvement with systemic disease, and optic nerve involvement with primary intraocular lymphoma. Although it is an uncommon cause of infiltrative optic neuropathy, optic nerve metastasis should be considered in patients with a history of lymphoma. The recommended approach to a patient with presumed optic nerve lymphoma includes neuroimaging, and cerebrospinal fluid evaluation as part of the initial work-up, then judicious use of optic nerve biopsy, depending on the clinical situation. PMID:25595061
Jacob, Benjamin G; Shililu, Josephat; Muturi, Ephantus J; Mwangangi, Joseph M; Muriu, Simon M; Funes, Jose; Githure, John; Regens, James L; Novak, Robert J
2006-01-01
Background Continuous land cover modification is an important part of spatial epidemiology because it can help identify environmental factors and Culex mosquitoes associated with arbovirus transmission and thus guide control intervention. The aim of this study was to determine whether remotely sensed data could be used to identify rice-related Culex quinquefasciatus breeding habitats in three rice-villages within the Mwea Rice Scheme, Kenya. We examined whether a land use land cover (LULC) classification based on two scenes, IKONOS at 4 m and Landsat Thematic Mapper at 30 m could be used to map different land uses and rice planted at different times (cohorts), and to infer which LULC change were correlated to high density Cx. quinquefasciatus aquatic habitats. We performed a maximum likelihood unsupervised classification in Erdas Imagine V8.7® and generated three land cover classifications, rice field, fallow and built environment. Differentially corrected global positioning systems (DGPS) ground coordinates of Cx. quinquefasciatus aquatic habitats were overlaid onto the LULC maps generated in ArcInfo 9.1®. Grid cells were stratified by levels of irrigation (well-irrigated and poorly-irrigated) and varied according to size of the paddy. Results Total LULC change between 1988–2005 was 42.1 % in Kangichiri, 52.8 % in Kiuria and and 50.6 % Rurumi. The most frequent LULC changes was rice field to fallow and fallow to rice field. The proportion of aquatic habitats positive for Culex larvae in LULC change sites was 77.5% in Kangichiri, 72.9% in Kiuria and 73.7% in Rurumi. Poorly – irrigated grid cells displayed 63.3% of aquatic habitats among all LULC change sites. Conclusion We demonstrate that optical remote sensing can identify rice cultivation LULC sites associated with high Culex oviposition. We argue that the regions of higher Culex abundance based on oviposition surveillance sites reflect underlying differences in abundance of larval habitats which is where limited control resources could be concentrated to reduce vector larval abundance. PMID:16684354
A Classification Scheme for Glaciological AVA Responses
NASA Astrophysics Data System (ADS)
Booth, A.; Emir, E.
2014-12-01
A classification scheme is proposed for amplitude vs. angle (AVA) responses as an aid to the interpretation of seismic reflectivity in glaciological research campaigns. AVA responses are a powerful tool in characterising the material properties of glacier ice and its substrate. However, before interpreting AVA data, careful true amplitude processing is required to constrain basal reflectivity and compensate amplitude decay mechanisms, including anelastic attenuation and spherical divergence. These fundamental processing steps can be difficult to design in cases of noisy data, e.g. where a target reflection is contaminated by surface wave energy (in the case of shallow glaciers) or by energy reflected from out of the survey plane. AVA methods have equally powerful usage in estimating the fluid fill of potential hydrocarbon reservoirs. However, such applications seldom use true amplitude data and instead consider qualitative AVA responses using a well-defined classification scheme. Such schemes are often defined in terms of the characteristics of best-fit responses to the observed reflectivity, e.g. the intercept (I) and gradient (G) of a linear approximation to the AVA data. The position of the response on a cross-plot of I and G then offers a diagnostic attribute for certain fluid types. We investigate the advantages in glaciology of emulating this practice, and develop a cross-plot based on the 3-term Shuey AVA approximation (using I, G, and a curvature term C). Model AVA curves define a clear lithification trend: AVA responses to stiff (lithified) substrates fall discretely into one quadrant of the cross-plot, with positive I and negative G, whereas those to fluid-rich substrates plot diagonally opposite (in the negative I and positive G quadrant). The remaining quadrants are unoccupied by plausible single-layer responses and may therefore be diagnostic of complex thin-layer reflectivity, and the magnitude and polarity of the C term serves as a further indicator of fluid content. The use of the AVA cross-plot is explored for seismic data from European Arctic glaciers, including Storglaciären and Midtre Lovénbreen, with additional examples from other published sources. The classification scheme should provide a useful reference for the initial assessment of a glaciological AVA response.
Sensors with centroid-based common sensing scheme and their multiplexing
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul; Tiemann, Jerome J.; Brooksby, Glen W.
1993-03-01
The ability to multiplex sensors with different measurands but with a common sensing scheme is of importance in aircraft and aircraft engine applications; this unification of the sensors into a common interface has major implications for weight, cost, and reliability. A new class of sensors based on a common sensing scheme and their E/O Interface has been developed. The approach detects the location of the centroid of a beam of light; the set of fiber optic sensors with this sensing scheme include linear and rotary position, temperature, pressure, as well as duct Mach number. The sensing scheme provides immunity to intensity variations of the source or due to environmental effects on the fiber. A detector spatially multiplexed common electro-optic interface for the sensors has been demonstrated with a position and a temperature sensor.
Karageorgis, Anastassia; Dufort, Sandrine; Sancey, Lucie; Henry, Maxime; Hirsjärvi, Samuli; Passirani, Catherine; Benoit, Jean-Pierre; Gravier, Julien; Texier, Isabelle; Montigon, Olivier; Benmerad, Mériem; Siroux, Valérie; Barbier, Emmanuel L.; Coll, Jean-Luc
2016-01-01
Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines. PMID:26892874
Karageorgis, Anastassia; Dufort, Sandrine; Sancey, Lucie; Henry, Maxime; Hirsjärvi, Samuli; Passirani, Catherine; Benoit, Jean-Pierre; Gravier, Julien; Texier, Isabelle; Montigon, Olivier; Benmerad, Mériem; Siroux, Valérie; Barbier, Emmanuel L; Coll, Jean-Luc
2016-02-19
Nanoparticles are useful tools in oncology because of their capacity to passively accumulate in tumors in particular via the enhanced permeability and retention (EPR) effect. However, the importance and reliability of this effect remains controversial and quite often unpredictable. In this preclinical study, we used optical imaging to detect the accumulation of three types of fluorescent nanoparticles in eight different subcutaneous and orthotopic tumor models, and dynamic contrast-enhanced and vessel size index Magnetic Resonance Imaging (MRI) to measure the functional parameters of these tumors. The results demonstrate that the permeability and blood volume fraction determined by MRI are useful parameters for predicting the capacity of a tumor to accumulate nanoparticles. Translated to a clinical situation, this strategy could help anticipate the EPR effect of a particular tumor and thus its accessibility to nanomedicines.
One lens optical correlation: application to face recognition.
