A first demonstration of audio-frequency optical coherence elastography of tissue
NASA Astrophysics Data System (ADS)
Adie, Steven G.; Alexandrov, Sergey A.; Armstrong, Julian J.; Kennedy, Brendan F.; Sampson, David D.
2008-12-01
Optical elastography is aimed at using the visco-elastic properties of soft tissue as a contrast mechanism, and could be particularly suitable for high-resolution differentiation of tumour from surrounding normal tissue. We present a new approach to measure the effect of an applied stimulus in the kilohertz frequency range that is based on optical coherence tomography. We describe the approach and present the first in vivo optical coherence elastography measurements in human skin at audio excitation frequencies.
Optical Coherence Elastography
NASA Astrophysics Data System (ADS)
Kennedy, Brendan F.; Kennedy, Kelsey M.; Oldenburg, Amy L.; Adie, Steven G.; Boppart, Stephen A.; Sampson, David D.
The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young's modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.
Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui
2014-03-24
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Improved measurement of vibration amplitude in dynamic optical coherence elastography
Kennedy, Brendan F.; Wojtkowski, Maciej; Szkulmowski, Maciej; Kennedy, Kelsey M.; Karnowski, Karol; Sampson, David D.
2012-01-01
Abstract: Optical coherence elastography employs optical coherence tomography (OCT) to measure the displacement of tissues under load and, thus, maps the resulting strain into an image, known as an elastogram. We present a new improved method to measure vibration amplitude in dynamic optical coherence elastography. The tissue vibration amplitude caused by sinusoidal loading is measured from the spread of the Doppler spectrum, which is extracted using joint spectral and time domain signal processing. At low OCT signal-to-noise ratio (SNR), the method provides more accurate vibration amplitude measurements than the currently used phase-sensitive method. For measurements performed on a mirror at OCT SNR = 5 dB, our method introduces <3% error, compared to >20% using the phase-sensitive method. We present elastograms of a tissue-mimicking phantom and excised porcine tissue that demonstrate improvements, including a 50% increase in the depth range of reliable vibration amplitude measurement. PMID:23243565
Audio frequency in vivo optical coherence elastography
NASA Astrophysics Data System (ADS)
Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.
2009-05-01
We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.
NASA Astrophysics Data System (ADS)
Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.
2015-03-01
We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.
NASA Astrophysics Data System (ADS)
Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam
2015-03-01
By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.
Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field
NASA Astrophysics Data System (ADS)
Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.
2016-03-01
Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.
Optical coherence elastography – OCT at work in tissue biomechanics [Invited
Larin, Kirill V.; Sampson, David D.
2017-01-01
Optical coherence elastography (OCE), as the use of OCT to perform elastography has come to be known, began in 1998, around ten years after the rest of the field of elastography – the use of imaging to deduce mechanical properties of tissues. After a slow start, the maturation of OCT technology in the early to mid 2000s has underpinned a recent acceleration in the field. With more than 20 papers published in 2015, and more than 25 in 2016, OCE is growing fast, but still small compared to the companion fields of cell mechanics research methods, and medical elastography. In this review, we describe the early developments in OCE, and the factors that led to the current acceleration. Much of our attention is on the key recent advances, with a strong emphasis on future prospects, which are exceptionally bright. PMID:28271011
NASA Astrophysics Data System (ADS)
Wu, Chen; Aglyamov, Salavat R.; Liu, Chih-Hao; Han, Zhaolong; Singh, Manmohan; Larin, Kirill V.
2017-02-01
Many ocular diseases such as glaucoma and uveitis can lead to the elevation of intraocular pressure (IOP). Previous research implies a link between elevated IOP and lens disease. However, the relationship between IOP elevation and biomechanical properties of the crystalline lens has not been directly studied yet. In this work, we investigated the biomechanical properties of porcine lens as a function of IOP by acoustic radiation force optical coherence elastography.
The emergence of optical elastography in biomedicine
NASA Astrophysics Data System (ADS)
Kennedy, Brendan F.; Wijesinghe, Philip; Sampson, David D.
2017-04-01
Optical elastography, the use of optics to characterize and map the mechanical properties of biological tissue, involves measuring the deformation of tissue in response to a load. Such measurements may be used to form an image of a mechanical property, often elastic modulus, with the resulting mechanical contrast complementary to the more familiar optical contrast. Optical elastography is experiencing new impetus in response to developments in the closely related fields of cell mechanics and medical imaging, aided by advances in photonics technology, and through probing the microscale between that of cells and whole tissues. Two techniques -- optical coherence elastography and Brillouin microscopy -- have recently shown particular promise for medical applications, such as in ophthalmology and oncology, and as new techniques in cell mechanics.
Optical coherence elastography in ophthalmology
NASA Astrophysics Data System (ADS)
Kirby, Mitchell A.; Pelivanov, Ivan; Song, Shaozhen; Ambrozinski, Łukasz; Yoon, Soon Joon; Gao, Liang; Li, David; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2017-12-01
Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.
Nonlinear characterization of elasticity using quantitative optical coherence elastography.
Qiu, Yi; Zaki, Farzana R; Chandra, Namas; Chester, Shawn A; Liu, Xuan
2016-11-01
Optical coherence elastography (OCE) has been used to perform mechanical characterization on biological tissue at the microscopic scale. In this work, we used quantitative optical coherence elastography (qOCE), a novel technology we recently developed, to study the nonlinear elastic behavior of biological tissue. The qOCE system had a fiber-optic probe to exert a compressive force to deform tissue under the tip of the probe. Using the space-division multiplexed optical coherence tomography (OCT) signal detected by a spectral domain OCT engine, we were able to simultaneously quantify the probe deformation that was proportional to the force applied, and to quantify the tissue deformation. In other words, our qOCE system allowed us to establish the relationship between mechanical stimulus and tissue response to characterize the stiffness of biological tissue. Most biological tissues have nonlinear elastic behavior, and the apparent stress-strain relationship characterized by our qOCE system was nonlinear an extended range of strain, for a tissue-mimicking phantom as well as biological tissues. Our experimental results suggested that the quantification of force in OCE was critical for accurate characterization of tissue mechanical properties and the qOCE technique was capable of differentiating biological tissues based on the elasticity of tissue that is generally nonlinear.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan
2016-12-01
Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.
Nguyen, Thu-Mai; Zorgani, Ali; Lescanne, Maxime; Boccara, Claude; Fink, Mathias; Catheline, Stefan
2016-12-01
Optical coherence tomography (OCT) can map the stiffness of biological tissue by imaging mechanical perturbations (shear waves) propagating in the tissue. Most shear wave elastography (SWE) techniques rely on active shear sources to generate controlled displacements that are tracked at ultrafast imaging rates. Here, we propose a noise-correlation approach to retrieve stiffness information from the imaging of diffuse displacement fields using low-frame rate spectral-domain OCT. We demonstrated the method on tissue-mimicking phantoms and validated the results by comparison with classic ultrafast SWE. Then we investigated the in vivo feasibility on the eye of an anesthetized rat by applying noise correlation to naturally occurring displacements. The results suggest a great potential for passive elastography based on the detection of natural pulsatile motions using conventional spectral-domain OCT systems. This would facilitate the transfer of OCT-elastography to clinical practice, in particular, in ophthalmology or dermatology.
NASA Astrophysics Data System (ADS)
Tomlins, Peter H.; Rahman, Mohammed Wahidur; Donnan, Robert S.
2016-04-01
This study aimed to determine the feasibility of using optical coherence elastography to measure internal displacements during the curing phase of a light-activated, resin-based composite material. Displacement vectors were spatially mapped over time within a commercial dental composite. Measurements revealed that the orientation of cure-induced displacement vectors varied spatially in a complex manner; however, each vector showed a systematic evolution with time. Precision of individual displacements was estimated to be ˜1 to 2 μm, enabling submicrometer time-varying displacements to be detected.
Robust intravascular optical coherence elastography driven by acoustic radiation pressure
NASA Astrophysics Data System (ADS)
van Soest, Gijs; Bouchard, Richard R.; Mastik, Frits; de Jong, Nico; van der Steen, Anton F. W.
2007-07-01
High strain spots in the vessel wall indicate the presence of vulnerable plaques. The majority of acute cardiovascular events are preceded by rupture of such a plaque in a coronary artery. Intracoronary optical coherence tomography (OCT) can be extended, in principle, to an elastography technique, mapping the strain in the vascular wall. However, the susceptibility of OCT to frame-to-frame decorrelation, caused by tissue and catheter motion, inhibits reliable tissue displacement tracking and has to date obstructed the development of OCT-based intravascular elastography. We introduce a new technique for intravascular optical coherence elastography, which is robust against motion artifacts. Using acoustic radiation force, we apply a pressure to deform the tissue synchronously with the line scan rate of the OCT instrument. Radial tissue displacement can be tracked based on the correlation between adjacent lines, instead of subsequent frames in conventional elastography. The viability of the method is demonstrated with a simulation study. The root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique. Experiments to realize this new elastographic method are presented. Simultaneous optical and ultrasonic pulse-echo tracking demonstrate that the material can be put in a high-frequency oscillatory motion with an amplitude of several micrometers, more than sufficient for accurate tracking with OCT. The resulting data are used to optimize the acoustic pushing sequence and geometry.
Three-dimensional optical coherence micro-elastography of skeletal muscle tissue
Chin, Lixin; Kennedy, Brendan F.; Kennedy, Kelsey M.; Wijesinghe, Philip; Pinniger, Gavin J.; Terrill, Jessica R.; McLaughlin, Robert A.; Sampson, David D.
2014-01-01
In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies. PMID:25401023
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
NASA Astrophysics Data System (ADS)
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.
Optical coherence elastography for cellular-scale stiffness imaging of mouse aorta
NASA Astrophysics Data System (ADS)
Wijesinghe, Philip; Johansen, Niloufer J.; Curatolo, Andrea; Sampson, David D.; Ganss, Ruth; Kennedy, Brendan F.
2017-04-01
We have developed a high-resolution optical coherence elastography system capable of estimating Young's modulus in tissue volumes with an isotropic resolution of 15 μm over a 1 mm lateral field of view and a 100 μm axial depth of field. We demonstrate our technique on healthy and hypertensive, freshly excised and intact mouse aortas. Our technique has the capacity to delineate the individual mechanics of elastic lamellae and vascular smooth muscle. Further, we observe global and regional vascular stiffening in hypertensive aortas, and note the presence of local micro-mechanical signatures, characteristic of fibrous and lipid-rich regions.
NASA Astrophysics Data System (ADS)
Zaitsev, V. Y.; Matveyev, A. L.; Matveev, L. A.; Gelikonov, G. V.; Omelchenko, A. I.; Shabanov, D. V.; Sovetsky, A. A.; Baum, O. I.; Vitkin, A.; Sobol, E. N.
2018-02-01
Non-surgical thermo-mechanical reshaping of avascular collagenous tissues (cartilages and cornea) using moderate heating by IR-laser irradiation is an emerging technology that can find important applications in visioncorrection problems and preparation of cartilaginous implants in otolaryngology. To estimate both transient interframe strains and cumulative resultant strains produced by the laser irradiation of the tissue we use and improved version of strain mapping developed in our previous work related to compressional phase-sensitive optical coherence tomography. To reveal microstructural changes in the tissue regions where irradiation-produced strains do not disappear after temperature equilibration, we apply compressional optical coherence elastography in order to visualize the resultant variations in the tissue stiffness. The so-found regions of the stiffness reduction are attributed to formation of microscopic pores, existence of which agree with independent data obtained using methods of high-resolution microscopy.
Analysis of image formation in optical coherence elastography using a multiphysics approach
Chin, Lixin; Curatolo, Andrea; Kennedy, Brendan F.; Doyle, Barry J.; Munro, Peter R. T.; McLaughlin, Robert A.; Sampson, David D.
2014-01-01
Image formation in optical coherence elastography (OCE) results from a combination of two processes: the mechanical deformation imparted to the sample and the detection of the resulting displacement using optical coherence tomography (OCT). We present a multiphysics model of these processes, validated by simulating strain elastograms acquired using phase-sensitive compression OCE, and demonstrating close correspondence with experimental results. Using the model, we present evidence that the approximation commonly used to infer sample displacement in phase-sensitive OCE is invalidated for smaller deformations than has been previously considered, significantly affecting the measurement precision, as quantified by the displacement sensitivity and the elastogram signal-to-noise ratio. We show how the precision of OCE is affected not only by OCT shot-noise, as is usually considered, but additionally by phase decorrelation due to the sample deformation. This multiphysics model provides a general framework that could be used to compare and contrast different OCE techniques. PMID:25401007
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
NASA Astrophysics Data System (ADS)
Liu, Chih Hao; Skryabina, M. N.; Singh, Manmohan; Li, Jiasong; Wu, Chen; Sobol, E.; Larin, Kirill V.
2015-03-01
Current clinical methods of reconstruction surgery involve laser reshaping of nasal cartilage. The process of stress relaxation caused by laser heating is the primary method to achieve nasal cartilage reshaping. Based on this, a rapid, non-destructive and accurate elasticity measurement would allow for a more robust reshaping procedure. In this work, we have utilized a phase-stabilized swept source optical coherence elastography (PhSSSOCE) to quantify the Young's modulus of porcine nasal septal cartilage during the relaxation process induced by heating. The results show that PhS-SSOCE was able to monitor changes in elasticity of hyaline cartilage, and this method could potentially be applied in vivo during laser reshaping therapies.
NASA Astrophysics Data System (ADS)
Li, Jiasong; Singh, Manmohan; Han, Zhaolong; Wu, Chen; Raghunathan, Raksha; Liu, Chih-Hao; Nair, Achuth; Noorani, Shezaan; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.
2016-03-01
The mechanical anisotropic properties of the cornea can be an important indicator for determining the onset and severity of different diseases and can be used to assess the efficacy of various therapeutic interventions, such as cross-linking and LASIK surgery. In this work, we introduce a noncontact method of assessing corneal mechanical anisotropy as a function of intraocular pressure (IOP) using optical coherence elastography (OCE). A focused air-pulse induced low amplitude (<10 μm) elastic waves in fresh porcine corneas in the whole eye-globe configuration in situ. A phase-stabilized swept source optical coherence elastography (PhS-SSOCE) system imaged the elastic wave propagation at stepped radial angles, and the OCE measurements were repeated as the IOP was cycled. The elastic wave velocity was then quantified to determine the mechanical anisotropy and hysteresis of the cornea. The results show that the elastic anisotropy at the corneal of the apex of the cornea becomes more pronounced at higher IOPs, and that there are distinct radial angles of higher and lower stiffness. Due to the noncontact nature and small amplitude of the elastic wave, this method may be useful for characterizing the elastic anisotropy of ocular and other tissues in vivo completely noninvasively.
Phase-resolved acoustic radiation force optical coherence elastography
NASA Astrophysics Data System (ADS)
Qi, Wenjuan; Chen, Ruimin; Chou, Lidek; Liu, Gangjun; Zhang, Jun; Zhou, Qifa; Chen, Zhongping
2012-11-01
Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample's axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young's modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.
Swept-source anatomic optical coherence elastography of porcine trachea
NASA Astrophysics Data System (ADS)
Bu, Ruofei; Price, Hillel; Mitran, Sorin; Zdanski, Carlton; Oldenburg, Amy L.
2016-02-01
Quantitative endoscopic imaging is at the vanguard of novel techniques in the assessment upper airway obstruction. Anatomic optical coherence tomography (aOCT) has the potential to provide the geometry of the airway lumen with high-resolution and in 4 dimensions. By coupling aOCT with measurements of pressure, optical coherence elastography (OCE) can be performed to characterize airway wall stiffness. This can aid in identifying regions of dynamic collapse as well as informing computational fluid dynamics modeling to aid in surgical decision-making. Toward this end, here we report on an anatomic optical coherence tomography (aOCT) system powered by a wavelength-swept laser source. The system employs a fiber-optic catheter with outer diameter of 0.82 mm deployed via the bore of a commercial, flexible bronchoscope. Helical scans are performed to measure the airway geometry and to quantify the cross-sectional-area (CSA) of the airway. We report on a preliminary validation of aOCT for elastography, in which aOCT-derived CSA was obtained as a function of pressure to estimate airway wall compliance. Experiments performed on a Latex rubber tube resulted in a compliance measurement of 0.68+/-0.02 mm2/cmH2O, with R2=0.98 over the pressure range from 10 to 40 cmH2O. Next, ex vivo porcine trachea was studied, resulting in a measured compliance from 1.06+/-0.12 to 3.34+/-0.44 mm2/cmH2O, (R2>0.81). The linearity of the data confirms the elastic nature of the airway. The compliance values are within the same order-of-magnitude as previous measurements of human upper airways, suggesting that this system is capable of assessing airway wall compliance in future human studies.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2015-01-01
Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).
Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew
2015-01-01
Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970
Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Kistenev, Yury V.; Larin, Kirill V.
2016-03-01
Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea.
NASA Astrophysics Data System (ADS)
Han, Zhaolong; Aglyamov, Salavat R.; Li, Jiasong; Singh, Manmohan; Wang, Shang; Vantipalli, Srilatha; Wu, Chen; Liu, Chih-hao; Twa, Michael D.; Larin, Kirill V.
2015-02-01
We demonstrate the use of a modified Rayleigh-Lamb frequency equation in conjunction with noncontact optical coherence elastography to quantify the viscoelastic properties of the cornea. Phase velocities of air-pulse-induced elastic waves were extracted by spectral analysis and used for calculating the Young's moduli of the samples using the Rayleigh-Lamb frequency equation (RLFE). Validation experiments were performed on 2% agar phantoms (n=3) and then applied to porcine corneas (n=3) in situ. The Young's moduli of the porcine corneas were estimated to be ˜60 kPa with a shear viscosity ˜0.33 Pa.s. The results demonstrate that the RLFE is a promising method for noninvasive quantification of the corneal biomechanical properties and may potentially be useful for clinical ophthalmological applications.
NASA Astrophysics Data System (ADS)
Zhang, Hongqiu; Wu, Chen; Singh, Manmohan; Larin, Kirill V.
2018-02-01
Cataract is the most prevalent cause of visual impairment worldwide. Cataracts can be formed due to trauma, radiation, drug abuse, or low temperatures. Thus, early detection of cataract can be immensely helpful for preserving visual acuity by ensuring that the appropriate therapeutic procedures are performed at earlier stages of disease onset and progression. In this work, we utilized a phase-sensitive optical coherence elastography (OCE) system to quantify changes in biomechanical properties of porcine lenses in vitro with induced cold cataracts. The results show significant increase in lens Young's modulus due to formation of the cold cataract (from 35 kPa to 60 kPa). These results show that OCE can assess lenticular biomechanical properties and may be useful for detecting and, potentially, characterizing cataracts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C H; Li, J; Singh, M
2014-08-31
The development of an effective system to monitor the changes in the elastic properties of cartilage tissue with increasing temperature in laser reconstruction is an urgent practical task. In this paper, the use of phase-sensitive optical coherence elastography for detection of elastic waves in the sample has allowed Young's modulus of cartilage tissue to be measured directly during heating. Young's modulus was calculated from the group velocity of propagation of elastic waves excited by means of a system supplying focused air pulses. The measurement results are in agreement with the results of measurements of the modulus of elasticity under mechanicalmore » compression. The technique developed allows for noninvasive measurements; its development is promising for the use in vivo. (laser biophotonics)« less
Passive optical coherence elastography using a time-reversal approach (Conference Presentation)
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Zorgani, Ali; Fink, Mathias; Catheline, Stefan; Boccara, A. Claude
2017-02-01
Background and motivation - Conventional Optical Coherence Elastography (OCE) methods consist in launching controlled shear waves in tissues, and measuring their propagation speed using an ultrafast imaging system. However, the use of external shear sources limits transfer to clinical practice, especially for ophthalmic applications. Here, we propose a totally passive OCE method for ocular tissues based on time-reversal of the natural vibrations. Methods - Experiments were first conducted on a tissue-mimicking phantom containing a stiff inclusion. Pulsatile motions were reproduced by stimulating the phantom surface with two piezoelectric actuators excited asynchronously at low frequencies (50-500 Hz). The resulting random displacements were tracked at 190 frames/sec using spectral-domain optical coherence tomography (SD-OCT), with a 10x5µm² resolution over a 3x2mm² field-of-view (lateral x depth). The shear wavefield was numerically refocused (i.e. time-reversed) at each pixel using noise-correlation algorithms. The focal spot size yields the shear wavelength. Results were validated by comparison with shear wave speed measurements obtained from conventional active OCE. In vivo tests were then conducted on anesthetized rats. Results - The stiff inclusion of the phantom was delineated on the wavelength map with a wavelength ratio between the inclusion and the background (1.6) consistent with the speed ratio (1.7). This validates the wavelength measurements. In vivo, natural shear waves were detected in the eye and wavelength maps of the anterior segment showed a clear elastic contrast between the cornea, the sclera and the iris. Conclusion - We validated the time-reversal approach for passive elastography using SD-OCT imaging at low frame-rate. This method could accelerate the clinical transfer of ocular elastography.
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2016-01-01
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen. PMID:27090437
Dynamic and quantitative assessment of blood coagulation using optical coherence elastography
NASA Astrophysics Data System (ADS)
Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping
2016-04-01
Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen.
NASA Astrophysics Data System (ADS)
Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex
2016-11-01
In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values < to 10-3, with the caveat that such weak phase gradients may become corrupted by stronger measurement noises. Here, we extend the OCT phase-resolved elastographic methodology by (1) showing that an order of magnitude greater strains can significantly increase the accuracy of derived phase-gradient differences, while also avoiding error-phone phase-unwrapping procedures and minimizing the influence of decorrelation noise caused by suprapixel displacements, (2) discussing the appearance of artifactual stiff inclusions in resultant OCT elastograms in the vicinity of bright scatterers due to the amplitude-phase interplay in phase-variation measurements, and (3) deriving/evaluating methods of phase-gradient estimation that can outperform conventionally used least-square gradient fitting. We present analytical arguments, numerical simulations, and experimental examples to demonstrate the advantages of the proposed optimized phase-variation methodology.
Kennedy, Kelsey M.; Chin, Lixin; McLaughlin, Robert A.; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.; Kennedy, Brendan F.
2015-01-01
Probing the mechanical properties of tissue on the microscale could aid in the identification of diseased tissues that are inadequately detected using palpation or current clinical imaging modalities, with potential to guide medical procedures such as the excision of breast tumours. Compression optical coherence elastography (OCE) maps tissue strain with microscale spatial resolution and can delineate microstructural features within breast tissues. However, without a measure of the locally applied stress, strain provides only a qualitative indication of mechanical properties. To overcome this limitation, we present quantitative micro-elastography, which combines compression OCE with a compliant stress sensor to image tissue elasticity. The sensor consists of a layer of translucent silicone with well-characterized stress-strain behaviour. The measured strain in the sensor is used to estimate the two-dimensional stress distribution applied to the sample surface. Elasticity is determined by dividing the stress by the strain in the sample. We show that quantification of elasticity can improve the ability of compression OCE to distinguish between tissues, thereby extending the potential for inter-sample comparison and longitudinal studies of tissue elasticity. We validate the technique using tissue-mimicking phantoms and demonstrate the ability to map elasticity of freshly excised malignant and benign human breast tissues. PMID:26503225
Wu, Chen; Han, Zhaolong; Wang, Shang; Li, Jiasong; Singh, Manmohan; Liu, Chih-hao; Aglyamov, Salavat; Emelianov, Stanislav; Manns, Fabrice; Larin, Kirill V.
2015-01-01
Purpose. To evaluate the capability of a novel, coaligned focused ultrasound and phase-sensitive optical coherence elastography (US-OCE) system to assess age-related changes in biomechanical properties of the crystalline lens in situ. Methods. Low-amplitude elastic deformations in young and mature rabbit lenses were measured by an US-OCE system consisting of a spectral-domain optical coherence tomography (OCT) system coaligned with a focused ultrasound system used to produce a transient force on the lens surface. Uniaxial compressional tests were used to validate the OCE data. Results. The OCE measurements showed that the maximum displacements of the young rabbit lenses were significantly larger than those of the mature lenses, indicating a gradual increase of the lens stiffness with age. Temporal analyses of the displacements also demonstrate a similar trend of elastic properties in these lenses. The stress-strain measurements using uniaxial mechanical tests confirmed the results obtained by the US-OCE system. Conclusions. The results demonstrate that the US-OCE system can be used for noninvasive analysis and quantification of lens biomechanical properties in situ and possibly in vivo. PMID:25613945
Modeling and measurement of tissue elastic moduli using optical coherence elastography
NASA Astrophysics Data System (ADS)
Liang, Xing; Oldenburg, Amy L.; Crecea, Vasilica; Kalyanam, Sureshkumar; Insana, Michael F.; Boppart, Stephen A.
2008-02-01
Mechanical forces play crucial roles in tissue growth, patterning and development. To understand the role of mechanical stimuli, biomechanical properties are of great importance, as well as our ability to measure biomechanical properties of developing and engineered tissues. To enable these measurements, a novel non-invasive, micron-scale and high-speed Optical Coherence Elastography (OCE) system has been developed utilizing a titanium:sapphire based spectral-domain Optical Coherence Tomography (OCT) system and a mechanical wave driver. This system provides axial resolution of 3 microns, transverse resolution of 13 microns, and an acquisition rate as high as 25,000 lines per second. External lowfrequency vibrations are applied to the samples in the system. Step and sinusoidal steady-state responses are obtained to first characterize the OCE system and then characterize samples. Experimental results of M-mode OCE on silicone phantoms and human breast tissues are obtained, which correspond to biomechanical models developed for this analysis. Quantified results from the OCE system correspond directly with results from an indentation method from a commercial. With micron-scale resolution and a high-speed acquisition rate, our OCE system also has the potential to rapidly measure dynamic 3-D tissue biomechanical properties.
NASA Astrophysics Data System (ADS)
Chhetri, Raghav K.; Carpenter, Jerome; Superfine, Richard; Randell, Scott H.; Oldenburg, Amy L.
2010-02-01
Cystic fibrosis (CF) is a genetic defect in the cystic fibrosis transmembrane conductance regulator protein and is the most common life-limiting genetic condition affecting the Caucasian population. It is an autosomal recessive, monogenic inherited disorder characterized by failure of airway host defense against bacterial infection, which results in bronchiectasis, the breakdown of airway wall extracellular matrix (ECM). In this study, we show that the in vitro models consisting of human tracheo-bronchial-epithelial (hBE) cells grown on porous supports with embedded magnetic nanoparticles (MNPs) at an air-liquid interface are suitable for long term, non-invasive assessment of ECM remodeling using magnetomotive optical coherence elastography (MMOCE). The morphology of ex vivo CF and normal lung tissues using OCT and correlative study with histology is also examined. We also demonstrate a quantitative measure of normal and CF airway elasticity using MMOCE. The improved understanding of pathologic changes in CF lung structure and function and the novel method of longitudinal in vitro ECM assessment demonstrated in this study may lead to new in vivo imaging and elastography methods to monitor disease progression and treatment in cystic fibrosis.
Dynamic phase-sensitive optical coherence elastography at a true kilohertz frame-rate
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Larin, Kirill V.
2016-03-01
Dynamic optical coherence elastography (OCE) techniques have rapidly emerged as a noninvasive way to characterize the biomechanical properties of tissue. However, clinical applications of the majority of these techniques have been unfeasible due to the extended acquisition time because of multiple temporal OCT acquisitions (M-B mode). Moreover, multiple excitations, large datasets, and prolonged laser exposure prohibit their translation to the clinic, where patient discomfort and safety are critical criteria. Here, we demonstrate the feasibility of noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system. The OCE system was based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz, and imaged the elastic wave propagation at a frame rate of ~7.3 kHz. Because the elastic wave directly imaged, only a single excitation was utilized for one line scan measurement. Rather than acquiring multiple temporal scans at successive spatial locations as with previous techniques, here, successive B-scans were acquired over the measurement region (B-M mode). Preliminary measurements were taken on tissue-mimicking agar phantoms of various concentrations, and the results showed good agreement with uniaxial mechanical compression testing. Then, the elasticity of an in situ porcine cornea in the whole eye-globe configuration at various intraocular pressures was measured. The results showed that this technique can acquire a depth-resolved elastogram in milliseconds. Furthermore, the ultra-fast acquisition ensured that the laser safety exposure limit for the cornea was not exceeded.
Zaitsev, Vladimir Y; Matveyev, Alexandr L; Matveev, Lev A; Gelikonov, Grigory V; Gelikonov, Valentin M; Vitkin, Alex
2015-07-01
Feasibility of speckle tracking in optical coherence tomography (OCT) based on digital image correlation (DIC) is discussed in the context of elastography problems. Specifics of applying DIC methods to OCT, compared to processing of photographic images in mechanical engineering applications, are emphasized and main complications are pointed out. Analytical arguments are augmented by accurate numerical simulations of OCT speckle patterns. In contrast to DIC processing for displacement and strain estimation in photographic images, the accuracy of correlational speckle tracking in deformed OCT images is strongly affected by the coherent nature of speckles, for which strain-induced complications of speckle “blinking” and “boiling” are typical. The tracking accuracy is further compromised by the usually more pronounced pixelated structure of OCT scans compared with digital photographic images in classical DIC applications. Processing of complex-valued OCT data (comprising both amplitude and phase) compared to intensity-only scans mitigates these deleterious effects to some degree. Criteria of the attainable speckle tracking accuracy and its dependence on the key OCT system parameters are established.
NASA Astrophysics Data System (ADS)
Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-11-01
Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.
Acoustic radiation force optical coherence elastography using vibro-acoustography
NASA Astrophysics Data System (ADS)
Qu, Yueqiao (.; Ma, Teng; Li, Rui; Qi, Wenjuan; Zhu, Jiang; He, Youmin; Shung, K. K.; Zhou, Qifa; Chen, Zhongping
2015-03-01
High-resolution elasticity mapping of tissue biomechanical properties is crucial in early detection of many diseases. We report a method of acoustic radiation force optical coherence elastography (ARF-OCE) based on the methods of vibroacoustography, which uses a dual-ring ultrasonic transducer in order to excite a highly localized 3-D field. The single element transducer introduced previously in our ARF imaging has low depth resolution because the ARF is difficult to discriminate along the entire ultrasound propagation path. The novel dual-ring approach takes advantage of two overlapping acoustic fields and a few-hundred-Hertz difference in the signal frequencies of the two unmodulated confocal ring transducers in order to confine the acoustic stress field within a smaller volume. This frequency difference is the resulting "beating" frequency of the system. The frequency modulation of the transducers has been validated by comparing the dual ring ARF-OCE measurement to that of the single ring using a homogeneous silicone phantom. We have compared and analyzed the phantom resonance frequency to show the feasibility of our approach. We also show phantom images of the ARF-OCE based vibro-acoustography method and map out its acoustic stress region. We concluded that the dual-ring transducer is able to better localize the excitation to a smaller region to induce a focused force, which allows for highly selective excitation of small regions. The beat-frequency elastography method has great potential to achieve high-resolution elastography for ophthalmology and cardiovascular applications.
NASA Astrophysics Data System (ADS)
Ling, Yuting; Li, Chunhui; Zhou, Kanheng; Guan, Guangying; Lang, Stephen; McGloin, David; Nabi, Ghulam; Huang, Zhihong
2018-02-01
Prostate cancer (PCa) is a heterogeneous disease with multifocal origin. In current clinical care, the Gleason scoring system is the well-established diagnosis by microscopic evaluation of the tissue from trans-rectal ultrasound (TRUS) guided biopsies. Nevertheless, the sensitivity and specificity in detecting PCa can range from 40 to 50% for conventional TRUS B-mode imaging. Tissue elasticity is associated with the disease progression and elastography technique has recently shown promise in aiding PCa diagnosis. However, many cancer foci in the prostate gland has very small size less than 1 mm and those detected by medical elastography were larger than 2 mm. Hereby, we introduce optical coherence elastography (OCE) to quantify the prostate stiffness with high resolution in the magnitude of 10 µm. Following our feasibility study of 10 patients reported previously, we recruited 60 more patients undergoing 12-core TRUS guided biopsies for suspected PCa with a total of 720 biopsies. The stiffness of cancer tissue was approximately 57.63% higher than that of benign ones. Using histology as reference standard and cut-off threshold of 600kPa, the data analysis showed sensitivity and specificity of 89.6% and 99.8% respectively. The method also demonstrated potential in characterising different grades of PCa based on the change of tissue morphology and quantitative mechanical properties. In conclusion, quantitative OCE can be a reliable technique to identify PCa lesion and differentiate indolent from aggressive cancer.
NASA Astrophysics Data System (ADS)
Zhou, Kanheng; Wang, Yan; Feng, Kairui; Li, Chunhui; Huang, Zhihong
2018-02-01
HIFU is a truly noninvasive, acoustic therapeutic technique that utilizes high intensity acoustic field in the focus to kill the targeted tissue for disease treatment purpose. The mechanical properties of targeted tissue changes before and after treatment, and this change can be accurately detected by shear wave elastography. Hence, shear wave elastography is usually used for monitoring HIFU treatment asynchronously. To improve the low spatial resolution in ultrasound shear wave elastography, and to perform diseases diagnosis, treatment and monitoring in the same system, a new setup that combines HIFU and PhS-OCT system was proposed in this study. This proposed setup could do 1) HIFU treatment when the transducer works at high energy level, 2) ultrasound induced shear wave optical coherence elastography for HIFU treatment asynchronous monitoring when the transducer works at low energy level. Ex-vivo bovine liver tissue was treated at the same energy level for different time (0s, 1s, 5s, 9s) in this research. Elastography was performed on the lesion area of the sample after HIFU treatment, and the elastogram was reconstructed by the time of flight time method. The elastogram results clearly show the boundary of HIFU lesion area and surrounding normal tissue, even for 1s treatment time. And the average elasticity of the lesion grows linearly as the treatment time increases. Combined with OCT needle probe, the proposed method has a large potential not only to be used for superficial diseases treatment, but also to be used for high-precision-demanded diseases treatment, e.g. nervous disease treatment.
Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Yeow, Yen Ling; Hamzah, Juliana; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Ganss, Ruth; Kim, Jun Ki; Lee, Woei M.; Kennedy, Brendan F.
2017-01-01
In this paper, we describe a technique capable of visualizing mechanical properties at the cellular scale deep in living tissue, by incorporating a gradient-index (GRIN)-lens micro-endoscope into an ultrahigh-resolution optical coherence elastography system. The optical system, after the endoscope, has a lateral resolution of 1.6 µm and an axial resolution of 2.2 µm. Bessel beam illumination and Gaussian mode detection are used to provide an extended depth-of-field of 80 µm, which is a 4-fold improvement over a fully Gaussian beam case with the same lateral resolution. Using this system, we demonstrate quantitative elasticity imaging of a soft silicone phantom containing a stiff inclusion and a freshly excised malignant murine pancreatic tumor. We also demonstrate qualitative strain imaging below the tissue surface on in situ murine muscle. The approach we introduce here can provide high-quality extended-focus images through a micro-endoscope with potential to measure cellular-scale mechanics deep in tissue. We believe this tool is promising for studying biological processes and disease progression in vivo. PMID:29188108
Anatomic optical coherence tomography for dynamic imaging of the upper airway
NASA Astrophysics Data System (ADS)
Bu, Ruofei; Balakrishnan, Santosh; Iftimia, Nicusor; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.
2017-03-01
To aid in diagnosis and treatment of upper airway obstructive disorders (UAOD), we propose anatomic Optical Coherence Tomography (aOCT) for endoscopic imaging of the upper airway lumen with high speed and resolution. aOCT and CT scans are performed sequentially on in vivo swine to compare dynamic airway imaging data. The aOCT system is capable of capturing the dynamic deformation of the airway during respiration. This may lead to methods for airway elastography and aid in our understanding of dynamic collapse in UAOD.
