Science.gov

Sample records for optical cluster detections

  1. Optical Cluster Detection in the Post-SDSS Era

    NASA Astrophysics Data System (ADS)

    Koester, Benjamin

    2011-01-01

    Near the conclusion of the first Sloan Digital Sky Survey, the development of optical cluster detection algorithms, quantification of their selection functions, and mass and redshift calibration hit full swing. Catalogs typically include thousands of massive (>1x1014 Msun) clusters reaching z 0.5, with selection functions that are routinely calibrated with realistic mock galaxy simulations, and cluster mass proxies that are cross-calibrated against X-ray, weak-lensing, dynamical, and SZ observations. All of this is folded into analyses that offer cosmological constraints competitive with catalogs created at other wavelengths. In this talk, these developments are reviewed from the perspective of the MaxBCG cluster catalog. The lessons learned from optical cluster-finding efforts are then turned to the next generation of optical/NIR surveys soon to come online, using the Dark Energy Survey (DES) as an example. In DES, this past experience guides the coordination of vast resources that will culminate in well-understood cluster catalogs specifically tailored to cosmological applications reaching z 1.

  2. Optical galaxy cluster detection across a wide redshift range

    SciTech Connect

    Hao, Jiangang

    2009-04-01

    The past decade is one of the most exciting period in the history of physics and astronomy. The discovery of cosmic acceleration dramatically changed our understanding about the evolution and constituents of the Universe. To accommodate the new acceleration phase into our well established Big Bang cosmological scenario under the frame work of General Relativity, there must exist a very special substance that has negative pressure and make up about 73% of the total energy density in our Universe. It is called Dark Energy. For the first time people realized that the vast majority of our Universe is made of things that are totally different from the things we are made of. Therefore, one of the major endeavors in physics and astronomy in the coming years is trying to understand, if we can, the nature of dark energy. Understanding dark energy cannot be achieved from pure logic. We need empirical evidence to finally determine about what is dark energy. The better we can constrain the energy density and evolution of the dark energy, the closer we will get to the answer. There are many ways to constrain the energy density and evolution of dark energy, each of which leads to degeneracy in certain directions in the parameter space. Therefore, a combination of complimentary methods will help to reduce the degeneracies and give tighter constraints. Dark energy became dominate over matter in the Universe only very recently (at about z ~ 1.5) and will affect both the cosmological geometry and large scale structure formation. Among the various experiments, some of them constrain the dark energy mainly via geometry (such as CMB, Supernovae) while some others provides constraints from both structures and geometry (such as BAO, Galaxy Clusters) Galaxy clusters can be used as a sensitive probe for cosmology. A large cluster catalog that extends to high redshift with well measured masses is indispensable for precisely constraining cosmological parameters. Detecting clusters in optical

  3. Optical protein detection based on magnetic clusters rotation.

    PubMed

    Ramiandrisoa, Donatien; Brient-Litzler, Elodie; Daynes, Aurélien; Compain, Eric; Bibette, Jérôme; Baudry, Jean

    2015-09-25

    In this paper we present a simple method to quantify aggregates of 200nm magnetic particles. This method relies on the optical and magnetic anisotropy of particle aggregates, whereas dispersed particles are optically isotropic. We orientate aggregates by applying short pulses of a magnetic field, and we measure optical density variation directly linked to this reorientation. By computing the scattering efficiency of doublets and singlets, we demonstrate the absolute quantification of a few % of doublets in a well dispersed suspension. More generally, these optical variations are related to the aggregation state of the sample. This method can be easily applied to an agglutination assay, where target proteins induce aggregation of colloidal particles. By observing only aligned clusters, we increase sensitivity and we reduce the background noise as compared to a classical agglutination assay: we obtain a detection limit on the C-reactive protein of less than 3pM for a total assay time of 10min.

  4. Distant Cluster Hunting. II; A Comparison of X-Ray and Optical Cluster Detection Techniques and Catalogs from the ROSAT Optical X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.

    2002-01-01

    We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster

  5. Detecting alternative graph clusterings.

    PubMed

    Mandala, Supreet; Kumara, Soundar; Yao, Tao

    2012-07-01

    The problem of graph clustering or community detection has enjoyed a lot of attention in complex networks literature. A quality function, modularity, quantifies the strength of clustering and on maximization yields sensible partitions. However, in most real world networks, there are an exponentially large number of near-optimal partitions with some being very different from each other. Therefore, picking an optimal clustering among the alternatives does not provide complete information about network topology. To tackle this problem, we propose a graph perturbation scheme which can be used to identify an ensemble of near-optimal and diverse clusterings. We establish analytical properties of modularity function under the perturbation which ensures diversity. Our approach is algorithm independent and therefore can leverage any of the existing modularity maximizing algorithms. We numerically show that our methodology can systematically identify very different partitions on several existing data sets. The knowledge of diverse partitions sheds more light into the topological organization and helps gain a more complete understanding of the underlying complex network.

  6. Adaptive cluster detection

    NASA Astrophysics Data System (ADS)

    Friedenberg, David

    2010-10-01

    the rate of falsely detected active regions. Additionally we examine the more general field of clustering and develop a framework for clustering algorithms based around diffusion maps. Diffusion maps can be used to project high-dimensional data into a lower dimensional space while preserving much of the structure in the data. We demonstrate how diffusion maps can be used to solve clustering problems and examine the influence of tuning parameters on the results. We introduce two novel methods, the self-tuning diffusion map which replaces the global scaling parameter in the typical diffusion map framework with a local scaling parameter and an algorithm for automatically selecting tuning parameters based on a cross-validation style score called prediction strength. The methods are tested on several example datasets.

  7. Adaptive-clustering optical neural net.

    PubMed

    Casasent, D P; Barnard, E

    1990-06-10

    Pattern recognition techniques (for clustering and linear discriminant function selection) are combined with neural net methods (that provide an automated method to combine linear discriminant functions into piecewise linear discriminant surfaces). The resulting adaptive-clustering neural net is suitable for optical implementation and has certain desirable properties in comparison with other neural nets. Simulation results are provided.

  8. Optical detection of formaldehyde

    NASA Astrophysics Data System (ADS)

    Patty, Kira D.; Gregory, Don A.

    2008-04-01

    The potential for buildup of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate above these limits. New sensor technologies are needed to enable real time, in situ detection in a compact and reusable form factor. Addressing this need, research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To incorporate the dye in an optical sensor device requires a means of containing and manipulating the dye. Multiple form factors using two dissimilar substrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a fieldable sensor were presented. This research provides a necessary first step toward the development of a compact, reusable, real time optical formaldehyde sensor suitable for use in the U.S. space program.

  9. Optical Detection of Formaldehyde

    NASA Technical Reports Server (NTRS)

    Patty, Kira D.; Gregory, Don A.

    2008-01-01

    The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,

  10. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  11. Computer aided detection system for clustered microcalcifications

    PubMed Central

    Ge, Jun; Hadjiiski, Lubomir M.; Sahiner, Berkman; Wei, Jun; Helvie, Mark A.; Zhou, Chuan; Chan, Heang-Ping

    2009-01-01

    We have developed a computer-aided detection (CAD) system to detect clustered microcalcification automatically on full-field digital mammograms (FFDMs) and a CAD system for screen-film mammograms (SFMs). The two systems used the same computer vision algorithms but their false positive (FP) classifiers were trained separately with sample images of each modality. In this study, we compared the performance of the CAD systems for detection of clustered microcalcifications on pairs of FFDM and SFM obtained from the same patient. For case-based performance evaluation, the FFDM CAD system achieved detection sensitivities of 70%, 80%, and 90% at an average FP cluster rate of 0.07, 0.16, and 0.63 per image, compared with an average FP cluster rate of 0.15, 0.38, and 2.02 per image for the SFM CAD system. The difference was statistically significant with the alternative free-response receiver operating characteristic (AFROC) analysis. When evaluated on data sets negative for microcalcification clusters, the average FP cluster rates of the FFDM CAD system were 0.04, 0.11, and 0.33 per image at detection sensitivity level of 70%, 80%, and 90%, compared with an average FP cluster rate of 0.08, 0.14, and 0.50 per image for the SFM CAD system. When evaluated for malignant cases only, the difference of the performance of the two CAD systems was not statistically significant with AFROC analysis. PMID:17264365

  12. Diffuse optical light in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Krick, Jessica E.

    We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of ten galaxy clusters that have varying mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the one meter Swope and 2.5 meter du Pont telescope at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point spread function determination, galaxy subtraction, and ICL flux determination. ICL flux is detected in both r - and either B - or V - band in all ten clusters ranging from 7.6 × 10 10 to 7.0 × 10 11 [Special characters omitted.] in r - and 1.4 × 10 10 to 1.2 × 10 11 [Special characters omitted.] in the B -band. These fluxes account for 6 to 22% of the total cluster light within one quarter of the virial radius in r - and 4 to 21% in the B - band. ICL B - r colors range from 1.49 to 2.75 when k and evolution corrected to the present epoch. ICL profiles extend to 28-29 mag arcsec -2 and radii up to 600 [Special characters omitted.] kpc, and are well fit by exponential, deVaucouleurs, and Hubble Reynolds profiles (substitute for an NFW density profile). Low surface brightness features are present in the clusters as evidence of ongoing tidal interactions. We find that the ICL forms in group environments and remains with those groups as they are in-falling into the cluster environment. Our sample, having been selected from the Abell sample, is incomplete. The sample does not include high redshift clusters with low density, low flux, or low mass, and it does not include low redshift clusters with high flux, mass, or density. Given this selection bias between ICL properties and cluster properties we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the

  13. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.

  14. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  15. Community detection by fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Sun, Peng Gang

    2015-02-01

    How to measure the similarity between nodes is of great importance for fuzzy clustering when we use the approach to uncover communities in complex networks. In this paper, we first measure the similarity between nodes in a network based on edge centralities and model the network as a fuzzy relation. Then, two fuzzy transitive rules (Rule I and Rule II) are applied on the relation respectively, by which the similarity information can be transferred from one node to another in the network until the relation reaches a stable state. By choosing different thresholds, our method finally can partition the network into several non-overlapping subgroups. We compare our method with some state of the art methods on the LFR benchmark and real-world networks. We find that our method based on Rule I can correctly identify communities when the similarity between nodes of same groups is greater than that of different groups, while it is just opposite to Rule II. Our method achieves better results than the state of the art methods when the pre-planted communities of the random networks are vaguer.

  16. The Detection of Clusters with Spatial Heterogeneity

    ERIC Educational Resources Information Center

    Zhang, Zuoyi

    2011-01-01

    This thesis consists of two parts. In Chapter 2, we focus on the spatial scan statistics with overdispersion and Chapter 3 is devoted to the randomized permutation test for identifying local patterns of spatial association. The spatial scan statistic has been widely used in spatial disease surveillance and spatial cluster detection. To apply it, a…

  17. Advances in Significance Testing for Cluster Detection

    NASA Astrophysics Data System (ADS)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic

  18. Optical detection of intravenous infiltration

    NASA Astrophysics Data System (ADS)

    Winchester, Leonard W.; Chou, Nee-Yin

    2006-02-01

    Infiltration of medications during infusion therapy results in complications ranging from erythema and pain to tissue necrosis requiring amputation. Infiltration occurs from improper insertion of the cannula, separation of the cannula from the vein, penetration of the vein by the cannula during movement, and response of the vein to the medication. At present, visual inspection by the clinical staff is the primary means for detecting intravenous (IV) infiltration. An optical sensor was developed to monitor the needle insertion site for signs of IV infiltration. Initial studies on simulated and induced infiltrations on a swine model validated the feasibility of the methodology. The presence of IV infiltration was confirmed by visual inspection of the infusion site and/or absence of blood return in the IV line. Potential sources of error due to illumination changes, motion artifacts, and edema were also investigated. A comparison of the performance of the optical device and blinded expert observers showed that the optical sensor has higher sensitivity and specificity, and shorter detection time than the expert observers. An improved model of the infiltration monitoring device was developed and evaluated in a clinical study on induced infiltrations of healthy adult volunteers. The performance of the device was compared with the observation of a blinded expert observer. The results show that the rates of detection of infiltrations are 98% and 82% for the optical sensor and the observer, respectively. The sensitivity and specificity of the optical sensor are 0.97 and 0.98, respectively.

  19. Schlieren optics for leak detection

    NASA Technical Reports Server (NTRS)

    Peale, Robert E.; Ruffin, Alranzo B.

    1995-01-01

    The purpose of this research was to develop an optical method of leak detection. Various modifications of schlieren optics were explored with initial emphasis on leak detection of the plumbing within the orbital maneuvering system of the space shuttle (OMS pod). The schlieren scheme envisioned for OMS pod leak detection was that of a high contrast pattern on flexible reflecting material imaged onto a negative of the same pattern. We find that the OMS pod geometry constrains the characteristic length scale of the pattern to the order of 0.001 inch. Our experiments suggest that optical modulation transfer efficiency will be very low for such patterns, which will limit the sensitivity of the technique. Optical elements which allow a negative of the scene to be reversibly recorded using light from the scene itself were explored for their potential in adaptive single-ended schlieren systems. Elements studied include photochromic glass, bacteriorhodopsin, and a transmissive liquid crystal display. The dynamics of writing and reading patterns were studied using intensity profiles from recorded images. Schlieren detection of index gradients in air was demonstrated.

  20. Detecting clusters of disease with R

    NASA Astrophysics Data System (ADS)

    Gómez-Rubio, V.; Ferrándiz-Ferragud, J.; López-Quílez, A.

    2005-06-01

    One of the main concerns of Public Health surveillance is the detection of clusters of disease, i. e., the presence of high incidence rates around a particular location, which usually means a higher risk of suffering from the disease under study (Aylin et al. 1999). Many methods have been proposed for cluster detection, ranging from visual inspection of disease maps to full Bayesian models analysed using MCMC. In this paper we describe the use and implementation, as a package for the R programming language, of several methods which have been widely used in the literature, such as Openshaw’s GAM, Stone’s test and others. Although some of the statistics involved in these methods have an asymptotical distribution, bootstrap will be used to estimate their actual sampling distributions.

  1. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  2. The XMM Cluster Survey: optical analysis methodology and the first data release

    NASA Astrophysics Data System (ADS)

    Mehrtens, Nicola; Romer, A. Kathy; Hilton, Matt; Lloyd-Davies, E. J.; Miller, Christopher J.; Stanford, S. A.; Hosmer, Mark; Hoyle, Ben; Collins, Chris A.; Liddle, Andrew R.; Viana, Pedro T. P.; Nichol, Robert C.; Stott, John P.; Dubois, E. Naomi; Kay, Scott T.; Sahlén, Martin; Young, Owain; Short, C. J.; Christodoulou, L.; Watson, William A.; Davidson, Michael; Harrison, Craig D.; Baruah, Leon; Smith, Mathew; Burke, Claire; Mayers, Julian A.; Deadman, Paul-James; Rooney, Philip J.; Edmondson, Edward M.; West, Michael; Campbell, Heather C.; Edge, Alastair C.; Mann, Robert G.; Sabirli, Kivanc; Wake, David; Benoist, Christophe; da Costa, Luiz; Maia, Marcio A. G.; Ogando, Ricardo

    2012-06-01

    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we present the first data release from the XMM Cluster Survey (XCS-DR1). This consists of 503 optically confirmed, serendipitously detected, X-ray clusters. Of these clusters, 256 are new to the literature and 357 are new X-ray discoveries. We present 463 clusters with a redshift estimate (0.06 < z < 1.46), including 261 clusters with spectroscopic redshifts. The remainder have photometric redshifts. In addition, we have measured X-ray temperatures (TX) for 401 clusters (0.4 < TX < 14.7 keV). We highlight seven interesting subsamples of XCS-DR1 clusters: (i) 10 clusters at high redshift (z > 1.0, including a new spectroscopically confirmed cluster at z= 1.01); (ii) 66 clusters with high TX (>5 keV) (iii) 130 clusters/groups with low TX (<2 keV) (iv) 27 clusters with measured TX values in the Sloan Digital Sky Survey (SDSS) ‘Stripe 82’ co-add region; (v) 77 clusters with measured TX values in the Dark Energy Survey region; (vi) 40 clusters detected with sufficient counts to permit mass measurements (under the assumption of hydrostatic equilibrium); (vii) 104 clusters that can be used for applications such as the derivation of cosmological parameters and the measurement of cluster scaling relations. The X-ray analysis methodology used to construct and analyse the XCS-DR1 cluster sample has been presented in a companion paper, Lloyd-Davies et al.

  3. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  4. Discriminant Subspace Learning for Microcalcification Clusters Detection

    NASA Astrophysics Data System (ADS)

    Zhang, X.-S.; Xie, Hua

    This paper presents a novel approach to microcalcification clusters (MCs) detection in mammograms based on the discriminant subspace learning. The ground truth of MCs in mammograms is assumed to be known as a priori. Several typical subspace learning algorithms, such as principal component analysis (PCA), linear discriminant analysis (LDA), tensor subspace analysis (TSA) and general tensor discriminant Analysis (GTDA), are employed to extract subspace features. In subspace feature domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and SVM is used as a classifier to make decision for the presence of MCs or not. A large number of experiments are carried out to evaluate and compare the performance of the proposed MCs detection algorithms. The experiment result suggests that correlation filters is a promising technique for MCs detection.

  5. Cosmic dust detection by the Cluster spacecraft: First results

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; De Spiegeleer, Alexandre; Hamrin, Maria; Kero, Johan; Mann, Ingrid; Norberg, Carol; Pellinen-Wannberg, Asta; Pitkänen, Timo

    2016-04-01

    There are several different techniques that are used to measure cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical methods. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites with the Wideband Data Plasma Wave Receiver (WBD). We first describe the concept of dust impact ionization and of the impact detection. Based on these considerations the mass and the velocity of the impinging dust grains can be estimated from the amplitude of the Cluster voltage pulses. In the case of the Cluster instrument an automatic gain control adjusts the dynamic range of the recorded signals. Depending on the gain level the impact signal can both be affected by saturation or be too weak for analysis. We describe how this influences the duty cycle of the impact measurements. We finally discuss the suitability of this method for monitoring dust fluxes near Earth and compare it with other methods.

  6. Detection of meteoroid hypervelocity impacts on the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Mann, Ingrid; Kero, Johan; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkanen, Timo; Pellinen-Wannberg, Asta

    2016-07-01

    There are several methods to measure the cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical imaging. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on the spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites recorded by the Wide-Band Data (WBD) instrument. We describe the concept of dust impact detection focused on specifics of the Cluster spacecraft and the WBD instrument and their influence on dust impact detection. The detected pulses are compared with theoretical shape based on the model of the recollection of plasma clouds electrons. The estimation of the size and the velocity of the impinging dust grains from the amplitude of the Cluster voltage pulses shown that such impacts can be generated by grains of radius of r = 0.1 μm impacting with the velocity v ˜100 km/s or by grains of radius r = 1 μm impacting with the velocity v ˜10 km/s. We discuss the sensitivity of this method for dust grain detection showing that grains of radius r = 0.01 μm can be detected when impacting with velocity v ˜300 km/s and grains of radius r = 10 μm with velocity v ˜1 km/s if the WBD instrument operates in the high gain level (75 dB).

  7. A Test for Cluster Bias: Detecting Violations of Measurement Invariance across Clusters in Multilevel Data

    ERIC Educational Resources Information Center

    Jak, Suzanne; Oort, Frans J.; Dolan, Conor V.

    2013-01-01

    We present a test for cluster bias, which can be used to detect violations of measurement invariance across clusters in 2-level data. We show how measurement invariance assumptions across clusters imply measurement invariance across levels in a 2-level factor model. Cluster bias is investigated by testing whether the within-level factor loadings…

  8. Optical fibre gas detections systems

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2016-05-01

    This tutorial review covers the principles of and prospects for fibre optic sensor technology in gas detection. Many of the potential benefits common to fibre sensor technology also apply in the context of gas sensing - notably long distance - many km - access to multiple remote measurement points; invariably intrinsic safety; access to numerous important gas species and often uniquely high levels of selectivity and/or sensitivity. Furthermore, the range of fibre sensor network architectures - single point, multiple point and distributed - enable unprecedented flexibility in system implementation. Additionally, competitive technologies and regulatory issues contribute to final application potential.

  9. Applied study of optical interconnection link in computer cluster

    NASA Astrophysics Data System (ADS)

    Zhou, Ge; Tian, Jindong; Zhang, Nan; Jing, Wencai; Li, Haifeng

    2000-10-01

    In this paper, some study results to apply fiber link to a computer cluster are presented. The research is based on a ring network topology for a cluster system, which is connected by gigabit/s virtual parallel optical fiber link (VPOFLink) and its driver is for Linux Operating System, the transmission protocol of VPOFLink is compliant with Ethernet standard. We have studied the effect of different types of motherboard on transmission rate of the VPOFLink, and have analyzed the influence of optical interconnection network topology and computer networks protocol on the performance of this optical interconnection computer cluster. The round-trip transmission bandwidth of the VPOFLink have been tested, and the factors that limit transmission bandwidth, such as modes of forwarding data packets in the optical interconnection ring networks, and the size of the link buffer etc., are investigated.

  10. Resource-efficient generation of linear cluster states by linear optics with postselection

    SciTech Connect

    Uskov, D. B.; Alsing, P. M.; Fanto, M. L.; Kaplan, L.; Kim, R.; Szep, A.; Smith, A. M.

    2015-01-30

    Here we report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4m-1.

  11. Resource-efficient generation of linear cluster states by linear optics with postselection

    DOE PAGES

    Uskov, D. B.; Alsing, P. M.; Fanto, M. L.; Kaplan, L.; Kim, R.; Szep, A.; Smith, A. M.

    2015-01-30

    Here we report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneousmore » detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4m-1.« less

  12. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  13. OPTICAL COLORS OF INTRACLUSTER LIGHT IN THE VIRGO CLUSTER CORE

    SciTech Connect

    Rudick, Craig S.; Mihos, J. Christopher; Harding, Paul; Morrison, Heather L.; Feldmeier, John J.; Janowiecki, Steven

    2010-09-01

    We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to {mu}{sub B} {approx}29 mag arcsec{sup -2}, confirming the results of Mihos et al., who saw a vast web of low surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's low surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000'', and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B - V {approx}0.8. The common colors of these features suggest that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.

  14. Visual verification and analysis of cluster detection for molecular dynamics.

    PubMed

    Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas

    2007-01-01

    A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented. PMID:17968118

  15. Visual verification and analysis of cluster detection for molecular dynamics.

    PubMed

    Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas

    2007-01-01

    A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented.

  16. Sunyaev-Zel'dovich effect or not? Detecting the main foreground effect of most galaxy clusters

    NASA Astrophysics Data System (ADS)

    Xiao, Weike; Chen, Chen; Zhang, Bin; Wu, Yongfeng; Dai, Mi

    2013-05-01

    Galaxy clusters are the most massive objects in the Universe and comprise a high-temperature intracluster medium of about 107 K, believed to offer a main foreground effect for cosmic microwave background (CMB) data in the form of the thermal Sunyaev-Zel'dovich (SZ) effect. This assumption has been confirmed by SZ signal detection in hundreds of clusters but, in comparison with the huge numbers of clusters within optically selected samples from Sloan Digital Sky Survey (SDSS) data, this only accounts for a few per cent of clusters. Here we introduce a model-independent new method to confirm the assumption that most galaxy clusters can offer the thermal SZ signal as their main foreground effect. For the Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data (and a given galaxy cluster sample), we introduced a parameter d1 as the nearest-neighbour cluster angular distance of each pixel, then we classified data pixels as `to be' (d1 → 0 case) or `not to be' (d1 large enough) affected by the sample clusters. By comparing the statistical results of these two kinds of pixels, we can see how the sample clusters affect the CMB data directly. We find that the Planck Early Sunyaev-Zel'dovich (ESZ) sample and X-ray samples (˜102 clusters) can lead to obvious temperature depression in the WMAP seven-year data, which confirms the SZ effect prediction. However, each optically selected sample (>104 clusters) shows an opposite result: the mean temperature rises to about 10 μK. This unexpected qualitative scenario implies that the main foreground effect of most clusters is not always the expected SZ effect. This may be the reason why the SZ signal detection result is lower than expected from the model.

  17. Parametric Amplification For Detecting Weak Optical Signals

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  18. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  19. Optical signatures of high-redshift galaxy clusters

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Charlot, Stephane

    1994-01-01

    We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.

  20. Modulation and detection of optical signals

    NASA Technical Reports Server (NTRS)

    Goodwin, F. E.

    1972-01-01

    A summary of information is presented which is related to the modulation and detection of information on optical carriers. It emphasizes the treatment of information transfer through an entire system. The most common configurations are considered: intensity modulation, amplitude modulation, frequency or phase modulation, and both direct and coherent detection. In assessing these configurations information capacity and message signal-to-noise ratio are used as a basis of comparison. The physical and geometric treatment of optical heterodyne (or coherent) detection is given.

  1. Optical dropout galaxies lensed by the cluster A2667

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Pelló, R.; Schaerer, D.; Richard, J.; Egami, E.; Kneib, J. P.; Le Borgne, J. F.; Maizy, A.; Boone, F.; Hudelot, P.; Mellier, Y.

    2011-07-01

    Context. We investigate the nature and the physical properties of ten z, Y, and J-dropout galaxies selected in the field of the lensing cluster A2667. Aims: This cluster is part of our project aimed at obtaining deep photometry at ~0.8-2.5 microns with ESO/VLT HAWK-I and FORS2 on a representative sample of lensing clusters extracted from our multi-wavelength combined surveys with Spitzer, HST, and Herschel. The goal is to identify a sample of redshift z ~ 7-10 candidates accessible to detailed spectroscopic studies. Methods: Our selection is performed using the usual dropout technique based on deep I, z, Y, J, H, and Ks-band images (AB ~ 26-27, 3σ), targeting z ≳ 7.5 galaxy candidates. We also include IRAC data between 3.6 and 8 μm, and MIPS 24 μm when available. In this paper, we concentrate on the complete Y and J-dropout sample among the sources detected with a high signal-to-noise ratio in both H and Ks bands, as well as the bright z-dropout sources fulfilling the color and magnitude selection criteria adopted by Capak and collaborators. SED-fitting and photometric redshifts were used to constrain the nature and the properties of these candidates. Results: Ten photometric candidates are selected within the ~7' × 7' HAWK-I field of view (~33 arcmin2 of effective area once corrected for contamination and lensing dilution at z ~ 7-10). All of these are detected in H and Ks bands in addition to J and/or IRAC 3.6 μm/4.5 μm images, with HAB ranging from 23.4 to 25.2, and have modest magnification factors between 1.1 and 1.4. Although best-fit photometric redshifts are obtained at high-z for all these candidates, the contamination by low-z interlopers is expected to be in the range ~50-75% based on previous studies, and on comparison with the blank-field WIRCAM Ultra-Deep Survey (WUDS). The same result is obtained when photometric redshifts are computed using a luminosity prior, allowing us to remove half of the original sample. Among the remaining galaxies

  2. Optical features of nanosize iron and molybdenum sulfide clusters

    SciTech Connect

    Wilcoxon, J.P.; Samara, G.; Newcomer, P.

    1995-01-01

    In the bulk state FeS{sub 2} and MoS{sub 2} are optically opaque, narrow bandgap semiconductors and MoS{sub 2} have bandgaps that with no optical applications. We demonstrate that nanosize FeS{sub 2} can be adjusted to the visible and even UV region of the spectrum by control of the cluster size. This opens up a host of applications of these materials as inexpensive solar photocatalysts. We demonstrate that the band-gap of both materials shifts to the blue with decreasing size but ceases shifting when a size of {approximately}3 nm (in the case of MoS{sub 2}) is attained. We interpret this observation as a change from bulk quantum confinement of the hole-electron pair of a tiny semiconductor to a set of discrete molecular-like transitions more characteristic of a whopper molecule. Room temperature photoemission studies of these clusters demonstrate that, while photoemission shifts to the blue with increasing bandgap for large clusters, small clusters have photoemission exclusively from trapped sub-bandgap surface states. Chemical modification of the surface to introduce hole or electron traps can result in either an enhancement or a decrease in the photoluminescence. In addition, we report our results concerning chemical purification and preliminary surface characterization of MoS{sub 2} clusters by chromatography.

  3. Prospects for clustering and lensing measurements with forthcoming intensity mapping and optical surveys

    NASA Astrophysics Data System (ADS)

    Pourtsidou, A.; Bacon, D.; Crittenden, R.; Metcalf, R. B.

    2016-06-01

    We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect H I clustering and weak gravitational lensing of 21 cm emission in auto- and cross-correlation. Our forecasts show that high-precision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the H I density Ω _{H I}, the H I bias b_{H I} and the galaxy-H I correlation coefficient r_{H I-g}.

  4. Optical detection of pores in adipocyte membrane

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  5. Optical Detection Of Flameout In A Combustor

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; West, James W.; Harper, Samuel E.; Alderfer, David W.; Lawrence, Robert M.

    1994-01-01

    Fuel supply shut down in time to prevent explosion. Optical flameout detector designed to signal control system of facility to cut off supply of fuel into combustion chamber if flame goes out. Combustor which optical flameout detector designed burns methane in air to provide hot gases for 8-ft high-temperature test chamber. Acoustical flameout detector for same combustor described in "Acoustical Detection of Flameout in Combustor" (LAR-14900). Fiber optic probes mounted to fuel-spray bar upstream of flame. No focusing optics used, and probes aimed across flow of gases at spot on combustion chamber wall downstream from spray bar. Arrangement enables flameout detection system to respond quickly to potential loss of flame since it detects movement of flame front away from spray bar face. Overall response time of detection system under 10 milliseconds.

  6. Performance map of a cluster detection test using extended power

    PubMed Central

    2013-01-01

    Background Conventional power studies possess limited ability to assess the performance of cluster detection tests. In particular, they cannot evaluate the accuracy of the cluster location, which is essential in such assessments. Furthermore, they usually estimate power for one or a few particular alternative hypotheses and thus cannot assess performance over an entire region. Takahashi and Tango developed the concept of extended power that indicates both the rate of null hypothesis rejection and the accuracy of the cluster location. We propose a systematic assessment method, using here extended power, to produce a map showing the performance of cluster detection tests over an entire region. Methods To explore the behavior of a cluster detection test on identical cluster types at any possible location, we successively applied four different spatial and epidemiological parameters. These parameters determined four cluster collections, each covering the entire study region. We simulated 1,000 datasets for each cluster and analyzed them with Kulldorff’s spatial scan statistic. From the area under the extended power curve, we constructed a map for each parameter set showing the performance of the test across the entire region. Results Consistent with previous studies, the performance of the spatial scan statistic increased with the baseline incidence of disease, the size of the at-risk population and the strength of the cluster (i.e., the relative risk). Performance was heterogeneous, however, even for very similar clusters (i.e., similar with respect to the aforementioned factors), suggesting the influence of other factors. Conclusions The area under the extended power curve is a single measure of performance and, although needing further exploration, it is suitable to conduct a systematic spatial evaluation of performance. The performance map we propose enables epidemiologists to assess cluster detection tests across an entire study region. PMID:24156765

  7. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  8. Combined hostile fire and optics detection

    NASA Astrophysics Data System (ADS)

    Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars

    2013-10-01

    Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.

  9. Optical Sensing by Transforming Chromophoric Silver Clusters in DNA Nanoreactors

    PubMed Central

    Story, Sandra P.; Juarez, Selina; Votto, Samuel S.; Herbst, Austin G.; Degtyareva, Natalya N.; Sengupta, Bidisha

    2014-01-01

    Bifunctional DNA oligonucleotides serve as templates for chromophoric silver clusters and as recognition sites for target DNA strands, and communication between these two components is the basis of an oligonucleotide sensor. Few-atom silver clusters exhibit distinct electronic spectra spanning the visible and near-infrared region, and they are selectively synthesized by varying the base sequence of the DNA template. In these studies, a 16-base cluster template is adjoined with a 12-base sequence complementary to the target analyte, and hybridization induces structural changes in the composite sensor that direct the conversion between two spectrally and stoichiometrically distinct clusters. Without its complement, the sensor strand selectively harbors ~7 silver atoms that absorb at 400 nm and that fold the DNA host. Upon association of the target with its recognition site, the sensor strand opens to expose the cluster template that has the binding site for ~11 silver atoms, and absorption at 720 nm with relatively strong emission develops in lieu of the violet absorption. Variations in the length and composition of the recognition site and the cluster template indicate that these types of dual component sensors provide a general platform for near infrared-based detection of oligonucleotides in challenging biological environments. PMID:22098274

  10. Fiber optic sensors for seismic intruder detection

    NASA Astrophysics Data System (ADS)

    Wooler, John P. F.; Crickmore, Roger I.

    2005-05-01

    An array of fibre optic seismic intruder detection sensors has recently been tested by QinetiQ. The array consisted of a set of distributed cable sensors and accelerometers, each being interrogated by an interferometric effect. Both types of sensor were able to detect a person crossing over the array, and frequency analysis of the signals suggests ways in which automatic intruder detection could be achieved.

  11. THE ATACAMA COSMOLOGY TELESCOPE: RELATION BETWEEN GALAXY CLUSTER OPTICAL RICHNESS AND SUNYAEV-ZEL'DOVICH EFFECT

    SciTech Connect

    Sehgal, Neelima; Hlozek, Renee; Addison, Graeme; Dunkley, Joanna; Louis, Thibaut; Battaglia, Nick; Battistelli, Elia S.; Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Gralla, Megan; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hughes, John P.; Kosowsky, Arthur; Lin, Yen-Ting; and others

    2013-04-10

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 deg{sup 2} and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 deg{sup 2}. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. Such large offsets between gas peaks and BCGs for optically selected cluster samples seem unlikely given that we find the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters to have a much narrower distribution that peaks within 0.2 Mpc. It is possible that other effects are lowering the ACT and Planck signals by the same amount, with offsets between BCGs and SZ peaks explaining the remaining difference between ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain

  12. Detection of Sphingomyelin Clusters by Raman Spectroscopy.

    PubMed

    Shirota, Koichiro; Yagi, Kiyoshi; Inaba, Takehiko; Li, Pai-Chi; Murata, Michio; Sugita, Yuji; Kobayashi, Toshihide

    2016-09-01

    Sphingomyelin (SM) is a major sphingolipid in mammalian cells that forms specific lipid domains in combination with cholesterol (Chol). Using molecular-dynamics simulation and density functional theory calculation, we identified a characteristic Raman band of SM at ∼1643 cm(-1) as amide I of the SM cluster. Experimental results indicate that this band is sensitive to the hydration of SM and the presence of Chol. We showed that this amide I Raman band can be utilized to examine the membrane distribution of SM. Similarly to SM, ceramide phosphoethanolamine (CerPE) exhibited an amide I Raman band in almost the same region, although CerPE lacks three methyl groups in the phosphocholine moiety of SM. In contrast to SM, the amide I band of CerPE was not affected by Chol, suggesting the importance of the methyl groups of SM in the SM-Chol interaction. PMID:27602727

  13. Heatwaves detection, clustering and future projections

    NASA Astrophysics Data System (ADS)

    Arakelian, Ara; D'Andrea, Fabio; Yiou, Pascal

    2016-04-01

    Impacts of heatwaves on infrastructure,particularly nuclear power plants, can be significant and is brought to evolve in the future. As part of the project SEEN (scenario extreme nuclear energy), we evaluated, both in reanalysis and in a set of 10 Euro-Cordex simulations, the frequency and distribution of heatwaves. The results shows the ability of models, GCM associated with RCM, to represent historical events, in terms of frequency and patterns. The study was accompanied by the elaboration of a metric value to assess the ability of a model to correctly represent the classifications and determine the number of significant cluster for reanalysis and climate projections. The increase in frequency and duration of these events varies from one data set to another, but indicates preferential tendency for the various European regions.

  14. Optical detection dental disease using polarized light

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel

    2003-01-01

    A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.

  15. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  16. The Next Generation Virgo Cluster Survey. XX. RedGOLD Background Galaxy Cluster Detections

    NASA Astrophysics Data System (ADS)

    Licitra, Rossella; Mei, Simona; Raichoor, Anand; Erben, Thomas; Hildebrandt, Hendrik; Muñoz, Roberto P.; Van Waerbeke, Ludovic; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Huertas-Company, Marc; Lançon, Ariane; Parroni, Carolina; Puzia, Thomas H.

    2016-09-01

    We build a background cluster candidate catalog from the Next Generation Virgo Cluster Survey (NGVS) using our detection algorithm RedGOLD. The NGVS covers 104 deg2 of the Virgo cluster in the {u}* ,g,r,i,z-bandpasses to a depth of g ˜ 25.7 mag (5σ). Part of the survey was not covered or has shallow observations in the r band. We build two cluster catalogs: one using all bandpasses, for the fields with deep r-band observations (˜20 deg2), and the other using four bandpasses ({u}* ,g,i,z) for the entire NGVS area. Based on our previous Canada-France-Hawaii Telescope Legacy Survey W1 studies, we estimate that both of our catalogs are ˜100% (˜70%) complete and ˜80% pure, at z ≤ 0.6 (z ≲ 1), for galaxy clusters with masses of M ≳ 1014 M ⊙. We show that when using four bandpasses, though the photometric redshift accuracy is lower, RedGOLD detects massive galaxy clusters up to z ˜ 1 with completeness and purity similar to the five-band case. This is achieved when taking into account the bias in the richness estimation, which is ˜40% lower at 0.5 ≤ z < 0.6 and ˜20% higher at 0.6 < z < 0.8, with respect to the five-band case. RedGOLD recovers all the X-ray clusters in the area with mass M 500 > 1.4 × 1014 M ⊙ and 0.08 < z < 0.5. Because of our different cluster richness limits and the NGVS depth, our catalogs reach lower masses than the published redMaPPer cluster catalog over the area, and we recover ˜90%-100% of its detections.

  17. Hunting for Optical Companions to Binary Msps in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2009-07-01

    Here we present a proposal which exploits the re-newed potential of HST after the Service Mission 4 for probing the population of binary Millisecond Pulsars {MSPs} in Globular Clusters. In particular we intend to: {1} extend the search for optical counterparts in Terzan 5, by pushing the performance of the WFC3 IR channel to sample the entire MS extension down to M=0.1 Mo; {2} perform a deep multi-band search of MSP companions with the WFC3, in 3 clusters {namely NGC6440, M28 and M5}, where recent radio observations have found particularly interesting objects; {3} derive an accurate radial velocity {with STIS} of the puzzling optical companion COM6266B recently discovered by our group, to firmly assess its cluster membership.This program is the result of a large collaboration among the three major groups {lead by Freire, Ransom and Possenti} which are performing extensive MSP search in GCs in the radio bands, and our group which has a large experience in performing accurate stellar photometry in crowded environments. This collaboration has produced a number of outstanding discoveries. In fact, three of the 6 optical counterparts to binary MSP companions known to date in GCs have been discovered by our group. The observations here proposed would easily double/triple the existing sample of known MSP companions, allowing the first meaningful approach to the study of the formation, evolution and recycling process of pulsar in GCs. Moreover, since most of binary MSPs in GCs are thought to form via stellar interactions in the high density core regions, the determination of the nature of the companion and the incidence of this collisionally induced population has a significant impact on our knowledge of the cluster dynamics. Even more interesting, the study of the optical companions to NSs in GCs allows one to derive tighter constraints {than those obtainable for NS binaries in the Galactic field} on the system properties. This has, in turn, an intrisic importance for

  18. Optical spectroscopy and velocity dispersions of galaxy clusters from the SPT-SZ survey

    SciTech Connect

    Ruel, J.; Bayliss, M.; Bazin, G.; Bocquet, S.; Brodwin, M.; Foley, R. J.; Stalder, B.; Ashby, M. L. N.; Aird, K. A.; Armstrong, R.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; and others

    2014-09-01

    We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (≲ 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ∼30% log-normal scatter in dispersion at fixed mass, and a ∼10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.

  19. Community detection using Kernel Spectral Clustering with memory

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Suykens, Johan A. K.

    2013-02-01

    This work is related to the problem of community detection in dynamic scenarios, which for instance arises in the segmentation of moving objects, clustering of telephone traffic data, time-series micro-array data etc. A desirable feature of a clustering model which has to capture the evolution of communities over time is the temporal smoothness between clusters in successive time-steps. In this way the model is able to track the long-term trend and in the same time it smooths out short-term variation due to noise. We use the Kernel Spectral Clustering with Memory effect (MKSC) which allows to predict cluster memberships of new nodes via out-of-sample extension and has a proper model selection scheme. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness as a valid prior knowledge. The latter, in fact, allows the model to cluster the current data well and to be consistent with the recent history. Here we propose a generalization of the MKSC model with an arbitrary memory, not only one time-step in the past. The experiments conducted on toy problems confirm our expectations: the more memory we add to the model, the smoother over time are the clustering results. We also compare with the Evolutionary Spectral Clustering (ESC) algorithm which is a state-of-the art method, and we obtain comparable or better results.

  20. Optical detection of marine mammals

    NASA Astrophysics Data System (ADS)

    Podobna, Yuliya; Schoonmaker, Jon; Boucher, Cynthia; Oakley, Daniel

    2009-05-01

    Advanced Coherent Technologies, LLC (ACT) is using a multi-spectral, multi-channel imaging system to detect and monitor marine mammals. The system, designed with US Navy funding, is intended to monitor mammals on US Navy submarine training ranges prior to and during Navy active acoustic training activities. ACT has conducted system tests and data collection activities at the St. Lawrence Seaway (Quebec, Canada), at Ma'alaea Bay (Maui, Hawaii), and from the Coronado Bay Bridge (San Diego, California). A description of the imaging system and the results of the data collections are discussed and presented.

  1. Detection of clustered microcalcifications using spatial point process modeling

    NASA Astrophysics Data System (ADS)

    Jing, Hao; Yang, Yongyi; Nishikawa, Robert M.

    2011-01-01

    In this work we propose a spatial point process (SPP) approach to improve the detection accuracy of clustered microcalcifications (MCs) in mammogram images. The conventional approach to MC detection has been to first detect the individual MCs in an image independently, which are subsequently grouped into clusters. Our proposed approach aims to exploit the spatial distribution among the different MCs in a mammogram image (i.e. MCs tend to appear in small clusters) directly during the detection process. We model the MCs by a marked point process (MPP) in which spatially neighboring MCs interact with each other. The MCs are then simultaneously detected through maximum a posteriori (MAP) estimation of the model parameters associated with the MPP process. The proposed approach was evaluated with a dataset of 141 clinical mammograms from 66 cases, and the results show that it could yield improved detection performance compared to a recently proposed support vector machine (SVM) detector. In particular, the proposed approach achieved a sensitivity of about 90% with the FP rate at around 0.5 clusters per image, compared to about 83% for the SVM; the performance of the proposed approach was also demonstrated to be more stable over different compositions of the test images. This work was supported by NIH/NIBIB grant R01EB009905.

  2. Detection of clustered microcalcifications using spatial point process modeling

    PubMed Central

    Jing, Hao; Yang, Yongyi; Nishikawa, Robert M.

    2011-01-01

    In this work we propose a spatial point process (SPP) approach to improve the detection accuracy of clustered microcalcifications (MCs) in mammogram images. The conventional approach to MC detection has been to first detect the individual MCs in an image independently, which are subsequently grouped into clusters. Our proposed approach aims to exploit the spatial distribution among the different MCs in a mammogram image (i.e., MCs tend to appear in small clusters) directly during the detection process. We model the MCs by a marked point process (MPP) in which spatially neighboring MCs interact with each other. The MCs are then simultaneously detected through maximum a posteriori (MAP) estimation of the model parameters associated with the MPP process. The proposed approach was evaluated with a dataset of 141 clinical mammograms from 66 cases, and the results show that it could yield improved detection performance compared to a recently proposed SVM detector. In particular, the proposed approach achieved a sensitivity of about 90% with the FP rate at around 0.5 clusters per image, compared to about 83% for the SVM; the performance of the proposed approach was also demonstrated to be more stable over different composition of the test images. PMID:21119233

  3. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    NASA Technical Reports Server (NTRS)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W. Bertrand; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Wollack, Ed

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  4. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    SciTech Connect

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.

    2011-08-18

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  5. THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT

    SciTech Connect

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Das, Sudeep; Dunkley, Joanna; Ade, Peter A. R.; Aguirre, Paula; Barrientos, L. Felipe; Duenner, Rolando; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Appel, John W.; Essinger-Hileman, Thomas; Bond, J. Richard; Brown, Ben; Chervenak, Jay; Doriese, W. Bertrand

    2011-05-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected (SZ-selected) galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of nine optically confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 deg{sup 2} of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a four-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially flat wCDM cosmological model with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP seven-year constraints alone. Fixing the scaling relation between the cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP7 plus baryon acoustic oscillations plus Type Ia supernova which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  6. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection. PMID:26753713

  7. Clustered targets imaged by optical tomography guided by ultrasound

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Xu, Chen; Zhu, Quing

    2011-07-01

    Clustered small breast lesions may be present in the neighboring areas and are difficult to accurately resolve and quantify in diffuse optical tomography. In addition, larger cancers are often accompanied by clustered satellite lesions in the neighboring areas, which are also difficult to resolve and quantify. To improve the light quantification of clustered lesions, a new multi-zone reconstruction algorithm guided by co-registered ultrasound (US) was investigated using simulations, phantoms, and clinical examples. This method separated one larger region-of-interest (ROI) into several ROIs based on the location information provided by co-registered US. In general, the single-ROI method cannot resolve two smaller targets when their separations were less than 2.5 cm and the depth was greater than 2.0 cm. The multi-zone reconstruction method improved the resolving ability and reconstruction accuracy. As a result, two targets located at 2.5 cm depth with separation greater than 2.0 cm could be distinguished, and reconstruction improved by more than 20% as compared with that of the single-ROI method. When two targets, one larger and one smaller, were located closer to each other, the location of the reconstructed absorption mass was shifted toward the larger target and the quantification of the smaller target was limited.

  8. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  9. Cancer detection based on Raman spectra super-paramagnetic clustering

    NASA Astrophysics Data System (ADS)

    González-Solís, José Luis; Guizar-Ruiz, Juan Ignacio; Martínez-Espinosa, Juan Carlos; Martínez-Zerega, Brenda Esmeralda; Juárez-López, Héctor Alfonso; Vargas-Rodríguez, Héctor; Gallegos-Infante, Luis Armando; González-Silva, Ricardo Armando; Espinoza-Padilla, Pedro Basilio; Palomares-Anda, Pascual

    2016-08-01

    The clustering of Raman spectra of serum sample is analyzed using the super-paramagnetic clustering technique based in the Potts spin model. We investigated the clustering of biochemical networks by using Raman data that define edge lengths in the network, and where the interactions are functions of the Raman spectra's individual band intensities. For this study, we used two groups of 58 and 102 control Raman spectra and the intensities of 160, 150 and 42 Raman spectra of serum samples from breast and cervical cancer and leukemia patients, respectively. The spectra were collected from patients from different hospitals from Mexico. By using super-paramagnetic clustering technique, we identified the most natural and compact clusters allowing us to discriminate the control and cancer patients. A special interest was the leukemia case where its nearly hierarchical observed structure allowed the identification of the patients's leukemia type. The goal of this study is to apply a model of statistical physics, as the super-paramagnetic, to find these natural clusters that allow us to design a cancer detection method. To the best of our knowledge, this is the first report of preliminary results evaluating the usefulness of super-paramagnetic clustering in the discipline of spectroscopy where it is used for classification of spectra.

  10. Multistage optical smoke detection approach for smoke alarm systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Truc Kim Thi; Kim, Jong-Myon

    2013-05-01

    We propose a novel multistage smoke detection algorithm based on inherent optical characteristics such as diffusion, color, and texture of smoke. Moving regions in a video frame are detected by an approximate median background subtraction method using the diffusion behavior of smoke. These moving regions are segmented by a fuzzy C-means (FCM) clustering algorithm that uses the hue and saturation components of moving pixels in the hue-saturation-intensity color space. A decision rule is used to select candidate smoke regions from smoke-colored FCM clusters. An object tracking approach is employed in the candidate smoke region to detect candidate smoke objects in the video frame, and image texture parameters are extracted from these objects using a gray level co-occurrence matrix (GLCM). The thirteen GLCM features are selected to constitute the feature vector by applying principal components analysis, resulting in high-accuracy smoke detection. Finally, a back propagation neural network is utilized as a classifier to discriminate smoke and nonsmoke using the selected feature vector. Experimental results using a standard experimental dataset of video clips demonstrate that the proposed approach outperforms state-of-the-art smoke detection approaches in terms of accuracy, making real-life implementation feasible.

  11. The Atacama Cosmology Telescope: Relation Between Galaxy Cluster Optical Richness and Sunyaev-Zel'dovich Effect

    NASA Technical Reports Server (NTRS)

    Sehgal, Neelima; Addison, Graeme; Battaglia, Nick; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Kosowsky, Arthur; Lin, Yen-Ting; Louis, Thibaut; Marriage, Tobias A.; Marsden, Danica; Menateau, Felipe; Moodley, Kavilan; Wollack, Ed

    2012-01-01

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically-selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 square degrees and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 square degrees. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically-selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically-selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. In contrast, the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters shows a much narrower distribution that peaks within 0.2 Mpc. We conclude that while offsets between BCGs and SZ peaks may be an important component in explaining the discrepancy, it is likely that a combination of factors is responsible for the ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain the difference in measured signals, include a larger percentage of false detections in the

  12. Optical detection of radon decay in air

    PubMed Central

    Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Toivonen, Harri; Toivonen, Juha

    2016-01-01

    An optical radon detection method is presented. Radon decay is directly measured by observing the secondary radiolumines cence light that alpha particles excite in air, and the selectivity of coincident photon detection is further enhanced with online pulse-shape analysis. The sensitivity of a demonstration device was 6.5 cps/Bq/l and the minimum detectable concentration was 12 Bq/m3 with a 1 h integration time. The presented technique paves the way for optical approaches in rapid radon detec tion, and it can be applied beyond radon to the analysis of any alpha-active sample which can be placed in the measurement chamber. PMID:26867800

  13. Optical detection of radon decay in air.

    PubMed

    Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Toivonen, Harri; Toivonen, Juha

    2016-02-12

    An optical radon detection method is presented. Radon decay is directly measured by observing the secondary radiolumines cence light that alpha particles excite in air, and the selectivity of coincident photon detection is further enhanced with online pulse-shape analysis. The sensitivity of a demonstration device was 6.5 cps/Bq/l and the minimum detectable concentration was 12 Bq/m(3) with a 1 h integration time. The presented technique paves the way for optical approaches in rapid radon detec tion, and it can be applied beyond radon to the analysis of any alpha-active sample which can be placed in the measurement chamber.

  14. Parallelization of Edge Detection Algorithm using MPI on Beowulf Cluster

    NASA Astrophysics Data System (ADS)

    Haron, Nazleeni; Amir, Ruzaini; Aziz, Izzatdin A.; Jung, Low Tan; Shukri, Siti Rohkmah

    In this paper, we present the design of parallel Sobel edge detection algorithm using Foster's methodology. The parallel algorithm is implemented using MPI message passing library and master/slave algorithm. Every processor performs the same sequential algorithm but on different part of the image. Experimental results conducted on Beowulf cluster are presented to demonstrate the performance of the parallel algorithm.