Jridi, Maher; Napoléon, Thibault; Alfalou, Ayman
2018-03-20
Despite its extensive use, the traditional 4f Vander Lugt Correlator optical setup can be further simplified. We propose a lightweight correlation scheme where the decision is taken in the Fourier plane. For this purpose, the Fourier plane is adapted and used as a decision plane. Then, the offline phase and the decision metric are re-examined in order to keep a reasonable recognition rate. The benefits of the proposed approach are numerous: (1) it overcomes the constraints related to the use of a second lens; (2) the optical correlation setup is simplified; (3) the multiplication with the correlation filter can be done digitally, which offers a higher adaptability according to the application. Moreover, the digital counterpart of the correlation scheme is lightened since with the proposed scheme we get rid of the inverse Fourier transform (IFT) calculation (i.e., decision directly in the Fourier domain without resorting to IFT). To assess the performance of the proposed approach, an insight into digital hardware resources saving is provided. The proposed method involves nearly 100 times fewer arithmetic operators. Moreover, from experimental results in the context of face verification-based correlation, we demonstrate that the proposed scheme provides comparable or better accuracy than the traditional method. One interesting feature of the proposed scheme is that it could greatly outperform the traditional scheme for face identification application in terms of sensitivity to face orientation. The proposed method is found to be digital/optical implementation-friendly, which facilitates its integration on a very broad range of scenarios.
Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.
Lipphardt, Burghard; Gerginov, Vladislav; Weyers, Stefan
2017-04-01
We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10 -14 (τ/s) -1/2 level that are quantum projection noise limited.
Weak beacon detection for air-to-ground optical wireless link establishment.
Han, Yaoqiang; Dang, Anhong; Tang, Junxiong; Guo, Hong
2010-02-01
In an air-to-ground free-space optical communication system, strong background interference seriously affects the beacon detection, which makes it difficult to establish the optical link. In this paper, we propose a correlation beacon detection scheme under strong background interference conditions. As opposed to traditional beacon detection schemes, the beacon is modulated by an m-sequence at the transmitting terminal with a digital differential matched filter (DDMF) array introduced at the receiving end to detect the modulated beacon. This scheme is capable of suppressing both strong interference and noise by correlation reception of the received image sequence. In addition, the DDMF array enables each pixel of the image sensor to have its own DDMF of the same structure to process its received image sequence in parallel, thus it makes fast beacon detection possible. Theoretical analysis and an outdoor experiment have been demonstrated and show that the proposed scheme can realize fast and effective beacon detection under strong background interference conditions. Consequently, the required beacon transmission power can also be reduced dramatically.
NASA Astrophysics Data System (ADS)
Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao
2018-02-01
A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.
Setting a disordered password on a photonic memory
NASA Astrophysics Data System (ADS)
Su, Shih-Wei; Gou, Shih-Chuan; Chew, Lock Yue; Chang, Yu-Yen; Yu, Ite A.; Kalachev, Alexey; Liao, Wen-Te
2017-06-01
An all-optical method of setting a disordered password on different schemes of photonic memory is theoretically studied. While photons are regarded as ideal information carriers, it is imperative to implement such data protection on all-optical storage. However, we wish to address the intrinsic risk of data breaches in existing schemes of photonic memory. We theoretically demonstrate a protocol using spatially disordered laser fields to encrypt data stored on an optical memory, namely, encrypted photonic memory. To address the broadband storage, we also investigate a scheme of disordered echo memory with a high fidelity approaching unity. The proposed method increases the difficulty for the eavesdropper to retrieve the stored photon without the preset password even when the randomized and stored photon state is nearly perfectly cloned. Our results pave ways to significantly reduce the exposure of memories, required for long-distance communication, to eavesdropping and therefore restrict the optimal attack on communication protocols. The present scheme also increases the sensitivity of detecting any eavesdropper and so raises the security level of photonic information technology.
Remote sensing of plant functional types.
Ustin, Susan L; Gamon, John A
2010-06-01
Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations.
Kolle, Susanne N; Rey Moreno, Maria Cecilia; Mayer, Winfried; van Cott, Andrew; van Ravenzwaay, Bennard; Landsiedel, Robert
2015-07-01
The Bovine Corneal Opacity and Permeability (BCOP) test is commonly used for the identification of severe ocular irritants (GHS Category 1), but it is not recommended for the identification of ocular irritants (GHS Category 2). The incorporation of human reconstructed tissue model-based tests into a tiered test strategy to identify ocular non-irritants and replace the Draize rabbit eye irritation test has been suggested (OECD TG 405). The value of the EpiOcular™ Eye Irritation Test (EIT) for the prediction of ocular non-irritants (GHS No Category) has been demonstrated, and an OECD Test Guideline (TG) was drafted in 2014. The purpose of this study was to evaluate whether the BCOP test, in conjunction with corneal histopathology (as suggested for the evaluation of the depth of the injury( and/or the EpiOcular-EIT, could be used to predict the eye irritation potential of agrochemical formulations according to the UN GHS, US EPA and Brazil ANVISA classification schemes. We have assessed opacity, permeability and histopathology in the BCOP assay, and relative tissue viability in the EpiOcular-EIT, for 97 agrochemical formulations with available in vivo eye irritation data. By using the OECD TG 437 protocol for liquids, the BCOP test did not result in sufficient correct predictions of severe ocular irritants for any of the three classification schemes. The lack of sensitivity could be improved somewhat by the inclusion of corneal histopathology, but the relative viability in the EpiOcular-EIT clearly outperformed the BCOP test for all three classification schemes. The predictive capacity of the EpiOcular-EIT for ocular non-irritants (UN GHS No Category) for the 97 agrochemical formulations tested (91% sensitivity, 72% specificity and 82% accuracy for UN GHS classification) was comparable to that obtained in the formal validation exercise underlying the OECD draft TG. We therefore conclude that the EpiOcular-EIT is currently the best in vitro method for the prediction of the eye irritation potential of liquid agrochemical formulations. 2015 FRAME.
Hassan, Ahnaf Rashik; Bhuiyan, Mohammed Imamul Hassan
2017-03-01
Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Creating a Canonical Scientific and Technical Information Classification System for NCSTRL+
NASA Technical Reports Server (NTRS)
Tiffany, Melissa E.; Nelson, Michael L.
1998-01-01
The purpose of this paper is to describe the new subject classification system for the NCSTRL+ project. NCSTRL+ is a canonical digital library (DL) based on the Networked Computer Science Technical Report Library (NCSTRL). The current NCSTRL+ classification system uses the NASA Scientific and Technical (STI) subject classifications, which has a bias towards the aerospace, aeronautics, and engineering disciplines. Examination of other scientific and technical information classification systems showed similar discipline-centric weaknesses. Traditional, library-oriented classification systems represented all disciplines, but were too generalized to serve the needs of a scientific and technically oriented digital library. Lack of a suitable existing classification system led to the creation of a lightweight, balanced, general classification system that allows the mapping of more specialized classification schemes into the new framework. We have developed the following classification system to give equal weight to all STI disciplines, while being compact and lightweight.
NASA Astrophysics Data System (ADS)
Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina
2012-01-01
In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.
Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.
Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-10-26
We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.
Raman-Suppressing Coupling for Optical Parametric Oscillator
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico
2007-01-01
A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.