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.
Vector method for strain estimation in phase-sensitive optical coherence elastography
NASA Astrophysics Data System (ADS)
Matveyev, A. L.; Matveev, L. A.; Sovetsky, A. A.; Gelikonov, G. V.; Moiseev, A. A.; Zaitsev, V. Y.
2018-06-01
A noise-tolerant approach to strain estimation in phase-sensitive optical coherence elastography, robust to decorrelation distortions, is discussed. The method is based on evaluation of interframe phase-variation gradient, but its main feature is that the phase is singled out at the very last step of the gradient estimation. All intermediate steps operate with complex-valued optical coherence tomography (OCT) signals represented as vectors in the complex plane (hence, we call this approach the ‘vector’ method). In comparison with such a popular method as least-square fitting of the phase-difference slope over a selected region (even in the improved variant with amplitude weighting for suppressing small-amplitude noisy pixels), the vector approach demonstrates superior tolerance to both additive noise in the receiving system and speckle-decorrelation caused by tissue straining. Another advantage of the vector approach is that it obviates the usual necessity of error-prone phase unwrapping. Here, special attention is paid to modifications of the vector method that make it especially suitable for processing deformations with significant lateral inhomogeneity, which often occur in real situations. The method’s advantages are demonstrated using both simulated and real OCT scans obtained during reshaping of a collagenous tissue sample irradiated by an IR laser beam producing complex spatially inhomogeneous deformations.
NASA Astrophysics Data System (ADS)
Tong, Minh Q.; Hasan, M. Monirul; Gregory, Patrick D.; Shah, Jasmine; Park, B. Hyle; Hirota, Koji; Liu, Junze; Choi, Andy; Low, Karen; Nam, Jin
2017-02-01
We demonstrate a computationally-efficient optical coherence elastography (OCE) method based on fringe washout. By introducing ultrasound in alternating depth profile, we can obtain information on the mechanical properties of a sample within acquisition of a single image. This can be achieved by simply comparing the intensity in adjacent depth profiles in order to quantify the degree of fringe washout. Phantom agar samples with various densities were measured and quantified by our OCE technique, the correlation to Young's modulus measurement by atomic force micrscopy (AFM) were observed. Knee cartilage samples of monoiodo acetate-induced arthiritis (MIA) rat models were utilized to replicate cartilage damages where our proposed OCE technique along with intensity and birefringence analyses and AFM measurements were applied. The results indicate that our OCE technique shows a correlation to the techniques as polarization-sensitive OCT, AFM Young's modulus measurements and histology were promising. Our OCE is applicable to any of existing OCT systems and demonstrated to be computationally-efficient.
Probing myocardium biomechanics using quantitative optical coherence elastography
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.
In vivo optical elastography: stress and strain imaging of human skin lesions
NASA Astrophysics Data System (ADS)
Es'haghian, Shaghayegh; Gong, Peijun; Kennedy, Kelsey M.; Wijesinghe, Philip; Sampson, David D.; McLaughlin, Robert A.; Kennedy, Brendan F.
2015-03-01
Probing the mechanical properties of skin at high resolution could aid in the assessment of skin pathologies by, for example, detecting the extent of cancerous skin lesions and assessing pathology in burn scars. Here, we present two elastography techniques based on optical coherence tomography (OCT) to probe the local mechanical properties of skin. The first technique, optical palpation, is a high-resolution tactile imaging technique, which uses a complaint silicone layer positioned on the tissue surface to measure spatially-resolved stress imparted by compressive loading. We assess the performance of optical palpation, using a handheld imaging probe on a skin-mimicking phantom, and demonstrate its use on human skin. The second technique is a strain imaging technique, phase-sensitive compression OCE that maps depth-resolved mechanical variations within skin. We show preliminary results of in vivo phase-sensitive compression OCE on a human skin lesion.
Huang, Pin-Chieh; Pande, Paritosh; Ahmad, Adeel; Marjanovic, Marina; Spillman, Darold R.; Odintsov, Boris; Boppart, Stephen A.
2016-01-01
Magnetic nanoparticles (MNPs) have been used in many diagnostic and therapeutic biomedical applications over the past few decades to enhance imaging contrast, steer drugs to targets, and treat tumors via hyperthermia. Optical coherence tomography (OCT) is an optical biomedical imaging modality that relies on the detection of backscattered light to generate high-resolution cross-sectional images of biological tissue. MNPs have been utilized as imaging contrast and perturbative mechanical agents in OCT in techniques called magnetomotive OCT (MM-OCT) and magnetomotive elastography (MM-OCE), respectively. MNPs have also been independently used for magnetic hyperthermia treatments, enabling therapeutic functions such as killing tumor cells. It is well known that the localized tissue heating during hyperthermia treatments result in a change in the biomechanical properties of the tissue. Therefore, we propose a novel dosimetric technique for hyperthermia treatment based on the viscoelasticity change detected by MM-OCE, further enabling the theranostic function of MNPs. In this paper, we first review the basic principles and applications of MM-OCT, MM-OCE, and magnetic hyperthermia, and present new preliminary results supporting the concept of MM-OCE-based hyperthermia dosimetry. PMID:28163565
High resolution SAW elastography for ex-vivo porcine skin specimen
NASA Astrophysics Data System (ADS)
Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong
2018-02-01
Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.
NASA Astrophysics Data System (ADS)
Fang, Qi; Frewer, Luke; Wijesinghe, Philip; Hamzah, Juliana; Ganss, Ruth; Allen, Wes M.; Sampson, David D.; Curatolo, Andrea; Kennedy, Brendan F.
2017-02-01
In many applications of optical coherence elastography (OCE), it is necessary to rapidly acquire images in vivo, or within intraoperative timeframes, over fields-of-view far greater than can be achieved in one OCT image acquisition. For example, tumour margin assessment in breast cancer requires acquisition over linear dimensions of 4-5 centimetres in under 20 minutes. However, the majority of existing techniques are not compatible with these requirements, which may present a hurdle to the effective translation of OCE. To increase throughput, we have designed and developed an OCE system that simultaneously captures two 3D elastograms from opposite sides of a sample. The optical system comprises two interferometers: a common-path interferometer on one side of the sample and a dual-arm interferometer on the other side. This optical system is combined with scanning mechanisms and compression loading techniques to realize dual-scanning OCE. The optical signals scattered from two volumes are simultaneously detected on a single spectrometer by depth-encoding the interference signal from each interferometer. To demonstrate dual-scanning OCE, we performed measurements on tissue-mimicking phantoms containing rigid inclusions and freshly isolated samples of murine hepatocellular carcinoma, highlighting the use of this technique to visualise 3D tumour stiffness. These findings indicate that our technique holds promise for in vivo and intraoperative applications.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.
2018-02-01
Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.
NASA Astrophysics Data System (ADS)
Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.
2016-03-01
The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.
NASA Astrophysics Data System (ADS)
Qu, Yueqiao; He, Youmin; Zhang, Yi; Ma, Teng; Zhu, Jiang; Miao, Yusi; Dai, Cuixia; Silverman, Ronald; Humayun, Mark S.; Zhou, Qifa; Chen, Zhongping
2017-02-01
Age-related macular degeneration and keratoconus are two ocular diseases occurring in the posterior and anterior eye, respectively. In both conditions, the mechanical elasticity of the respective tissues changes during the early onset of disease. It is necessary to detect these differences and treat the diseases in their early stages to provide proper treatment. Acoustic radiation force optical coherence elastography is a method of elasticity mapping using confocal ultrasound waves for excitation and Doppler optical coherence tomography for detection. We report on an ARF-OCE system that uses modulated compression wave based excitation signals, and detects the spatial and frequency responses of the tissue. First, all components of the system is synchronized and triggered such that the signal is consistent between frames. Next, phantom studies are performed to validate and calibrate the relationship between the resonance frequency and the Young's modulus. Then the frequency responses of the anterior and posterior eye are detected for porcine and rabbit eyes, and the results correlated to the elasticity. Finally, spatial elastograms are obtained for a porcine retina. Layer segmentation and analysis is performed and correlated to the histology of the retina, where five distinct layers are recognized. The elasticities of the tissue layers will be quantified according to the mean thickness and displacement response for the locations on the retina. This study is a stepping stone to future in-vivo animal studies, where the elastic modulus of the ocular tissue can be quantified and mapped out accordingly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu
We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ∼3.0 nm sensitivity at ∼16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promisingmore » non-contact, real-time, and high-resolution optical coherence elastography.« less
Kim, Woong; Ferguson, Virginia L.; Borden, Mark; Neu, Corey P.
2016-01-01
The elastic properties of engineered biomaterials and tissues impact their post-implantation repair potential and structural integrity, and are critical to help regulate cell fate and gene expression. The measurement of properties (e.g., stiffness or shear modulus) can be attained using elastography, which exploits noninvasive imaging modalities to provide functional information of a material indicative of the regeneration state. In this review, we outline the current leading elastography methodologies available to characterize the properties of biomaterials and tissues suitable for repair and mechanobiology research. We describe methods utilizing magnetic resonance, ultrasound, and optical coherent elastography, highlighting their potential for longitudinal monitoring of implanted materials in vivo, in addition to spatiotemporal limits of each method for probing changes in cell-laden constructs. Micro-elastography methods now allow acquisitions at length scales approaching 5–100 μm in two and three dimensions. Many of the methods introduced in this review are therefore capable of longitudinal monitoring in biomaterials and tissues approaching the cellular scale. However, critical factors such as anisotropy, heterogeneity and viscoelasity—inherent in many soft tissues—are often not fully described and therefore require further advancements and future developments. PMID:26790865
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Nair, Achuth; Aglyamov, Salavat R.; Wu, Chen; Han, Zhaolong; Lafon, Ericka; Larin, Kirill V.
2017-02-01
Recent work has shown that the biomechanical properties of tissues in the posterior eye have are critical for understanding the etiology and progression of ocular diseases. For instance, the primary risk for glaucoma is an elevated intraocular pressure (IOP). Weak tissues will deform under the large pressure, causing damage to vital tissues. In addition, scleral elasticity can influence the shape of the eye-globe, altering the axial length. In this work, we utilize a noncontact form of optical coherence elastography (OCE) to quantify the spatial distribution of biomechanical properties of the optic nerve, its surrounding tissues, and posterior sclera on the exterior of in situ porcine eyes in the whole eyeglobe configuration. The OCE measurements were taken at various IOPs to evaluate the biomechanical properties of the tissues as a function of IOP. The air-pulse induced dynamic response of the tissues was linked to Young's modulus by a simple kinematic equation by quantified the damped natural frequency (DNF). The results show that the posterior sclera is not as stiff as the optic nerve and its surrounding tissues ( 460 Hz and 894 Hz at 10 mmHg IOP, respectively). Moreover, the scleral stiffness was generally unaffected by IOP ( 460 Hz at 10 mmHg IOP as compared to 516 Hz at 20 mmHg), whereas the optic nerve and its surrounding tissues stiffened as IOP was increased ( 894 Hz at 10 mmHg to 1221 Hz at 20 mmHg).
Comparative study of shear wave-based elastography techniques in optical coherence tomography
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Yao, Jianing; Meemon, Panomsak; Parker, Kevin J.
2017-03-01
We compare five optical coherence elastography techniques able to estimate the shear speed of waves generated by one and two sources of excitation. The first two techniques make use of one piezoelectric actuator in order to produce a continuous shear wave propagation or a tone-burst propagation (TBP) of 400 Hz over a gelatin tissue-mimicking phantom. The remaining techniques utilize a second actuator located on the opposite side of the region of interest in order to create three types of interference patterns: crawling waves, swept crawling waves, and standing waves, depending on the selection of the frequency difference between the two actuators. We evaluated accuracy, contrast to noise ratio, resolution, and acquisition time for each technique during experiments. Numerical simulations were also performed in order to support the experimental findings. Results suggest that in the presence of strong internal reflections, single source methods are more accurate and less variable when compared to the two-actuator methods. In particular, TBP reports the best performance with an accuracy error <4.1%. Finally, the TBP was tested in a fresh chicken tibialis anterior muscle with a localized thermally ablated lesion in order to evaluate its performance in biological tissue.
Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M
2010-04-01
Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder. By following the methods used in this article, phantoms matching the optical, acoustic, and mechanical properties of other biological tissues can also be constructed.
NASA Astrophysics Data System (ADS)
Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Mohammadzai, Qais; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Chang, Anthony; Mohan, Chandra; Larin, Kirill V.
2016-03-01
Acute Glomerulonephritis caused by anti-glomerular basement membrane disease has a high mortality due to delayed diagnosis. Thus, an accurate and early diagnosis is critical for preserving renal function. Currently, blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides superior spatial resolution (micron scale) as compared to ultrasound and CT. Pathological changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signal, such as optical attenuation and speckle variance. Moreover, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, we utilized OCT to detect the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, classification accuracy using only optical metrics was clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improved from 76% to 95%. These results show that OCT combined with OCE can be potentially useful for nephritis detection.
Functional optical coherence tomography: principles and progress
NASA Astrophysics Data System (ADS)
Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam
2015-05-01
In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies.
Functional Optical Coherence Tomography: Principles and Progress
Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam
2015-01-01
In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836
NASA Astrophysics Data System (ADS)
Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Hamzah, Juliana; Ganss, Ruth; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Kim, Jun Ki; Lee, Wei M.; Kennedy, Brendan F.
2017-02-01
The mechanical forces that living cells experience represent an important framework in the determination of a range of intricate cellular functions and processes. Current insight into cell mechanics is typically provided by in vitro measurement systems; for example, atomic force microscopy (AFM) measurements are performed on cells in culture or, at best, on freshly excised tissue. Optical techniques, such as Brillouin microscopy and optical elastography, have been used for ex vivo and in situ imaging, recently achieving cellular-scale resolution. The utility of these techniques in cell mechanics lies in quick, three-dimensional and label-free mechanical imaging. Translation of these techniques toward minimally invasive in vivo imaging would provide unprecedented capabilities in tissue characterization. Here, we take the first steps along this path by incorporating a gradient-index micro-endoscope into an ultrahigh resolution optical elastography system. Using this endoscope, a lateral resolution of 2 µm is preserved over an extended depth-of-field of 80 µm, achieved by Bessel beam illumination. We demonstrate this combined system by imaging stiffness of a silicone phantom containing stiff inclusions and a freshly excised murine liver tissue. Additionally, we test this system on murine ribs in situ. We show that our approach can provide high quality extended depth-of-field images through an endoscope and has the potential to measure cell mechanics deep in tissue. Eventually, we believe this tool will be capable of studying biological processes and disease progression in vivo.
Moy, Wesley J; Su, Erica; Chen, Jason J; Oh, Connie; Jing, Joe C; Qu, Yueqiao; He, Youmin; Chen, Zhongping; Wong, Brian J F
2017-12-01
The classic management of burn scars and other injuries to the skin has largely relied on soft-tissue transfer to resurface damaged tissue with local tissue transfer or skin graft placement. In situ generation of electrochemical reactions using needle electrodes and an application of current may be a new approach to treat scars and skin. To examine the changes in optical, mechanical, and acoustic impedance properties in porcine skin after electrochemical therapy. This preclinical pilot study, performed from August 1, 2015, to November 1, 2016, investigated the effects of localized pH-driven electrochemical therapy of ex vivo porcine skin using 24 skin samples. Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application time. Specimens were analyzed using optical coherence tomography, optical coherence elastography, and ultrasonography. Ultrasonography was performed under 3 conditions (n = 2 per condition), optical coherence tomography was performed under 2 conditions (n = 2 per condition), and optical coherence elastography was performed under 2 conditions (n = 2 per condition). The remaining samples were used for the positive and negative control groups (n = 10). Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application. Tissue softening was observed at the anode and cathode sites as a result of electrochemical modification. Volumetric changes were noted using each optical and acoustic technique. A total of 24 ex vivo porcine skin samples were used for this pilot study. Optical coherence tomography measured spatial distribution of superficial tissue changes around each electrode site. At 4 V for 3 minutes, a total volumetric effect of 0.47 mm3 was found at the anode site and 0.51 mm3 at the cathode site. For 5 V for 3 minutes, a total volumetric effect of 0.85 mm3 was found at the anode site and 1.05 mm3 at the cathode site. Electrochemical therapy is a low-cost technique that is on par with the costs of suture and scalpel. The use of electrochemical therapy to create mechanical and physiologic changes in tissue has the potential to locally remodel the soft-tissue matrix, which ultimately may lead to an inexpensive scar treatment or skin rejuvenation therapy. NA.
NASA Astrophysics Data System (ADS)
Du, Yong; Liu, Chih-Hao; Lei, Ling; Singh, Manmohan; Li, Jiasong; Hicks, M. John; Larin, Kirill V.; Mohan, Chandra
2016-04-01
Systemic sclerosis (SSc) is a connective tissue disease that results in excessive accumulation of collagen in the skin and internal organs. Overall, SSc has a rare morbidity (276 cases per million adults in the United States), but has a 10-year survival rate of 55%. Currently, the modified Rodnan skin score (mRSS) is assessed by palpation on 17 sites on the body. However, the mRSS assessed score is subjective and may be influenced by the experience of the rheumatologists. In addition, the inherent elasticity of skin may bias the mRSS assessment in the early stage of SSc, such as oedematous. Optical coherence elastography (OCE) is a rapidly emerging technique, which can assess mechanical contrast in tissues with micrometer spatial resolution. In this work, the OCE technique is applied to assess the mechanical properties of skin in both control and bleomycin (BLM) induced SSc-like disease noninvasively. Young's modulus of the BLM-SSc skin was found be significantly higher than that of normal skin, in both the in vivo and in vitro studies (p<0.05). Thus, OCE is able to differentiate healthy and fibrotic skin using mechanical contrast. It is a promising new technology for quantifying skin involvement in SSc in a rapid, unbiased, and noninvasive manner.
Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping
2017-02-01
Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.
Ford, Matthew R.; Roy, Abhijit Sinha; Rollins, Andrew M.; Dupps, William J.
2014-01-01
PURPOSE To noninvasively evaluate the effects of corneal hydration and collagen crosslinking (CXL) on the mechanical behavior of the cornea. SETTING Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA. DESIGN Experimental study. METHODS An optical coherence elastography (OCE) technique was used to measure the displacement behavior of 5 pairs of debrided human donor globes in 3 serial states as follows: edematous, normal thickness, and after riboflavin–ultraviolet-A–mediated CXL. During micromotor-controlled axial displacements with a curved goniolens at physiologic intraocular pressure (IOP), serial optical coherence tomography scans were obtained to allow high-resolution intrastromal speckle tracking and displacement measurements over the central 4.0 mm of the cornea. RESULTS With no imposed increase in IOP, the mean lateral to imposed axial displacement ratios were 0.035 μm/μm ± 0.037 (SD) in edematous corneas, 0.021 ± 0.02 μm/μm in normal thickness corneas, and 0.014 ± 0.009 μm/μm in post-CXL corneas. The differences were statistically significant (P<.05, analysis of variance) and indicated a 40% increase in lateral stromal resistance with deturgescence and a further 33% mean increase in relative stiffness with CXL. CONCLUSIONS Serial perturbations of the corneal hydration state and CXL had significant effects on corneal biomechanical behavior. With an axially applied stress from a nonapplanating contact lens, displacements along the direction of the collagen lamellae were 2 orders of magnitude lower than axial deformations. These experiments show the ability of OCE to quantify clinically relevant mechanical property differences under physiologic conditions. Financial Disclosures Proprietary or commercial disclosures are listed after the references. PMID:24767794
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
NASA Astrophysics Data System (ADS)
Guan, Guangying; Song, Shaozhen; Huang, Zhihong; Yang, Ying
2015-03-01
Generation of functional tissue in vitro through tissue engineering technique is a promising direction to repair and replace malfunctioned organ and tissue in the modern medicine for various diseases which could not been treated well by conventional therapy. Similar to the embryo development, the generation of tissue in vitro is a highly dynamic processing. Obtaining the feedback of the processing real time is highly demanded. In this study, a new methodology has been explored aiming to monitor the morphological and mechanical property alteration of bone tissue engineering constructs simultaneously. Optical coherence elastography (OCE) equipped with a LDS V201 permanent magnet shaker and a modulated acoustic radiation force (ARF) to provide a vibration signal, has been used for the real time and non-destructive monitoring. A phantom construct system has been used to optimize the measurement conditions in which agar hydrogel with concentration from 0, 0.75 to 2% with/without hydroxyappatite particles have been injected to 3D porous poly (lactic acid) scaffolds to simulate the collagenous extracellular matrix (ECM) and mineralized ECM. The structural and elastography images of the constructs have clearly demonstrated the linear relation with the increased mechanical property versus the increase of agar concentration within the pores of the scaffolds. The MG63 bone cells seeded in the scaffolds and cultured for 4 weeks have been monitored by the established protocol exhibiting the increased mechanical strength in the pore wall where the ECM or mineralized ECM was assumed to be formed in comparison to empty pores. This study confirms that OCE-ARF could become a valuable tool in regenerative medicine to assess the biological events during in vitro culture and conditioning.
NASA Astrophysics Data System (ADS)
Nadkarni, Seemantini K.
2013-12-01
During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.
Non-contact rapid optical coherence elastography by high-speed 4D imaging of elastic waves
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Yoon, Soon Joon; Ambroziński, Łukasz; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; O'Donnell, Matthew; Wang, Ruikang K.
2017-02-01
Shear wave OCE (SW-OCE) uses an OCT system to track propagating mechanical waves, providing the information needed to map the elasticity of the target sample. In this study we demonstrate high speed, 4D imaging to capture transient mechanical wave propagation. Using a high-speed Fourier domain mode-locked (FDML) swept-source OCT (SS-OCT) system operating at 1.62 MHz A-line rate, the equivalent volume rate of mechanical wave imaging is 16 kvps (kilo-volumes per second), and total imaging time for a 6 x 6 x 3 mm volume is only 0.32 s. With a displacement sensitivity of 10 nanometers, the proposed 4D imaging technique provides sufficient temporal and spatial resolution for real-time optical coherence elastography (OCE). Combined with a new air-coupled, high-frequency focused ultrasound stimulator requiring no contact or coupling media, this near real-time system can provide quantitative information on localized viscoelastic properties. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine cornea under various intra-ocular pressures. In addition, elasticity anisotropy in the cornea is observed. Images of the mechanical wave group velocity, which correlates with tissue elasticity, show velocities ranging from 4-20 m/s depending on pressure and propagation direction. These initial results strong suggest that 4D imaging for real-time OCE may enable high-resolution quantitative mapping of tissue biomechanical properties in clinical applications.
Quantifying the effects of hydration on corneal stiffness with optical coherence elastography
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.
2018-02-01
Several methods have been proposed to assess changes in corneal biomechanical properties due to various factors, such as degenerative diseases, intraocular pressure, and therapeutic interventions (e.g. corneal collagen crosslinking). However, the effect of the corneal tissue hydration state on corneal stiffness is not well understood. In this work, we induce low amplitude (< 10 μm) elastic waves with a focused micro air-pulse in fresh in situ rabbit corneas (n = 10) in the whole eye-globe configuration at an artificially controlled intraocular pressure. The waves were then detected with a phase-stabilized swept source optical coherence elastography system. Baseline measurements were taken every 20 minutes for an hour while the corneas were hydrated with 1X PBS. After the measurement at 60 minutes, a 20% dextran solution was topically instilled to dehydrate the corneas. The measurements were repeated every 20 minutes again for an hour. The results showed that the elastic wave velocity decreased as the corneal thickness decreased. Finite element modeling (FEM) was performed using the corneal geometry and elastic wave propagation speed to assess the stiffness of the samples. The results show that the stiffness increased from 430 kPa during hydration with PBS to 500 kPa after dehydration with dextran, demonstrating that corneal hydration state, apart from geometry and intraocular pressure, can change the stiffness of the cornea.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2015-03-01
Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.
Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity.
Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T; Wang, Ruikang K; O'Donnell, Matthew
2016-12-23
Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.
Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity
Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O’Donnell, Matthew
2016-01-01
Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea. PMID:28008920
Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity
NASA Astrophysics Data System (ADS)
Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2016-12-01
Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.
Imaging of optically diffusive media by use of opto-elastography
NASA Astrophysics Data System (ADS)
Bossy, Emmanuel; Funke, Arik R.; Daoudi, Khalid; Tanter, Mickael; Fink, Mathias; Boccara, Claude
2007-02-01
We present a camera-based optical detection scheme designed to detect the transient motion created by the acoustic radiation force in elastic media. An optically diffusive tissue mimicking phantom was illuminated with coherent laser light, and a high speed camera (2 kHz frame rate) was used to acquire and cross-correlate consecutive speckle patterns. Time-resolved transient decorrelations of the optical speckle were measured as the results of localised motion induced in the medium by the radiation force and subsequent propagating shear waves. As opposed to classical acousto-optic techniques which are sensitive to vibrations induced by compressional waves at ultrasonic frequencies, the proposed technique is sensitive only to the low frequency transient motion induced in the medium by the radiation force. It therefore provides a way to assess both optical and shear mechanical properties.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.
2016-03-01
Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.
NASA Astrophysics Data System (ADS)
Li, Chunhui; Guan, Guangying; Ling, Yuting; Lang, Stephen; Wang, Ruikang K.; Huang, Zhihong; Nabi, Ghulam
2015-03-01
Objectives. Prostate cancer is the most frequently diagnosed malignancy in men. Digital rectal examination (DRE) - a known clinical tool based on alteration in the mechanical properties of tissues due to cancer has traditionally been used for screening prostate cancer. Essentially, DRE estimates relative stiffness of cancerous and normal prostate tissue. Optical coherence elastography (OCE) are new optical imaging techniques capable of providing cross-sectional imaging of tissue microstructure as well as elastogram in vivo and in real time. In this preliminary study, OCE was used in the setting of the human prostate biopsies ex vivo, and the images acquired were compared with those obtained using standard histopathologic methods. Methods. 120 prostate biopsies were obtained by TRUS guided needle biopsy procedures from 9 patients with clinically suspected cancer of the prostate. The biopsies were approximately 0.8mm in diameter and 12mm in length, and prepared in Formalin solution. Quantitative assessment of biopsy samples using OCE was obtained in kilopascals (kPa) before histopathologic evaluation. The results obtained from OCE and standard histopathologic evaluation were compared provided the cross-validation. Sensitivity, specificity, and positive and negative predictive values were calculated for OCE (histopathology was a reference standard). Results. OCE could provide quantitative elasticity properties of prostate biopsies within benign prostate tissue, prostatic intraepithelial neoplasia, atypical hyperplasia and malignant prostate cancer. Data analysed showed that the sensitivity and specificity of OCE for PCa detection were 1 and 0.91, respectively. PCa had significantly higher stiffness values compared to benign tissues, with a trend of increasing in stiffness with increasing of malignancy. Conclusions. Using OCE, microscopic resolution elastogram is promising in diagnosis of human prostatic diseases. Further studies using this technique to improve the detection and staging of malignant cancer of the prostate are ongoing.
Optical assessment of tissue mechanics: acousto-optical elastography of skin
NASA Astrophysics Data System (ADS)
Kirkpatrick, Sean J.
2003-10-01
A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto - optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.
Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.
2014-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822
Detection of dermal systemic sclerosis using noncontact optical coherence elastography
NASA Astrophysics Data System (ADS)
Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Li, Jiasong; Wu, Chen; Han, Zhaolong; Raghunathan, Raksha; Hsu, Thomas; Noorani, Shezaan; Hicks, M. John; Mohan, Chandra; Larin, Kirill V.
2016-03-01
Systemic sclerosis (SSc) is a connective tissue disease that results in excessive accumulation of collagen in the skin and internal organs. Overall, SSc is a rare disorder, but has a high mortality, particularly in last decade of life. To improve the survival rate, an accurate and early diagnosis is crucial. Currently, the modified Rodnan skin score (mRSS) is the gold standard for evaluating SSc progression based on clinical palpation at 17 sites on the body. However, this procedure can be time consuming, and the assessed score may be biased by the experience of the clinician, causing inter- and intraobserver variabilities. Moreover, the instrinsic elasticity of skin may further bias the mRSS assessment in the early stages of SSc, such as oedematous. To overcome these limitations, there is a need for a rapid, accurate, and objective assessment technique. Optical coherence elastography (OCE) is a novel, rapidly emerging technique, which can assess mechanical contrast in tissues with micrometer spatial resolution. In this work, we demonstrate the first use of OCE to assess the mechanical properties of control and SSc-like diseased skin non-invasively. A focused air-pulse induced an elastic wave in the skin, which was detected by a home-built OCE system. The elastic wave propagated significantly faster in SSc skin compared to healthy skin. The Young's modulus of the SSc skin was significantly higher than that of normal skin (P<0.05). Thus, OCE was able to objectively differentiate healthy and fibrotic skin completely noninvasively and is a promising and potentially useful new technology for quantifying skin involvement in SSc.
Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Vantipalli, Srilatha; Liu, Chih-Hao; Wu, Chen; Raghunathan, Raksha; Aglyamov, Salavat R.; Twa, Michael D.; Larin, Kirill V.
2016-01-01
Purpose The purpose of this study was to use noncontact optical coherence elastography (OCE) to evaluate and compare changes in biomechanical properties that occurred in rabbit cornea in situ after corneal collagen cross-linking by either of two techniques: ultraviolet-A (UV-A)/riboflavin or rose-Bengal/green light. Methods Low-amplitude (≤10 μm) elastic waves were induced in mature rabbit corneas by a focused air pulse. Elastic wave propagation was imaged by a phase-stabilized swept source OCE (PhS-SSOCE) system. Corneas were then cross-linked by either of two methods: UV-A/riboflavin (UV-CXL) or rose-Bengal/green light (RGX). Phase velocities of the elastic waves were fitted to a previously developed modified Rayleigh-Lamb frequency equation to obtain the viscoelasticity of the corneas before and after the cross-linking treatments. Micro-scale depth-resolved phase velocity distribution revealed the depth-wise heterogeneity of both cross-linking techniques. Results Under standard treatment settings, UV-CXL significantly increased the stiffness of the corneas by ∼47% (P < 0.05), but RGX did not produce statistically significant increases. The shear viscosities were unaffected by either cross-linking technique. The depth-wise phase velocities showed that UV-CXL affected the anterior ∼34% of the corneas, whereas RGX affected only the anterior ∼16% of the corneas. Conclusions UV-CXL significantly strengthens the cornea, whereas RGX does not, and the effects of cross-linking by UV-CXL reach deeper into the cornea than cross-linking effects of RGX under similar conditions. PMID:27409461
NASA Astrophysics Data System (ADS)
Kennedy, Brendan F.; Wijesinghe, Philip; Allen, Wes M.; Chin, Lixin; Latham, Bruce; Saunders, Christobel M.; Sampson, David D.
2016-03-01
Surgical excision of tumor is a critical factor in the management of breast cancer. The most common surgical procedure is breast-conserving surgery. The surgeon's goal is to remove the tumor and a rim of healthy tissue surrounding the tumor: the surgical margin. A major issue in breast-conserving surgery is the absence of a reliable tool to guide the surgeon in intraoperatively assessing the margin. A number of techniques have been proposed; however, the re-excision rate remains high and has been reported to be in the range 30-60%. New tools are needed to address this issue. Optical coherence elastography (OCE) shows promise as a tool for intraoperative tumor margin assessment in breast-conserving surgery. Further advances towards clinical translation are limited by long scan times and small fields of view. In particular, scanning over sufficient areas to assess the entire margin in an intraoperative timeframe has not been shown to be feasible. Here, we present a protocol allowing ~75% of the surgical margins to be assessed within 30 minutes. To achieve this, we have incorporated a 65 mm-diameter (internal), wide-aperture annular piezoelectric transducer, allowing the entire surface of the excised tumor mass to be automatically imaged in an OCT mosaic comprised of 10 × 10 mm tiles. As OCT is effective in identifying adipose tissue, our protocol uses the wide-field OCT to selectively guide subsequent local OCE scanning to regions of solid tissue which often present low contrast in OCT images. We present promising examples from freshly excised human breast tissue.
NASA Astrophysics Data System (ADS)
Allen, Wes M.; Chin, Lixin; Sampson, David D.; Kennedy, Brendan F.
2016-03-01
Incomplete excision of tumour margins is a major issue in breast-conserving surgery. Currently 20 - 60% of cases require a second surgical procedure required as a result of cancer recurrence. A number of techniques have been proposed to assess margin status, including frozen section analysis and imprint cytology. However, the recurrence rate after using these techniques remains very high. Over the last several years, our group has been developing optical coherence elastography (OCE) as a tool for the intraoperative assessment of tumour margins in breast cancer. We have reported a feasibility study on 65 ex vivo samples from patients undergoing mastectomy or wide local excision demonstrates the potential of OCE in differentiating benign from malignant tissue. In this study, malignant tissue was readily distinguished from surrounding relative tissue by a distinctive heterogeneous pattern in micro-elastograms. To date the largest field of view for a micro-elastogram is 20 x 20mm, however, lumpectomy samples are typically ~50 x 50 x 30mm. For OCE to progress as a useful clinical tool, elastograms must be acquired over larger areas to allow a greater portion of the surface area of lumpectomies to be assessed. Here, we propose a wide-field OCE scanner that utilizes a piezoelectric transducer with an internal diameter of 65mm. In this approach partially overlapped elastograms are stitched together forming a mosaic with overall dimensions of 50 x 50mm in a total acquisition time of 15 - 30 minutes. We present results using this approach on both tissue-mimicking phantoms and tissue, and discuss prospects for shorter acquisitions times.
NASA Astrophysics Data System (ADS)
Mulligan, Jeffrey A.; Adie, Steven G.
2017-02-01
Mechanobiology is an emerging field which seeks to link mechanical forces and properties to the behaviors of cells and tissues in cancer, stem cell growth, and other processes. Traction force microscopy (TFM) is an imaging technique that enables the study of traction forces exerted by cells on their environment to migrate as well as sense and manipulate their surroundings. To date, TFM research has been performed using incoherent imaging modalities and, until recently, has been largely confined to the study of cell-induced tractions within two-dimensions using highly artificial and controlled environments. As the field of mechanobiology advances, and demand grows for research in physiologically relevant 3D culture and in vivo models, TFM will require imaging modalities that support such settings. Optical coherence microscopy (OCM) is an interferometric imaging modality which enables 3D cellular resolution imaging in highly scattering environments. Moreover, optical coherence elastography (OCE) enables the measurement of tissue mechanical properties. OCE relies on the principle of measuring material deformations in response to artificially applied stress. By extension, similar techniques can enable the measurement of cell-induced deformations, imaged with OCM. We propose traction force optical coherence microscopy (TF-OCM) as a natural extension and partner to existing OCM and OCE methods. We report the first use of OCM data and digital image correlation to track temporally varying displacement fields exhibited within a 3D culture setting. These results mark the first steps toward the realization of TF-OCM in 2D and 3D settings, bolstering OCM as a platform for advancing research in mechanobiology.
Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Chang, Anthony; Mohan, Chandra; Larin, Kirill V
2016-08-01
Acute glomerulonephritis caused by antiglomerular basement membrane marked by high mortality. The primary reason for this is delayed diagnosis via blood examination, urine analysis, tissue biopsy, or ultrasound and X-ray computed tomography imaging. Blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution, with reduced sensitivity. Optical coherence tomography is a noninvasive and high-resolution imaging technique that provides superior spatial resolution (micrometer scale) as compared to ultrasound and CT. Changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signals, such as optical attenuation and speckle variance. Furthermore, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, OCT has been utilized to quantify the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, its classification accuracy is clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improves from 76% to 95%. These results show that OCT combined with OCE can be a powerful tool for identifying and classifying nephritis. Therefore, the OCT/OCE method could potentially be used as a minimally invasive tool for longitudinal studies during the progression and therapy of glomerulonephritis as well as complement and, perhaps, substitute highly invasive tissue biopsies. Elastic-wave propagation in mouse healthy and nephritic kidneys. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Transthoracic shear wave elastography of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as, e.g., diverging-wave coherent compounding or focused harmonic imaging have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging-waves are emitted and coherently compounded, and show that such an approach can be used to enhance both Shear Wave Elastography (SWE) and high frame rate B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In-vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with reduction of the imaging mean clutter level up to 13.8-dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high frame-rate. PMID:26890730
Influence of corneal hydration on optical coherence elastography
NASA Astrophysics Data System (ADS)
Twa, Michael D.; Vantipalli, Srilatha; Singh, Manmohan; Li, Jiasong; Larin, Kirill V.