  15. New detections of embedded clusters in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Camargo, D.; Bica, E.; Bonatto, C.

    2016-09-01

    Context. Until recently it was thought that high Galactic latitude clouds were a non-star-forming ensemble. However, in a previous study we reported the discovery of two embedded clusters (ECs) far away from the Galactic plane (~ 5 kpc). In our recent star cluster catalogue we provided additional high and intermediate latitude cluster candidates. Aims: This work aims to clarify whether our previous detection of star clusters far away from the disc represents just an episodic event or whether star cluster formation is currently a systematic phenomenon in the Galactic halo. We analyse the nature of four clusters found in our recent catalogue and report the discovery of three new ECs each with an unusually high latitude and distance from the Galactic disc midplane. Methods: The analysis is based on 2MASS and WISE colour-magnitude diagrams (CMDs), and stellar radial density profiles (RDPs). The CMDs are built by applying a field-star decontamination procedure, which uncovers the cluster's intrinsic CMD morphology. Results: All of these clusters are younger than 5 Myr. The high-latitude ECs C 932, C 934, and C 939 appear to be related to a cloud complex about 5 kpc below the Galactic disc, under the Local arm. The other clusters are above the disc, C 1074 and C 1100 with a vertical distance of ~3 kpc, C 1099 with ~ 2 kpc, and C 1101 with ~1.8 kpc. Conclusions: According to the derived parameters ECs located below and above the disc occur, which gives evidence of widespread star cluster formation throughout the Galactic halo. This study therefore represents a paradigm shift, by demonstrating that a sterile halo must now be understood as a host for ongoing star formation. The origin and fate of these ECs remain open. There are two possibilities for their origin, Galactic fountains or infall. The discovery of ECs far from the disc suggests that the Galactic halo is more actively forming stars than previously thought. Furthermore, since most ECs do not survive the infant

  16. Distributed fiber optic fuel leak detection system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySensTM) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySenseTM system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  17. Distributed fiber optic fuel leak detection system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sonjian

    2013-05-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySenseTM) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySenseTM system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  18. Optical sensor for rapid microbial detection

    NASA Astrophysics Data System (ADS)

    Al-Adhami, Mustafa; Tilahun, Dagmawi; Rao, Govind; Kostov, Yordan

    2016-05-01

    In biotechnology, the ability to instantly detect contaminants is key to running a reliable bioprocess. Bioprocesses are prone to be contaminated by cells that are abundant in our environment; detection and quantification of these cells would aid in the preservation of the bioprocess product. This paper discusses the design and development of a portable kinetics fluorometer which acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye, and plots it. Resazurin is used as an indicator dye since the viable contaminant cells reduce Resazurin toResorufin, the latter being strongly fluorescent. A photodiode detects fluorescence change by generating current proportional to the intensity of the light that reached it, and a trans-impedance differential op-amp ensures amplification of the photodiodes' signal. A microfluidic chip was designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the Resazurin reduction rate. E. coli in LB media, along with Resazurin were injected into the microfluidic chip. The optical sensor detected the presence of E. coli in the media based on the fluorescence change that occurred in the indicator dye in concentrations as low as 10 CFU/ml. A method was devised to detect and determine an approximate amount of contamination with this device. This paper discusses application of this method to detect and estimate sample contamination. This device provides fast, accurate, and inexpensive means to optically detect the presence of viable cells.

  19. Target discrimination strategies in optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Henriksson, Markus; Jonsson, Per; Pettersson, Magnus

    2013-10-01

    Detection and localisation of optical assemblies used for weapon guidance or sniper rifle scopes has attracted interest for security and military applications. Typically a laser system is used to interrogate a scene of interest and the retro-reflected radiation is detected. Different system approaches for area coverage can be realised ranging from flood illumination to step-and-stare or continuous scanning schemes. Independently of the chosen approach target discrimination is a crucial issue, particularly if a complex scene such as in an urban environment and autonomous operation is considered. In this work target discrimination strategies in optics detection are discussed. Typical parameters affecting the reflected laser radiation from the target are the wavelength, polarisation properties, temporal effects and the range resolution. Knowledge about the target characteristics is important to predict the target discrimination capability. Two different systems were used to investigate polarisation properties and range resolution information from targets including e.g. road signs, optical reflexes, rifle sights and optical references. The experimental results and implications on target discrimination will be discussed. If autonomous operation is required target discrimination becomes critical in order to reduce the number of false alarms.

  20. Hierarchical clustering method for improved prostate cancer imaging in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Kavuri, Venkaiah C.; Liu, Hanli

    2013-03-01

    We investigate the feasibility of trans-rectal near infrared (NIR) based diffuse optical tomography (DOT) for early detection of prostate cancer using a transrectal ultrasound (TRUS) compatible imaging probe. For this purpose, we designed a TRUS-compatible, NIR-based image system (780nm), in which the photo diodes were placed on the trans-rectal probe. DC signals were recorded and used for estimating the absorption coefficient. We validated the system using laboratory phantoms. For further improvement, we also developed a hierarchical clustering method (HCM) to improve the accuracy of image reconstruction with limited prior information. We demonstrated the method using computer simulations laboratory phantom experiments.

  1. Optical detection of land mines at FOI

    NASA Astrophysics Data System (ADS)

    Sjoekvist, Stefan; Uppsaell, Magnus S.; Nyberg, Sten; Linderhed, Anna; Lundberg, Magnus

    2001-11-01

    This paper presents activities concerning optical detection of landmines at FOI, former FOA. The work is focused on the understanding of the origin of detectable optical signatures for choosing the most favorable conditions for detection. Measurements in test beds and calculations using a thermodynamic FEM model with conditions similar to those of the measurements are compared and interpreted in order to explain the behavior of the contrast. Examples will be given on modeling of buried landmines in soil. The heat flow as well as moisture flow has been taken into consideration. The diurnal heat exchange between the soil surface and the atmosphere generates the contrasts in the infrared images. Calculated temperature differences between the background and the surface above the buried object are compared to measured data from experiments. Results are presented and show how the temperature differences can vary over a 24-hour period. The variation depends on the weather at the time as well as the weather before the measurements started. Results from processing and analysis of temporal variations of optical signals from buried landmines and backgrounds are presented as well as their relation to weather parameters. A detection approach including the Likelihood Ratio Test (LRT) is presented. Some of the work has been carried out in an international cooperation project, Airborne Minefield Area Reduction (ARC). The objective is to develop, demonstrate and promote a new system for performing the UN Level 2 surveys allowing a quick reduction of suspected mine polluted areas and post cleaning quality control.

  2. Competitive SWIFT cluster templates enhance detection of aging changes

    PubMed Central

    Rebhahn, Jonathan A.; Roumanes, David R.; Qi, Yilin; Khan, Atif; Thakar, Juilee; Rosenberg, Alex; Lee, F. Eun‐Hyung; Quataert, Sally A.; Sharma, Gaurav

    2015-01-01

    Abstract Clustering‐based algorithms for automated analysis of flow cytometry datasets have achieved more efficient and objective analysis than manual processing. Clustering organizes flow cytometry data into subpopulations with substantially homogenous characteristics but does not directly address the important problem of identifying the salient differences in subpopulations between subjects and groups. Here, we address this problem by augmenting SWIFT—a mixture model based clustering algorithm reported previously. First, we show that SWIFT clustering using a “template” mixture model, in which all subpopulations are represented, identifies small differences in cell numbers per subpopulation between samples. Second, we demonstrate that resolution of inter‐sample differences is increased by “competition” wherein a joint model is formed by combining the mixture model templates obtained from different groups. In the joint model, clusters from individual groups compete for the assignment of cells, sharpening differences between samples, particularly differences representing subpopulation shifts that are masked under clustering with a single template model. The benefit of competition was demonstrated first with a semisynthetic dataset obtained by deliberately shifting a known subpopulation within an actual flow cytometry sample. Single templates correctly identified changes in the number of cells in the subpopulation, but only the competition method detected small changes in median fluorescence. In further validation studies, competition identified a larger number of significantly altered subpopulations between young and elderly subjects. This enrichment was specific, because competition between templates from consensus male and female samples did not improve the detection of age‐related differences. Several changes between the young and elderly identified by SWIFT template competition were consistent with known alterations in the elderly, and additional

  3. Clustering and community detection in directed networks: A survey

    NASA Astrophysics Data System (ADS)

    Malliaros, Fragkiskos D.; Vazirgiannis, Michalis

    2013-12-01

    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges nonsymmetric as the source node transmits some property to the target one but not vice versa. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of relevant application domains. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method sought and the primary tool for community detection and evaluation. The goal of this paper is to offer an in-depth comparative review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.

  4. Nanoscale Cluster Detection in Massive Atom Probe Tomography Data

    SciTech Connect

    Seal, Sudip K; Yoginath, Srikanth B; Miller, Michael K

    2014-01-01

    Recent technological advances in atom probe tomography (APT) have led to unprecedented data acquisition capabilities that routinely generate data sets containing hundreds of millions of atoms. Detecting nanoscale clusters of different atom types present in these enormous amounts of data and analyzing their spatial correlations with one another are fundamental to understanding the structural properties of the material from which the data is derived. Extant algorithms for nanoscale cluster detection do not scale to large data sets. Here, a scalable, CUDA-based implementation of an autocorrelation algorithm is presented. It isolates spatial correlations amongst atomic clusters present in massive APT data sets in linear time using a linear amount of storage. Correctness of the algorithm is demonstrated using large synthetically generated data with known spatial distributions. Benefits and limitations of using GPU-acceleration for autocorrelation-based APT data analyses are presented with supporting performance results on data sets with up to billions of atoms. To our knowledge, this is the first nanoscale cluster detection algorithm that scales to massive APT data sets and executes on commodity hardware.

  5. System for Automatic Detection of Clustered Microcalcifications in Digital Mammograms

    NASA Astrophysics Data System (ADS)

    Bazzani, A.; Bollini, D.; Brancaccio, R.; Campanini, R.; Lanconelli, N.; Romani, D.; Bevilacqua, A.

    In this paper, we investigate the performance of a Computer Aided Diagnosis (CAD) system for the detection of clustered microcalcifications in mammograms. Our detection algorithm consists of the combination of two different methods. The first, based on difference-image techniques and gaussianity statistical tests, finds out the most obvious signals. The second, is able to discover more subtle microcalcifications by exploiting a multiresolution analysis by means of the wavelet transform. We can separately tune the two methods, so that each one of them is able to detect signals with similar features. By combining signals coming out from the two parts through a logical OR operation, we can discover microcalcifications with different characteristics. Our algorithm yields a sensitivity of 91.4% with 0.4 false positive cluster per image on the 40 images of the Nijmegen database.

  6. Optically-Selected Cluster Catalogs As a Precision Cosmology Tool

    SciTech Connect

    Rozo, Eduardo; Wechsler, Risa H.; Koester, Benjamin P.; Evrard, August E.; McKay, Timothy A.; /Michigan U.

    2007-03-26

    We introduce a framework for describing the halo selection function of optical cluster finders. We treat the problem as being separable into a term that describes the intrinsic galaxy content of a halo (the Halo Occupation Distribution, or HOD) and a term that captures the effects of projection and selection by the particular cluster finding algorithm. Using mock galaxy catalogs tuned to reproduce the luminosity dependent correlation function and the empirical color-density relation measured in the SDSS, we characterize the maxBCG algorithm applied by Koester et al. to the SDSS galaxy catalog. We define and calibrate measures of completeness and purity for this algorithm, and demonstrate successful recovery of the underlying cosmology and HOD when applied to the mock catalogs. We identify principal components--combinations of cosmology and HOD parameters--that are recovered by survey counts as a function of richness, and demonstrate that percent-level accuracies are possible in the first two components, if the selection function can be understood to {approx} 15% accuracy.

  7. SOAR Adaptive Optics Observations of the Globular Cluster NGC 6496

    NASA Astrophysics Data System (ADS)

    Fraga, Luciano; Kunder, Andrea; Tokovinin, Andrei

    2013-06-01

    We present high-quality BVRI photometric data in the field of globular cluster NGC 6496 obtained with the SOAR Telescope Adaptive Module (SAM). Our observations were collected as part of the ongoing SAM commissioning. The distance modulus and cluster color excess as found from the red clump are (m - M) V = 15.71 ± 0.02 mag and E(V - I) = 0.28 ± 0.02 mag. An age of 10.5 ± 0.5 Gyr is determined from the difference in magnitude between the red clump and the subgiant branch. These parameters are in excellent agreement with the values derived from isochrone fitting. From the color-magnitude diagram we find a metallicity of [Fe/H] = -0.65 dex and hence support a disk classification for NGC 6496. The complete BVRI data set for NGC 6469 is made available in the electronic edition of the Journal. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  8. Optical imaging module for astigmatic detection system.

    PubMed

    Wang, Wei-Min; Cheng, Chung-Hsiang; Molnar, Gabor; Hwang, Ing-Shouh; Huang, Kuang-Yuh; Danzebrink, Hans-Ulrich; Hwu, En-Te

    2016-05-01

    In this paper, an optical imaging module design for an astigmatic detection system (ADS) is presented. The module is based on a commercial optical pickup unit (OPU) and it contains a coaxial illuminant for illuminating a specimen. Furthermore, the imaging module facilitates viewing the specimen and the detection laser spot of the ADS with a lateral resolution of approximately 1 μm without requiring the removal of an element of the OPU. Two polarizers and one infrared filter are used to eliminate stray laser light in the OPU and stray light produced by the illuminant. Imaging modules designed for digital versatile disks (DVDs) and Blu-ray DVDs were demonstrated. Furthermore, the module can be used for imaging a small cantilever with approximate dimensions of 2 μm (width) × 5 μm (length), and therefore, it has the potential to be used in high-speed atomic force microscopy. PMID:27250434

  9. Optical Detection of Life on Exoplanets

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2009-01-01

    We describe what is known about the atmospheric properties (Teff, lob g, [FelH]) and fundamental properties (mass, age, and metal content) of nearby stars and how they influence the habitable zones and habitable eras of these stars. We then take an observer's point of view to assess the ability of optical telescopes to detect photosynthetic or methanogenic life on planets orbiting these stars.

  10. Monolithic diamond optics for single photon detection

    PubMed Central

    Siyushev, P.; Kaiser, F.; Jacques, V.; Gerhardt, I.; Bischof, S.; Fedder, H.; Dodson, J.; Markham, M.; Twitchen, D.; Jelezko, F.; Wrachtrup, J.

    2010-01-01

    In this work, we experimentally demonstrate a novel and simple approach that uses off-the-shelf optical elements to enhance the collection efficiency from a single emitter. The key component is a solid immersion lens made of diamond, the host material for single color centers. We improve the excitation and detection of single emitters by one order of magnitude, as predicted by theory. PMID:21221249

  11. Optic disc detection using ant colony optimization

    NASA Astrophysics Data System (ADS)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  12. Fiber optic hydrophones for acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Buis, E. J.; Doppenberg, E. J. J.; Lahmann, R.; Toet, P. M.; de Vreugd, J.

    2016-04-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order of magnitude larger than what has presently been realized. With a large detection volume and a large number of hydrophones, there is a need for technology that is cheap and easy to deploy. Fiber optics provide a natural way for distributed sensing. In addition, a sensor has been designed and manufactured that can be produced cost-effectively on an industrial scale. Sensitivity measurements show that the sensor is able to reach the required sea-state zero level. For a proper interpretation of the expected bipolar signals, filtering techniques should be applied to remove the effects of the unwanted resonance peaks.

  13. Optical imaging of individual biomolecules in densely packed clusters.

    PubMed

    Dai, Mingjie; Jungmann, Ralf; Yin, Peng

    2016-09-01

    Recent advances in fluorescence super-resolution microscopy have allowed subcellular features and synthetic nanostructures down to 10-20 nm in size to be imaged. However, the direct optical observation of individual molecular targets (∼5 nm) in a densely packed biomolecular cluster remains a challenge. Here, we show that such discrete molecular imaging is possible using DNA-PAINT (points accumulation for imaging in nanoscale topography)-a super-resolution fluorescence microscopy technique that exploits programmable transient oligonucleotide hybridization-on synthetic DNA nanostructures. We examined the effects of a high photon count, high blinking statistics and an appropriate blinking duty cycle on imaging quality, and developed a software-based drift correction method that achieves <1 nm residual drift (root mean squared) over hours. This allowed us to image a densely packed triangular lattice pattern with ∼5 nm point-to-point distance and to analyse the DNA origami structural offset with ångström-level precision (2 Å) from single-molecule studies. By combining the approach with multiplexed exchange-PAINT imaging, we further demonstrated an optical nanodisplay with 5 × 5 nm pixel size and three distinct colours with <1 nm cross-channel registration accuracy. PMID:27376244

  14. Optical imaging of individual biomolecules in densely packed clusters

    NASA Astrophysics Data System (ADS)

    Dai, Mingjie; Jungmann, Ralf; Yin, Peng

    2016-09-01

    Recent advances in fluorescence super-resolution microscopy have allowed subcellular features and synthetic nanostructures down to 10-20 nm in size to be imaged. However, the direct optical observation of individual molecular targets (∼5 nm) in a densely packed biomolecular cluster remains a challenge. Here, we show that such discrete molecular imaging is possible using DNA-PAINT (points accumulation for imaging in nanoscale topography)—a super-resolution fluorescence microscopy technique that exploits programmable transient oligonucleotide hybridization—on synthetic DNA nanostructures. We examined the effects of a high photon count, high blinking statistics and an appropriate blinking duty cycle on imaging quality, and developed a software-based drift correction method that achieves <1 nm residual drift (root mean squared) over hours. This allowed us to image a densely packed triangular lattice pattern with ∼5 nm point-to-point distance and to analyse the DNA origami structural offset with ångström-level precision (2 Å) from single-molecule studies. By combining the approach with multiplexed exchange-PAINT imaging, we further demonstrated an optical nanodisplay with 5 × 5 nm pixel size and three distinct colours with <1 nm cross-channel registration accuracy.

  15. The Detection and Statistics of Giant Arcs behind CLASH Clusters

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Zheng, Wei; Bradley, Larry; Vega, Jesus; Koekemoer, Anton

    2016-02-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift zs = 1.9 with 33% of the detected arcs having zs > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c-M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.

  16. Automatic detection of clustered microcalcifications in digitized mammogram films

    NASA Astrophysics Data System (ADS)

    Yu, Songyang; Guan, Ling; Brown, Stephen

    1999-01-01

    The existence of clustered microcalcifications is one of the important early signs of breast cancer. This paper presents an image processing procedure for the automatic detection of clustered microcalcifications in digitized mammograms. In particular, a sensitivity range of around one false positive per image is targeted. The proposed method consists of two main steps. First, possible microcalcification pixels in the mammograms are segmented out using wavelet features or both wavelet features and gray level statistical features, and labeled into potential individual microcalcification objects by their spatial connectivity. Second, individual microcalcifications are detected by using the structure features extracted from the potential microcalcification objects. The classifiers used in these two steps are feedforward neutral networks. The method is applied to a database of 40 mammograms (Nijmegen database) containing 105 clusters of microcalcifications. A free response operating characteristics curve is used to evaluate the performance. Results show that the proposed procedure gives quite satisfactory detection performance. In particular, a 93% mean true positive detection rate is achieved at the price of one false positive per image when both wavelet features and gray level statistical features are used in the first step.

  17. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    SciTech Connect

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G.; Rodríguez-Puebla, Aldo E-mail: riccardo@astro.cornell.edu E-mail: jonesmg@astro.cornell.edu

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  18. A new detection algorithm for microcalcification clusters in mammographic screening

    NASA Astrophysics Data System (ADS)

    Xie, Weiying; Ma, Yide; Li, Yunsong

    2015-05-01

    A novel approach for microcalcification clusters detection is proposed. At the first time, we make a short analysis of mammographic images with microcalcification lesions to confirm these lesions have much greater gray values than normal regions. After summarizing the specific feature of microcalcification clusters in mammographic screening, we make more focus on preprocessing step including eliminating the background, image enhancement and eliminating the pectoral muscle. In detail, Chan-Vese Model is used for eliminating background. Then, we do the application of combining morphology method and edge detection method. After the AND operation and Sobel filter, we use Hough Transform, it can be seen that the result have outperformed for eliminating the pectoral muscle which is approximately the gray of microcalcification. Additionally, the enhancement step is achieved by morphology. We make effort on mammographic image preprocessing to achieve lower computational complexity. As well known, it is difficult to robustly achieve mammograms analysis due to low contrast between normal and lesion tissues, there are also much noise in such images. After a serious preprocessing algorithm, a method based on blob detection is performed to microcalcification clusters according their specific features. The proposed algorithm has employed Laplace operator to improve Difference of Gaussians (DoG) function in terms of low contrast images. A preliminary evaluation of the proposed method performs on a known public database namely MIAS, rather than synthetic images. The comparison experiments and Cohen's kappa coefficients all demonstrate that our proposed approach can potentially obtain better microcalcification clusters detection results in terms of accuracy, sensitivity and specificity.

  19. A 2163: Merger events in the hottest Abell galaxy cluster. I. Dynamical analysis from optical data

    NASA Astrophysics Data System (ADS)

    Maurogordato, S.; Cappi, A.; Ferrari, C.; Benoist, C.; Mars, G.; Soucail, G.; Arnaud, M.; Pratt, G. W.; Bourdin, H.; Sauvageot, J.-L.

    2008-04-01

    Context: A 2163 is among the richest and most distant Abell clusters, presenting outstanding properties in different wavelength domains. X-ray observations have revealed a distorted gas morphology and strong features have been detected in the temperature map, suggesting that merging processes are important in this cluster. However, the merging scenario is not yet well-defined. Aims: We have undertaken a complementary optical analysis, aiming to understand the dynamics of the system, to constrain the merging scenario and to test its effect on the properties of galaxies. Methods: We present a detailed optical analysis of A 2163 based on new multicolor wide-field imaging and medium-to-high resolution spectroscopy of several hundred galaxies. Results: The projected galaxy density distribution shows strong subclustering with two dominant structures: a main central component (A), and a northern component (B), visible both in optical and in X-ray, with two other substructures detected at high significance in the optical. At magnitudes fainter than R=19, the galaxy distribution shows a clear elongation approximately with the east-west axis extending over 4~h70-1 Mpc, while a nearly perpendicular bridge of galaxies along the north-south axis appears to connect (B) to (A). The (A) component shows a bimodal morphology, and the positions of its two density peaks depend on galaxy luminosity: at magnitudes fainter than R = 19, the axis joining the peaks shows a counterclockwise rotation (from NE/SW to E-W) centered on the position of the X-ray maximum. Our final spectroscopic catalog of 512 objects includes 476 new galaxy redshifts. We have identified 361 galaxies as cluster members; among them, 326 have high precision redshift measurements, which allow us to perform a detailed dynamical analysis of unprecedented accuracy. The cluster mean redshift and velocity dispersion are respectively z= 0.2005 ± 0.0003 and 1434 ± 60 km s-1. We spectroscopically confirm that the northern

  20. Circumnuclear Star Clusters in the Galaxy Merger NGC 6240, Observed with Keck Adaptive Optics and HST

    SciTech Connect

    Pollack, L K; Max, C E; Schneider, G

    2007-02-12

    We discuss images of the central {approx} 10 kpc (in projection) of the galaxy merger NGC 6240 at H and K{prime} bands, taken with the NIRC2 narrow camera on Keck II using natural guide star adaptive optics. We detect 28 star clusters in the NIRC2 images, of which only 7 can be seen in the similar-spatial-resolution, archival WFPC2 Planetary Camera data at either B or I bands. Combining the NIRC2 narrow camera pointings with wider NICMOS NIC2 images taken with the F110W, F160W, and F222M filters, we identify a total of 32 clusters that are detected in at least one of these 5 infrared ({lambda}{sub c} > 1 {micro}m) bandpasses. By comparing to instantaneous burst, stellar population synthesis models (Bruzual & Charlot 2003), we estimate that most of the clusters are consistent with being {approx} 15 Myr old and have photometric masses ranging from 7 x 10{sup 5} M{sub {circle_dot}} to 4 x 10{sup 7}M{sub {circle_dot}}. The total contribution to the star formation rate (SFR) from these clusters is approximately 10M{sub {circle_dot}} yr{sup -1}, or {approx} 10% of the total SFR in the nuclear region. We use these newly discovered clusters to estimate the extinction toward NGC 6240's double nuclei, and find values of A{sub v} as high as 14 magnitudes along some sightlines, with an average extinction of A{sub v} {approx} 7 mag toward sightlines within {approx} 3-inches of the double nuclei.

  1. Detecting multiatomic composite states in optical lattices

    NASA Astrophysics Data System (ADS)

    Kuklov, Anatoly; Moritz, Henning

    2007-01-01

    We propose and discuss methods for detecting quasimolecular complexes which are expected to form in strongly interacting optical lattice systems. Particular emphasis is placed on the detection of composite fermions forming in Bose-Fermi mixtures. We argue that, as an indirect indication of the composite fermions and a generic consequence of strong interactions, periodic correlations must appear in the atom shot noise of bosonic absorption images, similar to the bosonic Mott insulator [S. Fölling , Nature (London) 434, 481 (2005)]. The composites can also be detected directly and their quasimomentum distribution measured. This method—an extension of the technique of noise correlation interferometry [E. Altman , Phys. Rev. A 79, 013603 (2004)]—relies on measuring higher order correlations between the bosonic and fermionic shot noise in the absorption images. However, it fails above a certain number of the constituents due to a dramatic increase of uncorrelated noise.

  2. Renewable Surface Biosensors With Optical Detection

    SciTech Connect

    Bruckner-Lea, Cynthia J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-12-01

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  3. Renewable Surface Biosensors with Optical Detection

    SciTech Connect

    Bruckner-Lea, Cindy J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-04-30

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  4. Isofunctional Protein Subfamily Detection Using Data Integration and Spectral Clustering.

    PubMed

    Boari de Lima, Elisa; Meira, Wagner; Melo-Minardi, Raquel Cardoso de

    2016-06-01

    As increasingly more genomes are sequenced, the vast majority of proteins may only be annotated computationally, given experimental investigation is extremely costly. This highlights the need for computational methods to determine protein functions quickly and reliably. We believe dividing a protein family into subtypes which share specific functions uncommon to the whole family reduces the function annotation problem's complexity. Hence, this work's purpose is to detect isofunctional subfamilies inside a family of unknown function, while identifying differentiating residues. Similarity between protein pairs according to various properties is interpreted as functional similarity evidence. Data are integrated using genetic programming and provided to a spectral clustering algorithm, which creates clusters of similar proteins. The proposed framework was applied to well-known protein families and to a family of unknown function, then compared to ASMC. Results showed our fully automated technique obtained better clusters than ASMC for two families, besides equivalent results for other two, including one whose clusters were manually defined. Clusters produced by our framework showed great correspondence with the known subfamilies, besides being more contrasting than those produced by ASMC. Additionally, for the families whose specificity determining positions are known, such residues were among those our technique considered most important to differentiate a given group. When run with the crotonase and enolase SFLD superfamilies, the results showed great agreement with this gold-standard. Best results consistently involved multiple data types, thus confirming our hypothesis that similarities according to different knowledge domains may be used as functional similarity evidence. Our main contributions are the proposed strategy for selecting and integrating data types, along with the ability to work with noisy and incomplete data; domain knowledge usage for detecting

  5. Isofunctional Protein Subfamily Detection Using Data Integration and Spectral Clustering

    PubMed Central

    Boari de Lima, Elisa; Meira, Wagner; de Melo-Minardi, Raquel Cardoso

    2016-01-01

    As increasingly more genomes are sequenced, the vast majority of proteins may only be annotated computationally, given experimental investigation is extremely costly. This highlights the need for computational methods to determine protein functions quickly and reliably. We believe dividing a protein family into subtypes which share specific functions uncommon to the whole family reduces the function annotation problem’s complexity. Hence, this work’s purpose is to detect isofunctional subfamilies inside a family of unknown function, while identifying differentiating residues. Similarity between protein pairs according to various properties is interpreted as functional similarity evidence. Data are integrated using genetic programming and provided to a spectral clustering algorithm, which creates clusters of similar proteins. The proposed framework was applied to well-known protein families and to a family of unknown function, then compared to ASMC. Results showed our fully automated technique obtained better clusters than ASMC for two families, besides equivalent results for other two, including one whose clusters were manually defined. Clusters produced by our framework showed great correspondence with the known subfamilies, besides being more contrasting than those produced by ASMC. Additionally, for the families whose specificity determining positions are known, such residues were among those our technique considered most important to differentiate a given group. When run with the crotonase and enolase SFLD superfamilies, the results showed great agreement with this gold-standard. Best results consistently involved multiple data types, thus confirming our hypothesis that similarities according to different knowledge domains may be used as functional similarity evidence. Our main contributions are the proposed strategy for selecting and integrating data types, along with the ability to work with noisy and incomplete data; domain knowledge usage for detecting

  6. Fiber optic thermal detection of composite delaminations

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Chou; Winfree, William P.

    2011-05-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  7. Fiber Optic Thermal Detection of Composite Delaminations

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  8. Optical and infrared detection using microcantilevers

    SciTech Connect

    Oden, P.I.; Datskos, P.G.; Warmack, R.J. |; Wachter, E.A.; Thundat, T.

    1996-05-01

    The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple means for developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. Bending is proportional to the amount of heat absorbed and can be detected using optical or electrical methods such as resistance changes in piezoresistive cantilevers. The microcantilever sensors exhibit two distinct thermal responses: a fast one ({theta}{sub 1}{sup thermal} < ms) and a slower one ({tau}{sub 2}{sup thermal} {approximately} 10 ms). A noise equivalent temperature difference, NEDT = 90 mK was measured. When uncoated microcantilevers were irradiated by a low-power diode laser ({lambda} = 786 nm) the noise equivalent power, NEP, was found to be 3.5nW/{radical}Hz which corresponds to a specific detectivity, D*, of 3.6 {times} 10{sup 7} cm {center_dot} {radical}Hz/W at a modulation frequency of 20 Hz.

  9. Object detection by optical correlator and intelligence recognition surveillance systems

    NASA Astrophysics Data System (ADS)

    Sheng, Yunlong

    2013-09-01

    We report a recent work on robust object detection in high-resolution aerial imagery in urban environment for Intelligence, Surveillance and Recognition (ISR) missions. Our approaches used the simple linear iterative clustering (SLIC) algorithm, which combines regional and edge information to form the superpixels. The irregularity in size and shape of the superpixels measured with the Hausdorff distance served to determine the salient regions in the very large aerial images. Then, the car detection was performed with both the component-based approach and the featurebased approaches. We merged the superpixels with the statistical region merging (SRM) algorithm. The regions were described by the radiometric, geometrical moments and shape features, and classified using the Support Vector Machine (SVM). The cast shadow were detected and removed by a radiometry based tricolor attenuation model (TAM). Detection of object parts is less sensitive to occlusion, rotation, and changes in scale, view angle and illumination than detection of the object as whole. The object parts were combined to the object according to their unique spatial relations. On the other hand, we used the invariant scale invariant feature transform (SIFT) features to describe superpixels and classed them by the SVM as belong or not to the object. All along our recent work we still trace the brilliant ideas in early days by H. John Caulfield and other pioneers of optical pattern recognition, for improving the discrimination of the matched spatial filter with linear combinations of cross-correlations, which have been inherited transformed and reinvented to achieve tremendous progress.

  10. A comparison of spatial clustering and cluster detection techniques for childhood leukemia incidence in Ohio, 1996 – 2003

    PubMed Central

    Wheeler, David C

    2007-01-01

    Background Spatial cluster detection is an important tool in cancer surveillance to identify areas of elevated risk and to generate hypotheses about cancer etiology. There are many cluster detection methods used in spatial epidemiology to investigate suspicious groupings of cancer occurrences in regional count data and case-control data, where controls are sampled from the at-risk population. Numerous studies in the literature have focused on childhood leukemia because of its relatively large incidence among children compared with other malignant diseases and substantial public concern over elevated leukemia incidence. The main focus of this paper is an analysis of the spatial distribution of leukemia incidence among children from 0 to 14 years of age in Ohio from 1996–2003 using individual case data from the Ohio Cancer Incidence Surveillance System (OCISS). Specifically, we explore whether there is statistically significant global clustering and if there are statistically significant local clusters of individual leukemia cases in Ohio using numerous published methods of spatial cluster detection, including spatial point process summary methods, a nearest neighbor method, and a local rate scanning method. We use the K function, Cuzick and Edward's method, and the kernel intensity function to test for significant global clustering and the kernel intensity function and Kulldorff's spatial scan statistic in SaTScan to test for significant local clusters. Results We found some evidence, although inconclusive, of significant local clusters in childhood leukemia in Ohio, but no significant overall clustering. The findings from the local cluster detection analyses are not consistent for the different cluster detection techniques, where the spatial scan method in SaTScan does not find statistically significant local clusters, while the kernel intensity function method suggests statistically significant clusters in areas of central, southern, and eastern Ohio. The

  11. Optical Detection Of Fractures In Ceramic Diaphragms

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.

    1995-01-01

    Simple optical technique enables quick, nondestructive inspection of surfaces of ceramic diaphragms and disks for fractures and discontinuities. Involves reflecting beam of light from laser at glancing angle of about 20 degrees to 25 degrees off surface inspected and examining pattern of reflected light on suitable viewing surface as beam swept across surface. When fracture present, reflection pattern separates into two or more speckled spots. Technique applied in inspection of ceramic diaphragms bearing electronic circuits. Also useful in detection of fatigue cracks on aircraft.

  12. Optical "anti-transient" detected by MASTER

    NASA Astrophysics Data System (ADS)

    Denisenko, D.; Gorbovskoy, E.; Lipunov, V.; Balanutsa, P.; Yecheistov, V.; Tiurina, N.; Kornilov, V.; Belinski, A.; Shatskiy, N.; Chazov, V.; Kuznetsov, A.; Zimnukhov, D.; Krushinsky, V.; Zalozhnih, I.; Popov, A.; Bourdanov, A.; Punanova, A.; Ivanov, K.; Yazev, S.; Budnev, N.; Konstantinov, E.; Chuvalaev, O.; Poleshchuk, V.; Gress, O.; Parkhomenko, A.; Tlatov, A.; Dormidontov, D.; Senik, V.; Yurkov, V.; Sergienko, Y.; Varda, D.; Sinyakov, E.; Shurpakov, S.; Shumkov, V.; Podvorotny, P.; Levato, H.; Saffe, C.; Mallamaci, C.; Lopez, C.; Podest, F.

    2013-02-01

    We have started the search for the disappearing stars (optical "anti-transients", OATs) in the MASTER database. The first result is the detection of a deep (~3.5 magnitudes) fading of the bright star TYC 2505-672-1 whose variability was previously unknown. This star has the coordinates 09 53 10.00 +33 53 52.7 and magnitudes V=10.71, B=12.51 in Tycho2 catalogue and J=7.61, H=6.78, K=6.57 in 2MASS.

  13. Long-wave infrared polarimetric cluster-based vehicle detection.

    PubMed

    Dickson, Christopher N; Wallace, Andrew M; Kitchin, Matthew; Connor, Barry

    2015-12-01

    The sensory perception of other vehicles in cluttered environments is an essential component of situational awareness for a mobile vehicle. However, vehicle detection is normally applied to visible imagery sequences, while in this paper we investigate how polarized, infrared imagery can add additional discriminatory power. Using knowledge about the properties of the objects of interest and the scene environment, we have developed a polarimetric cluster-based descriptor to detect vehicles using long-wave infrared radiation in the range of 8-12 μm. Our approach outperforms both intensity and polarimetric image histogram descriptors applied to the infrared data. For example, at a false positive rate of 0.01 per detection window, our cluster approach results in a true positive rate of 0.63 compared to a rate of 0.05 for a histogram of gradient descriptor trained and tested on the same dataset. In conclusion, we discuss the potential of this new approach in comparison with state-of-the-art infrared and conventional video detection. PMID:26831384

  14. A Joint Optical & X-ray Analysis of the Triple Merging Cluster MACS J1226.8+2153

    NASA Astrophysics Data System (ADS)

    Ferrara, Jocelyn; Bulbul, E.; Bayliss, M.

    2014-01-01

    We present a multi-wavelength characterization of the massive merging triple galaxy cluster MACSJ1226.8+2153 at z = 0.436, combining Chandra X-ray observations, deep Subaru optical imaging, and spectroscopic redshifts of hundreds of individual galaxies. We find good agreement between the spatial distribution of X-ray emission and optical light from red sequence cluster member galaxies. Redshifts of galaxies within the three cluster components are confirmed to be at a common redshift, and we detect no significant bulk line-of-sight peculiar velocity offsets between the three components. The velocity distributions of two of the individual cluster components exhibit strong bimodality, indicating that they are not completely relaxed and may have recently undergone mergers themselves. From the X-ray surface brightness and temperature profiles there is a clear shock propagating from the most massive cluster component with a Mach number M = 1.48 +/- 0.20. This shock feature could either be a remnant of a recent interaction internal to this component, or a bi-product of the early stages of merger interactions between the three cluster-scale components. We also present evidence for three large-scale filaments extending from this complex system, indicating that MACS J1226.8+2153 lies at the center of a node of the cosmic web. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  15. The Relation between Cool Cluster Cores and Herschel-detected Star Formation in Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Edge, A. C.; Egami, E.; Rex, M.; Smith, G. P.; Altieri, B.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Pérez-González, P. G.; Portouw, J.; Valtchanov, I.; Walth, G.; van der Werf, P. P.; Zemcov, M.

    2012-03-01

    We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 μm), we calculate the obscured star formation rate (SFR). 22+6.2 -5.3% of the BCGs are detected in the far-infrared, with SFR = 1-150 M ⊙ yr-1. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing Hα emission is also correlated with obscured star formation. For all but the most luminous BCGs (L TIR > 2 × 1011 L ⊙), only a small (lsim0.4 mag) reddening correction is required for SFR(Hα) to agree with SFRFIR. The relatively low Hα extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. Forward vehicle detection using cluster-based AdaBoost

    NASA Astrophysics Data System (ADS)

    Baek, Yeul-Min; Kim, Whoi-Yul

    2014-10-01

    A camera-based forward vehicle detection method with range estimation for forward collision warning system (FCWS) is presented. Previous vehicle detection methods that use conventional classifiers are not robust in a real driving environment because they lack the effectiveness of classifying vehicle samples with high intraclass variation and noise. Therefore, an improved AdaBoost, named cluster-based AdaBoost (C-AdaBoost), for classifying noisy samples along with a forward vehicle detection method are presented in this manuscript. The experiments performed consist of two parts: performance evaluations of C-AdaBoost and forward vehicle detection. The proposed C-AdaBoost shows better performance than conventional classification algorithms on the synthetic as well as various real-world datasets. In particular, when the dataset has more noisy samples, C-AdaBoost outperforms conventional classification algorithms. The proposed method is also tested with an experimental vehicle on a proving ground and on public roads, ˜62 km in length. The proposed method shows a 97% average detection rate and requires only 9.7 ms per frame. The results show the reliability of the proposed method FCWS in terms of both detection rate and processing time.

  17. Evolutionary Effects on Brightest Cluster Galaxy (BCG) Detections in the CFHTLS-Deep Fields

    NASA Astrophysics Data System (ADS)

    Alis, S.

    2009-09-01

    Brightest cluster galaxies (BCGs) are the most massive and most luminous galaxies in the universe. These galaxies dominate galaxy clusters and lie at the top of the potential well of clusters. Investigating these galaxies can improve our understandings on galaxy cluster evolution. In this work, evolutionary effects on BCG detections are emphasized. For detecting BCGs, CFHTLS (Canada-France-Hawaii Telescope Legacy Survey) galaxy clusters, detected by Olsen et al. (2007) were used. To make a proper BCG detection, modeled galaxy colors should be evolved according to redshift. In this work, it is shown how unevolved galaxy colors can effect BCG detection.

  18. Scene text detection via connected component clustering and nontext filtering.

    PubMed

    Koo, Hyung Il; Kim, Duck Hoon

    2013-06-01

    In this paper, we present a new scene text detection algorithm based on two machine learning classifiers: one allows us to generate candidate word regions and the other filters out nontext ones. To be precise, we extract connected components (CCs) in images by using the maximally stable extremal region algorithm. These extracted CCs are partitioned into clusters so that we can generate candidate regions. Unlike conventional methods relying on heuristic rules in clustering, we train an AdaBoost classifier that determines the adjacency relationship and cluster CCs by using their pairwise relations. Then we normalize candidate word regions and determine whether each region contains text or not. Since the scale, skew, and color of each candidate can be estimated from CCs, we develop a text/nontext classifier for normalized images. This classifier is based on multilayer perceptrons and we can control recall and precision rates with a single free parameter. Finally, we extend our approach to exploit multichannel information. Experimental results on ICDAR 2005 and 2011 robust reading competition datasets show that our method yields the state-of-the-art performance both in speed and accuracy.

  19. The optical structure of X-ray globular clusters

    NASA Technical Reports Server (NTRS)

    Hertz, P.; Grindlay, J. E.

    1985-01-01

    CTIO 4-m prime-focus plates of eight globular clusters containing bright X-ray sources have been obtained. Plates in several colors (principally U and B) of each cluster have been digitized. A maximum symmetry method for determining the center of a globular cluster image is described and applied to each cluster in order to determine the cluster center with an accuracy of above 1.0 arc sec. Surface brightness profiles have been derived for seven clusters and fitted with King (1966, 1980) models to yield core radii within about 10 percent. These determinations of the cluster centers and core radii are sufficiently accurate to allow Grindlay et al. (1984) to statistically measure the mass of the globular cluster X-ray sources. Two clusters (NGC 6624 and M15) show significant excesses of light in their cores over the best-fit King model, in agreement with the results of Djorgovski and King (1984). The significance of these excesses, as well as the lack of any dependence of globular cluster structural parameters on color, is discussed.

  20. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  1. A scanning method for detecting clustering pattern of both attribute and structure in social networks

    NASA Astrophysics Data System (ADS)

    Wang, Tai-Chi; Phoa, Frederick Kin Hing

    2016-03-01

    Community/cluster is one of the most important features in social networks. Many cluster detection methods were proposed to identify such an important pattern, but few were able to identify the statistical significance of the clusters by considering the likelihood of network structure and its attributes. Based on the definition of clustering, we propose a scanning method, originated from analyzing spatial data, for identifying clusters in social networks. Since the properties of network data are more complicated than those of spatial data, we verify our method's feasibility via simulation studies. The results show that the detection powers are affected by cluster sizes and connection probabilities. According to our simulation results, the detection accuracy of structure clusters and both structure and attribute clusters detected by our proposed method is better than that of other methods in most of our simulation cases. In addition, we apply our proposed method to some empirical data to identify statistically significant clusters.

  2. Parallel Optical and Electrochemical DNA Detection

    NASA Astrophysics Data System (ADS)

    Knoll, Wolfgang; Liu, Jianyun; Niu, Lifang; Nielsen, Peter Eigil; Tiefenauer, Louis

    This contribution introduces strategies for the sensitive detection of oligonucleotides as bio-analytes binding from solution to a variety of probe architectures assembled at the (Au-) sensor surface. Detection principles based on surface plasmon optics and electrochemical techniques are compared. In particular, cyclic- and square wave voltammetry (SWV) are applied for the read-out of ferrocene redox labels conjugated to streptavidin that binds to the (biotinylated) DNA targets after hybridizing to the interfacial probe matrix of either DNA or peptide nucleic acid (PNA) strands. By employing streptavidin modified with fluorophores the identical sensor architecture can be used for the recording of hybridization reactions by surface plasmon fluorescence spectroscopy (SPFS). The Langmuir isotherms determined by both techniques, i.e., by SWV and SPFS, give virtually identical affinity constants KA, confirming that the mode of detection has no influence on the hybridization reaction. By using semiconducting nanoparticles as luminescence labels that can be tuned in their bandgap energies over a wide range of emission wavelengths surface plasmon fluorescence microscopy allows for the parallel read-out of multiple analyte binding events simultaneously.

  3. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  4. Optical Detection System for Ultrasonic Surface Displacements.

    NASA Astrophysics Data System (ADS)

    Godfrey, Martin William

    Available from UMI in association with The British Library. The work was carried out with the aim of developing an optical interferometric detection system. This was to be applied to the quantitative measurement of low amplitude, high frequency surface displacements (<1nm at several MHz). Two forms of interferometric detector are investigated. The performance and limitations in particular measurement situations are assessed for both types of interferometer. The first type of detector investigated is a miniature stabilised interferometer. The design of a stabilisation system is given, along with ways in which it can be optimised for a particular environment. The second type of detector studied is a quadrature interferometer. Various methods of processing the two channels of information from this device are discussed. The design of a new method of processing the signals is given, and its performance determined. The interferometric sensor is combined with a waveform digitiser and microcomputer to form an integrated detection system. Analysis of the waveforms obtained is performed by a system of Pascal programs developed for this purpose. The detection system is applied to tasks such as the calibration of other forms of transducer and the characterisation of artificial sources of acoustic emission. The results of experimental studies are given and the applications of such a system discussed.

  5. A Detailed Study of Two Optically-Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2002-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z=0.76 and CL1604+4304 at z=0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifics of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  6. A Detailed Study of Two Optically Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2000-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z = 0.76 and CL,1604+4304 at z = 0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifies of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  7. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light.

  8. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light. PMID:27136989

  9. Alerts Visualization and Clustering in Network-based Intrusion Detection

    SciTech Connect

    Yang, Dr. Li; Gasior, Wade C; Dasireddy, Swetha

    2010-04-01

    Today's Intrusion detection systems when deployed on a busy network overload the network with huge number of alerts. This behavior of producing too much raw information makes it less effective. We propose a system which takes both raw data and Snort alerts to visualize and analyze possible intrusions in a network. Then we present with two models for the visualization of clustered alerts. Our first model gives the network administrator with the logical topology of the network and detailed information of each node that involves its associated alerts and connections. In the second model, flocking model, presents the network administrator with the visual representation of IDS data in which each alert is represented in different color and the alerts with maximum similarity move together. This gives network administrator with the idea of detecting various of intrusions through visualizing the alert patterns.

  10. Orthology detection combining clustering and synteny for very large datasets.

    PubMed

    Lechner, Marcus; Hernandez-Rosales, Maribel; Doerr, Daniel; Wieseke, Nicolas; Thévenin, Annelyse; Stoye, Jens; Hartmann, Roland K; Prohaska, Sonja J; Stadler, Peter F

    2014-01-01

    The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets.

  11. OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-Zel'dovich EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS

    SciTech Connect

    High, F. W.; Stalder, B.; Song, J.; Ade, P. A. R.; Aird, K. A.; Allam, S. S.; Buckley-Geer, E. J.; Armstrong, R.; Barkhouse, W. A.; Benson, B. A.; Bertin, E.; Bhattacharya, S.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Challis, P.; De Haan, T.

    2010-11-10

    We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg{sup 2} area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R{sub 200} radii and M{sub 200} masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z>1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in {sigma}{sub z}/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M{sub 200} cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.

  12. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM).

  13. Multimodal optical imaging for detecting breast cancer

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.

    2012-06-01

    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  14. Submerged turbulence detection with optical satellites

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.

    2013-01-01

    During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed !100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 ! 104 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ! 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.

  15. Submerged turbulence detection with optical satellites

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.

    2007-09-01

    During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed ~100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 × 10 4 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ~ 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.

  16. Non-virialized clusters for detection of dark energy-dark matter interaction

    NASA Astrophysics Data System (ADS)

    Le Delliou, M.; Marcondes, R. J. F.; Lima Neto, G. B.; Abdalla, E.

    2015-10-01

    The observation of galaxy and gas distributions, as well as cosmological simulations in a ΛCDM cold dark matter universe, suggests that clusters of galaxies are still accreting mass and are not expected to be in equilibrium. In this work, we investigate the possibility to evaluate the departure from virial equilibrium in order to detect, in that balance, effects from a dark matter-dark energy interaction. We continue, from previous works, using a simple model of interacting dark sector, the Layzer-Irvine equation for dynamical virial evolution, and employ optical observations in order to obtain the mass profiles through weak-lensing and X-ray observations giving the intracluster gas temperatures. Through a Monte Carlo method, we generate, for a set of clusters, measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium factors. We found a compounded interaction strength of -1.99^{+2.56}_{-16.00}, compatible with no interaction, but also a compounded rest virial ratio of -0.79 ± 0.13, which would entail a 2σ detection. We confirm quantitatively that clusters of galaxies are out of equilibrium but further investigation is needed to constrain a possible interaction in the dark sector.

  17. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    SciTech Connect

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-04-20

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  18. Polarization sensitive optical coherence tomography detection method

    SciTech Connect

    Everett, M J; Sathyam, U S; Colston, B W; DaSilva, L B; Fried, D; Ragadio, J N; Featherstone, J D B

    1999-05-12

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattereing coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.

  19. Mammographic calcification cluster detection and threshold gold thickness measurements

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Mackenzie, A.; Cooke, J.; Given-Wilson, R.; Wallis, M. G.; Chakraborty, D. P.; Dance, D. R.; Young, K. C.

    2012-03-01

    European Guidelines for quality control in digital mammography specify acceptable and achievable standards of image quality (IQ) in terms of threshold gold thickness using the CDMAM test object. However, there is little evidence relating such measurements to cancer detection. This work investigated the relationship between calcification detection and threshold gold thickness. An observer study was performed using a set of 162 amorphous selenium direct digital (DR) detector images (81 no cancer and 81 with 1-3 inserted calcification clusters). From these images four additional IQs were simulated: different digital detectors (computed radiography (CR) and DR) and dose levels. Seven observers marked and rated the locations of suspicious regions. DBM analysis of variances was performed on the JAFROC figure of merit (FoM) yielding 95% confidence intervals for IQ pairs. Automated threshold gold thickness (Tg) analysis was performed for the 0.25mm gold disc diameter on CDMAM images at the same IQs (16 images per IQ). Tg was plotted against FoM and a power law fitted to the data. There was a significant reduction in FoM for calcification detection for CR images compared with DR; FoM decreased from 0.83 to 0.63 (p<=0.0001). Detection was also sensitive to dose. There was a good correlation between FoM and Tg (R2=0.80, p<0.05), consequently threshold gold thickness was a good predictor of calcification detection at the same IQ. Since the majority of threshold gold thicknesses for the various IQs were above the acceptable standard despite large variations in calcification detection by radiologists, current EU guidelines may need revising.

  20. Optical spectra of hot alkali-metal clusters from the random-matrix model

    SciTech Connect

    Akulin, V.M.; Brechignac, C.; Sarfati, A.