Precision spectral manipulation of optical pulses using a coherent photon echo memory.
Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K
2010-04-01
Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM.
Olcott, Peter D; Peng, Hao; Levin, Craig S
2009-01-01
A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.
Proposal for an optical multicarrier generator based on single silicon micro-ring modulator
NASA Astrophysics Data System (ADS)
Bhowmik, Bishanka Brata; Gupta, Sumanta
2015-08-01
We propose an optical multicarrier generation technique using silicon micro-ring modulator (MRM) and analyze the scheme. Numerical studies have been done for three types MRMs having different power coupling coefficients. The proposed scheme is found to generate four optical carriers having 12.5 GHz spacing. According to simulation, the maximum side-mode-suppression ratio (SMSR) of ~16.3 dB with flatness of ~0.2 dB is achieved by using this scheme. The minimum extinction ratio (ER) of the generated carriers is found to be more than 35 dB. We also propose modulator driver circuit to generate RF signal, which is needed to generate multicarrier using MRM. The effect of coupling coefficient on the SMSR of the generated carriers is also investigated.
NASA Astrophysics Data System (ADS)
Nguyen, HoangViet
2015-03-01
We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.
NASA Astrophysics Data System (ADS)
Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi
2011-12-01
A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.
Luo, Bowen; Dong, Jianji; Yu, Yuan; Yang, Ting; Zhang, Xinliang
2012-06-15
We propose and demonstrate a novel scheme of ultra-wideband (UWB) doublet pulse generation using a semiconductor optical amplifier (SOA) based polarization-diversified loop (PDL) without any assistant light. In our scheme, the incoming gaussian pulse is split into two parts by the PDL, and each of them is intensity modulated by the other due to cross-gain modulation (XGM) in the SOA. Then, both parts are recombined with incoherent summation to form a UWB doublet pulse. Bi-polar UWB doublet pulse generation is demonstrated using an inverted gaussian pulse injection. Moreover, pulse amplitude modulation of UWB doublet is also experimentally demonstrated. Our scheme shows some advantages, such as simple implementation without assistant light and single optical carrier operation with good fiber dispersion tolerance.
NASA Technical Reports Server (NTRS)
Hixson, M. M.; Bauer, M. E.; Davis, B. J.
1979-01-01
The effect of sampling on the accuracy (precision and bias) of crop area estimates made from classifications of LANDSAT MSS data was investigated. Full-frame classifications of wheat and non-wheat for eighty counties in Kansas were repetitively sampled to simulate alternative sampling plants. Four sampling schemes involving different numbers of samples and different size sampling units were evaluated. The precision of the wheat area estimates increased as the segment size decreased and the number of segments was increased. Although the average bias associated with the various sampling schemes was not significantly different, the maximum absolute bias was directly related to sampling unit size.
Alam, Daniel; Ali, Yaseen; Klem, Christopher; Coventry, Daniel
2016-11-01
Orbito-malar reconstruction after oncological resection represents one of the most challenging facial reconstructive procedures. Until the last few decades, rehabilitation was typically prosthesis based with a limited role for surgery. The advent of microsurgical techniques allowed large-volume tissue reconstitution from a distant donor site, revolutionizing the potential approaches to these defects. The authors report a novel surgery-based algorithm and a classification scheme for complete midface reconstruction with a foundation in the Gillies principles of like-to-like reconstruction and with a significant role of computer-aided virtual planning. With this approach, the authors have been able to achieve significantly better patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Introduction to the Apollo collections: Part 2: Lunar breccias
NASA Technical Reports Server (NTRS)
Mcgee, P. E.; Simonds, C. H.; Warner, J. L.; Phinney, W. C.
1979-01-01
Basic petrographic, chemical and age data for a representative suite of lunar breccias are presented for students and potential lunar sample investigators. Emphasis is on sample description and data presentation. Samples are listed, together with a classification scheme based on matrix texture and mineralogy and the nature and abundance of glass present both in the matrix and as clasts. A calculus of the classification scheme, describes the characteristic features of each of the breccia groups. The cratering process which describes the sequence of events immediately following an impact event is discussed, especially the thermal and material transport processes affecting the two major components of lunar breccias (clastic debris and fused material).
Robust Transmission of H.264/AVC Streams Using Adaptive Group Slicing and Unequal Error Protection
NASA Astrophysics Data System (ADS)
Thomos, Nikolaos; Argyropoulos, Savvas; Boulgouris, Nikolaos V.; Strintzis, Michael G.
2006-12-01
We present a novel scheme for the transmission of H.264/AVC video streams over lossy packet networks. The proposed scheme exploits the error-resilient features of H.264/AVC codec and employs Reed-Solomon codes to protect effectively the streams. A novel technique for adaptive classification of macroblocks into three slice groups is also proposed. The optimal classification of macroblocks and the optimal channel rate allocation are achieved by iterating two interdependent steps. Dynamic programming techniques are used for the channel rate allocation process in order to reduce complexity. Simulations clearly demonstrate the superiority of the proposed method over other recent algorithms for transmission of H.264/AVC streams.
The Why, What, and Impact of GPA at Oxford Brookes University
ERIC Educational Resources Information Center
Andrews, Matthew
2016-01-01
This paper examines the introduction at Oxford Brookes University of a Grade Point Average (GPA) scheme alongside the traditional honours degree classification. It considers the reasons for the introduction of GPA, the way in which the scheme was implemented, and offers an insight into the impact of GPA at Brookes. Finally, the paper considers…
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.
1982-02-01
This paper describes the need for non-raytracing schemes in the optical design and analysis of large carbon-dioxide lasers like the Gigawatt,1 Gemini, 2 and Helios3 lasers currently operational at Los Alamos, and the Antares 4 laser fusion system under construction. The scheme currently used at Los Alamos involves characterizing the various optical components with a Zernike polynomial sets obtained by the digitization6 of experimentally produced interferograms of the components. A Fast Fourier Transform code then propagates the complex amplitude and phase of the beam through the whole system and computes the optical parameters of interest. The analysis scheme is illustrated through examples of the Gigawatt, Gemini, and Helios systems. A possible way of using the Zernike polynomials in optical design problems of this type is discussed. Comparisons between the computed values and experimentally obtained results are made and it is concluded that this appears to be a valid approach. As this is a review article, some previously published results are also used where relevant.
Experimental validation of the Achromatic Telescopic Squeezing (ATS) scheme at the LHC
NASA Astrophysics Data System (ADS)
Fartoukh, S.; Bruce, R.; Carlier, F.; Coello De Portugal, J.; Garcia-Tabares, A.; Maclean, E.; Malina, L.; Mereghetti, A.; Mirarchi, D.; Persson, T.; Pojer, M.; Ponce, L.; Redaelli, S.; Salvachua, B.; Skowronski, P.; Solfaroli, M.; Tomas, R.; Valuch, D.; Wegscheider, A.; Wenninger, J.