2016-03-01
Corneal biomechanical properties are influenced by several factors, including intraocular pressure, corneal thickness, and viscoelastic responses. Corneal thickness is directly proportional to tissue hydration and can influence corneal stiffness, but there is no consensus on the magnitude or direction of this effect. We evaluated the influence of corneal hydration on dynamic surface deformation responses using optical coherence elastography (OCE). Fresh rabbit eyes (n=10) were prepared by removing the corneal epithelium and dropping with 0.9% saline every 5 minutes for 1 hour, followed by 20% dextran solution every 5 minutes for one hour. Corneal thickness was determined from structural OCT imaging and OCE measurements were performed at baseline and every 20 minutes thereafter. Micron-scale deformations were induced at the apex of the corneal tissue using a spatially-focused (150μm) short-duration (<1ms) air-pulse delivery system. These dynamic tissue responses were measured non-invasively with a phase-stabilized swept source OCT system. The tissue surface deformation response (Relaxation Rate: RR) was quantified as the time constant, over which stimulated tissue recovered from the maximum deformation amplitude. Elastic wave group velocity (GV) was also quantified and correlated with change in corneal thickness due to hydration process. Corneal thickness rapidly increased and remained constant following epithelium removal and changed little thereafter. Likewise, corneal stiffness changed little over the first hour and then decreased sharply after Dextran application (thickness: -46% [-315/682 μm] RR: - 24% [-0.7/2.88 ms-1]; GV: -19% [-0.6/3.2 m/s]). Corneal thickness and corneal stiffness (RR) were well correlated (R2 = .66). Corneal biomechanical properties are highly correlated with tissue hydration over a wide range of corneal thickness and these changes in corneal stiffness are quantifiable using OCE.
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
Oldenburg, Amy L
2010-01-01
We present a new method for performing dynamic elastography of soft tissue samples. By sensing nanoscale displacements with optical coherence tomography, a chirped, modulated force is applied to acquire the mechanical spectrum of a tissue sample within a few seconds. This modulated force is applied via magnetic nanoparticles, named ‘nanotransducers’, which are diffused into the tissue, and which contribute negligible inertia to the soft tissue mechanical system. Using this novel system, we observed that excised tissues exhibit mechanical resonance modes which are well described by a linear damped harmonic oscillator. Results are validated by using cylindrical tissue phantoms of agarose in which resonant frequencies (30–400 Hz) are consistent with longitudinal modes and the sample boundary conditions. We furthermore show that the Young’s modulus can be computed from their measured resonance frequencies, analogous to resonant ultrasound spectroscopy for stiff material analysis. Using this new technique, named magnetomotive resonant acoustic spectroscopy (MRAS), we monitored the relative stiffening of an excised rat liver during a chemical fixation process. PMID:20124653
Non-contact single shot elastography using line field low coherence holography
Liu, Chih-Hao; Schill, Alexander; Wu, Chen; Singh, Manmohan; Larin, Kirill V.
2016-01-01
Optical elastic wave imaging is a powerful technique that can quantify local biomechanical properties of tissues. However, typically long acquisition times make this technique unfeasible for clinical use. Here, we demonstrate non-contact single shot elastographic holography using a line-field interferometer integrated with an air-pulse delivery system. The propagation of the air-pulse induced elastic wave was imaged in real time, and required a single excitation for a line-scan measurement. Results on tissue-mimicking phantoms and chicken breast muscle demonstrated the feasibility of this technique for accurate assessment of tissue biomechanical properties with an acquisition time of a few milliseconds using parallel acquisition. PMID:27570694
Optical coherence tomography for image-guided dermal filler injection and biomechanical evaluation
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Wang, Shang; Yee, Richard W.; Han, Zhaolong; Aglyamov, Salavat R.; Larin, Kirill V.
2017-02-01
Dermal fillers are a very popular anti-ag ing treatment with estimated sales in the billions of dollars and millions of procedures performed. As the aging population continues to grow, these figures are only e xpected to increase. Dermal fillers have various compositions depending on their intended applicati on. Reactions to dermal fillers can be severe, such as ischemic events and filler migration to the eyes. Howe ver, these adverse reactions are rare. Nevertheless, the capability to perform imag e-guided filler injections would minimize th e risk of such reacti ons. In addition, the biomechanical properties of various fillers have been evalua ted, but there has been no investigation on the effects of filler on the biomechanical properties of skin. In this work, we utilize optical cohe rence tomography (OCT) for visualizing dermal filler injections with micrometer-scale sp atial resolution. In addition, we utilize noncontact optical coherence elastography (OCE) to quantify the changes in the biomechan ical properties of pig skin after the dermal filler injections. OCT was successfully able to visualize the dermal filler injecti on process, and OCE showed that the viscoelasticity of the pig skin was increased locally at the filler injection sites. OCT may be able to provide real-time image guidance in 3D, and when combined with functional OCT techniques such as optical microangiography, could be used to avoid blood vessels during the injection.
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight
Elyas, Eli; Grimwood, Alex; Erler, Janine T.; Robinson, Simon P.; Cox, Thomas R.; Woods, Daniel; Clowes, Peter; De Luca, Ramona; Marinozzi, Franco; Fromageau, Jérémie; Bamber, Jeffrey C.
2017-01-01
Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184μm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms. PMID:28107368
NASA Astrophysics Data System (ADS)
Hirota, Koji
We demonstrate a computationally-efficient method for optical coherence elastography (OCE) based on fringe washout method for a spectral-domain OCT (SD-OCT) system. By sending short pulses of mechanical perturbation with ultrasound or shock wave during the image acquisition of alternating depth profiles, we can extract cross-sectional mechanical assessment of tissue in real-time. This was achieved through a simple comparison of the intensity in adjacent depth profiles acquired during the states of perturbation and non-perturbation in order to quantify the degree of induced fringe washout. Although the results indicate that our OCE technique based on the fringe washout effect is sensitive enough to detect mechanical property changes in biological samples, there is some loss of sensitivity in comparison to previous techniques in order to achieve computationally efficiency and minimum modification in both hardware and software in the OCT system. The tissue phantom study was carried with various agar density samples to characterize our OCE technique. Young's modulus measurements were achieved with the atomic force microscopy (AFM) to correlate to our OCE assessment. Knee cartilage samples of monosodium iodoacetate (MIA) rat models were utilized to replicate cartilage damage of a human model. Our proposed OCE technique along with intensity and AFM measurements were applied to the MIA models to assess the damage. The results from both the phantom study and MIA model study demonstrated the strong capability to assess the changes in mechanical properties of the OCE technique. The correlation between the OCE measurements and the Young's modulus values demonstrated in the OCE data that the stiffer material had less magnitude of fringe washout effect. This result is attributed to the fringe washout effect caused by axial motion that the displacement of the scatterers in the stiffer samples in response to the external perturbation induces less fringe washout effect.
High-resolution optical polarimetric elastography for measuring the mechanical properties of tissue
NASA Astrophysics Data System (ADS)
Hudnut, Alexa W.; Armani, Andrea M.
2018-02-01
Traditionally, chemical and molecular markers have been the predominate method in diagnostics. Recently, alternate methods of determining tissue and disease characteristics have been proposed based on testing the mechanical behavior of biomaterials. Existing methods for performing elastography measurements, such as atomic force microscopy, compression testing, and ultrasound elastography, require either extensive sample processing or have poor resolution. In the present work, we demonstrate an optical polarimetric elastography device to characterize the mechanical properties of salmon skeletal muscle. A fiber-coupled 1550nm laser paired with an optical polarizer is used to create a fiber optic sensing region. By measuring the change in polarization from the initial state to the final state within the fiber sensing region with a polarimeter, the loading-unloading curves can be determined for the biomaterial. The device is used to characterize the difference between samples with a range of collagen membranes. The loading-unloading curves are used to determine the change in polarization phase and energy loss of the samples at 10%, 20% and 30% strain. As expected, the energy loss is a better metric for measuring the mechanical properties of the tissues because it incorporates the entire loading-unloading curve rather than a single point. Using this metric, it is demonstrated the device can repeatedly differentiate between the different membrane configurations.
Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.
2017-02-01
In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.
Li, Chunhui; Guan, Guangying; Zhang, Fan; Song, Shaozhen; Wang, Ruikang K; Huang, Zhihong; Nabi, Ghulam
2014-12-01
The maintenance of urinary bladder elasticity is essential to its functions, including the storage and voiding phases of the micturition cycle. The bladder stiffness can be changed by various pathophysiological conditions. Quantitative measurement of bladder elasticity is an essential step toward understanding various urinary bladder disease processes and improving patient care. As a nondestructive, and noncontact method, laser-induced surface acoustic waves (SAWs) can accurately characterize the elastic properties of different layers of organs such as the urinary bladder. This initial investigation evaluates the feasibility of a noncontact, all-optical method of generating and measuring the elasticity of the urinary bladder. Quantitative elasticity measurements of ex vivo porcine urinary bladder were made using the laser-induced SAW technique. A pulsed laser was used to excite SAWs that propagated on the bladder wall surface. A dedicated phase-sensitive optical coherence tomography (PhS-OCT) system remotely recorded the SAWs, from which the elasticity properties of different layers of the bladder were estimated. During the experiments, series of measurements were performed under five precisely controlled bladder volumes using water to estimate changes in the elasticity in relation to various urinary bladder contents. The results, validated by optical coherence elastography, show that the laser-induced SAW technique combined with PhS-OCT can be a feasible method of quantitative estimation of biomechanical properties.
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk
2015-01-01
Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa
2015-02-01
Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.
NASA Astrophysics Data System (ADS)
Ling, Yuye; Hendon, Christine P.
2016-02-01
Functional extensions to optical coherence tomography (OCT) provide useful imaging contrasts that are complementary to conventional OCT. Our goal is to characterize tissue types within the myocardial due to remodeling and therapy. High-speed imaging is necessary to extract mechanical properties and dynamics of fiber orientation changes in a beating heart. Functional extensions of OCT such as polarization sensitive and optical coherence elastography (OCE) require high phase stability of the system, which is a drawback of current mechanically tuned swept source OCT systems. Here we present a high-speed functional imaging platform, which includes an ultrahigh-phase-stable swept source equipped with KTN deflector from NTT-AT. The swept source does not require mechanical movements during the wavelength sweeping; it is electrically tuned. The inter-sweep phase variance of the system was measured to be less than 300 ps at a path length difference of ~2 mm. The axial resolution of the system is 20 µm and the -10 dB fall-off depth is about 3.2 mm. The sample arm has an 8 mmx8 mm field of view with a lateral resolution of approximately 18 µm. The sample arm uses a two-axis MEMS mirror, which is programmable and capable of scanning arbitrary patterns at a sampling rate of 50 kHz. Preliminary imaging results showed differences in polarization properties and image penetration in ablated and normal myocardium. In the future, we will conduct dynamic stretching experiments with strips of human myocardial tissue to characterize mechanical properties using OCE. With high speed imaging of 200 kHz and an all-fiber design, we will work towards catheter-based functional imaging.
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the potential of using Q-SWI-OCT as an essential tool for nondestructive biomechanical evaluation of myocardium.
NASA Astrophysics Data System (ADS)
Usha Devi, C.; Bharat Chandran, R. S.; Vasu, R. M.; Sood, A. K.
2007-05-01
We use a focused ultrasound beam to load a region of interest (ROI) in a tissue-mimicking phantom and read out the vibration amplitude of phantom particles from the modulation depth in the intensity autocorrelation of a coherent light beam that intercepted the ROI. The modulation depth, which is also affected by the local light absorption coefficient, which is employed in ultrasound assisted optical tomography, to read out absorption coefficient is greatly influenced by the vibration amplitude, depends to a great extend on local elasticity. We scan a plane in an elastography phantom with an inhomogeneous inclusion, in elasticity with the focused ultrasound and from the measured modulation depth variation create a qualitative map of the elasticity variation in the interrogated plane.
NASA Astrophysics Data System (ADS)
Sampson, David D.; Chin, Lixin; Gong, Peijun; Wijesinghe, Philip; Es'haghian, Shaghayegh; Allen, Wesley M.; Klyen, Blake R.; Kirk, Rodney W.; Kennedy, Brendan F.; McLaughlin, Robert A.
2016-03-01
INVITED TALK Advances in imaging tissue microstructure in living subjects, or in freshly excised tissue with minimum preparation and processing, are important for future diagnosis and surgical guidance in the clinical setting, particularly for application to cancer. Whilst microscopy methods continue to advance on the cellular scale and medical imaging is well established on the scale of the whole tumor or organ, it is attractive to consider imaging the tumor environment on the micro-scale, between that of cells and whole tissues. Such a scenario is ideally suited to optical coherence tomography (OCT), with the twin attractions of requiring little or no tissue preparation, and in vivo capability. OCT's intrinsic scattering contrast reveals many morphological features of tumors, but is frequently ineffective in revealing other important aspects, such as microvasculature, or in reliably distinguishing tumor from uninvolved stroma. To address these shortcomings, we are developing several advances on the basic OCT approach. We are exploring speckle fluctuations to image tissue microvasculature and we have been developing several parametric approaches to tissue micro-scale characterization. Our approaches extract, from a three-dimensional OCT data set, a two-dimensional image of an optical parameter, such as attenuation or birefringence, or a mechanical parameter, such as stiffness, that aids in characterizing the tissue. This latter method, termed optical coherence elastography, parallels developments in ultrasound and magnetic resonance imaging. Parametric imaging of birefringence and of stiffness both show promise in addressing the important issue of differentiating cancer from uninvolved stroma in breast tissue.
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Nair, Achuth; Aglyamov, Salavat R.; Wu, Chen; Han, Zhaolong; Lafon, Ericka; Larin, Kirill V.
2017-02-01
The mechanophysiology of tissues in the posterior eye have been implicated for diseases such as myopia and glaucoma. For example, the eye-globe shape, and consequently optical axial length, can be affected by scleral stiffness. In glaucoma, an elevated intraocular pressure is the primary risk factor for glaucoma, which is the 2nd most prevalent known cause of blindness. Recent work has shown that biomechanical properties of the optic nerve are critical for the onset and progression of glaucoma because weak tissues cause large displacements in the optic nerve, causing tissue damage. In this work, we utilize air-pulse optical coherence elastography (OCE) to quantify the spatial distribution of biomechanical properties of the optic nerve, its surrounding tissues, and the posterior sclera. Air-pulse measurements were made in a grid on in situ porcine eyes in the whole eye-globe configuration as various IOPs. The OCE-measured displacement process was linked to tissue stiffness by a simple kinematic equation. The results show that the optic nerve and peripapillary sclera are much stiffer than the surrounding sclera, and the stiffness of the optic nerve and peripapillary sclera increased as a function of IOP. However, the stiffness of the surrounding sclera did not dramatically increase. Our results show that understanding the dynamics of the biomechanical properties of the eye are critical to understand the aforementioned diseases and may provide additional information for assessing visual health and integrity.
NASA Astrophysics Data System (ADS)
He, Youmin; Qu, Yueqiao; Zhang, Yi; Ma, Teng; Zhu, Jiang; Miao, Yusi; Humayun, Mark; Zhou, Qifa; Chen, Zhongping
2017-02-01
Age-related macular degeneration (AMD) is an eye condition that is considered to be one of the leading causes of blindness among people over 50. Recent studies suggest that the mechanical properties in retina layers are affected during the early onset of disease. Therefore, it is necessary to identify such changes in the individual layers of the retina so as to provide useful information for disease diagnosis. In this study, we propose using an acoustic radiation force optical coherence elastography (ARF-OCE) system to dynamically excite the porcine retina and detect the vibrational displacement with phase resolved Doppler optical coherence tomography. Due to the vibrational mechanism of the tissue response, the image quality is compromised during elastogram acquisition. In order to properly analyze the images, all signals, including the trigger and control signals for excitation, as well as detection and scanning signals, are synchronized within the OCE software and are kept consistent between frames, making it possible for easy phase unwrapping and elasticity analysis. In addition, a combination of segmentation algorithms is used to accommodate the compromised image quality. An automatic 3D segmentation method has been developed to isolate and measure the relative elasticity of every individual retinal layer. Two different segmentation schemes based on random walker and dynamic programming are implemented. The algorithm has been validated using a 3D region of the porcine retina, where individual layers have been isolated and analyzed using statistical methods. The errors compared to manual segmentation will be calculated.
NASA Astrophysics Data System (ADS)
Zhang, Jitao; Wu, Chen; Raghunathan, Raksha; Larin, Kirill V.; Scarcelli, Giuliano
2017-02-01
Embryos undergo dramatic changes in size, shape, and mechanical properties during development, which is regulated by both genetic and environmental factors. Quantifying mechanical properties of different embryonic tissues may represent good metrics for the embryonic health and proper development. Alternations and structure coupled with biomechanical information may provide a way for early diagnosis and drug treatment of various congenital diseases. Many methods have been developed to determine the mechanical properties of the embryo, such as atomic force microscopy (AFM), ultrasound elastography (UE), and optical coherent elastography (OCE). However, AFM is invasive and time-consuming. While UE and OCE are both non-invasive methods, the spatial resolutions are limited to mm to sub-mm, which is not enough to observe the details inside the embryo. Brillouin microscopy can potentially enable non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein. It has fast speed ( 0.1 second per point) and high resolution (sub-micron), and thus has been widely investigated for biomedical application, such as single cell and tissue. In this work, we utilized this technique to characterize the mechanical property of an embryo. A 2D elasticity imaging of the whole body of an E8 embryo was acquired by a Brillouin microscopy, and the stiffness changes between different organs (such as brain, heart, and spine) were shown. The elasticity maps were correlated with structural information provided by OCT.
Model-based optical coherence elastography using acoustic radiation force
NASA Astrophysics Data System (ADS)
Aglyamov, Salavat; Wang, Shang; Karpiouk, Andrei; Li, Jiasong; Emelianov, Stanislav; Larin, Kirill V.
2014-02-01
Acoustic Radiation Force (ARF) stimulation is actively used in ultrasound elastography to estimate mechanical properties of tissue. Compared with ultrasound imaging, OCT provides advantage in both spatial resolution and signal-to-noise ratio. Therefore, a combination of ARF and OCT technologies can provide a unique opportunity to measure viscoelastic properties of tissue, especially when the use of high intensity radiation pressure is limited for safety reasons. In this presentation we discuss a newly developed theoretical model of the deformation of a layered viscoelastic medium in response to an acoustic radiation force of short duration. An acoustic impulse was considered as an axisymmetric force generated on the upper surface of the medium. An analytical solution of this problem was obtained using the Hankel transform in frequency domain. It was demonstrated that layers at different depths introduce different frequency responses. To verify the developed model, experiments were performed using tissue-simulating, inhomogeneous phantoms of varying mechanical properties. The Young's modulus of the phantoms was varied from 5 to 50 kPa. A single-element focused ultrasound transducer (3.5 MHz) was used to apply the radiation force with various durations on the surface of phantoms. Displacements on the phantom surface were measured using a phase-sensitive OCT at 25 kHz repetition frequency. The experimental results were in good agreement with the modeling results. Therefore, the proposed theoretical model can be used to reconstruct the mechanical properties of tissue based on ARF/OCT measurements.
OCT-based approach to local relaxations discrimination from translational relaxation motions
NASA Astrophysics Data System (ADS)
Matveev, Lev A.; Matveyev, Alexandr L.; Gubarkova, Ekaterina V.; Gelikonov, Grigory V.; Sirotkina, Marina A.; Kiseleva, Elena B.; Gelikonov, Valentin M.; Gladkova, Natalia D.; Vitkin, Alex; Zaitsev, Vladimir Y.
2016-04-01
Multimodal optical coherence tomography (OCT) is an emerging tool for tissue state characterization. Optical coherence elastography (OCE) is an approach to mapping mechanical properties of tissue based on OCT. One of challenging problems in OCE is elimination of the influence of residual local tissue relaxation that complicates obtaining information on elastic properties of the tissue. Alternatively, parameters of local relaxation itself can be used as an additional informative characteristic for distinguishing the tissue in normal and pathological states over the OCT image area. Here we briefly present an OCT-based approach to evaluation of local relaxation processes in the tissue bulk after sudden unloading of its initial pre-compression. For extracting the local relaxation rate we evaluate temporal dependence of local strains that are mapped using our recently developed hybrid phase resolved/displacement-tracking (HPRDT) approach. This approach allows one to subtract the contribution of global displacements of scatterers in OCT scans and separate the temporal evolution of local strains. Using a sample excised from of a coronary arteria, we demonstrate that the observed relaxation of local strains can be reasonably fitted by an exponential law, which opens the possibility to characterize the tissue by a single relaxation time. The estimated local relaxation times are assumed to be related to local biologically-relevant processes inside the tissue, such as diffusion, leaking/draining of the fluids, local folding/unfolding of the fibers, etc. In general, studies of evolution of such features can provide new metrics for biologically-relevant changes in tissue, e.g., in the problems of treatment monitoring.
Imaging shear wave propagation for elastic measurement using OCT Doppler variance method
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping
2016-03-01
In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.
Ultrafast imaging of cell elasticity with optical microelastography
Grasland-Mongrain, Pol; Zorgani, Ali; Nakagawa, Shoma; Bernard, Simon; Paim, Lia Gomes; Fitzharris, Greg; Catheline, Stefan
2018-01-01
Elasticity is a fundamental cellular property that is related to the anatomy, functionality, and pathological state of cells and tissues. However, current techniques based on cell deformation, atomic force microscopy, or Brillouin scattering are rather slow and do not always accurately represent cell elasticity. Here, we have developed an alternative technique by applying shear wave elastography to the micrometer scale. Elastic waves were mechanically induced in live mammalian oocytes using a vibrating micropipette. These audible frequency waves were observed optically at 200,000 frames per second and tracked with an optical flow algorithm. Whole-cell elasticity was then mapped using an elastography method inspired by the seismology field. Using this approach we show that the elasticity of mouse oocytes is decreased when the oocyte cytoskeleton is disrupted with cytochalasin B. The technique is fast (less than 1 ms for data acquisition), precise (spatial resolution of a few micrometers), able to map internal cell structures, and robust and thus represents a tractable option for interrogating biomechanical properties of diverse cell types. PMID:29339488
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Han, Zhaolong; Nair, Achuth; Schill, Alexander; Twa, Michael D.; Larin, Kirill V.
2018-02-01
Screening for ocular diseases, such as glaucoma and keratoconus, includes measuring the eye-globe intraocular pressure (IOP) and corneal biomechanical properties. However, currently available clinical tools cannot quantify corneal tissue material parameters, which can provide critical information for detecting diseases and evaluating therapeutic outcomes. Here, we demonstrate measurement of eye-globe IOP, corneal elasticity, and corneal geometry of in situ porcine corneas with a technique termed applanation optical coherence elastography (Appl-OCE) with single instrument. We utilize an ultrafast phase-sensitive optical coherence tomography system comprised of a 4X buffered Fourier domain mode-locked swept source laser with an Ascan rate of 1.5 MHz and a 7.3 kHz resonant scanner. The IOP was measured by imaging the response of in situ porcine corneas to a large force air-puff. As with other noncontact tonometers, the time when the cornea was applanated during the inwards and outwards motion was correlated to a measure air-pressure temporal profile. The IOP was also measured with a commercially available rebound tonometer for comparison. The stiffness of the corneas was assessed by directly imaging and analyzing the propagation of a focused micro air-pulse induced elastic wave, and the corneal geometry was obtained from the OCT structural image. Our results show that corneal thickness decreased as IOP increased, and that corneal stiffness increased with IOP. Moreover, the IOP measurements made by Appl-OCE were more closely correlated with the artificially set IOP than the rebound tonometer, demonstrating the capabilities of Appl-OCE to measure corneal stiffness, eye-globe IOP, and corneal geometry with a single instrument.
Experimental generation of optical coherence lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn; Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006
2016-08-08
We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.
Coherent/Noncoherent Detection of Coherent Optical Heterodyne DPSK-CDMA and MFSK-CDMA Signals
1991-12-01
AD-A246 215 NAVAL POSTGRADUATE SCHOOL Monterey, Californla DTI THESIS COHERENT/ NONCOHERENT DETECTION OF COHERENT OPTICAL HETERODYNE DPSK-CDMA AND...NO ~ ACCESSION NO 11TILE(ncud S~riy ~a~fiat~r)COHERENT/ NONCOHERENT DETECTION OF COHERENT OPTICAL HETERODYNE DPSK-CDMA AND MFSK-CDMA SIGNALS 12 PERSONAL...early optical fiber communication systems. Gas lasers are also disregarded for practical systems due to size and safety considerations, even though
NASA Astrophysics Data System (ADS)
Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew
2016-03-01
Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.
Brezinski, Mark E
2017-01-01
Optical coherence tomography (OCT) elastography (OCTE) has the potential to be an important diagnostic tool for pathologies including coronary artery disease, osteoarthritis, malignancies, and even dental caries. Many groups have performed OCTE, including our own, using a wide range of approaches. However, we will demonstrate current OCTE approaches are not scalable to real-time, in vivo imaging. As will be discussed, among the most important reasons is current designs focus on the system and not the target. Specifically, tissue dynamic responses are not accounted, with examples being the tissue strain response time, preload variability, and conditioning variability. Tissue dynamic responses, and to a lesser degree static tissue properties, prevent accurate video rate modulus assessments for current embodiments. Accounting for them is the focus of this paper. A top-down approach will be presented to overcome these challenges to real time in vivo tissue characterization. Discussed first is an example clinical scenario where OTCE would be of substantial relevance, the prevention of acute myocardial infarction or heart attacks. Then the principles behind OCTE are examined. Next, constrains on in vivo application of current OCTE are evaluated, focusing on dynamic tissue responses. An example is the tissue strain response, where it takes about 20 msec after a stress is applied to reach plateau. This response delay is not an issue at slow acquisition rates, as most current OCTE approaches are preformed, but it is for video rate OCTE. Since at video rate each frame is only 30 msec, for essentially all current approaches this means the strain for a given stress is changing constantly during the B-scan. Therefore the modulus can’t be accurately assessed. This serious issue is an even greater problem for pulsed techniques as it means the strain/modulus for a given stress (at a location) is unpredictably changing over a B-scan. The paper concludes by introducing a novel video rate approach to overcome these challenges. PMID:29286052
Brezinski, Mark E
2014-12-01
Optical coherence tomography (OCT) elastography (OCTE) has the potential to be an important diagnostic tool for pathologies including coronary artery disease, osteoarthritis, malignancies, and even dental caries. Many groups have performed OCTE, including our own, using a wide range of approaches. However, we will demonstrate current OCTE approaches are not scalable to real-time, in vivo imaging. As will be discussed, among the most important reasons is current designs focus on the system and not the target. Specifically, tissue dynamic responses are not accounted, with examples being the tissue strain response time, preload variability, and conditioning variability. Tissue dynamic responses, and to a lesser degree static tissue properties, prevent accurate video rate modulus assessments for current embodiments. Accounting for them is the focus of this paper. A top-down approach will be presented to overcome these challenges to real time in vivo tissue characterization. Discussed first is an example clinical scenario where OTCE would be of substantial relevance, the prevention of acute myocardial infarction or heart attacks. Then the principles behind OCTE are examined. Next, constrains on in vivo application of current OCTE are evaluated, focusing on dynamic tissue responses. An example is the tissue strain response, where it takes about 20 msec after a stress is applied to reach plateau. This response delay is not an issue at slow acquisition rates, as most current OCTE approaches are preformed, but it is for video rate OCTE. Since at video rate each frame is only 30 msec, for essentially all current approaches this means the strain for a given stress is changing constantly during the B-scan. Therefore the modulus can't be accurately assessed. This serious issue is an even greater problem for pulsed techniques as it means the strain/modulus for a given stress (at a location) is unpredictably changing over a B-scan. The paper concludes by introducing a novel video rate approach to overcome these challenges.
Skondra, Dimitra; Nesper, Peter L; Fawzi, Amani A
2017-05-16
To report a case of acute exudative polymorphous vitelliform maculopathy including the findings of optical coherence tomography angiography and adaptive optics scanning laser ophthalmoscopy. Findings on clinical examination, color fundus photography, spectral-domain optical coherence tomography, infrared reflectance, autofluorescence, optical coherence tomography angiography, and adaptive optics scanning laser ophthalmoscopy. A 54-year-old white man with no significant medical history and history of smoking presented with bilateral multiple serous and vitelliform detachments consistent with acute exudative polymorphous vitelliform maculopathy. Extensive infectious, inflammatory, and malignancy workup was negative. Spectral-domain optical coherence tomography showed thickened, hyperreflective ellipsoid zone, subretinal fluid, and focal as well as diffuse subretinal hyperreflective material corresponding to the vitelliform lesions. Optical coherence tomography angiography showed normal retinal and choroidal vasculature, whereas adaptive optics scanning laser ophthalmoscopy showed circular focal "target" lesions at the level of the photoreceptors in the area of foveal detachment. Multimodal imaging is valuable in evaluating patients with acute exudative polymorphous vitelliform maculopathy.
Phase noise suppression for coherent optical block transmission systems: a unified framework.
Yang, Chuanchuan; Yang, Feng; Wang, Ziyu
2011-08-29
A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.
Coherent time-stretch transformation for real-time capture of wideband signals.
Buckley, Brandon W; Madni, Asad M; Jalali, Bahram
2013-09-09
Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.
Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Lukin, Igor P.
2017-11-01
In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.
Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Lukin, Igor P.
2017-11-01
In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.
The New Physical Optics Notebook: Tutorials in Fourier Optics.
ERIC Educational Resources Information Center
Reynolds, George O.; And Others
This is a textbook of Fourier optics for the classroom or self-study. Major topics included in the 38 chapters are: Huygens' principle and Fourier transforms; image formation; optical coherence theory; coherent imaging; image analysis; coherent noise; interferometry; holography; communication theory techniques; analog optical computing; phase…
MOEMS optical delay line for optical coherence tomography
NASA Astrophysics Data System (ADS)
Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.
2014-09-01
Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.
2012-09-01
Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.
High-resolution analysis of the mechanical behavior of tissue
NASA Astrophysics Data System (ADS)
Hudnut, Alexa W.; Armani, Andrea M.
2017-06-01
The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.
Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S
2013-11-01
To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p < 0.0001) and ultrasound pachymetry (p = < .0001). Ultrasound pachymetry readings had better 95% limits of agreement with swept source optical coherence tomography than slit scanning topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p < 0.05 for all). Overall, reproducibility coefficients and intraclass correlation coefficients were significantly better with swept source optical coherence tomography for measurement of central corneal thickness, anterior best-fit sphere and, posterior best-fit sphere (all p < 0.001). Corneal thickness and elevation measurements were significantly different between swept source optical coherence tomography and slit scanning topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Jung, Jesse J; Chen, Michael H; Frambach, Caroline R; Rofagha, Soraya; Lee, Scott S
2018-01-01
To compare the spectral domain and swept source optical coherence tomography angiography findings in two cases of sickle cell maculopathy. A 53-year-old man and a 24-year-old man both with sickle cell disease (hemoglobin SS) presented with no visual complaints; Humphrey visual field testing demonstrated asymptomatic paracentral scotomas that extended nasally in the involved eyes. Clinical examination and multimodal imaging including spectral domain and swept source optical coherence tomography, and spectral domain optical coherence tomography angiography and swept source optical coherence tomography angiography (Carl Zeiss Meditec Inc, Dublin, CA) were performed. Fundus examination of both patients revealed subtle thinning of the macula. En-face swept source optical coherence tomography confirmed the extent of the thinning correlating with the functional paracentral scotomas on Humphrey visual field. Swept source optical coherence tomography B-scan revealed multiple confluent areas of inner nuclear thinning and significant temporal retinal atrophy. En-face 6 × 6-mm spectral domain optical coherence tomography angiography of the macula demonstrated greater loss of the deep capillary plexus compared with the superficial capillary plexus. Swept source optical coherence tomography angiography 12 × 12-mm imaging captured the same macular findings and loss of both plexuses temporally outside the macula. In these two cases of sickle cell maculopathy, deep capillary plexus ischemia is more extensive within the macula, whereas both the superficial capillary plexus and deep capillary plexus are involved outside the macula likely due to the greater oxygen demands and watershed nature of these areas. Swept source optical coherence tomography angiography clearly demonstrates the angiographic extent of the disease correlating with the Humphrey visual field scotomas and confluent areas of inner nuclear atrophy.
Practice guideline for the performance of breast ultrasound elastography.
Lee, Su Hyun; Chang, Jung Min; Cho, Nariya; Koo, Hye Ryoung; Yi, Ann; Kim, Seung Ja; Youk, Ji Hyun; Son, Eun Ju; Choi, Seon Hyeong; Kook, Shin Ho; Chung, Jin; Cha, Eun Suk; Park, Jeong Seon; Jung, Hae Kyoung; Ko, Kyung Hee; Choi, Hye Young; Ryu, Eun Bi; Moon, Woo Kyung
2014-01-01
Ultrasound (US) elastography is a valuable imaging technique for tissue characterization. Two main types of elastography, strain and shear-wave, are commonly used to image breast tissue. The use of elastography is expected to increase, particularly with the increased use of US for breast screening. Recently, the US elastographic features of breast masses have been incorporated into the 2nd edition of the Breast Imaging Reporting and Data System (BI-RADS) US lexicon as associated findings. This review suggests practical guidelines for breast US elastography in consensus with the Korean Breast Elastography Study Group, which was formed in August 2013 to perform a multicenter prospective study on the use of elastography for US breast screening. This article is focused on the role of elastography in combination with B-mode US for the evaluation of breast masses. Practical tips for adequate data acquisition and the interpretation of elastography results are also presented.
Ferraioli, Giovanna; Tinelli, Carmine; Malfitano, Antonello; Dal Bello, Barbara; Filice, Gaetano; Filice, Carlo; Above, Elisabetta; Barbarini, Giorgio; Brunetti, Enrico; Calderon, Willy; Di Gregorio, Marta; Lissandrin, Raffaella; Ludovisi, Serena; Maiocchi, Laura; Michelone, Giuseppe; Mondelli, Mario; Patruno, Savino F A; Perretti, Alessandro; Poma, Gianluigi; Sacchi, Paolo; Zaramella, Marco; Zicchetti, Mabel
2012-07-01
The purpose of this article is to evaluate the diagnostic performance of transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index in assessing fibrosis in patients with chronic hepatitis C by using histologic Metavir scores as reference standard. Consecutive patients with chronic hepatitis C scheduled for liver biopsy were enrolled. Liver biopsy was performed on the same day as transient elastography and real-time strain elastography. Transient elastography and real-time strain elastography were performed in the same patient encounter by a single investigator using a medical device based on elastometry and an ultrasound machine, respectively. Diagnostic performance was assessed by using receiver operating characteristic curves and area under the receiver operating characteristic curve (AUC) analysis. One hundred thirty patients (91 men and 39 women) were analyzed. The cutoff values for transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index were 6.9 kPa, 1.82, and 0.37, respectively, for fibrosis score of 2 or higher; 7.3 kPa, 1.86, and 0.70, respectively, for fibrosis score of 3 or higher; and 9.3 kPa, 2.33, and 0.70, respectively, for fibrosis score of 4. AUC values of transient elastography, real-time strain elastography, aspartate-to-platelet ratio index were 0.88, 0.74, and 0.86, respectively, for fibrosis score of 2 or higher; 0.95, 0.80, and 0.89, respectively, for fibrosis score of 3 or higher; and 0.97, 0.80, and 0.84, respectively, for fibrosis score of 4. A combination of the three methods, when two of three were in agreement, showed AUC curves of 0.93, 0.95, and 0.95 for fibrosis scores of 2 or higher, 3 or higher, and 4, respectively. Transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index values were correlated with histologic stages of fibrosis. Transient elastography offered excellent diagnostic performance in assessing severe fibrosis and cirrhosis. Real-time elastography does not yet have the potential to substitute for transient elastography in the assessment of liver fibrosis.