    1997-01-01

    We show that the experimentally observed spectra of optical absorption of sodium cluster ions can be explained in the framework of the same random-matrix model, that has been employed earlier [Phys. Rev. Lett. {bold 75}, 220 (1995)] for the ground-state properties of alkali-metal clusters. This approach reveals the effect of cluster symmetry {open_quotes}on average{close_quotes} on the optical-absorption profiles, describes their temperature dependence, and predicts the line shapes of two-photon absorption. {copyright} {ital 1996} {ital The American Physical Society}

  1. Study of Optical Properties on Fractal Aggregation Using the GMM Method by Different Cluster Parameters

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-En; Lin, Tang-Huang; Lien, Wei-Hung

    2015-04-01

    Anthropogenic pollutants or smoke from biomass burning contribute significantly to global particle aggregation emissions, yet their aggregate formation and resulting ensemble optical properties are poorly understood and parameterized in climate models. Particle aggregation refers to formation of clusters in a colloidal suspension. In clustering algorithms, many parameters, such as fractal dimension, number of monomers, radius of monomer, and refractive index real part and image part, will alter the geometries and characteristics of the fractal aggregation and change ensemble optical properties further. The cluster-cluster aggregation algorithm (CCA) is used to specify the geometries of soot and haze particles. In addition, the Generalized Multi-particle Mie (GMM) method is utilized to compute the Mie solution from a single particle to the multi particle case. This computer code for the calculation of the scattering by an aggregate of spheres in a fixed orientation and the experimental data have been made publicly available. This study for the model inputs of optical determination of the monomer radius, the number of monomers per cluster, and the fractal dimension is presented. The main aim in this study is to analyze and contrast several parameters of cluster aggregation aforementioned which demonstrate significant differences of optical properties using the GMM method finally. Keywords: optical properties, fractal aggregation, GMM, CCA

  2. A method to determine the number of nanoparticles in a cluster using conventional optical microscopes

    SciTech Connect

    Kang, Hyeonggon; Attota, Ravikiran Tondare, Vipin; Vladár, András E.; Kavuri, Premsagar

    2015-09-07

    We present a method that uses conventional optical microscopes to determine the number of nanoparticles in a cluster, which is typically not possible using traditional image-based optical methods due to the diffraction limit. The method, called through-focus scanning optical microscopy (TSOM), uses a series of optical images taken at varying focus levels to achieve this. The optical images cannot directly resolve the individual nanoparticles, but contain information related to the number of particles. The TSOM method makes use of this information to determine the number of nanoparticles in a cluster. Initial good agreement between the simulations and the measurements is also presented. The TSOM method can be applied to fluorescent and non-fluorescent as well as metallic and non-metallic nano-scale materials, including soft materials, making it attractive for tag-less, high-speed, optical analysis of nanoparticles down to 45 nm diameter.

  3. Blood detection in wireless capsule endoscopy using expectation maximization clustering

    NASA Astrophysics Data System (ADS)

    Hwang, Sae; Oh, JungHwan; Cox, Jay; Tang, Shou Jiang; Tibbals, Harry F.

    2006-03-01

    Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. Other endoscopies such as colonoscopy, upper gastrointestinal endoscopy, push enteroscopy, and intraoperative enteroscopy could be used to visualize up to the stomach, duodenum, colon, and terminal ileum, but there existed no method to view most of the small intestine without surgery. With the miniaturization of wireless and camera technologies came the ability to view the entire gestational track with little effort. A tiny disposable video capsule is swallowed, transmitting two images per second to a small data receiver worn by the patient on a belt. During an approximately 8-hour course, over 55,000 images are recorded to a worn device and then downloaded to a computer for later examination. Typically, a medical clinician spends more than two hours to analyze a WCE video. Research has been attempted to automatically find abnormal regions (especially bleeding) to reduce the time needed to analyze the videos. The manufacturers also provide the software tool to detect the bleeding called Suspected Blood Indicator (SBI), but its accuracy is not high enough to replace human examination. It was reported that the sensitivity and the specificity of SBI were about 72% and 85%, respectively. To address this problem, we propose a technique to detect the bleeding regions automatically utilizing the Expectation Maximization (EM) clustering algorithm. Our experimental results indicate that the proposed bleeding detection method achieves 92% and 98% of sensitivity and specificity, respectively.

  4. Redshift and Optical Properties for S Statistically Complete Sample of Poor Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ledlow, Michael J.; Loken, Chris; Burns, Jack O.; Hill, John M.; White, Richard A.

    1996-08-01

    From the poor cluster catalog of White et al. (1996), we define a sample of 71 optically-selected poor galaxy clusters. The surface-density enhancement we require for our clusters falls between that of the loose associations of Turner & Gott [AJ, 91,204(1976)] and the Hickson compact groups [Hickson, ApJ, 255, 382(1982)]. We review the selection biases and determine the statistical completeness of the sample. For this sample, we report new velocity measurements made with the ARC 3.5-m Dual-Imaging spectrograph and the 2.3-m Steward Observatory MX fiber spectrograph. Combining our own measurements with those from the literature, we examine the velocity distributions, velocity dispersions, and ID velocity substructure for our poor cluster sample, and compare our results to other poor cluster samples. We find that approximately half of the sample may have significant ID velocity substructure. The optical morphology, large-scale environment, and velocity field of many of these clusters are indicative of young, dynamically evolving systems. In future papers, we will use this sample to derive the poor cluster x-ray luminosity function and gas mass function, and will examine the optical/x-ray properties of the clusters in more detail.

  5. Facile assembly of tetragonal Pt clusters on graphene oxide for enhanced nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Li, Yubing; Huang, Li; Li, Wei; Chen, Wenzhe

    2015-11-01

    A facile method to assemble tetragonal Pt clusters on the surface of graphene oxide (Pt-cluster/GO) using anatase TiO2 as a template is proposed. The morphology and structure of Pt-cluster/GO were investigated, revealing that tetragonal Pt clusters with a diameter of 20-50 nm composed of 2-3 nm Pt nanoparticles (NPs) were homogenously decorated on the surface of GO. The nonlinear optical properties were characterized by the open-aperture Z-scan technique in the nanosecond regime using a laser with wavelength of 532 nm. The as-prepared Pt-cluster/GO hybrid was found to show strong optical limiting (OL) effects for nanosecond laser pulses at 532 nm, and the OL performance is superior to that of carbon nanotubes, a benchmark optical limiter. Furthermore, the Z-scan results showed that the OL performance of the Pt-cluster/GO hybrid is superior to that of GO and the Pt-NP/GO hybrid. The OL behavior of the metal/GO composite nanostructure can be effectively tailored by altering the aggregation means of metal NPs. Scattering measurements suggested that nonlinear scattering (NLS) played an important role in the observed OL behavior in the Pt-cluster/GO hybrid. The OL properties of the Pt-cluster/GO hybrid are attributed to the reverse saturable absorption in the GO sheet and NLS in the metal NPs.

  6. The Next Generation Virgo Cluster Survey-Infrared (NGVS-IR). I. A New Near-Ultraviolet, Optical, and Near-Infrared Globular Cluster Selection Tool

    NASA Astrophysics Data System (ADS)

    Muñoz, Roberto P.; Puzia, Thomas H.; Lançon, Ariane; Peng, Eric W.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Mei, Simona; Cuillandre, Jean-Charles; Hudelot, Patrick; Courteau, Stéphane; Duc, Pierre-Alain; Balogh, Michael L.; Boselli, Alessandro; Bournaud, Frédéric; Carlberg, Raymond G.; Chapman, Scott C.; Durrell, Patrick; Eigenthaler, Paul; Emsellem, Eric; Gavazzi, Giuseppe; Gwyn, Stephen; Huertas-Company, Marc; Ilbert, Olivier; Jordán, Andrés; Läsker, Ronald; Licitra, Rossella; Liu, Chengze; MacArthur, Lauren; McConnachie, Alan; McCracken, Henry Joy; Mellier, Yannick; Peng, Chien Y.; Raichoor, Anand; Taylor, Matthew A.; Tonry, John L.; Tully, R. Brent; Zhang, Hongxin

    2014-01-01

    The NGVS-IR project (Next Generation Virgo Cluster Survey-Infrared) is a contiguous, near-infrared imaging survey of the Virgo cluster of galaxies. It complements the optical wide-field survey of Virgo (NGVS). In its current state, NGVS-IR consists of Ks -band imaging of 4 deg2 centered on M87 and J- and Ks -band imaging of ~16 deg2 covering the region between M49 and M87. We present observations of the central 4 deg2 centered on Virgo's core region. The data were acquired with WIRCam on the Canada-France-Hawaii Telescope, and the total integration time was 41 hr distributed over 34 contiguous tiles. A survey-specific strategy was designed to account for extended galaxies while still measuring accurate sky brightness within the survey area. The average 5σ limiting magnitude is Ks = 24.4 AB mag, and the 50% completeness limit is Ks = 23.75 AB mag for point-source detections, when using only images with better than 0.''7 seeing (median seeing 0.''54). Star clusters are marginally resolved in these image stacks, and Virgo galaxies with \\mu _{K_s} \\simeq 24.4 AB mag arcsec-2 are detected. Combining the Ks data with optical and ultraviolet data, we build the uiKs color-color diagram, which allows a very clean color-based selection of globular clusters in Virgo. This diagnostic plot will provide reliable globular cluster candidates for spectroscopic follow-up campaigns, needed to continue the exploration of Virgo's photometric and kinematic substructures, and will help the design of future searches for globular clusters in extragalactic systems. We show that the new uiKs diagram displays significantly clearer substructure in the distribution of stars, globular clusters, and galaxies than the gzKs diagram—the NGVS + NGVS-IR equivalent of the BzK diagram that is widely used in cosmological surveys. Equipped with this powerful new tool, future NGVS-IR investigations based on the uiKs diagram will address the mapping and analysis of extended structures and compact

  7. Adaptive clustering algorithm for community detection in complex networks.

    PubMed

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality. PMID:18999501

  8. Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters.

    PubMed

    Gomes da Rocha, Claudia; Clayborne, P Andre; Koskinen, Pekka; Häkkinen, Hannu

    2014-02-28

    We have carried out first-principles calculations to investigate how the electronic and optical features of graphene nanoribbons are affected by the presence of atomic clusters. Aluminum clusters of different sizes and stabilized by organic ligands were deposited on graphene nanoribbons from which the energetic features of the adsorption plus electronic structure were treated within density-functional theory. Our results point out that, depending on their size and structure shape, the clusters perturb distinctively the electronic properties of the ribbons. We suggest that such selective response can be measured through optical means revealing that graphene nanoribbons can work as an efficient characterization medium of atomic clusters. In addition, we demonstrate that atomic clusters can fine-tune the electronic and spin-polarized states of graphene ribbons from which novel spin-filter devices could be designed. PMID:24413380

  9. Synchronous phase detection for optical fiber interferometric sensors.

    PubMed

    Bush, I J; Phillips, R L

    1983-08-01

    A system has been developed to accurately detect phase signals produced in optical interferometric sensors. The system employs optical heterodyning and synchronously detects optical phase by feeding back an error signal to a phase modulator in the reference leg of the interferometer. This system is seen to have properties similar to a phase-locked loop. The system is mathematically analyzed and a simple second-order model developed which accurately predicts the system response.

  10. Galaxy Clusters in the Swift/BAT era II: 10 more Clusters detected above 15 keV

    SciTech Connect

    Ajello, M.; Rebusco, P.; Cappelluti, N.; Reimer, O.; Boehringer, H.; La Parola, V.; Cusumano, G.; /Palermo Observ.

    2010-10-27

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/BAT all-sky survey. Among the newly BAT-discovered clusters there are: Bullet, Abell 85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and Abell 3667) we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For Abell 3667 the excess emission can be successfully modeled as a hot component (kT = {approx}13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely thermal origin.

  11. GALAXY CLUSTERS IN THE SWIFT/BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 keV

    SciTech Connect

    Ajello, M.; Reimer, O.; Rebusco, P.; Cappelluti, N.; Boehringer, H.; La Parola, V.; Cusumano, G.

    2010-12-20

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/Burst Alert Telescope (BAT) all-sky survey. Among the newly BAT-discovered clusters there are Bullet, A85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters, we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters' emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and A3667), we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law-like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For A3667, the excess emission can be successfully modeled as a hot component (kT {approx} 13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely a thermal origin.

  12. Nonlinear optical properties of confined excitions in clusters

    NASA Astrophysics Data System (ADS)

    Leegwater, Jan A.; Fried, Laurence E.; Mukamel, Shaul

    1993-03-01

    Size effects in femtosecond photon echo spectroscopy of neat clusters are calculated using a quasiparticle representation of the nonlinear response. We extend our previous study of cooperative effects on the nonlinear response of assemblies of two level molecules [J. A. Leegwater and S. Mukamel, Phys. Rev. A 46, 452 (1992)] to allow for nuclear motion and to have an s-p model of polarizable atoms. Photon echos in Benzene/Argon clusters are calculated using a semiclassical phase averaging procedure [L. E. Fried and S. Mukamel, Adv. Chem. Phys. (in Press)].

  13. Spectral Clustering for Unsupervised Segmentation of Lower Extremity Wound Beds Using Optical Images.

    PubMed

    Dhane, Dhiraj Manohar; Krishna, Vishal; Achar, Arun; Bar, Chittaranjan; Sanyal, Kunal; Chakraborty, Chandan

    2016-09-01

    Chronic lower extremity wound is a complicated disease condition of localized injury to skin and its tissues which have plagued many elders worldwide. The ulcer assessment and management is expensive and is burden on health establishment. Currently accurate wound evaluation remains a tedious task as it rely on visual inspection. This paper propose a new method for wound-area detection, using images digitally captured by a hand-held, optical camera. The strategy proposed involves spectral approach for clustering, based on the affinity matrix. The spectral clustering (SC) involves construction of similarity matrix of Laplacian based on Ng-Jorden-Weiss algorithm. Starting with a quadratic method, wound photographs were pre-processed for color homogenization. The first-order statistics filter was then applied to extract spurious regions. The filter was selected based on the performance, evaluated on four quality metrics. Then, the spectral method was used on the filtered images for effective segmentation. The segmented regions were post-processed using morphological operators. The performance of spectral segmentation was confirmed by ground-truth pictures labeled by dermatologists. The SC results were additionally compared with the results of k-means and Fuzzy C-Means (FCM) clustering algorithms. The SC approach on a set of 105 images, effectively delineated targeted wound beds yielding a segmentation accuracy of 86.73 %, positive predictive values of 91.80 %, and a sensitivity of 89.54 %. This approach shows the robustness of tool for ulcer perimeter measurement and healing progression. The article elucidates its potential to be incorporated in patient facing medical systems targeting a rapid clinical assistance. PMID:27520612

  14. In the whirlpool's coils: tracing substructure from combined optical/X-ray data in the galaxy cluster A1300

    NASA Astrophysics Data System (ADS)

    Ziparo, F.; Braglia, F. G.; Pierini, D.; Finoguenov, A.; Böhringer, H.; Bongiorno, A.

    2012-03-01

    Structure formation is thought to act via hierarchical mergers and accretion of smaller systems driven by gravity, with dark matter dominating the gravitational field. Combining X-ray and optical imaging and spectroscopy provides a powerful approach to the study of the cluster dynamics and mass assembly history. The ROSAT-ESO Flux Limited X-ray (REFLEX) distant X-ray luminous (DXL) sample contains the most X-ray luminous galaxy clusters (LX≥ 1045 erg s-1) from the REFLEX survey at z = 0.27-0.31. We present the photometric (Wide Field Imager) and spectroscopic (VIsible Multi-Object Spectrograph) data for the DXL cluster RXC J1131.9-1955 (Abell 1300); in combination with the existing X-ray data, we determine and characterize the substructure of this post-merging system. We analyse X-ray-selected groups in a 30 × 30 arcmin2 region encompassing the cluster in order to study the mass assembly of A1300. The X-ray surface brightness map of A1300 appears disturbed and exhibits the signature of a forward shock, which is consistent with a previous analysis of radio data. Moreover, we detect a large-scale filament in which the cluster is embedded and several infalling groups. Comparison of the whirlpool-like features in the entropy pseudo-map of the intracluster medium (ICM) with the distribution of the cluster members reveals a direct correspondence between the ICM structure and the galaxy distribution. Moreover, comparison with existing simulations allows us to better understand the dynamics of the cluster progenitors and to age date their impact. A1300 is a complex massive system in which a major merging occurred about 3 Gyr ago and additional minor merging events happen at different times via filaments, which will lead to an increase of the cluster mass of up to 60 per cent in the next Gyr.

  15. Optical polarization study towards the open cluster NGC 6249

    NASA Astrophysics Data System (ADS)

    Vergne, M. M.; Orsatti, A. M.; Feinstein, C.; Vega, E. I.; Martínez, R. E.

    2016-04-01

    We present multicolor linear polarimetric data (UBVRI) of 30 of the brightest stars in the region of the open cluster NGC 6249. The cluster members were found to be part of two subgroups with average polarization and orientation of the electric vector of P_{V}=1.7% ± 0.13, θ_{V}=39.7° ± 2.2; and P_{V}=2.34% ± 0.07, θ_{V}=41.0° ± 1.2, respectively. This difference in polarization may be a consequence of the presence of a dark, U-shaped absorbing zone seen on the central region, and probably located in front of, or inside, the cluster. From the study of the evolution of the A_v with the distance,we found evidence of the existence of two layers of dust at distances of ≈ 250 pc and ≈ 600 pc. The comparison between the polarimetric parameters of NGC 6249 and those of the nearby cluster NGC 6250 showed some coincidences.

  16. Cluster formation in ferrofluids induced by holographic optical tweezers.

    PubMed

    Masajada, Jan; Bacia, Marcin; Drobczyński, Sławomir

    2013-10-01

    Holographic optical tweezers were used to show the interaction between a strongly focused laser beam and magnetic nanoparticles in ferrofluid. When the light intensity was high enough, magnetic nanoparticles were removed from the beam center and formed a dark ring. The same behavior was observed when focusing vortex or Bessel beams. The interactions between two or more separated rings of magnetic nanoparticles created by independent optical traps were also observed. PMID:24081086

  17. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    NASA Astrophysics Data System (ADS)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  18. New optical cell design for pollutant detection

    NASA Astrophysics Data System (ADS)

    Conde, Olga M.; Garcia, Sergio; Mirapeix, Jesus M.; Echevarria, Juan; Madruga Saavedra, Francisco J.; Lopez-Higuera, Jose Miguel

    2002-02-01

    A new and simple optical gas cell, developed to perform as the transducer for a methane fiber optic sensor, is presented. Its main advantage lies in the fact that, employing low-cost components and an easy alignment process, the path where the light beam is in contact with the pollutant becomes maximized to as much as four times the physical length of the optical cell. This increment in optical length is directly related to the optimization of the fiber optic sensor since low levels of methane concentration can be measured as stated by Beer-Lambert's law. One of the main advantages of this design lies in the simplicity of the optic cell, which makes it very interesting when one has to deal with the manufacturing process. The cell is mounted on a reflective configuration which improves the connection as only one optical fiber is employed. The main elements of the cell are an optical fiber, a mirror of high reflectivity and a converging lens arranged in an appropriate fashion to obtain the desired result. With this relatively reduced and low cost set of devices the insertion losses achieved are in the range of the 4-5 dB's.

  19. Computer-aided detection of polyps in optical colonoscopy images

    NASA Astrophysics Data System (ADS)

    Nadeem, Saad; Kaufman, Arie

    2016-03-01

    We present a computer-aided detection algorithm for polyps in optical colonoscopy images. Polyps are the precursors to colon cancer. In the US alone, 14 million optical colonoscopies are performed every year, mostly to screen for polyps. Optical colonoscopy has been shown to have an approximately 25% polyp miss rate due to the convoluted folds and bends present in the colon. In this work, we present an automatic detection algorithm to detect these polyps in the optical colonoscopy images. We use a machine learning algorithm to infer a depth map for a given optical colonoscopy image and then use a detailed pre-built polyp profile to detect and delineate the boundaries of polyps in this given image. We have achieved the best recall of 84.0% and the best specificity value of 83.4%.

  20. An X-ray and optical study of the cluster of galaxies Abell 754

    NASA Technical Reports Server (NTRS)

    Fabricant, D.; Beers, T. C.; Geller, M. J.; Gorenstein, P.; Huchra, J. P.

    1986-01-01

    X-ray and optical data for A754 are used to study the relative distribution of the luminous and dark matter in this dense, rich cluster of galaxies with X-ray luminosity comparable to that of the Coma Cluster. A quantitative statistical comparison is made of the galaxy positions with the total mass responsible for maintaining the X-ray emitting gas in hydrostatic equilibrium. A simple bimodal model which fits both the X-ray and optical data suggests that the galaxies are distributed consistently with the projected matter distribution within the region covered by the X-ray map (0.5-1 Mpc). The X-ray and optical estimates of the mass in the central region of the cluster are 2.9 x 10 to the 14th and 3.6 + or - 0.5 x 10 to the 14th solar masses, respectively.

  1. SOUTH POLE TELESCOPE DETECTIONS OF THE PREVIOUSLY UNCONFIRMED PLANCK EARLY SUNYAEV-ZEL'DOVICH CLUSTERS IN THE SOUTHERN HEMISPHERE

    SciTech Connect

    Story, K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Aird, K. A.; Andersson, K.; Bazin, G.; Armstrong, R.; Desai, S.; Bonamente, M.; Brodwin, M.; Foley, R. J.; Clocchiatti, A.; De Haan, T.; Dobbs, M. A.; Dudley, J. P.; George, E. M.

    2011-07-10

    We present South Pole Telescope (SPT) observations of the five galaxy cluster candidates in the southern hemisphere which were reported as unconfirmed in the Planck Early Sunyaev-Zel'dovich (ESZ) sample. One cluster candidate, PLCKESZ G255.62-46.16, is located in the 2500 deg{sup 2} SPT SZ survey region and was reported previously as SPT-CL J0411-4819. For the remaining four candidates, which are located outside of the SPT SZ survey region, we performed short, dedicated SPT observations. Each of these four candidates was strongly detected in maps made from these observations, with signal-to-noise ratios ranging from 6.3 to 13.8. We have observed these four candidates on the Magellan-Baade telescope and used these data to estimate cluster redshifts from the red sequence. Resulting redshifts range from 0.24 to 0.46. We report measurements of Y{sub 0.'75}, the integrated Comptonization within a 0.'75 radius, for all five candidates. We also report X-ray luminosities calculated from ROSAT All-Sky Survey catalog counts, as well as optical and improved SZ coordinates for each candidate. The combination of SPT SZ measurements, optical red-sequence measurements, and X-ray luminosity estimates demonstrates that these five Planck ESZ cluster candidates do indeed correspond to real galaxy clusters with redshifts and observable properties consistent with the rest of the ESZ sample.

  2. Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Takey, A.; Shoukry, A.

    2016-07-01

    We develop a galaxy cluster finding algorithm based on spectral clustering technique to identify optical counterparts and estimate optical redshifts for X-ray selected cluster candidates. As an application, we run our algorithm on a sample of X-ray cluster candidates selected from the third XMM-Newton serendipitous source catalog (3XMM-DR5) that are located in the Stripe 82 of the Sloan Digital Sky Survey (SDSS). Our method works on galaxies described in the color-magnitude feature space. We begin by examining 45 galaxy clusters with published spectroscopic redshifts in the range of 0.1-0.8 with a median of 0.36. As a result, we are able to identify their optical counterparts and estimate their photometric redshifts, which have a typical accuracy of 0.025 and agree with the published ones. Then, we investigate another 40 X-ray cluster candidates (from the same cluster survey) with no redshift information in the literature and found that 12 candidates are considered as galaxy clusters in the redshift range from 0.29 to 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and optical data. Among them 7 clusters have spectroscopic redshifts for at least one member galaxy.

  3. The Optical Counterparts of the Luminous X-Ray Binary Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Deutsch, Eric William

    Ten percent of our Galaxy's luminous (LX>~1036 ergs-1 ) clusters contribute a much smaller fraction of normal stars to the Galaxy. X-ray bursts have been observed from nearly all of them, indicating that these sources are low-mass X-ray binary (LMXB) systems containing a neutron star and a companion star from which matter is being transferred. The understanding of LMXB overabundance in globular clusters may well lead to important insights into the formation and evolution of these exotic binary systems as well as the dynamics of globular clusters themselves. The goals of this dissertation are to identify the optical counterparts to some GC LMXBs without previously identified counterparts, bring together and compare in the most homogeneous fashion all available Hubble Space Telescope (HST) optical observations of the current crop of GC LMXB counterparts, and discuss the, implications for cluster dynamics and LMXB systems in general. In this work, candidates for three additional optical counterparts to luminous X-ray binaries in globular clusters are presented, thereby doubling the number of optical counterpart candidates. Two are very likely correct although require additional work to confirm the identifications, while the third remains somewhat tentative due to the positional discrepancy with the X-ray coordinates and the fact that the entire error circle is not surveyed. A homogeneous set of HST photometric measurements for all of the counterparts identified thus far is presented, and their optical properties are compared with those of field low-mass X-ray binaries. In addition, new and archival spectra and imaging data are analyzed to intercompare the UV/optical spectral energy distributions (SEDs) of GC LMXBs. A set of simple model SEDs is introduced and compared with the observations to infer accretion rates, disk diameters, and other properties of these systems. This work strengthens previous inferences that many if not most of the globular cluster LMXBs are

  4. Comparison of galaxy clusters selected by weak-lensing, optical spectroscopy, and X-rays in the deep lens survey F2 field

    SciTech Connect

    Starikova, Svetlana; Jones, Christine; Forman, William R.; Vikhlinin, Alexey; Kurtz, Michael J.; Fabricant, Daniel G.; Murray, Stephen S.; Geller, Margaret J.; Dell'Antonio, Ian P.

    2014-05-10

    We compare galaxy clusters selected in Chandra and XMM-Newton X-ray observations of the 4 deg{sup 2} Deep Lens Survey (DLS) F2 field to the cluster samples previously selected in the same field from a sensitive weak-lensing shear map derived from the DLS and from a detailed galaxy redshift survey—the Smithsonian Hectospec Lensing Survey (SHELS). Our Chandra and XMM-Newton observations cover 1.6 deg{sup 2} of the DLS F2 field, including all 12 weak-lensing peaks above a signal-to-noise ratio of 3.5, along with 16 of the 20 SHELS clusters with published velocity dispersions >500 km s{sup –1}. We detect 26 extended X-ray sources in this area and confirm 23 of them as galaxy clusters using the optical imaging. Approximately 75% of clusters detected in either X-ray or spectroscopic surveys are found in both; these follow the previously established scaling relations between velocity dispersion, L {sub X}, and T {sub X}. A lower percentage, 60%, of clusters are in common between X-ray and DLS samples. With the exception of a high false-positive rate in the DLS weak-lensing search (5 out of 12 DLS candidates appear to be false), differences between the three cluster detection methods can be attributed primarily to observational uncertainties and intrinsic scatter between different observables and cluster mass.

  5. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts.

    PubMed

    Petty, Jeffrey T; Nicholson, David A; Sergev, Orlin O; Graham, Stuart K

    2014-09-16

    Silver clusters with ~10 atoms form within DNA strands, and the conjugates are chemical sensors. The DNA host hybridizes with short oligonucleotides, and the cluster moieties optically respond to these analytes. Our studies focus on how the cluster adducts perturb the structure of their DNA hosts. Our sensor is comprised of an oligonucleotide with two components: a 5'-cluster domain that complexes silver clusters and a 3'-recognition site that hybridizes with a target oligonucleotide. The single-stranded sensor encapsulates an ~11 silver atom cluster with violet absorption at 400 nm and with minimal emission. The recognition site hybridizes with complementary oligonucleotides, and the violet cluster converts to an emissive near-infrared cluster with absorption at 730 nm. Our key finding is that the near-infrared cluster coordinates two of its hybridized hosts. The resulting tertiary structure was investigated using intermolecular and intramolecular variants of the same dimer. The intermolecular dimer assembles in concentrated (~5 μM) DNA solutions. Strand stoichiometries and orientations were chromatographically determined using thymine-modified complements that increase the overall conjugate size. The intramolecular dimer develops within a DNA scaffold that is founded on three linked duplexes. The high local cluster concentrations and relative strand arrangements again favor the antiparallel dimer for the near-infrared cluster. When the two monomeric DNA/violet cluster conjugates transform to one dimeric DNA/near-infrared conjugate, the DNA strands accumulate silver. We propose that these correlated changes in DNA structure and silver stoichiometry underlie the violet to near-infrared cluster transformation.

  6. Detecting the Sun in 2-Gyr Old Open Clusters

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2004-01-01

    The aim of this observation was to take advantage of the large collecting area and sensitivity of the European Space Agency's XMM-Newton telescope to survey the X ray brightness of solar-mass stars in the 2 Gyr old NGC 752 cluster in order to chart out the dependence of coronal X ray emission of Sun like stars as a function of age. Dr. Simon's stated role as one of the co-investigators in the project was limited to assisting the project's European Principal Investigator with the analysis and interpretation of the X ray measurements, and to assist in summarizing the results for publication. The observation was executed successfully, and approximately 130 X ray sources were detected in the XMM field of view and subsequently measured to obtain X ray count rates. To date neither the measurements nor the raw data have been distributed by the European P.I. to the co-investigators, It is expected that the measurements will be distributed to the co-investigators by the end of 2004, and once that is done, the scientific analysis by Dr. Simon can then begin. At present, since the data and measurements have not been shared with the co-investigators, there are no results to report.

  7. X-ray and optical spectroscopy of the massive young open cluster IC 1805

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Nazé, Y.

    2016-10-01

    Context. Very young open clusters are ideal places to study the X-ray properties of a homogeneous population of early-type stars. In this respect, the IC 1805 open cluster is very interesting as it hosts the O4 If+ star HD 15570 thought to be in an evolutionary stage intermediate between a normal O-star and a Wolf-Rayet star. Aims: Such a star could provide a test for theoretical models aiming at explaining the empirical scaling relation between the X-ray and bolometric luminosities of O-type stars. Methods: We have observed IC 1805 with XMM-Newton and further collected optical spectroscopy of some of the O-star members of the cluster. Results: The optical spectra allow us to revisit the orbital solutions of BD+60° 497 and HD 15558, and provide the first evidence of binarity for BD+60° 498. X-ray emission from colliding winds does not appear to play an important role among the O-stars of IC 1805. Notably, the X-ray fluxes do not vary significantly between archival X-ray observations and our XMM-Newton pointing. The very fast rotator BD+60° 513, and to a lesser extent the O4 If+ star HD 15570 appear somewhat underluminous. Whilst the underluminosity of HD 15570 is only marginally significant, its amplitude is found to be compatible with theoretical expectations based on its stellar and wind properties. A number of other X-ray sources are detected in the field, and the brightest objects, many of which are likely low-mass pre-main sequence stars, are analyzed in detail. Based on observations collected with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA), and with the TIGRE telescope (La Luz, Mexico).Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A82

  8. Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard; Boccippio, Dennis J.; Goodman, Steve J.; Boeck, William

    2006-01-01

    We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.

  9. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites

    NASA Astrophysics Data System (ADS)

    Fenwick, Oliver; Coutiño-Gonzalez, Eduardo; Grandjean, Didier; Baekelant, Wouter; Richard, Fanny; Bonacchi, Sara; de Vos, Dirk; Lievens, Peter; Roeffaers, Maarten; Hofkens, Johan; Samorì, Paolo

    2016-09-01

    The integration of metal atoms and clusters in well-defined dielectric cavities is a powerful strategy to impart new properties to them that depend on the size and geometry of the confined space as well as on metal-host electrostatic interactions. Here, we unravel the dependence of the electronic properties of metal clusters on space confinement by studying the ionization potential of silver clusters embedded in four different zeolite environments over a range of silver concentrations. Extensive characterization reveals a strong influence of silver loading and host environment on the cluster ionization potential, which is also correlated to the cluster’s optical and structural properties. Through fine-tuning of the zeolite host environment, we demonstrate photoluminescence quantum yields approaching unity. This work extends our understanding of structure-property relationships of small metal clusters and applies this understanding to develop highly photoluminescent materials with potential applications in optoelectronics and bioimaging.

  10. Automatic detection of clustered microcalcifications in digital mammograms based on wavelet features and neural network classification

    NASA Astrophysics Data System (ADS)

    Yu, Songyang; Guan, Ling; Brown, Stephen

    1998-06-01

    The appearance of clustered microcalcifications in mammogram films is one of the important early signs of breast cancer. This paper presents a new image processing system for the automatic detection of clustered microcalcifications in digitized mammogram films. The detection method uses wavelet features and feed forward neural network to find possible microcalcifications pixels and a set of features to locate individual microcalcifications.

  11. Optical spectroscopy and the UV luminosity function of galaxies in the Abell 1367, Coma and Virgo clusters

    NASA Astrophysics Data System (ADS)

    Cortese, L.; Gavazzi, G.; Iglesias-Paramo, J.; Boselli, A.; Carrasco, L.

    2003-04-01

    Optical spectroscopy of 93 galaxies, 60 projected in the direction of Abell 1367, 21 onto the Coma cluster and 12 on Virgo, is reported. The targets were selected because they were detected in previous Hα , UV or r' surveys. The present observations bring to 100% the redshift completeness of Hα selected galaxies in the Coma region and to 75% in Abell 1367. All observed galaxies except one show Hα emission and belong to the clusters. This confirms previous determinations of the Hα luminosity function of the two clusters that were based on the assumption that all Hα detected galaxies were cluster members. Using the newly obtained data we re-determine the UV luminosity function of Coma and we compute for the first time the UV luminosity function of A1367. Their faint end slopes remain uncertain (-2.00clusters (Iglesias-Paramo et al. \\cite{lha}). We discover a point-like Hα source in the Virgo cluster, associated with the giant galaxy VCC873, possibly an extragalactic HII region similar to the one recently observed in Virgo by Gerhard et al. (\\cite{Gerhard}). Based on observations obtained with the Loiano telescope belonging to the University of Bologna (Italy), with the G. Haro telescope of the INAOE (Mexico) and with the Calar Alto observatory operated by the Centro Astronomico Hispano Aleman (Spain).

  12. Global survey of star clusters in the Milky Way. IV. 63 new open clusters detected by proper motions

    NASA Astrophysics Data System (ADS)

    Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Röser, S.; Schilbach, E.

    2015-09-01

    Context. The global Milky Way Star Clusters (MWSC) survey provided new cluster membership lists and mean cluster parameters for nearly 80% of all previously known Galactic clusters. The MWSC data reduction pipeline involved the catalogue of positions and proper motions (PPMXL) on the International Celestial Reference System (ICRS) and near-infrared photometry from the Two Micron All Sky Survey (2MASS). Aims: In the first extension to the MWSC, photometric filters were applied to the 2MASS catalogue to find new cluster candidates that were subsequently confirmed or rejected by the MWSC pipeline. To further extend the MWSC census, particularly of nearby clusters, we aimed at discovering new clusters by conducting an almost global search in proper motion catalogues as a starting point. Methods: We first selected high-quality samples from the PPMXL and the Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4) for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15 mas/yr) within ±50 mas/yr, the sky outside a thin Galactic plane zone (| b | < 5°) was binned in small areas ("sky pixels") of 0.25 × 0.25 deg2. Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. After visual inspection of the sky images, we built an automated procedure that combined these representations of the sky for neighbouring proper motion subsamples after a background correction. The 692 compact cluster candidates detected above a threshold that was equivalent to a minimum of 12 to 130 cluster stars in dependence on the Galactic latitude were then cross-checked with known star clusters and clusters of galaxies. New candidates served as input for the MWSC pipeline. Results: About half of our candidates overlapped with known clusters (46 globular and 68 open clusters in the Galaxy, about 150 known clusters of galaxies) or the Magellanic Clouds. About 10% of our

  13. The merging cluster Abell 1758: an optical and dynamical view

    NASA Astrophysics Data System (ADS)

    Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.

    2015-08-01

    The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (<300 km/s) between A1758 NW and NE. We have combined it with the projected velocity of 1600 km/s which was estimated by previous X-ray analysis (David & Kempner 2004) and we have obtained a small angle between

  14. Adaptive optics assisted Fourier domain OCT with balanced detection

    NASA Astrophysics Data System (ADS)

    Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.

    2011-03-01

    Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.

  15. Characterizing Planck SZ detected clusters with X-ray observations

    NASA Astrophysics Data System (ADS)

    Lovisari, L.; Forman, W.; Jones, C.; Kraft, R.; Randall, S.; Santos, F.

    2016-06-01

    Galaxy clusters are a powerful tool to constrain cosmological parameters. An accurate knowledge of the scaling relations between X-ray observables and cluster mass is a crucial step because it will enable us to compare the theoretical predictions with the real data and with the cosmological models. A complete sample is required for any meaningful study of the scaling properties, otherwise potentially important biases (e.g. Malmquist bias, cool-core and merger fractions) cannot be corrected. The Planck mission provided a nearly complete mass-limited sample of clusters of galaxies. From XMM-Newton and/or Chandra observations of the 165 Planck ESZ clusters at z <0.35, we derived the total mass, gas mass, X-ray luminosity, temperature, and morphology of each cluster. We will show how the cluster properties and morphologies differ for X-ray and SZ selected samples. In particular we will show that the Planck sample has a smaller fraction of cool-core clusters than X-ray selected samples. We will show the derived X-ray scaling relations for the Planck SZ selected sample. Finally, we will show the preliminary results of the cluster mass function.

  16. Light-Harvesting Nanoparticle Core-Shell Clusters with Controllable Optical Output.

    PubMed

    Sun, Dazhi; Tian, Ye; Zhang, Yugang; Xu, Zhihua; Sfeir, Matthew Y; Cotlet, Mircea; Gang, Oleg

    2015-06-23

    We used DNA self-assembly methods to fabricate a series of core-shell gold nanoparticle-DNA-colloidal quantum dot (AuNP-DNA-Qdot) nanoclusters with satellite-like architecture to modulate optical (photoluminescence) response. By varying the intercomponent distance through the DNA linker length designs, we demonstrate precise tuning of the plasmon-exciton interaction and the optical behavior of the nanoclusters from regimes characterized by photoluminescence quenching to photoluminescence enhancement. The combination of detailed X-ray scattering probing with photoluminescence intensity and lifetime studies revealed the relation between the cluster structure and its optical output. Compared to conventional light-harvesting systems like conjugated polymers and multichromophoric dendrimers, the proposed nanoclusters bring enhanced flexibility in controlling the optical behavior toward a desired application, and they can be regarded as controllable optical switches via the optically pumped color.

  17. Detecting Hotspots from Taxi Trajectory Data Using Spatial Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Zhao, P. X.; Qin, K.; Zhou, Q.; Liu, C. K.; Chen, Y. X.

    2015-07-01

    A method of trajectory clustering based on decision graph and data field is proposed in this paper. The method utilizes data field to describe spatial distribution of trajectory points, and uses decision graph to discover cluster centres. It can automatically determine cluster parameters and is suitable to trajectory clustering. The method is applied to trajectory clustering on taxi trajectory data, which are on the holiday (May 1st, 2014), weekday (Wednesday, May 7th, 2014) and weekend (Saturday, May 10th, 2014) respectively, in Wuhan City, China. The hotspots in four hours (8:00-9:00, 12:00-13:00, 18:00-19:00 and 23:00-24:00) for three days are discovered and visualized in heat maps. In the future, we will further research the spatiotemporal distribution and laws of these hotspots, and use more data to carry out the experiments.

  18. Integrated optical biosensor for detection of multivalent proteins

    SciTech Connect

    Kelly, Dan; Grace, Karen M.; Song, Xuedong; Swanson, Basil I.; Frayer, Daniel; Mendes, Sergio B.; Peyghambarian, Nasser

    1999-12-01

    We have developed a simple, highly sensitive and specific optical waveguide sensor for the detection of multivalent proteins. The optical biosensor is based on optically tagged glycolipid receptors embedded within a fluid phospholipid bilayer membrane formed upon the surface of a planar optical waveguide. Binding of multivalent cholera toxin triggers a fluorescence resonance energy transfer that results in a two-color optical change that is monitored by measurement of emitted luminescence above the waveguide surface. The sensor approach is highly sensitive and specific and requires no additional reagents and washing steps. Demonstration of protein-receptor recognition by use of planar optical waveguides provides a path forward for the development of fieldable miniaturized biosensor arrays. (c) 1999 Optical Society of America.

  19. Behavior of Dynamic Photonic Multiparticle Clusters in an Optical Trap under the Influence of Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Zavalin, Andrey; Henderson, Don

    2000-04-01

    Photonic crystals and clusters have attracted considerable attention of the physics, chemistry and material science communities. "Optical matter", consisting of particles, organized and assembled dynamically by photons, is a rapidly developing field that impacts basic and applied science. We have studied the interaction of 140 fs pulses from the Ti:Sapphire laser with two types of clusters: 1) dynamic photonic (DP) multiparticle clusters, which are created under the presence of optical forces that trap and produce optical binding among particles and 2)chemical (C)clusters that exist in the absence of an optical (assembled without optical trapping). Experimentally DP-clusters were created using CW radiation of Ar+- laser to trap a few microparticles (polystyrene, silica and zeolite) suspended in solution, while in other studies the C-clusters were trapped under the same conditions. The clusters were irradiated with the laser pulses that spatially overlap the zone of the optical trap. Experiments indicated the DP-clusters had symmetrical and vortex structure or were fragmented onto separated particles, depending on parameters of Ti:Sapphire femtosecond laser radiation. In the case of C-clusters, the pulses from the Ti:Sapphire laser caused the C-cluster to move out of the trap without fragmentation.

  20. THE OPTICAL COUNTERPART TO THE X-RAY TRANSIENT IGR J1824-24525 IN THE GLOBULAR CLUSTER M28

    SciTech Connect

    Pallanca, C.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.

    2013-08-20

    We report on the identification of the optical counterpart to the recently detected INTEGRAL transient IGR J1824-24525 in the Galactic globular cluster M28. From analysis of a multi-epoch Hubble Space Telescope data set, we have identified a strongly variable star positionally coincident with the radio and Chandra X-ray sources associated with the INTEGRAL transient. The star has been detected during both a quiescent and an outburst state. In the former case it appears as a faint, unperturbed main-sequence star, while in the latter state it is about two magnitudes brighter and slightly bluer than main-sequence stars. We also detected H{alpha} excess during the outburst state, suggestive of active accretion processes by the neutron star.

  1. Optical Detection of Anomalous Nitrogen in Comets

    NASA Astrophysics Data System (ADS)

    2003-12-01

    VLT Opens New Window towards Our Origins Summary A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles . The successful entry of UVES into cometary research now opens eagerly awaited opportunities for similiar observations in other, comparatively faint comets. These

  2. Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: A 3D approach

    PubMed Central

    Sahiner, Berkman; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Wei, Jun; Zhou, Chuan; Lu, Yao

    2012-01-01

    Purpose: To design a computer-aided detection (CADe) system for clustered microcalcifications in reconstructed digital breast tomosynthesis (DBT) volumes and to perform a preliminary evaluation of the CADe system. Methods: IRB approval and informed consent were obtained in this study. A data set of two-view DBT of 72 breasts containing microcalcification clusters was collected from 72 subjects who were scheduled to undergo breast biopsy. Based on tissue sampling results, 17 cases had breast cancer and 55 were benign. A separate data set of two-view DBT of 38 breasts free of clustered microcalcifications from 38 subjects was collected to independently estimate the number of false-positives (FPs) generated by the CADe system. A radiologist experienced in breast imaging marked the biopsied cluster of microcalcifications with a 3D bounding box using all available clinical and imaging information. A CADe system was designed to detect microcalcification clusters in the reconstructed volume. The system consisted of prescreening, clustering, and false-positive reduction stages. In the prescreening stage, the conspicuity of microcalcification-like objects was increased by an enhancement-modulated 3D calcification response function. An iterative thresholding and 3D object growing method was used to detect cluster seed objects, which were used as potential centers of microcalcification clusters. In the cluster detection stage, microcalcification candidates were identified using a second iterative thresholding procedure, which was applied to the signal-to-noise ratio (SNR) enhanced image voxels with a positive calcification response. Starting with each cluster seed object as the initial cluster center, a dynamic clustering algorithm formed a cluster candidate by including microcalcification candidates within a 3D neighborhood of the cluster seed object that satisfied the clustering criteria. The number, size, and SNR of the microcalcifications in a cluster candidate and the

  3. Joint scaling properties of Sunyaev-Zel'dovich and optical richness observables in an optically-selected galaxy cluster sample

    NASA Astrophysics Data System (ADS)

    Greer, Christopher Holland

    Galaxy cluster abundance measurements are an important tool used to study the universe as a whole. The advent of multiple large-area galaxy cluster surveys across multiple ensures that cluster measurements will play a key role in understanding the dark energy currently thought to be accelerating the universe. The main systematic limitation at the moment is the understanding of the observable-mass relation. Recent theoretical work has shown that combining samples of clusters from surveys at different wavelengths can mitigate this systematic limitation. Precise measurements of the scatter in the observable-mass relation can lead to further improvements. We present Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the Sunyaev-Zel'dovich (SZ) signal for 28 galaxy clusters selected from the Sloan Digital Sky Survey (SDSS) maxBCG catalog. This cluster sample represents a complete, volume-limited sample of the richest galaxy clusters in the SDSS between redshifts 0.2 ≥ z ≥ 0.3, as measured by the RedMaPPer algorithm being developed for the Dark Energy Survey (DES; Rykoff et al. 2012). We develop a formalism that uses the cluster abundance in tandem with the galaxy richness measurements from SDSS and the SZ signal measurements from CARMA to calibrate the SZ and optical observable-mass relations. We find that the scatter in richness at fixed mass is σlog λ| M = 0.24+0.09-0.07 using SZ signal calculated by integrating a cluster pressure profile to a radius of 1 Mpc at the redshift of the cluster. We also calculate the SZ signal at R500 and find that the choice of scaling relation used to determined R500 has a non-trivial effect on the constraints of the observable-mass relationship. Finally, we investigate the source of disagreement between the positions of the SZ signal and SDSS Brightest Cluster Galaxies (BCGs). Improvements to the richness calculator that account for blue BCGs in the cores of cool-core X-ray clusters, as well as

  4. An Optical Biosensor for Bacillus Cereus Spore Detection

    NASA Astrophysics Data System (ADS)

    Li, Chengquan; Tom, Harry W. K.

    2005-03-01

    We demonstrate a new transduction scheme for optical biosensing. Bacillus cereus is a pathogen that may be found in food and dairy products and is able to produce toxins and cause food poisoning. It is related to Bacillus anthracis (anthrax). A CCD array covered with micro-structured glass coverslip is used to detect the optical resonant shift due to the binding of the antigen (bacillus cereus spore) to the antibody (polyclonal antibody). This novel optical biosensor scheme has the potential for detecting 10˜100 bioagents in a single device as well as the potential to test for antigens with multiple antibody tests to avoid ``false positives.''

  5. Optical detection of oil on water

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1973-01-01

    Three radiometric techniques utilizing sunlight reflected and backscattered from water bodies have potential application for remote sensing of oil spills. Oil on water can be detected by viewing perpendicular polarization component of reflected light or difference between polarization components. Best detection is performed in ultraviolet or far-red portions of spectrum and in azimuth directions toward or opposite sun.

  6. Detection of Laser Optic Defects Using Gradient Direction Matching

    SciTech Connect

    Chen, B Y; Kegelmeyer, L M; Liebman, J A; Salmon, J T; Tzeng, J; Paglieroni, D W

    2005-12-14

    That National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be the world's largest and most energetic laser. It has thousands of optics and depends heavily on the quality and performance of these optics. Over the past several years, we have developed the NIF Optics Inspection Analysis System that automatically finds defects in a specific optic by analyzing images taken of that optic. This paper describes a new and complementary approach for the automatic detection of defects based on detecting the diffraction ring patterns in downstream optic images caused by defects in upstream optics. Our approach applies a robust pattern matching algorithm for images called Gradient Direction Matching (GDM). GDM compares the gradient directions (the direction of flow from dark to light) of pixels in a test image to those of a specified model and identifies regions in the test image whose gradient directions are most in line with those of the specified model. For finding rings, we use luminance disk models whose pixels have gradient directions all pointing toward the center of the disk. After GDM identifies potential rings locations, we rank these rings by how well they fit the theoretical diffraction ring pattern equation. We perform false alarm mitigation by throwing out rings of low fit. A byproduct of this fitting procedure is an estimate of the size of the defect and its distance from the image plane. We demonstrate the potential effectiveness of this approach by showing examples of rings detected in real images of NIF optics.

  7. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    PubMed Central

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  8. Control of optical response of a supported cluster on different dielectric substrates

    SciTech Connect

    Iida, Kenji Noda, Masashi; Nobusada, Katsuyuki

    2015-06-07

    We develop a computational method for optical response of a supported cluster on a dielectric substrate. The substrate is approximated by a dielectric continuum with a frequency-dependent dielectric function. The computational approach is based on our recently developed first-principles simulation method for photoinduced electron dynamics in real-time and real-space. The approach allows us to treat optical response of an adsorbate explicitly taking account of interactions at an interface between an adsorbate and a substrate. We calculate optical absorption spectra of supported Ag{sub n} (n = 2, 54) clusters, changing the dielectric function of a substrate. By analyzing electron dynamics in real-time and real-space, we clarify the mechanisms for variations in absorption spectra, such as peak shifts and intensity changes, relating to various experimental results for optical absorption of supported clusters. Attractive and repulsive interactions between an adsorbate and a substrate result in red and blue shifts, respectively, and the intensity decreases by energy dissipation into a substrate. We demonstrate that optical properties can be controlled by varying the dielectric function of a substrate.

  9. OPTICAL IDENTIFICATION OF He WHITE DWARFS ORBITING FOUR MILLISECOND PULSARS IN THE GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    Cadelano, M.; Pallanca, C.; Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.; Freire, P. C. C.

    2015-10-10

    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT, and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color–magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf (WD) cooling sequences, consistent with the cooling tracks of He WDs with masses between 0.15 M{sub ⊙} and 0.20 M{sub ⊙}. For each identified companion, mass, cooling age, temperature, and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded at a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non-degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2σ astrometric uncertainty from the radio positions of 47TucH and 47TucI, but the available data prevent us from firmly assessing whether they are the true companions of these two MSPs.

  10. Optical protein sensor for detecting cancer markers in saliva.

    PubMed

    Tan, Winny; Sabet, Leyla; Li, Yang; Yu, Tianwei; Klokkevold, Perry R; Wong, David T; Ho, Chih-Ming

    2008-10-15

    A surface immobilized optical protein sensor has been utilized to detect Interleukin-8 (IL-8) protein, an oral cancer marker, and can reach limit of detection (LOD) at 1.1 pM in buffer without using enzymatic amplification. Only after applying enzymatic amplification to increase the signal level by a few orders of magnitude, ELISA can reach the LOD of 1 pM level. We then develop the confocal optics based sensor for further reducing the optical noise and can extend the LOD of the surface immobilized optical protein sensor two orders in magnitude. These improvements have allowed us to detect IL-8 protein at 4.0 fM in buffer. In addition, these sensitive LODs were achieved without the use of enzymatic signal amplification, such that the simplified protocol can further facilitate the development of point-of-care devices. The ultra sensitive optical protein sensor presented in this paper has a wide number of applications in disease diagnoses. Measurements for detecting biomarkers in clinical sample are much more challenging than the measurements in buffer, due to high background noise contributed by large collections of non-target molecules. We used clinical saliva samples to validate the functionality of the optical protein sensor. Clinical detection of disease-specific biomarkers in saliva offers a non-invasive, alternative approach to using blood or urine. Currently, the main challenge of using saliva as a diagnostic fluid is its inherently low concentration of biomarkers. We compare the measurements of 40 saliva samples; half from oral cancer patients and half from a control group. The data measured by the optical protein sensor is compared with the traditional Enzyme-Linked Immunosorbant Assay (ELISA) values to validate the accuracy of our system. These positive results enable us to proceed to using confocal optical protein sensor to detect other biomarkers, which have much lower concentrations.