2017-07-01
The Achromatic Telescopic Squeezing scheme offers new techniques to deliver unprecedentedly small beam spot size at the interaction points of the ATLAS and CMS experiments of the LHC, while perfectly controlling the chromatic properties of the corresponding optics (linear and non-linear chromaticities, off-momentum beta-beating, spurious dispersion induced by the crossing bumps). The first series of beam tests with ATS optics were achieved during the LHC Run I (2011/2012) for a first validation of the basics of the scheme at small intensity. In 2016, a new generation of more performing ATS optics was developed and more extensively tested in the machine, still with probe beams for optics measurement and correction at β* = 10 cm, but also with a few nominal bunches to establish first collisions at nominal β* (40 cm) and beyond (33 cm), and to analysis the robustness of these optics in terms of collimation and machine protection. The paper will highlight the most relevant and conclusive results which were obtained during this second series of ATS tests.
Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser
NASA Astrophysics Data System (ADS)
Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming
2017-09-01
A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.
Optical recognition of statistical patterns
NASA Astrophysics Data System (ADS)
Lee, S. H.
1981-12-01
Optical implementation of the Fukunaga-Koontz transform (FKT) and the Least-Squares Linear Mapping Technique (LSLMT) is described. The FKT is a linear transformation which performs image feature extraction for a two-class image classification problem. The LSLMT performs a transform from large dimensional feature space to small dimensional decision space for separating multiple image classes by maximizing the interclass differences while minimizing the intraclass variations. The FKT and the LSLMT were optically implemented by utilizing a coded phase optical processor. The transform was used for classifying birds and fish. After the F-K basis functions were calculated, those most useful for classification were incorporated into a computer generated hologram. The output of the optical processor, consisting of the squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized, and fed into a micro-computer for classification. A simple linear classifier based on only two F-K coefficients was able to separate the images into two classes, indicating that the F-K transform had chosen good features. Two advantages of optically implementing the FKT and LSLMT are parallel and real time processing.
Optical recognition of statistical patterns
NASA Technical Reports Server (NTRS)
Lee, S. H.
1981-01-01
Optical implementation of the Fukunaga-Koontz transform (FKT) and the Least-Squares Linear Mapping Technique (LSLMT) is described. The FKT is a linear transformation which performs image feature extraction for a two-class image classification problem. The LSLMT performs a transform from large dimensional feature space to small dimensional decision space for separating multiple image classes by maximizing the interclass differences while minimizing the intraclass variations. The FKT and the LSLMT were optically implemented by utilizing a coded phase optical processor. The transform was used for classifying birds and fish. After the F-K basis functions were calculated, those most useful for classification were incorporated into a computer generated hologram. The output of the optical processor, consisting of the squared magnitude of the F-K coefficients, was detected by a T.V. camera, digitized, and fed into a micro-computer for classification. A simple linear classifier based on only two F-K coefficients was able to separate the images into two classes, indicating that the F-K transform had chosen good features. Two advantages of optically implementing the FKT and LSLMT are parallel and real time processing.
A New Optical Scheme for a Polarimetric-Based Glucose Sensor
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Boeckle, Stefan; Rovati, Luigi; Salzman, Jack A. (Technical Monitor)
2002-01-01
We describe a new optical scheme to perform polarimetric measurements to detect glucose concentration in the aqueous humor of a model eye. The ultimate aim is to apply this technique in designing a new instrument for measuring glucose levels in diabetic patients routinely, frequently, and non-invasively. The scheme exploits the Brewsterreflection of circularly polarized light off of the lens of the eye. Theoretically, this backreflected linearly polarized light on its way to the detector is expected to rotate its state of polarization due to the presence of glucose molecules in the aqueous humor of patients. An experimental laboratory setup based on this scheme was designed and tested by measuring a range of known concentration of glucose solutions dissolved in water.
Optical frequency comb based multi-band microwave frequency conversion for satellite applications.
Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng
2014-01-13
Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.
Han, Dahai; Gu, Yanjie; Zhang, Min
2017-08-10
An optimized scheme of pulse symmetrical position-orthogonal space-time block codes (PSP-OSTBC) is proposed and applied with m-pulse positions modulation (m-PPM) without the use of a complex decoding algorithm in an optical multi-input multi-output (MIMO) ultraviolet (UV) communication system. The proposed scheme breaks through the limitation of the traditional Alamouti code and is suitable for high-order m-PPM in a UV scattering channel, verified by both simulation experiments and field tests with specific parameters. The performances of 1×1, 2×1, and 2×2 PSP-OSTBC systems with 4-PPM are compared experimentally as the optimal tradeoff between modification and coding in practical application. Meanwhile, the feasibility of the proposed scheme for 8-PPM is examined by a simulation experiment as well. The results suggest that the proposed scheme makes the system insensitive to the influence of path loss with a larger channel capacity, and a higher diversity gain and coding gain with a simple decoding algorithm will be achieved by employing the orthogonality of m-PPM in an optical-MIMO-based ultraviolet scattering channel.
A novel approach for clock recovery without pattern effect from degraded signal
NASA Astrophysics Data System (ADS)
Wang, Zhaoxin; Wang, Tong; Lou, Caiyun; Huo, Li; Gao, Yizhi
2003-04-01
A novel clock recovery scheme using two-ring injection mode-locked fiber ring laser based on all 10 GHz bandwidth components was demonstrated. With this scheme, the clock with low timing jitter was obtained from a degraded 10 Gb/s optical data stream. Optical clock recovery was also achieved from a degraded 20 Gb/s optical data train when the clock division technique in the opto-electronic oscillator (OEO) and the rational harmonic mode-locking technique in the fiber ring laser were applied. No pattern effect was observed in the experiments.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
Lin, Fang-Zheng; Wu, Tsu-Hsiu; Chiu, Yi-Jen
2009-06-08
A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than -12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than -5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where -3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch can be released to reduce the driving power of modulator. Such kind of monolithic integration scheme also has potential for the applications of other high-speed optoelectronics devices.
2012-01-01
Background Dimensionality reduction (DR) enables the construction of a lower dimensional space (embedding) from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding). Intelligent sub-sampling (via mean-shift) and code parallelization are utilized to provide for an efficient implementation of the scheme. Results Applications of consensus embedding are shown in the context of classification and clustering as applied to: (1) image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2) classification of 4 high-dimensional gene-expression datasets, (3) cancer detection (at a pixel-level) on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered. Conclusions We have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range of high-dimensional biomedical data classification and segmentation problems. Our generalizable framework allows for improved representation and classification in the context of both imaging and non-imaging data. The algorithm offers a promising solution to problems that currently plague DR methods, and may allow for extension to other areas of biomedical data analysis. PMID:22316103
Computer-aided Classification of Mammographic Masses Using Visually Sensitive Image Features
Wang, Yunzhi; Aghaei, Faranak; Zarafshani, Ali; Qiu, Yuchen; Qian, Wei; Zheng, Bin
2017-01-01
Purpose To develop a new computer-aided diagnosis (CAD) scheme that computes visually sensitive image features routinely used by radiologists to develop a machine learning classifier and distinguish between the malignant and benign breast masses detected from digital mammograms. Methods An image dataset including 301 breast masses was retrospectively selected. From each segmented mass region, we computed image features that mimic five categories of visually sensitive features routinely used by radiologists in reading mammograms. We then selected five optimal features in the five feature categories and applied logistic regression models for classification. A new CAD interface was also designed to show lesion segmentation, computed feature values and classification score. Results Areas under ROC curves (AUC) were 0.786±0.026 and 0.758±0.027 when to classify mass regions depicting on two view images, respectively. By fusing classification scores computed from two regions, AUC increased to 0.806±0.025. Conclusion This study demonstrated a new approach to develop CAD scheme based on 5 visually sensitive image features. Combining with a “visual aid” interface, CAD results may be much more easily explainable to the observers and increase their confidence to consider CAD generated classification results than using other conventional CAD approaches, which involve many complicated and visually insensitive texture features. PMID:27911353
NASA Astrophysics Data System (ADS)
Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Mohammadzai, Qais; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Chang, Anthony; Mohan, Chandra; Larin, Kirill V.