Framework for computing the spatial coherence effects of polycapillary x-ray optics
Zysk, Adam M.; Schoonover, Robert W.; Xu, Qiaofeng; Anastasio, Mark A.
2012-01-01
Despite the extensive use of polycapillary x-ray optics for focusing and collimating applications, there remains a significant need for characterization of the coherence properties of the output wavefield. In this work, we present the first quantitative computational method for calculation of the spatial coherence effects of polycapillary x-ray optical devices. This method employs the coherent mode decomposition of an extended x-ray source, geometric optical propagation of individual wavefield modes through a polycapillary device, output wavefield calculation by ray data resampling onto a uniform grid, and the calculation of spatial coherence properties by way of the spectral degree of coherence. PMID:22418154
Doppler optical coherence microscopy and tomography applied to inner ear mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Scott; Freeman, Dennis M.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometermore » motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.« less
NASA Astrophysics Data System (ADS)
Cai, Yangjian
2011-03-01
Partially coherent beams, such as Gaussian Schell-model beam, partially coherent dark hollow beam, partially coherent flat-topped beam and electromagnetic Gaussian Schell-model beam, have important applications in free space optical communications, optical imaging, optical trapping, inertial confinement fusion and nonlinear optics. In this paper, experimental generations of various partially coherent beams are introduced. Furthermore, with the help of a tensor method, analytical formulae for such beams propagating in turbulent atmosphere are derived, and the propagation properties of such beams in turbulent atmosphere are reviewed.
Coherent Optical Communications: Historical Perspectives and Future Directions
NASA Astrophysics Data System (ADS)
Kikuchi, Kazuro
Coherent optical fiber communications were studied extensively in the 1980s mainly because high sensitivity of coherent receivers could elongate the unrepeated transmission distance; however, their research and development have been interrupted for nearly 20 years behind the rapid progress in high-capacity wavelength-division multiplexed (WDM) systems using erbium-doped fiber amplifiers (EDFAs). In 2005, the demonstration of digital carrier phase estimation in coherent receivers has stimulated a widespread interest in coherent optical communications again. This is due to the fact that the digital coherent receiver enables us to employ a variety of spectrally efficient modulation formats such as M-ary phase-shift keying (PSK) and quadrature amplitude modulation (QAM) without relying upon a rather complicated optical phase-locked loop. In addition, since the phase information is preserved after detection, we can realize electrical post-processing functions such as compensation for chromatic dispersion and polarization-mode dispersion in the digital domain. These advantages of the born-again coherent receiver have enormous potential for innovating existing optical communication systems. In this chapter, after reviewing the 20-year history of coherent optical communication systems, we describe the principle of operation of coherent detection, the concept of the digital coherent receiver, and its performance evaluation. Finally, challenges for the future are summarized.
Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M
2013-11-01
Optical/acoustic radiation imaging (OARI) is a novel imaging modality being developed to interrogate the optical and mechanical properties of soft tissues. OARI uses acoustic radiation force to generate displacement in soft tissue. Optical images before and after the application of the force are used to generate displacement maps that provide information about the mechanical properties of the tissue under interrogation. Since the images are optical images, they also represent the optical properties of the tissue as well. In this paper, the authors present the first imaging probe that uses acoustic radiation force in conjunction with optical coherence tomography (OCT) to provide information about the optical and mechanical properties of tissues to assist in the diagnosis and staging of epithelial cancers, and in particular bladder cancer. The OARI prototype probe consisted of an OCT probe encased in a plastic sheath, a miniaturized transducer glued to a plastic holder, both of which were encased in a 10 cm stainless steel tube with an inner diameter of 10 mm. The transducer delivered an acoustic intensity of 18 W/cm(2) and the OCT probe had a spatial resolution of approximately 10-20 μm. The tube was filled with deionized water for acoustic coupling and covered by a low density polyethylene cap. The OARI probe was characterized and tested on bladder wall phantoms. The phantoms possessed Young's moduli ranging from 10.2 to 12 kPa, mass density of 1.05 g/cm(3), acoustic attenuation coefficient of 0.66 dB/cm MHz, speed of sound of 1591 m/s, and optical scattering coefficient of 1.80 mm(-1). Finite element model (FEM) theoretical simulations were performed to assess the performance of the OARI probe. The authors obtained displacements of 9.4, 8.7, and 3.4 μm for the 3%, 4%, and 5% bladder wall phantoms, respectively. This shows that the probe is capable of generating optical images, and also has the ability to generate and track displacements in tissue. This will provide information about the optical and mechanical properties of the tissue to assist in epithelial cancer detection. The corresponding theoretical FEM displacement was 5.8, 5.4, and 5.0 μm for the 3%, 4%, and 5% phantoms, respectively. Deviation between OARI displacement and FEM displacement is due to the resolution of the crosscorrelation algorithm used to track the displacement. To the authors' knowledge, this is the first probe that successfully combines OCT with a source of acoustic radiation force. The OARI probe has the ability to provide information about the mechanical and optical properties of phantoms and soft tissue. This could prove useful in early epithelial cancer detection. Because the probe is 10 mm in diameter, it is currently only useful for skin and oral applications. The probe would have to be reduced in size to make it applicable for cancer detection in other internal sites. Future work will focus on utilizing phase-sensitive optical coherence elastography to obtain the resulting OARI displacements, improving the resolution of the probe, and enable physicians to better evaluate the mechanical properties of soft tissues.
Elastography for the pancreas: Current status and future perspective
Kawada, Natsuko; Tanaka, Sachiko
2016-01-01
Elastography for the pancreas can be performed by either ultrasound or endoscopic ultrasound (EUS). There are two types of pancreatic elastographies based on different principles, which are strain elastography and shear wave elastography. The stiffness of tissue is estimated by measuring the grade of strain generated by external pressure in the former, whereas it is estimated by measuring propagation speed of shear wave, the transverse wave, generated by acoustic radiation impulse (ARFI) in the latter. Strain elastography is difficult to perform when the probe, the pancreas and the aorta are not located in line. Accordingly, a fine elastogram can be easily obtained in the pancreatic body but not in the pancreatic head and tail. In contrast, shear wave elastography can be easily performed in the entire pancreas because ARFI can be emitted to wherever desired. However, shear wave elastography cannot be performed by EUS to date. Recently, clinical guidelines for elastography specialized in the pancreas were published from Japanese Society of Medical Ultrasonics. The guidelines show us technical knacks of performing elastography for the pancreas. PMID:27076756
Elastography for the pancreas: Current status and future perspective.
Kawada, Natsuko; Tanaka, Sachiko
2016-04-14
Elastography for the pancreas can be performed by either ultrasound or endoscopic ultrasound (EUS). There are two types of pancreatic elastographies based on different principles, which are strain elastography and shear wave elastography. The stiffness of tissue is estimated by measuring the grade of strain generated by external pressure in the former, whereas it is estimated by measuring propagation speed of shear wave, the transverse wave, generated by acoustic radiation impulse (ARFI) in the latter. Strain elastography is difficult to perform when the probe, the pancreas and the aorta are not located in line. Accordingly, a fine elastogram can be easily obtained in the pancreatic body but not in the pancreatic head and tail. In contrast, shear wave elastography can be easily performed in the entire pancreas because ARFI can be emitted to wherever desired. However, shear wave elastography cannot be performed by EUS to date. Recently, clinical guidelines for elastography specialized in the pancreas were published from Japanese Society of Medical Ultrasonics. The guidelines show us technical knacks of performing elastography for the pancreas.
IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network
NASA Astrophysics Data System (ADS)
Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook
2016-12-01
Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.
Coherent optical modulation for antenna remoting
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.
1991-01-01
A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.
Elastography in clinical practice.
Barr, Richard G
2014-11-01
Elastography is a new technique that evaluates tissue stiffness. There are two elastography methods, strain and shear wave elastography. Both techniques are being used to evaluate a wide range of applications in medical imaging. Elastography of breast masses and prostates have been shown to have high accuracy for characterizing masses and can significantly decrease the need for biopsies. Shear wave elastography has been shown to be able to detect and grade liver fibrosis and may decrease the need for liver biopsy. Evaluation of other organs is still preliminary. This article reviews the principles of elastography and its potential clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Sonoelastography in the musculoskeletal system: Current role and future directions.
Winn, Naomi; Lalam, Radhesh; Cassar-Pullicino, Victor
2016-11-28
Ultrasound is an essential modality within musculoskeletal imaging, with the recent addition of elastography. The elastic properties of tissues are different from the acoustic impedance used to create B mode imaging and the flow properties used within Doppler imaging, hence elastography provides a different form of tissue assessment. The current role of ultrasound elastography in the musculoskeletal system will be reviewed, in particular with reference to muscles, tendons, ligaments, joints and soft tissue tumours. The different ultrasound elastography methods currently available will be described, in particular strain elastography and shear wave elastography. Future directions of ultrasound elastography in the musculoskeletal system will also be discussed.
Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions
Srinivasa Babu, Aparna; Wells, Michael L.; Teytelboym, Oleg M.; Mackey, Justin E.; Miller, Frank H.; Yeh, Benjamin M.; Ehman, Richard L.
2016-01-01
Chronic liver disease has multiple causes, many of which are increasing in prevalence. The final common pathway of chronic liver disease is tissue destruction and attempted regeneration, a pathway that triggers fibrosis and eventual cirrhosis. Assessment of fibrosis is important not only for diagnosis but also for management, prognostic evaluation, and follow-up of patients with chronic liver disease. Although liver biopsy has traditionally been considered the reference standard for assessment of liver fibrosis, noninvasive techniques are the emerging focus in this field. Ultrasound-based elastography and magnetic resonance (MR) elastography are gaining popularity as the modalities of choice for quantifying hepatic fibrosis. These techniques have been proven superior to conventional cross-sectional imaging for evaluation of fibrosis, especially in the precirrhotic stages. Moreover, elastography has added utility in the follow-up of previously diagnosed fibrosis, the assessment of treatment response, evaluation for the presence of portal hypertension (spleen elastography), and evaluation of patients with unexplained portal hypertension. In this article, a brief overview is provided of chronic liver disease and the tools used for its diagnosis. Ultrasound-based elastography and MR elastography are explored in depth, including a brief glimpse into the evolution of elastography. Elastography is based on the principle of measuring tissue response to a known mechanical stimulus. Specific elastographic techniques used to exploit this principle include MR elastography and ultrasonography-based static or quasistatic strain imaging, one-dimensional transient elastography, point shear-wave elastography, and supersonic shear-wave elastography. The advantages, limitations, and pitfalls of each modality are emphasized. ©RSNA, 2016 PMID:27689833
2012-02-24
AND SUBTITLE Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics 6. AUTHORS Marian O...Maximum 200 words) Results of our earlier research in the realm of quantum optics were extended in order to solve the challenging technical problems of...efficient methods of generating UV light via quantum coherence. 14. SUBJECT TERMS Quantum coherence, quantum optics, lasers 15. NUMBER OF PAGES 15
NASA Technical Reports Server (NTRS)
Vestergaard Hau, Lene (Inventor)
2012-01-01
Methods, systems and apparatus for generating atomic traps, and for storing, controlling and transferring information between first and second spatially separated phase-coherent objects, or using a single phase-coherent object. For plural objects, both phase-coherent objects have a macroscopic occupation of a particular quantum state by identical bosons or identical BCS-paired fermions. The information may be optical information, and the phase-coherent object(s) may be Bose-Einstein condensates, superfluids, or superconductors. The information is stored in the first phase-coherent object at a first storage time and recovered from the second phase-coherent object, or the same first phase-coherent object, at a second revival time. In one example, an integrated silicon wafer-based optical buffer includes an electrolytic atom source to provide the phase-coherent object(s), a nanoscale atomic trap for the phase-coherent object(s), and semiconductor-based optical sources to cool the phase-coherent object(s) and provide coupling fields for storage and transfer of optical information.
What we need to know when performing and interpreting US elastography
Park, So Hyun; Kim, So Yeon; Suh, Chong Hyun; Lee, Seung Soo; Kim, Kyoung Won; Lee, So Jung; Lee, Moon-Gyu
2016-01-01
According to the increasing need for accurate staging of hepatic fibrosis, the ultrasound (US) elastography techniques have evolved significantly over the past two decades. Currently, US elastography is increasingly used in clinical practice. Previously published studies have demonstrated the excellent diagnostic performance of US elastography for the detection and staging of liver fibrosis. Although US elastography may seem easy to perform and interpret, there are many technical and clinical factors which can affect the results of US elastography. Therefore, clinicians who are involved with US elastography should be aware of these factors. The purpose of this article is to present a brief overview of US techniques with the relevant technology, the clinical indications, diagnostic performance, and technical and biological factors which should be considered in order to avoid misinterpretation of US elastography results. PMID:27729637
Conditions for space invariance in optical data processors used with coherent or noncoherent light.
Arsenault, H R
1972-10-01
The conditions for space invariance in coherent and noncoherent optical processors are considered. All linear optical processors are shown to belong to one of two types. The conditions for space invariance are more stringent for noncoherent processors than for coherent processors, so that a system that is linear in coherent light may be nonlinear in noncoherent light. However, any processor that is linear in noncoherent light is also linear in the coherent limit.
Laser diode technology for coherent communications
NASA Technical Reports Server (NTRS)
Channin, D. J.; Palfrey, S. L.; Toda, M.
1989-01-01
The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.
Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang
2012-04-23
The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams. © 2012 Optical Society of America
A chip-integrated coherent photonic-phononic memory.
Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J
2017-09-18
Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.
Structure and symmetry in coherent perfect polarization rotation
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Zhou, Chuanhong; Andrews, James H.; Baker, Michael A.
2015-01-01
Theoretical investigations of different routes to coherent perfect polarization rotation illustrate its phenomenological connection with coherent perfect absorption. Our study of systems with broken parity, layering, combined Faraday rotation and optical activity, or a rotator-loaded optical cavity highlights their similarity and suggests alternate approaches to improving and miniaturizing optical devices.
Optical coherence tomography angiography in age-related macular degeneration: The game changer.
Lupidi, Marco; Cerquaglia, Alessio; Chhablani, Jay; Fiore, Tito; Singh, Sumit Randhir; Cardillo Piccolino, Felice; Corbucci, Roberta; Coscas, Florence; Coscas, Gabriel; Cagini, Carlo
2018-04-01
Optical coherence tomography angiography is one of the biggest advances in ophthalmic imaging. It enables a depth-resolved assessment of the retinal and choroidal blood flow, far exceeding the levels of detail commonly obtained with dye angiographies. One of the first applications of optical coherence tomography angiography was in detecting the presence of choroidal neovascularization in age-related macular degeneration and establishing its position in relation to the retinal pigmented epithelium and Bruch's membrane, and thereby classifying the CNV as type 1, type 2, type 3, or mixed lesions. Optical coherence tomography angiograms, due to the longer wavelength used by optical coherence tomography, showed a more distinct choroidal neovascularization vascular pattern than fluorescein angiography, since there is less suffering from light scattering or is less obscured by overlying subretinal hemorrhages or exudation. Qualitative and quantitative assessments of optical coherence tomography angiography findings in exudative and nonexudative age-related macular degeneration have been largely investigated within the past 3 years both in clinical and experimental settings. This review constitutes an up-to-date of all the potential applications of optical coherence tomography angiography in age-related macular degeneration in order to better understand how to translate its theoretical usefulness into the current clinical practice.
Coherence rephasing combined with spin-wave storage using chirped control pulses
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2014-06-01
Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.
Liu, Xiang; Chandrasekhar, S; Winzer, P J; Chraplyvy, A R; Tkach, R W; Zhu, B; Taunay, T F; Fishteyn, M; DiGiovanni, D J
2012-08-13
Coherent superposition of light waves has long been used in various fields of science, and recent advances in digital coherent detection and space-division multiplexing have enabled the coherent superposition of information-carrying optical signals to achieve better communication fidelity on amplified-spontaneous-noise limited communication links. However, fiber nonlinearity introduces highly correlated distortions on identical signals and diminishes the benefit of coherent superposition in nonlinear transmission regime. Here we experimentally demonstrate that through coordinated scrambling of signal constellations at the transmitter, together with appropriate unscrambling at the receiver, the full benefit of coherent superposition is retained in the nonlinear transmission regime of a space-diversity fiber link based on an innovatively engineered multi-core fiber. This scrambled coherent superposition may provide the flexibility of trading communication capacity for performance in future optical fiber networks, and may open new possibilities in high-performance and secure optical communications.
Coherent phonon optics in a chip with an electrically controlled active device.
Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J
2015-02-05
Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.
Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI?
Berko, Netanel S; Hay, Arielle; Sterba, Yonit; Wahezi, Dawn; Levin, Terry L
2015-09-01
Juvenile idiopathic inflammatory myopathy is a rare yet potentially debilitating condition. MRI is used both for diagnosis and to assess response to treatment. No study has evaluated the performance of US elastography in the diagnosis of this condition in children. To assess the performance of compression-strain US elastography in detecting active myositis in children with clinically confirmed juvenile idiopathic inflammatory myopathy and to compare its efficacy to MRI. Children with juvenile idiopathic inflammatory myopathy underwent non-contrast MR imaging as well as compression-strain US elastography of the quadriceps muscles. Imaging findings from both modalities were compared to each other as well as to the clinical determination of active disease based on physical examination and laboratory data. Active myositis on MR was defined as increased muscle signal on T2-weighted images. Elastography images were defined as normal or abnormal based on a previously published numerical scale of muscle elastography in normal children. Muscle echogenicity was graded as normal or abnormal based on gray-scale sonographic images. Twenty-one studies were conducted in 18 pediatric patients (15 female, 3 male; age range 3-19 years). Active myositis was present on MRI in ten cases. There was a significant association between abnormal MRI and clinically active disease (P = 0.012). US elastography was abnormal in 4 of 10 cases with abnormal MRI and in 4 of 11 cases with normal MRI. There was no association between abnormal elastography and either MRI (P > 0.999) or clinically active disease (P > 0.999). Muscle echogenicity was normal in 11 patients; all 11 had normal elastography. Of the ten patients with increased muscle echogenicity, eight had abnormal elastography. There was a significant association between muscle echogenicity and US elastography (P < 0.001). The positive and negative predictive values for elastography in the determination of active myositis were 75% and 31%, respectively, with a sensitivity of 40% and specificity of 67%. Compression-strain US elastography does not accurately detect active myositis in children with juvenile idiopathic inflammatory myopathy and cannot replace MRI as the imaging standard for detecting myositis in these children. The association between abnormal US elastography and increased muscle echogenicity suggests that elastography is capable of detecting muscle derangement in patients with myositis; however further studies are required to determine the clinical significance of these findings.
Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers
2016-04-21
Distribution A: Public Release; unlimited distribution 2016 Optical Society of America OCIS codes: (060.1660) Coherent communications; (070.2025) Discrete ...Coherent combining algorithm Multi-aperture coherent combining enables using many discrete apertures together to create a large effective aperture. A
Atmospheric free-space coherent optical communications with adaptive optics
NASA Astrophysics Data System (ADS)
Ting, Chueh; Zhang, Chengyu; Yang, Zikai
2017-02-01
Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.
Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar
2018-01-01
To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.
EN FACE IMAGING OF RETINAL ARTERY MACROANEURYSMS USING SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY.
Hanhart, Joel; Strassman, Israel; Rozenman, Yaakov
2017-01-01
To describe the advantages of en face view with swept-source optical coherence tomography in assessing the morphologic features of retinal arterial macroaneurysms, their consequences on adjacent retina, planning laser treatment, and evaluating its effects. Three eyes were treated for retinal arterial macroaneurysms and followed by swept-source optical coherence tomography in 2014-2015. En face images of the retina and choroid were obtained by EnView, a swept-source optical coherence tomography program. Retinal arterial macroaneurysms have a typical optical coherence tomography appearance. En face view allows delineation of the macroaneurysm wall, thrombotic components within the dilation, and lumen measurement. Hemorrhage, lipids, and fluids can be precisely described in terms of amount and extent over the macula and depth. This technique is also practical for planning focal laser treatment and determining its effects. En face swept-source optical coherence tomography is a rapid, noninvasive, high-resolution, promising technology, which allows excellent visualization of retinal arterial macroaneurysms and their consequences on surrounding tissues. It could make angiography with intravenous injection redundant in planning and assessing therapy.
Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.
Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash
2013-01-01
To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.
Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses
Fu, Zhengping; Yamaguchi, Masashi
2016-01-01
Coherent excitation and control of lattice motion by electromagnetic radiation in optical frequency range has been reported through variety of indirect interaction mechanisms with phonon modes. However, coherent phonon excitation by direct interaction of electromagnetic radiation and nuclei has not been demonstrated experimentally in terahertz (THz) frequency range mainly due to the lack of THz emitters with broad bandwidth suitable for the purpose. We report the experimental observation of coherent phonon excitation and detection in GaAs using ultrafast THz-pump/optical-probe scheme. From the results of THz pump field dependence, pump/probe polarization dependence, and crystal orientation dependence, we attributed THz wave absorption and linear electro-optic effect to the excitation and detection mechanisms of coherent polar TO phonons. Furthermore, the carrier density dependence of the interaction of coherent phonons and free carriers is reported. PMID:27905563
Coupling Photonics and Coherent Spintronics for Low-Loss Flexible Optical Logic
2015-12-02
AFRL-AFOSR-VA-TR-2016-0055 Coupling photonics and coherent spintronics for low-loss flexible optical logic Jesse Berezovsky CASE WESTERN RESERVE UNIV...2012 - 14/06/2015 4. TITLE AND SUBTITLE Coupling photonics and coherent spintronics for low-loss flexible optical logic 5a. CONTRACT NUMBER 5b...into devices, ranging from macroscopic optical cavities, to arrays of microlens cavities, to quantum dot-impregnated integrated polymer waveguides
Rjosk-Dendorfer, D; Reichelt, A; Clevert, D-A
2014-03-01
In recent years the use of elastography in addition to sonography has become a routine clinical tool for the characterization of breast masses. Whereas free hand compression elastography results in qualitative imaging of tissue stiffness due to induced compression, shear wave elastography displays quantitative information of tissue displacement. Recent studies have investigated the use of elastography in addition to sonography and improvement of specificity in differentiating benign from malignant breast masses could be shown. Therefore, additional use of elastography could help to reduce the number of unnecessary biopsies in benign breast lesions especially in category IV lesions of the ultrasound breast imaging reporting data system (US-BI-RADS).
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-02-19
Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.
WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasse, K; Neylon, J; Low, D
2016-06-15
Purpose: The purpose of this project is to derive high precision elastography measurements from 4DCT lung scans to facilitate the implementation of elastography in a radiotherapy context. Methods: 4DCT scans of the lungs were acquired, and breathing stages were subsequently registered to each other using an optical flow DIR algorithm. The displacement of each voxel gleaned from the registration was taken to be the ground-truth deformation. These vectors, along with the 4DCT source datasets, were used to generate a GPU-based biomechanical simulation that acted as a forward model to solve the inverse elasticity problem. The lung surface displacements were appliedmore » as boundary constraints for the model-guided lung tissue elastography, while the inner voxels were allowed to deform according to the linear elastic forces within the model. A biomechanically-based anisotropic convergence magnification technique was applied to the inner voxels in order to amplify the subtleties of the interior deformation. Solving the inverse elasticity problem was accomplished by modifying the tissue elasticity and iteratively deforming the biomechanical model. Convergence occurred when each voxel was within 0.5 mm of the ground-truth deformation and 1 kPa of the ground-truth elasticity distribution. To analyze the feasibility of the model-guided approach, we present the results for regions of low ventilation, specifically, the apex. Results: The maximum apical boundary expansion was observed to be between 2 and 6 mm. Simulating this expansion within an apical lung model, it was observed that 100% of voxels converged within 0.5 mm of ground-truth deformation, while 91.8% converged within 1 kPa of the ground-truth elasticity distribution. A mean elasticity error of 0.6 kPa illustrates the high precision of our technique. Conclusion: By utilizing 4DCT lung data coupled with a biomechanical model, high precision lung elastography can be accurately performed, even in low ventilation regions of the lungs. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144087.« less
High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons
NASA Astrophysics Data System (ADS)
Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.
2007-12-01
A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.
Tang, An; Cloutier, Guy; Szeverenyi, Nikolaus M.; Sirlin, Claude B.
2016-01-01
OBJECTIVE The purpose of the article is to review the diagnostic performance of ultrasound and MR elastography techniques for detection and staging of liver fibrosis, the main current clinical applications of elastography in the abdomen. CONCLUSION Technical and instrument-related factors and biologic and patient-related factors may constitute potential confounders of stiffness measurements for assessment of liver fibrosis. Future developments may expand the scope of elastography for monitoring liver fibrosis and predict complications of chronic liver disease. PMID:25905762
Mrugacz, Malgorzata; Bakunowicz-Lazarczyk, Alina
2005-01-01
The aim of this study was to quantitatively assess and compare the thickness of the retinal nerve fiber layer (RNFL) in normal and glaucomatous eyes of children using the optical coherence tomograph. The mean RNFL thickness of normal eyes (n=26) was compared with that of glaucomatous eyes (n=26). The eyes were classified into diagnostic groups based on conventional ophthalmological physical examination, Humphrey 30-2 visual fields, stereoscopic optic nerve head photography, and optical coherence tomography. The mean RNFL was significantly thinner in glaucomatous eyes than in normal eyes: 95+/-26.3 and 132+/-24.5 microm, respectively. More specifically, the RNFL was significantly thinner in glaucomatous eyes than in normal eyes in the inferior quadrant: 87+/-23.5 and 122+/-24.2 microm, respectively. The mean and inferior quadrant RFNL thicknesses as measured by the optical coherence tomograph showed a statistically significant correlation with glaucoma. Optical coherence tomography may contribute to tracking of juvenile glaucoma progression. Copyright (c) 2005 S. Karger AG, Basel.
Ach, Thomas; Kardorff, Rüdiger; Rohrschneider, Klaus
2015-01-01
To report ophthalmologic fundus autofluorescence and spectral domain optical coherence tomography findings in a patient with thiamine responsive megaloblastic anemia (TRMA). A 13-year-old girl with genetically proven TRMA was ophthalmologically (visual acuity, funduscopy, perimetry, electroretinogram) followed up over >5 years. Fundus imaging also included autofluorescence and spectral domain optical coherence tomography. During a 5-year follow-up, visual acuity and visual field decreased, despite a special TRMA diet. Funduscopy revealed bull's eye appearance, whereas fundus autofluorescence showed central and peripheral hyperfluorescence and perifoveal hypofluorescence. Spectral domain optical coherence tomography revealed affected inner segment ellipsoid band and irregularities in the retinal pigment epithelium and choroidea. Autofluorescence and spectral domain optical coherence tomography findings in a patient with TRMA show retinitis pigmentosa-like retina, retinal pigment epithelium, and choroid alterations. These findings might progress even under special TRMA diet, indispensable to life. Ophthalmologist should consider TRMA in patients with deafness and ophthalmologic disorders.
NASA Astrophysics Data System (ADS)
Wang, Pei-Hsun; Ferdous, Fahmida; Miao, Houxun; Wang, Jian; Leaird, Daniel E.; Srinivasan, Kartik; Chen, Lei; Aksyuk, Vladimir; Weiner, Andrew M.
2012-12-01
Microresonator optical frequency combs based on cascaded four-wave mixing are potentially attractive as a multi-wavelength source for on-chip optical communications. In this paper we compare time domain coherence, radio-frequency (RF) intensity noise, and individual line optical communications performance for combs generated from two different silicon nitride microresonators. The comb generated by one microresonator forms directly with lines spaced by a single free spectral range (FSR) and exhibits high coherence, low noise, and excellent 10 Gbit/s optical communications results. The comb generated by the second microresonator forms initially with multiple FSR line spacing, with additional lines later filling to reach single FSR spacing. This comb exhibits degraded coherence, increased intensity noise, and severely degraded communications performance. This study is to our knowledge the first to simultaneously investigate and observe a correlation between the route to comb formation, the coherence, noise, and optical communications performance of a Kerr comb.
Dental optical coherence domain reflectometry explorer
Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.
2001-01-01
A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.
PREFACE: XVIII International Youth Scientific School "Coherent Optics and Optical Spectroscopy"
NASA Astrophysics Data System (ADS)
Salakhov, M. Kh; Samartsev, V. V.; Gainutdinov, R. Kh
2015-05-01
Kazan Federal University has held the annual International Youth School "Coherent Optics and Optical Spectroscopy" since 1997. The choice of the topic is not accidental. Kazan is the home of photon echo which was predicted at Kazan Physical-Technical Institute in 1963 by Prof. U.G. Kopvil'em and V.R. Nagibarov and observed in Columbia University by N.A. Kurnit, I.D. Abella, and S.R. Hartmann in 1964. Since then, photon echo has become a powerful tool of coherent optical spectroscopy and optical information processing, which have been developed here in Kazan in close collaboration between Kazan Physical-Technical Institute and Kazan Federal University. The main subjects of the XVIII International Youth School are: Nonlinear and coherent optics; Atomic and molecular spectroscopy; Coherent laser spectroscopy; Problems of quantum optics; Quantum theory of radiation; and Nanophotonics and Scanning Probe Microscopy. The unchallenged organizers of that school are Kazan Federal University and Kazan E.K. Zavoisky Physical-Technical Institute. The rector of the School is Professor Myakzyum Salakhov, and the vice-rector is Professor Vitaly Samartsev. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" follows the global pattern of comprehensive studies of matter properties and their interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from the USA, Germany, Ukraine, Belarus and Russia have given plenary lecture presentations. Here over 1000 young scientists had an opportunity to participate in lively discussions about the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the fullsize papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" was greatly supported by The Optical Society of America, the Russian Foundation for Basic Research, the non-profit Dynasty Foundation, the Tatarstan Academy of Science, and the Ministry of Education and Science of the Russian Federation. It is a pleasure to thank the sponsors and all the participants and contributors who made the International School meeting possible and interesting.
Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S
2016-01-01
To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.
Optical Elastography of Systemic Sclerosis Skin
2017-09-01
1, the animal model of SSc has been successfully re-established. In addition, animals are being scheduled for the proposed treatment and monitoring...study. 15. SUBJECT TERMS Systemic Sclerosis, Imaging, Skin, Diagnostics, Animal Models, OCT, OCE 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Diagnostics, Animal Models, OCT, OCE 3.ACCOMPLISHMENTS: o What were the major goals of the project? The goals of Aim 1, as outlined in the SOW were
Magnetic resonance elastography using an air ball-actuator.
Numano, Tomokazu; Kawabata, Yoshihiko; Mizuhara, Kazuyuki; Washio, Toshikatsu; Nitta, Naotaka; Homma, Kazuhiro
2013-07-01
The purpose of this study was to develop a new technique for a powerful compact MR elastography (MRE) actuator based on a pneumatic ball-vibrator. This is a compact actuator that generates powerful centrifugal force vibrations via high speed revolutions of an internal ball using compressed air. This equipment is easy to handle due to its simple principles and structure. Vibration frequency and centrifugal force are freely adjustable via air pressure changes (air flow volume), and replacement of the internal ball. In order to achieve MRI compatibility, all parts were constructed from non-ferromagnetic materials. Vibration amplitudes (displacements) were measured optically by a laser displacement sensor. From a bench test of displacement, even though the vibration frequency increased, the amount of displacement did not decrease. An essential step in MRE is the generation of mechanical waves within tissue via an actuator, and MRE sequences are synchronized to several phase offsets of vibration. In this system, the phase offset was detected by a four-channel optical-fiber sensor, and it was used as an MRI trigger signal. In an agarose gel phantom experiment, this actuator was used to make an MR elastogram. This study shows that the use of a ball actuator for MRE is feasible. Copyright © 2013 Elsevier Inc. All rights reserved.
Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma.
Guerra, Ricardo Luz Leitão; Marback, Eduardo Ferrari; Silva, Igor Sandes Pessoa da; Maia Junior, Otacílio de Oliveira; Marback, Roberto Lorens
2014-01-01
The authors report fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (OCT) findings of two consecutive patients who presented with optic disk melanocytoma (ODM). A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.
Wang, Minghao; Yuan, Xiuhua; Ma, Donglin
2017-04-01
Nonuniformly correlated partially coherent beams (PCBs) have extraordinary propagation properties, making it possible to further improve the performance of free-space optical communications. In this paper, a series of PCBs with varying degrees of coherence in the radial direction, academically called radial partially coherent beams (RPCBs), are considered. RPCBs with arbitrary coherence distributions can be created by adjusting the amplitude profile of a spatial modulation function imposed on a uniformly correlated phase screen. Since RPCBs cannot be well characterized by the coherence length, a modulation depth factor is introduced as an indicator of the overall distribution of coherence. By wave optics simulation, free-space and atmospheric propagation properties of RPCBs with (inverse) Gaussian and super-Gaussian coherence distributions are examined in comparison with conventional Gaussian Schell-model beams. Furthermore, the impacts of varying central coherent areas are studied. Simulation results reveal that under comparable overall coherence, beams with a highly coherent core and a less coherent margin exhibit a smaller beam spread and greater on-axis intensity, which is mainly due to the self-focusing phenomenon right after the beam exits the transmitter. Particularly, those RPCBs with super-Gaussian coherence distributions will repeatedly focus during propagation, resulting in even greater intensities. Additionally, RPCBs also have a considerable ability to reduce scintillation. And it is demonstrated that those properties have made RPCBs very effective in improving the mean signal-to-noise ratio of small optical receivers, especially in relatively short, weakly fluctuating links.
De Bats, Flore; Cornut, Pierre-Loïc; Wolff, Benjamin; Kodjikian, Laurent; Mauget-Faÿsse, Martine
2018-03-01
To describe abnormal dark (hyposignal) and white (hypersignal) lesions observed on optical coherence tomography angiography in central serous chorioretinopathy. Prospective, multicenter, and descriptive study including patients with active or quiescent central serous chorioretinopathy. All patients had undergone a complete ophthalmic examination. Abnormal dark lesions were detected as "dark spots" and "dark areas" on optical coherence tomography angiography. A "dark spot" could correspond to six different abnormalities: pigment epithelium detachment, subretinal deposit, "Lucency" within surrounding subretinal fibrin, choroidal cavitation, choroidal excavation, and choroidal fluid. A "dark area" could be related to a serous retinal detachment or choriocapillary compression. Abnormal white lesions were also detected: A "white spot" could correspond with the leaking point on fluorescein angiography or with hyper-reflective dots; A "white filamentous pattern" at the Brüch's membrane level corresponded to abnormal choroidal neovascular vessels. A semiology is described using optical coherence tomography angiography in central serous chorioretinopathy as abnormal dark and white lesions. Multimodal imaging is mandatory in addition to optical coherence tomography angiography to diagnose non-neovascular retinal and choroidal central serous chorioretinopathy lesions. However, optical coherence tomography angiography alone is helpful in detecting choroidal neovascular membrane in central serous chorioretinopathy.
Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo
2018-03-01
Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering.