  11. Compact low-cost detection electronics for optical coherence imaging

    PubMed Central

    Akcay, A. C.; Lee, K. S.; Furenlid, L. R.; Costa, M. A.; Rolland, J. P.

    2015-01-01

    A compact and low-cost detection electronics scheme for optical coherence imaging is demonstrated. The performance of the designed electronics is analyzed in comparison to a commercial lock-in amplifier of equal bandwidth. Images of a fresh-onion sample are presented for each detection configuration. PMID:26617422

  12. Fiber-Optic System Would Detect Leaking Liquid H2

    NASA Technical Reports Server (NTRS)

    Grove, Charles H.

    1993-01-01

    Proposed instrument based on optical time-domain reflectometry measures both locations and sizes of leaks in tanks and plumbing storing and transferring liquid hydrogen. Conceived for use in detecting leaks of hydrogen from propulsion system of Space Shuttle, concept applicable to detection of flammable and/or poisonous fumes in chemical-processing plants, fuel-distributing equipment, and other terrestrial applications.

  13. The optical measurement of large cluster tracks in a gas jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Liu, Dong; Han, Jifeng; Bai, Lixin

    2016-08-01

    We propose an optical method based on Rayleigh scattering for the direct measurement of cluster tracks produced by a high-pressure gas jet. The tracks of the argon and methane clusters are acquired by a high-speed camera. It is found that the cluster sizes of these tracks are within the range of 7E + 03~1E + 07 for argon and 2E + 06~4E + 08 for methane. Most argon tracks are continuous and their intensity changes gradually, while the majority of the methane tracks are separated into discrete fractions and their intensity alters periodically along the flight path, which may indicate the methane clusters are more unstable and easily to break up. Special methane clusters which may fly at an axial velocity of less than 2.5m/s are also found. This method is very sensitive to large gas cluster and has broad application prospects in cluster physics.

  14. The optical measurement of large cluster tracks in a gas jet

    PubMed Central

    Chen, Zhiyuan; Liu, Dong; Han, Jifeng; Bai, Lixin

    2016-01-01

    We propose an optical method based on Rayleigh scattering for the direct measurement of cluster tracks produced by a high-pressure gas jet. The tracks of the argon and methane clusters are acquired by a high-speed camera. It is found that the cluster sizes of these tracks are within the range of 7E + 03~1E + 07 for argon and 2E + 06~4E + 08 for methane. Most argon tracks are continuous and their intensity changes gradually, while the majority of the methane tracks are separated into discrete fractions and their intensity alters periodically along the flight path, which may indicate the methane clusters are more unstable and easily to break up. Special methane clusters which may fly at an axial velocity of less than 2.5m/s are also found. This method is very sensitive to large gas cluster and has broad application prospects in cluster physics. PMID:27561338

  15. The optical measurement of large cluster tracks in a gas jet.

    PubMed

    Chen, Zhiyuan; Liu, Dong; Han, Jifeng; Bai, Lixin

    2016-01-01

    We propose an optical method based on Rayleigh scattering for the direct measurement of cluster tracks produced by a high-pressure gas jet. The tracks of the argon and methane clusters are acquired by a high-speed camera. It is found that the cluster sizes of these tracks are within the range of 7E + 03~1E + 07 for argon and 2E + 06~4E + 08 for methane. Most argon tracks are continuous and their intensity changes gradually, while the majority of the methane tracks are separated into discrete fractions and their intensity alters periodically along the flight path, which may indicate the methane clusters are more unstable and easily to break up. Special methane clusters which may fly at an axial velocity of less than 2.5m/s are also found. This method is very sensitive to large gas cluster and has broad application prospects in cluster physics. PMID:27561338

  16. Galaxy Cluster Center Detection Methods with Weak Lensing

    NASA Astrophysics Data System (ADS)

    Simet, Melanie

    2013-01-01

    The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. Misidentification of centers, either because a well-defined center does not exist or because candidate centers are incorrectly identified or ranked, leads to systematic underestimates of cluster masses. Weak lensing provides a potential lever on this issue by directly probing the distribution of dark matter. We test methods of determining cluster centers directly from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ~500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. In cases where other center identification methods fail, however, the method may still be useful to distinguish between competing options.

  17. Detection of moving clusters by a method of cinematic pairs

    NASA Astrophysics Data System (ADS)

    Khodjachikh, M. F.; Romanovsky, E. A.

    2000-01-01

    The algorithm of revealing of pairs stars with common movement is offered and is realized. The basic source is the catalogue HIPPARCOS. On concentration of kinematic pairs it is revealed three unknown earlier moving clusters in constellations: 1) Phe, 2) Cae, 3) Hor and, well known, in 4) UMa are revealed. On an original technique the members of clusters -- all 87 stars are allocated. Coordinates of the clusters convergent point α, delta; (in degrees), spatial speed (in km/s) and age (in 106 yr) from isochrone fitting have made: 1) 51, -29, 19.0, 500, 5/6; 2) 104, -32, 23.7, 300, 9/12; 3) 119, -27, 22.3, 100, 9/22; 4) 303, -31, 16.7, 500, 16/8 accordingly. Numerator of fraction -- number of stars identified as the members of clusters, denominator -- number of the probable members (with unknown radial speeds). The preliminary qualitative analysis of clusters spatial structure is carried in view of their dynamic evolution.

  18. Optical Detection Of Deformations Of An Antenna

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L.; Vivian, H. C.

    1990-01-01

    Proposed control subsystem generates small aiming-bias signals to correct for deviations of 70-m-diameter reflector of microwave antenna from its ideal shape. Takes optical measurements to determine deformations produced by such environmental factors as wind, gravity, and thermal differentials. Using these measurements, subsystem estimates misalignment of radiation pattern caused by deformations. Signals to correct for estimated misalignment added to angle-command signals of main antenna-aiming system. To measure deviations laser ranging devices placed at base of feed on rigid intermediate reference structure, white retroreflectors placed on parts that deviate from assigned positions relative to intermediate reference structure.

  19. Fiber optic approach for detecting corrosion

    NASA Astrophysics Data System (ADS)

    Kostecki, Roman; Ebendorff-Heidepriem, Heike; Davis, Claire; McAdam, Grant; Wang, Tianyu; Monro, Tanya M.

    2016-04-01

    Corrosion is a multi-billion dollar problem faced by industry. The ability to monitor the hidden metallic structure of an aircraft for corrosion could result in greater availability of existing aircraft fleets. Silica exposed-core microstructured optical fiber sensors are inherently suited towards this application, as they are extremely lightweight, robust, and suitable both for distributed measurements and for embedding in otherwise inaccessible corrosion-prone areas. By functionalizing the fiber with chemosensors sensitive to corrosion by-products, we demonstrate in-situ kinetic measurements of accelerated corrosion in simulated aluminum aircraft joints.

  20. Nanostructured optical microchips for cancer biomarker detection.

    PubMed

    Zhang, Tianhua; He, Yuan; Wei, Jianjun; Que, Long

    2012-01-01

    Herein we report the label-free detection of a cancer biomarker using newly developed arrayed nanostructured Fabry-Perot interferometer (FPI) microchips. Specifically, the prostate cancer biomarker free prostate-specific antigen (f-PSA) has been detected with a mouse anti-human PSA monoclonal antibody (mAb) as the receptor. Experiments found that the limit-of-detection of current nanostructured FPI microchip for f-PSA is about 10 pg/mL and the upper detection range for f-PSA can be dynamically changed by varying the amount of the PSA mAb immobilized on the sensing surface. The control experiments have also demonstrated that the immunoassay protocol used in the experiments shows excellent specificity and selectivity, suggesting the great potential to detect the cancer biomarkers at trace levels in complex biofluids. In addition, given its nature of low cost, simple-to-operation and batch fabrication capability, the arrayed nanostructured FPI microchip-based platform could provide an ideal technical tool for point-of-care diagnostics application and anticancer drug screen and discovery.

  1. The XMM-LSS survey: optical assessment and properties of different X-ray selected cluster classes

    NASA Astrophysics Data System (ADS)

    Adami, C.; Mazure, A.; Pierre, M.; Sprimont, P. G.; Libbrecht, C.; Pacaud, F.; Clerc, N.; Sadibekova, T.; Surdej, J.; Altieri, B.; Duc, P. A.; Galaz, G.; Gueguen, A.; Guennou, L.; Hertling, G.; Ilbert, O.; Le Fèvre, J. P.; Quintana, H.; Valtchanov, I.; Willis, J. P.; Akiyama, M.; Aussel, H.; Chiappetti, L.; Detal, A.; Garilli, B.; Lebrun, V.; Lefèvre, O.; Maccagni, D.; Melin, J. B.; Ponman, T. J.; Ricci, D.; Tresse, L.

    2011-02-01

    Context. XMM and Chandra opened a new area for the study of clusters of galaxies not only for cluster physics, but also for the detection of faint and distant clusters that were inaccessible with previous missions. Aims: This article presents 66 spectroscopically confirmed clusters (0.05 ≤ z ≤ 1.5) within an area of 6 deg2 enclosed in the XMM-LSS survey. Almost two thirds have been confirmed with dedicated spectroscopy only and 10% have been confirmed with dedicated spectroscopy supplemented by literature redshifts. Methods: Sub-samples, or classes, of extended-sources are defined in a two-dimensional X-ray parameter space allowing for various degrees of completeness and contamination. We describe the procedure developed to assess the reality of these cluster candidates using the CFHTLS photometric data and spectroscopic information from our own follow-up campaigns. Results: Most of these objects are low-mass clusters, hence constituting a still poorly studied population. In a second step, we quantify the correlations between the optical properties such as richness or velocity dispersion and the cluster X-ray luminosities. We examine the relation of the clusters to the cosmic web. Finally, we review peculiar compact structures in the surveyed area such as very distant clusters and fossil groups. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This work is also based on observations collected at TNG (La Palma, Spain), Magellan (Chile), and at ESO Telescopes

  2. Galaxy cluster center detection methods with weak lensing

    NASA Astrophysics Data System (ADS)

    Simet, Melanie

    The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. In this work, we test methods of centroid determination from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ˜ 500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. We also project the usefulness of this technique in future surveys.

  3. Detection of Significant Groups in Hierarchical Clustering by Resampling

    PubMed Central

    Sebastiani, Paola; Perls, Thomas T.

    2016-01-01

    Hierarchical clustering is a simple and reproducible technique to rearrange data of multiple variables and sample units and visualize possible groups in the data. Despite the name, hierarchical clustering does not provide clusters automatically, and “tree-cutting” procedures are often used to identify subgroups in the data by cutting the dendrogram that represents the similarities among groups used in the agglomerative procedure. We introduce a resampling-based technique that can be used to identify cut-points of a dendrogram with a significance level based on a reference distribution for the heights of the branch points. The evaluation on synthetic data shows that the technique is robust in a variety of situations. An example with real biomarker data from the Long Life Family Study shows the usefulness of the method. PMID:27551289

  4. Detection of Significant Groups in Hierarchical Clustering by Resampling.

    PubMed

    Sebastiani, Paola; Perls, Thomas T

    2016-01-01

    Hierarchical clustering is a simple and reproducible technique to rearrange data of multiple variables and sample units and visualize possible groups in the data. Despite the name, hierarchical clustering does not provide clusters automatically, and "tree-cutting" procedures are often used to identify subgroups in the data by cutting the dendrogram that represents the similarities among groups used in the agglomerative procedure. We introduce a resampling-based technique that can be used to identify cut-points of a dendrogram with a significance level based on a reference distribution for the heights of the branch points. The evaluation on synthetic data shows that the technique is robust in a variety of situations. An example with real biomarker data from the Long Life Family Study shows the usefulness of the method. PMID:27551289

  5. Optical methods for the detection of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Uglov, A. N.; Bessmertnykh-Lemeune, A.; Guilard, R.; Averin, A. D.; Beletskaya, I. P.

    2014-03-01

    The review covers an important area of the modern chemistry, namely, the detection of heavy metal ions using optical molecular detectors. The role of this method in metal ion detection and the physicochemical grounds of operation of chemosensors are discussed, and examples of detection of most abundant heavy metal ions and synthetic approaches to molecular detectors are presented. The immobilization of molecular detectors on solid substrates for the design of analytical sensor devices is described. The bibliography includes 178 references.

  6. Large-scale first principles configuration interaction calculations of optical absorption in aluminum clusters.

    PubMed

    Shinde, Ravindra; Shukla, Alok

    2014-10-14

    We report the linear optical absorption spectra of aluminum clusters Aln (n = 2-5) involving valence transitions, computed using the large-scale all-electron configuration interaction (CI) methodology. Several low-lying isomers of each cluster were considered, and their geometries were optimized at the coupled-cluster singles-doubles (CCSD) level of theory. With these optimized ground-state geometries, excited states of different clusters were computed using the multi-reference singles-doubles configuration-interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. These CI wave functions were used to compute the transition dipole matrix elements connecting the ground and various excited states of different clusters, and thus their photoabsorption spectra. The convergence of our results with respect to the basis sets, and the size of the CI expansion, was carefully examined. Our results were found to be significantly different as compared to those obtained using time-dependent density functional theory (TDDFT) [Deshpande et al. Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 68, 035428]. When compared to the available experimental data for the isomers of Al2 and Al3, our results are in very good agreement as far as important peak positions are concerned. The contribution of configurations to many body wave functions of various excited states suggests that in most cases optical excitations involved are collective, and plasmonic in nature. PMID:25162600

  7. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGES

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  8. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    SciTech Connect

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexing in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.

  9. Nonlinear optical behavior of Li n F (n = 2-5) superalkali clusters.

    PubMed

    Srivastava, Ambrish Kumar; Misra, Neeraj

    2015-12-01

    Hyperlithiated clusters are known for their unusual bonding characteristics and lower ionization potentials. This study reports nonlinear optical (NLO) properties of a series of hyperlithiated clusters, Li n F (n = 2-5) for the first time. The structures of small Li n F (n = 2-5) clusters, obtained using second order Møller-Plesset perturbative method, are found to be stable against eliminations of F, F‾, and LiF. These Li n F species are stabilized by both ionic as well as covalent interactions. Our study shows that Li n F species can be thought of as superalkali-halogen (Li n  - F) clusters but belong to the class of superalkalies themselves. These clusters may also possess alkalide and/or electride characteristics due to excess electrons. The dipole moment, mean polarizability, and hyperpolarizability suggest their significant NLO responses which are explained using the highest occupied molecular orbital surfaces and TD-DFT analysis. The exceptionally large hyperpolarizability of Li2F (~10(5) a.u.) and its electride characteristics are particularly highlighted. This study may guide the researchers in the design of novel materials with significant NLO responses useful for electro-optical applications. Graphical Abstract Li2F superalkali resemble an electride in which the excess electron is pushed out by Li2 (+) moiety, leading to its high hyperpolarizability of order of 10(5) a.u. PMID:26546265

  10. Facile modulation of optical properties of octagold clusters through the control of ligand-mediated interactions.

    PubMed

    Iwasaki, Mitsuhiro; Kobayashi, Naoki; Shichibu, Yukatsu; Konishi, Katsuaki

    2016-07-28

    In the recent development of structurally defined ligand-stabilized gold clusters, it has been revealed that not only the inorganic units but also the surrounding organic ligands substantially affect their electronic/optical properties. In this work, a series of core + exo type Au8 clusters decorated by dppp (Ph2P(CH2)3PPh2) and arylthiolate ligands ([Au8(dppp)4(SR)2](2+), 1-5) were synthesized, and their optical properties were studied in order to gain insights into the perturbation effects of the organic ligands. 1-5 showed visible absorption and photoluminescence emission bands at longer wavelengths compared to their chloro- and acetylide-modified analogues, suggesting the contribution of weak non-bonding interactions of the Au framework with the ligand heteroatoms. Upon acid treatment, 2- and 4-pyridinethiolate clusters (R = Py, 2 and 4) showed larger red shifts of the absorption and emission bands than the 3-pyridyl isomer (3), implying the involvement of the resonance structures of the SPy units. On the other hand, all regioisomers (2-4) showed large photoluminescence enhancements upon pyridine protonation. X-ray crystallographic and NMR analyses of 4 and its protonated form (4') showed that the electron-deficient pyridinium rings of 4' form π-stacks with neighbouring phenyl groups of dppp, suggesting that the orientation of the surface aromatics is a plausible factor governing the emission efficiency. These observations provide examples of successful modulation of optical properties of small gold clusters through the electronic and/or steric perturbation by the proximal organic ligands, highlighting the importance of the ligand design in the fine tuning of cluster properties directed for optical chemosensors and luminescent materials. PMID:27378218

  11. Clustering of Mueller matrix images for skeletonized structure detection

    NASA Astrophysics Data System (ADS)

    Collet, Christophe; Zallat, Jihad; Takakura, Yoshitate

    2004-04-01

    This paper extends and refines previous work on clustering of polarization-encoded images. The polarization-encoded images used in this work are considered as multidimensional parametric images where a clustering scheme based on Markovian Bayesian inference is applied. Hidden Markov Chains Model (HMCM) and Hidden Hierarchical Markovian Model (HHMM) show to handle effectively Mueller images and give very good results for biological tissues (vegetal leaves). Pretreatments attempting to reduce the image dimensionality based on the Principal Component Analysis (PCA) turns out to be useless for Mueller matrix images.

  12. Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek

    2012-01-01

    We explore the application of XMM Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.

  13. Optic disc detection and boundary extraction in retinal images.

    PubMed

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods. PMID:25967336

  14. Optical filtering in directly modulated/detected OOFDM systems.

    PubMed

    Sánchez, C; Ortega, B; Wei, J L; Capmany, J

    2013-12-16

    This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio. PMID:24514636

  15. Amplifier Noise Based Optical Steganography with Coherent Detection

    NASA Astrophysics Data System (ADS)

    Wu, Ben; Chang, Matthew P.; Caldwell, Naomi R.; Caldwell, Myles E.; Prucnal, Paul R.

    2014-12-01

    We summarize the principle and experimental setup of optical steganography based on amplified spontaneous emission (ASE) noise. Using ASE noise as the signal carrier, optical steganography effectively hides a stealth channel in both the time domain and the frequency domain. Coherent detection is used at the receiver of the stealth channel. Because ASE noise has short coherence length and random phase, it only interferes with itself within a very short range. Coherent detection requires the stealth transmitter and stealth receiver to precisely match the optical delay,which generates a large key space for the stealth channel. Several methods to further improve optical steganography, signal to noise ratio, compatibility with the public channel, and applications of the stealth channel are also summarized in this review paper.

  16. Optical Biosensors for the Detection of Pathogenic Microorganisms.

    PubMed

    Yoo, Seung Min; Lee, Sang Yup

    2016-01-01

    Pathogenic microorganisms are causative agents of various infectious diseases that are becoming increasingly serious worldwide. For the successful treatment of pathogenic infection, the rapid and accurate detection of multiple pathogenic microorganisms is of great importance in all areas related to health and safety. Among various sensor systems, optical biosensors allow easy-to-use, rapid, portable, multiplexed, and cost-effective diagnosis. Here, we review current trends and advances in pathogen-diagnostic optical biosensors. The technological and methodological approaches underlying diverse optical-sensing platforms and methods for detecting pathogenic microorganisms are reviewed, together with the strengths and drawbacks of each technique. Finally, challenges in developing efficient optical biosensor systems and future perspectives are discussed. PMID:26506111

  17. Optical Biosensors for the Detection of Pathogenic Microorganisms.

    PubMed

    Yoo, Seung Min; Lee, Sang Yup

    2016-01-01

    Pathogenic microorganisms are causative agents of various infectious diseases that are becoming increasingly serious worldwide. For the successful treatment of pathogenic infection, the rapid and accurate detection of multiple pathogenic microorganisms is of great importance in all areas related to health and safety. Among various sensor systems, optical biosensors allow easy-to-use, rapid, portable, multiplexed, and cost-effective diagnosis. Here, we review current trends and advances in pathogen-diagnostic optical biosensors. The technological and methodological approaches underlying diverse optical-sensing platforms and methods for detecting pathogenic microorganisms are reviewed, together with the strengths and drawbacks of each technique. Finally, challenges in developing efficient optical biosensor systems and future perspectives are discussed.

  18. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  19. Detection of clustered microcalcifications in masses on mammograms by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Hara, Takeshi; Fujita, Hiroshi; Iwase, Takuji; Endo, Tokiko

    2001-07-01

    The existence of a cluster of microcalcifications in mass area on mammogram is one of important features for distinguishing the breast cancer between benign and malignant. However, missed detections often occur because of its low subject contrast in denser background and small quantity of microcalcifications. To get a higher performance of detecting the cluster in mass area, we combined the shift-invariant artificial neural network (SIANN) with triple-ring filter (TRF) method in our computer-aided diagnosis (CAD) system. 150 region-of- interests around mass containing both of positive and negative microcalcifications were selected for training the network by a modified error-back-propagation algorithm. A variable-ring filter was used for eliminating the false- positive (FP) detections after the outputs of SIANN and TRF. The remained Fps were then reduced by a conventional three layer artificial neural network. Finally, the program identified clustered microcalcifications form individual microcalcifications. In a practical detection of 30 cases with 40 clusters in masses, the sensitivity of detecting clusters was improved form 90% by our previous method to 95% by using both SIANN and TRF, while the number of FP clusters was decreased from 0.85 to 0.40 cluster per image.

  20. Generalized Optical Theorem Detection in Random and Complex Media

    NASA Astrophysics Data System (ADS)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar

  1. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  2. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  3. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  4. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  5. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  6. Optical detection of radio waves through a nanomechanical transducer

    NASA Astrophysics Data System (ADS)

    Bagci, T.; Simonsen, A.; Schmid, S.; Villanueva, L. G.; Zeuthen, E.; Appel, J.; Taylor, J. M.; Sørensen, A.; Usami, K.; Schliesser, A.; Polzik, E. S.

    2014-03-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be when balanced by choosing an electromechanical cooperativity of with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of , this leads to a projected noise temperature of 40 mK and a sensitivity limit of . Our approach to all-optical, ultralow-noise detection of classical

  7. LLNL electro-optical mine detection program

    SciTech Connect

    Anderson, C.; Aimonetti, W.; Barth, M.; Buhl, M.; Bull, N.; Carter, M.; Clark, G.; Fields, D.; Fulkerson, S.; Kane, R.

    1994-09-30

    Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem of sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.

  8. Multicolor Fluorescence Detection for Droplet Microfluidics Using Optical Fibers.

    PubMed

    Cole, Russell H; Gartner, Zev J; Abate, Adam R

    2016-01-01

    Fluorescence assays are the most common readouts used in droplet microfluidics due to their bright signals and fast time response. Applications such as multiplex assays, enzyme evolution, and molecular biology enhanced cell sorting require the detection of two or more colors of fluorescence. Standard multicolor detection systems that couple free space lasers to epifluorescence microscopes are bulky, expensive, and difficult to maintain. In this paper, we describe a scheme to perform multicolor detection by exciting discrete regions of a microfluidic channel with lasers coupled to optical fibers. Emitted light is collected by an optical fiber coupled to a single photodetector. Because the excitation occurs at different spatial locations, the identity of emitted light can be encoded as a temporal shift, eliminating the need for more complicated light filtering schemes. The system has been used to detect droplet populations containing four unique combinations of dyes and to detect sub-nanomolar concentrations of fluorescein. PMID:27214249

  9. Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers

    PubMed Central

    Bezryadina, Anna S; Preece, Daryl C; Chen, Joseph C; Chen, Zhigang

    2016-01-01

    Bacterial biofilms underlie many persistent infections, posing major hurdles in antibiotic treatment. Here we design and demonstrate ‘tug-of-war’ optical tweezers that can facilitate the assessment of cell–cell adhesion—a key contributing factor to biofilm development, thanks to the combined actions of optical scattering and gradient forces. With a customized optical landscape distinct from that of conventional tweezers, not only can such ‘tug-of-war’ tweezers stably trap and stretch a rod-shaped bacterium in the observing plane, but, more importantly, they can also impose a tunable lateral force that pulls apart cellular clusters without any tethering or mechanical movement. As a proof of principle, we examined a Sinorhizobium meliloti strain that forms robust biofilms and found that the strength of intercellular adhesion depends on the growth medium. This technique may herald new photonic tools for optical manipulation and biofilm study, as well as other biological applications.

  10. The stability and optical gap of zinc oxide clusters (ZnO)n (n = 2-18).

    PubMed

    Zhao, Huxian; Chen, Xiaoshuang; Dong, Ruibin; Lu, Wei

    2012-01-01

    The stability and the optical band gap of the Zinc Oxide clusters (ZnO)n (n = 2-18) are investigated by using density functional theory (DFT) and the time-dependent density functional theory (TD-DFT), respectively. The differences between the HOMO-LUMO gap (delta(h-l)) and the optical gap (delta(opt)) are dramatic for small clusters (2 < or = n < or = 5). As the increasing of the cluster size, the differences become small. The results indicate that the stability and the optical gap are related to the sizes and symmetries of the clusters. Further, it is shown that the structures have much greater impact on the optical gap, there is the dipole-forbidden transition in the optical gap for high symmetric structures. PMID:22523957

  11. The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware

    SciTech Connect

    Tierney, Brian L; Vallentin, Matthias; Sommer, Robin; Lee, Jason; Leres, Craig; Paxson, Vern; Tierney, Brian

    2007-09-19

    In this work we present a NIDS cluster as a scalable solution for realizing high-performance, stateful network intrusion detection on commodity hardware. The design addresses three challenges: (i) distributing traffic evenly across an extensible set of analysis nodes in a fashion that minimizes the communication required for coordination, (ii) adapting the NIDS's operation to support coordinating its low-level analysis rather than just aggregating alerts; and (iii) validating that the cluster produces sound results. Prototypes of our NIDS cluster now operate at the Lawrence Berkeley National Laboratory and the University of California at Berkeley. In both environments the clusters greatly enhance the power of the network security monitoring.

  12. Tumor margin detection using optical biopsy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Li, Jiyou; Li, Zhongwu; Zhou, Lixin; Chen, Ke; Pu, Yang; He, Yong; Zhu, Ke; Li, Qingbo; Alfano, Robert R.

    2014-03-01

    The aim of this study is to use the Resonance Raman (RR) and fluorescence spectroscopic technique for tumor margin detection with high accuracy based on native molecular fingerprints of breast and gastrointestinal (GI) tissues. This tumor margins detection method utilizes advantages of RR spectroscopic technique in situ and in real-time to diagnose tumor changes providing powerful tools for clinical guiding intraoperative margin assessments and postoperative treatments. The tumor margin detection procedures by RR spectroscopy were taken by scanning lesion from center or around tumor region in ex-vivo to find the changes in cancerous tissues with the rim of normal tissues using the native molecular fingerprints. The specimens used to analyze tumor margins include breast and GI carcinoma and normal tissues. The sharp margin of the tumor was found by the changes of RR spectral peaks within 2 mm distance. The result was verified using fluorescence spectra with 300 nm, 320 nm and 340 nm excitation, in a typical specimen of gastric cancerous tissue within a positive margin in comparison with normal gastric tissues. This study demonstrates the potential of RR and fluorescence spectroscopy as new approaches with labeling free to determine the intraoperative margin assessment.

  13. A NEW REDUCTION OF THE BLANCO COSMOLOGY SURVEY: AN OPTICALLY SELECTED GALAXY CLUSTER CATALOG AND A PUBLIC RELEASE OF OPTICAL DATA PRODUCTS

    SciTech Connect

    Bleem, L. E.; Stalder, B.; Brodwin, M.; Busha, M. T.; Wechsler, R. H.; Gladders, M. D.; High, F. W.; Rest, A.

    2015-01-01

    The Blanco Cosmology Survey is a four-band (griz) optical-imaging survey of ∼80 deg{sup 2} of the southern sky. The survey consists of two fields centered approximately at (R.A., decl.) = (23{sup h}, –55°) and (5{sup h}30{sup m}, –53°) with imaging sufficient for the detection of L {sub *} galaxies at redshift z ≤ 1. In this paper, we present our reduction of the survey data and describe a new technique for the separation of stars and galaxies. We search the calibrated source catalogs for galaxy clusters at z ≤ 0.75 by identifying spatial over-densities of red-sequence galaxies and report the coordinates, redshifts, and optical richnesses, λ, for 764 galaxy clusters at z ≤ 0.75. This sample, >85% of which are new discoveries, has a median redshift of z = 0.52 and median richness λ(0.4 L {sub *}) = 16.4. Accompanying this paper we also release full survey data products including reduced images and calibrated source catalogs. These products are available at http://data.rcc.uchicago.edu/dataset/blanco-cosmology-survey.

  14. OPTICAL LINE EMISSION IN BRIGHTEST CLUSTER GALAXIES AT 0 < z < 0.6: EVIDENCE FOR A LACK OF STRONG COOL CORES 3.5 Gyr AGO?

    SciTech Connect

    McDonald, Michael

    2011-12-15

    In recent years the number of known galaxy clusters beyond z {approx}> 0.2 has increased drastically with the release of multiple catalogs containing >30,000 optically detected galaxy clusters over the range 0 < z < 0.6. Combining these catalogs with the availability of optical spectroscopy of the brightest cluster galaxy (BCG) from the Sloan Digital Sky Survey allows for the evolution of optical emission-line nebulae in cluster cores to be quantified. For the first time, the continuous evolution of optical line emission in BCGs over the range 0 < z < 0.6 is determined. A minimum in the fraction of BCGs with optical line emission is found at z {approx} 0.3, suggesting that complex, filamentary emission in systems such as Perseus A is a recent phenomenon. Evidence for an upturn in the number of strongly emitting systems is reported beyond z > 0.3, hinting at an earlier epoch of strong cooling. We compare the evolution of emission-line nebulae to the X-ray-derived cool core (CC) fraction from the literature over the same redshift range and find overall agreement, with the exception that an upturn in the strong CC fraction is not observed at z > 0.3. The overall agreement between the evolution of CCs and optical line emission at low redshift suggests that emission-line surveys of galaxy clusters may provide an efficient method of indirectly probing the evolution of CCs and thus provide insights into the balance of heating and cooling processes at early cosmic times.

  15. Microstructured Optical Fiber for X-ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  16. Approximate nearest neighbour field based optic disk detection.

    PubMed

    Ramakanth, S Avinash; Babu, R Venkatesh

    2014-01-01

    Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image. PMID:24290957

  17. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis.

    PubMed

    Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul

    2016-01-01

    We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%. PMID:27274993

  18. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

    PubMed Central

    Jeong, Ji-wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul

    2016-01-01

    We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%. PMID:27274993

  19. Ophiuchus: An optical view of a very massive cluster of galaxies hidden behind the Milky Way ⋆

    NASA Astrophysics Data System (ADS)

    Durret, F.; Wakamatsu, K.; Nagayama, T.; Adami, C.; Biviano, A.

    2015-11-01

    Context. The Ophiuchus cluster, at a redshift z = 0.0296, is known from X-rays to be one of the most massive nearby clusters, but its optical properties have not been investigated in detail because of its very low Galactic latitude. Aims: We discuss the optical properties of the galaxies in the Ophiuchus cluster, in particular, with the aim of understanding its dynamical properties better. Methods: We have obtained deep optical imaging in several bands with various telescopes, and applied a sophisticated method to model and subtract the contributions of stars to measure galaxy magnitudes as accurately as possible. The colour-magnitude relations obtained show that there are hardly any blue galaxies in Ophiuchus (at least brighter than r' ≤ 19.5), and this is confirmed by the fact that we only detect two galaxies in Hα. We also obtained a number of spectra with ESO-FORS2, which we combined with previously available redshifts. Altogether, we have 152 galaxies with spectroscopic redshifts in the 0.02 ≤ z ≤ 0.04 range, and 89 galaxies with both a redshift within the cluster redshift range and a measured r' band magnitude (limited to the Megacam 1 × 1 deg2 field). Results: A complete dynamical analysis based on the galaxy redshifts available shows that the overall cluster is relaxed and has a mass of 1.1 × 1015 M⊙. The Sernal-Gerbal method detects a main structure and a much smaller substructure, which are not separated in projection. Conclusions: From its dynamical properties derived from optical data, the Ophiuchus cluster seems overall to be a relaxed structure, or at most a minor merger, though in X-rays the central region (radius ~ 150 kpc) may show evidence for merging effects. Based on observations obtained with MegaPrime/MegaCam (program 10AF02), a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the

  20. Automatic detection of erythemato-squamous diseases using k-means clustering.

    PubMed

    Ubeyli, Elif Derya; Doğdu, Erdoğan

    2010-04-01

    A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases. PMID:20433056

  1. Optically Detected Scanned Probe Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Wolfe, Christopher; Bhallamudi, Vidya; Wang, Hailong; Du, Chunhui; Manuilov, Sergei; Adur, Rohan; Yang, Fengyuan; Hammel, P. Chris

    2014-03-01

    Magnetic resonance is a powerful tool for studying magnetic properties and dynamics of spin systems. Scanned magnetic probes can induce spatially localized resonance due to the strong magnetic field and gradient near the magnetic tip., Nitrogen vacancy centers (NV) in diamond provide a sensitive means of measuring magnetic fields at the nanoscale. We report preliminary results towards using the high sensitivity of NV detection with a scanned magnetic probe to study local magnetic phenomena. This work is supported by the Center for Emergent Materials at The Ohio State University, a NSF Materials Research Science and Engineering Center (DMR-0820414).

  2. Airborne optical detection of oil on water.

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1972-01-01

    Airborne measurements were made over controlled oil-spill test sites to evaluate various techniques, utilizing reflected sunlight, for detecting oil on water. The results of these measurements show that (1) maximum contrast between oil and water is in the UV and red portions of the spectrum; (2) minimum contrast is in the blue-green; (3) differential polarization appears to be a very promising technique; (4) no characteristic absorption bands, which would permit one oil to be distinguished from another, were discovered in the spectral regions measured; (5) sky conditions greatly influence the contrast between oil and water; and (6) highest contrast was achieved under overcast sky conditions.

  3. Cluster-based differential features to improve detection accuracy of focal cortical dysplasia

    NASA Astrophysics Data System (ADS)

    Yang, Chin-Ann; Kaveh, Mostafa; Erickson, Bradley

    2012-03-01

    In this paper, a computer aided diagnosis (CAD) system for automatic detection of focal cortical dysplasia (FCD) on T1-weighted MRI is proposed. We introduce a new set of differential cluster-wise features comparing local differences of the candidate lesional area with its surroundings and other GM/WM boundaries. The local differences are measured in a distributional sense using χ2 distances. Finally, a Support Vector Machine (SVM) classifier is used to classify the clusters. Experimental results show an 88% lesion detection rate with only 1.67 false positive clusters per subject. Also, the results show that using additional differential features clearly outperforms the result using only absolute features.

  4. High pressure studies on nanometer sized clusters: Structural, optical, and cooperative properties

    SciTech Connect

    Tolbert, S.H.

    1995-05-01

    High-pressure Se EXAFS is used to study pressure-induced structural transformations in CdSe nanocrystals. The transformation is wurtzite to rock salt, at a pressure much higher than in bulk. High-pressure XRD is used to confirm the EXAFS results. Diffraction peak widths indicate that nanocrystals do not fragment upon transformation. Optical absorption correlates with structural transformations and is used to measure transition pressures; transformation pressure increases smoothly as nanocrystal size decreases. Thermodynamics of transformation is modeled using an elevated surface energy in the high-pressure phase. High-pressure study of Si nanocrystals show large increases in transformation pressure in crystallites to 500{angstrom} diameter, and an overall change in crystallite shape upon transformation is seen from XRD line widths. C{sub 60} single crystals were studied using Raman scattering; results provide information about the clusters` rotational state. Optical properties of high-pressure phase CdSe clusters were studied.

  5. An optical processor for zero-crossing edge detection

    NASA Technical Reports Server (NTRS)

    Jared, David A.; Johnson, Kristina M.

    1993-01-01

    An optical processor for zero-crossing edge detection is presented, which consists of two defocused imaging systems to perform the Gaussian convolutions and a VLSI, ferroelectric liquid crystal spatial light modulator (SLM) to determine the zero-crossings. The zero-crossing SLM is a 32 x 32 array of pixels located on 100 microns centers. Each pixels contains a phototransistor, an auto-scaling amplifier, a zero-crossing detection circuit, and a liquid crystal modulating pad. Electrical and optical characteristics of the zero-crossing SLM are presented along with experimental results of the system.

  6. Spectral-clustering approach to Lagrangian vortex detection.

    PubMed

    Hadjighasem, Alireza; Karrasch, Daniel; Teramoto, Hiroshi; Haller, George

    2016-06-01

    One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows. PMID:27415358

  7. An Intrusion Detection System Based on Multi-Level Clustering for Hierarchical Wireless Sensor Networks.

    PubMed

    Butun, Ismail; Ra, In-Ho; Sankar, Ravi

    2015-01-01

    In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) "downward-IDS (D-IDS)" to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) "upward-IDS (U-IDS)" to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915

  8. An Intrusion Detection System Based on Multi-Level Clustering for Hierarchical Wireless Sensor Networks

    PubMed Central

    Butun, Ismail; Ra, In-Ho; Sankar, Ravi

    2015-01-01

    In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915

  9. A FOSSIL BULGE GLOBULAR CLUSTER REVEALED BY VERY LARGE TELESCOPE MULTI-CONJUGATE ADAPTIVE OPTICS

    SciTech Connect

    Ortolani, Sergio; Barbuy, Beatriz; Momany, Yazan; Saviane, Ivo; Jilkova, Lucie; Bica, Eduardo; Salerno, Gustavo M.; Jungwiert, Bruno E-mail: barbuy@astro.iag.usp.br E-mail: isaviane@eso.org E-mail: bica@if.ufrgs.br

    2011-08-10

    The globular cluster HP 1 is projected on the bulge, very close to the Galactic center. The Multi-Conjugate Adaptive Optics Demonstrator on the Very Large Telescope allowed us to acquire high-resolution deep images that, combined with first epoch New Technology Telescope data, enabled us to derive accurate proper motions. The cluster and bulge fields' stellar contents were disentangled through this process and produced an unprecedented definition in color-magnitude diagrams of this cluster. The metallicity of [Fe/H] {approx} -1.0 from previous spectroscopic analysis is confirmed, which together with an extended blue horizontal branch imply an age older than the halo average. Orbit reconstruction results suggest that HP 1 is spatially confined within the bulge.

  10. Detecting Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters

    SciTech Connect

    Baxter, Eric Jones

    2014-08-01

    Clusters of galaxies gravitationally lens the Cosmic Microwave Background (CMB) leading to a distinct signal in the CMB on arcminute scales. Measurement of the cluster lensing effect offers the exciting possibility of constraining the masses of galaxy clusters using CMB data alone. Improved constraints on cluster masses are in turn essential to the use of clusters as cosmological probes: uncertainties in cluster masses are currently the dominant systematic affecting cluster abundance constraints on cosmology. To date, however, the CMB cluster lensing signal remains undetected because of its small magnitude and angular size. In this thesis, we develop a maximum likelihood approach to extracting the signal from CMB temperature data. We validate the technique by applying it to mock data designed to replicate as closely as possible real data from the South Pole Telescope’s (SPT) Sunyaev-Zel’dovich (SZ) survey: the effects of the SPT beam, transfer function, instrumental noise and cluster selection are incorporated. We consider the effects of foreground emission on the analysis and show that uncertainty in amount of foreground lensing results in a small systematic error on the lensing constraints. Additionally, we show that if unaccounted for, the SZ effect leads to unacceptably large biases on the lensing constraints and develop an approach for removing SZ contamination. The results of the mock analysis presented here suggest that a 4σ first detection of the cluster lensing effect can be achieved with current SPT-SZ data.

  11. Optical interferometry and the detection of evidence of life

    NASA Astrophysics Data System (ADS)

    Burke, B. F.

    An examination of the possibility of detecting planetary systems of other stars indicates that a suitably designed optical interferometer, following principles that have been developed in radio astronomy, can detect major planets of solar-type stars easily at a distance of ten parsecs from the sun. Out to at least six parsecs distance, images of earth-like planets of the dozen or so solar-type stars should be detectable. Spectroscopic study, with the same interferometric systems, offers a good chance of detecting life on such planets if the atmospheric signature is as pronounced as it is in the terrestrial case.

  12. Optical and SAR data integration for automatic change pattern detection

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Susaki, J.

    2014-09-01

    Automatic change pattern mapping in urban and sub-urban area is important but challenging due to the diversity of urban land use pattern. With multi-sensor imagery, it is possible to generate multidimensional unique information of Earth surface features that allow developing a relationship between a response of each feature to synthetic aperture radar (SAR) and optical sensors to track the change automatically. Thus, a SAR and optical data integration framework for change detection and a relationship for automatic change pattern detection were developed. It was carried out in three steps: (i) Computation of indicators from SAR and optical images, namely: normalized difference ratio (NDR) from multi-temporal SAR images and the normalized difference vegetation index difference (NDVI) from multi-temporal optical images, (ii) computing the change magnitude image from NDR and ΔNDVI and delineating the change area and (iii) the development of an empirical relationship, for automatic change pattern detection. The experiment was carried out in an outskirts part of Ho Chi Minh City, one of the fastest growing cities in the world. The empirical relationship between the response of surface feature to optical and SAR imagery has successfully delineated six changed classes in a very complex urban sprawl area that was otherwise impossible with multi-spectral imagery. The improvement of the change detection results by making use of the unique information on both sensors, optical and SAR, is also noticeable with a visual inspection and the kappa index was increased by 0.13 (0.75 to 0.88) in comparison to only optical images.

  13. Optical biopsy - a new armamentarium to detect disease using light

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Optical spectroscopy has been considered a promising method for cancer detection for past thirty years because of its advantages over the conventional diagnostic methods of no tissue removal, minimal invasiveness, rapid diagnoses, less time consumption and reproducibility since the first use in 1984. It offers a new armamentarium. Human tissue is mainly composed of extracellular matrix of collagen fiber, proteins, fat, water, and epithelial cells with key molecules in different structures. Tissues contain a number of key fingerprint native endogenous fluorophore molecules, such as tryptophan, collagen, elastin, reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and porphyrins. It is well known that abnormalities in metabolic activity precede the onset of a lot of main diseases: carcinoma, diabetes mellitus, atherosclerosis, Alzheimer, and Parkinson's disease, etc. Optical spectroscopy may help in detecting various disorders. Conceivably the biochemical or morphologic changes that cause the spectra variations would appear earlier than the histological aberration. Therefore, "optical biopsy" holds a great promise as clinical tool for diagnosing early stage of carcinomas and other deceases by combining with available photonic technology (e.g. optical fibers, photon detectors, spectrographs spectroscopic ratiometer, fiber-optic endomicroscope and nasopharyngoscope) for in vivo use. This paper focuses on various methods available to detect spectroscopic changes in tissues, for example to distinguish cancerous prostate tissues and/or cells from normal prostate tissues and/or cells. The methods to be described are fluorescence, stokes shift, scattering, Raman, and time-resolved spectroscopy will be reviewed. The underlying physical and biological basis for these optical approaches will be discussed with examples. The idea is to present some of the salient works to show the usefulness and methods of Optical Biopsy for cancer detection and

  14. FDTD study of the formation of optical vortices associated with core-shell nanoparticle cluster

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mahfuzur; Lu, Jin You; Ni, George; Fang, Nicholas Xuanlai; Zhang, Tiejun; Ghaferi, Amal Al

    2015-03-01

    Light absorbing plasmonic metal-dielectric nanoparticles suspended in water, or nanofluids have recently been experimentally demonstrated to produce steam at high efficiencies upon solar illumination. This approach localizes high temperatures to the interior of the liquid through efficient trapping of incoming light via scattering and absorption mechanisms. In suspensions, nanoparticles may form clusters due to surface wetting properties, and little work has focused on understanding the optical properties of clusters. In this work, we use the FDTD method to accurately visualize the optical power flow through various plasmonic metal-silica core-shell nanoparticle pairs at different inter-particle separations (10-100 nm). At these separations phase singularities of the power flow can occur, such as vortices of light inside the dielectric core which can enhance the absorption cross-section of the cluster. We study the conditions required to form these vortices. We also consider titanium nitride as shell, other than the widely studied noble metals to visualize the extinction cross-section of a cluster which depends on the separation, and the permittivity of the dielectric core. The authors would like to acknowledge the valuable support from Masdar Institute and Massachusetts Institute of Technology for the soler thermal project grant.

  15. Fingerprint fake detection by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Meissner, Sven; Breithaupt, Ralph; Koch, Edmund

    2013-03-01

    The most established technique for the identification at biometric access control systems is the human fingerprint. While every human fingerprint is unique, fingerprints can be faked very easily by using thin layer fakes. Because commercial fingerprint scanners use only a two-dimensional image acquisition of the finger surface, they can only hardly differentiate between real fingerprints and fingerprint fakes applied on thin layer materials. A Swept Source OCT system with an A-line rate of 20 kHz and a lateral and axial resolution of approximately 13 μm, a centre wavelength of 1320 nm and a band width of 120 nm (FWHM) was used to acquire fingerprints and finger tips with overlying fakes. Three-dimensional volume stacks with dimensions of 4.5 mm x 4 mm x 2 mm were acquired. The layering arrangement of the imaged finger tips and faked finger tips was analyzed and subsequently classified into real and faked fingerprints. Additionally, sweat gland ducts were detected and consulted for the classification. The manual classification between real fingerprints and faked fingerprints results in almost 100 % correctness. The outer as well as the internal fingerprint can be recognized in all real human fingers, whereby this was not possible in the image stacks of the faked fingerprints. Furthermore, in all image stacks of real human fingers the sweat gland ducts were detected. The number of sweat gland ducts differs between the test persons. The typical helix shape of the ducts was observed. In contrast, in images of faked fingerprints we observe abnormal layer arrangements and no sweat gland ducts connecting the papillae of the outer fingerprint and the internal fingerprint. We demonstrated that OCT is a very useful tool to enhance the performance of biometric control systems concerning attacks by thin layer fingerprint fakes.

  16. Optimal mode transformations for linear-optical cluster-state generation

    DOE PAGES

    Uskov, Dmitry B.; Lougovski, Pavel; Alsing, Paul M.; Fanto, Michael L.; Kaplan, Lev; Smith, Amos Matthew

    2015-06-15

    In this paper, we analyze the generation of linear-optical cluster states (LOCSs) via sequential addition of one and two qubits. Existing approaches employ the stochastic linear-optical two-qubit controlled-Z (CZ) gate with success rate of 1/9 per operation. The question of optimality of the CZ gate with respect to LOCS generation has remained open. We report that there are alternative schemes to the CZ gate that are exponentially more efficient and show that sequential LOCS growth is indeed globally optimal. We find that the optimal cluster growth operation is a state transformation on a subspace of the full Hilbert space. Finally,more » we show that the maximal success rate of postselected entangling n photonic qubits or m Bell pairs into a cluster is (1/2)n-1 and (1/4)m-1, respectively, with no ancilla photons, and we give an explicit optical description of the optimal mode transformations.« less

  17. Optimal mode transformations for linear-optical cluster-state generation

    SciTech Connect

    Uskov, Dmitry B.; Lougovski, Pavel; Alsing, Paul M.; Fanto, Michael L.; Kaplan, Lev; Smith, Amos Matthew

    2015-06-15

    In this paper, we analyze the generation of linear-optical cluster states (LOCSs) via sequential addition of one and two qubits. Existing approaches employ the stochastic linear-optical two-qubit controlled-Z (CZ) gate with success rate of 1/9 per operation. The question of optimality of the CZ gate with respect to LOCS generation has remained open. We report that there are alternative schemes to the CZ gate that are exponentially more efficient and show that sequential LOCS growth is indeed globally optimal. We find that the optimal cluster growth operation is a state transformation on a subspace of the full Hilbert space. Finally, we show that the maximal success rate of postselected entangling n photonic qubits or m Bell pairs into a cluster is (1/2)n-1 and (1/4)m-1, respectively, with no ancilla photons, and we give an explicit optical description of the optimal mode transformations.

  18. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Reinhard, D.; Larson, D. J.

    2015-07-01

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 1024 m-3 and 1.2 × 1024 m-3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti-Y-O- clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  19. Optical biosensor for simultaneous detection of captan and organophosphorus compounds.

    PubMed

    Choi, Jeong-Woo; Kim, Young-Kee; Oh, Byung-Keun; Song, Sun-Young; Lee, Won Hong

    2003-05-01

    The optical biosensor consisting of GST and acetylcholinesterase (AChE)-immobilized gel film was developed to detect captan and organophosphorus compounds simultaneously in contaminated water. The sensing scheme was based on the measurement of decrease of products formation (s-(2,4-dinitrobenzene) glutathione and alpha-naphthol by GST and AChE, respectively) due to the inhibition by captan and organophosphorus compounds. The absorbance of s-(2,4-dinitrobenzene) glutathione and alpha-naphthol was detected at 400 and 500 nm, respectively, by a proposed optical biosensor system. It was observed that AChE was inhibited by both captan and organophosphorus compounds, and GST was inhibited only by captan. The simultaneous detection and quantification of captan and organophosphorus compounds could be successfully achieved by the proposed sensor system. The proposed biosensor could successfully detect the captan and organophosphorus compounds concentration from 0 to 2 ppm.

  20. Detection of abnormal events via optical flow feature analysis.

    PubMed

    Wang, Tian; Snoussi, Hichem

    2015-03-24

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm.

  1. Detection of Abnormal Events via Optical Flow Feature Analysis

    PubMed Central

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  2. New Optical Methods for Liveness Detection on Fingers

    PubMed Central

    Dolezel, Michal; Vana, Jan; Brezinova, Eva; Yim, Jaegeol; Shim, Kyubark

    2013-01-01

    This paper is devoted to new optical methods, which are supposed to be used for liveness detection on fingers. First we describe the basics about fake finger use in fingerprint recognition process and the possibilities of liveness detection. Then we continue with introducing three new liveness detection methods, which we developed and tested in the scope of our research activities—the first one is based on measurement of the pulse, the second one on variations of optical characteristics caused by pressure change, and the last one is based on reaction of skin to illumination with different wavelengths. The last part deals with the influence of skin diseases on fingerprint recognition, especially on liveness detection. PMID:24151584

  3. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics

    USGS Publications Warehouse

    Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.