2016-03-01
Acute Glomerulonephritis caused by anti-glomerular basement membrane disease has a high mortality due to delayed diagnosis. Thus, an accurate and early diagnosis is critical for preserving renal function. Currently, blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides superior spatial resolution (micron scale) as compared to ultrasound and CT. Pathological changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signal, such as optical attenuation and speckle variance. Moreover, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, we utilized OCT to detect the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, classification accuracy using only optical metrics was clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improved from 76% to 95%. These results show that OCT combined with OCE can be potentially useful for nephritis detection.
Elastic all-optical multi-hop interconnection in data centers with adaptive spectrum allocation
NASA Astrophysics Data System (ADS)
Hong, Yuanyuan; Hong, Xuezhi; Chen, Jiajia; He, Sailing
2017-01-01
In this paper, a novel flex-grid all-optical interconnect scheme that supports transparent multi-hop connections in data centers is proposed. An inter-rack all-optical multi-hop connection is realized with an optical loop employed at flex-grid wavelength selective switches (WSSs) in an intermediate rack rather than by relaying through optical-electric-optical (O-E-O) conversions. Compared with the conventional O-E-O based approach, the proposed all-optical scheme is able to off-load the traffic at intermediate racks, leading to a reduction of the power consumption and cost. The transmission performance of the proposed flex-grid multi-hop all-optical interconnect scheme with various modulation formats, including both coherently detected and directly detected approaches, are investigated by Monte-Carlo simulations. To enhance the spectrum efficiency (SE), number-of-hop adaptive bandwidth allocation is introduced. Numerical results show that the SE can be improved by up to 33.3% at 40 Gbps, and by up to 25% at 100 Gbps. The impact of parameters, such as targeted bit error rate (BER) level and insertion loss of components, on the transmission performance of the proposed approach are also explored. The results show that the maximum SE improvement of the adaptive approach over the non-adaptive one is enhanced with the decrease of the targeted BER levels and the component insertion loss.
Mackinejad, Kioumars; Sharifi, Vandad
2006-01-01
In this paper the importance of Wittgenstein's philosophical ideas for the justification of a dimensional approach to the classification of mental disorders is discussed. Some of his basic concepts in his Philosophical Investigations, such as 'family resemblances', 'grammar' and 'language-game' and their relations to the concept of mental disorder are explored.
Classification Scheme for Items in CAAT.
ERIC Educational Resources Information Center
Epstein, Marion G.
In planning the development of the system for computer assisted assembly of tests, it was agreed at the outset that one of the basic requirements for the successful initiation of any such system would be the development of a detailed item content classification system. The design of the system for classifying item content is a key element in…
Optical scheme for simulating post-quantum nonlocality distillation.
Chu, Wen-Jing; Yang, Ming; Pan, Guo-Zhu; Yang, Qing; Cao, Zhuo-Liang
2016-11-28
An optical scheme for simulating nonlocality distillation is proposed in post-quantum regime. The nonlocal boxes are simulated by measurements on appropriately pre- and post-selected polarization entangled photon pairs, i.e. post-quantum nonlocality is simulated by exploiting fair-sampling loophole in a Bell test. Mod 2 addition on the outputs of two nonlocal boxes combined with pre- and post-selection operations constitutes the key operation of simulating nonlocality distillation. This scheme provides a possible tool for the experimental study on the nonlocality in post-quantum regime and the exact physical principle precisely distinguishing physically realizable correlations from nonphysical ones.
A new scheduling algorithm to provide proportional QoS in optical burst switching networks
NASA Astrophysics Data System (ADS)
Tan, Wei; Luo, Yunhan; Wang, Sheng; Xu, Du; Pan, Yonghong; Li, Lemin
2005-02-01
A new scheduling algorithm, which aims to provide proportional and controllable QoS in terms of burst loss probability for OBS (optical burst switching) networks, is proposed on the basis of a summary of current QoS schemes in OBS. With simulations, performance analyses and comparisons are studied in detail. The results show that, in the proposed scheme, burst loss probabilities are proportional to the given factors and the control of QoS performance can be achieved with better performance. This scheme will be beneficial to the OBS network management and the tariff policy making.
An auto-bias control scheme for IQ-modulator with various modulation formats
NASA Astrophysics Data System (ADS)
Zhang, Wenqi; Yuan, Xueguang; Zhang, Yang'an
2016-10-01
We propose and demonstrate an auto-bias control scheme for the IQ-modulator of a flexible optical PSK or QAM or other modulation formats transmitter in this paper. Due to IQ-modulators usually producing higher-order modulation format, these modulation formats involve phase mostly. It is based on that the bias drift will change the operating point and result in varying the output optical phase. This technology has no restrictions on modulation formats, so it has good flexibility. The experimental result show the three biases can be stabilized when the proposed scheme is implemented.
Mutual information-based analysis of JPEG2000 contexts.
Liu, Zhen; Karam, Lina J
2005-04-01
Context-based arithmetic coding has been widely adopted in image and video compression and is a key component of the new JPEG2000 image compression standard. In this paper, the contexts used in JPEG2000 are analyzed using the mutual information, which is closely related to the compression performance. We first show that, when combining the contexts, the mutual information between the contexts and the encoded data will decrease unless the conditional probability distributions of the combined contexts are the same. Given I, the initial number of contexts, and F, the final desired number of contexts, there are S(I, F) possible context classification schemes where S(I, F) is called the Stirling number of the second kind. The optimal classification scheme is the one that gives the maximum mutual information. Instead of using an exhaustive search, the optimal classification scheme can be obtained through a modified generalized Lloyd algorithm with the relative entropy as the distortion metric. For binary arithmetic coding, the search complexity can be reduced by using dynamic programming. Our experimental results show that the JPEG2000 contexts capture the correlations among the wavelet coefficients very well. At the same time, the number of contexts used as part of the standard can be reduced without loss in the coding performance.
A Rapid Approach to Modeling Species-Habitat Relationships
NASA Technical Reports Server (NTRS)
Carter, Geoffrey M.; Breinger, David R.; Stolen, Eric D.