Monfared, Yashar E; Ponomarenko, Sergey A
2017-03-20
We explore theoretically and numerically optical rogue wave formation in stimulated Raman scattering inside a hydrogen filled hollow core photonic crystal fiber. We assume a weak noisy Stokes pulse input and explicitly construct the input Stokes pulse ensemble using the coherent mode representation of optical coherence theory, thereby providing a link between optical coherence and rogue wave theories. We show that the Stokes pulse peak power probability distribution function (PDF) acquires a long tail in the limit of nearly incoherent input Stokes pulses. We demonstrate a clear link between the PDF tail magnitude and the source coherence time. Thus, the latter can serve as a convenient parameter to control the former. We explain our findings qualitatively using the concepts of statistical granularity and global degree of coherence.
Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.
Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura
2016-08-01
Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.
Monte Carlo modeling of spatial coherence: free-space diffraction
Fischer, David G.; Prahl, Scott A.; Duncan, Donald D.
2008-01-01
We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335
A coherent optical feedback system for optical information processing
NASA Technical Reports Server (NTRS)
Jablonowski, D. P.; Lee, S. H.
1975-01-01
A unique optical feedback system for coherent optical data processing is described. With the introduction of feedback, the well-known transfer function for feedback systems is obtained in two dimensions. Operational details of the optical feedback system are given. Experimental results of system applications in image restoration, contrast control and analog computation are presented.
Lu, Guo-Wei; Luís, Ruben S; Mendinueta, José Manuel Delgado; Sakamoto, Takahide; Yamamoto, Naokatsu
2018-01-22
As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.
Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop
NASA Astrophysics Data System (ADS)
Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng
2018-01-01
We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.
T-2 in Coherent Optics: Collision, Dephasing Time, or Reciprocal Linewidth.
ERIC Educational Resources Information Center
Nettel, Stephen J.; Lempicki, Alexander
1979-01-01
Discusses how the frequency domain (line widths) and time domain (coherent optical transients) are related to the concept of transverse relaxation time in the study of high resolution optical spectroscopy. (HM)
Multi-contrast imaging of human posterior eye by Jones matrix optical coherence tomography
NASA Astrophysics Data System (ADS)
Yasuno, Yoshiaki
2017-04-01
A multi-contrast imaging of pathologic posterior eyes is demonstrated by Jones matrix optical coherence tomography (Jones matrix OCT). The Jones matrix OCT provides five tomographies, which includes scattering, local attenuation, birefringence, polarization uniformity, and optical coherence angiography, by a single scan. The hardware configuration, algorithms of the Jones matrix OCT as well as its application to ophthalmology is discussed.
Wagner, Mathilde; Corcuera-Solano, Idoia; Lo, Grace; Esses, Steven; Liao, Joseph; Besa, Cecilia; Chen, Nelson; Abraham, Ginu; Fung, Maggie; Babb, James S; Ehman, Richard L; Taouli, Bachir
2017-08-01
Purpose To assess the determinants of technical failure of magnetic resonance (MR) elastography of the liver in a large single-center study. Materials and Methods This retrospective study was approved by the institutional review board. Seven hundred eighty-one MR elastography examinations performed in 691 consecutive patients (mean age, 58 years; male patients, 434 [62.8%]) in a single center between June 2013 and August 2014 were retrospectively evaluated. MR elastography was performed at 3.0 T (n = 443) or 1.5 T (n = 338) by using a gradient-recalled-echo pulse sequence. MR elastography and anatomic image analysis were performed by two observers. Additional observers measured liver T2* and fat fraction. Technical failure was defined as no pixel value with a confidence index higher than 95% and/or no apparent shear waves imaged. Logistic regression analysis was performed to assess potential predictive factors of technical failure of MR elastography. Results The technical failure rate of MR elastography at 1.5 T was 3.5% (12 of 338), while it was higher, 15.3% (68 of 443), at 3.0 T. On the basis of univariate analysis, body mass index, liver iron deposition, massive ascites, use of 3.0 T, presence of cirrhosis, and alcoholic liver disease were all significantly associated with failure of MR elastography (P < .004); but on the basis of multivariable analysis, only body mass index, liver iron deposition, massive ascites, and use of 3.0 T were significantly associated with failure of MR elastography (P < .004). Conclusion The technical failure rate of MR elastography with a gradient-recalled-echo pulse sequence was low at 1.5 T but substantially higher at 3.0 T. Massive ascites, iron deposition, and high body mass index were additional independent factors associated with failure of MR elastography of the liver with a two-dimensional gradient-recalled-echo pulse sequence. © RSNA, 2017.
Seo, Mirinae; Ahn, Hye Shin; Park, Sung Hee; Lee, Jong Beum; Choi, Byung Ihn; Sohn, Yu-Mee; Shin, So Youn
2018-01-01
To compare the diagnostic performance of strain and shear wave elastography of breast masses for quantitative assessment in differentiating benign and malignant lesions and to evaluate the diagnostic accuracy of combined strain and shear wave elastography. Between January and February 2016, 37 women with 45 breast masses underwent both strain and shear wave ultrasound (US) elastographic examinations. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) final assessment on B-mode US imaging was assessed. We calculated strain ratios for strain elastography and the mean elasticity value and elasticity ratio of the lesion to fat for shear wave elastography. Diagnostic performances were compared by using the area under the receiver operating characteristic curve (AUC). The 37 women had a mean age of 47.4 years (range, 20-79 years). Of the 45 lesions, 20 were malignant, and 25 were benign. The AUCs for elasticity values on strain and shear wave elastography showed no significant differences (strain ratio, 0.929; mean elasticity, 0.898; and elasticity ratio, 0.868; P > .05). After selectively downgrading BI-RADS category 4a lesions based on strain and shear wave elastographic cutoffs, the AUCs for the combined sets of B-mode US and elastography were improved (B-mode + strain, 0.940; B-mode + shear wave; 0.964; and B-mode, 0.724; P < .001). Combined strain and shear wave elastography showed significantly higher diagnostic accuracy than each individual elastographic modality (P = .031). These preliminary results showed that strain and shear wave elastography had similar diagnostic performance. The addition of strain and shear wave elastography to B-mode US improved diagnostic performance. The combination of strain and shear wave elastography results in a higher diagnostic yield than each individual elastographic modality. © 2017 by the American Institute of Ultrasound in Medicine.
Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E
2004-01-07
We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.
Coherent startup of an infrared free-electron laser
NASA Astrophysics Data System (ADS)
Jaroszynski, D. A.; Bakker, R. J.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.
1993-12-01
Coherent enhancement of the spontaneous undulator radiation by several orders of magnitude has been observed in a free-electron laser at wavelengths from 40 to 100 μm. The coherent emission can be explained by details of the electron-beam micropulse structure. Furthermore, it has been found that the phase of the optical micropulses is fixed by the electron pulse structure and that the coherence extends over successive optical micropulses, which gives rise to interference effects as a function of the optical cavity length in a laser oscillator.
Deshmukh, Nishikant P; Kang, Hyun Jae; Billings, Seth D; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M
2014-01-01
A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images.
Deshmukh, Nishikant P.; Kang, Hyun Jae; Billings, Seth D.; Taylor, Russell H.; Hager, Gregory D.; Boctor, Emad M.
2014-01-01
A system for real-time ultrasound (US) elastography will advance interventions for the diagnosis and treatment of cancer by advancing methods such as thermal monitoring of tissue ablation. A multi-stream graphics processing unit (GPU) based accelerated normalized cross-correlation (NCC) elastography, with a maximum frame rate of 78 frames per second, is presented in this paper. A study of NCC window size is undertaken to determine the effect on frame rate and the quality of output elastography images. This paper also presents a novel system for Online Tracked Ultrasound Elastography (O-TRuE), which extends prior work on an offline method. By tracking the US probe with an electromagnetic (EM) tracker, the system selects in-plane radio frequency (RF) data frames for generating high quality elastograms. A novel method for evaluating the quality of an elastography output stream is presented, suggesting that O-TRuE generates more stable elastograms than generated by untracked, free-hand palpation. Since EM tracking cannot be used in all systems, an integration of real-time elastography and the da Vinci Surgical System is presented and evaluated for elastography stream quality based on our metric. The da Vinci surgical robot is outfitted with a laparoscopic US probe, and palpation motions are autonomously generated by customized software. It is found that a stable output stream can be achieved, which is affected by both the frequency and amplitude of palpation. The GPU framework is validated using data from in-vivo pig liver ablation; the generated elastography images identify the ablated region, outlined more clearly than in the corresponding B-mode US images. PMID:25541954
Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System.
Paluch, Łukasz; Nawrocka-Laskus, Ewa; Wieczorek, Janusz; Mruk, Bartosz; Frel, Małgorzata; Walecki, Jerzy
2016-01-01
This article presents possible applications of ultrasound elastography in musculoskeletal imaging based on the available literature, as well as the possibility of extending indications for the use of elastography in the future. Ultrasound elastography (EUS) is a new method that shows structural changes in tissues following application of physical stress. Elastography techniques have been widely used to assess muscles and tendons in vitro since the early parts of the twentieth century. Only recently with the advent of new technology and creation of highly specialized ultrasound devices, has elastography gained widespread use in numerous applications. The authors performed a search of the Medline/PubMed databases for original research and reviewed publications on the application of ultrasound elastography for musculoskeletal imaging. All publications demonstrate possible uses of ultrasound elastography in examinations of the musculoskeletal system. The most widely studied areas include the muscles, tendons and rheumatic diseases. There are also reports on the employment in vessel imaging. The main limitation of elastography as a technique is above all the variability of applied pressure during imaging, which is operator-dependent. It would therefore be reasonable to provide clear guidelines on the technique applied, as well as clear indications for performing the test. It is important to develop methods for creating artifact-free, closed-loop, compression-decompression cycles. The main advantages include cost-effectiveness, short duration of the study, non-invasive nature of the procedure, as well as a potentially broader clinical availability. There are no clear guidelines with regard to indications as well as examination techniques. Ultrasound elastography is a new and still poorly researched method. We conclude, however, that it can be widely used in the examinations of musculoskeletal system. Therefore, it is necessary to conduct large, multi-center studies to determine the methodology, indications and technique of examination.
NASA Technical Reports Server (NTRS)
Welch, J. D.
1975-01-01
The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.
Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young
2018-03-01
To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.
Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator
NASA Astrophysics Data System (ADS)
Aharonovich, Igal; Pe'er, Avi
2016-02-01
Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.
Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.
Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo
2013-07-29
We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.
Zhang, Junwen; Yu, Jianjun; Chi, Nan
2015-01-01
All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals. PMID:26323238
Optical coherence of 166Er:7LiYF4 crystal below 1 K
NASA Astrophysics Data System (ADS)
Kukharchyk, N.; Sholokhov, D.; Morozov, O.; Korableva, S. L.; Kalachev, A. A.; Bushev, P. A.
2018-02-01
We explore optical coherence and spin dynamics of an isotopically purified 166Er:7LiYF4 crystal below 1 K and at weak magnetic fields < 0.3T. Crystals were grown in our lab and demonstrate narrow inhomogeneous optical broadening down to 16 MHz. Solid-state atomic ensembles with such narrow linewidths are very attractive for implementing of off-resonant Raman quantum memory and for the interfacing of superconducting quantum circuits and telecom C-band optical photons. Both applications require a low magnetic field of ∼10 mT. However, at conventional experimental temperatures T > 1.5 K, optical coherence of Er:LYF crystal attains ≃ 10 μ {{s}} time scale only at strong magnetic fields above 1.5 T. In the present work, we demonstrate that the deep freezing of Er:LYF crystal below 1 K results in the increase of optical coherence time to ≃ 100 μ {{s}} at weak fields.
Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin
2017-11-10
High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.
All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.
Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P
2018-05-29
Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.
Applications of Optical Coherence Tomography in Pediatric Clinical Neuroscience
Avery, Robert A.; Rajjoub, Raneem D.; Trimboli-Heidler, Carmelina; Waldman, Amy T.
2015-01-01
For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve—the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. PMID:25803824
Applications of optical coherence tomography in pediatric clinical neuroscience.
Avery, Robert A; Rajjoub, Raneem D; Trimboli-Heidler, Carmelina; Waldman, Amy T
2015-04-01
For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve-the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. Georg Thieme Verlag KG Stuttgart · New York.
Model-based elastography: a survey of approaches to the inverse elasticity problem
Doyley, M M
2012-01-01
Elastography is emerging as an imaging modality that can distinguish normal versus diseased tissues via their biomechanical properties. This article reviews current approaches to elastography in three areas — quasi-static, harmonic, and transient — and describes inversion schemes for each elastographic imaging approach. Approaches include: first-order approximation methods; direct and iterative inversion schemes for linear elastic; isotropic materials; and advanced reconstruction methods for recovering parameters that characterize complex mechanical behavior. The paper’s objective is to document efforts to develop elastography within the framework of solving an inverse problem, so that elastography may provide reliable estimates of shear modulus and other mechanical parameters. We discuss issues that must be addressed if model-based elastography is to become the prevailing approach to quasi-static, harmonic, and transient elastography: (1) developing practical techniques to transform the ill-posed problem with a well-posed one; (2) devising better forward models to capture the transient behavior of soft tissue; and (3) developing better test procedures to evaluate the performance of modulus elastograms. PMID:22222839
NASA Astrophysics Data System (ADS)
Volkov, L. V.; Larkin, A. I.
1994-04-01
Theoretical and experimental investigations are reported of the potential applications of quasi-cw partially coherent radiation in optical systems based on diffraction—interference principles. It is shown that the spectral characteristics of quasi-cw radiation influence the data-handling capabilities of a holographic correlator and of a partially coherent holographic system for data acquisition. Relevant experimental results are reported.
Developments in Coherent Perfect Polarization Rotation
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Andrews, James; Zhou, Chaunhong; Baker, Michael
2015-05-01
Coherent Perfect Polarization Rotation (CPR) is a useful technique akin to Coherent Perfect Absorption (CPA, also known as the anti-laser) but that results in very high efficiency optical mode conversion. We describe the analysis of recent experimental data from our CPR testbed, the use of CPR in miniaturizing optical isolators and CPR phenomena in non-linear optics. Work supported by the N.S.F. under Grant No. ECCS-1360725.
Usha Devi, C; Bharat Chandran, R S; Vasu, R Mohan; Sood, Ajay K
2007-01-01
A coherent light beam is used to interrogate the focal region within a tissue-mimicking phantom insonified by an ultrasound transducer. The ultrasound-tagged photons exiting from the object carry with them information on local optical path length fluctuations caused by refractive index variations and medium vibration. Through estimation of the force distribution in the focal region of the ultrasound transducer, and solving the forward elastography problem for amplitude of vibration of tissue particles, we observe that the amplitude is directed along the axis of the transducer. It is shown that the focal region interrogated by photons launched along the transducer axis carries phase fluctuations owing to both refractive index variations and particle vibration, whereas the photons launched perpendicular to the transducer axis carry phase fluctuations arising mainly from the refractive index variations, with only smaller contribution from vibration of particles. Monte-Carlo simulations and experiments done on tissue-mimicking phantoms prove that as the storage modulus of the phantom is increased, the detected modulation depth in autocorrelation is reduced, significantly for axial photons and only marginally for the transverse-directed photons. It is observed that the depth of modulation is reduced to a significantly lower and constant value as the storage modulus of the medium is increased. This constant value is found to be the same for both axial and transverse optical interrogation. This proves that the residual modulation depth is owing to refractive index fluctuations alone, which can be subtracted from the overall measured modulation depth, paving the way for a possible quantitative reconstruction of storage modulus. Moreover, since the transverse-directed photons are not significantly affected by storage modulus variations, for a quantitatively accurate read-out of absorption coefficient variation, the interrogating light should be perpendicular to the focusing ultrasound transducer axis.
Current status of musculoskeletal application of shear wave elastography.
Ryu, JeongAh; Jeong, Woo Kyoung
2017-07-01
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.
Current status of musculoskeletal application of shear wave elastography
2017-01-01
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography. PMID:28292005
Strain Elastography - How To Do It?
Dietrich, Christoph F.; Barr, Richard G.; Farrokh, André; Dighe, Manjiri; Hocke, Michael; Jenssen, Christian; Dong, Yi; Saftoiu, Adrian; Havre, Roald Flesland
2017-01-01
Tissue stiffness assessed by palpation for diagnosing pathology has been used for thousands of years. Ultrasound elastography has been developed more recently to display similar information on tissue stiffness as an image. There are two main types of ultrasound elastography, strain and shear wave. Strain elastography is a qualitative technique and provides information on the relative stiffness between one tissue and another. Shear wave elastography is a quantitative method and provides an estimated value of the tissue stiffness that can be expressed in either the shear wave speed through the tissues in meters/second, or converted to the Young’s modulus making some assumptions and expressed in kPa. Each technique has its advantages and disadvantages and they are often complimentary to each other in clinical practice. This article reviews the principles, technique, and interpretation of strain elastography in various organs. It describes how to optimize technique, while pitfalls and artifacts are also discussed. PMID:29226273
Optical amplifiers for coherent lidar
NASA Technical Reports Server (NTRS)
Fork, Richard
1996-01-01
We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical amplifiers in well optimized conventional lidar systems offers modest improvements, at best, (2) the practical advantages of optical amplifiers, especially fiber amplifiers, such as ease of alignment, compactness, efficiency, lightweight, etc., warrant further investigation for coherent lidar, (3) the possibility of more fully optical lidar systems should be explored, (4) advantages gained by use of coherent interference of optical fields at the level of one, or a few, signal quanta should be explored, (5) amplification without inversion, population trapping, and use of electromagnetic induced transparency warrant investigation in connection with coherent lidar, (6) these new findings are probably more applicable to earth related NASA work, although applications to deep space should not be excluded, and (7) our own work in the Ultrafast Laboratory at UAH along some of the above lines of investigation, may be useful.
Optical to optical interface device
NASA Technical Reports Server (NTRS)
Oliver, D. S.; Vohl, P.; Nisenson, P.
1972-01-01
The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.
Low-cost coherent receiver for long-reach optical access network using single-ended detection.
Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao
2014-09-15
A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.
Use of optical coherence topography for objective assessment of fundus torsion.
Sophocleous, Sophocles
2017-02-23
Objective assessment of fundus torsion is currently performed with indirect ophthalmoscopy or fundus photography. Using the infrared image of the macular scan of the optical coherence tomography one can assess the presence and amount of fundus torsion. In addition, the line scan through the fovea can be used as a reference to confirm the position of the foveal pit in relation to the optic nerve head. Two cases are used to demonstrate how to assess fundus torsion with the use of the optical coherence tomography. 2017 BMJ Publishing Group Ltd.
Overlapped optics induced perfect coherent effects.
Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin
2013-12-20
For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.
Magneto-optical rotation in cavity QED with Zeeman coherence
NASA Astrophysics Data System (ADS)
Sun, Hui; Jia, Xiaohua; Fan, Shuangli; Zhang, Hongjun; Guo, Hong
2018-06-01
We investigate theoretically the magneto-optical rotation in cavity QED system with atomic Zeeman coherence, which is established via coherent population trapping. Owing to Zeeman coherence, the ultranarrow transmission spectrum less than 1 MHz with gain can be achieved with a flat-top Faraday rotation angle. By controlling the parameters appropriately, the input probe components within the flat-top regime rotate with almost the same angle, and transmit through the cavity perpendicularly to the other components outside the flat-top regime. The concepts discussed here provide an important tool for perfect ultranarrow Faraday optical filter and quantum information processing.
Yoon, Jun Sik; Lee, Yu Rim; Kweon, Young-Oh; Tak, Won Young; Jang, Se Young; Park, Soo Young; Hur, Keun; Park, Jung Gil; Lee, Hye Won; Chun, Jae Min; Han, Young Seok; Lee, Won Kee
2018-05-23
To compare the clinical value of acoustic radiation force impulse (ARFI) elastography and transient elastography (TE) for hepatocellular carcinoma (HCC) recurrence prediction after radiofrequency ablation (RFA) and to investigate other predictors of HCC recurrence. Between 2011 and 2016, 130 patients with HCC who underwent ARFI elastography and TE within 6 months before curative RFA were prospectively enrolled. Independent predictors of HCC recurrence were analyzed separately using ARFI elastography and TE. ARFI elastography and TE accuracy to predict HCC recurrence was determined by receiver operating characteristic curve analysis. Of all included patients (91 men; mean age, 63.5 years; range: 43-84 years), 51 (42.5%) experienced HCC recurrence during the follow-up period (median, 21.9 months). In multivariable analysis using ARFI velocity, serum albumin and ARFI velocity [hazard ratios: 2.873; 95% confidence interval (CI): 1.806-4.571; P<0.001] were independent predictors of recurrence, and in multivariable analysis using TE value, serum albumin and TE value (hazard ratios: 1.028; 95% CI: 1.013-1.043; P<0.001) were independent predictors of recurrence. The area under the receiver operating characteristic curve of ARFI elastography (0.821; 95% CI: 0.747-0.895) was not statistically different from that of TE (0.793; 95% CI: 0.712-0.874) for predicting HCC recurrence (P=0.827). The optimal ARFI velocity and TE cutoff values were 1.6 m/s and 14 kPa, respectively. ARFI elastography and TE yield comparable predictors of HCC recurrence after RFA.
Coherent Optical Control of Electronic Excitations in Wide-Band-Gap Semiconductor Structures
2015-05-01
ABSTRACT The main objective of this research is to study coherent quantum effects, such as Rabi oscillations in optical spectra of wide- band-gap...field corresponds to the rotation of the B vector about the pseudo field vector, Ω, with components determined by the effective Rabi frequency ( )e...to examine coherent quantum effects, such as Rabi oscillations and quantum entanglement in optical spectra of wide-band-gap materials, and to
Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.
Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael
2015-07-01
A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.
Mechanics of ultrasound elastography
Li, Guo-Yang
2017-01-01
Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350
Measuring finite-range phase coherence in an optical lattice using Talbot interferometry
Santra, Bodhaditya; Baals, Christian; Labouvie, Ralf; Bhattacherjee, Aranya B.; Pelster, Axel; Ott, Herwig
2017-01-01
One of the important goals of present research is to control and manipulate coherence in a broad variety of systems, such as semiconductor spintronics, biological photosynthetic systems, superconducting qubits and complex atomic networks. Over the past decades, interferometry of atoms and molecules has proven to be a powerful tool to explore coherence. Here we demonstrate a near-field interferometer based on the Talbot effect, which allows us to measure finite-range phase coherence of ultracold atoms in an optical lattice. We apply this interferometer to study the build-up of phase coherence after a quantum quench of a Bose–Einstein condensate residing in a one-dimensional optical lattice. Our technique of measuring finite-range phase coherence is generic, easy to adopt and can be applied in practically all lattice experiments without further modifications. PMID:28580941
Physical-layer network coding in coherent optical OFDM systems.
Guan, Xun; Chan, Chun-Kit
2015-04-20
We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.
Characterization of focal breast lesions by means of elastography.
Fischer, T; Sack, I; Thomas, A
2013-09-01
The modern method of sonoelastography of the breast is used for differentiating focal lesions. This review gives an overview of the different techniques available and discusses their roles in the routine clinical setting. The presented techniques include compression or vibration elastography as well as shear wave elastography. Descriptions of the methods are supplemented by a discussion of the clinical role of each technique based on the most recent literature. We discuss by outlining two recent experimental approaches - MRI and tomosynthesis elastography. Currently available data suggest that elastography is an important supplementary tool for the differentiation of breast tumors under routine clinical conditions. The specificity improves with the immediate availability of additional diagnostic information using real-time techniques and/or the calculation of strain ratios (SR). Elastography is especially helpful in women with involuted breasts for differentiating BI-RADS-US 3 and 4 lesions and for evaluating very small cancers without the typical imaging features of malignancy. Here, elastography techniques are highly specific, while the sensitivity decreases compared to B-mode ultrasound. SR calculation is especially helpful in women who have a high risk of breast cancer and high pretest likelihood. B-mode ultrasound is still the first-line method for the initial evaluation of the breast. If suspicious findings are detected, elastography with or without SR calculation is the most crucial supplementary tool. © Georg Thieme Verlag KG Stuttgart · New York.
Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen
2014-08-25
Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.
Chen, Jun; Yin, Meng; Talwalkar, Jayant A.; Oudry, Jennifer; Glaser, Kevin J.; Smyrk, Thomas C.; Miette, Véronique; Sandrin, Laurent
2017-01-01
Purpose To evaluate the diagnostic performance and examination success rate of magnetic resonance (MR) elastography and vibration-controlled transient elastography (VCTE) in the detection of hepatic fibrosis in patients with severe to morbid obesity. Materials and Methods This prospective and HIPAA-compliant study was approved by the institutional review board. A total of 111 patients (71 women, 40 men) participated. Written informed consent was obtained from all patients. Patients underwent MR elastography with two readers and VCTE with three observers to acquire liver stiffness measurements for liver fibrosis assessment. The results were compared with those from liver biopsy. Each pathology specimen was evaluated by two hepatopathologists according to the METAVIR scoring system or Brunt classification when appropriate. All imaging observers were blinded to the biopsy results, and all hepatopathologists were blinded to the imaging results. Examination success rate, interobserver agreement, and diagnostic accuracy for fibrosis detection were assessed. Results In this obese patient population (mean body mass index = 40.3 kg/m2; 95% confidence interval [CI]: 38.7 kg/m2, 41.8 kg/m2]), the examination success rate was 95.8% (92 of 96 patients) for MR elastography and 81.3% (78 of 96 patients) or 88.5% (85 of 96 patients) for VCTE. Interobserver agreement was higher with MR elastography than with biopsy (intraclass correlation coefficient, 0.95 vs 0.89). In patients with successful MR elastography and VCTE examinations (excluding unreliable VCTE examinations), both MR elastography and VCTE had excellent diagnostic accuracy in the detection of clinically significant hepatic fibrosis (stage F2–F4) (mean area under the curve: 0.93 [95% CI: 0.85, 0.97] vs 0.91 [95% CI: 0.83, 0.96]; P = .551). Conclusion In this obese patient population, both MR elastography and VCTE had excellent diagnostic performance for assessing hepatic fibrosis; MR elastography was more technically reliable than VCTE and had a higher interobserver agreement than liver biopsy. © RSNA, 2016 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on January 25, 2017. PMID:27861111
NASA Astrophysics Data System (ADS)
Sapozhnikova, Veronika V.; Shakhova, Natalia M.; Kamensky, Vladislav A.; Kuranov, Roman V.; Loshenov, Victor B.; Petrova, Svetlana A.
2003-07-01
A new approach to improving the diagnostic value of optical methods is suggested, which is based on a complementary investigation of different optical parameters of biotissues. The aim of this paper is comparative study of the feasibility of two optical methods - fluorescence spectroscopy and optical coherence tomography - for visualization of borders of neoplastic processes in the uterine cervix and vulva. Fluorescence spectroscopy is based on the detection of biochemical and optical coherence tomography on backscattering properties in norm and pathological changes of tissues. By means of these optical methods changes in biochemical and morphological properties of tissues were investigated. A parallel analysis of these two optical methods and histology from the center of tumors and their optical borders was made. Thirteen female patients with neoplastic changes in uterine cervix and vulva were enrolled in this study. The borders of the tumor determined by optical methods (fluorescence spectroscopy and optical coherence tomography) are coinciding with the biopsy proved ones. In addition, OCT and fluorescence borders of tumor in the uterine cervix and vulva exceeds colposcopically detectable borders, the averaging difference 2 mm. In future optical methods would considerably enhance diagnostic accuracy of conventional methods used in oncogynecology.
Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J
2012-02-01
Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.
El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N
2003-11-01
To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.
Signal Coherence Recovery Using Acousto-Optic Fourier Transform Architectures
1990-06-14
processing of data in ground- and space-based applications. We have implemented a prototype one-dimensional time-integrating acousto - optic (AO) Fourier...theory of optimum coherence recovery (CR) applicable in computation-limited environments. We have demonstrated direct acousto - optic implementation of CR
Optic flow detection is not influenced by visual-vestibular congruency.
Holten, Vivian; MacNeilage, Paul R
2018-01-01
Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.
Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra
2015-01-01
The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (p<0.01), as well as between IOL Master and digital photographs (p<0.01). There was no difference between SL-OCT and digital photographs (p>0.05). All measurements were correlated (Spearman p<0.001). Mean anterior chamber depth determined using the IOL-Master was 2.99 +/- 0.50 mm and by slit-lamp adapted optical coherence tomography was 2.56 +/- 0.46 mm. The difference was statistically significant (p<0.001). The correlation between the values was also statistically significant (Spearman, p<0.001). Automated measurements using IOL-Master yield constantly higher values than measurements based on direct eye visualization slit-lamp adapted optical coherence tomography and digital photographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.
Gerber, Ludmila; Kasper, Daniela; Fitting, Daniel; Knop, Viola; Vermehren, Annika; Sprinzl, Kathrin; Hansmann, Martin L; Herrmann, Eva; Bojunga, Joerg; Albert, Joerg; Sarrazin, Christoph; Zeuzem, Stefan; Friedrich-Rust, Mireen
2015-09-01
Two-dimensional shear wave elastography (2-D SWE) is an ultrasound-based elastography method integrated into a conventional ultrasound machine. It can evaluate larger regions of interest and, therefore, might be better at determining the overall fibrosis distribution. The aim of this prospective study was to compare 2-D SWE with the two best evaluated liver elastography methods, transient elastography and acoustic radiation force impulse (point SWE using acoustic radiation force impulse) imaging, in the same population group. The study included 132 patients with chronic hepatopathies, in which liver stiffness was evaluated using transient elastography, acoustic radiation force impulse imaging and 2-D SWE. The reference methods were liver biopsy for the assessment of liver fibrosis (n = 101) and magnetic resonance imaging/computed tomography for the diagnosis of liver cirrhosis (n = 31). No significant difference in diagnostic accuracy, assessed as the area under the receiver operating characteristic curve (AUROC), was found between the three elastography methods (2-D SWE, transient elastography, acoustic radiation force impulse imaging) for the diagnosis of significant and advanced fibrosis and liver cirrhosis in the "per protocol" (AUROCs for fibrosis stages ≥2: 0.90, 0.95 and 0.91; for fibrosis stage [F] ≥3: 0.93, 0.95 and 0.94; for F = 4: 0.92, 0.96 and 0.92) and "intention to diagnose" cohort (AUROCs for F ≥2: 0.87, 0.92 and 0.91; for F ≥3: 0.91, 0.93 and 0.94; for F = 4: 0.88, 0.90 and 0.89). Therefore, 2-D SWE, ARFI imaging and transient elastography seem to be comparably good methods for non-invasive assessment of liver fibrosis. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Slapa, Rafal Z.; Piwowonski, Antoni; Jakubowski, Wieslaw S.; Bierca, Jacek; Szopinski, Kazimierz T.; Slowinska-Srzednicka, Jadwiga; Migda, Bartosz; Mlosek, R. Krzysztof
2012-01-01
Although elastography can enhance the differential diagnosis of thyroid nodules, its diagnostic performance is not ideal at present. Further improvements in the technique and creation of robust diagnostic criteria are necessary. The purpose of this study was to compare the usefulness of strain elastography and a new generation of elasticity imaging called supersonic shear wave elastography (SSWE) in differential evaluation of thyroid nodules. Six thyroid nodules in 4 patients were studied. SSWE yielded 1 true-positive and 5 true-negative results. Strain elastography yielded 5 false-positive results and 1 false-negative result. A novel finding appreciated with SSWE, were punctate foci of increased stiffness corresponding to microcalcifications in 4 nodules, some not visible on B-mode ultrasound, as opposed to soft, colloid-inspissated areas visible on B-mode ultrasound in 2 nodules. This preliminary paper indicates that SSWE may outperform strain elastography in differentiation of thyroid nodules with regard to their stiffness. SSWE showed the possibility of differentiation of high echogenic foci into microcalcifications and inspissated colloid, adding a new dimension to thyroid elastography. Further multicenter large-scale studies of thyroid nodules evaluating different elastographic methods are warranted. PMID:22685685
Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.
Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael
2015-11-07
Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8 ± 0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07 ± 0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.
NASA Astrophysics Data System (ADS)
Chung, Hye Won; Guha, Saikat; Zheng, Lizhong
2017-07-01
We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers—i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection—which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and reinterpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate M coherent states, each of which could now be a codeword, i.e., a sequence of N coherent states, each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.
Liver elastography, comments on EFSUMB elastography guidelines 2013
Cui, Xin-Wu; Friedrich-Rust, Mireen; Molo, Chiara De; Ignee, Andre; Schreiber-Dietrich, Dagmar; Dietrich, Christoph F
2013-01-01
Recently the European Federation of Societies for Ultrasound in Medicine and Biology Guidelines and Recommendations have been published assessing the clinical use of ultrasound elastography. The document is intended to form a reference and to guide clinical users in a practical way. They give practical advice for the use and interpretation. Liver disease forms the largest section, reflecting published experience to date including evidence from meta-analyses with shear wave and strain elastography. In this review comments and illustrations on the guidelines are given. PMID:24151351
Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography.
Grieve, Kate; Mouslim, Karima; Assayag, Osnath; Dalimier, Eugénie; Harms, Fabrice; Bruhat, Alexis; Boccara, Claude; Antoine, Martine
2016-04-01
Current techniques for the intraoperative analysis of sentinel lymph nodes during breast cancer surgery present drawbacks such as time and tissue consumption. Full-field optical coherence tomography is a novel noninvasive, high-resolution, fast imaging technique. This study investigated the use of full-field optical coherence tomography as an alternative technique for the intraoperative analysis of sentinel lymph nodes. Seventy-one axillary lymph nodes from 38 patients at Tenon Hospital were imaged minutes after excision with full-field optical coherence tomography in the pathology laboratory, before being handled for histological analysis. A pathologist performed a blind diagnosis (benign/malignant), based on the full-field optical coherence tomography images alone, which resulted in a sensitivity of 92% and a specificity of 83% (n = 65 samples). Regular feedback was given during the blind diagnosis, with thorough analysis of the images, such that features of normal and suspect nodes were identified in the images and compared with histology. A nonmedically trained imaging expert also performed a blind diagnosis aided by the reading criteria defined by the pathologist, which resulted in 85% sensitivity and 90% specificity (n = 71 samples). The number of false positives of the pathologist was reduced by 3 in a second blind reading a few months later. These results indicate that following adequate training, full-field optical coherence tomography can be an effective noninvasive diagnostic tool for extemporaneous sentinel node biopsy qualification. © The Author(s) 2015.
High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986
NASA Astrophysics Data System (ADS)
Ramer, O. Glenn; Sierak, Paul
Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.
Coherent control of optical polarization effects in metamaterials
Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.
2015-01-01
Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071
Coherent optical processing using noncoherent light after source masking.
Boopathi, V; Vasu, R M
1992-01-10
Coherent optical processing starting with spatially noncoherent illumination is described. Good spatial coherence is introduced in the far field by modulating a noncoherent source when masks with sharp autocorrelation are used. The far-field mutual coherence function of light is measured and it is seen that, for the masks and the source size used here, we get a fairly large area over which the mutual coherence function is high and flat. We demonstrate traditional coherent processing operations such as Fourier transformation and image deblurring when coherent light that is produced in the above fashion is used. A coherence-redundancy merit function is defined for this type of processing system. It is experimentally demonstrated that the processing system introduced here has superior blemish tolerance compared with a traditional processor that uses coherent illumination.
Retinal Evaluation Using Optical Coherence Tomography (OCT) During Deep Space Gateway Missions
NASA Astrophysics Data System (ADS)
Stenger, M. B.; Laurie, S. S.; Macias, B. R.; Barr, Y. R.
2018-02-01
Optical Coherence Tomography (OCT) imaging will be conducted before, during, and after Deep Space Gateway missions to evaluate changes in the retina and, in particular, the optic nerve head and surrounding structures. Additional parameters will be collected before and after flight.
An ultrasound transient elastography system with coded excitation.
Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang
2017-06-28
Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.