  4. Comparison of Bayesian Clustering and Edge Detection Methods for Inferring Boundaries in Landscape Genetics

    PubMed Central

    Safner, Toni; Miller, Mark P.; McRae, Brad H.; Fortin, Marie-Josée; Manel, Stéphanie

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods’ effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. PMID:21541031

  5. Cluster detection of diseases in heterogeneous populations: an alternative to scan methods.

    PubMed

    Ramis, Rebeca; Gómez-Barroso, Diana; López-Abente, Gonzalo

    2014-05-01

    Cluster detection has become an important part of the agenda of epidemiologists and public health authorities, the identification of high- and low-risk areas is fundamental in the definition of public health strategies and in the suggestion of potential risks factors. Currently, there are different cluster detection techniques available, the most popular being those using windows to scan the areas within the studied region. However, when these areas are heterogeneous in populations' sizes, scan window methods can lead to inaccurate conclusions. In order to perform cluster detection over heterogeneously populated areas, we developed a method not based on scanning windows but instead on standard mortality ratios (SMR) using irregular spatial aggregation (ISA). Its extension, i.e. irregular spatial aggregation with covariates (ISAC), includes covariates with residuals from Poisson regression. We compared the performance of the method with the flexible shaped spatial scan statistic (FlexScan) using mortality data for stomach and bladder cancer for 8,098 Spanish towns. The results show a collection of clusters for stomach and bladder cancer similar to that detected by ISA and FlexScan. However, in general, clusters detected by FlexScan were bigger and include towns with SMR, which were not statistically significant. For bladder cancer, clusters detected by ISAC differed from those detected by ISA and FlexScan in shape and location. The ISA and ISAC methods could be an alternative to the traditional scan window methods for cluster detection over aggregated data when the areas under study are heterogeneous in terms of population. The simplicity and flexibility of the methods make them more attractive than methods based on more complicated algorithms. PMID:24893029

  6. Optical detection of brain tumors using quantum dots

    NASA Astrophysics Data System (ADS)

    Toms, Steven A.; Daneshvar, Hamid; Muhammad, Osman; Jackson, Heather; Vogelbaum, Michael A.; Bruchez, Marcel

    2005-11-01

    Introduction: Brain tumor margin detection remains a challenging problem in the operative resection of gliomas. A novel nanoparticle, a PEGylated quantum dot, has been shown to be phagocytized by macrophages in vivo. This feature may allow quantum dots to co-localize with brain tumors and serve as an optical aid in the surgical resection of brain tumors. Methods: Sprague-Daly rats were injected intracranially with C6 gliosarcoma cell lines to establish tumors. Two weeks after implantation of brain tumors, PEGylated quantum dots emitting at 705 nm (PEG-705 QD) were injected via the tail vein. Twenty-four hours post PEG-705 QD injection, the animals were sacrificed and their tissues examined. Results: PEGylated quantum dots are avidly phagocytized by macrophages and are taken up by liver, spleen and lymph nodes. Macrophages and microglia co-localize with glioma cells, carrying the optical nanoparticle, the quantum dot. Excitation of the PEG-705 quantum dots gives off a deep red fluorescence detectable with charge coupled device (CCD) cameras, optical spectroscopy units, and in dark field fluorescence microscopy. Conclusions: PEG-705QDs co-localize with brain tumors and may serve as an optical adjunct to aid in the operative resection of gliomas. The particles may be visualized in surgery with CCD cameras or detected by optical spectroscopy.

  7. Optical Identification of He White Dwarfs Orbiting Four Millisecond Pulsars in the Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Cadelano, M.; Pallanca, C.; Ferraro, F. R.; Salaris, M.; Dalessandro, E.; Lanzoni, B.; Freire, P. C. C.

    2015-10-01

    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT, and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color-magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf (WD) cooling sequences, consistent with the cooling tracks of He WDs with masses between 0.15 M⊙ and 0.20 M⊙. For each identified companion, mass, cooling age, temperature, and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded at a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non-degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2σ astrometric uncertainty from the radio positions of 47TucH and 47TucI, but the available data prevent us from firmly assessing whether they are the true companions of these two MSPs. Based on observations collected with the NASA/ESA HST (Prop. 12950), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  8. Contactless ultrasound detection using an optical ring resonator

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Hyun; Luo, Wei; Zhang, Cheng; Guo, L. Jay; Fan, Xudong

    2016-03-01

    We develop an air-couple ultrasound detector based on an optical fluidic ring resonator (OFRR) suspended on a Ushaped holder. The OFRR is a glass capillary with an outer diameter of approximately 130 μm and a wall thickness in the order of 1~10 μm. The circular cross section of the OFRR supports the high-Q whispering gallery mode (WGM) that circulates along the circumference. Incoming ultrasound pressure results in a small refractive index change in the glass wall and geometrical change in the OFRR shape, both of which in turn lead to a spectral shift in the WGM that can be sensitively detected owing to WGM with high optical Q-factors (>107). Due to the suspension nature of the OFRR, the ultrasound detection can be carried out in air, which is advantageous in comparison with other ultrasound detections that require acoustic coupling media such water, gel or solid. The sensitivity can be tuned and optimized by changing the diameter and wall thickness. Besides the optical detection, we also demonstrate optomechanical ultrasound mixing, in which optomechanical vibration is first excited within the OFRR that subsequently modulates the ultrasound wave. Our work will lead to the development of a new type of air-coupled ultrasound detector that can be used for photo-acoustic imaging, non-invasive ultrasound detection of external objects, and ultrasound detection/characterization of internal objects (such as particles and liquids) flowing inside the capillary.

  9. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2015-12-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  10. Integrated optical biosensor for rapid detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mathesz, Anna; Valkai, Sándor; Újvárosy, Attila; Aekbote, Badri; Sipos, Orsolya; Stercz, Balázs; Kocsis, Béla; Szabó, Dóra; Dér, András

    2016-02-01

    In medical diagnostics, rapid detection of pathogenic bacteria from body fluids is one of the basic issues. Most state-of-the-art methods require optical labeling, increasing the complexity, duration and cost of the analysis. Therefore, there is a strong need for developing selective sensory devices based on label-free techniques, in order to increase the speed, and reduce the cost of detection. In a recent paper, we have shown that an integrated optical Mach-Zehnder interferometer, a highly sensitive all-optical device made of a cheap photopolymer, can be used as a powerful lab-on-a-chip tool for specific, labelfree detection of proteins. By proper modifications of this technique, our interferometric biosensor was combined with a microfluidic system allowing the rapid and specific detection of bacteria from solutions, having the surface of the sensor functionalized by bacterium-specific antibodies. The experiments proved that the biosensor was able to detect Escherichia coli bacteria at concentrations of 106 cfu/ml within a few minutes, that makes our device an appropriate tool for fast, label-free detection of bacteria from body fluids such as urine or sputum. On the other hand, possible applications of the device may not be restricted to medical microbiology, since bacterial identification is an important task in microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies, as well.

  11. Clarifying Our View of Milky Way Massive Young Star Clusters with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Lu, Jessica R.; Ghez, A. M.; McCrady, N.; Yelda, S.

    2011-01-01

    We present Keck laser guide star adaptive optics (AO) observations of the massive young star clusters W51 G48.9-0.3 and W49A Cluster 1 in an effort to test the universality of the initial mass function (IMF) in extreme star forming environments. High-precision AO astrometry over a 1 year time baseline is successfully used to separate cluster members from contaminating field objects with differential proper motions as small as 0.5 mas/yr (15 km/s at 6 pc). We have developed improved AO photometric analysis techniques and use the near-infrared photometry of the proper motion selected cluster members to construct mass functions corrected for spatially varying extinction and incompleteness. Contrary to previous results for W51, we measure a mass function that has a high-mass end slope consistent with a Salpeter IMF and find that the observed cluster mass within 0.3 pc is <700 solar masses between 1 and 60 solar masses.

  12. Novel optical sensors for detection of toxins, viruses and bacteria

    NASA Astrophysics Data System (ADS)

    Emmerson, Gregory D.; Sparrow, Ian J. G.; Bhatta, Devaki; SohnaSohna, Jean E.

    2008-10-01

    A novel optical sensor system for rapid, sensitive and robust biological detection is presented. Sensor elements based on integrated optical circuits confine all optical signals into a planar format, resulting in a small, low-cost and mechanically stable refractive index sensor, without any external bulk optics. Consequently, the sensor elements are able to operate in real-world environments, resilient to vibration and temperature changes, whilst maintaining refractive index resolution of 10-6. Oxide surfaces on the sensor are ideal for protein attachment and have a long lifetime in buffer solutions (>100hrs). Real-time, label-free detection of biological agents has been demonstrated using antibodies attached to the sensor surface. The sensor design results in a large penetration depth of the sensing light, up to 1μm into the sample liquid, conferring the ability to detect various classes of biological targets, spanning toxins, viruses and bacteria. Each sensing element utilizes parallel multiple wavelength data to provide additional information at the point of measurement, resulting in on-chip temperature and strain referencing, focused towards increased accuracy and reduction of false alarms. The large size range of biological detection, coupled with the long lifetime of the sensors makes the system ideally suited to applications ranging from medical diagnostics to confirmatory detectors for homeland security

  13. Channel simulation for direct-detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct-detection optical communication system. The system is capable of providing signal fading statistics which obey log-normal, beta, Rayleigh, Ricean, or chi-square density functions. Experimental tests of the performance of the channel simulator are presented.

  14. Channel simulation for direct detection optical communication systems

    NASA Technical Reports Server (NTRS)

    Tycz, M.; Fitzmaurice, M. W.

    1974-01-01

    A technique is described for simulating the random modulation imposed by atmospheric scintillation and transmitter pointing jitter on a direct detection optical communication system. The system is capable of providing signal fading statistics which obey log normal, beta, Rayleigh, Ricean or chi-squared density functions. Experimental tests of the performance of the Channel Simulator are presented.

  15. Fiber-optic acoustic-emission sensors and detection

    NASA Astrophysics Data System (ADS)

    Borinski, Jason W.; Clark, Richard L., Jr.; Furrow, A. Paige C.; Duke, John C., Jr.; Horne, Michael R.

    2000-05-01

    Optical fiber sensors are rapidly emerging as viable alternatives to piezoelectric devices as effective means of detecting and quantifying acoustic emission (AE). Compared to traditional piezoelectric-based sensors, optical fiber sensors offer much smaller size, reduced weight, ability to operate at temperatures up to 2000 degrees Celsius, immunity to electromagnetic interference, resistance to corrosive environments, inherent safety within flammable environments, and the ability to multiplex multiple sensors on a single fiber. The authors have investigated low-profile fiber optic- based AE sensors for non-destructive evaluation (NDE) systems. In particular, broadband optical fiber sensors were developed for monitoring acoustic emission for NDE of pressurized composite vessels. The authors conducted experiments by surface attaching sensors to aluminum compact tension specimens using a piezoelectric transducer as a reference sensor. Both the fiber optic and piezoelectric sensors accurately measured a representative acoustic event. The response of the fiber optic AE sensors were also compared to existing piezoelectric sensors during pencil lead break tests on an aluminum panel. The results indicate that optical fiber AE sensors can be used as highly sensitive transducers in many applications where conventional piezoelectric transducers are not suited.

  16. Optical Detection of Organic Chemical Biosignatures at Hydrothermal Vents

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Lane, A. L.; Bhartia, R.; Hug, W. H.

    2004-01-01

    We have developed a non-contact, optical life detection instrument that can detect organic chemical biosignatures in a number of different environments, including dry land, shallow aqueous, deep marine or in ice. Hence, the instrument is appropriate as a biosignature survey tool both for Mars exploration or in situ experiments in an ice-covered ocean such as one might wish to explore on Europa. Here, we report the results we obtained on an expedition aboard the Russian oceanographic vessel Akademik Mstislav Keldysh to hydrothermal vent sites in the Pacific Ocean using our life detection instrument MCDUVE, a multichannel, deep ultraviolet excitation fluorescence detector. MCDUVE detected organic material distribution on rocks near the vent, as well as direct detection of organisms, both microbial and microscopic. We also were able to detect organic material issuing directly from vent chimneys, measure the organic signature of the water column as we ascended, and passively observe the emission of light directly from some vents.

  17. Optical Cluster-Finding with an Adaptive Matched-Filter Technique: Algorithm and Comparison with Simulations

    SciTech Connect

    Dong, Feng; Pierpaoli, Elena; Gunn, James E.; Wechsler, Risa H.

    2007-10-29

    We present a modified adaptive matched filter algorithm designed to identify clusters of galaxies in wide-field imaging surveys such as the Sloan Digital Sky Survey. The cluster-finding technique is fully adaptive to imaging surveys with spectroscopic coverage, multicolor photometric redshifts, no redshift information at all, and any combination of these within one survey. It works with high efficiency in multi-band imaging surveys where photometric redshifts can be estimated with well-understood error distributions. Tests of the algorithm on realistic mock SDSS catalogs suggest that the detected sample is {approx} 85% complete and over 90% pure for clusters with masses above 1.0 x 10{sup 14}h{sup -1} M and redshifts up to z = 0.45. The errors of estimated cluster redshifts from maximum likelihood method are shown to be small (typically less that 0.01) over the whole redshift range with photometric redshift errors typical of those found in the Sloan survey. Inside the spherical radius corresponding to a galaxy overdensity of {Delta} = 200, we find the derived cluster richness {Lambda}{sub 200} a roughly linear indicator of its virial mass M{sub 200}, which well recovers the relation between total luminosity and cluster mass of the input simulation.

  18. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

    PubMed

    Tango, Toshiro; Takahashi, Kunihiko

    2012-12-30

    Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan.

  19. Hierarchical clustering of EMD based interest points for road sign detection

    NASA Astrophysics Data System (ADS)

    Khan, Jesmin; Bhuiyan, Sharif; Adhami, Reza

    2014-04-01

    This paper presents an automatic road traffic signs detection and recognition system based on hierarchical clustering of interest points and joint transform correlation. The proposed algorithm consists of the three following stages: interest points detection, clustering of those points and similarity search. At the first stage, good discriminative, rotation and scale invariant interest points are selected from the image edges based on the 1-D empirical mode decomposition (EMD). We propose a two-step unsupervised clustering technique, which is adaptive and based on two criterion. In this context, the detected points are initially clustered based on the stable local features related to the brightness and color, which are extracted using Gabor filter. Then points belonging to each partition are reclustered depending on the dispersion of the points in the initial cluster using position feature. This two-step hierarchical clustering yields the possible candidate road signs or the region of interests (ROIs). Finally, a fringe-adjusted joint transform correlation (JTC) technique is used for matching the unknown signs with the existing known reference road signs stored in the database. The presented framework provides a novel way to detect a road sign from the natural scenes and the results demonstrate the efficacy of the proposed technique, which yields a very low false hit rate.

  20. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.

    PubMed

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-04-18

    3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection.

  1. Fiber-Optic Based Compact Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1995-01-01

    A propellant leak detection system based on Raman scattering principles is introduced. The proposed system is flexible and versatile as the result of the use of optical fibers. It is shown that multiple species can be monitored simultaneously. In this paper oxygen, nitrogen, carbon monoxide, and hydrogen are detected and monitored. The current detection sensitivity for both hydrogen and carbon monoxide is 1% partial pressure at ambient conditions. The sensitivity for oxygen and nitrogen is 0.5% partial pressure. The response time to changes in species concentration is three minutes. This system can be used to monitor multiple species at several locations.

  2. Epithelial cancer detection by oblique-incidence optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Uribe, Alejandro; Balareddy, Karthik C.; Zou, Jun; Wang, Kenneth K.; Duvic, Madeleine; Wang, Lihong V.

    2009-02-01

    This paper presents a study on non-invasive detection of two common epithelial cancers (skin and esophagus) based on oblique incidence diffuse reflectance spectroscopy (OIDRS). An OIDRS measurement system, which combines fiber optics and MEMS technologies, was developed. In our pilot studies, a total number of 137 cases have been measured in-vivo for skin cancer detection and a total number of 20 biopsy samples have been measured ex-vivo for esophageal cancer detection. To automatically differentiate the cancerous cases from benign ones, a statistical software classification program was also developed. An overall classification accuracy of 90% and 100% has been achieved for skin and esophageal cancer classification, respectively.

  3. Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer.

    PubMed

    Jang, Tae Seong; Lee, Seung Seok; Kwon, Il Bum; Lee, Wang Joo; Lee, Jung Ju

    2002-06-01

    This paper describes a fiber optic sensor suitable for noncontact detection of ultrasonic waves. This sensor is based on the fiber optic Sagnac interferometer, which has a path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. Ultrasonic oscillations produced by conventional ultrasonic piezoelectric transducers were successfully detected, and the performance of this interferometer was investigated by a power spectrum analysis of the output signal. Based on the validation of the fiber optic Sagnac interferometer, noncontact detection of laser-generated surface waves was performed. The configured Sagnac interferometer is very effective for the detection of small displacement with high frequency, such as ultrasonic waves used in conventional nondestructive testing (NDT).

  4. Evanescent Wave Fiber Optic Biosensor for Salmonella Detection in Food

    PubMed Central

    Valadez, Angela M.; Lana, Carlos A.; Tu, Shu-I; Morgan, Mark T.; Bhunia, Arun K.

    2009-01-01

    Salmonella enterica is a major food-borne pathogen of world-wide concern. Sensitive and rapid detection methods to assess product safety before retail distribution are highly desirable. Since Salmonella is most commonly associated with poultry products, an evanescent wave fiber-optic assay was developed to detect Salmonella in shell egg and chicken breast and data were compared with a time-resolved fluorescence (TRF) assay. Anti-Salmonella polyclonal antibody was immobilized onto the surface of an optical fiber using biotin-avidin interactions to capture Salmonella. Alexa Fluor 647-conjugated antibody (MAb 2F-11) was used as the reporter. Detection occurred when an evanescent wave from a laser (635 nm) excited the Alexa Fluor and the fluorescence was measured by a laser-spectrofluorometer at 710 nm. The biosensor was specific for Salmonella and the limit of detection was established to be 103 cfu/mL in pure culture and 104 cfu/mL with egg and chicken breast samples when spiked with 102 cfu/mL after 2–6 h of enrichment. The results indicate that the performance of the fiber-optic sensor is comparable to TRF, and can be completed in less than 8 h, providing an alternative to the current detection methods. PMID:22346728

  5. MEMS-based extreme adaptive optics for planet detection

    SciTech Connect

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  6. Fluorescence-based multiplex protein detection using optically encoded microbeads.

    PubMed

    Jun, Bong-Hyun; Kang, Homan; Lee, Yoon-Sik; Jeong, Dae Hong

    2012-01-01

    Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.

  7. A novel fibre-optic system for methane detection

    NASA Astrophysics Data System (ADS)

    Wu, Xijun; Wang, Yutian; Chen, Leilei; Huang, Xinyan

    2007-11-01

    A novel fibre-optic methane detection system was proposed, which involved sampled fibre grating and improved differential absorption detection technique. By this method, near-infrared equal-spaced multi absorption line of methane was detected simultaneously, and that gas weak absorption detection theory was developed. Using the comb shaped filter characteristic of sampled fibre grating, R2, R3 and R4 line of molecule absorption spectrum in 2ν 3 overtone band around 1.66μm was measured at one time. Two sampled fibre gratings of same type were used to fulfill the task of difference absorption detection. One sampled grating worked as measure grating with its reflection spectrum corresponding to the absorption line. The other grating worked as reference grating with its reflection spectrum deviate from that of measure grating to some extent. Chirped fibre grating with its central wavelength around R3 was adopted as optical band-pass filter. The light power of the three absorption line and the three reference wavelength was detected alternately by PIN PD at the same time. So that difference absorption detection was achieved. The effect of light source instability was avoided by ratio treatment. The validity of the system was verified by experiments.

  8. A YOUNG STELLAR CLUSTER WITHIN THE RCW41 H II REGION: DEEP NIR PHOTOMETRY AND OPTICAL/NIR POLARIMETRY

    SciTech Connect

    Santos, Fabio P.; Franco, Gabriel A. P.; Roman-Lopes, Alexandre E-mail: franco@fisica.ufmg.br

    2012-06-01

    The RCW41 star-forming region is embedded within the Vela Molecular Ridge, hosting a massive stellar cluster surrounded by a conspicuous H II region. Understanding the role of interstellar magnetic fields and studying the newborn stellar population is crucial to building a consistent picture of the physical processes acting on this kind of environment. We carried out a detailed study of the interstellar polarization toward RCW41 with data from an optical and near-infrared polarimetric survey. Additionally, deep near-infrared images from the 3.5 meter New Technology Telescope were used to study the photometric properties of the embedded young stellar cluster, revealing several YSO candidates. By using a set of pre-main-sequence isochrones, a mean cluster age in the range 2.5-5.0 million years was determined, and evidence of sequential star formation was revealed. An abrupt decrease in R-band polarization degree was noticed toward the central ionized area, probably due to low grain alignment efficiency caused by the turbulent environment and/or the weak intensity of magnetic fields. The distortion of magnetic field lines exhibits dual behavior, with the mean orientation outside the area approximately following the borders of the star-forming region and directed radially toward the cluster inside the ionized area, in agreement with simulations of expanding H II regions. The spectral dependence of polarization allowed a meaningful determination of the total-to-selective extinction ratio by fittings of the Serkowski relation. Furthermore, a large rotation of polarization angle as a function of wavelength was detected toward several embedded stars.

  9. Fiber optic sensor technology for air conformal ice detection

    NASA Astrophysics Data System (ADS)

    Ikiades, Aris A.; Armstrong, David J.; Hare, George G.; Konstantaki, Mary; Crossley, Samuel D.

    2004-03-01

    Ice accretion on flying surfaces affects the aerodynamic performance and handling qualities of aircraft, and may require different pilot corrective action, dependent upon the surface that ice is accreting onto. The current methodology for ice detection usually relies on an indirect method, normally based on ambient air temperature, and liquid water content. When a pre-set threshold level is reached, the ice protection system is activated, whether or not ice is accreting on critical surfaces. This method is not cost effective or efficient for an ice protection system. Air Conformal Ice Detection System (ACIDS) obviates these problems by using a 'direct" method of detection and measurement the presence and thickness of ice. This paper outlines some of the preliminary experimental work done on the optical properties of ice grown in an icing tunnel on the leading edge of an aerofoil leading to the development of a Fibre Optic Direct Ice Detector sensor (DID) with emphasis. The result of this studies have shown that with suitable processing it is possible to use fibre optic sensors to determine the thickness of ice and texture of the ice accreted in the vicinity of the sensor. In the latter part of this paper basic fibre optic architecture is discussed and together with some preliminary results for representative icing runs.

  10. Fiber optic biosensor for the detection of TNT

    NASA Astrophysics Data System (ADS)

    Shriver-Lake, Lisa C.; Breslin, Kristen A.; Golden, Joel P.; Judd, Linda L.; Choi, John; Ligler, Frances S.

    1995-01-01

    Explosives are one of many hazardous waste problems of concern to the Department of Defense. Defective storage facilities or byproducts of weapons manufacture have led to contamination of soil and water with explosives. Most explosives are toxic, thus posing an ecological and human health hazard. The ability to do on-site or down-stream detection of explosives will be invaluable for site characterization and remediation by saving both time and money. The evanescent wave fiber optic biosensor that was developed at NRL has been modified for the detection of trinitrotoluene (TNT), by developing a competitive immunoassay on the surface of an optical probe. A fluorescently labelled analog of TNT, trinitrobenzenesulfonic acid (TNB), was used as the competitor. Enzyme-linked immunosorbent assays were performed to determine the best fluorescently labeled competitor available to be able to achieve high sensitivity in the fiber optic assay. For the competition assay, 7.5 ng/ml Cyanine 5-ethylenediamine-labelled TNB (Cy5-EDA-TNB) was exposed to an antibody-coated optical fiber generating specific signal above background that corresponds to the 100% or reference signal. Inhibition of this signal was observed in the presence of TNT with the percent inhibition proportional to the TNT concentration in the sample. Detection sensitivities in aqueous solutions containing 10 ng/ml TNT (8 ppb) have been achieved using this system.

  11. Ultrafast Radiation Detection by Modulation of an Optical Probe Beam

    SciTech Connect

    Vernon, S P; Lowry, M E

    2006-02-22

    We describe a new class of radiation sensor that utilizes optical interferometry to measure radiation-induced changes in the optical refractive index of a semiconductor sensor medium. Radiation absorption in the sensor material produces a transient, non-equilibrium, electron-hole pair distribution that locally modifies the complex, optical refractive index of the sensor medium. Changes in the real (imaginary) part of the local refractive index produce a differential phase shift (absorption) of an optical probe used to interrogate the sensor material. In contrast to conventional radiation detectors where signal levels are proportional to the incident energy, signal levels in these optical sensors are proportional to the incident radiation energy flux. This allows for reduction of the sensor form factor with no degradation in detection sensitivity. Furthermore, since the radiation induced, non-equilibrium electron-hole pair distribution is effectively measured ''in place'' there is no requirement to spatially separate and collect the generated charges; consequently, the sensor risetime is of the order of the hot-electron thermalization time {le} 10 fs and the duration of the index perturbation is determined by the carrier recombination time which is of order {approx} 600 fs in, direct-bandgap semiconductors, with a high density of recombination defects; consequently, the optical sensors can be engineered with sub-ps temporal response. A series of detectors were designed, and incorporated into Mach Zehnder and Fabry-Perot interferometer-based detection systems: proof of concept, lower detection sensitivity, Mach-Zehnder detectors were characterized at beamline 6.3 at SSRL; three generations of high sensitivity single element and imaging Fabry-Perot detectors were measured at the LLNL Europa facility. Our results indicate that this technology can be used to provide x-ray detectors and x-ray imaging systems with single x-ray sensitivity and S/N {approx} 30 at x

  12. Periodic optical variability of radio-detected ultracool dwarfs

    SciTech Connect

    Harding, L. K.; Golden, A.; Singh, Navtej; Sheehan, B.; Butler, R. F.; Hallinan, G.; Boyle, R. P.; Zavala, R. T.

    2013-12-20

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring, delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.

  13. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, Adnah G.

    1988-01-01

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.

  14. Method and means for detecting optically transmitted signals and establishing optical interference pattern between electrodes

    DOEpatents

    Kostenbauder, A.G.

    1988-06-28

    A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.

  15. Protein complex detection via weighted ensemble clustering based on Bayesian nonnegative matrix factorization.

    PubMed

    Ou-Yang, Le; Dai, Dao-Qing; Zhang, Xiao-Fei

    2013-01-01

    Detecting protein complexes from protein-protein interaction (PPI) networks is a challenging task in computational biology. A vast number of computational methods have been proposed to undertake this task. However, each computational method is developed to capture one aspect of the network. The performance of different methods on the same network can differ substantially, even the same method may have different performance on networks with different topological characteristic. The clustering result of each computational method can be regarded as a feature that describes the PPI network from one aspect. It is therefore desirable to utilize these features to produce a more accurate and reliable clustering. In this paper, a novel Bayesian Nonnegative Matrix Factorization (NMF)-based weighted Ensemble Clustering algorithm (EC-BNMF) is proposed to detect protein complexes from PPI networks. We first apply different computational algorithms on a PPI network to generate some base clustering results. Then we integrate these base clustering results into an ensemble PPI network, in the form of weighted combination. Finally, we identify overlapping protein complexes from this network by employing Bayesian NMF model. When generating an ensemble PPI network, EC-BNMF can automatically optimize the values of weights such that the ensemble algorithm can deliver better results. Experimental results on four PPI networks of Saccharomyces cerevisiae well verify the effectiveness of EC-BNMF in detecting protein complexes. EC-BNMF provides an effective way to integrate different clustering results for more accurate and reliable complex detection. Furthermore, EC-BNMF has a high degree of flexibility in the choice of base clustering results. It can be coupled with existing clustering methods to identify protein complexes.

  16. Detection of Galaxy Cluster Motions with the Kinematic Sunyaev-Zel'dovich Effect

    NASA Technical Reports Server (NTRS)

    Hand, Nick; Addison, Graeme E.; Aubourg, Eric; Battaglia, Nick; Battistelli, Elia S.; Bizyaev, Dmitry; Bond, J. Richard; Brewington, Howard; Brinkmann, Jon; Brown, Benjamin R.; Das, Sudeep; Dawson, Kyle S.; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Eisenstein, Daniel J.; Flowler, Joseph W.; Gralla, Megan B.; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Wollack, Edward J.

    2012-01-01

    Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time detect motions of galaxy clusters and groups via microwave background .temperature distortions due to the kinematic Sunyaev.Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. The mean pairwise momentum of clusters is measured. at a statistical. significance of 3.8 sigma, and the signal is consistent with the growth of cosmic structure in the standard model of cosmology

  17. A search for clustering among the meteoroid impacts detected by the Apollo lunar seismic network

    NASA Technical Reports Server (NTRS)

    Oberst, Juergen; Nakamura, Yosio

    1991-01-01

    A difference is noted between meteoroids whose masses lie above and below 1 kg in temporal meteoroid-impact clusterings detected by the Apollo lunar seismic network; while the former exhibit little temporal clustering, small ones show strong clusterings identifiable with terrestrial meteor showers. This finding suggests a different type and origin for the two meteoroid sizes; the small may be primarily cometary, while the large may derive from near-earth asteroids and short-period comets. It is speculated that the June, 1975, and January, 1977 swarms of large meteoroids may contain high-density meteoritic objects interpretable as meteorite streams.

  18. A fibre optic chemical sensor for the detection of cocaine

    NASA Astrophysics Data System (ADS)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.; Hardwick, S. A.

    2010-09-01

    A fibre-optic chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in the concentration range of 0 - 500 μM in aqueous acetonitrile mixtures with good reproducibility over 24 h. Selectivity for cocaine over others drugs has also been demonstrated.

  19. Optical spectroscopy for the detection of ischemic tissue injury

    DOEpatents

    Demos, Stavros; Fitzgerald, Jason; Troppmann, Christoph; Michalopoulou, Andromachi

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  20. LIBS fiber optic sensor for subsurface heavy metals detection

    NASA Astrophysics Data System (ADS)

    Saggese, Steven J.; Greenwell, Roger A.

    1996-12-01

    Laser induced breakdown spectroscopy (LIBS) is being used to detect heavy metal concentrations in soils. The overall goal of this effort is to develop a field deployable system that will conduct heavy metal subsurface mapping of the vadose zone using a cone penetrometer deployed fiber optic sensor. This paper presents results on the LIBS analysis of different spiked soil samples with the same chemical matrix, NIST soil samples with variable matrices, a comparison of the performance of the LIBS system with free space delivery of the laser beam versus the performance using an optical fiber probe, and the effect of several system parameters on performance.

  1. Optical detection of radio waves through a nanomechanical transducer.

    PubMed

    Bagci, T; Simonsen, A; Schmid, S; Villanueva, L G; Zeuthen, E; Appel, J; Taylor, J M; Sørensen, A; Usami, K; Schliesser, A; Polzik, E S

    2014-03-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be 60 pV Hz-1/2 when balanced by choosing an electromechanical cooperativity of ~150 with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of 6,800, this leads to a projected noise temperature of 40 mK and a sensitivity limit of 5 pV Hz-1/2. Our approach to

  2. Optical detection of radio waves through a nanomechanical transducer.

    PubMed

    Bagci, T; Simonsen, A; Schmid, S; Villanueva, L G; Zeuthen, E; Appel, J; Taylor, J M; Sørensen, A; Usami, K; Schliesser, A; Polzik, E S

    2014-03-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of through copper wires, drastically reducing losses, and would give access to the set of established quantum optical techniques that are routinely used in quantum-limited signal detection. Research in cavity optomechanics has shown that nanomechanical oscillators can couple strongly to either microwave or optical fields. Here we demonstrate a room-temperature optoelectromechanical transducer with both these functionalities, following a recent proposal using a high-quality nanomembrane. A voltage bias of less than 10 V is sufficient to induce strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane, dominating the noise floor in potential applications in radio astronomy and nuclear magnetic imaging. Each of these contributions is inferred to be 60 pV Hz-1/2 when balanced by choosing an electromechanical cooperativity of ~150 with an optical power of 1 mW. The noise temperature of the membrane is divided by the cooperativity. For the highest observed cooperativity of 6,800, this leads to a projected noise temperature of 40 mK and a sensitivity limit of 5 pV Hz-1/2. Our approach to

  3. Synergistic Effect of Detection and Separation for Pathogen Using Magnetic Clusters.

    PubMed

    Kim, Yong-Tae; Kim, Kook-Han; Kang, Eun Sung; Jo, Geoncheol; Ahn, Se Young; Park, Seon Hwa; Kim, Sung Il; Mun, Saem; Baek, Kyuwon; Kim, Byeongyoon; Lee, Kwangyeol; Yun, Wan Soo; Kim, Yong Ho

    2016-01-20

    Early diagnosis of infectious diseases is important for treatment; therefore, selective and rapid detection of pathogenic bacteria is essential for human health. We report a strategy for highly selective detection and rapid separation of pathogenic microorganisms using magnetic nanoparticle clusters. Our approach to develop probes for pathogenic bacteria, including Salmonella, is based on a theoretically optimized model for the size of clustered magnetic nanoparticles. The clusters were modified to provide enhanced aqueous solubility and versatile conjugation sites for antibody immobilization. The clusters with the desired magnetic property were then prepared at critical micelle concentration (CMC) by evaporation-induced self-assembly (EISA). Two different types of target-specific antibodies for H- and O-antigens were incorporated on the cluster surface for selective binding to biological compartments of the flagella and cell body, respectively. For the two different specific binding properties, Salmonella were effectively captured with the O-antibody-coated polysorbate 80-coated magnetic nanoclusters (PCMNCs). The synergistic effect of combining selective targeting and the clustered magnetic probe leads to both selective and rapid detection of infectious pathogens. PMID:26710682

  4. Detecting edges in the X-ray surface brightness of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sanders, J. S.; Fabian, A. C.; Russell, H. R.; Walker, S. A.; Blundell, K. M.

    2016-08-01

    The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with active galactic nucleus feedback, the Perseus cluster and M 87, and a merging system, A 3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.

  5. BRIGHTEST X-RAY CLUSTERS OF GALAXIES IN THE CFHTLS WIDE FIELDS: CATALOG AND OPTICAL MASS ESTIMATOR

    SciTech Connect

    Mirkazemi, M.; Finoguenov, A.; Lerchster, M.; Erfanianfar, G.; Seitz, S.; Pereira, M. J.; Egami, E.; Tanaka, M.; Brimioulle, F.; Kettula, K.; McCracken, H. J.; Mellier, Y.; Kneib, J. P.; Rykoff, E.; Erben, T.; Taylor, J. E.

    2015-01-20

    The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) presents a unique data set for weak-lensing studies, having high-quality imaging and deep multiband photometry. We have initiated an XMM-CFHTLS project to provide X-ray observations of the brightest X-ray-selected clusters within the wide CFHTLS area. Performance of these observations and the high quality of CFHTLS data allow us to revisit the identification of X-ray sources, introducing automated reproducible algorithms, based on the multicolor red sequence finder. We have also introduced a new optical mass proxy. We provide the calibration of the red sequence observed in the Canada-France-Hawaii filters and compare the results with the traditional single-color red sequence and photo-z. We test the identification algorithm on the subset of highly significant XMM clusters and identify 100% of the sample. We find that the integrated z-band luminosity of the red sequence galaxies correlates well with the X-ray luminosity, with a surprisingly small scatter of 0.20 dex. We further use the multicolor red sequence to reduce spurious detections in the full XMM and ROSAT All-Sky Survey (RASS) data sets, resulting in catalogs of 196 and 32 clusters, respectively. We made spectroscopic follow-up observations of some of these systems with HECTOSPEC and in combination with BOSS DR9 data. We also describe the modifications needed to the source detection algorithm in order to maintain high purity of extended sources in the shallow X-ray data. We also present the scaling relation between X-ray luminosity and velocity dispersion.

  6. Detecting modules in biological networks by edge weight clustering and entropy significance

    PubMed Central

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be

  7. Detecting modules in biological networks by edge weight clustering and entropy significance.

    PubMed

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be

  8. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  9. Optical Rotation from Coupled Cluster and Density Functional Theory: The Role of Basis Set Convergence.

    PubMed

    Haghdani, Shokouh; Åstrand, Per-Olof; Koch, Henrik

    2016-02-01

    We have calculated the electronic optical rotation of seven molecules using coupled cluster singles-doubles (CCSD) and the second-order approximation (CC2) employing the aug-cc-pVXZ (X = D, T, or Q) basis sets. We have also compared to time-dependent density functional theory (TDDFT) by utilizing two functionals B3LYP and CAM-B3LYP and the same basis sets. Using relative and absolute error schemes, our calculations demonstrate that the CAM-B3LYP functional predicts optical rotation with the minimum deviations compared to CCSD at λ = 355 and 589.3 nm. Furthermore, our results illustrate that the aug-cc-pVDZ basis set provides the optical rotation in good agreement with the larger basis sets for molecules not possessing small-angle optical rotation at λ = 589.3 nm. We have also performed several two-point inverse power extrapolations for the basis set convergence, i.e., OR(∞) + AX(-n), using the CC2 model at λ = 355 and 589.3 nm. Our results reveal that a two-point inverse power extrapolation with the aug-cc-pVTZ and aug-cc-pVQZ basis sets at n = 5 provides optical rotation deviations similar to those of aug-cc-pV5Z with respect to the basis limit.

  10. A two-level detection algorithm for optical fiber vibration

    NASA Astrophysics Data System (ADS)

    Bi, Fukun; Ren, Xuecong; Qu, Hongquan; Jiang, Ruiqing

    2015-09-01

    Optical fiber vibration is detected by the coherent optical time domain reflection technique. In addition to the vibration signals, the reflected signals include clutters and noises, which lead to a high false alarm rate. The "cell averaging" constant false alarm rate algorithm has a high computing speed, but its detection performance will be declined in nonhomogeneous environments such as multiple targets. The "order statistics" constant false alarm rate algorithm has a distinct advantage in multiple target environments, but it has a lower computing speed. An intelligent two-level detection algorithm is presented based on "cell averaging" constant false alarm rate and "order statistics" constant false alarm rate which work in serial way, and the detection speed of "cell averaging" constant false alarm rate and performance of "order statistics" constant false alarm rate are conserved, respectively. Through the adaptive selection, the "cell averaging" is applied in homogeneous environments, and the two-level detection algorithm is employed in nonhomogeneous environments. Our Monte Carlo simulation results demonstrate that considering different signal noise ratios, the proposed algorithm gives better detection probability than that of "order statistics".

  11. Recent developments in optical detection methods for microchip separations.

    PubMed

    Götz, Sebastian; Karst, Uwe

    2007-01-01

    This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field. PMID:17031620

  12. An algorithm for image clusters detection and identification based on color for an autonomous mobile robot

    SciTech Connect

    Uy, D.L.

    1996-02-01

    An algorithm for detection and identification of image clusters or {open_quotes}blobs{close_quotes} based on color information for an autonomous mobile robot is developed. The input image data are first processed using a crisp color fuszzyfier, a binary smoothing filter, and a median filter. The processed image data is then inputed to the image clusters detection and identification program. The program employed the concept of {open_quotes}elastic rectangle{close_quotes}that stretches in such a way that the whole blob is finally enclosed in a rectangle. A C-program is develop to test the algorithm. The algorithm is tested only on image data of 8x8 sizes with different number of blobs in them. The algorithm works very in detecting and identifying image clusters.

  13. Optimization of a Distributed Genetic Algorithm on a Cluster of Workstations for the Detection of Microcalcifications

    NASA Astrophysics Data System (ADS)

    Bevilacqua, A.; Campanini, R.; Lanconelli, N.

    We have developed a method for the detection of clusters of microcalcifications in digital mammograms. Here, we present a genetic algorithm used to optimize the choice of the parameters in the detection scheme. The optimization has allowed the improvement of the performance, the detailed study of the influence of the various parameters on the performance and an accurate investigation of the behavior of the detection method on unknown cases. We reach a sensitivity of 96.2% with 0.7 false positive clusters per image on the Nijmegen database; we are also able to identify the most significant parameters. In addition, we have examined the feasibility of a distributed genetic algorithm implemented on a non-dedicated Cluster Of Workstations. We get very good results both in terms of quality and efficiency.

  14. System and Method for Outlier Detection via Estimating Clusters

    NASA Technical Reports Server (NTRS)

    Iverson, David J. (Inventor)

    2016-01-01

    An efficient method and system for real-time or offline analysis of multivariate sensor data for use in anomaly detection, fault detection, and system health monitoring is provided. Models automatically derived from training data, typically nominal system data acquired from sensors in normally operating conditions or from detailed simulations, are used to identify unusual, out of family data samples (outliers) that indicate possible system failure or degradation. Outliers are determined through analyzing a degree of deviation of current system behavior from the models formed from the nominal system data. The deviation of current system behavior is presented as an easy to interpret numerical score along with a measure of the relative contribution of each system parameter to any off-nominal deviation. The techniques described herein may also be used to "clean" the training data.

  15. Stability and Nonlinear Optical Response of Alkalides that Contain a Completely Encapsulated Superalkali Cluster.

    PubMed

    Sun, Wei-Ming; Li, Ying; Li, Xiang-Hui; Wu, Di; He, Hui-Min; Li, Chun-Yan; Chen, Jing-Hua; Li, Zhi-Ru

    2016-09-01

    Guided by density functional theory (DFT) computations, a new series of superalkali-based alkalides, namely FLi2 (+) (aza222)K(-) , OLi3 (+) (aza222)K(-) , NLi4 (+) (aza222)K(-) , and Li3 (+) (aza222)K(-) were designed with various superalkali clusters embedded into an aza222 cage-complexant. These species possess diverse isomeric structures in which the encapsulated superalkalis preserve their identities and behave as alkali metal atoms. The results show that these novel alkalides possess larger complexation energies and enhanced hyperpolarizabilities (β0 ) compared with alkali-metal-based and previous superalkali-based clusters. Especially, a prominent structural dependence of β0 is observed for these studied compounds. Hence, the geometric factors that affect the nonlinear optical (NLO) response of such alkalides is elucidated in detail in this work. This study not only provides novel candidates for alkalides, it also offers an effective way to enhance the NLO response and stability of alkalides. PMID:27219640

  16. A relevance vector machine technique for the automatic detection of clustered microcalcifications (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Wei, Liyang; Yang, Yongyi; Nishikawa, Robert M.

    2005-04-01

    Microcalcification (MC) clusters in mammograms can be important early signs of breast cancer in women. Accurate detection of MC clusters is an important but challenging problem. In this paper, we propose the use of a recently developed machine learning technique -- relevance vector machine (RVM) -- for automatic detection of MCs in digitized mammograms. RVM is based on Bayesian estimation theory, and as a feature it can yield a decision function that depends on only a very small number of so-called relevance vectors. We formulate MC detection as a supervised-learning problem, and use RVM to classify if an MC object is present or not at each location in a mammogram image. MC clusters are then identified by grouping the detected MC objects. The proposed method is tested using a database of 141 clinical mammograms, and compared with a support vector machine (SVM) classifier which we developed previously. The detection performance is evaluated using the free-response receiver operating characteristic (FROC) curves. It is demonstrated that the RVM classifier matches closely with the SVM classifier in detection performance, and does so with a much sparser kernel representation than the SVM classifier. Consequently, the RVM classifier greatly reduces the computational complexity, making it more suitable for real-time processing of MC clusters in mammograms.

  17. On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects.

    PubMed

    Vélez-Cordero, J Rodrigo; Hernández-Cordero, J

    2015-09-15

    We analyze the motion of multiwalled carbon nanotubes clusters in water or ethanol upon irradiation with a 975 and 1550 nm laser beam guided by an optical fiber. Upon measuring the velocities of the nanotube clusters in and out of the laser beam cone, we were able to identify thermophoresis, convection and radiation pressure as the main driving forces that determine the equilibrium position of the dispersion at low optical powers: while thermophoresis and convection pull the clusters toward the laser beam axis (negative Soret coefficient), radiation pressure pushes the clusters away from the fiber tip. A theoretical solution for the thermophoretic velocity, which considers interfacial motion and a repulsive potential interaction between the nanotubes and the solvent (hydrophobic interaction), shows that the main mechanism implicated in this type of thermophoresis is the thermal expansion of the fluid, and that the clusters migrate to hotter regions with a characteristic thermal diffusion coefficient D(T) of 9 × 10(-7) cm(2) K(-1) s(-1). We further show that the characteristic length associated with thermophoresis is not that of the nanotube clusters size, O(1) μm, but that corresponding to the microstructure of the clusters, O(1) nm. We finally discuss the role of the formation of gas-liquid interfaces (microbubbles) at high optical powers on the deposition of carbon nanotubes on the optical fiber end faces. PMID:26309145

  18. Smart optical distance sensor for automatic welding detection

    NASA Astrophysics Data System (ADS)

    Kahl, Michael; Rinner, Stefan; Ettemeyer, Andreas

    2015-05-01

    In this paper, we describe a simple and cost-effective method and measuring device for automatic detection of welding. The sensor is to be used in automatic darkening filters (ADF) of welding helmets protecting the operator from intensive hazardous UV radiation. For reasons discussed in detail below, conventional sensor principles used in ADF are being out-dated. Here, we critically revise some alternatives and propose an approach comprising an optical distance sensor. Its underlying principle is triangulation with two pin-hole cameras. The absence of optical components such as lenses results in very low cost. At first, feasibility is tested with optical simulations. Additionally, we present measurement results that prove the practicability of our proposal.

  19. Real-time detection of optical transients with RAPTOR

    SciTech Connect

    Borozdin, K. N.; Brumby, Steven P.; Galassi, M. C.; McGowan, K. E.; Starr, D. L.; Vestrand, W. T.; White, R. R.; Wozniak, P. R.; Wren, J.

    2002-01-01

    Fast variability of optical objects is an interesting though poorly explored subject in modern astronomy. Real-time data processing and identification of transient, celestial events in the images is very important, for such study as it allows rapid follow-up with more sensitive instruments, We discuss an approach which we have chosen for the RAPTOR project which is a pioneering close-loop system combining real-time transient detection with rapid follow-up. Our data processing pipeline is able to identify and localize an optical transient within seconds after the observation. We describe the challenges we met, solutions we found and some results obtained in our search for fast optical transients. The software pipeline we have developed for RAPTOR can easily be applied to the data from other experiments.

  20. Damage monitoring and impact detection using optical fiber vibration sensors

    NASA Astrophysics Data System (ADS)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  1. Fiber Optic Sensors for Detection of Toxic and Biological Threats

    PubMed Central

    El-Sherif, Mahmoud; Bansal, Lalitkumar; Yuan, Jianming

    2007-01-01

    Protection of public and military personnel from chemical and biological warfare agents is an urgent and growing national security need. Along with this idea, we have developed a novel class of fiber optic chemical sensors, for detection of toxic and biological materials. The design of these fiber optic sensors is based on a cladding modification approach. The original passive cladding of the fiber, in a small section, was removed and the fiber core was coated with a chemical sensitive material. Any change in the optical properties of the modified cladding material, due to the presence of a specific chemical vapor, changes the transmission properties of the fiber and result in modal power redistribution in multimode fibers. Both total intensity and modal power distribution (MPD) measurements were used to detect the output power change through the sensing fibers. The MPD technique measures the power changes in the far field pattern, i.e. spatial intensity modulation in two dimensions. Conducting polymers, such as polyaniline and polypyrrole, have been reported to undergo a reversible change in conductivity upon exposure to chemical vapors. It is found that the conductivity change is accompanied by optical property change in the material. Therefore, polyaniline and polypyrrole were selected as the modified cladding material for the detection of hydrochloride (HCl), ammonia (NH3), hydrazine (H4N2), and dimethyl-methl-phosphonate (DMMP) {a nerve agent, sarin stimulant}, respectively. Several sensors were prepared and successfully tested. The results showed dramatic improvement in the sensor sensitivity, when the MPD method was applied. In this paper, an overview on the developed class of fiber optic sensors is presented and supported with successful achieved results.

  2. A Community Detection Algorithm Based on Topology Potential and Spectral Clustering

    PubMed Central

    Wang, Zhixiao; Chen, Zhaotong; Zhao, Ya; Chen, Shaoda

    2014-01-01

    Community detection is of great value for complex networks in understanding their inherent law and predicting their behavior. Spectral clustering algorithms have been successfully applied in community detection. This kind of methods has two inadequacies: one is that the input matrixes they used cannot provide sufficient structural information for community detection and the other is that they cannot necessarily derive the proper community number from the ladder distribution of eigenvector elements. In order to solve these problems, this paper puts forward a novel community detection algorithm based on topology potential and spectral clustering. The new algorithm constructs the normalized Laplacian matrix with nodes' topology potential, which contains rich structural information of the network. In addition, the new algorithm can automatically get the optimal community number from the local maximum potential nodes. Experiments results showed that the new algorithm gave excellent performance on artificial networks and real world networks and outperforms other community detection methods. PMID:25147846

  3. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  4. Optical detection of parasitic protozoa in sol-gel matrices

    NASA Astrophysics Data System (ADS)

    Livage, Jacques; Barreau, J. Y.; Da Costa, J. M.; Desportes, I.

    1994-10-01

    Whole cell parasitic protozoa have been entrapped within sol-gel porous silica matrices. Stationary phase promastigote cells of Leishmania donovani infantum are mixed with a silica sol before gelation occurs. They remain trapped within the growing oxide network and their cellular organization appears to be well preserved. Moreover protozoa retain their antigenic properties in the porous gel. They are still able to detect parasite specific antibodies in serum samples from infected patients via an enzyme linked immunosorbent assay (ELISA). Antigen- antibody associations occurring in the gel are optically detected via the reactions of a peroxidase conjugate with ortho-phenylenediamine leading to the formation of a yellow coloration. A clear-cut difference in optical density is measured between positive and negative sera. Such an entrapment of antigenic species into porous sol-gel matrices avoids the main problems due to non specific binding and could be advantageously used in diagnostic kits.

  5. Improvements in NDIR gas detection within the same optical chamber

    NASA Astrophysics Data System (ADS)

    Martinez-Anton, Juan Carlos; Silva-Lopez, Manuel

    2011-10-01

    Non-dispersive infrared (NDIR) is a well known technique for gas concentration monitoring. Lead salt photoconductors and thermopile detectors are typically used. Together with gas filter correlation (GFC) they are the basis for a reference standard in environmental gas monitoring like carbon monoxide determination and other gas species. To increase gas sensitivity, a multi-pass optical cavity is often used. In this contribution we propose a new optical design that allows for auto-reference multiple gas detection. It basically consists of an array of White's cell multi-pass camera that allows multiple channels with independent lengths inside the same volume. We explore its performance for carbon monoxide detection and based on recent commercial developments in infrared detector and emitter technologies.

  6. A fusion method of Gabor wavelet transform and unsupervised clustering algorithms for tissue edge detection.

    PubMed

    Ergen, Burhan

    2014-01-01

    This paper proposes two edge detection methods for medical images by integrating the advantages of Gabor wavelet transform (GWT) and unsupervised clustering algorithms. The GWT is used to enhance the edge information in an image while suppressing noise. Following this, the k-means and Fuzzy c-means (FCM) clustering algorithms are used to convert a gray level image into a binary image. The proposed methods are tested using medical images obtained through Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) devices, and a phantom image. The results prove that the proposed methods are successful for edge detection, even in noisy cases.