2005-01-01
A growing number of species require conservation or management efforts. Success of these activities requires knowledge of the species' occurrence pattern. Species-habitat models developed from GIS data sources are commonly used to predict species occurrence but commonly used data sources are often developed for purposes other than predicting species occurrence and are of inappropriate scale and the techniques used to extract predictor variables are often time consuming and cannot be repeated easily and thus cannot efficiently reflect changing conditions. We used digital orthophotographs and a grid cell classification scheme to develop an efficient technique to extract predictor variables. We combined our classification scheme with a priori hypothesis development using expert knowledge and a previously published habitat suitability index and used an objective model selection procedure to choose candidate models. We were able to classify a large area (57,000 ha) in a fraction of the time that would be required to map vegetation and were able to test models at varying scales using a windowing process. Interpretation of the selected models confirmed existing knowledge of factors important to Florida scrub-jay habitat occupancy. The potential uses and advantages of using a grid cell classification scheme in conjunction with expert knowledge or an habitat suitability index (HSI) and an objective model selection procedure are discussed.
Parameter diagnostics of phases and phase transition learning by neural networks
NASA Astrophysics Data System (ADS)
Suchsland, Philippe; Wessel, Stefan
2018-05-01
We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.
Karayannis, Nicholas V; Jull, Gwendolen A; Nicholas, Michael K; Hodges, Paul W
2018-01-01
To determine the distribution of higher psychological risk features within movement-based subgroups for people with low back pain (LBP). Cross-sectional observational study. Participants were recruited from physiotherapy clinics and community advertisements. Measures were collected at a university outpatient-based physiotherapy clinic. People (N=102) seeking treatment for LBP. Participants were subgrouped according to 3 classification schemes: Mechanical Diagnosis and Treatment (MDT), Treatment-Based Classification (TBC), and O'Sullivan Classification (OSC). Questionnaires were used to categorize low-, medium-, and high-risk features based on depression, anxiety, and stress (Depression, Anxiety, and Stress Scale-21 Items); fear avoidance (Fear-Avoidance Beliefs Questionnaire); catastrophizing and coping (Pain-Related Self-Symptoms Scale); and self-efficacy (Pain Self-Efficacy Questionnaire). Psychological risk profiles were compared between movement-based subgroups within each scheme. Scores across all questionnaires revealed that most patients had low psychological risk profiles, but there were instances of higher (range, 1%-25%) risk profiles within questionnaire components. The small proportion of individuals with higher psychological risk scores were distributed between subgroups across TBC, MDT, and OSC schemes. Movement-based subgrouping alone cannot inform on individuals with higher psychological risk features. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podoshvedov, S. A., E-mail: podoshvedov@mail.ru
A method to generate Schroedinger cat states in free propagating optical fields based on the use of displaced states (or displacement operators) is developed. Some optical schemes with photon-added coherent states are studied. The schemes are modifications of the general method based on a sequence of displacements and photon additions or subtractions adjusted to generate Schroedinger cat states of a larger size. The effects of detection inefficiency are taken into account.
NASA Technical Reports Server (NTRS)
Kettig, R. L.
1975-01-01
A method of classification of digitized multispectral images is developed and experimentally evaluated on actual earth resources data collected by aircraft and satellite. The method is designed to exploit the characteristic dependence between adjacent states of nature that is neglected by the more conventional simple-symmetric decision rule. Thus contextual information is incorporated into the classification scheme. The principle reason for doing this is to improve the accuracy of the classification. For general types of dependence this would generally require more computation per resolution element than the simple-symmetric classifier. But when the dependence occurs in the form of redundance, the elements can be classified collectively, in groups, therby reducing the number of classifications required.
Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON
NASA Astrophysics Data System (ADS)
Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue
2014-12-01
WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.
Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei
2006-09-01
A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.
Murmur intensity in adult dogs with pulmonic and subaortic stenosis reflects disease severity.
Caivano, D; Dickson, D; Martin, M; Rishniw, M
2018-03-01
The aims of this study were to determine whether murmur intensity in adult dogs with pulmonic stenosis or subaortic stenosis reflects echocardiographic disease severity and to determine whether a six-level murmur grading scheme provides clinical advantages over a four-level scheme. In this retrospective multi-investigator study on adult dogs with pulmonic stenosis or subaortic stenosis, murmur intensity was compared to echocardiographically determined pressure gradient across the affected valve. Disease severity, based on pressure gradients, was assessed between sequential murmur grades to identify redundancy in classification. A simplified four-level murmur intensity classification scheme ('soft', 'moderate', 'loud', 'palpable') was evaluated. In total, 284 dogs (153 with pulmonic stenosis, 131 with subaortic stenosis) were included; 55 dogs had soft, 59 had moderate, 72 had loud and 98 had palpable murmurs. 95 dogs had mild stenosis, 46 had moderate stenosis, and 143 had severe stenosis. No dogs with soft murmurs of either pulmonic or subaortic stenosis had transvalvular pressure gradients greater than 50 mmHg. Dogs with loud or palpable murmurs mostly, but not always, had severe stenosis. Stenosis severity increased with increasing murmur intensity. The traditional six-level murmur grading scheme provided no additional clinical information than the four-level descriptive murmur grading scheme. A simplified descriptive four-level murmur grading scheme differentiated stenosis severity without loss of clinical information, compared to the traditional six-level scheme. Soft murmurs in dogs with pulmonic or subaortic stenosis are strongly indicative of mild lesions. Loud or palpable murmurs are strongly suggestive of severe stenosis. © 2017 British Small Animal Veterinary Association.
Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin
2014-10-01
Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.
NASA Astrophysics Data System (ADS)
Liu, W.; Wang, H.; Liu, D.; Miu, Y.
2018-05-01
Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.
NASA Astrophysics Data System (ADS)
Guo, Ying; Li, Renjie; Liao, Qin; Zhou, Jian; Huang, Duan
2018-02-01
Discrete modulation is proven to be beneficial to improving the performance of continuous-variable quantum key distribution (CVQKD) in long-distance transmission. In this paper, we suggest a construct to improve the maximal generated secret key rate of discretely modulated eight-state CVQKD using an optical amplifier (OA) with a slight cost of transmission distance. In the proposed scheme, an optical amplifier is exploited to compensate imperfection of Bob's apparatus, so that the generated secret key rate of eight-state protocol is enhanced. Specifically, we investigate two types of optical amplifiers, phase-insensitive amplifier (PIA) and phase-sensitive amplifier (PSA), and thereby obtain approximately equivalent improved performance for eight-state CVQKD system when applying these two different amplifiers. Numeric simulation shows that the proposed scheme can well improve the generated secret key rate of eight-state CVQKD in both asymptotic limit and finite-size regime. We also show that the proposed scheme can achieve the relatively high-rate transmission at long-distance communication system.
NASA Astrophysics Data System (ADS)
Yang, Tao; Chen, Xue; Shi, Sheping; Sun, Erkun; Shi, Chen
2018-03-01
We propose a low-complexity and modulation-format-independent carrier phase estimation (CPE) scheme based on two-stage modified blind phase search (MBPS) with linear approximation to compensate the phase noise of arbitrary m-ary quadrature amplitude modulation (m-QAM) signals in elastic optical networks (EONs). Comprehensive numerical simulations are carried out in the case that the highest possible modulation format in EONs is 256-QAM. The simulation results not only verify its advantages of higher estimation accuracy and modulation-format independence, i.e., universality, but also demonstrate that the implementation complexity is significantly reduced by at least one-fourth in comparison with the traditional BPS scheme. In addition, the proposed scheme shows similar laser linewidth tolerance with the traditional BPS scheme. The slightly better OSNR performance of the scheme is also experimentally validated for PM-QPSK and PM-16QAM systems, respectively. The coexistent advantages of low-complexity and modulation-format-independence could make the proposed scheme an attractive candidate for flexible receiver-side DSP unit in EONs.