Wu, C F; Yan, X S; Huang, J Q; Zhang, J W; Wang, L J
2018-01-01
We present a coherent bichromatic laser system with low phase noise. An optical injection process is used to generate coherent laser beams with a frequency difference of 9.192 631 77 GHz using an electro-optical modulator. An optical phase-locked loop is then applied to reduce the phase noise. The phase noise of the beat note is -41, -81, -98, -83, and -95 dBrad 2 /Hz at the offset frequencies of 1 Hz, 100 Hz, 1 kHz, 10 kHz, and 1 MHz, respectively. Compared to a system that uses optical injection alone, the phase noise is reduced by up to 20-30 dB in the low-frequency range, and the intermodulation effect on the continuous atomic clock is reduced by an order of magnitude. This configuration can adjust the intensities and polarizations of the laser beams independently and reduce the phase noise caused by environmental disturbances and optical injection, which may be useful for application to atomic coherence experiments.
NASA Astrophysics Data System (ADS)
Wu, C. F.; Yan, X. S.; Huang, J. Q.; Zhang, J. W.; Wang, L. J.
2018-01-01
We present a coherent bichromatic laser system with low phase noise. An optical injection process is used to generate coherent laser beams with a frequency difference of 9.192 631 77 GHz using an electro-optical modulator. An optical phase-locked loop is then applied to reduce the phase noise. The phase noise of the beat note is -41, -81, -98, -83, and -95 dBrad2/Hz at the offset frequencies of 1 Hz, 100 Hz, 1 kHz, 10 kHz, and 1 MHz, respectively. Compared to a system that uses optical injection alone, the phase noise is reduced by up to 20-30 dB in the low-frequency range, and the intermodulation effect on the continuous atomic clock is reduced by an order of magnitude. This configuration can adjust the intensities and polarizations of the laser beams independently and reduce the phase noise caused by environmental disturbances and optical injection, which may be useful for application to atomic coherence experiments.
NASA Astrophysics Data System (ADS)
Steiner, P.; Považay, B.; Stoller, M.; Morgenthaler, P.; Inniger, D.; Arnold, P.; Sznitman, R.; Meier, Ch.
2015-07-01
Retinal laser photocoagulation represents a widely used treatment for retinal pathologies such as diabetic chorioretinopathy or diabetic edema. For effective treatment, an appropriate choice of the treatment energy dose is crucial to prevent excessive tissue damage caused by over-irradiation of the retina. In this manuscript we investigate simultaneous and time-resolved optical coherence tomography for its applicability to provide feedback to the ophthalmologist about the introduced retinal damage during laser photocoagulation. Time-resolved and volumetric optical coherence tomography data of 96 lesions on ex-vivo porcine samples, set with a 577 nm laser prototype and irradiance of between 300 and 8800 W=cm2 were analyzed. Time-resolved scans were compared to volumetric scans of the lesion and correlated with ophthalmoscopic visibility. Lastly, image parameters extracted from optical coherence tomography Mscans, suitable for lesion classification were identified. Results presented in this work support the hypothesis that simultaneous optical coherence tomography provides valuable information about the extent of retinal tissue damage and may be used to guide retinal laser photocoagulation in the future.
NASA Technical Reports Server (NTRS)
Renner, Christoffer J.
2005-01-01
Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.
Nonlocal Electron Coherence in MoS2 Flakes Correlated through Spatial Self Phase Modulation
NASA Astrophysics Data System (ADS)
Wu, Yanling; Wu, Qiong; Sun, Fei; Tian, Yichao; Zuo, Xu; Meng, Sheng; Zhao, Jimin
2015-03-01
Electron coherence among different flake domains of MoS2 has been generated using ultrafast or continuous wave laser beams. Such electron coherence generates characteristic far-field diffraction patterns through a purely coherent nonlinear optical effect--spatial self-phase modulation (SSPM). A wind-chime model is developed to describe the establishment of the electron coherence through correlating the photo-excited electrons among different flakes using coherent light. Owing to its finite gap band structure, we find different mechanisms, including two-photon processes, might be responsible for the SSPM in MoS2 [with a large nonlinear dielectric susceptibility χ (3) = 1.6 × 10-9 e.s.u. (SI: 2.23 × 10-17 m2/V2) per layer]. Finally, we realized all optical switching based on SSPM, demonstrating that the electron coherence generation we report here is a ubiquitous property of layered quantum materials, by which novel optical applications are accessible. National Natural Science Foundation of China (11274372).
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Zhang, Lei
2006-07-01
A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.
Femtosecond Timekeeping: Slip-Free Clockwork for Optical Timescales
NASA Astrophysics Data System (ADS)
Herman, D.; Droste, S.; Baumann, E.; Roslund, J.; Churin, D.; Cingoz, A.; Deschênes, J.-D.; Khader, I. H.; Swann, W. C.; Nelson, C.; Newbury, N. R.; Coddington, I.
2018-04-01
The generation of true optical time standards will require the conversion of the highly stable optical-frequency output of an optical atomic clock to a high-fidelity time output. We demonstrate a comb-based clockwork that phase-coherently integrates ˜7 ×1020 optical cycles of an input optical frequency to create a coherent time output. We verify the underlying stability of the optical timing system by comparing two comb-based clockworks with a common input optical frequency and show <20 fs total time drift over the 37-day measurement period. Both clockworks also generate traditional timing signals including an optical pulse per second and a 10-MHz rf reference. The optical pulse-per-second time outputs remain synchronized to 240 attoseconds (240 as) at 1000 s. The phase-coherent 10-MHz rf outputs are stable to near a part in 1019 . Fault-free timekeeping from an optical clock to femtosecond level over months is an important step in replacing the current microwave time standard by an optical standard.
Nonexponential Decoherence and Subdiffusion in Atom-Optics Kicked Rotor.
Sarkar, Sumit; Paul, Sanku; Vishwakarma, Chetan; Kumar, Sunil; Verma, Gunjan; Sainath, M; Rapol, Umakant D; Santhanam, M S
2017-04-28
Quantum systems lose coherence upon interaction with the environment and tend towards classical states. Quantum coherence is known to exponentially decay in time so that macroscopic quantum superpositions are generally unsustainable. In this work, slower than exponential decay of coherences is experimentally realized in an atom-optics kicked rotor system subjected to nonstationary Lévy noise in the applied kick sequence. The slower coherence decay manifests in the form of quantum subdiffusion that can be controlled through the Lévy exponent. The experimental results are in good agreement with the analytical estimates and numerical simulations for the mean energy growth and momentum profiles of an atom-optics kicked rotor.
Huang, David; Swanson, Eric A.; Lin, Charles P.; Schuman, Joel S.; Stinson, William G.; Chang, Warren; Hee, Michael R.; Flotte, Thomas; Gregory, Kenton; Puliafito, Carmen A.; Fujimoto, James G.
2015-01-01
A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as ~10−10 of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively. PMID:1957169
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Dawson, Nathan; Andrews, James
2012-04-01
Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. In analogy with coherent perfect absorption, where counterpropagating light fields are controllably converted into other degrees of freedom, we show that in a linear-conservative medium only time-odd (Faraday) rotation is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. This highlights the necessity of time reversal odd processes (not just absorption) and coherence in perfect mode conversion and may inform device design.
Coherence properties and quantum state transportation in an optical conveyor belt.
Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D
2003-11-21
We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.
Geometrical and wave optics of paraxial beams.
Meron, M; Viccaro, P J; Lin, B
1999-06-01
Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time, has received comparably little attention so far. The resulting shortage of adequate calculational techniques is currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light sources, partially coherent beams become increasingly common. The purpose of this paper is to present a calculational approach which, utilizing a "variance matrix" representation of paraxial beams, allows for a straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless fashion.
Elastography methods applicable to the eye
NASA Astrophysics Data System (ADS)
Khan, Altaf A.; Cortina, Soledad M.; Chamon, Wallace; Royston, Thomas J.
2014-02-01
Elastography is the mapping of tissues and cells by their respective mechanical properties, such as elasticity and viscosity. Our interest primarily lies in the human eye. Combining Scanning Laser Doppler Vibrometry (SLDV) with geometrically focused mechanical vibratory excitations of the cornea, it is possible to reconstruct these mechanical properties of the cornea. Experiments were conducted on phantom corneas as well as excised donor human corneas to test feasibility and derive a method of modeling. Finite element analysis was used to recreate the phantom studies and corroborate with the experimental data. Results are in close agreement. To further expand the study, lamb eyes were used in MR Elastography studies. 3D wave reconstruction was created and elastography maps were obtained. With MR Elastography, it would be possible to noninvasively measure mechanical properties of anatomical features not visible to SLDV, such as the lens and retina. Future plans include creating a more robust finite element model, improving the SLDV method for in-vivo application, and continuing experiments with MR Elastography.
Seliger, Gregor; Chaoui, Katharina; Lautenschläger, Christine; Jenderka, Klaus-Vitold; Kunze, Christian; Hiller, Grit Gesine Ruth; Tchirikov, Michael
2018-06-01
The purpose of this study was to assess, if the biomechanical properties of the lower uterine segment (LUS) in women with a previous cesarean section (CS) can be determined by ultrasound (US) elastography. The first aim was to establish an ex-vivo LUS tensile-stress-strain-rupture(break point) analysis with the possibility of simultaneously using US elastography. The second aim was to investigate the relationship between measurement results of LUS stiffness using US elastography in-/ex-vivo with results of tensile-stress-strain-rupture analysis, and to compare different US elastography LUS-stiffness-measurement methods ex-vivo. An explorative experimental, in-/ex-vivo US study of women with previous CS was conducted. LUS elasticity was measured by point Shear Wave Elastography (pSWE) and bidimensional Shear-Wave-Elastography (2D-SWE) first in-vivo during preoperative examination within 24 h before repeat CS (including resection of the thinnest part of the LUS = uterine scar area during CS), second within 1 h after operation during the ex-vivo experiment, followed by tensile-stress-strain-rupture analysis. Pearson's correlation coefficient and scatter plots, Bland-Altman plots and paired T-tests, were used. Thirty three women were included in the study; elastography measurements n = 1412. The feasibility of ex-vivo assessment of LUS by quantitative US elastography using pSWE and 2D-SWE to detect stiffness of LUS was demonstrated. The strongest correlation with tensile-stress-strain analysis was found in the US elastography examination carried out with 2D-SWE (0.78, p < 0.001, 95%CI [0.48, 0.92]). The laboratory experiment illustrated that, the break point - as a surrogate marker for the risk of rupture of the LUS after CS - is linearly dependent on the thickness of the LUS in the scar area (Coefficient of correlation: 0.79, p < 0.001, 95%CI [0.55, 0.91]). Two extremely stiff LUS-specimens (outlier or extreme values) rupture even at less stroke/strain than would be expected by their thickness. This study confirms that US elastography can help in determining viscoelastic properties of the LUS in women with a previous CS. The data from our small series are promising. However whether individual extreme values of high stiffness and consecutive restricted biomechanical resilience can explain the phenomenon of rupture during TOLAC in cases of LUS with adequate thickness remains a question which prospective trials have to analyze before US elastography can be introduced into clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.
Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography.
Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki
2012-01-01
Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young's moduli of seven tissue-mimicking materials (in vitro; Young's modulus range, 20-80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young's modulus ratio of two reference materials, one hard and one soft (Young's moduli of 7 and 30 kPa, respectively), the Young's moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young's moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young's moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified.
Elastography in the differential diagnosis of thyroid nodules in Hashimoto thyroiditis.
Şahin, Mustafa; Çakal, Erman; Özbek, Mustafa; Güngünes, Aşkin; Arslan, Müyesser Sayki; Akkaymak, Esra Tutal; Uçan, Bekir; Ünsal, Ilknur Öztürk; Bozkurt, Nujen Çolak; Delibaşi, Tuncay
2014-08-01
Elastography is a method which assesses the risk of the malignancy and provides information about the degree of hardness in tissue. Hashimoto's thyroiditis, autoimmune lymphocytic infiltration and fibrosis, is considered to be a very common disease that is able to change the hardness of the tissue. The diagnostic value of elastography of this group of patients has not previously been reported. In our study, we aimed to determine the diagnostic value of elastography in 283 patients (255 female, 28 male) with Hashimoto's thyroiditis. Elastography score and index were measured with real-time ultrasound elastography (Hitachi(®) EUB 7000 HV machine with using 13 MHz linear transducer). The outcome of this measure shows that malignant nodules were with higher elastography scores (ES) and strain indexes (SI) values. ES ≥3 were observed in 16/20 malignant and 130/263 benign nodules, respectively. The area under the curve (AUC) for the elasto score (AUC) was 0.72 (p = 0.001), and AUC for the strain index was 0.77 (p < 0.0001). Accordingly, our study suggests that strain index reflects malignancy better than the elasto score. We conclude that elastography score is ≥3 providing 80 % sensitivity and 50 %, six specificity for diagnosing malignancy. For strain index, we found that 2.45 (72.2 % sensitivity and 70 % specificity) is a cut-off point. We have detected a lower cut-off point for SI in Hashimoto patients although sensitivity and specificity decreases in Hashimoto in this population.
Reliability and Validity of Quantifying Absolute Muscle Hardness Using Ultrasound Elastography
Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Fukashiro, Senshi; Takahashi, Hideyuki
2012-01-01
Muscle hardness is a mechanical property that represents transverse muscle stiffness. A quantitative method that uses ultrasound elastography for quantifying absolute human muscle hardness has been previously devised; however, its reliability and validity have not been completely verified. This study aimed to verify the reliability and validity of this quantitative method. The Young’s moduli of seven tissue-mimicking materials (in vitro; Young’s modulus range, 20–80 kPa; increments of 10 kPa) and the human medial gastrocnemius muscle (in vivo) were quantified using ultrasound elastography. On the basis of the strain/Young’s modulus ratio of two reference materials, one hard and one soft (Young’s moduli of 7 and 30 kPa, respectively), the Young’s moduli of the tissue-mimicking materials and medial gastrocnemius muscle were calculated. The intra- and inter-investigator reliability of the method was confirmed on the basis of acceptably low coefficient of variations (≤6.9%) and substantially high intraclass correlation coefficients (≥0.77) obtained from all measurements. The correlation coefficient between the Young’s moduli of the tissue-mimicking materials obtained using a mechanical method and ultrasound elastography was 0.996, which was equivalent to values previously obtained using magnetic resonance elastography. The Young’s moduli of the medial gastrocnemius muscle obtained using ultrasound elastography were within the range of values previously obtained using magnetic resonance elastography. The reliability and validity of the quantitative method for measuring absolute muscle hardness using ultrasound elastography were thus verified. PMID:23029231
Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun
2017-01-01
To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.
Ultradispersive adaptive prism based on a coherently prepared atomic medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sautenkov, Vladimir A.; P. N. Lebedev Institute of Physics, Moscow 119991; Li Hebin
2010-06-15
We have experimentally demonstrated an ultra-dispersive optical prism made from a coherently driven Rb atomic vapor. The prism possesses spectral angular dispersion that is 6 orders of magnitude higher than that of a prism made of optical glass; such angular dispersion allows one to spatially resolve light beams with different frequencies separated by a few kilohertz. The prism operates near the resonant frequency of atomic vapor and its dispersion is optically controlled by a coherent driving field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannson, T.
1993-03-01
During the last two decades, there have been dramatic improvements in the development of optical sources. Examples of this development range from semiconductor laser diodes to free electron beam lasers and synchrotron radiation. Before these developments, standards for the measurement of basic optical parameters (quantities) were less demanding. Now, however, there is a fundamental need for new, reliable methods for providing fast quantitative results for a very broad variety of optical systems and sources. This is particularly true for partially coherent optical beams, since all optical sources are either fully or partially spatially coherent (including Lambertian sources). Until now, theremore » has been no satisfactory solution to this problem. During the last two decades, however, the foundations of physical radiometry have been developed by Walther, Wolf and co-workers. By integrating physical optics, statistical optics and conventional radiometry, this body of work provides necessary tools for the evaluation of radiometric quantities for partially coherent optical beams propagating through optical systems. In this program, Physical Optics Corporation (POC) demonstrated the viability of such a radiometric approach for the specific case of generalized energy concentrators called Liouville transformers. We believe that this radiometric approach is necessary to fully characterize any type of optical system since it takes into account the partial coherence of radiation. 90 refs., 57 figs., 4 tabs.« less
Elimination of coherent noise in a coherent light imaging system
NASA Technical Reports Server (NTRS)
Grebowsky, G. J.; Hermann, R. L.; Paull, H. B.; Shulman, A. R.
1970-01-01
Optical imaging systems using coherent light introduce objectionable noise into the output image plane. Dust and bubbles on and in lenses cause most of the noise in the output image. This noise usually appears as bull's-eye diffraction patterns in the image. By rotating the lens about the optical axis these diffraction patterns can be essentially eliminated. The technique does not destroy the spatial coherence of the light and permits spatial filtering of the input plane.
Design concepts for an on-board coherent optical image processor
NASA Technical Reports Server (NTRS)
Husain-Abidi, A. S.
1972-01-01
On-board spacecraft image data processing systems for transmitting processed data rather than raw data are discussed. A brief history of the development of the optical data processing techniques is presented along with the conceptual design of a coherent optical system with a noncoherent image input.
High Contrast Ultrafast Imaging of the Human Heart
Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael
2014-01-01
Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135
NASA Astrophysics Data System (ADS)
Titze, Michael; Li, Bo; Zhang, Xiang; Ajayan, Pulickel M.; Li, Hebin
2018-05-01
Quantum coherence and its dynamics in monolayer transition metal dichalcogenides (TMDs) are essential information to fully control valley pseudospin for valleytronics applications. Experimental understanding of coherence dephasing dynamics has been limited for excitons and largely unexplored for trions in monolayer TMDs. Here we use optical two-dimensional coherent spectroscopy to measure the trion coherence dephasing time in monolayer MoSe2 by analyzing the homogeneous linewidth. An intrinsic coherence time of 182 fs is extrapolated from the excitation density and temperature dependence measurement. The results show that trion-trion and trion-phonon interactions strongly affect the coherence dephasing time, while the intrinsic coherence time at zero excitation and zero temperature is primarily limited by the pure dephasing due to defect states. Our experiment also confirms optical two-dimensional coherent spectroscopy as a reliable technique for studying valley quantum dynamics in two-dimensional layered materials.
Ultrasound elastography: principles, techniques, and clinical applications.
Dewall, Ryan J
2013-01-01
Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.
Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue
NASA Astrophysics Data System (ADS)
Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat
2013-03-01
Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.
Elastography for the differentiation of benign and malignant liver lesions: a meta-analysis.
Ma, Xuelei; Zhan, Wenli; Zhang, Binglan; Wei, Benling; Wu, Xin; Zhou, Min; Liu, Lei; Li, Ping
2014-05-01
The objective of this paper was to evaluate the overall accuracy of elastography in the diagnosis of benign and malignant liver lesions by liver biopsy as the gold standard. Literature databases were searched. The studies which were related to evaluate the diagnostic value of elastography for differentiation in benign and malignant liver lesions in English or Chinese were included. The summary receiver operating characteristic (SROC) curve was performed, and the areas under the curve (AUC) were also calculated to present the accuracy of the elastography for the diagnosis of benign and malignant liver lesions. Six studies which included a total of 448 liver lesions in 384 patients were analyzed. The summary sensitivity and specificity of elastography for the differentiation of malignant liver lesions were 85% (95% CI, 80 to 89%) and 84% (95% CI, 80 to 88%), respectively. And the summary diagnostic odds ratio was 46.33 (95% CI, 15.22 to 141.02), and the SROC was 0.9328. Elastography has a high sensitivity and specificity differentiation for benign and malignant liver lesions. As a non-invasive method, it is promising to be applied to clinical practice. To estimate elastography objectively, a large, prospective, international, and multi-center study is still needed.
Shear wave elastography with a new reliability indicator.
Dietrich, Christoph F; Dong, Yi
2016-09-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Shear wave elastography with a new reliability indicator
Dong, Yi
2016-01-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731
Kim, Hyo Jin; Kim, Sun Mi; Kim, Bohyoung; La Yun, Bo; Jang, Mijung; Ko, Yousun; Lee, Soo Hyun; Jeong, Heeyeong; Chang, Jung Min; Cho, Nariya
2018-04-18
We investigated addition of strain and shear wave elastography to conventional ultrasonography for the qualitative and quantitative assessment of breast masses; cut-off points were determined for strain ratio, elasticity ratio, and visual score for differentiating between benign and malignant masses. In all, 108 masses from 94 patients were evaluated with strain and shear wave elastography and scored for suspicion of malignancy, visual score, strain ratio, and elasticity ratio. The diagnostic performance between ultrasonography alone and ultrasonography combined with either type of elastography was compared; cut-off points were determined for strain ratio, elasticity ratio, and visual score. Of the 108 masses, 44 were malignant and 64 were benign. The areas under the curves were significantly higher for strain and shear wave elastography-supplemented ultrasonography (0.839 and 0.826, respectively; P = 0.656) than for ultrasonography alone (0.764; P = 0.018 and 0.035, respectively). The diagnostic performances of strain and elasticity ratios were similar when differentiating benign from malignant masses. Cut-off values for strain ratio, elasticity ratio, and visual scores for strain and shear wave elastography were 2.93, 4, 3, and 2, respectively. Both forms of elastography similarly improved the diagnostic performance of conventional ultrasonography in the qualitative and quantitative assessment of breast masses.
Serai, Suraj D; Dillman, Jonathan R; Trout, Andrew T
2017-03-01
Purpose To compare two-dimensional (2D) gradient-recalled echo (GRE) and 2D spin-echo (SE) echo-planar imaging (EPI) magnetic resonance (MR) elastography for measurement of hepatic stiffness in pediatric and young adult patients suspected of having liver disease. Materials and Methods In this institutional review board-approved, HIPAA-compliant study, 58 patients underwent both 2D GRE and 2D SE-EPI MR elastography at 1.5 T during separate breath holds. Liver stiffness (mean of means; in kilopascals) was measured by five blinded reviewers. Pooled mean liver stiffness and region-of-interest (ROI) size were compared by using paired t tests. Intraclass correlation coefficients (ICCs) were used to assess agreement between techniques. Respiratory motion artifacts were compared across sequences by using the Fisher exact test. Results Mean patient age was 14.7 years ± 5.2 (standard deviation; age range, 0.7-20.5 years), and 55.2% (32 of 58) of patients were male. Mean liver stiffness was 2.92 kPa ± 1.29 measured at GRE MR elastography and 2.76 kPa ± 1.39 at SE-EPI MR elastography (n = 290; P = .15). Mean ROI sizes were 8495 mm 2 ± 4482 for 2D GRE MR elastography and 15 176 mm 2 ± 7609 for 2D SE-EPI MR elastography (n = 290; P < .001). Agreement was excellent for measured stiffness between five reviewers for both 2D GRE (ICC, 0.97; 95% confidence interval: 0.95, 0.98) and 2D SE-EPI (ICC, 0.98; 95% confidence interval: 0.96, 0.99). Mean ICC (n = 5) for agreement between 2D GRE and 2D SE-EPI MR elastography was 0.93 (range, 0.91-0.95). Moderate or severe breathing artifacts were observed on 27.5% (16 of 58) of 2D GRE images versus 0% 2D SE-EPI images (P < .001). Conclusion There is excellent agreement on measured hepatic stiffness between 2D GRE and 2D SE-EPI MR elastography across multiple reviewers. SE-EPI MR elastography allowed for stiffness measurement across larger areas of the liver and can be performed in a single breath hold. © RSNA, 2016.
Quantitative shear wave ultrasound elastography: initial experience in solid breast masses
2010-01-01
Introduction Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Methods Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Results Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus greyscale BI-RADS performance figures were sensitivity: 97% vs 87%, specificity: 83% vs 78%, positive predictive value (PPV): 88% vs 84%, negative predictive value (NPV): 95% vs 82% and accuracy: 91% vs 83% respectively. These differences were not statistically significant. Conclusions Shear wave elastography gives quantitative and reproducible information on solid breast lesions with diagnostic accuracy at least as good as greyscale ultrasound with BI-RADS classification. PMID:21122101
Quantitative shear wave ultrasound elastography: initial experience in solid breast masses.
Evans, Andrew; Whelehan, Patsy; Thomson, Kim; McLean, Denis; Brauer, Katrin; Purdie, Colin; Jordan, Lee; Baker, Lee; Thompson, Alastair
2010-01-01
Shear wave elastography is a new method of obtaining quantitative tissue elasticity data during breast ultrasound examinations. The aims of this study were (1) to determine the reproducibility of shear wave elastography (2) to correlate the elasticity values of a series of solid breast masses with histological findings and (3) to compare shear wave elastography with greyscale ultrasound for benign/malignant classification. Using the Aixplorer® ultrasound system (SuperSonic Imagine, Aix en Provence, France), 53 solid breast lesions were identified in 52 consecutive patients. Two orthogonal elastography images were obtained of each lesion. Observers noted the mean elasticity values in regions of interest (ROI) placed over the stiffest areas on the two elastography images and a mean value was calculated for each lesion. A sub-set of 15 patients had two elastography images obtained by an additional operator. Reproducibility of observations was assessed between (1) two observers analysing the same pair of images and (2) findings from two pairs of images of the same lesion taken by two different operators. All lesions were subjected to percutaneous biopsy. Elastography measurements were correlated with histology results. After preliminary experience with 10 patients a mean elasticity cut off value of 50 kilopascals (kPa) was selected for benign/malignant differentiation. Greyscale images were classified according to the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS). BI-RADS categories 1-3 were taken as benign while BI-RADS categories 4 and 5 were classified as malignant. Twenty-three benign lesions and 30 cancers were diagnosed on histology. Measurement of mean elasticity yielded an intraclass correlation coefficient of 0.99 for two observers assessing the same pairs of elastography images. Analysis of images taken by two independent operators gave an intraclass correlation coefficient of 0.80. Shear wave elastography versus greyscale BI-RADS performance figures were sensitivity: 97% vs 87%, specificity: 83% vs 78%, positive predictive value (PPV): 88% vs 84%, negative predictive value (NPV): 95% vs 82% and accuracy: 91% vs 83% respectively. These differences were not statistically significant. Shear wave elastography gives quantitative and reproducible information on solid breast lesions with diagnostic accuracy at least as good as greyscale ultrasound with BI-RADS classification.
Spectral optical coherence tomography for ophthalmologic applications
NASA Astrophysics Data System (ADS)
Targowski, Piotr; Bajraszewski, Tomasz; Gorczyńska, Iwona; Szkulmowska, Anna; Szkulmowski, Maciej; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kaluzny, Jakub J.; Kaluzny, Bartłomiej J.
2006-09-01
The overview of the Spectral Optical Coherence Tomography an alternative method to more popular Time domain modality is given. Examples from medical practice utilizing high resolution, ultra fast SOCT device are presented.
Non-Hermitian optics in atomic systems
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-04-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.
The Development, Commercialization, and Impact of Optical Coherence Tomography.
Fujimoto, James; Swanson, Eric
2016-07-01
This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.
New Diamond Color Center for Quantum Communication
NASA Astrophysics Data System (ADS)
Huang, Ding; Rose, Brendon; Tyryshkin, Alexei; Sangtawesin, Sorawis; Srinivasan, Srikanth; Twitchen, Daniel; Markham, Matthew; Edmonds, Andrew; Gali, Adam; Stacey, Alastair; Wang, Wuyi; D'Haenens-Johansson, Ulrika; Zaitsev, Alexandre; Lyon, Stephen; de Leon, Nathalie
2017-04-01
Color centers in diamond are attractive for quantum communication applications because of their long electron spin coherence times and efficient optical transitions. Previous demonstrations of color centers as solid-state spin qubits were primarily focused on centers that exhibit either long coherence times or highly efficient optical interfaces. Recently, we developed a method to stabilize the neutral charge state of silicon-vacancy center in diamond (SiV0) with high conversion efficiency. We observe spin relaxation times exceeding 1 minute and spin coherence times of 1 ms for SiV0 centers. Additionally, the SiV0 center also has > 90 % of its emission into its zero-phonon line and a narrow inhomogeneous optical linewidth. The combination of a long spin coherence time and efficient optical interface make the SiV0 center a promising candidate for applications in long distance quantum communication.
Simple and versatile long range swept source for optical coherence tomography applications
NASA Astrophysics Data System (ADS)
Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G.; Vanholsbeeck, Frédérique
2015-12-01
We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman-Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples.
NASA Astrophysics Data System (ADS)
Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.
2015-08-01
The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.
Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode
NASA Technical Reports Server (NTRS)
Philipp-Rutz, E. M.
1975-01-01
Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.
2006-04-15
was amplified by injection locking of a high power diode laser and further amplified to -300 mW with a semiconductor optical amplifier. This light...amplifiers at 793nm, cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients...injection- locking for broadband optical signal amplification ................. 34 2.10. Tapered semiconductor optical amplifier
Shin, Sung Ui; Yu, Mi Hye; Yoon, Jeong Hee; Han, Joon Koo; Choi, Byung-Ihn; Glaser, Kevin J.; Ehman, Richard L.
2014-01-01
Purpose To determine the diagnostic performance of magnetic resonance (MR) elastography in comparison to spleen length and dynamic contrast material–enhanced (DCE) MR imaging in association with esophageal varices in patients with liver cirrhosis by using endoscopy as the reference standard. Materials and Methods This retrospective study received institutional review board approval, and informed consent was waived. One hundred thirty-nine patients with liver cirrhosis who underwent liver DCE MR imaging, including MR elastography, were included. Hepatic stiffness (HS) and spleen stiffness (SS) values assessed with MR elastography, as well as spleen length, were correlated with the presence of esophageal varices and high-risk varices by using Spearman correlation analysis. The diagnostic performance of MR elastography was compared with that of DCE MR imaging and combined assessment of MR elastography and DCE MR imaging by using receiver operating characteristic analysis. MR elastography reproducibility was assessed prospectively, with informed consent, in another 15 patients by using intraclass correlation coefficients. Results There were significant positive linear correlations between HS, SS, and spleen length and the grade of esophageal varices (r = 0.46, r = 0.48, and r = 0.36, respectively; all P < .0001). HS and SS values (>4.81 kPa and >7.60 kPa, respectively) showed better performance than did spleen length in the association with esophageal varices (P = .0306 and P = .0064, respectively). Diagnostic performance of HS and SS in predicting high-risk varices was comparable to that of DCE MR imaging (P = .1282 and P = .1371, respectively). When MR elastography and DCE MR imaging were combined, sensitivity improved significantly (P = .0004). MR elastography was highly reproducible (intraclass correlation coefficient > 0.9). Conclusion HS and SS are associated with esophageal varices and showed better performance than did spleen length in assessing the presence of esophageal varices. MR elastography is comparable to DCE MR imaging in predicting the presence of esophageal varices and high-risk varices, but, when assessed in combination, sensitivity is higher. © RSNA, 2014 Online supplemental material is available for this article. PMID:24620910
NASA Astrophysics Data System (ADS)
Hohmann, Martin; Lengenfelder, B.; Kanawade, R.; Klämpfl, F.; Schmidt, Michael
2015-12-01
Coherent light propagating through turbid media is attenuated due to scattering and absorption. The decrease of the intensity of the coherent light is described by the attenuation coefficient. The measured decay of the coherent light through turbid media with optical coherence tomography (OCT) can be used to reconstruct the attenuation coefficient. Since most of the OCT systems work in the near-infrared region, they are the optical window from 800-1400 nm in tissue. Hence, the most part of the attenuation coefficient is caused due to the scattering. Therefore, deriving the attenuation coefficient is one way to get an approximation of the scattering coefficient which is difficult to access even up to day. Moreover, OCT measurements are one of the few possibilities to derive physical properties with micrometre resolution of the media under investigation.
NASA Astrophysics Data System (ADS)
Chen, Hui-Na; Liu, Jin-Ming
2009-10-01
We present an optical scheme to almost completely teleport a bipartite entangled coherent state using a four-partite cluster-type entangled coherent state as quantum channel. The scheme is based on optical elements such as beam splitters, phase shifters, and photon detectors. We also obtain the average fidelity of the teleportation process. It is shown that the average fidelity is quite close to unity if the mean photon number of the coherent state is not too small.
2016-04-01
6 1. INTRODUCTION Lung cancer is the leading cause of cancer related death accounting for more deaths than breast , prostate and colon...the cancer has spread, at which time patients have little chance of cure. Macroscopic imaging modalities including CT and bronchoscopy have made...Electromagnetic Navigation , Biopsy Guidance, Optical Microscopy, Optical Coherence Tomography, Lung Cancer , Optical needle. 3. OVERALL PROJECT SUMMARY
NASA Astrophysics Data System (ADS)
Li, Dongfang; Pacifici, Domenico
The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.
Single-shot observation of optical rogue waves in integrable turbulence using time microscopy
Suret, Pierre; Koussaifi, Rebecca El; Tikan, Alexey; Evain, Clément; Randoux, Stéphane; Szwaj, Christophe; Bielawski, Serge
2016-01-01
Optical fibres are favourable tabletop laboratories to investigate both coherent and incoherent nonlinear waves. In particular, exact solutions of the one-dimensional nonlinear Schrödinger equation such as fundamental solitons or solitons on finite background can be generated by launching periodic, specifically designed coherent waves in optical fibres. It is an open fundamental question to know whether these coherent structures can emerge from the nonlinear propagation of random waves. However the typical sub-picosecond timescale prevented—up to now—time-resolved observations of the awaited dynamics. Here, we report temporal ‘snapshots' of random light using a specially designed ‘time-microscope'. Ultrafast structures having peak powers much larger than the average optical power are generated from the propagation of partially coherent waves in optical fibre and are recorded with 250 femtoseconds resolution. Our experiment demonstrates the central role played by ‘breather-like' structures such as the Peregrine soliton in the emergence of heavy-tailed statistics in integrable turbulence. PMID:27713416
Shirai, Tomohiro; Barnes, Thomas H
2002-02-01
A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.
Transient elastography for the assessment of chronic liver disease: Ready for the clinic?
Cobbold, JFL; Morin, S; Taylor-Robinson, SD
2007-01-01
Transient elastography is a recently developed non-invasive technique for the assessment of hepatic fibrosis. The technique has been subject to rigorous evaluation in a number of studies in patients with chronic liver disease of varying aetiology. Transient elastography has been compared with histological assessment of percutaneous liver biopsy, with high sensitivity and specificity for the diagnosis of cirrhosis, and has also been used to assess pre-cirrhotic disease. However, the cut-off values between different histological stages vary substantially in different studies, patient groups and aetiology of liver disease. More recent studies have examined the possible place of transient elastography in clinical practice, including risk stratification for the development of complications of cirrhosis. This review describes the technique of transient elastography and discusses the interpretation of recent studies, emphasizing its applicability in the clinical setting. PMID:17828808
Coherent fluorescence emission by using hybrid photonic–plasmonic crystals
Shi, Lei; Yuan, Xiaowen; Zhang, Yafeng; Hakala, Tommi; Yin, Shaoyu; Han, Dezhuan; Zhu, Xiaolong; Zhang, Bo; Liu, Xiaohan; Törmä, Päivi; Lu, Wei; Zi, Jian
2014-01-01
The spatial and temporal coherence of the fluorescence emission controlled by a quasi-two-dimensional hybrid photonic–plasmonic crystal structure covered with a thin fluorescent-molecular-doped dielectric film is investigated experimentally. A simple theoretical model to describe how a confined quasi-two-dimensional optical mode may induce coherent fluorescence emission is also presented. Concerning the spatial coherence, it is experimentally observed that the coherence area in the plane of the light source is in excess of 49 μm2, which results in enhanced directional fluorescence emission. Concerning temporal coherence, the obtained coherence time is 4 times longer than that of the normal fluorescence emission in vacuum. Moreover, a Young's double-slit interference experiment is performed to directly confirm the spatially coherent emission. This smoking gun proof of spatial coherence is reported here for the first time for the optical-mode-modified emission. PMID:25793015
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
NASA Astrophysics Data System (ADS)
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-08-01
The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.