  7. Simplified false-positive reduction in computer-aided detection scheme of clustered microcalcifications in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Jeong, Ji-Wook; Chae, Seung-Hoon; Lee, Sooyeul; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook

    2015-03-01

    A computer-aided detection (CADe) system for clustered microcalcifications (MCs) in reconstructed digital breast tomosynthesis (DBT) volumes was suggested. The system consisted of prescreening, MC detecting, clustering, and falsepositive reduction steps. In the prescreening stage, the MC-like objects were enhanced by a multiscale-based 3D calcification response function. A connected component segmentation method was used to detect cluster seed objects, which were considered as potential clustering centers of MCs. Starting with each cluster seed object as the initial cluster center, a cluster candidate was formed by including nearby MC candidates within a 3D neighborhood of the cluster seed object satisfying the clustering criteria during the clustering step. The size and number of the clustered MCs in a cluster seed candidate were used to reduce the number of FPs. A bounding cube for each MCC was generated for each accepted seed candidates. Then, the overlapping cubes were combined and examined according to the FP reduction criteria. After FP reduction step, we obtained the average number of FPs of 2.47 per DBT volume with sensitivity of 83.3%. Our study indicates the simplified false-positive reduction approach applied to the detection of clustered MCs in DBT is promising as an efficient CADe system.

  8. Mobile agent and multilayer integrated distributed intrusion detection model for clustering ad hoc networks

    NASA Astrophysics Data System (ADS)

    Feng, Jianxin; Wang, Guangxing

    2004-04-01

    Ad hoc networks do not depend on any predefined infrastructure or centralized administration to operate. Their security characters require more complex security preventions. As the second line of defense, Intrusion detection is the necessary means of getting the high survivability. In this paper the security characters of ad hoc networks and the related contents of intrusion detection are discussed. Mobile Agent and Multi-layer Integrated Distributed Intrusion Detection Model (MAMIDIDM) and a heuristic global detection algorithm are proposed tentatively by combining the mobile agent technology with the multi-layer conception. This heuristic global detection algorithm combines the mobile agent detection engine with the multi-layer detection engines and analyzes the results obtained by the corresponding detection engines. MAMIDIDM has the better flexibility and extensibility, can execute the intrusion detection in clustering ad hoc networks effectively.

  9. Temporal-mode continuous-variable cluster states using linear optics

    SciTech Connect

    Menicucci, Nicolas C.

    2011-06-15

    An extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beam splitters is presented. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett. 104, 250503 (2010)], including finite requirements for coherence and stability even as the computation length increases indefinitely, with none of the difficulty of inline squeezing. The extensibility stems from a construction based on Gaussian projected entangled pair states. The potential for use of this design within a fully fault-tolerant model is discussed.

  10. Solution of relativistic quantum optics problems using clusters of graphical processing units

    SciTech Connect

    Gordon, D.F. Hafizi, B.; Helle, M.H.

    2014-06-15

    Numerical solution of relativistic quantum optics problems requires high performance computing due to the rapid oscillations in a relativistic wavefunction. Clusters of graphical processing units are used to accelerate the computation of a time dependent relativistic wavefunction in an arbitrary external potential. The stationary states in a Coulomb potential and uniform magnetic field are determined analytically and numerically, so that they can used as initial conditions in fully time dependent calculations. Relativistic energy levels in extreme magnetic fields are recovered as a means of validation. The relativistic ionization rate is computed for an ion illuminated by a laser field near the usual barrier suppression threshold, and the ionizing wavefunction is displayed.

  11. Optical detection of the Casimir force between macroscopic objects.

    PubMed

    Petrov, Victor; Petrov, Mikhail; Bryksin, Valeriy; Petter, Juergen; Tschudi, Theo

    2006-11-01

    We report the optical detection of mechanical deformation of a macroscopic object induced by the Casimir force. An adaptive holographic interferometer based on a photorefractive BaTiO3:Co crystal was used to measure periodical nonlinear deformations of a thin pellicle caused by an oscillating Casimir force. A reasonable agreement between the experimental and calculated values of the first and second harmonics of the Casimir force oscillations has been obtained. PMID:17041670

  12. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  13. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2004-10-12

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  14. Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters

    NASA Astrophysics Data System (ADS)

    Saro, A.; Bocquet, S.; Rozo, E.; Benson, B. A.; Mohr, J.; Rykoff, E. S.; Soares-Santos, M.; Bleem, L.; Dodelson, S.; Melchior, P.; Sobreira, F.; Upadhyay, V.; Weller, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Bayliss, M.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brodwin, M.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carlstrom, J. E.; Capasso, R.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Chiu, I.; Covarrubias, R.; Crawford, T. M.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; de Haan, T.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Cunha, C. E.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gangkofner, C.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Gupta, N.; Hennig, C.; Holzapfel, W. L.; Honscheid, K.; Jain, B.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lin, H.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, Paul; McDonald, M.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Schubnell, M.; Sevilla, I.; Smith, R. C.; Stalder, B.; Stark, A. A.; Strazzullo, V.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D.; Vikram, V.; von der Linden, A.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Zenteno, A.; Ziegler, K. E.

    2015-12-01

    We cross-match galaxy cluster candidates selected via their Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function ∝ Bλln M500 + Cλln E(z) and use SPT-SZ cluster masses and RM richnesses λ to constrain the parameters. We find B_λ = 1.14^{+0.21}_{-0.18} and C_λ =0.73^{+0.77}_{-0.75}. The associated scatter in mass at fixed richness is σ _{ln M|λ } = 0.18^{+0.08}_{-0.05} at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ∈ [4, 4.5].

  15. Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters

    DOE PAGES

    Saro, A.

    2015-10-12

    In this study, we cross-match galaxy cluster candidates selected via their Sunyaev–Zel'dovich effect (SZE) signatures in 129.1 deg2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function 500> ∝ Bλln M500 + Cλln E(z) and use SPT-SZ cluster masses and RM richnessesmore » λ to constrain the parameters. We find Bλ=1.14+0.21–0.18 and Cλ=0.73+0.77–0.75. The associated scatter in mass at fixed richness is σlnM|λ = 0.18+0.08–0.05 at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ε [4, 4.5].« less

  16. Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography

    PubMed Central

    Liu, Li; Gao, Simon S.; Bailey, Steven T.; Huang, David; Li, Dengwang; Jia, Yali

    2015-01-01

    Optical coherence tomography angiography has recently been used to visualize choroidal neovascularization (CNV) in participants with age-related macular degeneration. Identification and quantification of CNV area is important clinically for disease assessment. An automated algorithm for CNV area detection is presented in this article. It relies on denoising and a saliency detection model to overcome issues such as projection artifacts and the heterogeneity of CNV. Qualitative and quantitative evaluations were performed on scans of 7 participants. Results from the algorithm agreed well with manual delineation of CNV area. PMID:26417524

  17. Optical detection of meteoroidal impacts on the Moon

    PubMed

    Ortiz; Sada; Bellot Rubio LR; Aceituno; Aceituno; Gutierrez; Thiele

    2000-06-22

    Impacts of meteoroids on the Moon should cause detectable optical flashes, but the population of objects that are big enough is very low, and hitherto no unambiguous impact flashes have been recorded. The flux of meteoroids associated with the Leonid meteor shower of 18 November 1999 was predicted to produce observable flashes on the night side of the Moon. Here we report the unambiguous detection of five such impact flashes, three of which were seen simultaneously by other observers. We also observed a possible impact flash on 16 July 1999. All of the flashes were of very brief duration (<0.02 s), as expected for high-speed impacts. PMID:10879526

  18. Optical detection of meteoroidal impacts on the Moon

    PubMed

    Ortiz; Sada; Bellot Rubio LR; Aceituno; Aceituno; Gutierrez; Thiele

    2000-06-22

    Impacts of meteoroids on the Moon should cause detectable optical flashes, but the population of objects that are big enough is very low, and hitherto no unambiguous impact flashes have been recorded. The flux of meteoroids associated with the Leonid meteor shower of 18 November 1999 was predicted to produce observable flashes on the night side of the Moon. Here we report the unambiguous detection of five such impact flashes, three of which were seen simultaneously by other observers. We also observed a possible impact flash on 16 July 1999. All of the flashes were of very brief duration (<0.02 s), as expected for high-speed impacts.

  19. Detecting high-frequency gravitational waves with optically levitated sensors.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  20. Passive optical detection of meteorological parameters in launch vehicle environments.

    PubMed

    Krause, F R; Su, M Y; Klugman, E H

    1970-05-01

    New optical detection systems are being developed which combine conventional passive photometry with advanced data processing and statistical analysis methods. These crossed-beam detection systems can continuously monitor meteorological parameters in rocket or aircraft environments. The outputs from several photometers are analyzed by cross correlation techniques to retrieve the transit times or transit distance of light emitting, absorbing, or scattering particles between the photometer lines of sight. These transit times and distances are then transformed into wind components and turbulence levels for preselected altitudes. A continuous near real time display of these meteorological parameters is also under development.

  1. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  2. Optical sensors for the detection of trace chloroform.

    PubMed

    Fong, Jonathan K; Pena, Justin K; Xue, Zi-Ling; Alam, Maksudul M; Sampathkumaran, Uma; Goswami, Kisholoy

    2015-02-01

    Optical thin film sensors have been developed to detect chloroform in aqueous and nonaqueous solutions. These sensors utilize a modified Fujiwara reaction, one of the only known methods for detecting halogenated hydrocarbons in the visible spectrum. The modified Fujiwara reagents, 2,2'-dipyridyl and tetra-n-butyl ammonium hydroxide (n-Bu4NOH or TBAH), are encapsulated in an ethyl cellulose (EC) or sol-gel film. Upon exposure of the EC sensor film to HCCl3 in petroleum ether, a colored product is produced within the film, which is analyzed spectroscopically, yielding a detection limit of 0.830 ppm (parts per million v/v or μL/L hereinafter) and a quantification limit of 2.77 ppm. When the chloroform concentration in pentane is ≥5 ppm, the color change of the EC sensor is visible to the naked eye. In aqueous chloroform solution, reaction in the sol-gel sensor film turns the sensor from colorless to dark yellow/brown, also visible to the naked eye, with a detection limit of 500 ppm. This is well below the solubility of chloroform in water (ca. 5,800 ppm). To our knowledge, these are the first optical quality thin film sensors using Fujiwara reactions for halogenated hydrocarbon detection. PMID:25549694

  3. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    PubMed

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism.

  4. Change detection in very high resolution multisensor optical images

    NASA Astrophysics Data System (ADS)

    Solano Correa, Yady T.; Bovolo, Francesca; Bruzzone, Lorenzo

    2014-10-01

    This work aims at developing an approach to the detection of changes in multisensor multitemporal VHR optical images. The main steps of the proposed method are: i) multisensor data homogenization; and ii) change detection in multisensor multitemporal VHR optical images. The proposed approach takes advantage of: the conversion to physical quantities suggested by Pacifici et. al.1 , the framework for the design of systems for change detection in VHR images presented by Bruzzone and Bovolo2 and the framework for unsupervised change detection presented by Bovolo and Bruzzone3. Multisensor data homogenization is achieved during pre-processing by taking into account differences in both radiometric and geometric dimensions. Whereas change detection was approached by extracting proper features from multisensor images such that they result to be comparable (at a given level of abstraction) even if extracted from images acquired by different sensors. In order to illustrate the results, a data set made up of a QuickBird and a WorldView-2 images - acquired in 2006 and 2010 respectively - over an area located in the Trentino region of Italy were used. However, the proposed approach is thought to be exportable to multitemporal images coming from passive sensors other than the two mentioned above. The experimental results obtained on the QuickBird and WorlView-2 image pair are accurate. Thus opening to further experiments on multitemporal images acquired by other sensors.

  5. Development of optical automatic positioning and wafer defect detection system

    NASA Astrophysics Data System (ADS)

    Tien, Chuen-Lin; Lai, Qun-Huang; Lin, Chern-Sheng

    2016-02-01

    The data of a wafer with defects can provide engineers with very important information and clues to improve the yield rate and quality in manufacturing. This paper presents a microscope automatic positioning and wafer detection system with human-machine interface based on image processing and fuzzy inference algorithms. In the proposed system, a XY table is used to move the position of each die on 6 inch or 8 inch wafers. Then, a high-resolution CCD and one set of two-axis optical linear encoder are used to accurately measure the position on the wafer. Finally, the developed human-machine interface is used to display the current position of an actual wafer in order to complete automatic positioning, and a wafer map database can be created. In the process of defect detection, CCD is used for image processing, and during preprocessing, it is required to filter noise, acquire the defect characteristics, define the defective template, and then take the characteristic points of the defective template as the reference input for fuzzy inference. A high-accuracy optical automatic positioning and wafer defect detection system is thus constructed. This study focused on automatic detection of spots, scratches, and bruises, and attempted to reduce the time to detect defective die and improve the accuracy of determining the defects of semiconductor devices.

  6. Fourier domain optical coherence tomography system with balance detection.

    PubMed

    Bradu, Adrian; Podoleanu, Adrian Gh

    2012-07-30

    A Fourier domain optical coherence tomography system with two spectrometers in balance detection is assembled using each an InGaAs linear camera. Conditions and adjustments of spectrometer parameters are presented to ensure anti-phase channeled spectrum modulation across the two cameras for a majority of wavelengths within the optical source spectrum. By blocking the signal to one of the spectrometers, the setup was used to compare the conditions of operation of a single camera with that of a balanced configuration. Using multiple layer samples, balanced detection technique is compared with techniques applied to conventional single camera setups, based on sequential deduction of averaged spectra collected with different on/off settings for the sample or reference beams. In terms of reducing the autocorrelation terms and fixed pattern noise, it is concluded that balance detection performs better than single camera techniques, is more tolerant to movement, exhibits longer term stability and can operate dynamically in real time. The cameras used exhibit larger saturation power than the power threshold where excess photon noise exceeds shot noise. Therefore, conditions to adjust the two cameras to reduce the noise when used in a balanced configuration are presented. It is shown that balance detection can reduce the noise in real time operation, in comparison with single camera configurations. However, simple deduction of an average spectrum in single camera configurations delivers less noise than the balance detection. PMID:23038305

  7. UV Observations of the Galaxy Cluster Abell 1795 with the Optical Monitor on XMM-Newton

    NASA Technical Reports Server (NTRS)

    Mittaz, J. P. D.; Kaastra, J. S.; Tamura, T.; Fabian, A. C.; Mushotzky, F.; Peterson, J. R.; Ikebe, Y.; Lumb, D. H.; Paerels, F.; Stewart, G.

    2000-01-01

    We present the results of an analysis of broad band UV observations of the central regions of Abell 1795 observed with the optical monitor on XMM-Newton. As have been found with other UV observations of the central regions of clusters of galaxies, we find evidence for star formation. However, we also find evidence for absorption in the cD galaxy on a more extended scale than has been seen with optical imaging. We also report the first UV observation of part of the filamentary structure seen in H-alpha, X-rays and very deep U band imaging. The part of the filament we see is very blue with UV colours consistent with a very early (O/B) stellar population. This is the first direct evidence of a dominant population of early type stars at the centre of Abell 1795 and implies very recent star formation. The relationship of this emission to emission at other wavebands is discussed.

  8. Distributed fiber optic sensor for liquid hydrocarbon detection

    NASA Astrophysics Data System (ADS)

    MacLean, Alistair; Moran, Chris; Johnstone, Walter; Culshaw, Brian; Marsh, Dan; Andrews, Geoff

    2001-08-01

    A distributed fiber optic sensor for the detection and location of hydrocarbon fuel spills is presented. The sensor is designed such that liquid swelling polymers transducer their swelling into a microbend force on an optical fiber when exposed to hydrocarbon fuels. Interrogation of the sensor using standard Optical Time Domain Reflectometry techniques provides the possibility of rapidly detecting and locating target hydrocarbon fuels and chemicals at multiple positions along the sensor length. Events can typically be located to a precision of 2 m over a 10 km sensor length. Sensor response time on exposure to the hydrocarbon fuel is within 30 seconds. A detailed explanation of the operational characteristics of the sensor and the underlying technology utilized in its operation is given. Experimental tests using prototype sensors to simultaneously detect three separate 50 centimeter-long events are described. The characteristics of the sensor response in a range of hydrocarbon fuels under varying environmental conditions were investigated. Some of the safety advantages in using the sensor and its practical implementation in continuous monitoring of pipelines or fuel containment vessels are discussed.

  9. Fiber optic cryogenic liquid level detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Yang, Chengning; Chen, Shiping

    2009-05-01

    Liquid hydrogen and oxygen are widely used as fuels in space vehicles. Because both are highly dangerous materials prone to explosion, detection of the liquid level in fuel tank becomes a critical element for the safety and efficiency in space operations. Two liquid level sensing techniques are presented in this paper. The first technique is based on optical fiber long period gratings. In this technique, the full length of a specially fabricated fiber is the body of the probe becomes the length of the sensing fiber that is submerged in the liquid can be detected by the interrogation system. The second system uses optical fibers to guide light to and from an array of point probes. These probes are specially fabricated, miniature optical components which reflects a substantial amount of light back into the lead fiber when the probe is gas but almost no light when it is in liquid. A detailed theoretical study by computer simulation was carried out on these two techniques in order to determine which technique was more suitable for experimental investigation. The study revealed that although the first technique may provide more potential benefits in terms of weight and easy installation; a number of technical challenges make it not suitable for a short term solution. The second, probe array based technique, on the other hand, is more mature technically. The rest of the research program was therefore focused on the experimental investigation of the probe array detection technique and the test results are presented in this paper.

  10. Optical detection of E. coli bacteria by mesoporous silicon biosensors.

    PubMed

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Segal, Ester

    2013-01-01

    A label-free optical biosensor based on a nanostructured porous Si is designed for rapid capture and detection of Escherichia coli K12 bacteria, as a model microorganism. The biosensor relies on direct binding of the target bacteria cells onto its surface, while no pretreatment (e.g. by cell lysis) of the studied sample is required. A mesoporous Si thin film is used as the optical transducer element of the biosensor. Under white light illumination, the porous layer displays well-resolved Fabry-Pérot fringe patterns in its reflectivity spectrum. Applying a fast Fourier transform (FFT) to reflectivity data results in a single peak. Changes in the intensity of the FFT peak are monitored. Thus, target bacteria capture onto the biosensor surface, through antibody-antigen interactions, induces measurable changes in the intensity of the FFT peaks, allowing for a 'real time' observation of bacteria attachment. The mesoporous Si film, fabricated by an electrochemical anodization process, is conjugated with monoclonal antibodies, specific to the target bacteria. The immobilization, immunoactivity and specificity of the antibodies are confirmed by fluorescent labeling experiments. Once the biosensor is exposed to the target bacteria, the cells are directly captured onto the antibody-modified porous Si surface. These specific capturing events result in intensity changes in the thin-film optical interference spectrum of the biosensor. We demonstrate that these biosensors can detect relatively low bacteria concentrations (detection limit of 10(4) cells/ml) in less than an hour.

  11. A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays.

    PubMed

    Naeni, Leila M; Craig, Hugh; Berretta, Regina; Moscato, Pablo

    2016-01-01

    In this study we propose a novel, unsupervised clustering methodology for analyzing large datasets. This new, efficient methodology converts the general clustering problem into the community detection problem in graph by using the Jensen-Shannon distance, a dissimilarity measure originating in Information Theory. Moreover, we use graph theoretic concepts for the generation and analysis of proximity graphs. Our methodology is based on a newly proposed memetic algorithm (iMA-Net) for discovering clusters of data elements by maximizing the modularity function in proximity graphs of literary works. To test the effectiveness of this general methodology, we apply it to a text corpus dataset, which contains frequencies of approximately 55,114 unique words across all 168 written in the Shakespearean era (16th and 17th centuries), to analyze and detect clusters of similar plays. Experimental results and comparison with state-of-the-art clustering methods demonstrate the remarkable performance of our new method for identifying high quality clusters which reflect the commonalities in the literary style of the plays. PMID:27571416

  12. A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays.

    PubMed

    Naeni, Leila M; Craig, Hugh; Berretta, Regina; Moscato, Pablo

    2016-01-01

    In this study we propose a novel, unsupervised clustering methodology for analyzing large datasets. This new, efficient methodology converts the general clustering problem into the community detection problem in graph by using the Jensen-Shannon distance, a dissimilarity measure originating in Information Theory. Moreover, we use graph theoretic concepts for the generation and analysis of proximity graphs. Our methodology is based on a newly proposed memetic algorithm (iMA-Net) for discovering clusters of data elements by maximizing the modularity function in proximity graphs of literary works. To test the effectiveness of this general methodology, we apply it to a text corpus dataset, which contains frequencies of approximately 55,114 unique words across all 168 written in the Shakespearean era (16th and 17th centuries), to analyze and detect clusters of similar plays. Experimental results and comparison with state-of-the-art clustering methods demonstrate the remarkable performance of our new method for identifying high quality clusters which reflect the commonalities in the literary style of the plays.

  13. Detecting text in natural scene images with conditional clustering and convolution neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Anna; Wang, Guoyou; Dong, Yangbo; Iwana, Brian Kenji

    2015-09-01

    We present a robust method of detecting text in natural scenes. The work consists of four parts. First, automatically partition the images into different layers based on conditional clustering. The clustering operates in two sequential ways. One has a constrained clustering center and conditional determined cluster numbers, which generate small-size subregions. The other has fixed cluster numbers, which generate full-size subregions. After the clustering, we obtain a bunch of connected components (CCs) in each subregion. In the second step, the convolutional neural network (CNN) is used to classify those CCs to character components or noncharacter ones. The output score of the CNN can be transferred to the postprobability of characters. Then we group the candidate characters into text strings based on the probability and location. Finally, we use a verification step. We choose a multichannel strategy to evaluate the performance on the public datasets: ICDAR2011 and ICDAR2013. The experimental results demonstrate that our algorithm achieves a superior performance compared with the state-of-the-art text detection algorithms.

  14. A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays

    PubMed Central

    Craig, Hugh; Berretta, Regina; Moscato, Pablo

    2016-01-01

    In this study we propose a novel, unsupervised clustering methodology for analyzing large datasets. This new, efficient methodology converts the general clustering problem into the community detection problem in graph by using the Jensen-Shannon distance, a dissimilarity measure originating in Information Theory. Moreover, we use graph theoretic concepts for the generation and analysis of proximity graphs. Our methodology is based on a newly proposed memetic algorithm (iMA-Net) for discovering clusters of data elements by maximizing the modularity function in proximity graphs of literary works. To test the effectiveness of this general methodology, we apply it to a text corpus dataset, which contains frequencies of approximately 55,114 unique words across all 168 written in the Shakespearean era (16th and 17th centuries), to analyze and detect clusters of similar plays. Experimental results and comparison with state-of-the-art clustering methods demonstrate the remarkable performance of our new method for identifying high quality clusters which reflect the commonalities in the literary style of the plays. PMID:27571416

  15. Detection of extended X-ray emission surrounding cD galaxies in poor clusters

    SciTech Connect

    Kriss, G.A.; Canizares, C.R.; McClintock, J.E.; Feigelson, E.D.

    1980-01-15

    The imaging proportional counter on the Einstein Observatory has detected extended X-ray emission from MKW 3s and AWM 4, two poor clusters containing dominant galaxies. In each case the X-ray emission is centered on the D or cD galaxy, but in MKW 3s it is symmetric (core radius 2'.5) while in AWM 4 it is not (extended 1' in NW-SE direction). The 0.25--3 keV luminosities, 10/sup 44/ ergs s/sup -1/ for MKW 3s and 10/sup 43/ ergs s/sup -1/ for AWM 4, are typical of those observed for the richer Abell clusters. We have measured redshifts of three galaxies in MKW 3s to confirm the physical association of the group. The hot gas present in this cluster is dense enough to confine the relativistic particles in 3C 318.1. As in the rich clusters, the mass of X-ray emitting gas in these two clusters is comparable to the visual mass and is approx.10--20% of the virial mass. Our results suggest that poor clusters can collect enough gas to become detectable X-ray sources if they are relatively compact, which the presence of dominant galaxies indicates.

  16. Automated detection of clustered microcalcifications on mammograms: CAD system application to MIAS database

    NASA Astrophysics Data System (ADS)

    Ibrahim, Norhayati; Fujita, Hiroshi; Hara, Takeshi; Endo, Tokiko

    1997-12-01

    To investigate the detection performance of our automated detection scheme for clustered microcalcifications on mammograms, we applied our computer-aided diagnosis (CAD) system to the database of the Mammographic Image Analysis Society (MIAS) in the UK. Forty-three mammograms from this database were used in this study. In our scheme, the breast regions were firstly extracted by determining the skinline. Histograms of the original images were used to extract the high-density area within the breast region as the segmentation from the fatty area around the skinline. Then the contrast correction technique was employed. Gradient vectors of the image density were calculated on the contrast corrected images. To extract the specific features of the pattern of the microcalcifications, triple-ring filter analysis was employed. A variable-ring filter was used for more accurate detection after the triple-ring filter. The features of the detected candidate areas were then characterized by feature analysis. The areas which satisfied the characteristics and specific terms were classified and displayed as clusters. As a result, the sensitivity was 95.8% with the false-positive rate at 1.8 clusters per image. This demonstrates that the automated detection of clustered microcalcifications in our CAD system is reliable as an aid to radiologists.

  17. False positive reduction of microcalcification cluster detection in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Yi, Sheng; Mendonca, Paulo; Tian, Tai-peng; Samala, Ravi; Chan, Heang-Ping

    2014-03-01

    Digital breast tomosynthesis (DBT) is a new modality that has strong potential in improving the sensitivity and specificity of breast mass detection. However, the detection of microcalcifications (MCs) in DBT is challenging because radiologists have to search for the often subtle signals in many slices. We are developing a computer-aided detection (CAD) system to assist radiologists in reading DBT. The system consists of four major steps, namely: image enhancement; pre-screening of MC candidates; false-positive (FP) reduction, and detection of MC cluster candidates of clinical interest. We propose an algorithm for reducing FPs by using 3D characteristics of MC clusters in DBT. The proposed method takes the MC candidates from the pre-screening step described in [14] as input, which are then iteratively clustered to provide training samples to a random-forest classifier and a rule-based classifier. The random forest classifier is used to learn a discriminative model of MC clusters using 3D texture features, whereas the rule-based classifier revisits the initial training samples and enhances them by combining median filtering and graph-cut-based segmentation followed by thresholding on the final number of MCs belonging to the candidate cluster. The outputs of these two classifiers are combined according to the prediction confidence of the random-forest classifier. We evaluate the proposed FP-reduction algorithm on a data set of two-view DBT from 40 breasts with biopsy-proven MC clusters. The experimental results demonstrate a significant reduction in FP detections, with a final sensitivity of 92.2% for an FP rate of 50%.

  18. Unsupervised Anomaly Detection Based on Clustering and Multiple One-Class SVM

    NASA Astrophysics Data System (ADS)

    Song, Jungsuk; Takakura, Hiroki; Okabe, Yasuo; Kwon, Yongjin

    Intrusion detection system (IDS) has played an important role as a device to defend our networks from cyber attacks. However, since it is unable to detect unknown attacks, i.e., 0-day attacks, the ultimate challenge in intrusion detection field is how we can exactly identify such an attack by an automated manner. Over the past few years, several studies on solving these problems have been made on anomaly detection using unsupervised learning techniques such as clustering, one-class support vector machine (SVM), etc. Although they enable one to construct intrusion detection models at low cost and effort, and have capability to detect unforeseen attacks, they still have mainly two problems in intrusion detection: a low detection rate and a high false positive rate. In this paper, we propose a new anomaly detection method based on clustering and multiple one-class SVM in order to improve the detection rate while maintaining a low false positive rate. We evaluated our method using KDD Cup 1999 data set. Evaluation results show that our approach outperforms the existing algorithms reported in the literature; especially in detection of unknown attacks.

  19. Measuring the Mean and Scatter of the X-ray Luminosity -- Optical Richness Relation for maxBCG Galaxy Clusters

    SciTech Connect

    Rykoff, E.S.; McKay, T.A.; Becker, M.A.; Evrard, A.; Johnston, D.E.; Koester, B.P.; Rozo, E.; Sheldon, E.S.; Wechsler, Risa H.

    2007-10-02

    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. (2007). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. Since the mean cluster density profile is proportional to the cluster-mass correlation function, the mean profile is spherically symmetric by the assumptions of large-scale homogeneity and isotropy. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of {approx} 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions from N-body simulations of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys.

  20. Detecting near-surface buried targets by a geophysical cluster of electromagnetic, magnetic and resistivity scanners

    NASA Astrophysics Data System (ADS)

    Alfouzan, F.; Zhou, B.; Bakkour, K.; Alyousif, M.

    2016-11-01

    We recently built up a geophysical cluster that includes three kinds of instruments EM61-MK2, Magnetometer and OhmMapper, which can simultaneously measure the secondary electromagnetic, magnetic and apparent resistivity data. This paper will demonstrate field experiments of using this cluster and development of integrated data proceeding schemes that can individually and simultaneously process the three kinds of data measured by the cluster, and yield integrated images of near-surface buried targets. We conducted mapping experiments on a 20 m × 20 m synthetic field site, beneath which five targets: a cross iron pipe, two small iron cylinder and block, a piece of limestone and PVP pipe are buried in different depths. The results show that the integrated cluster and data-processing schemes are successful in detecting these near-surface buried targets.

  1. Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms

    PubMed Central

    Kang, HyeongGon; Clarke, Matthew L.; Lacerda, Silvia H. De Paoli; Karim, Alamgir; Pease, Leonard F.; Hwang, Jeeseong

    2012-01-01

    Understanding the optical properties of clustered quantum dots (QDs) is essential to the design of QD-based optical phantoms for molecular imaging. Single and clustered core/shell colloidal QDs of dimers, trimers, and tetramers are self-assembled, separated, and preferentially collected using electrospray differential mobility analysis (ES-DMA) with electrostatic deposition. Multimodal optical characterization and analysis of their dynamical photoluminescence (PL) properties enables the long-term evaluation of the physicochemical and optical properties of QDs in a single or a clustered state. A multimodal time-correlated spectroscopic confocal microscope capable of simultaneously measuring the time evolution of PL intensity fluctuation, PL lifetime, and emission spectra reveals the long-term dynamic optical properties of interacting QDs in individual dimeric clusters of QDs. This new method will benefit research into the quantitative interpretation of fluorescence intensity and lifetime results in QD-based molecular imaging techniques. The process of photooxidation leads to coupling of the QDs in a dimer, leading to unique optical properties when compared to an isolated QD. These results guide the design and evaluation of QD-based phantom materials for the validation of the PL measurements for quantitative molecular imaging of biological samples labeled with QD probes. PMID:22741078

  2. Synthesis, characterization and optical properties of low nuclearity liganded silver clusters: Ag31(SG)19 and Ag15(SG)11.

    PubMed

    Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Gell, Lars; Kulesza, Alexander; Mitrić, Roland; Bonačić-Koutecký, Vlasta

    2013-06-21

    We report a simple synthesis of silver:glutathione (Ag:SG) clusters using a cyclic reduction under oxidative conditions. Two syntheses are described which lead to solutions containing well-defined Ag31(SG)19 and Ag15(SG)11 clusters that have been characterized by mass spectrometry. The optical properties of silver:glutathione (Ag:SG) cluster solutions have been investigated experimentally. In particular, the solution containing Ag15(SG)11 clusters shows a bright and photostable emission. For Ag31(SG)19 and Ag15(SG)11 clusters, the comparison of experimental findings with DFT and TDDFT calculations allowed us to reveal the structural and electronic properties of such low nuclearity liganded silver clusters.

  3. An integrated optics microfluidic device for detecting single DNA molecules.

    PubMed

    Krogmeier, Jeffrey R; Schaefer, Ian; Seward, George; Yantz, Gregory R; Larson, Jonathan W

    2007-12-01

    A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.

  4. A survey on object detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  5. Contrast enhancement in dense breast images to aid clustered microcalcifications detection.

    PubMed

    Nunes, Fátima L S; Schiabel, Homero; Goes, Claudio E

    2007-03-01

    This paper presents a method to provide contrast enhancement in dense breast digitized images, which are difficult cases in testing of computer-aided diagnosis (CAD) schemes. Three techniques were developed, and data from each method were combined to provide a better result in relation to detection of clustered microcalcifications. Results obtained during the tests indicated that, by combining all the developed techniques, it is possible to improve the performance of a processing scheme designed to detect microcalcification clusters. It also allows operators to distinguish some of these structures in low-contrast images, which were not detected via conventional processing before the contrast enhancement. This investigation shows the possibility of improving CAD schemes for better detection of microcalcifications in dense breast images.

  6. Requirement of microcalcification detection for computerized classification of malignant and benign clustered microcalcifications

    NASA Astrophysics Data System (ADS)

    Jiang, Yulei; Nishikawa, Robert M.; Papaioannou, John

    1998-06-01

    We are developing computerized schemes to detect clustered microcalcifications in mammograms, and to classify malignant versus benign microcalcifications. The purpose of this study is to investigate the effects on the performance of computer classification when results of computer-detected true microcalcifications and computer detected false-positive signals are used as input to the computer classification scheme. We found that when trained using manually identified microcalcifications, the computer classification performance was not degraded significantly when up to 60% of true microcalcifications were missed, and when false-positive signals made up approximately one half of the computer detection.

  7. Optical fiber nanotips coated with molecular beacons for DNA detection.

    PubMed

    Giannetti, Ambra; Barucci, Andrea; Cosi, Franco; Pelli, Stefano; Tombelli, Sara; Trono, Cosimo; Baldini, Francesco

    2015-04-24

    Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs) for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD) of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells.

  8. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  9. Reusable fiber optic immunofluorosensor for rapid detection of pesticides

    NASA Astrophysics Data System (ADS)

    Anis, Nabil A.; Valdes, James J.; Thompson, Roy G.; Menking, Darrell E.; Wong, Rosie B.; Eldefrawi, Mohyee E.

    1993-05-01

    Quartz fibers coated with acetylcholinesterase (AChE) or antibody (Ab) are used as biosensors utilizing total reflectance fluorescence for the rapid detection of pesticides. The enzyme biosensor was constructed by immobilizing fluorescein isothiocyanate (FITC)-tagged eel electric organ AChE on quartz fibers. The fluorescent signal was generated by hydrolysis of acetylcholine (ACh) that is present in the perfusate. Organophosphate (OP) and carbamate anticholinesterase (AntiChE) insecticides inhibited AChE and reduced the fluorescent quenching resulting from AChE hydrolysis. A parathion biosensor was constructed by immobilizing casein-parathion on the quartz fibers, that bound rabbit antiparathion antibody. The optical signal was generated by perfusing the fibers with fluorescein-labeled goat antirabbit IgG. Free parathion inhibited the binding of antiparathion Abs and reduced the optical signal and provided the basis for detection of parathion. Another immunosensor developed detected the herbicide PursuitR by utilizing the reversible binding of a fluorescein-Pursuit derivative to antiPursuit Abs immobilized on the fiber. Unlabeled Pursuit competed effectively and displaced the bound fluorescent compound in a dose-dependent manner. The sensor discriminated effectively between Pursuit-like and structurally unrelated herbicides. The immunosensor offers the advantage of continuous monitoring, ease of operation, speed of detection, low cost, stability, specificity, matrix transparency, and reusability.

  10. Optical Fiber Nanotips Coated with Molecular Beacons for DNA Detection

    PubMed Central

    Giannetti, Ambra; Barucci, Andrea; Cosi, Franco; Pelli, Stefano; Tombelli, Sara; Trono, Cosimo; Baldini, Francesco

    2015-01-01

    Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs) for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD) of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells. PMID:25919369

  11. Structural and Optical Properties of Point Defects in α-SiO2 Cluster

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Lu, Peng-Fei; Yang, Yang; Wu, Li-Yuan; Su, Rui; Chen, Jun

    2015-08-01

    First-principles methods based on the density functional theory (DFT) are used in order to calculate the structural and optical properties of α-SiO2 cluster with the non-bridging oxygen hole centers (NBOHC) and NBOHC-E' defects. We clarify the stable structure of the NBOHC-E' point defects for the first time using the functional B3LYP, which is also tested to investigate the influence of electronic properties. The calculation is carried out for cluster configurations extracted from supercell. The results of optical absorption peak for Si2O7H6 and Si5O16H12 with NBOHC-E' defects are found at 2.66 eV, which is higher than the often observed OA peak at 2.0 eV for the NBOHC defect in α-SiO2. The overall absorption spectra are in qualitative agreement with the experiment. Supported by the National Basic Research Program of China (973 Program) under Grant No. 2014CB643900, the Open Fund of IPOC (BUPT), the Open Program of State Key Laboratory of Functional Materials for Informatics, and the National Natural Science Foundation of China under Grant No. 61440061

  12. Biomimetic/Optical Sensors for Detecting Bacterial Species

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ksendzov, Alexander; Yen, Shiao-Pin; Ryan, Margaret; Lazazzera, Beth

    2006-01-01

    Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum-signaling compounds are acyl-homoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum. A sensor according to the proposal would include a specially formulated biomimetic film, made of a molecularly imprinted polymer (MIP), that would respond optically to the signaling compound of interest. The MIP film would be integrated directly onto an opticalwaveguide- based ring resonator for optical readout. Optically, the sensor would resemble the one described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. MIPs have been used before as molecular- recognition compounds, though not in the manner of the present proposal. Molecular imprinting is an approach to making molecularly selective cavities in a polymer matrix. These cavities function much as enzyme receptor sites: the chemical functionality and shape of a cavity in the polymer matrix cause the cavity to bind to specific molecules. An MIP matrix is made by polymerizing monomers in the presence of the compound of interest (template molecule). The polymer forms around the template. After the polymer solidifies, the template molecules are removed from the polymer matrix by decomplexing them from their binding sites and then dissolving them, leaving cavities that are matched to the template molecules in size, shape, and chemical functionality. The cavities thus become molecular-recognition sites

  13. Detection of organic nanoparticles within tissues using optical iterative method

    NASA Astrophysics Data System (ADS)

    Yariv, Inbar; Fixler, Dror; Lubart, Rachel; Duadi, Hamootal; Lipovsky, Anat

    2016-03-01

    Various techniques for recovering optical parameters were developed over the years. However each has its limitations, constraints and disadvantages (e.g. accuracy, computational speed, sample assembly, distinguishing between the different parameters, etc.). This research suggests an optical technique for extracting the reduced scattering coefficient (μs') of substances by examining the light transmission through or reflection from them. It uses the multiple planes Gerchberg- Saxton (G-S) algorithm to reconstruct the light phase created by the substance. At the end of the algorithm, μs' can be estimated from the standard deviation (STD) of the retrieved phase of the reemitted light. We will use the theory to compute the phase's STD that directly correlated to the optical properties of different substances. Two possible applications for this technique, out of many others, are nanoparticles (NPs) penetration depth determination, for promoting topical medications, and detection of milk components quantitative signature as en route to milk content monitoring tool. For the former application, three materials were fabricated into NPs and all presented an activity enhancement with their size reduction. Then the NPs were applied on tissues and detected by our technique. For the latter, different milk content concentrations were examined resulting with different STD values suggesting it can be used as indicator for the milk component concentrations.

  14. Optical Flow Estimation for Flame Detection in Videos

    PubMed Central

    Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen

    2014-01-01

    Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042

  15. Optical detection of spin Hall effect in metals

    SciTech Connect

    Erve, O. M. J. van ‘t Hanbicki, A. T.; McCreary, K. M.; Li, C. H.; Jonker, B. T.

    2014-04-28

    Optical techniques have been widely used to probe the spin Hall effect in semiconductors. In metals, however, only electrical methods such as nonlocal spin valve transport, ferromagnetic resonance, or spin torque transfer experiments have been successful. These methods require complex processing techniques and measuring setups. We show here that the spin Hall effect can be observed in non-magnetic metals such as Pt and β-W, using a standard bench top magneto-optical Kerr system with very little sample preparation. Applying a square wave current and using Fourier analysis significantly improve our detection level. One can readily determine the angular dependence of the induced polarization on the bias current direction (very difficult to do with voltage detection), the orientation of the spin Hall induced polarization, and the sign of the spin Hall angle. This optical approach is free from the complications of various resistive effects, which can compromise voltage measurements. This opens up the study of spin Hall effect in metals to a variety of spin dynamic and spatial imaging experiments.

  16. Miniature endoscopic optical coherence tomography for calculus detection.

    PubMed

    Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan

    2015-08-20

    The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (P<0.001) in SD values. Finally, the receiver operating characteristic curve had a high capacity (area under the curve=0.934) for discriminating between healthy regions (including enamel pearl) and dental calculus. PMID:26368780

  17. Near-Infrared Optical Imaging Noninvasively Detects Acutely Damaged Muscle.

    PubMed

    Chrzanowski, Stephen M; Batra, Abhinandan; Lee-McMullen, Brittany; Vohra, Ravneet S; Forbes, Sean C; Jiang, Huabei; Vandenborne, Krista; Walter, Glenn A

    2016-10-01

    Muscle damage is currently assessed through methods such as muscle biopsy, serum biomarkers, functional testing, and imaging procedures, each with its own inherent limitations, and a pressing need for a safe, repeatable, inexpensive, and noninvasive modality to assess the state of muscle health remains. Our aim was to develop and assess near-infrared (NIR) optical imaging as a novel noninvasive method of detecting and quantifying muscle damage. An immobilization-reambulation model was used for inducing muscle damage and recovery in the lower hindlimbs in mice. Confirmation of muscle damage was obtained using in vivo indocyanine green-enhanced NIR optical imaging, magnetic resonance imaging, and ex vivo tissue analysis. The soleus of the immobilized-reambulated hindlimb was found to have a greater amount of muscle damage compared to that in the contralateral nonimmobilized limb, confirmed by in vivo indocyanine green-enhanced NIR optical imaging (3.86-fold increase in radiant efficiency), magnetic resonance imaging (1.41-fold increase in T2), and an ex vivo spectrophotometric assay of indocyanine green uptake (1.87-fold increase in normalized absorbance). Contrast-enhanced NIR optical imaging provides a sensitive, rapid, and noninvasive screening method that can be used for imaging and quantifying muscle damage and recovery in vivo. PMID:27565039

  18. Optical cloud detection from a disposable airborne sensor

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles; Brus, David

    2016-04-01

    In-situ measurement of cloud droplet microphysical properties is most commonly made from manned aircraft platforms due to the size and weight of the instrumentation, which is both costly and typically limited to sampling only a few clouds. This work describes the development of a small, lightweight (<200g), disposable, optical cloud sensor which is designed for use on routine radiosonde balloon flights and also small unmanned aerial vehicle (UAV) platforms. The sensor employs the backscatter principle, using an ultra-bright LED as the illumination source, with a photodiode detector. Scattering of the LED light by cloud droplets generates a small optical signal which is separated from background light fluctuations using a lock-in technique. The signal to noise obtained permits cloud detection using the scattered LED light, even in daytime. During recent field tests in Pallas, Finland, the retrieved optical sensor signal has been compared with the DMT Cloud and Aerosol Spectrometer (CAS) which measures cloud droplets in the size range from 0.5 to 50 microns. Both sensors were installed at the hill top observatory of Sammaltunturi during a field campaign in October and November 2015, which experienced long periods of immersion inside cloud. Preliminary analysis shows very good agreement between the CAPS and the disposable cloud sensor for cloud droplets >5micron effective diameter. Such data and calibration of the sensor will be discussed here, as will simultaneous balloon launches of the optical cloud sensor through the same cloud layers.

  19. Ferromagnetic Resonance detection using stroboscopic magneto optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Yoon, Seungha; Moriyama, Takahiro; McMichael, Robert

    2015-03-01

    Ferromagnetic resonance (FMR) is a powerful method for measuring the magnetic properties of ferromagnets. A number of related optical techniques have become popular, including time-resolved magneto-optical Kerr effect (TR-MOKE) microscopy and Brillouin light scattering (BLS). In this presentation we describe a new, stroboscopic method of measuring FMR based on the magneto-optical Kerr effect (MOKE). We use a polarized telecommunications fiber laser (wavelength = 1550 nm) and a fiber modulator driven at a frequency of interest (1 GHz to 10 GHz) to create pulsed, linearly polarized light incident on a CoFeB thin film sample. Precession in the sample is driven via a coplanar waveguide in the sample holder while the reflected light is split by a polarizing beam splitter and detected by a balanced detector. As the magnetic field is swept, oscillations in the Kerr angle and in the light intensity mix to produce a DC resonance signal. The spectra are Lorentzian, with a superposition of symmetric and anti-symmetric shapes that depends on the phase of the optical and microwave signals. In the presentation, we will also discuss phase sensitive measurements with this technique as well as the advantages over other FMR techniques.

  20. A Fiber Optic Probe for the Detection of Cataracts

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.

    1993-01-01

    A compact fiber optic probe developed for on-orbit science experiments was used to detect the onset of cataracts, a capability that could eliminate physicians' guesswork and result in new drugs to 'dissolve' or slow down the cataract formation before surgery is necessary. The probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for excised but intact human eye lenses. In a clinical setting, the device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics. In this set-up, the integrated fiber optic probe, the size of a pencil, delivers a low power cone of laser light into the eye of a patient and guides the light which is backscattered by the protein molecules of the lens through a receiving optical fiber to a photo detector. The non-invasive DLS measurements provide rapid determination of protein crystalline size and its size distribution in the eye lens.

  1. Fiber optic oxygen sensor leak detection system for space applications

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Goswami, Kish; Mendoza, Edgar A.; Kempen, Lothar U.

    2007-09-01

    This paper describes the successful test of a multi-point fiber optic oxygen sensor system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta IV common booster core (CBC) rocket engine at NASA's Stennis Flight Center. The system consisted of microsensors (optrodes) using an oxygen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel opto-electronic sensor readout unit that monitored the oxygen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The sensor packaging for oxygen consisted of two optrodes - one doped with an indicator sensitive to oxygen, and the other doped with an indicator sensitive to temperature. The multichannel oxygen sensor system is fully reversible. It has demonstrated a dynamic response to oxygen gas in the range of 0% to 100% with 0.1% resolution and a response time of <=10 seconds. The sensor package was attached to a custom fiber optic ribbon cable, which was then connected to a fiber optic trunk communications cable (standard telecommunications-grade fiber) that connected to the optoelectronics module. Each board in the expandable module included light sources, photo-detectors, and associated electronics required for detecting oxygen and temperature. The paper illustrates the sensor design and performance data under field deployment conditions.

  2. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a

  3. Fully automated procedure for ship detection using optical satellite imagery

    NASA Astrophysics Data System (ADS)

    Corbane, C.; Pecoul, E.; Demagistri, L.; Petit, M.

    2009-01-01

    Ship detection from remote sensing imagery is a crucial application for maritime security which includes among others traffic surveillance, protection against illegal fisheries, oil discharge control and sea pollution monitoring. In the framework of a European integrated project GMES-Security/LIMES, we developed an operational ship detection algorithm using high spatial resolution optical imagery to complement existing regulations, in particular the fishing control system. The automatic detection model is based on statistical methods, mathematical morphology and other signal processing techniques such as the wavelet analysis and Radon transform. This paper presents current progress made on the detection model and describes the prototype designed to classify small targets. The prototype was tested on panchromatic SPOT 5 imagery taking into account the environmental and fishing context in French Guiana. In terms of automatic detection of small ship targets, the proposed algorithm performs well. Its advantages are manifold: it is simple and robust, but most of all, it is efficient and fast, which is a crucial point in performance evaluation of advanced ship detection strategies.

  4. Calibrating the Optical Luminosity of Red Clump Stars: An Archival Study of Star Clusters

    NASA Astrophysics Data System (ADS)

    Grocholski, Aaron

    2010-09-01

    The core helium burning stars of the red clump {RC} are a conspicuous feature in the color-magnitude diagram of many stellar populations. Its ease of identification, along with its relative brightness {M_I 0} make the RC a popular feature for HST studies of stellar populations in galaxies out to a few Mpc. Such studies generally interpret the data through comparison to theoretical isochrones. For accurate results, the theoretical predictions must be calibrated to match the RC properties of observed populations of known age and metallicity. However, no large scale studies of the luminosity of the RC currently exist in the optical bands. We propose to remedy this situation with an archival study of RC properties in star clusters in the Milky Way, LMC, and SMC. We will focus on HST images of globular clusters, but we will augment the sample with ground-based open cluster observations to extend the coverage of parameter space. The goal is to build a large and homogeneous database, through new analysis and incorporation of literature data, of cluster ages, abundances, distances, and RC photometry. This database will allow us to explore the variations in the RC luminosity as a function of age and [Fe/H] over the full range of parameter space where the RC exists, for both the V and I bands. The results will provide a fundamental calibration for all future HST studies of stellar populations and distances of nearby galaxies using the RC. They will also allow for verification or improvement of theoretical models for red giant phase evolution. This in turn will help many subjects, from stellar modeling to population synthesis and fitting of spectral energy distributions of distant galaxies.

  5. Compact fiber optic dual-detection confocal displacement sensor.

    PubMed

    Lee, Dong-Ryoung; Jang, Suin; Lee, Min Woo; Yoo, Hongki

    2016-09-20

    We propose a dual-detection confocal displacement sensor (DDCDS) with a compact fiber-based optical probe. This all-fiber-optic sensor probe is simple and robust, since it only requires simple alignment of a gradient refractive index lens and a double-clad fiber (DCF). The DDCDS is composed of two point detectors, one coupled to a single mode fiber and the other coupled to a multimode fiber, which are used to measure the light intensity from a core and an inner clad of a DCF, respectively. The ratio of the axial response curves, measured by the two detectors, can be used to obtain a linear relationship between the axial position of the object plane and the ratio of the intensity signals. We demonstrate the performance of the proposed method by measuring micromovement and fast vibration.

  6. Optical detection of blade flutter. [in YF-100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    The paper examines the capabilities of photoelectric scanning (PES) and stroboscopic imagery (SI) as optical monitoring tools for detection of the onset of flutter in the fan blades of an aircraft gas turbine engine. Both optical techniques give visual data in real time as well as video-tape records. PES is shown to be an ideal flutter monitor, since a single cathode ray tube displays the behavior of all the blades in a stage simultaneously. Operation of the SI system continuously while searching for a flutter condition imposes severe demands on the flash tube and affects its reliability, thus limiting its use as a flutter monitor. A better method of operation is to search for flutter with the PES and limit the use of SI to those times when the PES indicates interesting blade activity.

  7. Generation and detection of atomic spin entanglement in optical lattices

    NASA Astrophysics Data System (ADS)

    Dai, Han-Ning; Yang, Bing; Reingruber, Andreas; Xu, Xiao-Fan; Jiang, Xiao; Chen, Yu-Ao; Yuan, Zhen-Sheng; Pan, Jian-Wei

    2016-08-01

    Ultracold atoms in optical lattices hold promise for the creation of entangled states for quantum technologies. Here we report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Using a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated with near-unity fidelities by microwave pulses. The spin entanglement of the two atoms in the double wells of the superlattice is generated via the dynamical evolution governed by spin superexchange. By monitoring the collisional atom loss with in situ absorption imaging we measure the spin correlations of the atoms inside the double wells and obtain a lower bound on the entanglement fidelity of 0.79 +/- 0.06, and a violation of a Bell's inequality S = 2.21 +/- 0.08.