PolSK Label Over VSB-CSRZ Payload Scheme in AOLS Network
NASA Astrophysics Data System (ADS)
Chen, Hongwei; Chen, Minghua; Xie, Shizhong
2007-06-01
A novel orthogonal modulation scheme of polarization-shift-keying label over vestigial sideband payload is proposed and experimentally demonstrated over a 43-Gb/s all-optical-label-switching transmission. With this scheme, a high extinction ratio of the label is reached, while a spectral efficiency of 0.8 b/s/Hz is achieved by weakening the imperfection of the high-speed pulse sequence in polarization modulation. Furthermore, this modulation scheme is relatively irrelevant with payload bit rate. The payload and label penalties after 80-km NZDSF fiber transmission and label erasure are 1.5 and 1 dB, respectively. The influence of filter center frequency offset is also investigated. Besides, a label rewriting method is introduced to simplify label processing in intermedia nodes. All these results show that this scheme can be a candidate technique for the next-generation optical network.
Dimitriadis, S I; Liparas, Dimitris; Tsolaki, Magda N
2018-05-15
In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer's disease (AD) covers a large percentage of neuroimaging research, with the main scope being its use in daily practice. However, there has been no study attempting to simultaneously discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI (cMCI) and stable AD, using features derived from a single modality, namely MRI. Based on preprocessed MRI images from the organizers of a neuroimaging challenge, 3 we attempted to quantify the prediction accuracy of multiple morphological MRI features to simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a novel scheme that includes multiple feature selections via Random Forest from subsets of the whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification using a fusion approach and ensemble classification via majority voting. From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 CE were used as a training set with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) was used as an external blind validation dataset to evaluate the proposed machine learning scheme. In the second blind dataset, we succeeded in a four-class classification of 61.9% by combining MRI-based features with a Random Forest-based Ensemble Strategy. We achieved the best classification accuracy of all teams that participated in this neuroimaging competition. The results demonstrate the effectiveness of the proposed scheme to simultaneously discriminate among four groups using morphological MRI features for the very first time in the literature. Hence, the proposed machine learning scheme can be used to define single and multi-modal biomarkers for AD. Copyright © 2017 Elsevier B.V. All rights reserved.
Analyzing Sub-Classifications of Glaucoma via SOM Based Clustering of Optic Nerve Images.
Yan, Sanjun; Abidi, Syed Sibte Raza; Artes, Paul Habib
2005-01-01
We present a data mining framework to cluster optic nerve images obtained by Confocal Scanning Laser Tomography (CSLT) in normal subjects and patients with glaucoma. We use self-organizing maps and expectation maximization methods to partition the data into clusters that provide insights into potential sub-classification of glaucoma based on morphological features. We conclude that our approach provides a first step towards a better understanding of morphological features in optic nerve images obtained from glaucoma patients and healthy controls.
NASA Astrophysics Data System (ADS)
Ma, Jianxin
2016-07-01
A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.
NASA Astrophysics Data System (ADS)
Ueno, Yoshiyasu; Nakamoto, Ryouichi; Sakaguchi, Jun; Suzuki, Rei
2006-12-01
In frequency ranges above 200-300 GHz, the second slowest relaxation in the optical response (such as carrier-cooling relaxation having a time constant of 1-2 ps) of a semiconductor optical amplifier inside the conventional delayed-interference signal-wavelength converter (DISC) scheme is thought to start the distortion of all-optically gated waveforms. In this work, we design a digital optical-spectrum-synthesizer block that is part of the expanded DISC scheme. Our numerically calculated spectra, waveforms, and eye diagrams with assumed pseudorandom digital data pulses indicate that this synthesizer significantly removes strong distortion from the gated waveforms. A signal-to-noise ratio of 20 dB was obtained from our random-data eye diagram, providing proof of effectiveness in principle.
NASA Technical Reports Server (NTRS)
Liu, Zhaoyan; Vaughan, Mark A.; Winker, Davd M.; Hostetler, Chris A.; Poole, Lamont R.; Hlavka, Dennis; Hart, William; McGill, Mathew
2004-01-01
In this paper we describe the algorithm hat will be used during the upcoming Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission for discriminating between clouds and aerosols detected in two wavelength backscatter lidar profiles. We first analyze single-test and multiple-test classification approaches based on one-dimensional and multiple-dimensional probability density functions (PDFs) in the context of a two-class feature identification scheme. From these studies we derive an operational algorithm based on a set of 3-dimensional probability distribution functions characteristic of clouds and aerosols. A dataset acquired by the Cloud Physics Lidar (CPL) is used to test the algorithm. Comparisons are conducted between the CALIPSO algorithm results and the CPL data product. The results obtained show generally good agreement between the two methods. However, of a total of 228,264 layers analyzed, approximately 5.7% are classified as different types by the CALIPSO and CPL algorithm. This disparity is shown to be due largely to the misclassification of clouds as aerosols by the CPL algorithm. The use of 3-dimensional PDFs in the CALIPSO algorithm is found to significantly reduce this type of error. Dust presents a special case. Because the intrinsic scattering properties of dust layers can be very similar to those of clouds, additional algorithm testing was performed using an optically dense layer of Saharan dust measured during the Lidar In-space Technology Experiment (LITE). In general, the method is shown to distinguish reliably between dust layers and clouds. The relatively few erroneous classifications occurred most often in the LITE data, in those regions of the Saharan dust layer where the optical thickness was the highest.
NASA Astrophysics Data System (ADS)
Schaefer, Semjon; Gregory, Mark; Rosenkranz, Werner
2016-11-01
We present simulative and experimental investigations of different coherent receiver designs for high-speed optical intersatellite links. We focus on frequency offset (FO) compensation in homodyne and intradyne detection systems. The considered laser communication terminal uses an optical phase-locked loop (OPLL), which ensures stable homodyne detection. However, the hardware complexity increases with the modulation order. Therefore, we show that software-based intradyne detection is an attractive alternative for OPLL-based homodyne systems. Our approach is based on digital FO and phase noise compensation, in order to achieve a more flexible coherent detection scheme. Analytic results will further show the theoretical impact of the different detection schemes on the receiver sensitivity. Finally, we compare the schemes in terms of bit error ratio measurements and optimal receiver design.
Characterizing the propagation path in moderate to strong optical turbulence.