Building an Open-source Simulation Platform of Acoustic Radiation Force-based Breast Elastography
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-01-01
Ultrasound-based elastography including strain elastography (SE), acoustic radiation force Impulse (ARFI) imaging, point shear wave elastography (pSWE) and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. “ground truth”) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity – one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments. PMID:28075330
Building an open-source simulation platform of acoustic radiation force-based breast elastography
NASA Astrophysics Data System (ADS)
Wang, Yu; Peng, Bo; Jiang, Jingfeng
2017-03-01
Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In summary, our initial results were consistent with our expectations and what have been reported in the literature. The proposed (open-source) simulation platform can serve as a single gateway to perform many elastographic simulations in a transparent manner, thereby promoting collaborative developments.
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2016-10-01
We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.
Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali
2013-02-01
Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.
Perception of power modulation of light in conjunction with acoustic stimulation
NASA Astrophysics Data System (ADS)
Hahlweg, Cornelius F.; Weyer, Cornelia; Gercke-Hahn, Harald; Gutzmann, Holger L.; Brahmann, Andre; Rothe, Hendrik
2013-09-01
The present paper is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems of occupational medicine concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects which are interesting in the context of Optics and Music. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we questioned if such coherence is perceivable at all. Concept, experimental set-up and first results are discussed in short.
Optical coherence tomography findings of bilateral foveal leukemic infiltration.
Le, John Q; Braich, Puneet S; Brar, Vikram S
2016-01-01
We report a case of a 59-year-old man with a history of atypical chronic myelogenous leukemia who presented with a several-week history of decreased vision in both eyes. His clinical examination revealed bilateral foveal infiltration, which was also demonstrated on optical coherence tomography. After a failed induction with imatinib (Gleevec(®)), he was treated with omacetaxine (Synribo(®)) with an appropriate hematologic response. As his leukemia improved with chemotherapy, his retinal lesions regressed as demonstrated by serial optical coherence tomography and fundus photographs, with near complete restoration of foveal architecture.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
NASA Astrophysics Data System (ADS)
Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.
2018-03-01
We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.
Coherent Doppler Wind Lidar Technology for Space Based Wind Measurements Including SPARCLE
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.
1999-01-01
It has been over 30 years since coherent lidar systems first measured wind velocity, and over 20 years since the "ultimate application" of measuring Earth's winds from space was conceived. Coherent or heterodyne optical detection involves the combination (or mixing) of the returned optical field with a local oscillator (LO) laser's optical field on the optical detector. This detection technique yields the benefits of dramatically improved signal-to-noise ratios; insensitivity to detector noise, background light and multiply scattered light; reduction of the returned signal's dynamic range; and preservation of the optical signal spectrum for electronic and computer processing. (Note that lidar systems are also referred to as optical radar, laser radar, and LADAR systems.) Many individuals, agencies, and countries have pursued the goal of space-based wind measurements through technology development, experiments, field campaigns and studies.
High efficiency coherent optical memory with warm rubidium vapour
Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.
2011-01-01
By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952
High efficiency coherent optical memory with warm rubidium vapour.
Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C
2011-02-01
By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.
On important precursor of singular optics (tutorial)
NASA Astrophysics Data System (ADS)
Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.
2018-01-01
The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].
Vergari, Claudio; Dubois, Guillaume; Vialle, Raphael; Gennisson, Jean-Luc; Tanter, Mickael; Dubousset, Jean; Rouch, Philippe; Skalli, Wafa
2016-04-01
Intervertebral disc (IVD) is key to spine biomechanics, and it is often involved in the cascade leading to spinal deformities such as idiopathic scoliosis, especially during the growth spurt. Recent progress in elastography techniques allows access to non-invasive measurement of cervical IVD in adults; the aim of this study was to determine the feasibility and reliability of shear wave elastography in healthy children lumbar IVD. Elastography measurements were performed in 31 healthy children (6-17 years old), in the annulus fibrosus and in the transverse plane of L5-S1 or L4-L5 IVD. Reliability was determined by three experienced operators repeating measurements. Average shear wave speed in IVD was 2.9 ± 0.5 m/s; no significant correlations were observed with sex, age or body morphology. Intra-operator repeatability was 5.0 % while inter-operator reproducibility was 6.2 %. Intraclass correlation coefficient was higher than 0.9 for each operator. Feasibility and reliability of IVD shear wave elastography were demonstrated. The measurement protocol is compatible with clinical routine and the results show the method's potential to give an insight into spine deformity progression and early detection. • Intervertebral disc mechanical properties are key to spine biomechanics • Feasibility of shear wave elastography in children lumbar disc was assessed • Measurement was fast and reliable • Elastography could represent a novel biomarker for spine pathologies.
Ultrasound elastography of the prostate: state of the art.
Correas, J-M; Tissier, A-M; Khairoune, A; Khoury, G; Eiss, D; Hélénon, O
2013-05-01
Prostate cancer is the cancer exhibiting the highest incidence rate and it appears as the second cause of cancer death in men, after lung cancer. Prostate cancer is difficult to detect, and the treatment efficacy remains limited despite the increase use of biological tests (prostate-specific antigen [PSA] dosage), the development of new imaging modalities, and the use of invasive procedures such as biopsy. Ultrasound elastography is a novel imaging technique capable of mapping tissue stiffness of the prostate. It is known that prostatic cancer tissue is often harder than healthy tissue (information used by digital rectal examination [DRE]). Two elastography techniques have been developed based on different principles: first, quasi-static (or strain) technique, and second, shear wave technique. The tissue stiffness information provided by US elastography should improve the detection of prostate cancer and provide guidance for biopsy. Prostate elastography provides high sensitivity for detecting prostate cancer and shows high negative predictive values, ensuring that few cancers will be missed. US elastography should become an additional method of imaging the prostate, complementing the conventional transrectal ultrasound and MRI. This technique requires significant training (especially for quasi-static elastography) to become familiar with acquisition process, acquisition technique, characteristics and limitations, and to achieve correct diagnoses. Copyright © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Correlates of mammographic density in B-mode ultrasound and real time elastography.
Jud, Sebastian Michael; Häberle, Lothar; Fasching, Peter A; Heusinger, Katharina; Hack, Carolin; Faschingbauer, Florian; Uder, Michael; Wittenberg, Thomas; Wagner, Florian; Meier-Meitinger, Martina; Schulz-Wendtland, Rüdiger; Beckmann, Matthias W; Adamietz, Boris R
2012-07-01
The aim of our study involved the assessment of B-mode imaging and elastography with regard to their ability to predict mammographic density (MD) without X-rays. Women, who underwent routine mammography, were prospectively examined with additional B-mode ultrasound and elastography. MD was assessed quantitatively with a computer-assisted method (Madena). The B-mode and elastography images were assessed by histograms with equally sized gray-level intervals. Regression models were built and cross validated to examine the ability to predict MD. The results of this study showed that B-mode imaging and elastography were able to predict MD. B-mode seemed to give a more accurate prediction. R for B-mode image and elastography were 0.67 and 0.44, respectively. Areas in the B-mode images that correlated with mammographic dense areas were either dark gray or of intermediate gray levels. Concerning elastography only the gray levels that represent extremely stiff tissue correlated positively with MD. In conclusion, ultrasound seems to be able to predict MD. Easy and cheap utilization of regular breast ultrasound machines encourages the use of ultrasound in larger case-control studies to validate this method as a breast cancer risk predictor. Furthermore, the application of ultrasound for breast tissue characterization could enable comprehensive research concerning breast cancer risk and breast density in young and pregnant women.
Sadeghi, S. M.; Hood, B.; Patty, K. D.; Mao, C.-B.
2013-01-01
We use quantum coherence in a system consisting of one metallic nanorod and one semi-conductor quantum dot to investigate a plasmonic nanosensor capable of digital optical detection and recognition of single biological molecules. In such a sensor the adsorption of a specific molecule to the nanorod turns off the emission of the system when it interacts with an optical pulse having a certain intensity and temporal width. The proposed quantum sensors can count the number of molecules of the same type or differentiate between molecule types with digital optical signals that can be measured with high certainty. We show that these sensors are based on the ultrafast upheaval of coherent dynamics of the system and the removal of coherent blockage of energy transfer from the quantum dot to the nanorod once the adsorption process has occurred. PMID:24040424
NASA Astrophysics Data System (ADS)
Dontu, S.; Miclos, S.; Savastru, D.; Tautan, M.
2017-09-01
In recent years many optoelectronic techniques have been developed for improvement and the development of devices for tissue analysis. Spectral-Domain Optical Coherence Tomography (SD-OCT) is a new medical interferometric imaging modality that provides depth resolved tissue structure information with resolution in the μm range. However, SD-OCT has its own limitations and cannot offer the biochemical information of the tissue. These data can be obtained with hyperspectral imaging, a non-invasive, sensitive and real time technique. In the present study we have combined Spectral-Domain Optical Coherence Tomography (SD-OCT) with Hyperspectral imaging (HSI) for tissue analysis. The Spectral-Domain Optical Coherence Tomography (SD-OCT) and Hyperspectral imaging (HSI) are two methods that have demonstrated significant potential in this context. Preliminary results using different tissue have highlighted the capabilities of this technique of combinations.
Coherent fiber supercontinuum for biophotonics
Tu, Haohua; Boppart, Stephen A.
2013-01-01
Biophotonics and nonlinear fiber optics have traditionally been two independent fields. Since the discovery of fiber-based supercontinuum generation in 1999, biophotonics applications employing incoherent light have experienced a large impact from nonlinear fiber optics, primarily because of the access to a wide range of wavelengths and a uniform spatial profile afforded by fiber supercontinuum. However, biophotonics applications employing coherent light have not benefited from the most well-known techniques of supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, and inadequate portability. Fortunately, a few key techniques involving nonlinear fiber optics and femtosecond laser development have emerged to overcome these critical limitations. Despite their relative independence, these techniques are the focus of this review, because they can be integrated into a low-cost portable biophotonics source platform. This platform can be shared across many different areas of research in biophotonics, enabling new applications such as point-of-care coherent optical biomedical imaging. PMID:24358056
Optical sectioning in induced coherence tomography with frequency-entangled photons
NASA Astrophysics Data System (ADS)
Vallés, Adam; Jiménez, Gerard; Salazar-Serrano, Luis José; Torres, Juan P.
2018-02-01
We demonstrate a different scheme to perform optical sectioning of a sample based on the concept of induced coherence [Zou et al., Phys. Rev. Lett. 67, 318 (1991), 10.1103/PhysRevLett.67.318]. This can be viewed as a different type of optical coherence tomography scheme where the varying reflectivity of the sample along the direction of propagation of an optical beam translates into changes of the degree of first-order coherence between two beams. As a practical advantage the scheme allows probing the sample with one wavelength and measuring photons with another wavelength. In a bio-imaging scenario, this would result in a deeper penetration into the sample because of probing with longer wavelengths, while still using the optimum wavelength for detection. The scheme proposed here could achieve submicron axial resolution by making use of nonlinear parametric sources with broad spectral bandwidth emission.
Probing coherence in microcavity frequency combs via optical pulse shaping
NASA Astrophysics Data System (ADS)
Ferdous, Fahmida; Miao, Houxun; Wang, Pei-Hsun; Leaird, Daniel E.; Srinivasan, Kartik; Chen, Lei; Aksyuk, Vladimir; Weiner, Andrew M.
2012-09-01
Recent investigations of microcavity frequency combs based on cascaded four-wave mixing have revealed a link between the evolution of the optical spectrum and the observed temporal coherence. Here we study a silicon nitride microresonator for which the initial four-wave mixing sidebands are spaced by multiple free spectral ranges (FSRs) from the pump, then fill in to yield a comb with single FSR spacing, resulting in partial coherence. By using a pulse shaper to select and manipulate the phase of various subsets of spectral lines, we are able to probe the structure of the coherence within the partially coherent comb. Our data demonstrate strong variation in the degree of mutual coherence between different groups of lines and provide support for a simple model of partially coherent comb formation.
NASA Astrophysics Data System (ADS)
Basharov, Askhat M.
1995-10-01
It is shown theoretically that additional illumination by a squeezed field of a thin layer of two-level atoms, which interact with a resonant coherent electromagnetic wave, results in bistable transmission/reflection of this wave. This bistability depends strongly on the difference between the phases of the coherent and squeezed fields.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.
1992-01-01
Performance measurements are reported concerning a coherent optical communication receiver that contained an iron doped indium phosphide photorefractive beam combiner, rather than a conventional optical beam splitter. The system obtained a bit error probability of 10(exp -6) at received signal powers corresponding to less than 100 detected photons per bit. The system used phase modulated Nd:YAG laser light at a wavelength of 1.06 microns.
Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia
2013-03-01
To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
NASA Technical Reports Server (NTRS)
Nein, M. E.; Davis, B. G.
1982-01-01
The Coherent Optical System of Modular Imaging Collectors (COSMIC) is the design concept for a phase-coherent optical telescope array that may be placed in earth orbit by the Space Shuttle in the 1990s. The initial system module is a minimum redundancy array whose photon collecting area is three times larger than that of the Space Telescope, and possesses a one-dimensional resoution of better than 0.01 arcsec in the visible range. Thermal structural requirements are assessed. Although the coherent beam combination requirements will be met by an active control system, the COSMIC structural/thermal design must meet more stringent performance criteria than even those of the Space Telescope.
NASA Technical Reports Server (NTRS)
Yuen, H. P.; Shapiro, J. H.
1978-01-01
To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.
Barr, Richard G; Zhang, Zheng
2015-04-01
To determine whether addition of quality measure (QM) of shear-wave (SW) velocity (Vs) estimation can increase SW elastography sensitivity for breast cancer. With written informed consent, this institutional review board-approved, HIPAA-compliant study included 143 women (mean age, 48.5 years ± 8.7) scheduled for breast biopsy. Mean lesion size was 16.4 mm ± 11.8; 95 (66%) lesions were benign; 48 (34%), malignant. If more than one lesion was present, lesion with highest Breast Imaging Reporting and Data System (BI-RADS) category was chosen. If there were more than one with highest BI-RADS category, a lesion was randomly selected. Conventional ultrasonography (US), strain elastography, and SW elastography were performed with QM. QM assesses SW quality to provide accurate Vs. Lesions were evaluated for Vs and QM (high or low). Lesions with Vs of less than 4.5 m/sec were classified benign; lesions with Vs of 4.5 m/sec or greater, malignant. Results were correlated with pathologic findings. Vs data with or without incorporating QM were used to determine SW elastography diagnostic performance. Binomial proportions and exact 95% confidence intervals (CIs) were calculated. In 95 benign lesions, 13 (14%) had no SW elastography signal; 77 (81%), Vs of less than 4.5 m/sec; and five (5%), Vs of 4.5 m/sec or greater. In 48 malignant lesions, eight (17%) had no SW elastography signal; 20 (42%), Vs of less than 4.5 m/sec; and 20 (42%), V of 4.5 m/sec or greater. QM was low in 17 of 20 (85%) malignant lesions with Vs of less than 4.5 m/sec. Without QM, using Vs of 4.5 m/sec or greater as test positive, SW elastography had lesion-level sensitivity of 50% (95% CI: 34%, 66%); specificity, 94% (95% CI: 86%, 98%); positive predictive value (PPV), 80% (95% CI: 59%, 93%); and negative predictive value (NPV), 79% (95% CI: 70%, 87%). Using QM where additional lesions with both low Vs and low QM were treated as test positive, SW elastography had lesion-level sensitivity of 93% (95% CI: 80%, 98%); specificity, 89% (95% CI: 80%, 95%); PPV, 80% (95% CI: 66%, 91%); and NPV, 96% (95% CI: 89%, 99%). Addition of QM can improve SW elastography sensitivity, with no significant change in specificity. © RSNA, 2014 Online supplemental material is available for this article.
Safrani, Avner; Abdulhalim, Ibrahim
2011-06-20
Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.
Okasha, Hussein; Elkholy, Shaimaa; El-Sayed, Ramy; Wifi, Mohamed-Naguib; El-Nady, Mohamed; El-Nabawi, Walid; El-Dayem, Waleed A; Radwan, Mohamed I; Farag, Ali; El-Sherif, Yahya; Al-Gemeie, Emad; Salman, Ahmed; El-Sherbiny, Mohamed; El-Mazny, Ahmed; Mahdy, Reem E
2017-08-28
To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL). A total of 172 patients with SPL identified by endoscopic ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses. SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL. Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL.
Okasha, Hussein; Elkholy, Shaimaa; El-Sayed, Ramy; Wifi, Mohamed-Naguib; El-Nady, Mohamed; El-Nabawi, Walid; El-Dayem, Waleed A; Radwan, Mohamed I; Farag, Ali; El-sherif, Yahya; Al-Gemeie, Emad; Salman, Ahmed; El-Sherbiny, Mohamed; El-Mazny, Ahmed; Mahdy, Reem E
2017-01-01
AIM To evaluate the accuracy of the elastography score combined to the strain ratio in the diagnosis of solid pancreatic lesions (SPL). METHODS A total of 172 patients with SPL identified by endoscopic ultrasound were enrolled in the study to evaluate the efficacy of elastography and strain ratio in differentiating malignant from benign lesions. The semi quantitative score of elastography was represented by the strain ratio method. Two areas were selected, area (A) representing the region of interest and area (B) representing the normal area. Area (B) was then divided by area (A). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated by comparing diagnoses made by elastography, strain ratio and final diagnoses. RESULTS SPL were shown to be benign in 49 patients and malignant in 123 patients. Elastography alone had a sensitivity of 99%, a specificity of 63%, and an accuracy of 88%, a PPV of 87% and an NPV of 96%. The best cut-off level of strain ratio to obtain the maximal area under the curve was 7.8 with a sensitivity of 92%, specificity of 77%, PPV of 91%, NPV of 80% and an accuracy of 88%. Another estimated cut off strain ratio level of 3.8 had a higher sensitivity of 99% and NPV of 96%, but with less specificity, PPV and accuracy 53%, 84% and 86%, respectively. Adding both elastography to strain ratio resulted in a sensitivity of 98%, specificity of 77%, PPV of 91%, NPV of 95% and accuracy of 92% for the diagnosis of SPL. CONCLUSION Combining elastography to strain ratio increases the accuracy of the differentiation of benign from malignant SPL. PMID:28932088
Ooi, Chin Chin; Richards, Paula J; Maffulli, Nicola; Ede, David; Schneider, Michal E; Connell, David; Morrissey, Dylan; Malliaras, Peter
2016-05-01
To investigate the diagnostic performance of grey scale Ultrasound (US), power Doppler (PD) and US elastography for diagnosing painful patellar tendinopathy, and to establish their relationship with Victorian Institute of Sport Assessment-Patella (VISA-P) scores in a group of volleyball players with and without symptoms of patellar tendinopathy. Cross-sectional study. Thirty-five volleyball players (70 patellar tendons) were recruited during a national university volleyball competition. Players were imaged with conventional US followed by elastography. The clinical findings of painful patellar tendons were used as the reference standard for diagnosing patellar tendinopathy. In addition, all participants completed the VISA-P questionnaires. Of the 70 patellar tendons, 40 (57.1%) were clinically painful. The diagnostic accuracy of grey scale US, PD and elastography were 60%, 50%, 62.9%, respectively, with sensitivity/specificity of 72.5%/43.3%, 12.5%/100%, and 70%/53.3%, respectively. Combined US elastography and grey scale imaging achieved 82.5% sensitivity, 33.3% specificity and 61.4% accuracy while routine combination technique of PD and grey scale imaging revealed 72.5% sensitivity, 43.3% specificity and 60.0% accuracy. Tendons in players categorized as soft on elastography had statistically significantly greater AP thickness (p<0.001) and lower VISA-P scores (p=0.004) than those categorized as hard. There was no significant association between grey scale US abnormalities (hypoechogenicities and/or fusiform swelling) and VISA-P scores (p=0.098). Soft tendon properties depicted by US elastography may be more related to patellar tendon symptoms compared to grey scale US abnormalities. The supplementation of US elastography to conventional US may enhance the sensitivity for diagnosing patellar tendinopathy in routine clinical practice. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Reiter, Rolf; Wetzel, Martin; Hamesch, Karim; Strnad, Pavel; Asbach, Patrick; Haas, Matthias; Siegmund, Britta; Trautwein, Christian; Hamm, Bernd; Klatt, Dieter; Braun, Jürgen; Sack, Ingolf; Tzschätzsch, Heiko
2018-01-01
Although it has been known for decades that patients with alpha1-antitrypsin deficiency (AATD) have an increased risk of cirrhosis and hepatocellular carcinoma, limited data exist on non-invasive imaging-based methods for assessing liver fibrosis such as magnetic resonance elastography (MRE) and acoustic radiation force impulse (ARFI) quantification, and no data exist on 2D-shear wave elastography (2D-SWE). Therefore, the purpose of this study is to evaluate and compare the applicability of different elastography methods for the assessment of AATD-related liver fibrosis. Fifteen clinically asymptomatic AATD patients (11 homozygous PiZZ, 4 heterozygous PiMZ) and 16 matched healthy volunteers were examined using MRE and ARFI quantification. Additionally, patients were examined with 2D-SWE. A high correlation is evident for the shear wave speed (SWS) determined with different elastography methods in AATD patients: 2D-SWE/MRE, ARFI quantification/2D-SWE, and ARFI quantification/MRE (R = 0.8587, 0.7425, and 0.6914, respectively; P≤0.0089). Four AATD patients with pathologically increased SWS were consistently identified with all three methods-MRE, ARFI quantification, and 2D-SWE. The high correlation and consistent identification of patients with pathologically increased SWS using MRE, ARFI quantification, and 2D-SWE suggest that elastography has the potential to become a suitable imaging tool for the assessment of AATD-related liver fibrosis. These promising results provide motivation for further investigation of non-invasive assessment of AATD-related liver fibrosis using elastography.
NASA Astrophysics Data System (ADS)
Schaefer, S.; Gregory, M.; Rosenkranz, W.
2017-09-01
Due to higher data rates, better data security and unlicensed spectral usage optical inter-satellite links (OISL) offer an attractive alternative to conventional RF-communication. However, the very high transmission distances necessitate an optical receiver design enabling high receiver sensitivity which requires careful carrier synchronization and a quasi-coherent detection scheme.
A Method of Assembling Compact Coherent Fiber-Optic Bundles
NASA Technical Reports Server (NTRS)
Martin, Stefan; Liu, Duncan; Levine, Bruce Martin; Shao, Michael; Wallace, James
2007-01-01
A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based, straightforwardly, on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.
The Development, Commercialization, and Impact of Optical Coherence Tomography
Fujimoto, James; Swanson, Eric
2016-01-01
This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function – diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an “ecosystem” consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact – all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459
Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots.
Kim, David Y; Hwang, John C; Moore, Anthony T; Bird, Alan C; Tsang, Stephen H
2010-09-01
The purpose of this study was to describe the findings of fundus autofluores-cence (FAF) and optical coherence tomography in a series of patients with congenital grouped albinotic spots. Three eyes of three patients with congenital grouped albinotic spots were evaluated with FAF and optical coherence tomography imaging to evaluate the nature of the albinotic spots. In all three eyes with congenital grouped albinotic spots, FAF imaging showed autofluorescent spots corresponding to the albinotic spots seen on stereo biomicroscopy. One eye also had additional spots detected on FAF imaging that were not visible on stereo biomicroscopy or color fundus photographs. Fundus autofluorescence imaging of the spots showed decreased general autofluorescence and decreased peripheral autofluorescence surrounding central areas of retained or increased autofluorescence. Optical coherence tomography showed a disruption in signal from the hyperreflective layer corresponding to the inner and outer segment junction and increased signal backscattering from the choroid in the area of the spots. Fluorescein angiography showed early and stable hyperfluorescence of the spots without leakage. In this case series, FAF showed decreased autofluorescence of the spots consistent with focal retinal pigment epithelium atrophy or abnormal material blocking normal autofluorescence and areas of increased autofluorescence suggesting retinal pigment epithelium dysfunction. The findings of optical coherence tomography and fluorescein angiography suggest photoreceptor and retinal pigment epithelium layer abnormalities. Fundus autofluorescence and optical coherence tomography are useful noninvasive diagnostic adjuncts that can aid in the diagnosis of congenital grouped albinotic spots, help determine extent of disease, and contribute to our understanding of its pathophysiology.
Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G
2017-01-01
To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.
Brazio, Philip S.; Laird, Patrick C.; Xu, Chenyang; Gu, Junyan; Burris, Nicholas S.; Brown, Emile N.; Kon, Zachary N.; Poston, Robert S.
2009-01-01
Objective Vasospasm is the primary obstacle to widespread adoption of the radial artery as a conduit in coronary artery bypass grafting. We used optical coherence tomography, a catheter-based intravascular imaging modality, to measure the degree of radial artery spasm induced by means of harvest with electrocautery or a harmonic scalpel in patients undergoing coronary artery bypass grafting. Methods Radial arteries were harvested from 44 consecutive patients with a harmonic scalpel (n = 15) or electrocautery (n = 29). Vessels were imaged before harvesting and after removal from the arm, with saphenous vein tracts serving as internal controls. Optical coherence tomographic findings for the degree of harvesting-induced injury were validated against histologic measures. Results Optical coherence tomographic measures of endovascular dimensions and injury correlated strongly with histologic findings. Mean luminal volume, a measure of vasospasm, decreased significantly less after harvesting with a harmonic scalpel (9% ± 7%) than with electrocautery (35% ± 6%, P = .015). Completely intact intima was present in 11 (73%) of 15 radial arteries harvested with a harmonic scalpel (73%) compared with 9 of 29 arteries harvested by means of electrocautery (31%, P = .011). Intraoperative flow measurements and patency rates at 5 days postoperatively were not significantly different among groups. Conclusions Optical coherence tomography provides a level of speed and accuracy for quantifying endothelial injury and vasospasm that has not been described for any other modality, suggesting potential as an intraoperative quality assurance tool. Our optical coherence tomographic findings suggest that the harmonic scalpel induces less spasm and intimal injury compared with electrocautery. PMID:19026820
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Attenburrow, Don P.; Winlove, C. Peter; Matcher, Stephen J.
2005-08-01
Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. × 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.
General interference law for nonstationary, separable optical fields.
Manea, Vladimir
2009-09-01
An approach to the theory of partial coherence for nonstationary optical fields is presented. Starting with a spectral representation, a favorable decomposition of the optical signals is discussed that supports a natural extension of the mathematical formalism. The coherence functions are redefined, but still as temporal correlation functions, allowing the obtaining of a more general form of the interference law for partially coherent optical signals. The general theory is applied in some relevant particular cases of nonstationary interference, namely, with quasi-monochromatic beams of different frequencies and with phase-modulated quasi-monochromatic beams of similar frequency spectra. All the results of the general treatment are reducible to the ones given in the literature for the case of stationary interference.
NASA Astrophysics Data System (ADS)
Yang, Victor X. D.; Gordon, Maggie L.; Tang, Shou-Jiang; Marcon, Norman E.; Gardiner, Geoffrey; Qi, Bing; Bisland, Stuart; Seng-Yue, Emily; Lo, Stewart; Pekar, Julius; Wilson, Brian C.; Vitkin, I. Alex
2003-09-01
We previously described a fiber based Doppler optical coherence tomography system [1] capable of imaging embryo cardiac blood flow at 4~16 frames per second with wide velocity dynamic range [2]. Coupling this system to a linear scanning fiber optical catheter design that minimizes friction and vibrations, we report here the initial results of in vivo endoscopic Doppler optical coherence tomography (EDOCT) imaging in normal rat and human esophagus. Microvascular flow in blood vessels less than 100 µm diameter was detected using a combination of color-Doppler and velocity variance imaging modes, during clinical endoscopy using a mobile EDOCT system.
NASA Astrophysics Data System (ADS)
Giggenbach, Dirk; Schex, Anton; Wandernoth, Bernhard
1996-04-01
The Optical Communications Group of the German Aerospace Research Establishment (DLR) has investigated the feasibility of a fiberless receiver telescope for high sensitive coherent optical space communication, resulting in an elegant pointing, acquisition and tracking (PAT) concept. To demonstrate the feasibility of this new concept, an optical receiver terminal that coherently obtains both the spatial error signal for tracking and the data signal with only one set of detectors has been built. The result is a very simple and compact setup with few optical surfaces. It does not require fibers for superpositioning and is capable to compensate for microaccelerations up to about one kilohertz.
Micromachined array tip for multifocus fiber-based optical coherence tomography.
Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex
2004-08-01
High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.
Two improved coherent optical feedback systems for optical information processing
NASA Technical Reports Server (NTRS)
Lee, S. H.; Bartholomew, B.; Cederquist, J.
1976-01-01
Coherent optical feedback systems are Fabry-Perot interferometers modified to perform optical information processing. Two new systems based on plane parallel and confocal Fabry-Perot interferometers are introduced. The plane parallel system can be used for contrast control, intensity level selection, and image thresholding. The confocal system can be used for image restoration and solving partial differential equations. These devices are simpler and less expensive than previous systems. Experimental results are presented to demonstrate their potential for optical information processing.
Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.
2010-09-07
This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.
Ray-optical theory of broadband partially coherent emission
NASA Astrophysics Data System (ADS)
Epstein, Ariel; Tessler, Nir; Einziger, Pinchas D.
2013-04-01
We present a rigorous formulation of the effects of spectral broadening on emission of partially coherent source ensembles embedded in multilayered formations with arbitrarily shaped interfaces, provided geometrical optics is valid. The resulting ray-optical theory, applicable to a variety of optical systems from terahertz lenses to photovoltaic cells, quantifies the fundamental interplay between bandwidth and layer dimensions, and sheds light on common practices in optical analysis of statistical fields, e.g., disregarding multiple reflections or neglecting interference cross terms.
Fiber-optic-bundle-based optical coherence tomography.
Xie, Tuqiang; Mukai, David; Guo, Shuguang; Brenner, Matthew; Chen, Zhongping
2005-07-15
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.
Two mode optical fiber in space optics communication
NASA Astrophysics Data System (ADS)
Hampl, Martin
2017-11-01
In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.
Simultaneous transfer of optical frequency and time over 306 km long-haul optical fibre link
NASA Astrophysics Data System (ADS)
Hucl, Vaclav; Cizek, Martin; Pravdova, Lenka; Rerucha, Simon; Hrabina, Jan; Mikel, Bretislav; Smotlacha, Vladimir; Vojtech, Josef; Lazar, Josef; Cip, Ondrej
2016-12-01
Optical fibre links for distributing optical frequencies and time stamps were researched and experimentally tested in the past fifteen years. They have been used mainly for stability comparison of experimental optical clocks. But recent development puts demands on a technology transfer from laboratory experiments to the real industry. The remote calibration of interrogators of Fibre Bragg Grating strain sensory networks is one of important examples. The first step of the adoption the time and frequency broadcasting should be the drop-out free long-term operation of this technology between research laboratories connected via long-haul fibre links. We present a 306 km long-haul optical fibre link between the cities of Prague and Brno in the Czech Republic where a coherent transfer of stable optical frequency and a stable time signal has been firstly demonstrated. The link between ISI CAS Brno and CESNET Prague uses an internet communication fibre where a window of 1540-1546 nm is dedicated for the coherent transfer and 1PPS signal. The link is equipped with 6 bidirectional EDFA amplifiers. The optical frequency standard based on the highly-coherent laser Koheras Adjustik working at 1540.5 nm and stabilized with a saturation absorption spectroscopy technique was used for the coherent wave transfer. The suppression of the Doppler shift induced by the optical fibre was based on an accoustooptical modulator with a servo-loop including a fast PID controller processing the beat-note frequency given by mixing of the Adjustik laser (Brno) and the reflected frequency of this laser from the far end of 306 km long-haul fibre link (Prague). We verified the Doppler shift suppression for the coherent wave with a measuring method analysing the transport delay of the 1PPS signal.
Optical Communications Experiments at 6328 A and 10.6 micro.
Lucy, R F; Lang, K
1968-10-01
Diagnostic optical communication experiments were performed comparing noncoherent and coherent detection techniques. Three different receiver-transmitter configurations with variable apertures were used during the experiments that were performed over a 1-km real atmospheric path. In every case, it was found that the coherent system fading, due to atmospheric turbulence, was considerably greater than the noncoherent system fading. This result shows the greater sensitivity of the coherent system to the time-varying wavefront breakup produced by atmospheric turbulence. A coherent homodyne experiment at 10.6 micro over a 2-km round-trip path was also performed. Its results indicated that a coherent system at 10.6 micro is less susceptible to atmospheric turbulence than a coherent system at 6328 A.
Evaluation of posterior porcine sclera elasticity in situ as a function of IOP
NASA Astrophysics Data System (ADS)
Nair, Achuth; Wu, Chen; Singh, Manmohan; Liu, Chih Hao; Raghunathan, Raksha; Nguyen, Jennifer; Goh, Megan; Aglyamov, Salavat; Larin, Kirill V.
2018-02-01
The biomechanical properties of the sclera could provide key information regarding the progression and etiology of ocular diseases. For example, an elevated intraocular pressure is one of the most common risk factors for glaucoma and can cause pathological deformations in the tissues of the posterior eye, such as the sclera, potentially damaging these vital tissues. Previous work has evaluated scleral biomechanical response to global displacements with techniques such as inflation testing. However, these methods cannot provide localized biomechanical assessments. In this pilot work, we induce low amplitude (< 10 μm) elastic waves using acoustic radiation force in posterior scleral tissue of fresh porcine eyes (n=2) in situ. The wave propagation induced using an ultrasound transducer was detected across an 8 mm region using a phase-sensitive optical coherence elastography system (PhS-OCE). The elastographic measurements were taken at various artificially controlled intraocular pressures (IOP). The IOP was pre-cycled before being set to 10 mmHg for the first measurement. Subsequent measurements were taken at 20 mmHg and 30 mmHg for each sample. The results show an increase in the stiffness of the sclera as a function of IOP. Furthermore, we observed a variation in the elasticity based on direction, suggesting that the sclera has anisotropic biomechanical properties. Our results show that OCE is an effective method for evaluating the mechanical properties of the sclera, and reveals a new area for our future work.
Wu, Yanling; Wu, Qiong; Sun, Fei; Cheng, Cai; Meng, Sheng; Zhao, Jimin
2015-01-01
Generating electron coherence in quantum materials is essential in optimal control of many-body interactions and correlations. In a multidomain system this signifies nonlocal coherence and emergence of collective phenomena, particularly in layered 2D quantum materials possessing novel electronic structures and high carrier mobilities. Here we report nonlocal ac electron coherence induced in dispersed MoS2 flake domains, using coherent spatial self-phase modulation (SSPM). The gap-dependent nonlinear dielectric susceptibility χ(3) measured is surprisingly large, where direct interband transition and two-photon SSPM are responsible for excitations above and below the bandgap, respectively. A wind-chime model is proposed to account for the emergence of the ac electron coherence. Furthermore, all-optical switching is achieved based on SSPM, especially with two-color intraband coherence, demonstrating that electron coherence generation is a ubiquitous property of layered quantum materials. PMID:26351696
Quantum-Fluctuation-Initiated Coherence in Multioctave Raman Optical Frequency Combs
NASA Astrophysics Data System (ADS)
Wang, Y. Y.; Wu, Chunbai; Couny, F.; Raymer, M. G.; Benabid, F.
2010-09-01
We show experimentally and theoretically that the spectral components of a multioctave frequency comb spontaneously created by stimulated Raman scattering in a hydrogen-filled hollow-core photonic crystal fiber exhibit strong self-coherence and mutual coherence within each 12 ns driving laser pulse. This coherence arises in spite of the field’s initiation being from quantum zero-point fluctuations, which causes each spectral component to show large phase and energy fluctuations. This points to the possibility of an optical frequency comb with nonclassical correlations between all comb lines.