  8. Plastic optical fibre sensor for detecting vapour phase alcohol

    NASA Astrophysics Data System (ADS)

    Morisawa, Masayuki; Amemiya, Yumiko; Kohzu, Hidenori; Liang, Chuan Xin; Muto, Shinzo

    2001-07-01

    New plastic optical fibre sensors for detecting alcohol vapour have been studied. A certain kind of polymer such as a Novolac resin causes swelling when it is exposed to alcohol vapour. This effect produces a change in the polymer refractive index. Based on this principle, the plastic optical fibre (POF) type sensor head was fabricated by coating Novolac-resin and Novolac/Fe:SO complex film as a cladding layer on the plastic fibre core. When this sensor head was exposed to ethanol and methanol vapour, the light intensity passing through the sensor head changed remarkably depending on the vapour pressure. The sensor response was also found to be fast, stable and reproducible.

  9. Compact fiber optic dual-detection confocal displacement sensor.

    PubMed

    Lee, Dong-Ryoung; Jang, Suin; Lee, Min Woo; Yoo, Hongki

    2016-09-20

    We propose a dual-detection confocal displacement sensor (DDCDS) with a compact fiber-based optical probe. This all-fiber-optic sensor probe is simple and robust, since it only requires simple alignment of a gradient refractive index lens and a double-clad fiber (DCF). The DDCDS is composed of two point detectors, one coupled to a single mode fiber and the other coupled to a multimode fiber, which are used to measure the light intensity from a core and an inner clad of a DCF, respectively. The ratio of the axial response curves, measured by the two detectors, can be used to obtain a linear relationship between the axial position of the object plane and the ratio of the intensity signals. We demonstrate the performance of the proposed method by measuring micromovement and fast vibration. PMID:27661592

  10. Optical detection of the quantization of collective atomic motion.

    PubMed

    Brahms, Nathan; Botter, Thierry; Schreppler, Sydney; Brooks, Daniel W C; Stamper-Kurn, Dan M

    2012-03-30

    We directly measure the quantized collective motion of a gas of thousands of ultracold atoms, coupled to light in a high-finesse optical cavity. We detect strong asymmetries, as high as 3:1, in the intensity of light scattered into low- and high-energy motional sidebands. Owing to high cavity-atom cooperativity, the optical output of the cavity contains a spectroscopic record of the energy exchanged between light and motion, directly quantifying the heat deposited by a quantum position measurement's backaction. Such backaction selectively causes the phonon occupation of the observed collective modes to increase with the measurement rate. These results, in addition to providing a method for calibrating the motion of low-occupation mechanical systems, offer new possibilities for investigating collective modes of degenerate gases and for diagnosing optomechanical measurement backaction.

  11. The Correlation Function of Galaxy Clusters and Detection of Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-01

    We calculate the correlation function of 13,904 galaxy clusters of z <= 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model ξ(r) = (r/R 0)-γ on the scales of 10 h -1 Mpc <= r <= 50 h -1 Mpc, with a larger correlation length of R 0 = 18.84 ± 0.27 h -1 Mpc for clusters with a richness of R >= 15 and a smaller length of R 0 = 16.15 ± 0.13 h -1 Mpc for clusters with a richness of R >= 5. The power-law index of γ = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h -1 Mpc with a significance of ~1.9σ. By analyzing the correlation function in the range of 20 h -1 Mpc <= r <= 200 h -1 Mpc, we find that the constraints on distance parameters are Dv (zm = 0.276) = 1077 ± 55(1σ) Mpc and h = 0.73 ± 0.039(1σ), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density Ω m h 2 = 0.093 ± 0.0077(1σ), which deviates from the WMAP7 result by more than 3σ. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  12. THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-10

    We calculate the correlation function of 13,904 galaxy clusters of z {<=} 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model {xi}(r) = (r/R{sub 0}){sup -{gamma}} on the scales of 10 h{sup -1} Mpc {<=} r {<=} 50 h{sup -1} Mpc, with a larger correlation length of R{sub 0} = 18.84 {+-} 0.27 h{sup -1} Mpc for clusters with a richness of R {>=} 15 and a smaller length of R{sub 0} = 16.15 {+-} 0.13 h{sup -1} Mpc for clusters with a richness of R {>=} 5. The power-law index of {gamma} = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r {approx} 110 h{sup -1} Mpc with a significance of {approx}1.9{sigma}. By analyzing the correlation function in the range of 20 h{sup -1} Mpc {<=} r {<=} 200 h{sup -1} Mpc, we find that the constraints on distance parameters are D{sub v} (z{sub m} = 0.276) = 1077 {+-} 55(1{sigma}) Mpc and h = 0.73 {+-} 0.039(1{sigma}), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density {Omega}{sub m} h{sup 2} = 0.093 {+-} 0.0077(1{sigma}), which deviates from the WMAP7 result by more than 3{sigma}. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  13. Intersection Detection Based on Qualitative Spatial Reasoning on Stopping Point Clusters

    NASA Astrophysics Data System (ADS)

    Zourlidou, S.; Sester, M.

    2016-06-01

    The purpose of this research is to propose and test a method for detecting intersections by analysing collectively acquired trajectories of moving vehicles. Instead of solely relying on the geometric features of the trajectories, such as heading changes, which may indicate turning points and consequently intersections, we extract semantic features of the trajectories in form of sequences of stops and moves. Under this spatiotemporal prism, the extracted semantic information which indicates where vehicles stop can reveal important locations, such as junctions. The advantage of the proposed approach in comparison with existing turning-points oriented approaches is that it can detect intersections even when not all the crossing road segments are sampled and therefore no turning points are observed in the trajectories. The challenge with this approach is that first of all, not all vehicles stop at the same location - thus, the stop-location is blurred along the direction of the road; this, secondly, leads to the effect that nearby junctions can induce similar stop-locations. As a first step, a density-based clustering is applied on the layer of stop observations and clusters of stop events are found. Representative points of the clusters are determined (one per cluster) and in a last step the existence of an intersection is clarified based on spatial relational cluster reasoning, with which less informative geospatial clusters, in terms of whether a junction exists and where its centre lies, are transformed in more informative ones. Relational reasoning criteria, based on the relative orientation of the clusters with their adjacent ones are discussed for making sense of the relation that connects them, and finally for forming groups of stop events that belong to the same junction.

  14. Laser-modulated scatter from optical surfaces using fiber detection

    NASA Astrophysics Data System (ADS)

    Natoli, Jean-Yves; Deumie, Carole; Amra, Claude

    2000-03-01

    The improvement of optical components for high power laser applications is still topical. Indeed the different signal cant progress made these last years, had allowed to improve the damage resistance of optical components by in particular, the identification of micronic precursors centers. A new challenge today is the identification of precursor centers of damage with size in the range of few nanometers. This kind of defects seems to play an important role in the laser damage process. In any case the challenge is to find an efficient tool able to detect these defects which are invisible with usual techniques as optical microscope or standard scattering. The technique of Laser Modulated Scattering (LMS) has been performed to reach this challenge. This new tool presented last year in the Boulder symposium, is based on a very high sensitivity detection of photothermal response of the defect. The LMS has been performed via two different setup arrangements. The first one uses tow beams as in the configuration of a standard Photothermal microscope, and the second one uses only one beam. In this article we first briefly remind the principle of the LMS technique with one and two beams. Then we will show by different results, the advantages of using an optical fiber to collect the scatted light instead of a block beam system used before. One of the main advantages of the setup using a fiber, is that it is easily possible to realize an angular study of scattering which allows a best understanding of the physical origin of the defect-induced scattered signal. The last part of this work consists of a series of stimulation of angular scattering LMS curve, in order to quantify the sensitivity and the powerfulness of this technique.

  15. Multiplexed detection of biological agents using optical microchip sensors

    NASA Astrophysics Data System (ADS)

    Bhatta, D.; McDonnell, M. B.; Perkins, E.

    2010-10-01

    A multi-channel optical microchip sensor system suitable for real-time, label-free detection of a wide range of biological agents is presented. SpectroSensTM chips containing multiple high-precision planar Bragg gratings are exploited as lowcost, robust refractive index sensors. Sensitivity to biological agents is conferred by functionalising individual sensing regions with different antibodies selected against numerous targets of interest. Antigen binding to the surfaceimmobilised antibodies results in localised changes in refractive index; upon laser-induced interrogation of the sensing region via optical fibres, these antibody-antigen interactions manifest as increases in wavelength of light reflected from the sensor chip. Real-time detection of multiple biological agents including bacterial cells/spores, viruses and toxins has been demonstrated. Further improvements to sensor performance including physical and chemical methods are also investigated. This multi-analyte capability highlights the potential use of this sensing technology in applications ranging from bio-hazard detection for defence purposes to point-of-care clinical diagnostics.

  16. Dental caries detection by optical spectroscopy: a polarized Raman approach with fibre-optic coupling

    NASA Astrophysics Data System (ADS)

    Ko, A. C.-T.; Choo-Smith, L.-P.; Werner, J.; Hewko, M.; Sowa, M. G.; Dong, C.; Cleghorn, B.

    2006-09-01

    Incipient dental caries lesions appear as white spots on the tooth surface; however, accurate detection of early approximal lesions is difficult due to limited sensitivity of dental radiography and other traditional diagnostic tools. A new fibre-optic coupled spectroscopic method based on polarized Raman spectroscopy (P-RS) with near-IR laser excitation is introduced which provides contrast for detecting and characterizing incipient caries. Changes in polarized Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Demineralization-induced morphological/orientational alteration of enamel crystallites is believed to be responsible for the reduction of Raman polarization anisotropy observed in the polarized Raman spectra of caries lesions. Supporting evidence obtained by polarized Raman spectral imaging is presented. A specially designed fibre-optic coupled setup for simultaneous measurement of parallel- and cross-polarized tooth Raman spectra is demonstrated in this study.

  17. Optical beat interference noise reduction in OFDMA optical access link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook

    2013-12-01

    A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.

  18. Magneto-optical contrast in liquid-state optically detected NMR spectroscopy

    PubMed Central

    Pagliero, Daniela; Meriles, Carlos A.

    2011-01-01

    We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736

  19. Nationwide Registry-Based Analysis of Cancer Clustering Detects Strong Familial Occurrence of Kaposi Sarcoma

    PubMed Central

    Vahteristo, Pia; Patama, Toni; Li, Yilong; Saarinen, Silva; Kilpivaara, Outi; Pitkänen, Esa; Knekt, Paul; Laaksonen, Maarit; Artama, Miia; Lehtonen, Rainer; Aaltonen, Lauri A.; Pukkala, Eero

    2013-01-01

    Many cancer predisposition syndromes are rare or have incomplete penetrance, and traditional epidemiological tools are not well suited for their detection. Here we have used an approach that employs the entire population based data in the Finnish Cancer Registry (FCR) for analyzing familial aggregation of all types of cancer, in order to find evidence for previously unrecognized cancer susceptibility conditions. We performed a systematic clustering of 878,593 patients in FCR based on family name at birth, municipality of birth, and tumor type, diagnosed between years 1952 and 2011. We also estimated the familial occurrence of the tumor types using cluster score that reflects the proportion of patients belonging to the most significant clusters compared to all patients in Finland. The clustering effort identified 25,910 birth name-municipality based clusters representing 183 different tumor types characterized by topography and morphology. We produced information about familial occurrence of hundreds of tumor types, and many of the tumor types with high cluster score represented known cancer syndromes. Unexpectedly, Kaposi sarcoma (KS) also produced a very high score (cluster score 1.91, p-value <0.0001). We verified from population records that many of the KS patients forming the clusters were indeed close relatives, and identified one family with five affected individuals in two generations and several families with two first degree relatives. Our approach is unique in enabling systematic examination of a national epidemiological database to derive evidence of aberrant familial aggregation of all tumor types, both common and rare. It allowed effortless identification of families displaying features of both known as well as potentially novel cancer predisposition conditions, including striking familial aggregation of KS. Further work with high-throughput methods should elucidate the molecular basis of the potentially novel predisposition conditions found in this

  20. New detections of radio minihalos in cool cores of galaxy clusters

    SciTech Connect

    Giacintucci, Simona; Markevitch, Maxim; Clarke, Tracy E.; Mazzotta, Pasquale

    2014-01-20

    Cool cores of some galaxy clusters exhibit faint radio 'minihalos'. Their origin is unclear, and their study has been limited by their small number. We undertook a systematic search for minihalos in a large sample of X-ray luminous clusters with high-quality radio data. In this article, we report four new minihalos (A 478, ZwCl 3146, RXJ 1532.9+3021, and A 2204) and five candidates found in the reanalyzed archival Very Large Array observations. The radio luminosities of our minihalos and candidates are in the range of 10{sup 23-25} W Hz{sup –1} at 1.4 GHz, which is consistent with these types of radio sources. Their sizes (40-160 kpc in radius) are somewhat smaller than those of previously known minihalos. We combine our new detections with previously known minihalos, obtaining a total sample of 21 objects, and briefly compare the cluster radio properties to the average X-ray temperature and the total masses estimated from Planck. We find that nearly all clusters hosting minihalos are hot and massive. Beyond that, there is no clear correlation between the minihalo radio power and cluster temperature or mass (in contrast with the giant radio halos found in cluster mergers, whose radio luminosity correlates with the cluster mass). Chandra X-ray images indicate gas sloshing in the cool cores of most of our clusters, with minihalos contained within the sloshing regions in many of them. This supports the hypothesis that radio-emitting electrons are reaccelerated by sloshing. Advection of relativistic electrons by the sloshing gas may also play a role in the formation of the less extended minihalos.

  1. New Detections of Radio Minihalos in Cool Cores of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Giacintucci, Simona; Markevitch, Maxim; Venturi, Tiziana; Clarke, Tracy E.; Cassano, Rossella; Mazzotta, Pasquale

    2013-01-01

    Cool cores of some galaxy clusters exhibit faint radio minihalos. Their origin is unclear, and their study has been limited by their small number. We undertook a systematic search for minihalos in a large sample of X-ray luminous clusters with high-quality radio data. In this article, we report four new minihalos (A 478, ZwCl 3146,RXJ 1532.9+3021, and A 2204) and five candidates found in the reanalyzed archival Very Large Array observations.The radio luminosities of our minihalos and candidates are in the range of 102325 W Hz1 at 1.4 GHz, which is consistent with these types of radio sources. Their sizes (40160 kpc in radius) are somewhat smaller than those of previously known minihalos. We combine our new detections with previously known minihalos, obtaining a total sample of 21 objects, and briefly compare the cluster radio properties to the average X-ray temperature and the total masses estimated from Planck.We find that nearly all clusters hosting minihalos are hot and massive. Beyond that, there is no clear correlation between the minihalo radio power and cluster temperature or mass (in contrast with the giant radio halos found in cluster mergers, whose radio luminosity correlates with the cluster mass). Chandra X-ray images indicate gas sloshing in the cool cores of most of our clusters, with minihalos contained within the sloshing regions in many of them. This supports the hypothesis that radio-emitting electrons are reaccelerated by sloshing. Advection of relativistic electrons by the sloshing gas may also play a role in the formation of the less extended minihalos.

  2. Theoretical investigation of stabilities and optical properties of Si12C12 clusters.

    PubMed

    Duan, Xiaofeng F; Burggraf, Larry W

    2015-01-21

    By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si-C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C-C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated carbon and silicon regions produce lower excitation energies than do structures having alternating Si-C bonding for which frontier orbital charge transfer is exclusively from separated carbon atoms to silicon atoms. The most stable Si12C12 isomer at temperatures below 1100 K is unique as regards its high symmetry and large optical oscillator strength in the visible blue. Its high-energy and low-energy visible transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. PMID:25612705

  3. Min-max hyperellipsoidal clustering for anomaly detection in network security.

    PubMed

    Sarasamma, Suseela T; Zhu, Qiuming A

    2006-08-01

    A novel hyperellipsoidal clustering technique is presented for an intrusion-detection system in network security. Hyperellipsoidal clusters toward maximum intracluster similarity and minimum intercluster similarity are generated from training data sets. The novelty of the technique lies in the fact that the parameters needed to construct higher order data models in general multivariate Gaussian functions are incrementally derived from the data sets using accretive processes. The technique is implemented in a feedforward neural network that uses a Gaussian radial basis function as the model generator. An evaluation based on the inclusiveness and exclusiveness of samples with respect to specific criteria is applied to accretively learn the output clusters of the neural network. One significant advantage of this is its ability to detect individual anomaly types that are hard to detect with other anomaly-detection schemes. Applying this technique, several feature subsets of the tcptrace network-connection records that give above 95% detection at false-positive rates below 5% were identified.

  4. Clinical application of clustered-AChR for the detection of SNMG

    PubMed Central

    Zhao, Guang; Wang, Xiaoqing; Yu, Xiaowen; Zhang, Xiutian; Guan, Yangtai; Jiang, Jianming

    2015-01-01

    Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction (NMJ). However, accumulating evidence has indicated that MG patients whose serum anti-acetylcholine receptor (AChR) antibodies are not detectable (serumnegative MG; SNMG) in routine assays share similar clinical features with anti-AChR antibody-positive MG patients. We hypothesized that SNMG patients would have low-affinity antibodies to AChRs that would not be detectable using traditional methods but that might be detected by binding to AChR on the cell membrane, particularly if they were clustered at the high density observed at the NMJ. We expressed AChR subunits with the clustering protein rapsyn (an AChR-associated protein at the synapse) in human embryonic kidney (HEK) cells, and we tested the binding of the antibodies using immunofluorescence. With this approach, AChR antibodies to rapsyn-clustered AChR could be detected in the sera from 45.83% (11/24) of SNMG patients, as confirmed with fluorescence-activated cell sorting (FACS). This was the first application in China of cell-based AChR antibody detection. More importantly, this sensitive (and specific) approach could significantly increase the diagnosis rate of SNMG. PMID:26068604

  5. A multi-similarity spectral clustering method for community detection in dynamic networks.

    PubMed

    Qin, Xuanmei; Dai, Weidi; Jiao, Pengfei; Wang, Wenjun; Yuan, Ning

    2016-01-01

    Community structure is one of the fundamental characteristics of complex networks. Many methods have been proposed for community detection. However, most of these methods are designed for static networks and are not suitable for dynamic networks that evolve over time. Recently, the evolutionary clustering framework was proposed for clustering dynamic data, and it can also be used for community detection in dynamic networks. In this paper, a multi-similarity spectral (MSSC) method is proposed as an improvement to the former evolutionary clustering method. To detect the community structure in dynamic networks, our method considers the different similarity metrics of networks. First, multiple similarity matrices are constructed for each snapshot of dynamic networks. Then, a dynamic co-training algorithm is proposed by bootstrapping the clustering of different similarity measures. Compared with a number of baseline models, the experimental results show that the proposed MSSC method has better performance on some widely used synthetic and real-world datasets with ground-truth community structure that change over time. PMID:27528179

  6. A multi-similarity spectral clustering method for community detection in dynamic networks

    NASA Astrophysics Data System (ADS)

    Qin, Xuanmei; Dai, Weidi; Jiao, Pengfei; Wang, Wenjun; Yuan, Ning

    2016-08-01

    Community structure is one of the fundamental characteristics of complex networks. Many methods have been proposed for community detection. However, most of these methods are designed for static networks and are not suitable for dynamic networks that evolve over time. Recently, the evolutionary clustering framework was proposed for clustering dynamic data, and it can also be used for community detection in dynamic networks. In this paper, a multi-similarity spectral (MSSC) method is proposed as an improvement to the former evolutionary clustering method. To detect the community structure in dynamic networks, our method considers the different similarity metrics of networks. First, multiple similarity matrices are constructed for each snapshot of dynamic networks. Then, a dynamic co-training algorithm is proposed by bootstrapping the clustering of different similarity measures. Compared with a number of baseline models, the experimental results show that the proposed MSSC method has better performance on some widely used synthetic and real-world datasets with ground-truth community structure that change over time.

  7. A multi-similarity spectral clustering method for community detection in dynamic networks

    PubMed Central

    Qin, Xuanmei; Dai, Weidi; Jiao, Pengfei; Wang, Wenjun; Yuan, Ning

    2016-01-01

    Community structure is one of the fundamental characteristics of complex networks. Many methods have been proposed for community detection. However, most of these methods are designed for static networks and are not suitable for dynamic networks that evolve over time. Recently, the evolutionary clustering framework was proposed for clustering dynamic data, and it can also be used for community detection in dynamic networks. In this paper, a multi-similarity spectral (MSSC) method is proposed as an improvement to the former evolutionary clustering method. To detect the community structure in dynamic networks, our method considers the different similarity metrics of networks. First, multiple similarity matrices are constructed for each snapshot of dynamic networks. Then, a dynamic co-training algorithm is proposed by bootstrapping the clustering of different similarity measures. Compared with a number of baseline models, the experimental results show that the proposed MSSC method has better performance on some widely used synthetic and real-world datasets with ground-truth community structure that change over time. PMID:27528179

  8. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    SciTech Connect

    Miller, Michael K.; Larson, David J.; Reinhard, D. A.

    2014-12-26

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 1024 m–3 and 1.2 × 1024 m–3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  9. Cluster Detection Tests in Spatial Epidemiology: A Global Indicator for Performance Assessment.

    PubMed

    Guttmann, Aline; Li, Xinran; Feschet, Fabien; Gaudart, Jean; Demongeot, Jacques; Boire, Jean-Yves; Ouchchane, Lemlih

    2015-01-01

    In cluster detection of disease, the use of local cluster detection tests (CDTs) is current. These methods aim both at locating likely clusters and testing for their statistical significance. New or improved CDTs are regularly proposed to epidemiologists and must be subjected to performance assessment. Because location accuracy has to be considered, performance assessment goes beyond the raw estimation of type I or II errors. As no consensus exists for performance evaluations, heterogeneous methods are used, and therefore studies are rarely comparable. A global indicator of performance, which assesses both spatial accuracy and usual power, would facilitate the exploration of CDTs behaviour and help between-studies comparisons. The Tanimoto coefficient (TC) is a well-known measure of similarity that can assess location accuracy but only for one detected cluster. In a simulation study, performance is measured for many tests. From the TC, we here propose two statistics, the averaged TC and the cumulated TC, as indicators able to provide a global overview of CDTs performance for both usual power and location accuracy. We evidence the properties of these two indicators and the superiority of the cumulated TC to assess performance. We tested these indicators to conduct a systematic spatial assessment displayed through performance maps. PMID:26086911

  10. Cluster Detection Tests in Spatial Epidemiology: A Global Indicator for Performance Assessment

    PubMed Central

    Guttmann, Aline; Li, Xinran; Feschet, Fabien; Gaudart, Jean; Demongeot, Jacques; Boire, Jean-Yves; Ouchchane, Lemlih

    2015-01-01

    In cluster detection of disease, the use of local cluster detection tests (CDTs) is current. These methods aim both at locating likely clusters and testing for their statistical significance. New or improved CDTs are regularly proposed to epidemiologists and must be subjected to performance assessment. Because location accuracy has to be considered, performance assessment goes beyond the raw estimation of type I or II errors. As no consensus exists for performance evaluations, heterogeneous methods are used, and therefore studies are rarely comparable. A global indicator of performance, which assesses both spatial accuracy and usual power, would facilitate the exploration of CDTs behaviour and help between-studies comparisons. The Tanimoto coefficient (TC) is a well-known measure of similarity that can assess location accuracy but only for one detected cluster. In a simulation study, performance is measured for many tests. From the TC, we here propose two statistics, the averaged TC and the cumulated TC, as indicators able to provide a global overview of CDTs performance for both usual power and location accuracy. We evidence the properties of these two indicators and the superiority of the cumulated TC to assess performance. We tested these indicators to conduct a systematic spatial assessment displayed through performance maps. PMID:26086911

  11. Early detection of dengue infections using cluster sampling around index cases.

    PubMed

    Beckett, Charmagne G; Kosasih, Herman; Faisal, Indra; Nurhayati; Tan, Ratna; Widjaja, Susana; Listiyaningsih, Erlin; Ma'roef, Chairin; Wuryadi, Suharyono; Bangs, Michael J; Samsi, Tatang K; Yuwono, Djoko; Hayes, Curtis G; Porter, Kevin R

    2005-06-01

    A two-year study using a cluster investigation method was conducted in West Jakarta, Indonesia to demonstrate the detection of dengue cases prior to onset of clinical illness. The clusters consisted of family members and neighbors of 53 hospitalized dengue index cases. Among 785 adult and child volunteers enrolled, 17 (2.2%) post-enrollment dengue (PED) infections were identified. Eight PED cases were asymptomatic and nine were symptomatic. Symptomatic cases included eight with dengue fever and one with dengue hemorrhagic fever (DHF) (grade II). Among the eight asymptomatic PED cases, viremia was detected in two. Eleven volunteers had acute dengue infections at the time of enrollment. Four of the 11 developed DHF, resulting in a total of five DHF cases detected during the investigation. This study design can serve as a benchmark for future investigations that seek to define early immunologic events following dengue infections that contribute to the development of DHF.

  12. Detection of the linear carbon cluster C10: rotationally resolved diode-laser spectroscopy.

    PubMed

    Giesen, T F; Berndt, U; Yamada, K M; Fuchs, G; Schieder, R; Winnewisser, G; Provencal, R A; Keutsch, F N; Van Orden, A; Saykally, R J

    2001-04-17

    Detected in interstellar space and as intermediates in soot formation, molecules of pure carbon in the form of linear chains or ring structures have interested researchers for several decades, who attempt to elucidate their physical properties and the processes govering their formation. A high-resolution infrared spectrometer housing a tunable diode laser and combined with an effective laser ablation source for the cluster production has been used to study the molecular properties of small carbon clusters; reported herein is the first gas-phase spectrum of linear C10.

  13. Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound.

    PubMed

    Tenenbaum, Elena; Segal, Ester

    2015-11-21

    In this work we present a label-free optical biosensor for rapid bacteria detection using a novel peptide-mimetic compound, as the recognition element. The biosensor design is based on an oxidized porous silicon (PSiO2) nanostructure used as the optical transducer, functionalized with the sequence K-[C12K]7 (referred to as K-7α12), which is a synthetic antimicrobial peptide. This compound is a member of a family of oligomers of acylated lysines (OAKs), mimicking the hydrophobicity and charge of natural antimicrobial peptides. The OAK is tethered to the PSiO2 film and the changes in the reflectivity spectrum are monitored upon exposure to Escherichia coli (E. coli) bacterial suspensions and their lysates. We show that capture of bacterial cell fragments induces predictable changes in the reflectivity spectrum, proportional to E. coli concentrations, thereby enabling rapid, sensitive and reproducible detection of E. coli at concentrations as low as 10(3) cells per mL. While for intact bacterial cells, the K-7α12-tethered PSiO2 shows a poor capturing ability, resulting in an insignificant optical response. The biosensor performance is also studied upon exposure to model Gram positive and negative bacterial lysates, suggesting preferential capture of E. coli cell fragments in the presented scheme. These OAK-based biosensors offer significant advantages in comparison with conventional antibody-based assays, in terms of their simple and cost-effective production, while providing numerous possible sequence combinations for designing new detection schemes.

  14. The XXL Survey. XII. Optical spectroscopy of X-ray-selected clusters and the frequency of AGN in superclusters

    NASA Astrophysics Data System (ADS)

    Koulouridis, E.; Poggianti, B.; Altieri, B.; Valtchanov, I.; Jaffé, Y.; Adami, C.; Elyiv, A.; Melnyk, O.; Fotopoulou, S.; Gastaldello, F.; Horellou, C.; Pierre, M.; Pacaud, F.; Plionis, M.; Sadibekova, T.; Surdej, J.

    2016-06-01

    Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2 fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope. Aims: The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. Methods: To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs), b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters. Results: We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ~ 0.43, and we confirmed the redshift of supercluster XLSSC-d at z ~ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z ~ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. All of the

  15. Enhancement of optic cup detection through an improved vessel kink detection framework

    NASA Astrophysics Data System (ADS)

    Wong, Damon W. K.; Liu, Jiang; Tan, Ngan Meng; Zhang, Zhuo; Lu, Shijian; Lim, Joo Hwee; Li, Huiqi; Wong, Tien Yin

    2010-03-01

    Glaucoma is a leading cause of blindness. The presence and extent of progression of glaucoma can be determined if the optic cup can be accurately segmented from retinal images. In this paper, we present a framework which improves the detection of the optic cup. First, a region of interest is obtained from the retinal fundus image, and a pallor-based preliminary cup contour estimate is determined. Patches are then extracted from the ROI along this contour. To improve the usability of the patches, adaptive methods are introduced to ensure the patches are within the optic disc and to minimize redundant information. The patches are then analyzed for vessels by an edge transform which generates pixel segments of likely vessel candidates. Wavelet, color and gradient information are used as input features for a SVM model to classify the candidates as vessel or non-vessel. Subsequently, a rigourous non-parametric method is adopted in which a bi-stage multi-resolution approach is used to probe and localize the location of kinks along the vessels. Finally, contenxtual information is used to fuse pallor and kink information to obtain an enhanced optic cup segmentation. Using a batch of 21 images obtained from the Singapore Eye Research Institute, the new method results in a 12.64% reduction in the average overlap error against a pallor only cup, indicating viable improvements in the segmentation and supporting the use of kinks for optic cup detection.

  16. Micromachined flow cytometers with embedded etched optic fibers for optical detection

    NASA Astrophysics Data System (ADS)

    Lin, Che-Hsin; Lee, Gwo-Bin

    2003-05-01

    This paper presents a device that integrates a micromachined flow cytometer with two embedded etched optic fibers in order to carry out on-line detection of particles and cells. A simple and reliable fabrication process is used to fabricate the cytometer on soda-lime glass substrates. It is shown experimentally that particles/cells can be squeezed hydrodynamically into a narrow stream by two neighboring sheath flows such that they flow individually through a detection region. The resulting scattered light is then detected by etched optic fibers downstream. The proposed approach has the advantage that particles/cells can be counted without the need for fluorescent labeling or delicate optical alignment procedures. The current study confirms the success of the proposed microchip in the counting of polystyrene beads and human blood cells. The results also indicate that the intensity of the scattered light is proportional to the size of the particles/cells, which suggests that the proposed device may offer the potential to distinguish between particles/cells of different sizes.

  17. Fiber Optic Thermographic Detection of Flaws in Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2009-01-01

    Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.

  18. Thermally detected optical absorption in sophisticated nitride structures

    NASA Astrophysics Data System (ADS)

    Vasson, A.; Shubina, T. V.; Leymarie, J.

    2005-02-01

    The thermally detected optical absorption (TDOA) is applied to elucidate peculiarities of absorption in nitride structures of unusual morphology like GaN nanocolumns or InN layers with various imperfections. A study of GaN structures permits us to establish position of an absorption edge in TDOA spectra. We demonstrate that the absorption edge is different in GaN regions of opposite polarities. In InN with metallic In inclusions, this technique enable separation of InN interband absorption and extinction related to the Mie resonances, if the latter are below the principal absorption edge.

  19. Detection of biological molecules using chemical amplification and optical sensors

    DOEpatents

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2001-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

  20. Depth resolved detection of lipid using spectroscopic optical coherence tomography

    PubMed Central

    Fleming, Christine P.; Eckert, Jocelyn; Halpern, Elkan F.; Gardecki, Joseph A.; Tearney, Guillermo J.

    2013-01-01

    Optical frequency domain imaging (OFDI) can identify key components related to plaque vulnerability but can suffer from artifacts that could prevent accurate identification of lipid rich regions. In this paper, we present a model of depth resolved spectral analysis of OFDI data for improved detection of lipid. A quadratic Discriminant analysis model was developed based on phantom compositions known chemical mixtures and applied to a tissue phantom of a lipid-rich plaque. We demonstrate that a combined spectral and attenuation model can be used to predict the presence of lipid in OFDI images. PMID:24009991

  1. Dual collection mode optical microscope with single-pixel detection

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. D.; Clemente, P.; Fernández-Alonso, Mercedes; Tajahuerce, E.; Lancis, J.

    2015-07-01

    In this work we have developed a single-pixel optical microscope that provides both re ection and transmission images of the sample under test by attaching a diamond pixel layout DMD to a commercial inverted microscope. Our system performs simultaneous measurements of re ection and transmission modes. Besides, in contrast with a conventional system, in our single-element detection system both images belong, unequivocally, to the same plane of the sample. Furthermore, we have designed an algorithm to modify the shape of the projected patterns that improves the resolution and prevents the artifacts produced by the diamond pixel architecture.

  2. Applying Mean-Shift - Clustering for 3D object detection in remote sensing data

    NASA Astrophysics Data System (ADS)

    Simon, Jürgen-Lorenz; Diederich, Malte; Troemel, Silke

    2013-04-01

    The timely warning and forecasting of high-impact weather events is crucial for life, safety and economy. Therefore, the development and improvement of methods for detection and nowcasting / short-term forecasting of these events is an ongoing research question. A new 3D object detection and tracking algorithm is presented. Within the project "object-based analysis and seamless predictin (OASE)" we address a better understanding and forecasting of convective events based on the synergetic use of remotely sensed data and new methods for detection, nowcasting, validation and assimilation. In order to gain advanced insight into the lifecycle of convective cells, we perform an object-detection on a new high-resolution 3D radar- and satellite based composite and plan to track the detected objects over time, providing us with a model of the lifecycle. The insights in the lifecycle will be used in order to improve prediction of convective events in the nowcasting time scale, as well as a new type of data to be assimilated into numerical weather models, thus seamlessly bridging the gap between nowcasting and NWP.. The object identification (or clustering) is performed using a technique borrowed from computer vision, called mean-shift clustering. Mean-Shift clustering works without many of the parameterizations or rigid threshold schemes employed by many existing schemes (e. g. KONRAD, TITAN, Trace-3D), which limit the tracking to fully matured, convective cells of significant size and/or strength. Mean-Shift performs without such limiting definitions, providing a wider scope for studying larger classes of phenomena and providing a vehicle for research into the object definition itself. Since the mean-shift clustering technique could be applied on many types of remote-sensing and model data for object detection, it is of general interest to the remote sensing and modeling community. The focus of the presentation is the introduction of this technique and the results of its

  3. Spectral domain optical coherence tomography with dual-balanced detection

    NASA Astrophysics Data System (ADS)

    Bo, En; Liu, Xinyu; Chen, Si; Luo, Yuemei; Wang, Nanshuo; Wang, Xianghong; Liu, Linbo

    2016-03-01

    We developed a spectral domain optical coherence tomography (SD-OCT) system employing dual-balanced detection (DBD) for direct current term suppression and SNR enhancement, especially for auto-autocorrelation artifacts reduction. The DBD was achieved by using a beam splitter to building a free-space Michelson interferometer, which generated two interferometric spectra with a phase difference of π. These two phase-opposed spectra were guided to the spectrometer through two single mode fibers of the 8 fiber v-groove array and acquired by ultizing the upper two lines of a three-line CCD camera. We rotated this fiber v-groove array by 1.35 degrees to focus two spectra onto the first and second line of the CCD camera. Two spectra were aligned by optimum spectrum matching algorithm. By subtracting one spectrum from the other, this dual-balanced detection system achieved a direct current term suppression of ~30 dB, SNR enhancement of ~3 dB, and auto-autocorrelation artifacts reduction of ~10 dB experimentally. Finally we respectively validated the feasibility and performance of dual-balanced detection by imaging a glass plate and swine corneal tissue ex vivo. The quality of images obtained using dual-balanced detection was significantly improved with regard to the conventional single-detection (SD) images.

  4. A Method of Detecting Fire Smoke by Using Optical Flow

    NASA Astrophysics Data System (ADS)

    Terada, Kenji; Miyahara, Hiroyuki; Nii, Yasutoshi

    In this paper, the authors propose a method for detecting fire smoke by using the optical flow. This method is not influenced against the image obtainment environment. About 60,000 fires have occurred every year in Japan. To be most important to the fires is an early period fire fighting. At present, the automatic devices of detectiong fires is needed. The alarms which can detect smoke and heat are utilized to house fires. However, these alarms are not useful for the outside of house such as the incendiary or woodland fire. This method is able to detect such a flame that becomes a fire is the early period. First, the region of the flame in the images obtained from the observation camera is detected. Next, the characteristic quantity that expresses the smoke is extracted. This characteristic is not influenced to the motion such as the cloud, leaf and moving objects. In other words, the only smoke can be detected, from the range which looks like the flame in the image.

  5. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a

  6. A GMBCG Galaxy Cluster Catalog of 55,424 Rich Clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; Gerdes, David; Johnston, David E.; Sheldon, Erin; /Brookhaven

    2011-08-22

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  7. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  8. Improved Detection Sensitivity of Line-Scanning Optical Coherence Microscopy.

    PubMed

    Chen, Yu; Huang, Shu-Wei; Zhou, Chao; Potsaid, Benjamin; Fujimoto, James G

    2012-05-01

    Optical coherence microscopy (OCM) is a promising technology for high-resolution cellular-level imaging in human tissues. Line-scanning OCM is a new form of OCM that utilizes line-field illumination for parallel detection. In this study, we demonstrate improved detection sensitivity by using an achromatic design for line-field generation. This system operates at 830-nm wavelength with 82-nm bandwidth. The measured axial resolution is 3.9 μm in air (corresponding to ~2.9 μm in tissue), and the transverse resolutions are 2.1 μm along the line-field illumination direction and 1.7 μm perpendicular to line illumination direction. The measured sensitivity is 98 dB with 25 line averages, resulting in an imaging speed of ~2 frames/s (516 lines/s). Real-time, cellular-level imaging of scattering tissues is demonstrated using human-colon specimens.

  9. Amylin Detection with a Miniature Optical-Fiber Based Sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhaowen; Ann, Matsko; Hughes, Adam; Reeves, Mark

    We present results of a biosensor based on shifts in the localized surface plasmon resonance of gold nanoparticles self-assembled on the end of an optical fiber. This system allows for detection of protein expression in low sensing volumes and for scanning in cell cultures and tissue samples. Positive and negative controls were done using biotin/avidin and the BSA/Anti-BSA system. These demonstrate that detection is specific and sensitive to nanomolar levels. Sensing of amylin, an important protein for pancreatic function, was performed with polyclonal and monoclonal antibodies. The measured data demonstrates the difference in sensitivity to the two types of antibodies, and titration experiments establish the sensitivity of the sensor. Further experiments demonstrate that the sensor can be regenerated and then reused.

  10. Optical leak detection of oxygen using IR-laser diodes

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Fox, C.; Toy, N.

    1991-01-01

    The ability to accurately measure the concentration of gaseous oxygen and its corresponding flow rate is becoming of greater importance. The technique being presented is based on the principal of light attenuation due to the absorption of radiation by the A-band of oxygen which is located in the 759-770 nm wavelength range. With an ability to measure the change in the light transmission to 0.05 percent, a sensitive optical leak detection system which has a rapid time response is possible. In this research program, the application of laser diode technology and its ability to be temperature tuned to a selected oxygen absorption spectral peak has allowed oxygen concentrations as low as 16,000 ppm to be detected.

  11. A porous silicon optical microcavity for sensitive bacteria detection

    NASA Astrophysics Data System (ADS)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  12. A first-principles study of the influence of helium atoms on the optical response of small silver clusters.

    PubMed

    Pereiro, M; Baldomir, D; Arias, J E

    2011-02-28

    Optical excitation spectra of Ag(n) and Ag(n)@He(60) (n = 2, 8) clusters are investigated in the framework of the time-dependent density functional theory (TDDFT) within the linear response regime. We have performed the ab initio calculations for two different exact exchange functionals (GGA-exact and LDA-exact). The computed spectra of Ag(n)@He(60) clusters with the GGA-exact functional accounting for exchange-correlation effects are found to be generally in a relatively good agreement with the experiment. A strategy is proposed to obtain the ground-state structures of the Ag(n)@He(60) clusters and in the initial process of the geometry optimization, the He environment is simulated with buckyballs. A redshift of the silver clusters spectra is observed in the He environment with respect to the ones of bare silver clusters. This observation is discussed and explained in terms of a contraction of the Ag-He bonding length and a consequent confinement of the s valence electrons in silver clusters. Likewise, the Mie-Gans predictions combined with our TDDFT calculations also show that the dielectric effect produced by the He matrix is considerably less important in explaining the redshifting observed in the optical spectra of Ag(n)@He(60) clusters.

  13. Interactive Continuous Collision Detection for Topology Changing Models Using Dynamic Clustering

    PubMed Central

    He, Liang; Ortiz, Ricardo; Enquobahrie, Andinet; Manocha, Dinesh

    2015-01-01

    We present a fast algorithm for continuous collision detection between deformable models. Our approach performs no precomputation and can handle general triangulated models undergoing topological changes. We present a fast decomposition algorithm that represents the mesh boundary using hierarchical clusters and only needs to perform inter-cluster collision checks. The key idea is to compute such clusters quickly and merge them to generate a dynamic bounding volume hierarchy. The overall approach reduces the overhead of computing the hierarchy and also reduces the number of false positives. We highlight the the algorithm’s performance on many complex benchmarks generated from medical simulations and crash analysis. In practice, we observe 1.4 to 5 times speedup over prior CCD algorithms for deformable models in our benchmarks. PMID:26191116

  14. Label propagation algorithm based on edge clustering coefficient for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Kun; Tian, Xue; Li, Ya-Nan; Song, Chen

    2014-08-01

    The label propagation algorithm (LPA) is a graph-based semi-supervised learning algorithm, which can predict the information of unlabeled nodes by a few of labeled nodes. It is a community detection method in the field of complex networks. This algorithm is easy to implement with low complexity and the effect is remarkable. It is widely applied in various fields. However, the randomness of the label propagation leads to the poor robustness of the algorithm, and the classification result is unstable. This paper proposes a LPA based on edge clustering coefficient. The node in the network selects a neighbor node whose edge clustering coefficient is the highest to update the label of node rather than a random neighbor node, so that we can effectively restrain the random spread of the label. The experimental results show that the LPA based on edge clustering coefficient has made improvement in the stability and accuracy of the algorithm.

  15. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    Wu, E. M. H.; Cheng, K. S.; Hui, C. Y.; Kong, A. K. H.; Tam, P. H. T.; Dogiel, V. A.

    2014-06-20

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons.

  16. NanoCluster Beacons Enable Detection of a Single N⁶-Methyladenine.

    PubMed

    Chen, Yu-An; Obliosca, Judy M; Liu, Yen-Liang; Liu, Cong; Gwozdz, Mary L; Yeh, Hsin-Chih

    2015-08-26

    While N(6)-methyladenine (m(6)A) is a common modification in prokaryotic and lower eukaryotic genomes and has many biological functions, there is no simple and cost-effective way to identify a single N(6)-methyladenine in a nucleic acid target. Here we introduce a robust, simple, enzyme-free and hybridization-based method using a new silver cluster probe, termed methyladenine-specific NanoCluster Beacon (maNCB), which can detect single m(6)A in DNA targets based on the fluorescence emission spectra of silver clusters. Not only can maNCB identify m(6)A at the single-base level but it also can quantify the extent of adenine methylation in heterogeneous samples. Our method is superior to high-resolution melting analysis as we can pinpoint the location of m(6)A in the target.

  17. Detecting one-mode communities in bipartite networks by bipartite clustering triangular

    NASA Astrophysics Data System (ADS)

    Cui, Yaozu; Wang, Xingyuan

    2016-09-01

    In this paper, an algorithm is proposed to detect one-mode community structures in bipartite networks, and to deduce which one-mode community structures are weighted. After analyzing the topological properties in bipartite networks, bipartite clustering triangular is introduced. First, bipartite networks are projected into two weighted one-mode networks by bipartite clustering triangular. Then all the maximal sub-graphs from two one-mode weighted networks are extracted and the maximal sub-graphs are merged together using a weighted clustering threshold. In addition, the proposed algorithm successfully finds overlapping vertices between one-mode communities. Experimental results using some real-world network data shows that the performance of the proposed algorithm is satisfactory.

  18. TiO2 optical sensor for amino acid detection

    NASA Astrophysics Data System (ADS)

    Tereshchenko, Alla; Viter, Roman; Konup, Igor; Ivanitsa, Volodymyr; Geveliuk, Sergey; Ishkov, Yuriy; Smyntyna, Valentyn

    2013-11-01

    A novel optical sensor based on TiO2 nanoparticles for Valine detection has been developed. In the presented work, commercial TiO2 nanoparticles (Sigma Aldrich, particle size 32 nm) were used as sensor templates. The sensitive layer was formed by a porphyrin coating on a TiO2 nanostructured surface. As a result, an amorphous layer between the TiO2 nanostructure and porphyrin was formed. Photoluminescence (PL) spectra were measured in the range of 370-900 nm before and after porphyrin application. Porphyrin adsorption led to a decrease of the main TiO2 peak at 510 nm and the emergence of an additional peak of high intensity at 700 nm. Absorption spectra (optical density vs. wavelenght, measured from 300 to 1100 nm) showed IR shift Sorret band of prophiryn after deposition on metal oxide. Adsorption of amino acid quenched PL emission, related to porphyrin and increased the intensity of the TiO2 emission. The interaction between the sensor surface and the amino acid leads to the formation of new complexes on the surface and results in a reduction of the optical activity of porphyrin. Sensitivity of the sensor to different concentrations of Valine was calculated. The developed sensor can determine the concentration of Valine in the range of 0.04 to 0.16 mg/ml.

  19. Synthesis, characterization and optical properties of low nuclearity liganded silver clusters: Ag31(SG)19 and Ag15(SG)11

    NASA Astrophysics Data System (ADS)

    Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Gell, Lars; Kulesza, Alexander; MitrićPresent Address: Institut Für Physikalische Und Theoretische Chemie, Julius-Maximilians Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany, Roland; Bonačić-Koutecký, Vlasta

    2013-05-01

    We report a simple synthesis of silver:glutathione (Ag:SG) clusters using a cyclic reduction under oxidative conditions. Two syntheses are described which lead to solutions containing well-defined Ag31(SG)19 and Ag15(SG)11 clusters that have been characterized by mass spectrometry. The optical properties of silver:glutathione (Ag:SG) cluster solutions have been investigated experimentally. In particular, the solution containing Ag15(SG)11 clusters shows a bright and photostable emission. For Ag31(SG)19 and Ag15(SG)11 clusters, the comparison of experimental findings with DFT and TDDFT calculations allowed us to reveal the structural and electronic properties of such low nuclearity liganded silver clusters.We report a simple synthesis of silver:glutathione (Ag:SG) clusters using a cyclic reduction under oxidative conditions. Two syntheses are described which lead to solutions containing well-defined Ag31(SG)19 and Ag15(SG)11 clusters that have been characterized by mass spectrometry. The optical properties of silver:glutathione (Ag:SG) cluster solutions have been investigated experimentally. In particular, the solution containing Ag15(SG)11 clusters shows a bright and photostable emission. For Ag31(SG)19 and Ag15(SG)11 clusters, the comparison of experimental findings with DFT and TDDFT calculations allowed us to reveal the structural and electronic properties of such low nuclearity liganded silver clusters. Electronic supplementary information (ESI) available: Optimal settings for the MS instrument; schematic diagrams for syntheses A and B; ESI mass spectra of silver clusters from ``synthesis A'' in different solvent mixtures, at different pH values and with different synthesis protocols; excitation and emission spectra of clusters from ``synthesis B'' in water and of the separated band after PAGE separation; lifetime measurements of silver clusters from a solution of ``synthesis B'' in water; the structure and absorption spectrum of the two lowest-energy isomers

  20. A combined optical/X-ray study of the Galaxy cluster Abell 2256

    NASA Technical Reports Server (NTRS)

    Fabricant, Daniel G.; Kent, Stephen M.; Kurtz, Michael J.

    1989-01-01

    The dynamics of Abell 2256 is investigated by combining X-ray observations of the intracluster gas with optical observations of the galaxy distribution and kinematics. Magnitudes and positions are presented for 172 galaxies and new redshifts for 75. Abell 2256 is similar to the Coma Cluster in its X-ray luminosity, mass, and galaxy density. Both the X-ray surface brightness and the galaxy surface density distributions exhibit an elliptical morphology. The radial galaxy distribution is steeper than the density profile of the X-ray-emitting gas, yet the galaxy velocity dispersion is higher than the equivalent value for the gas. Under the simplest assumptions that the galaxy velocity distribution is isotropic and the gas is isothermal, the galaxies and gas cannot be in hydrostatic equilibrium in a common gravitational potential. Models consistent with available data have mass-to-light ratios which increase with radius and galaxy orbits that are anisotropic with a radial bias.

  1. A dual-detector optical receiver for PDM signals detection

    NASA Astrophysics Data System (ADS)

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-05-01

    We propose and fabricate a silicon based dual-detector optical receiver, which consists of a two dimensional (2D) grating coupler (GC) and two separate germanium photodetectors (Ge PDs). The 2D GC performs polarization diversity, and thus demultiplexing and detection for polarization division multiplexed (PDM) signals can be achieved. Through a specific design with double-sides illumination, the space charge density can be reduced and the responsivity and saturation power can be improved significantly. The measured dark current, responsivity and bandwidth are 0.86 μA, 1.06 A/W and 36 GHz under 3 V reverse biased voltage, respectively. Both DC currents and eye diagrams are measured for the proposed device and the results validate its performance successfully. The power penalty between the single and dual polarized signals is about 1.9 dB under 10 and 20 Gb/s cases for both the two Ge PDs. The proposed direct detection (DD) for PDM signals with high speed, high responsivity and large saturation power is cost-effective and promising for short reach optical communication.

  2. A dual-detector optical receiver for PDM signals detection.

    PubMed

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-05-20

    We propose and fabricate a silicon based dual-detector optical receiver, which consists of a two dimensional (2D) grating coupler (GC) and two separate germanium photodetectors (Ge PDs). The 2D GC performs polarization diversity, and thus demultiplexing and detection for polarization division multiplexed (PDM) signals can be achieved. Through a specific design with double-sides illumination, the space charge density can be reduced and the responsivity and saturation power can be improved significantly. The measured dark current, responsivity and bandwidth are 0.86 μA, 1.06 A/W and 36 GHz under 3 V reverse biased voltage, respectively. Both DC currents and eye diagrams are measured for the proposed device and the results validate its performance successfully. The power penalty between the single and dual polarized signals is about 1.9 dB under 10 and 20 Gb/s cases for both the two Ge PDs. The proposed direct detection (DD) for PDM signals with high speed, high responsivity and large saturation power is cost-effective and promising for short reach optical communication.