Vetelino, Frida Strömqvist; Clare, Bradley; Corbett, Kerry; Young, Cynthia; Grant, Kenneth; Andrews, Larry
2006-05-20
In February 2005 a joint atmospheric propagation experiment was conducted between the Australian Defence Science and Technology Organisation and the University of Central Florida. A Gaussian beam was propagated along a horizontal 1500 m path near the ground. Scintillation was measured simultaneously at three receivers of diameters 1, 5, and 13 mm. Scintillation theory combined with a numerical scheme was used to infer the structure constant C2n, the inner scale l0, and the outer scale L0 from the optical measurements. At the same time, C2n measurements were taken by a commercial scintillometer, set up parallel to the optical path. The C2n values from the inferred scheme and the commercial scintillometer predict the same behavior, but the inferred scheme consistently gives slightly smaller C2n values.
A risk-based classification scheme for genetically modified foods. I: Conceptual development.
Chao, Eunice; Krewski, Daniel
2008-12-01
The predominant paradigm for the premarket assessment of genetically modified (GM) foods reflects heightened public concern by focusing on foods modified by recombinant deoxyribonucleic acid (rDNA) techniques, while foods modified by other methods of genetic modification are generally not assessed for safety. To determine whether a GM product requires less or more regulatory oversight and testing, we developed and evaluated a risk-based classification scheme (RBCS) for crop-derived GM foods. The results of this research are presented in three papers. This paper describes the conceptual development of the proposed RBCS that focuses on two categories of adverse health effects: (1) toxic and antinutritional effects, and (2) allergenic effects. The factors that may affect the level of potential health risks of GM foods are identified. For each factor identified, criteria for differentiating health risk potential are developed. The extent to which a GM food satisfies applicable criteria for each factor is rated separately. A concern level for each category of health effects is then determined by aggregating the ratings for the factors using predetermined aggregation rules. An overview of the proposed scheme is presented, as well as the application of the scheme to a hypothetical GM food.
NASA Astrophysics Data System (ADS)
Johnson, Stanley
An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I experimentally demonstrate optical re-timing of a 10.7 Gb/s data stream utilizing the property of bound soliton pairs (or "soliton molecules") to relax to an equilibrium temporal separation after propagation through a nonlinear dispersion alternating fiber span. Pulses offset up to 16 ps from bit center are successfully re-timed. The optical re-timing scheme studied here is a good example of signal processing in the optical domain and such a technique can overcome the bandwidth bottleneck present in DSP. An enhanced version of this re-timing scheme is analyzed using numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong-Yang; Wen, Jing-Ji; Bai, Cheng-Hua
2015-09-15
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.
External quality assessment of urine particle identification: a Northern European experience.
Kouri, Timo T; Makkonen, Pirjo
2015-11-01
External quality assessment (EQA) schemes for urinalysis have been provided by Labquality Ltd, the publicly owned EQA service provider in Finland, since the 1980s. In 2014, the scheme on urine particle identification had 329 participating laboratories, out of which 60% from 19 countries were outside Finland. Each of the four annual web-based rounds were distributed with four Sternheimer-stained images from a single patient sample, as viewed both by bright-field and phase-contrast optics. Participants reported classified categories either at the basic or at the advanced level. Participating laboratories received assessment of their analytical performance as compared to their peers, including reflections from clinical data and preanalytical detail of the specimen. In general, reporting of basic urine particles succeeded in the eight schemes during the years 2013-2014 as follows: red blood cells 82%-92%, white blood cells 82%-97%, squamous epithelial cells 92%-98%, casts 84%-94%, and small epithelial cells 73%-83% (minimum and maximum of expected or accepted reports). This basic level of differentiation is used in routine laboratory reports, or as verification of results produced by automated instruments. Considerable effort is needed to standardise national procedures and reporting formats, in order to improve the shown figures internationally. Future technologies may help to alleviate limitations created by single digital images. Despite improvements, degenerating cells and casts always exhibit intermediate forms creating disputable classifications. That is why assessment of performance should encompass justified acceptable categories into the assessed outcomes. Preanalytical and clinical detail provide essential added value to morphological findings.
Integrated Approach to Free Space Optical Communications in Strong Turbulence
2011-09-01
fades at the receiver caused by atmospheric turbulence . In an attempt to mitigate the impact of intensity fades, the use of various modulation schemes... turbulence . Additionally, adaptive optics can be used to maximize fiber coupling efficiency [64]. The research in Chapters IV–VI attempts to minimize...the effect of atmospheric turbulence through signal diversity without the use of complicated higher-order wavefront control schemes. 40 3.4 Modulation
Kalkhof, H; Herzler, M; Stahlmann, R; Gundert-Remy, U
2012-01-01
The TTC concept employs available data from animal testing to derive a distribution of NOAELs. Taking a probabilistic view, the 5th percentile of the distribution is taken as a threshold value for toxicity. In this paper, we use 824 NOAELs from repeated dose toxicity studies of industrial chemicals to re-evaluate the currently employed TTC values, which have been derived for substances grouped according to the Cramer scheme (Cramer et al. in Food Cosm Toxicol 16:255-276, 1978) by Munro et al. (Food Chem Toxicol 34:829-867, 1996) and refined by Kroes and Kozianowski (Toxicol Lett 127:43-46, 2002), Kroes et al. 2000. In our data set, consisting of 756 NOAELs from 28-day repeated dose testing and 57 NOAELs from 90-days repeated dose testing, the experimental NOAEL had to be extrapolated to chronic TTC using regulatory accepted extrapolation factors. The TTC values derived from our data set were higher than the currently used TTC values confirming the safety of the latter. We analysed the prediction of the Cramer classification by comparing the classification by this tool with the guidance values for classification according to the Globally Harmonised System of classification and labelling of the United Nations (GHS). Nearly 90% of the chemicals were in Cramer class 3 and assumed as highly toxic compared to 22% according to the GHS. The Cramer classification does underestimate the toxicity of chemicals only in 4.6% of the cases. Hence, from a regulatory perspective, the Cramer classification scheme might be applied as it overestimates hazard of a chemical.
Traffic-aware energy saving scheme with modularization supporting in TWDM-PON
NASA Astrophysics Data System (ADS)
Xiong, Yu; Sun, Peng; Liu, Chuanbo; Guan, Jianjun
2017-01-01
Time and wavelength division multiplexed passive optical network (TWDM-PON) is considered to be a primary solution for next-generation passive optical network stage 2 (NG-PON2). Due to the feature of multi-wavelength transmission of TWDM-PON, some of the transmitters/receivers at the optical line terminal (OLT) could be shut down to reduce the energy consumption. Therefore, a novel scheme called traffic-aware energy saving scheme with modularization supporting is proposed. Through establishing the modular energy consumption model of OLT, the wavelength transmitters/receivers at OLT could be switched on or shut down adaptively depending on sensing the status of network traffic load, thus the energy consumption of OLT will be effectively reduced. Furthermore, exploring the technology of optical network unit (ONU) modularization, each module of ONU could be switched to sleep or active mode independently in order to reduce the energy consumption of ONU. Simultaneously, the polling sequence of ONU could be changed dynamically via sensing the packet arrival time. In order to guarantee the delay performance of network traffic, the sub-cycle division strategy is designed to transmit the real-time traffic preferentially. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the traffic delay performance.
Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency
NASA Astrophysics Data System (ADS)
Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng
2018-05-01
Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.
Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency.
Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A; Chen, Ying-Cheng
2018-05-04
Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.