  3. A dual-detector optical receiver for PDM signals detection

    PubMed Central

    Chen, Guanyu; Yu, Yu; Zhang, Xinliang

    2016-01-01

    We propose and fabricate a silicon based dual-detector optical receiver, which consists of a two dimensional (2D) grating coupler (GC) and two separate germanium photodetectors (Ge PDs). The 2D GC performs polarization diversity, and thus demultiplexing and detection for polarization division multiplexed (PDM) signals can be achieved. Through a specific design with double-sides illumination, the space charge density can be reduced and the responsivity and saturation power can be improved significantly. The measured dark current, responsivity and bandwidth are 0.86 μA, 1.06 A/W and 36 GHz under 3 V reverse biased voltage, respectively. Both DC currents and eye diagrams are measured for the proposed device and the results validate its performance successfully. The power penalty between the single and dual polarized signals is about 1.9 dB under 10 and 20 Gb/s cases for both the two Ge PDs. The proposed direct detection (DD) for PDM signals with high speed, high responsivity and large saturation power is cost-effective and promising for short reach optical communication. PMID:27198501

  4. Single-target molecule detection with nonbleaching multicolor optical immunolabels.

    PubMed

    Schultz, S; Smith, D R; Mock, J J; Schultz, D A

    2000-02-01

    We introduce and demonstrate the use of colloidal silver plasmon-resonant particles (PRPs) as optical reporters in typical biological assays. PRPs are ultrabright, nanosized optical scatterers, which scatter light elastically and can be prepared with a scattering peak at any color in the visible spectrum. PRPs are readily observed individually with a microscope configured for dark-field microscopy, with white-light illumination of typical power. Here we illustrate the use of PRPs, surface coated with standard ligands, as target-specific labels in an in situ hybridization and an immunocytology assay. We propose that PRPs can replace or complement established labels, such as those based on radioactivity, fluorescence, chemiluminescence, or enzymatic/colorimetric detection that are used routinely in biochemistry, cell biology, and medical diagnostic applications. Moreover, because PRP labels are nonbleaching and bright enough to be rapidly identified and counted, an ultrasensitive assay format based on single-target molecule detection is now practical. We also present the results of a model sandwich immunoassay for goat anti-biotin antibody, in which the number of PRP labels counted in an image constitutes the measured signal. PMID:10655473

  5. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers.

    PubMed

    Yap, Fung Ling; Thoniyot, Praveen; Krishnan, Sathiyamoorthy; Krishnamoorthy, Sivashankar

    2012-03-27

    We demonstrate template-guided self-assembly of gold nanoparticles into ordered arrays of uniform clusters suitable for high-performance SERS on both flat (silicon or glass) chips and an optical fiber faucet. Cluster formation is driven by electrostatic self-assembly of anionic citrate-stabilized gold nanoparticles (~11.6 nm diameter) onto two-dimensionally ordered polyelectrolyte templates realized by self-assembly of polystyrene-block-poly(2-vinylpyridine). A systematic variation is demonstrated for the number of particles (N ≈ 5, 8, 13, or 18) per cluster as well as intercluster separations (S(c) ≈ 37-10 nm). Minimum interparticle separations of <5 nm, intercluster separations of ~10 nm, and nanoparticle densities on surfaces as high as ~7 × 10(11)/in.(2) are demonstrated. Geometric modeling is used to support experimental data toward estimation of interparticle and intercluster separations in cluster arrays. Optical modeling and simulations using the finite difference time domain method are used to establish the influence of cluster size, shape, and intercluster separations on the optical properties of the cluster arrays in relation to their SERS performance. Excellent SERS performance, as evidenced by a high enhancement factor, >10(8) on flat chips and >10(7) for remote sensing, using SERS-enabled optical fibers is demonstrated. The best performing cluster arrays in both cases are achievable without the use of any expensive equipment or clean room processing. The demonstrated approach paves the way to significantly low-cost and high-throughput production of sensor chips or 3D-configured surfaces for remote sensing applications.

  6. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers.

    PubMed

    Yap, Fung Ling; Thoniyot, Praveen; Krishnan, Sathiyamoorthy; Krishnamoorthy, Sivashankar

    2012-03-27

    We demonstrate template-guided self-assembly of gold nanoparticles into ordered arrays of uniform clusters suitable for high-performance SERS on both flat (silicon or glass) chips and an optical fiber faucet. Cluster formation is driven by electrostatic self-assembly of anionic citrate-stabilized gold nanoparticles (~11.6 nm diameter) onto two-dimensionally ordered polyelectrolyte templates realized by self-assembly of polystyrene-block-poly(2-vinylpyridine). A systematic variation is demonstrated for the number of particles (N ≈ 5, 8, 13, or 18) per cluster as well as intercluster separations (S(c) ≈ 37-10 nm). Minimum interparticle separations of <5 nm, intercluster separations of ~10 nm, and nanoparticle densities on surfaces as high as ~7 × 10(11)/in.(2) are demonstrated. Geometric modeling is used to support experimental data toward estimation of interparticle and intercluster separations in cluster arrays. Optical modeling and simulations using the finite difference time domain method are used to establish the influence of cluster size, shape, and intercluster separations on the optical properties of the cluster arrays in relation to their SERS performance. Excellent SERS performance, as evidenced by a high enhancement factor, >10(8) on flat chips and >10(7) for remote sensing, using SERS-enabled optical fibers is demonstrated. The best performing cluster arrays in both cases are achievable without the use of any expensive equipment or clean room processing. The demonstrated approach paves the way to significantly low-cost and high-throughput production of sensor chips or 3D-configured surfaces for remote sensing applications. PMID:22332718

  7. Coupled cluster calculations of optical rotatory dispersion of (S)-methyloxirane

    NASA Astrophysics Data System (ADS)

    Tam, Mary C.; Russ, Nicholas J.; Crawford, T. Daniel

    2004-08-01

    Coupled cluster (CC) and density-functional theory (DFT) calculations of optical rotation, [α]λ, have been carried out for the difficult case of (S)-methyloxirane for comparison to recently published gas-phase cavity ringdown polarimetry data. Both theoretical methods are exquisitely sensitive to the choice of one-electron basis set, and diffuse functions have a particularly large impact on the computed values of [α]λ. Furthermore, both methods show a surprising sensitivity to the choice of optimized geometry, with [α]355 values varying by as much as 15 deg dm-1 (g/mL)-1 among molecular structures that differ only negligibly. Although at first glance the DFT/B3LYP values of [α]355 appear to be superior to those from CC theory, the success of DFT in this case appears to stem from a significant underestimation of the lowest (Rydberg) excitation energy in methyloxirane, resulting in a shift of the first-order pole in [α]λ (the Cotton effect) towards the experimentally chosen incident radiation lines. This leads to a fortuitous positive shift in the value of [α]355 towards the experimental result. The coupled cluster singles and doubles model, on the other hand, correctly predicts the position of the absorption pole (to within 0.05 eV of the experimental result), but fails to describe correctly the shape/curvature of the ORD region λ=355, resulting in an incorrect prediction of both the magnitude and the sign of the optical rotation.

  8. Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains

    NASA Astrophysics Data System (ADS)

    Allefeld, Carsten; Bialonski, Stephan

    2007-12-01

    Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.

  9. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection

    NASA Astrophysics Data System (ADS)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.

    2014-04-01

    A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.

  10. Spatial heterogeneity of type I error for local cluster detection tests

    PubMed Central

    2014-01-01

    Background Just as power, type I error of cluster detection tests (CDTs) should be spatially assessed. Indeed, CDTs’ type I error and power have both a spatial component as CDTs both detect and locate clusters. In the case of type I error, the spatial distribution of wrongly detected clusters (WDCs) can be particularly affected by edge effect. This simulation study aims to describe the spatial distribution of WDCs and to confirm and quantify the presence of edge effect. Methods A simulation of 40 000 datasets has been performed under the null hypothesis of risk homogeneity. The simulation design used realistic parameters from survey data on birth defects, and in particular, two baseline risks. The simulated datasets were analyzed using the Kulldorff’s spatial scan as a commonly used test whose behavior is otherwise well known. To describe the spatial distribution of type I error, we defined the participation rate for each spatial unit of the region. We used this indicator in a new statistical test proposed to confirm, as well as quantify, the edge effect. Results The predefined type I error of 5% was respected for both baseline risks. Results showed strong edge effect in participation rates, with a descending gradient from center to edge, and WDCs more often centrally situated. Conclusions In routine analysis of real data, clusters on the edge of the region should be carefully considered as they rarely occur when there is no cluster. Further work is needed to combine results from power studies with this work in order to optimize CDTs performance. PMID:24885343

  11. Reference Cluster Normalization Improves Detection of Frontotemporal Lobar Degeneration by Means of FDG-PET

    PubMed Central

    Dukart, Juergen; Perneczky, Robert; Förster, Stefan; Barthel, Henryk; Diehl-Schmid, Janine; Draganski, Bogdan; Obrig, Hellmuth; Santarnecchi, Emiliano; Drzezga, Alexander; Fellgiebel, Andreas; Frackowiak, Richard; Kurz, Alexander; Müller, Karsten; Sabri, Osama; Schroeter, Matthias L.; Yakushev, Igor

    2013-01-01

    Positron emission tomography with [18F] fluorodeoxyglucose (FDG-PET) plays a well-established role in assisting early detection of frontotemporal lobar degeneration (FTLD). Here, we examined the impact of intensity normalization to different reference areas on accuracy of FDG-PET to discriminate between patients with mild FTLD and healthy elderly subjects. FDG-PET was conducted at two centers using different acquisition protocols: 41 FTLD patients and 42 controls were studied at center 1, 11 FTLD patients and 13 controls were studied at center 2. All PET images were intensity normalized to the cerebellum, primary sensorimotor cortex (SMC), cerebral global mean (CGM), and a reference cluster with most preserved FDG uptake in the aforementioned patients group of center 1. Metabolic deficits in the patient group at center 1 appeared 1.5, 3.6, and 4.6 times greater in spatial extent, when tracer uptake was normalized to the reference cluster rather than to the cerebellum, SMC, and CGM, respectively. Logistic regression analyses based on normalized values from FTLD-typical regions showed that at center 1, cerebellar, SMC, CGM, and cluster normalizations differentiated patients from controls with accuracies of 86%, 76%, 75% and 90%, respectively. A similar order of effects was found at center 2. Cluster normalization leads to a significant increase of statistical power in detecting early FTLD-associated metabolic deficits. The established FTLD-specific cluster can be used to improve detection of FTLD on a single case basis at independent centers – a decisive step towards early diagnosis and prediction of FTLD syndromes enabling specific therapies in the future. PMID:23451025

  12. Reference cluster normalization improves detection of frontotemporal lobar degeneration by means of FDG-PET.

    PubMed

    Dukart, Juergen; Perneczky, Robert; Förster, Stefan; Barthel, Henryk; Diehl-Schmid, Janine; Draganski, Bogdan; Obrig, Hellmuth; Santarnecchi, Emiliano; Drzezga, Alexander; Fellgiebel, Andreas; Frackowiak, Richard; Kurz, Alexander; Müller, Karsten; Sabri, Osama; Schroeter, Matthias L; Yakushev, Igor

    2013-01-01

    Positron emission tomography with [18F] fluorodeoxyglucose (FDG-PET) plays a well-established role in assisting early detection of frontotemporal lobar degeneration (FTLD). Here, we examined the impact of intensity normalization to different reference areas on accuracy of FDG-PET to discriminate between patients with mild FTLD and healthy elderly subjects. FDG-PET was conducted at two centers using different acquisition protocols: 41 FTLD patients and 42 controls were studied at center 1, 11 FTLD patients and 13 controls were studied at center 2. All PET images were intensity normalized to the cerebellum, primary sensorimotor cortex (SMC), cerebral global mean (CGM), and a reference cluster with most preserved FDG uptake in the aforementioned patients group of center 1. Metabolic deficits in the patient group at center 1 appeared 1.5, 3.6, and 4.6 times greater in spatial extent, when tracer uptake was normalized to the reference cluster rather than to the cerebellum, SMC, and CGM, respectively. Logistic regression analyses based on normalized values from FTLD-typical regions showed that at center 1, cerebellar, SMC, CGM, and cluster normalizations differentiated patients from controls with accuracies of 86%, 76%, 75% and 90%, respectively. A similar order of effects was found at center 2. Cluster normalization leads to a significant increase of statistical power in detecting early FTLD-associated metabolic deficits. The established FTLD-specific cluster can be used to improve detection of FTLD on a single case basis at independent centers - a decisive step towards early diagnosis and prediction of FTLD syndromes enabling specific therapies in the future. PMID:23451025

  13. Fiber optic system design for vehicle detection and analysis

    NASA Astrophysics Data System (ADS)

    Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Zavodny, Petr; Kepak, Stanislav; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir

    2016-04-01

    Fiber optic interferometers belong to a group of highly sensitive and precise devices enabling to measure small changes in the deformation shapes, changes in pressure, temperature, vibration and so on. The basis of their activity is to evaluate the number of fringes over time, not changes in the intensity of the optical signal. The methodology described in the article is based on using the interferometer to monitor traffic density. The base of the solution is a Mach-Zehnder interferometer operating with single-mode G.652 optical fiber at the wavelength of 1550 nm excited by a DFB laser. The power distribution of the laser light into the individual arms of the interferometer is in the ratio 1:1. Realized measuring scheme was terminated by an optical receiver including InGaAs PIN photodiode. Registered signal from the photodetector was through 8 Hz high pass filter fed to the measuring card that captures the analog input voltage using an application written in LabView development environment. The interferometer was stored in a waterproof box and placed at the side of the road. Here panned individual transit of cars in his environs. Vertically across the road was placed in contact removable belt simulating a retarder, which was used when passing cars to create sufficient vibration response detecting interferometer. The results demonstrated that the individual vehicles passing around boxing showed characteristic amplitude spectra, which was unique for each object, and had sufficient value signal to noise ratio (SNR). The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by repeated transit of the different types of cars.

  14. An integrated CMOS detection system for optical short-pulse

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Gun; Hong, Nam-Pyo; Choi, Young-Wan

    2014-03-01

    We present design of a front-end readout system consisting of charge sensitive amplifier (CSA) and pulse shaper for detection of stochastic and ultra-small semiconductor scintillator signal. The semiconductor scintillator is double sided silicon detector (DSSD) or avalanche photo detector (APD) for high resolution and peak signal reliability of γ-ray or X-ray spectroscopy. Such system commonly uses low noise multichannel CSA. Each CSA in multichannel includes continuous reset system based on tens of MΩ and charge-integrating capacitor in feedback loop. The high value feedback resistor requires large area and huge power consumption for integrated circuits. In this paper, we analyze these problems and propose a CMOS short pulse detection system with a novel CSA. The novel CSA is composed of continuous reset system with combination of diode connected PMOS and 100 fF. This structure has linearity with increased input charge quantity from tens of femto-coulomb to pico-coulomb. Also, the front-end readout system includes both slow and fast shapers for detecting CSA output and preventing pile-up distortion. Shaping times of fast and slow shapers are 150 ns and 1.4 μs, respectively. Simulation results of the CMOS detection system for optical short-pulse implemented in 0.18 μm CMOS technology are presented.

  15. Optical Monitoring and Detection of Spinal Cord Ischemia

    PubMed Central

    Mesquita, Rickson C.; D’Souza, Angela; Bilfinger, Thomas V.; Galler, Robert M.; Emanuel, Asher; Schenkel, Steven S.; Yodh, Arjun G.; Floyd, Thomas F.

    2013-01-01

    Spinal cord ischemia can lead to paralysis or paraparesis, but if detected early it may be amenable to treatment. Current methods use evoked potentials for detection of spinal cord ischemia, a decades old technology whose warning signs are indirect and significantly delayed from the onset of ischemia. Here we introduce and demonstrate a prototype fiber optic device that directly measures spinal cord blood flow and oxygenation. This technical advance in neurological monitoring promises a new standard of care for detection of spinal cord ischemia and the opportunity for early intervention. We demonstrate the probe in an adult Dorset sheep model. Both open and percutaneous approaches were evaluated during pharmacologic, physiological, and mechanical interventions designed to induce variations in spinal cord blood flow and oxygenation. The induced variations were rapidly and reproducibly detected, demonstrating direct measurement of spinal cord ischemia in real-time. In the future, this form of hemodynamic spinal cord diagnosis could significantly improve monitoring and management in a broad range of patients, including those undergoing thoracic and abdominal aortic revascularization, spine stabilization procedures for scoliosis and trauma, spinal cord tumor resection, and those requiring management of spinal cord injury in intensive care settings. PMID:24358279

  16. Liquid crystals as optical amplifiers for bacterial detection.

    PubMed

    Zafiu, C; Hussain, Z; Küpcü, S; Masutani, A; Kilickiran, P; Sinner, E-K

    2016-06-15

    Interactions of bacteria with target molecules (e.g. antibiotics) or other microorganisms are of growing interest. The first barrier for targeting gram-negative bacteria is layer of a Lipopolysaccharides (LPS). Liquid crystal (LC) based sensors covered with LPS monolayers, as presented in this study, offer a simple model to study and make use of this type of interface for detection and screening. This work describes in detail the production and application of such sensors based on three different LPS that have been investigated regarding their potential to serve as sensing layer to detect bacteria. The LPS O127:B8 in combination with a LC based sensor was identified to be most useful as biomimetic sensing surface. This LPS/LC combination interacts with three different bacteria species, one gram-positive and two gram-negative species, allowing the detection of bacterial presence regardless from their viability. It could be shown that even very low bacterial cell numbers (minimum 500 cell ml(-1)) could be detected within minutes (maximum 15 min). The readout mechanism is the adsorption of bacterial entities on surface bond LPS molecules with the LC serving as an optical amplifier.

  17. Configuration of electro-optic fire source detection system

    NASA Astrophysics Data System (ADS)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  18. Optical Detection of Disordered Water Within a Protein Cavity

    PubMed Central

    Goldbeck, Robert A.; Pillsbury, Marlisa L.; Jensen, Russell A.; Mendoza, Juan L.; Nguyen, Rosa L.; Olson, John S.; Soman, Jayashree; Kliger, David S.; Esquerra, Raymond M.

    2009-01-01

    Internal water molecules are important to protein structure and function, but positional disorder and low occupancies can obscure their detection by x-ray crystallography. Here we show that water can be detected within the distal cavities of myoglobin mutants by subtle changes in the absorbance spectrum of pentacoordinate heme, even when the presence of solvent is not readily observed in the corresponding crystal structures. A well defined, non-coordinated water molecule hydrogen bonded to the distal histidine (His64) is seen within the distal heme pocket in the crystal structure of wild type (wt) deoxymyoglobin. Displacement of this water decreases the rate of ligand entry into wt Mb, and we have shown previously that the entry of this water is readily detected optically after laser photolysis of MbCO complexes. However, for L29F and V68L Mb no discrete positions for solvent molecules are seen in the electron density maps of the crystal structures even though His64 is still present and slow rates of ligand binding indicative of internal water are observed. In contrast, time-resolved perturbations of the visible absorption bands of L29F and V68L deoxyMb generated after laser photolysis detect the entry and significant occupancy of water within the distal pockets of these variants. Thus, the spectral perturbation of pentacoordinate heme offers a potentially robust system for measuring non-specific hydration of the active sites of heme proteins. PMID:19655795

  19. Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    PubMed Central

    Kovaleva, N. N.; Kugel, K. I.; Bazhenov, A. V.; Fursova, T. N.; Löser, W.; Xu, Y.; Behr, G.; Kusmartsev, F. V.

    2012-01-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors. PMID:23189239

  20. Optical absorption of small copper clusters in neon: Cu(n), (n = 1-9).

    PubMed

    Lecoultre, S; Rydlo, A; Félix, C; Buttet, J; Gilb, S; Harbich, W

    2011-02-21

    We present optical absorption spectra in the UV-visible range (1.6 eV < ℏω < 5.5 eV) of mass selected neutral copper clusters Cu(n)(n = 1-9) embedded in a solid neon matrix at 7 K. The atom and the dimer have already been measured in neon matrices, while the absorption spectra for sizes between Cu(3) and Cu(9) are entirely (n = 6-9) or in great part new. They show a higher complexity and a larger number of transitions distributed over the whole energy range compared to similar sizes of silver clusters. The experimental spectra are compared to the time dependent density functional theory (TD-DFT) implemented in the TURBOMOLE package. The analysis indicates that for energies larger than 3 eV the transitions are mainly issued from d-type states; however, the TD-DFT scheme does not reproduce well the detailed structure of the absorption spectra. Below 3 eV the agreement for transitions issued from s-type states is better.

  1. An Energy-Efficient Cluster-Based Vehicle Detection on Road Network Using Intention Numeration Method

    PubMed Central

    Devasenapathy, Deepa; Kannan, Kathiravan

    2015-01-01

    The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate. PMID:25793221

  2. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    DOE PAGES

    Miller, Michael K.; Larson, David J.; Reinhard, D. A.

    2014-12-26

    A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (~80%) local electrode atom probe. High number densities, 1.8 × 1024 m–3 and 1.2 × 1024 m–3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detectedmore » for these two conditions. Furthermore, these results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.« less

  3. Unmixing and anomaly detection in hyperspectral data due to cluster variation and local information

    NASA Astrophysics Data System (ADS)

    Maerker, Jochen M.; Huber, Johannes; Middelmann, Wolfgang

    2010-04-01

    This paper presents a novel method for anomaly detection based on a cluster unmixing approach. Several algorithms for endmember extraction and unmixing have been reported in literature. Endmember extraction algorithms search for pure materials which constitute the significant structure of the environment. For abundance estimation in hyperspectral imagery, various physically motivated least squares methods are considered. In real hyperspectral data, signatures of each pure material vary with physical texture and perspective. In this work, clustering of data is performed and normal distributions - instead of constant signatures - are used to represent the endmembers. This representation allows determination of class membership by means of unmixing. Furthermore, a parameter optimization is performed. Using only endmembers in a focal window around each pixel better fits the physical model. As result of this local approach, the residual of the reconstruction indicates the magnitude of anomalies. The results obtained with the new approach is called 'Cluster Mixing' (CM). The performance of Cluster Mixing is illustrated by a comparison with other anomaly detection algorithms.

  4. Optical system and method for gas detection and monitoring

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A. (Inventor); Korman, Valentin (Inventor); Witherow, William K. (Inventor); Hendrickson, Adam Gail (Inventor); Sinko, John Elihu (Inventor)

    2011-01-01

    A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded.

  5. How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles.

    PubMed

    Esteban, Ruben; Taylor, Richard W; Baumberg, Jeremy J; Aizpurua, Javier

    2012-06-19

    Self-assembled clusters of metallic nanoparticles separated by nanometric gaps generate strong plasmonic modes that support both intense and localized near fields. These find use in many ultrasensitive chemical and biological sensing applications through surface enhanced Raman scattering (SERS). The inability to control at the nanoscale the structure of the clusters on which the optical response crucially depends, has led to the development of general descriptions to model the various morphologies fabricated. Here, we use rigorous electrodynamic calculations to study clusters formed by a hundred nanospheres that are separated by ∼1 nm distance, set by the dimensions of the macrocyclic molecular linker employed experimentally. Three-dimensional (3D) cluster structures of moderate compactness are of special interest since they resemble self-assembled clusters grown under typical diffusion-limited aggregation conditions. We find very good agreement between the simulated and measured far-field extinction spectra, supporting the equivalence of the assumed and experimental morphologies. From these results we argue that the main features of the optical response of two- and three-dimensional clusters can be understood in terms of the excitation of simple units composed of different length resonant chains. Notably, we observe a qualitative difference between short- and long-chain modes in both spectral response and spatial distribution: dimer and short-chain modes are observed in the periphery of the cluster at higher energies, whereas inside the structure longer chain excitation occurs at lower energies. We study in detail different configurations of isolated one-dimensional chains as prototypical building blocks for large clusters, showing that the optical response of the chains is robust to disorder. This study provides an intuitive understanding of the behavior of very complex aggregates and may be generalized to other types of aggregates and systems formed by large

  6. A novel anomaly detection approach based on clustering and decision-level fusion

    NASA Astrophysics Data System (ADS)

    Zhong, Shengwei; Zhang, Ye

    2015-09-01

    In hyperspectral image processing, anomaly detection is a valuable way of searching targets whose spectral characteristics are not known, and the estimation of background signals is the key procedure. On account of the high dimensionality and complexity of hyperspectral image, dimensionality reduction and background suppression is necessary. In addition, the complementarity of different anomaly detection algorithms can be utilized to improve the effectiveness of anomaly detection. In this paper, we propose a novel method of anomaly detection, which is based on clustering of optimized K-means and decision-level fusion. In our proposed method, pixels with similar features are firstly clustered using an optimized k-means method. Secondly, dimensionality reduction is conducted using principle component analysis to reduce the amount of calculation. Then, to increase the accuracy of detection and decrease the false-alarm ratio, both Reed-Xiaoli (RX) and Kernel RX algorithm are used on processed image. Lastly, a decision-level fusion is processed on the detection results. A simulated hyperspectral image and a real hyperspectral one are both used to evaluate the performance of our proposed method. Visual analysis and quantative analysis of receiver operating characteristic (ROC) curves show that our algorithm can achieve better performance when compared with other classic approaches and state-of-the-art approaches.

  7. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  8. a New Online Distributed Process Fault Detection and Isolation Approach Using Potential Clustering Technique

    NASA Astrophysics Data System (ADS)

    Bahrampour, Soheil; Moshiri, Behzad; Salahshoor, Karim

    2009-08-01

    Most of process fault monitoring systems suffer from offline computations and confronting with novel faults that limit their applicabilities. This paper presents a new online fault detection and isolation (FDI) algorithm based on distributed online clustering approach. In the proposed approach, clustering algorithm is used for online detection of a new trend of time series data which indicates faulty condition. On the other hand, distributed technique is used to decompose the overall monitoring task into a series of local monitoring sub-tasks so as to locally track and capture the process faults. This algorithm not only solves the problem of online FDI, but also can handle novel faults. The diagnostic performances of the proposed FDI approach is evaluated on the Tennessee Eastman process plant as a large-scale benchmark problem.

  9. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  10. Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy

    PubMed Central

    Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra

    2015-01-01

    Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150

  11. Streak detection and analysis pipeline for optical images

    NASA Astrophysics Data System (ADS)

    Virtanen, J.; Granvik, M.; Torppa, J.; Muinonen, K.; Poikonen, J.; Lehti, J.; Säntti, T.; Komulainen, T.; Flohrer, T.

    2014-07-01

    We describe a novel data processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data to support the development and validation of population models, and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. We focus on the low signal-to-noise (SNR) detection of objects with high angular velocities, resulting in long and faint object trails, or streaks, in the optical images. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and, particularly for satellites, within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a 'track-before-detect' problem, resulting in streaks of arbitrary lengths. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, algorithms are not readily available yet. In the ESA-funded StreakDet (Streak detection and astrometric reduction) project, we develop and evaluate an automated processing pipeline applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The algorithmic

  12. Quantitative optical imaging for the detection of early cancer

    NASA Astrophysics Data System (ADS)

    Wu, Tao

    The objectives of this thesis are to provide insight of fundamental mechanisms of acetowhitening effect, upon which the colposcopic diagnosis of human cervical cancer is based and to develop novel quantitative optical imaging technologies supplementing colposcopy to improve its performance in detecting early cancer. Firstly, the temporal characteristics of acetowhitening process are studied on monolayer cell cultures. It is found that the dynamic acetowhitening processes in normal and cancerous cells are significantly different. Secondly, the changes in light scattering induced by acetic acid in intact cells and isolated cellular fractions are investigated by using confocal microscopy and light scattering spectroscopy. The results provide evidence that the small-sized components in the cytoplasm are the major contributors to the acetowhitening effect. Thirdly, a unified Mie and fractal model is proposed to interpret light scattering by biological cells. It is found that light scattering in forward directions is dominated by Mie scattering by bare cells and nuclei, whereas light scattering at large angles is determined by fractal scattering by subcellular structures. Fourthly, an optical imaging system based on active stereo vision and motion tracking is built to measure the 3-D surface topology of cervix and track the motion of patient. The information of motion tracking is used to register the time-sequenced images of cervix recorded during colposcopic examination. The imaging system is evaluated by tracking the movements of cervix models. The results demonstrate that the imaging technique holds the promise to enable the quantitative mapping of the acetowhitening kinetics over cervical surface for more accurate diagnosis of cervical cancer. At last, a calibrated autofluorescence imaging system is instrumented for detecting neoplasia in vivo. It is found that the calibrated autofluorescence signals from neoplasia are generally lower than signals from normal

  13. Optical detection of sepsis markers using liquid crystal based biosensors

    NASA Astrophysics Data System (ADS)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  14. Research on fiber-optic sensors for methane detection based on Harmonic detection

    NASA Astrophysics Data System (ADS)

    Wang, Shutao; Huang, Liang; Zhou, Zhishuang; Zhu, Zhihui

    2010-10-01

    In this paper, a sylstem of fiber-optic gas sensor based methane absorption spectra is studied. The system have made great improvement and in-depth analysis in methane spectral absorption,a weak optical signal extraction and processing and gas measurement accuracy.The system consists of light source, Photonic Crystal Fiber, air chamber, photoelectric detectors and signal processing components and so on. According to the Lambert-Beer law, spectrum absorption intensity is closely relate with the concentration of the gas. In order to ensure the system at a high resolution and sensitivity,The system used distributed feedback semiconductor laser (DFBLD) as a light source .It bring useful information of the optical signal to PIN Photodetector which then convert the optical signal to electrical signals after optical interacting with the methane gas,then send the electrical signal to lock-in amplifier.the harmonic detection of gas concentration was achieved by the light modulator, And then compared the harmonic component. Finally, the signal expected was produced through the A / D converter digital in the computer.

  15. Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    NASA Astrophysics Data System (ADS)

    Titantah, John T.; Karttunen, Mikko

    2016-05-01

    Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

  16. Experimental entanglement of 60 modes of the quantum optical frequency comb and application to generating hypercubic-lattice cluster states

    NASA Astrophysics Data System (ADS)

    Pfister, Olivier; Chen, Moran; Wang, Pei; Fan, Wenjiang; Menicucci, Nicolas

    2014-05-01

    In the race to build a practical quantum computer in the laboratory, the ability to create very large quantum registers and entangle them is paramount, along with the ability to address the issue of decoherence. With particular regard to scalability, the field-based, continuous-variable (CV) flavor of quantum optics offers notable promise, in particular by enabling ``top down,'' rather than ``bottom up,'' entangling approaches of quantum field modes. It is also important to note the relevance of continuous variables to universal quantum computing, with the recent discovery of a fault tolerance threshold for quantum computing with CV cluster states and nonGaussian error correction. In 2011, some of us generated simultaneously 15 independent 4-mode cluster states over 60 modes of the quantum optical frequency comb (QOFC) of a single optical parametric oscillator (OPO). In this work, we used a single OPO to generate a 60-mode dual-rail cluster state, which is the largest entangled system to date whose subsystems are all simultaneously available. Using the exact same setup, we also generated two copies of a 30-mode dual-rail cluster state. We will then present a new proposal to ``weave'' such massively scalable continuous-variable cluster states into hypercubic-lattice quantum graphs Work supported by NSF grants PHY-0855632 and PHY-1206029.

  17. Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Hopkins, Ben; Liu, Wei; Miroshnichenko, Andrey E.; Kivshar, Yuri S.

    2013-06-01

    Fostered by the recent progress of the fields of plasmonics and metamaterials, the seminal topic of light scattering by clusters of nanoparticles is attracting enormous renewed interest gaining more attention than ever before. Related studies have not only found various new applications in different branches of physics and chemistry, but also spread rapidly into other fields such as biology and medicine. Despite the significant achievements, there still exists unsolved but vitally important challenges of how to obtain robust polarisation-invariant responses of different types of scattering systems. In this paper, we demonstrate polarisation-independent responses of any scattering system with a rotational symmetry with respect to an axis parallel to the propagation direction of the incident wave. We demonstrate that the optical responses such as extinction, scattering, and absorption, can be made independent of the polarisation of the incident wave for all wavelengths. Such polarisation-independent responses are proven to be a robust and generic feature that is purely due to the rotational symmetry of the whole structure. We anticipate our finding will play a significant role in various applications involving light scattering such as sensing, nanoantennas, optical switches, and photovoltaic devices.

  18. Prospects for high-z cluster detections with Planck, based on a follow-up of 28 candidates using MegaCam at CFHT

    NASA Astrophysics Data System (ADS)

    van der Burg, R. F. J.; Aussel, H.; Pratt, G. W.; Arnaud, M.; Melin, J.-B.; Aghanim, N.; Barrena, R.; Dahle, H.; Douspis, M.; Ferragamo, A.; Fromenteau, S.; Herbonnet, R.; Hurier, G.; Pointecouteau, E.; Rubiño-Martín, J. A.; Streblyanska, A.

    2016-03-01

    The Planck catalogue of SZ sources limits itself to a significance threshold of 4.5 to ensure a low contamination rate by false cluster candidates. This means that only the most massive clusters at redshift z> 0.5, and in particular z> 0.7, are expected to enter into the catalogue, with a large number of systems in that redshift regime being expected around and just below that threshold. In this paper, we follow-up a sample of SZ sources from the Planck SZ catalogues from 2013 and 2015. In the latter maps, we consider detections around and at lower significance than the threshold adopted by the Planck Collaboration. To keep the contamination rate low, our 28 candidates are chosen to have significant WISE detections, in combination with non-detections in SDSS/DSS, which effectively selects galaxy cluster candidates at redshifts z ≳ 0.5. By taking r- and z-band imaging with MegaCam at CFHT, we bridge the 4000 Å rest-frame break over a significant redshift range, thus allowing accurate redshift estimates of red-sequence cluster galaxies up to z ~ 0.8. After discussing the possibility that an overdensity of galaxies coincides -by chance- with a Planck SZ detection, we confirm that 16 of the candidates have likely optical counterparts to their SZ signals, 13 (6) of which have an estimated redshift z> 0.5 (z> 0.7). The richnesses of these systems are generally lower than expected given the halo masses estimated from the Planck maps. However, when we follow a simplistic model to correct for Eddington bias in the SZ halo mass proxy, the richnesses are consistent with a reference mass-richness relation established for clusters detected at higher significance. This illustrates the benefit of an optical follow-up, not only to obtain redshift estimates, but also to provide an independent mass proxy that is not based on the same data the clusters are detected with, and thus not subject to Eddington bias. Reduced images are available at the CDS via anonymous ftp to http

  19. Unsupervised change detection in satellite images using fuzzy c-means clustering and principal component analysis

    NASA Astrophysics Data System (ADS)

    Kesikoğlu, M. H.; Atasever, Ü. H.; Özkan, C.

    2013-10-01

    Change detection analyze means that according to observations made in different times, the process of defining the change detection occurring in nature or in the state of any objects or the ability of defining the quantity of temporal effects by using multitemporal data sets. There are lots of change detection techniques met in literature. It is possible to group these techniques under two main topics as supervised and unsupervised change detection. In this study, the aim is to define the land cover changes occurring in specific area of Kayseri with unsupervised change detection techniques by using Landsat satellite images belonging to different years which are obtained by the technique of remote sensing. While that process is being made, image differencing method is going to be applied to the images by following the procedure of image enhancement. After that, the method of Principal Component Analysis is going to be applied to the difference image obtained. To determine the areas that have and don't have changes, the image is grouped as two parts by Fuzzy C-Means Clustering method. For achieving these processes, firstly the process of image to image registration is completed. As a result of this, the images are being referred to each other. After that, gray scale difference image obtained is partitioned into 3 × 3 nonoverlapping blocks. With the method of principal component analysis, eigenvector space is gained and from here, principal components are reached. Finally, feature vector space consisting principal component is partitioned into two clusters using Fuzzy C-Means Clustering and after that change detection process has been done.

  20. Detection and clustering of features in aerial images by neuron network-based algorithm

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit

    2015-12-01

    The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.

  1. Fermi Detection of a Luminous gamma-ray Pulsar in a Globular Cluster

    NASA Technical Reports Server (NTRS)

    Freire, P. C. C.; Abdo, A. A.; Ajello, M.; Allafort, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Celik, O.; Ferrara, E. C.; Gehrels, N.; Harding, A.; Johnson, T. J.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2011-01-01

    We report the Fermi Large Area Telescope detection of gamma -ray (>100 mega-electron volts) pulsations from pulsar J1823--3021A in the globular cluster NGC 6624 with high significance (approx 7 sigma). Its gamma-ray luminosity L (sub 3) = (8:4 +/- 1:6) X 10(exp 34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The non-detection of the cluster in the off-pulse phase implies that its contains < 32 gamma-ray MSPs, not approx 100 as previously estimated. The gamma -ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823--3021A has the largest magnetic field and is the youngest MSP ever detected, and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  2. Damage detection and characterization using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Glisic, Branko; Sigurdardottir, Dorotea; Yao, Yao; Hubbell, David

    2013-04-01

    Fiber optic sensors (FOS) have significantly evolved and have reached their market maturity during the last decade. Their widely recognized advantages are high precision, long-term stability, and durability. But in addition to these advantageous performances, FOS technologies allow for affordable instrumentation of large areas of structure enabling global large-scale monitoring based on long-gauge sensors and integrity monitoring based on distributed sensors. These two approaches are particularly suitable for damage detection and characterization, i.e., damage localization and to certain extent quantification and propagation, as illustrated by two applications presented in detail in this paper: post-tensioned concrete bridge and segmented concrete pipeline. Early age cracking was detected, localized and quantified in the concrete deck of a pedestrian bridge using embedded long-gauge FOS. Post-tensioning of deck closed the cracks; however, permanent weakening in a bridge joint occurred due to cracking and it was identified and quantified. The damage was confirmed using embedded distributed FOS and a separate load test of the bridge. Real-size concrete pipeline specimens and surrounding soil were equipped with distributed FOS and exposed to permanent ground displacement in a large-scale testing facility. Two tests were performed on different pipeline specimens. The sensors bonded on the pipeline specimens successfully detected and localized rupture of pipeline joints, while the sensors embedded in the soil were able to detect and localize the failure plane. Comparison with strain-gauges installed on the pipeline and visual inspection after the test confirmed accurate damage detection and characterization.

  3. Optical response of silver clusters and their hollow shells from linear-response TDDFT

    NASA Astrophysics Data System (ADS)

    Koval, Peter; Marchesin, Federico; Foerster, Dietrich; Sánchez-Portal, Daniel

    2016-06-01

    We present a study of the optical response of compact and hollow icosahedral clusters containing up to 868 silver atoms by means of time-dependent density functional theory. We have studied the dependence on size and morphology of both the sharp plasmonic resonance at 3-4 eV (originated mainly from sp-electrons), and the less studied broader feature appearing in the 6-7 eV range (interband transitions). An analysis of the effect of structural relaxations, as well as the choice of exchange correlation functional (local density versus generalised gradient approximations) both in the ground state and optical response calculations is also presented. We have further analysed the role of the different atom layers (surface versus inner layers) and the different orbital symmetries on the absorption cross-section for energies up to 8 eV. We have also studied the dependence on the number of atom layers in hollow structures. Shells formed by a single layer of atoms show a pronounced red shift of the main plasmon resonances that, however, rapidly converge to those of the compact structures as the number of layers is increased. The methods used to obtain these results are also carefully discussed. Our methodology is based on the use of localised basis (atomic orbitals, and atom-centered and dominant-product functions), which bring several computational advantages related to their relatively small size and the sparsity of the resulting matrices. Furthermore, the use of basis sets of atomic orbitals also allows the possibility of extending some of the standard population analysis tools (e.g. Mulliken population analysis) to the realm of optical excitations. Some examples of these analyses are described in the present work.

  4. Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters

    SciTech Connect

    Saro, A.

    2015-10-12

    In this study, we cross-match galaxy cluster candidates selected via their Sunyaev–Zel'dovich effect (SZE) signatures in 129.1 deg2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function 500> ∝ Bλln M500 + Cλln E(z) and use SPT-SZ cluster masses and RM richnesses λ to constrain the parameters. We find Bλ=1.14+0.21–0.18 and Cλ=0.73+0.77–0.75. The associated scatter in mass at fixed richness is σlnM|λ = 0.18+0.08–0.05 at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ε [4, 4.5].

  5. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  6. Detection of atherosclerotic vascular tissue from optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Hewko, Mark; Sowa, Mike; Sherif, Sherif

    2012-10-01

    Atherosclerotic coronary artery disease continues to be one of the major causes of mortality. Prevention, diagnosis and treatment of atherosclerotic coronary artery disease are dependent on the detection of high risk atherosclerotic plaque. As age is one of the most important risk factors, atherosclerosis worsens steadily with increasing age. Automatic characterization of atherosclerotic plaque using the optical coherence tomography (OCT) images provides a powerful tool to classify patients with high risk plaque. In this study we develop an automatic classifier to detect atherosclerotic plaque in young and old Watanabe heritable hyperlipidemic (WHHL) rabbits, using OCT images without reliance on visual inspection. Our classifier based on texture analysis technique may provide an efficient tool for detecting invisible changes in tissue structure. We extracted a set of 22 statistical textural features for each image using the spatial gray level dependence matrix (SGLDM) method. An optimal scalar feature selection process was carried to select the best discriminating features that employ the Fisher discriminant ratio (FDR) criterion, and cross correlation measure between the pairs of features. Using these optimal features, we formed a combination of 5 best classification features using an exhaustive search method. A combined feature set was finally employed for the classification of plaque. We obtained correct classification rate and validation of 76.67% and 75% respectively.

  7. Optical motion detector detecting visible and near infrared light

    NASA Astrophysics Data System (ADS)

    Everett, Hobart R., Jr.

    1990-02-01

    An optical motion detector detects changes in scene lighting indicative of motion and is also capable of detecting surveillance by active night vision devices using near-infrared light. The detector includes two photodetectors which each provide data to a signal processing network. One photodetector is sensitive to visible light; the other to near-infrared light. Both signal processing networks are identical and include a sample-and-hold, a comparator network, and a pulse stretcher. The output of a photodetector is provided to the sample-and-hold and comparator network. The comparator network compares a voltage corresponding to the instantaneously detected ambient lighting scene with a voltage corresponding to a reference lighting scene. The pulse stretcher receives the output of the comparator network and in turn provides an output to a logical processor. The logical processor compares the outputs of both signal processing networks and provides an output indicating surveillance with near-infrared light. The logical processor also indicates any perturbations in intensities of incandescent and fluorescent light.

  8. Noninvasive detection of plant nutrient stress using fiber optic spectrophotometry

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Wei; Asundi, Anand K.; Liew, Oi Wah; Boey, William S. L.

    2001-05-01

    In a previous paper, we described the use of fiber optic spectrophotometry as a non-destructive and sensitive method to detect early symptoms of plant nutrient deficiency. We report further developments of our work on Brassica chinensis var parachinensis (Bailey) showing reproducibility of our data collected at a different seasonal period. Plants at the mid-log growth phase were subjected to nutrient stress by transferring them to nitrate- and calcium- deficient nutrient solution in a standing aerated hydroponic system. After tracking changes in leaf reflectance by FOSpectr for nine days, the plants were returned to complete nutrient solution and their recovery was monitored for a further nine days. The responses of nutrient stressed plants were compared with those grown under complete nutrient solution over the 18-day trial period. We also compared the sensitivity of FOSpectr detection against plant growth measurements vis-a-vis average leaf number and leaf width and show that the former method gave an indication of nutrient stress much earlier than the latter. In addition, this work indicated that while normal and nutrient-stressed plants could not be distinguished within the first 7 days by tracking plant growth indicators, stressed plants did show a clear decline in average leaf number and leaf width in later stages of growth even after the plants were returned to complete nutrient solution. The results further reinforce the need for early detection of nutrient stress, as late remedial action could not reverse the loss in plant growth in later stages of plant development.

  9. Detection of early seizures by diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Hajihashemi, M. Reza; Zhou, Junli; Carney, Paul R.; Jiang, Huabei

    2015-03-01

    In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Besides, preclinical seizure experiments need to be conducted in awake animals with images reconstructed and displayed in real-time. We demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking brain activities with high spatiotemporal resolution. We developed methods to conduct seizure experiments in fully awake rats using a subject-specific helmet and a restraining mechanism. For the first time, we detected early hemodynamic responses with heterogeneous patterns several minutes preceding the electroencephalographic seizure onset, supporting the presence of a "pre-seizure" state both in anesthetized and awake rats. Using a novel time-series analysis of scattering images, we show that the analysis of scattered diffuse light is a sensitive and reliable modality for detecting changes in neural activity associated with generalized seizure. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways.

  10. Detection of single and clustered microcalcifications in mammograms using fractals models and neural networks.

    PubMed

    Bocchi, L; Coppini, G; Nori, J; Valli, G

    2004-05-01

    Microcalcifications (microCas) are often early signs of breast cancer. However, detecting them is a difficult visual task and recognizing malignant lesions is a complex diagnostic problem. In recent years, several research groups have been working to develop computer-aided diagnosis (CAD) systems for X-ray mammography. In this paper, we propose a method to detect and classify microcalcifications. In order to discover the presence of microCas clusters, particular attention is paid to the analysis of the spatial arrangement of detected lesions. A fractal model has been used to describe the mammographic image, thus, allowing the use of a matched filtering stage to enhance microcalcifications against the background. A region growing algorithm, coupled with a neural classifier, detects existing lesions. Subsequently, a second fractal model is used to analyze their spatial arrangement so that the presence of microcalcification clusters can be detected and classified. Reported results indicate that fractal models provide an adequate framework for medical image processing; consequently high correct classification rates are achieved.

  11. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    PubMed

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  12. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    NASA Astrophysics Data System (ADS)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  13. Optimum detection of an optical image on a photoelectric surface

    NASA Technical Reports Server (NTRS)

    Helstrom, C. W.; Wang, L.

    1972-01-01

    The detection of an optical image in the presence of uniform background light is based on a likelihood ratio formed of the numbers of photoelectrons emitted from small elements of a photoelectric surface onto which the image is focused. When diffraction is negligible and the surface has unit quantum efficiency, this detector is equipollent with the optimum detector of the image forming light. Its performance is compared with that of the threshold detector and that of a detector basing its decisions on the total number of photoelectrons from a finite area of the image. The illuminance of the image is postulated to have a Gaussian spatial distribution. All three detectors exhibit nearly the same reliability.

  14. Optical fiber sensors using a phase detection of Young's fringes.

    PubMed

    Nakadate, S

    1988-12-01

    A method for the phase detection of straight and equidistant fringes is applied to an optical sensor using a highly birefringent fiber. A birefringent wedge introduces a linear phase difference between orthogonally polarized light which emanates from the fiber, and Young's fringes are formed on an image sensor. The phase difference between two orthogonal retardations of the fiber is proportional to the phase of Young's fringes. The phase of Young's fringes is calculated from Fourier cosine and sine integrals of the fringe profile. The experimental results of a fiber extension induced by a PZT expansion are presented with error estimations. The accuracy of a 2-m long fiber sensor is estimated to be higher than lambda/200. A technique to extend the measurement range of the fiber sensor is also presented using two laser wavelengths, in which a new method for calculating the difference between two phases is used. The experimental results are presented with error estimations.

  15. Multi-optical mine detection: results from a field trial

    NASA Astrophysics Data System (ADS)

    Letalick, Dietmar; Tolt, Gustav; Sjökvist, Stefan K.; Nyberg, Sten; Grönwall, Christina; Andersson, Pierre; Linderhed, Anna; Forssell, Göran; Larsson, Håkan; Uppsäll, Magnus

    2006-05-01

    As a part of the Swedish mine detection project MOMS, an initial field trial was conducted at the Swedish EOD and Demining Centre (SWEDEC). The purpose was to collect data on surface-laid mines, UXO, submunitions, IED's, and background with a variety of optical sensors, for further use in the project. Three terrain types were covered: forest, gravel road, and an area which had recovered after total removal of all vegetation some years before. The sensors used in the field trial included UV, VIS, and NIR sensors as well as thermal, multi-spectral, and hyper-spectral sensors, 3-D laser radar and polarization sensors. Some of the sensors were mounted on an aerial work platform, while others were placed on tripods on the ground. This paper describes the field trial and the presents some initial results obtained from the subsequent analysis.

  16. Optical detection of chemical warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Webber, Michael E.; Pushkarsky, Michael B.; Patel, C. Kumar N.

    2004-12-01

    We present an analytical model evaluating the suitability of optical absorption based spectroscopic techniques for detection of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs) in ambient air. The sensor performance is modeled by simulating absorption spectra of a sample containing both the target and multitude of interfering species as well as an appropriate stochastic noise and determining the target concentrations from the simulated spectra via a least square fit (LSF) algorithm. The distribution of the LSF target concentrations determines the sensor sensitivity, probability of false positives (PFP) and probability of false negatives (PFN). The model was applied to CO2 laser based photoacosutic (L-PAS) CWA sensor and predicted single digit ppb sensitivity with very low PFP rates in the presence of significant amount of interferences. This approach will be useful for assessing sensor performance by developers and users alike; it also provides methodology for inter-comparison of different sensing technologies.

  17. Detection of optic nerve damage in ocular hypertension.

    PubMed Central

    Ross, J E; Bron, A J; Reeves, B C; Emmerson, P G

    1985-01-01

    Thirty patients with ocular hypertension were tested for contrast sensitivity loss. Seventeen were not on treatment, and thirteen were receiving some form of pressure reducing therapy. The contrast sensitivity results of 63% of ocular hypertensive eyes were abnormal (greater than 2 SDs from the age matched norm). Thus it appears that contrast sensitivity can detect early visual loss in patients who have normal visual fields and it is suggested that this test might be used as a criterion for therapy in ocular hypertension. There was no significant difference in the intraocular pressures between patients who gave abnormal contrast sensitivity results and those who did not in the untreated group (p greater than 0.05), suggesting that intraocular pressure level is a poor predictor of optic nerve fibre damage in patients with ocular hypertension. PMID:4084481

  18. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  19. Optimum detection of an optical image on a photoelectric surface.

    NASA Technical Reports Server (NTRS)

    Helstrom, C. W.; Wang, L.

    1973-01-01

    The image-detecting performance of an optimum counting detector is compared with that of a threshold detector and that of a detector basing its decisions on the total number of photoelectrons from a finite area of the image. The illuminance of the image is assumed to have a Gaussian spatial distribution. The optimum detector works with the pristine datum (and not with the photoelectric response) which is the spatiotemporal electromagnetic field at the aperture of the observing optical instrument. It is shown that little is to be gained by using details of the illuminance distribution beyond the crude knowledge of its breadth as embodied in a simple counter of emitted photoelectrons. All three detectors exhibit accordingly about the same reliability.

  20. Detecting nanoparticles in tissue using an optical iterative technique

    PubMed Central

    Yariv, Inbar; Rahamim, Gilad; Shliselberg, Elad; Duadi, Hamootal; Lipovsky, Anat; Lubart, Rachel; Fixler, Dror

    2014-01-01

    Determining the physical penetration depth of nanoparticles (NPs) into tissues is a challenge that many researchers have been facing in recent years. This paper presents a new noninvasive method for detecting NPs in tissue using an optical iterative technique based on the Gerchberg-Saxton (G-S) algorithm. At the end of this algorithm the reduced scattering coefficient (µs'), of a given substance, can be estimated from the standard deviation (STD) of the retrieved phase of the remitted light. Presented in this paper are the results of a tissue simulation which indicate a linear ratio between the STD and the scattering components. A linear ratio was also observed in the tissue-like phantoms and in ex vivo experiments with and without NPs (Gold nanorods and nano Methylene Blue). The proposed technique is the first step towards determining the physical penetration depth of NPs. PMID:25426317