Ultrasound elastography in the early diagnosis of plantar fasciitis.
Lee, So-Yeon; Park, Hee Jin; Kwag, Hyon Joo; Hong, Hyun-Pyo; Park, Hae-Won; Lee, Yong-Rae; Yoon, Kyung Jae; Lee, Yong-Taek
2014-01-01
The purpose of this study was to investigate whether ultrasound (US) elastography is useful for the early diagnosis of plantar fasciitis. We retrospectively reviewed US elastography findings of 18 feet with a clinical history and physical examination highly suggestive of plantar fasciitis but with normal findings on conventional US imaging as well as 18 asymptomatic feet. Softening of the plantar fascia was significantly greater in the patient than in the control group [Reviewers 1 and 2: 89% (16/18) vs. 50% (9/18), P=.027, respectively]. US elastography is useful for the early diagnosis of plantar fasciitis. Copyright © 2014 Elsevier Inc. All rights reserved.
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
NASA Astrophysics Data System (ADS)
Kuranov, R. V.; Sapozhnikova, V. V.; Shakhova, N. M.; Gelikonov, V. M.; Zagainova, E. V.; Petrova, S. A.
2002-11-01
A combined application of optical methods [optical coherent tomography (OCT), cross-polarisation optical coherent tomography, and fluorescence spectroscopy] is proposed for obtaining information on morphological and biochemical changes occurring in tissues in norm and pathology. It is shown that neoplastic and scar changes in esophagus can be distinguished using a combination of polarisation and standard OCT due to the difference between the depolarising properties of the tissues caused by the structural properties of collagenic fibres in stroma. It is shown that OCT combined with fluorescence spectroscopy with the use of 5-aminolevulinic acid is promising for determining the boundaries of carcinoma of the uterine cervix and vulva. It is found that the tumour boundary detected by optical methods coincides with the morphological boundary and extends beyond colposcopically determined boundary by about 2 mm.
Chen, Wen; Chen, Xudong
2011-05-09
In recent years, coherent diffractive imaging has been considered as a promising alternative for information retrieval instead of conventional interference methods. Coherent diffractive imaging using the X-ray light source has opened up a new research perspective for the measurement of non-crystalline and biological specimens, and can achieve unprecedentedly high resolutions. In this paper, we show how a three-dimensional (3D) particle-like distribution and coherent diffractive imaging can be applied for a study of optical cryptography. An optical multiple-random-phase-mask encoding approach is used, and the plaintext is considered as a series of particles distributed in a 3D space. A topology concept is also introduced into the proposed optical cryptosystem. During image decryption, a retrieval algorithm is developed to extract the plaintext from the ciphertexts. In addition, security and advantages of the proposed optical cryptography topology are also analyzed. © 2011 Optical Society of America
Optical characterization in wide spectral range by a coherent spectrophotometer
NASA Astrophysics Data System (ADS)
Sirutkaitis, Valdas; Eckardt, Robert C.; Balachninaite, Ona; Grigonis, Rimantas; Melninkaitis, A.; Rakickas, T.
2003-11-01
We report on the development and use of coherent spectrophotometers specialized for the unusual requirements of characterizing nonlinear optical materials and multilayer dielectric coatings used in laser systems. A large dynamic range is required to measure the linear properties of transmission, reflection and absorption and nonlinear properties of laser-induced damage threshold and nonlinear frequency conversion. Optical parametric oscillators generate coherent radiation that is widely tunable with instantaneous powers that can range from milliwatts to megawatts and are well matched to this application. As particular example a laser spectrophotometer based on optical parametric oscillators and a diode-pumped, Q-switched Nd:YAG laser and suitable for optical characterization in the spectral range 420-4500 nm is described. Measurements include reflectance and transmittance, absorption, scattering and laser-induced damage thresholds. Possibilities of a system based on a 130-fs Ti:sapphire laser and optical parametric generators are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuranov, R V; Sapozhnikova, V V; Shakhova, N M
2002-11-30
A combined application of optical methods [optical coherent tomography (OCT), cross-polarisation optical coherent tomography, and fluorescence spectroscopy] is proposed for obtaining information on morphological and biochemical changes occurring in tissues in norm and pathology. It is shown that neoplastic and scar changes in esophagus can be distinguished using a combination of polarisation and standard OCT due to the difference between the depolarising properties of the tissues caused by the structural properties of collagenic fibres in stroma. It is shown that OCT combined with fluorescence spectroscopy with the use of 5-aminolevulinic acid is promising for determining the boundaries of carcinoma ofmore » the uterine cervix and vulva. It is found that the tumour boundary detected by optical methods coincides with the morphological boundary and extends beyond colposcopically determined boundary by about 2 mm. (laser biology and medicine)« less
Lee, Sang-Won; Jeong, Hyun-Woo; Kim, Beop-Min
2010-01-01
We propose high-speed spectral domain polarization-sensitive optical coherence tomography (SD-PS-OCT) using a single camera and a 1x2 optical switch at the 1.3-microm region. The PS-low coherence interferometer used in the system is constructed using free-space optics. The reflected horizontal and vertical polarization light rays are delivered via an optical switch to a single spectrometer by turns. Therefore, our system costs less to build than those that use dual spectrometers, and the processes of timing and triggering are simpler from the viewpoints of both hardware and software. Our SD-PS-OCT has a sensitivity of 101.5 dB, an axial resolution of 8.2 microm, and an acquisition speed of 23,496 A-scans per second. We obtain the intensity, phase retardation, and fast axis orientation images of a rat tail tendon ex vivo.
Dosimetry control and monitoring of selective retina therapy using optical coherence tomography
NASA Astrophysics Data System (ADS)
Kaufmann, Daniel; Burri, Christian; Arnold, Patrik; Koch, Volker M.; Meier, Christoph; Považay, Boris; Justiz, Joern
2017-07-01
Selective retina therapy and optical coherence tomography have been combined to monitor laser-tissue interaction in real-time. An ex-vivo study of porcine eyes unveils mechanisms that enable automated and accurate dose-control during laser-therapy.
NASA Astrophysics Data System (ADS)
Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.
2013-07-01
A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.
Optical coherence tomography findings of bilateral foveal leukemic infiltration
Le, John Q; Braich, Puneet S; Brar, Vikram S
2016-01-01
We report a case of a 59-year-old man with a history of atypical chronic myelogenous leukemia who presented with a several-week history of decreased vision in both eyes. His clinical examination revealed bilateral foveal infiltration, which was also demonstrated on optical coherence tomography. After a failed induction with imatinib (Gleevec®), he was treated with omacetaxine (Synribo®) with an appropriate hematologic response. As his leukemia improved with chemotherapy, his retinal lesions regressed as demonstrated by serial optical coherence tomography and fundus photographs, with near complete restoration of foveal architecture. PMID:27540313
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyanov, A L; Lychagov, V V; Smirnov, I V
2013-08-31
The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)
IN VIVO CHARACTERIZATION OF ORAL PEMPHIGUS VULGARIS BY OPTICAL COHERENCE TOMOGRAPHY.
Di Stasio, D; Lauritano, D; Romano, A; Salerno, C; Minervini, G; Minervini, G; Gentile, E; Serpico, R; Lucchese, A
2015-01-01
Pemphigus vulgaris (PV) is an autoimmune disease that manifests as intraepithelial blisters in skin and mucous membranes. We report the case of a 62-year-old female patient with clinical picture of desquamative gingivitis and a histological and serological diagnosis of pemphigus vulgaris. The aim of this study is to analyse bollous oral diseases in order to evaluate the feasibility to image epithelial architecture of oral mucosae using in vivo optical coherence tomography. Optical coherence tomography seems to be a valid non-invasive auxiliary diagnostic device able to show in vivo the epithelial layers and basal membrane.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Strum, R.; Stiles, D.
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors
Liu, Y.; Strum, R.; Stiles, D.; ...
2017-11-20
In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.
Ultrafast Coherent Dynamics of a Photonic Crystal All-Optical Switch.
Colman, Pierre; Lunnemann, Per; Yu, Yi; Mørk, Jesper
2016-12-02
We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse and more than 10 dB parametric gain. The measurements are in good agreement with a theoretical model that ascribes the observation to oscillations of the free-carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.
Spontaneous closure of macular hole in a patient with x-linked juvenile retinoschisis.
Gao, Hua; Province, William D; Peracha, Mohammed O
2010-01-01
To observe macular hole in a patient with juvenile retinoschisis. A 4-year-old boy with X-linked juvenile retinoschisis was examined and followed-up for 2 years. Optical coherence tomography was used to study his maculae. A full-thickness macular hole was detected by clinical examination and optical coherence tomography. Spontaneous closure of the macular hole was noticed and confirmed by optical coherence tomography 2 years later with visual improvement. Macular hole in patients with juvenile retinoschisis should be observed for at least a short period of time before a surgical repair is considered.
Hwang, John C; Kim, David Y; Chou, Chai Lin; Tsang, Stephen H
2010-01-01
The purpose of this study was to describe fundus autofluorescence (FAF), optical coherence tomography, and electroretinogram findings in choroidal sclerosis. This is a retrospective case series. Eight eyes of four patients with choroidal sclerosis were evaluated with FAF, optical coherence tomography, and electroretinogram testing. In all eight eyes, FAF imaging showed hypofluorescent placoid lesions corresponding to areas of chorioretinal atrophy seen on stereo biomicroscopy. Prominent hyperfluorescent linear markings underlying regions of atrophic disease were observed in all eyes, likely representative of normal choroidal vessel autofluorescence. In two eyes, FAF showed punctate hypofluorescent lesions in the fovea that were not visualized on biomicroscopy. In one eye, FAF identified a central island of preserved retinal pigment epithelium that was not realized on ophthalmoscopic examination. Optical coherence imaging was significant for loss of choroidal fine tubular structures, retinal pigment epithelium, and outer nuclear layer in regions of chorioretinal atrophy. Full-field electroretinogram testing showed generalized rod-cone dysfunction in all patients with a lower B- to A-wave ratio in two patients. Fundus autofluorescence and optical coherence tomography are nonin-vasive diagnostic adjuncts that can aid in the diagnosis of choroidal sclerosis. Fundus autofluorescence may be a more sensitive marker of disease extent and progression than clinical examination alone. Electroretinogram testing can result in an electronegative maximal response.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.
Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus
2015-05-14
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope
NASA Astrophysics Data System (ADS)
Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus
2015-05-01
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.
NASA Astrophysics Data System (ADS)
Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.
2009-02-01
High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.
Pan, Feng; Yang, Lizhi; Xiao, Wen
2017-09-04
In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.
Kim, Seokhan; Na, Jihoon; Kim, Myoung Jin; Lee, Byeong Ha
2008-04-14
We propose and demonstrate novel methods that enable simultaneous measurements of the phase index, the group index, and the geometrical thickness of an optically transparent object by combining optical low-coherence interferometer and confocal optics. The low-coherence interferometer gives information relating the group index with the thickness, while the confocal optics allows access to the phase index related with the thickness of the sample. To relate these, two novel methods were devised. In the first method, the dispersion-induced broadening of the low-coherence envelop signal was utilized, and in the second method the frequency derivative of the phase index was directly obtained by taking the confocal measurements at several wavelengths. The measurements were made with eight different samples; B270, CaF2, two of BK7, two of fused silica, cover glass, and cigarette cover film. The average measurement errors of the first and the second methods were 0.123% and 0.061% in the geometrical thickness, 0.133% and 0.066% in the phase index, and 0.106% and 0.057% in the group index, respectively.
Coherent spin control of a nanocavity-enhanced qubit in diamond
Li, Luozhou; Lu, Ming; Schroder, Tim; ...
2015-01-28
A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less
Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time.
Martín-Mateos, Pedro; Jerez, Borja; Largo-Izquierdo, Pedro; Acedo, Pablo
2018-04-16
Electro-optic dual-comb spectrometers have proved to be a promising technology for sensitive, high-resolution and rapid spectral measurements. Electro-optic combs possess very attractive features like simplicity, reliability, bright optical teeth, and typically moderate but quickly tunable optical spans. Furthermore, in a dual-comb arrangement, narrowband electro-optic combs are generated with a level of mutual coherence that is sufficiently high to enable optical multiheterodyning without inter-comb stabilization or signal processing systems. However, this valuable tool still presents several limitations; for instance, on most systems, absolute frequency accuracy and long-term stability cannot be guaranteed; likewise, interferometer-induced phase noise restricts coherence time and limits the attainable signal-to-noise ratio. In this paper, we address these drawbacks and demonstrate a cost-efficient absolute electro-optic dual-comb instrument based on a frequency stabilization mechanism and a novel adaptive interferogram acquisition approach devised for electro-optic dual-combs capable of operating in real-time. The spectrometer, completely built from commercial components, provides sub-ppm frequency uncertainties and enables a signal-to-noise ratio of 10000 (intensity noise) in 30 seconds of integration time.
Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao
2014-01-01
Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079
Thiele, Maja; Detlefsen, Sönke; Sevelsted Møller, Linda; Madsen, Bjørn Stæhr; Fuglsang Hansen, Janne; Fialla, Annette Dam; Trebicka, Jonel; Krag, Aleksander
2016-01-01
Alcohol abuse causes half of all deaths from cirrhosis in the West, but few tools are available for noninvasive diagnosis of alcoholic liver disease. We evaluated 2 elastography techniques for diagnosis of alcoholic fibrosis and cirrhosis; liver biopsy with Ishak score and collagen-proportionate area were used as reference. We performed a prospective study of 199 consecutive patients with ongoing or prior alcohol abuse, but without known liver disease. One group of patients had a high pretest probability of cirrhosis because they were identified at hospital liver clinics (in Southern Denmark). The second, lower-risk group, was recruited from municipal alcohol rehabilitation centers and the Danish national public health portal. All subjects underwent same-day transient elastography (FibroScan), 2-dimensional shear wave elastography (Supersonic Aixplorer), and liver biopsy after an overnight fast. Transient elastography and 2-dimensional shear wave elastography identified subjects in each group with significant fibrosis (Ishak score ≥3) and cirrhosis (Ishak score ≥5) with high accuracy (area under the curve ≥0.92). There was no difference in diagnostic accuracy between techniques. The cutoff values for optimal identification of significant fibrosis by transient elastography and 2-dimensional shear wave elastography were 9.6 kPa and 10.2 kPa, and for cirrhosis 19.7 kPa and 16.4 kPa. Negative predictive values were high for both groups, but the positive predictive value for cirrhosis was >66% in the high-risk group vs approximately 50% in the low-risk group. Evidence of alcohol-induced damage to cholangiocytes, but not ongoing alcohol abuse, affected liver stiffness. The collagen-proportionate area correlated with Ishak grades and accurately identified individuals with significant fibrosis and cirrhosis. In a prospective study of individuals at risk for liver fibrosis due to alcohol consumption, we found elastography to be an excellent tool for diagnosing liver fibrosis and for excluding (ruling out rather than ruling in) cirrhosis. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Optical Coherence Tomography Angiography of Retinal Cavernous Hemangioma.
Pierro, Luisa; Marchese, Alessandro; Gagliardi, Marco; Bandello, Francesco
2017-08-01
Retinal cavernous hemangioma is a rare, benign, retinal tumor characterized by angiomatous proliferation of vessels within the inner retina or the optic disc.1 Here we report a case of retinal cavernous hemangioma on the margin of the optic disc in the right eye of a 61-year-old asymptomatic female. The lesion was studied with multimodal imaging which included structural optical coherence tomography, fluorescein angiography, blue fundus auto-fluorescence, optical coherence tomography angiography (OCTA) (DRI OCT Triton; Topcon, Tokyo, Japan) and visual field examination. Blood circulation inside retinal cavernous hemangioma lesion is typically low-stagnant.2 However, OCTA demonstrated blood flow inside the lesion, illustrating its vascular circulation.3 Visual field was within the normal limits, except from a slight enlargement of the blind spot. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:684-685.]. Copyright 2017, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H.T.; Bachalo, W.D.
1984-10-01
The feasibility of developing a particle-sizing instrument for in-situ measurements in industrial environments, based on the method of optical heterodyne or coherent detection, was investigated. The instrument, a coherent optical particle spectrometer, or COPS, is potentially capable of measuring several important particle parameters, such as particle size, number density, and speed, because of the versatility of the optical heterodyne method. Water droplets generated by an aerosol/particle generator were used to test the performance of the COPS. Study findings have shown that the optical setup of the COPS is extremely sensitive to even minute mechanical or acoustic vibrations. At the optimalmore » setup, the COPS performs satisfactorily and has more than adequate signal-to-noise even with a 0.5 mW He-Ne laser.« less
Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics
Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal
2016-01-01
The ability to generate efficient giga–terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics. PMID:27492493
Coherent multi-dimensional spectroscopy at optical frequencies in a single beam with optical readout
NASA Astrophysics Data System (ADS)
Seiler, Hélène; Palato, Samuel; Kambhampati, Patanjali
2017-09-01
Ultrafast coherent multi-dimensional spectroscopies form a powerful set of techniques to unravel complex processes, ranging from light-harvesting, chemical exchange in biological systems to many-body interactions in quantum-confined materials. Yet these spectroscopies remain complex to implement at the high frequencies of vibrational and electronic transitions, thereby limiting their widespread use. Here we demonstrate the feasibility of two-dimensional spectroscopy at optical frequencies in a single beam. Femtosecond optical pulses are spectrally broadened to a relevant bandwidth and subsequently shaped into phase coherent pulse trains. By suitably modulating the phases of the pulses within the beam, we show that it is possible to directly read out the relevant optical signals. This work shows that one needs neither complex beam geometries nor complex detection schemes in order to measure two-dimensional spectra at optical frequencies. Our setup provides not only a simplified experimental design over standard two-dimensional spectrometers but its optical readout also enables novel applications in microscopy.
Optically Tunable Gratings Based on Coherent Population Oscillation.
Zhang, Xiao-Jun; Wang, Hai-Hua; Wang, Lei; Wu, Jin-Hui
2018-05-01
We theoretically study the optically tunable gratings based on a L-type atomic medium using coherent population oscillations from the angle of reflection and transmission of the probe field. Adopting a standing-wave driving field, the refractive index of the medium as well as the absorption are periodically modified. Consequently, the Bragg scattering causes the effective reflection. We show that different intensities of the control field lead to three types of reflection profile which actually correspond to different absorption/amplification features of the medium. We present a detailed analyses about the influence of amplification on the reflection profile as well. The coherent population oscillation is robust to the dephasing effect, and such induced gratings could have promising applications in nonlinear optics and all-optical information processing.
Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing.
Ueno, Y; Toda, Y; Adachi, S; Morita, R; Tawara, T
2009-10-26
We demonstrate the coherent transfer of optical orbital angular momentum (OAM) to the center of mass momentum of excitons in semiconductor GaN using a four-wave mixing (FWM) process. When we apply the optical vortex (OV) as an excitation pulse, the diffracted FWM signal exhibits phase singularities that satisfy the OAM conservation law, which remain clear within the exciton dephasing time (approximately 1ps). We also demonstrate the arbitrary control of the topological charge in the output signal by changing the OAM of the input pulse. The results provide a way of controlling the optical OAM through carriers in solids. Moreover, the time evolution of the FWM with OAM leads to the study of the closed-loop carrier coherence in materials.
NASA Astrophysics Data System (ADS)
Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan
2017-04-01
Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.
Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states
NASA Astrophysics Data System (ADS)
Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.
2018-04-01
We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.
Simultaneous MR elastography and diffusion acquisitions: diffusion-MRE (dMRE).
Yin, Ziying; Magin, Richard L; Klatt, Dieter
2014-05-01
To present a new technique for concurrent MR elastography (MRE) and diffusion MRI: diffusion-MRE (dMRE). In dMRE, shear wave motion and MR signal decay due to diffusion are encoded into the phase and magnitude components of the MR signal by using a pair of bipolar gradients for both motion-sensitization and diffusion encoding. The pulse sequence timing is adjusted so that the bipolar gradients are sensitive to both coherent and incoherent intravoxel motions. The shape, number, and duration of the gradient lobes can be adjusted to provide flexibility and encoding efficiency. In this proof-of-concept study, dMRE was validated using a tissue phantom composed of a gel bead embedded in a hydrated mixture of agarose and gelatin. The apparent diffusion coefficient (ADC) and shear stiffness measured using dMRE were compared with results obtained from separate, conventional spin-echo (SE) diffusion and SE-MRE acquisitions. The averaged ADC values (n = 3) for selected ROIs in the beads were (1.75 ± 0.16) μm(2) /ms and (1.74 ± 0.16) μm(2) /ms for SE-diffusion and dMRE methods, respectively. The corresponding shear stiffness values in the beads were (2.45 ± 0.23) kPa and (2.42 ± 0.20) kPa. Simultaneous MRE and diffusion acquisition is feasible and can be implemented with no observable interference between the two methods. Copyright © 2014 Wiley Periodicals, Inc.
Comment on "Optical-fiber-based Mueller optical coherence tomography".
Park, B Hyle; Pierce, Mark C; de Boer, Johannes F
2004-12-15
We comment on the recent Letter by Jiao et al. [Opt. Lett. 28, 1206 (2003)] in which a polarization-sensitive optical coherence tomography system was presented. Interrogating a sample with two orthogonal incident polarization states cannot always recover birefringence correctly. A previously presented fiber-based polarization-sensitive system was inaccurately characterized, and its method of eliminating the polarization distortion caused by single-mode optical fiber was presented earlier by Saxer et al. [Opt. Lett. 25, 1355 (2000)].
Rispoli, Marco; Savastano, Maria Cristina; Lumbroso, Bruno
2015-11-01
To analyze the foveal microvasculature features in eyes with branch retinal vein occlusion (BRVO) using optical coherence tomography angiography based on split spectrum amplitude decorrelation angiography technology. A total of 10 BRVO eyes (mean age 64.2 ± 8.02 range between 52 years and 76 years) were evaluated by optical coherence tomography angiography (XR-Avanti; Optovue). The macular angiography scan protocol covered a 3 mm × 3 mm area. The focus of angiography analysis were two retinal layers: superficial vascular network and deep vascular network. The following vascular morphological congestion parameters were assessed in the vein occlusion area in both the superficial and deep networks: foveal avascular zone enlargement, capillary non-perfusion occurrence, microvascular abnormalities appearance, and vascular congestion signs. Image analyses were performed by 2 masked observers and interobserver agreement of image analyses was 0.90 (κ = 0.225, P < 0.01). In both superficial and deep network of BRVO, a decrease in capillary density with foveal avascular zone enlargement, capillary non-perfusion occurrence, and microvascular abnormalities appearance was observed (P < 0.01). The deep network showed the main vascular congestion at the boundary between healthy and nonperfused retina. Optical coherence tomography angiography in BRVO allows to detect foveal avascular zone enlargement, capillary nonperfusion, microvascular abnormalities, and vascular congestion signs both in the superficial and deep capillary network in all eyes. Optical coherence tomography angiography technology is a potential clinical tool for BRVO diagnosis and follow-up, providing stratigraphic vascular details that have not been previously observed by standard fluorescein angiography. The normal retinal vascular nets and areas of nonperfusion and congestion can be identified at various retinal levels. Optical coherence tomography angiography provides noninvasive images of the retinal capillaries and vascular networks.
Image routing via atomic spin coherence
Wang, Lei; Sun, Jia-Xiang; Luo, Meng-Xi; Sun, Yuan-Hang; Wang, Xiao-Xiao; Chen, Yi; Kang, Zhi-Hui; Wang, Hai-Hua; Wu, Jin-Hui; Gao, Jin-Yue
2015-01-01
Coherent storage of optical image in a coherently-driven medium is a promising method with possible applications in many fields. In this work, we experimentally report a controllable spatial-frequency routing of image via atomic spin coherence in a solid-state medium driven by electromagnetically induced transparency (EIT). Under the EIT-based light-storage regime, a transverse spatial image carried by the probe field is stored into atomic spin coherence. By manipulating the frequency and spatial propagation direction of the read control field, the stored image is transferred into a new spatial-frequency channel. When two read control fields are used to retrieve the stored information, the image information is converted into a superposition of two spatial-frequency modes. Through this technique, the image is manipulated coherently and all-optically in a controlled fashion. PMID:26658846
Optical superheterodyne receiver.
NASA Technical Reports Server (NTRS)
Duval, K.; Lang, K.; Lucy, R. F.; Peters, C. J.
1967-01-01
Optical communication experiments to compare coherent and noncoherent optical detection fading characteristics in different weather conditions, using laser transmitter and optical superheterodyne receiver
Sonographic Elastography of Mastitis.
Sousaris, Nicholas; Barr, Richard G
2016-08-01
Sonographic elastography has been shown to be a useful imaging modality in characterizing breast lesions as benign or malignant. However, in preliminary research, mastitis has given false-positive findings on both strain and shear wave elastography. In this article, we review the findings in mastitis with and without abscess formation on both strain and shear wave elastography. The elastographic findings in all cases were suggestive of a malignancy according to published thresholds. In cases of mastitis with abscess formation, there is a characteristic appearance, with a central very soft area (abscess cavity) and a very stiff outer rim (edema and inflammation). This appearance should raise the suspicion of mastitis with abscess formation, since these findings are rare in breast cancers.
Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging
NASA Astrophysics Data System (ADS)
Wen, Xiang; Jacques, Steven L.; Tuchin, Valery V.; Zhu, Dan
2012-06-01
The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied together could a 15 min treatment achieve a three fold increase in the OCT reflectance from a 300 μm depth and 31% enhancement in image depth Zthreshold.
Fabrication of Fiber Optic Grating Apparatus and Method
NASA Technical Reports Server (NTRS)
Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)
2005-01-01
An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.
NASA Technical Reports Server (NTRS)
Anderson, Richard
1994-01-01
The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.
Marginal adaptation of ceramic veneers investigated with en face optical coherence tomography
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negruţiu, Meda-Lavinia; Petrescu, Emanuela; Rominu, Mihai; Marcauteanu, Corina; Rominu, Roxana; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.
2009-07-01
The aim of this study was to analyze the quality of marginal adaptation and gap width of Empress veneers using en-face optical coherence tomography. The results prove the necessity of investigating the marginal adaptation after each veneer bonding process.
Film characteristics pertinent to coherent optical data processing systems.
Thomas, C E
1972-08-01
Photographic film is studied quantitatively as the input mechanism for coherent optical data recording and processing systems. The two important film characteristics are the amplitude transmission vs exposure (T(A) - E) curve and the film noise power spectral density. Both functions are measured as a function of the type of film, the type of developer, developer time and temperature, and the exposing and readout light wavelengths. A detailed analysis of a coherent optical spatial frequency analyzer reveals that the optimum do bias point for 649-F film is an amplitude transmission of about 70%. This operating point yields minimum harmonic and intermodulation distortion, whereas the 50% amplitude transmission bias point recommended by holographers yields maximum diffraction efficiency. It is also shown that the effective ac gain or contrast of the film is nearly independent of the development conditions for a given film. Finally, the linear dynamic range of one particular coherent optical spatial frequency analyzer is shown to be about 40-50 dB.
Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography.
Garcia, Jose Mauricio Botto de Barros; Isaac, David Leonardo Cruvinel; Sardeiro, Tainara; Aquino, Érika; Avila, Marcos
2017-01-01
This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980), an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.
Coherent perfect rotation theory: connections with, and consequences beyond, the anti-laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Andrews, James; Zhou, Chuanhong; Baker, Michael
2014-05-01
Coherent Perfect Rotation (CPR) phenomena are a reversible generalization of the anti-laser. By evaluating CPR in a broad variety of common optical systems, including optical cavities and DFB and DBR structures, we illustrate its unique threshold and resonance features. This study builds intuition critical to assessing the utility of CPR in optical devices, and we detail it in a concrete application.
Apparatus for generating partially coherent radiation
Naulleau, Patrick P.
2004-09-28
The effective coherence of an undulator beamline can be tailored to projection lithography requirements by using a simple single moving element and a simple stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (i) source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence; (ii) a reflective surface that receives incident radiation from said source; (iii) means for moving the reflective surface through a desired range of angles in two dimensions wherein the rate of the motion is fast relative to integration time of said image processing system; and (iv) a condenser optic that re-images the moving reflective surface to the entrance plane of said image processing system, thereby, making the illumination spot in said entrance plane essentially stationary.
NASA Astrophysics Data System (ADS)
Zhao, Chengliang; Cai, Yangjian
2011-05-01
Based on the generalized Huygens-Fresnel integral, propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere was investigated. Analytical propagation formulae were derived for the cross-spectral densities of partially coherent Lorentz and Lorentz-Gauss beams. As an application example, the focusing properties of partially coherent Gaussian, Lorentz and Lorentz-Gauss beams in a turbulent atmosphere and in free space were studied numerically and comparatively. It is found that the focusing properties of such beams are closely related to the initial coherence length and the structure constant of turbulence. By choosing a suitable initial coherence length, a partially coherent Lorentz beam can be focused more tightly than a Gaussian or Lorentz-Gauss beam in free space or in a turbulent atmosphere with small structure constant at the geometrical focal plane.
Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping
2004-09-01
Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.
Pochini, Alberto de Castro; Ferretti, Mario; Kawakami, Eduardo Felipe Kin Ito; Fernandes, Artur da Rocha Corrêa; Yamada, Andre Fukunishi; Oliveira, Gabriela Clemente de; Cohen, Moisés; Andreoli, Carlos Vicente; Ejnisman, Benno
2015-01-01
To evaluate tendinopathy of the pectoralis major muscle in weightlifting athletes using ultrasound and elastography. This study included 20 patients, 10 with rupture of the pectoralis major muscle and 10 control patients. We evaluated pectoralis major muscle contralateral tendon with ultrasonographic and elastography examinations. The ultrasonographic examinations were performed using a high-resolution B mode ultrasound device. The elastography evaluation was classified into three patterns: (A), if stiff (more than 50% area with blue staining); (B), if intermediate (more than 50% green); and (C), if softened (more than 50% red). Patients' mean age was 33±5.3 years. The presence of tendinous injury measured by ultrasound had a significant different (p=0.0055), because 80% of cases had tendinous injury versus 10% in the Control Group. No significant differences were seen between groups related with change in elastography (p=0.1409). Long-term bodybuilders had ultrasound image with more tendinous injury than those in Control Group. There was no statistical significance regarding change in tendon elasticity compared with Control Group.
Fourier phase in Fourier-domain optical coherence tomography.
Uttam, Shikhar; Liu, Yang
2015-12-01
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.
Ultrasound-based elastography for the diagnosis of portal hypertension in cirrhotics
Şirli, Roxana; Sporea, Ioan; Popescu, Alina; Dănilă, Mirela
2015-01-01
Progressive fibrosis is encountered in almost all chronic liver diseases. Its clinical signs are diagnostic in advanced cirrhosis, but compensated liver cirrhosis is harder to diagnose. Liver biopsy is still considered the reference method for staging the severity of fibrosis, but due to its drawbacks (inter and intra-observer variability, sampling errors, unequal distribution of fibrosis in the liver, and risk of complications and even death), non-invasive methods were developed to assess fibrosis (serologic and elastographic). Elastographic methods can be ultrasound-based or magnetic resonance imaging-based. All ultrasound-based elastographic methods are valuable for the early diagnosis of cirrhosis, especially transient elastography (TE) and acoustic radiation force impulse (ARFI) elastography, which have similar sensitivities and specificities, although ARFI has better feasibility. TE is a promising method for predicting portal hypertension in cirrhotic patients, but it cannot replace upper digestive endoscopy. The diagnostic accuracy of using ARFI in the liver to predict portal hypertension in cirrhotic patients is debatable, with controversial results in published studies. The accuracy of ARFI elastography may be significantly increased if spleen stiffness is assessed, either alone or in combination with liver stiffness and other parameters. Two-dimensional shear-wave elastography, the ElastPQ technique and strain elastography all need to be evaluated as predictors of portal hypertension. PMID:26556985
Effect of bone-soft tissue friction on ultrasound axial shear strain elastography
NASA Astrophysics Data System (ADS)
Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella
2017-08-01
Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.
Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu
2014-01-01
Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347
Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.
Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella
2017-07-12
Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.
Elastography: current status, future prospects, and making it work for you.
Garra, Brian S
2011-09-01
Elastography has emerged as a useful adjunct tool for ultrasound diagnosis. Elastograms are images of tissue stiffness and may be in color, grayscale, or a combination of the two. The first and most common application of elastography is for the diagnosis of breast lesions where studies have shown an area under the receiver operating characteristic curve of 0.88 to 0.95 for distinguishing cancer from benign lesions. The technique is also useful for the diagnosis of complex cysts, although different scanners may vary in how they display such lesions. Recent advances in elastography include quantification using strain ratios, acoustic radiation force impulse imaging, and shear wave velocity estimation. These are useful not only for characterizing focal masses but also for diagnosing diffuse organ diseases such as liver cirrhosis. Other near term potential applications for elastography include characterization of thyroid nodules and lymph node evaluation for metastatic disease. Prostate cancer detection is also a potential application, but obtaining high-quality elastograms may be difficult. This area is evolving. Other promising applications include atheromatous plaque and arterial wall evaluation, venous thrombus evaluation, graft rejection, and monitoring of tumor ablation therapy. When contemplating the acquisition of a system with elastography in this rapidly evolving field, a clear picture of the manufacturer's plans for future upgrades (including quantification) should be obtained.
System for robot-assisted real-time laparoscopic ultrasound elastography
NASA Astrophysics Data System (ADS)
Billings, Seth; Deshmukh, Nishikant; Kang, Hyun Jae; Taylor, Russell; Boctor, Emad M.
2012-02-01
Surgical robots provide many advantages for surgery, including minimal invasiveness, precise motion, high dexterity, and crisp stereovision. One limitation of current robotic procedures, compared to open surgery, is the loss of haptic information for such purposes as palpation, which can be very important in minimally invasive tumor resection. Numerous studies have reported the use of real-time ultrasound elastography, in conjunction with conventional B-mode ultrasound, to differentiate malignant from benign lesions. Several groups (including our own) have reported integration of ultrasound with the da Vinci robot, and ultrasound elastography is a very promising image guidance method for robotassisted procedures that will further enable the role of robots in interventions where precise knowledge of sub-surface anatomical features is crucial. We present a novel robot-assisted real-time ultrasound elastography system for minimally invasive robot-assisted interventions. Our system combines a da Vinci surgical robot with a non-clinical experimental software interface, a robotically articulated laparoscopic ultrasound probe, and our GPU-based elastography system. Elasticity and B-mode ultrasound images are displayed as picture-in-picture overlays in the da Vinci console. Our system minimizes dependence on human performance factors by incorporating computer-assisted motion control that automatically generates the tissue palpation required for elastography imaging, while leaving high-level control in the hands of the user. In addition to ensuring consistent strain imaging, the elastography assistance mode avoids the cognitive burden of tedious manual palpation. Preliminary tests of the system with an elasticity phantom demonstrate the ability to differentiate simulated lesions of varied stiffness and to clearly delineate lesion boundaries.
Endoscopic ultrasound elastography: Current status and future perspectives
Cui, Xin-Wu; Chang, Jian-Min; Kan, Quan-Cheng; Chiorean, Liliana; Ignee, Andre; Dietrich, Christoph F
2015-01-01
Elastography is a new ultrasound modality that provides images and measurements related to tissue stiffness. Endoscopic ultrasound (EUS) has played an important role in the diagnosis and management of numerous abdominal and mediastinal diseases. Elastography by means of EUS examination can assess the elasticity of tumors in the proximity of the digestive tract that are hard to reach with conventional transcutaneous ultrasound probes, such as pancreatic masses and mediastinal or abdominal lymph nodes, thus improving the diagnostic yield of the procedure. Results from previous studies have promised benefits for EUS elastography in the differential diagnosis of lymph nodes, as well as for assessing masses with pancreatic or gastrointestinal (GI) tract locations. It is important to mention that EUS elastography is not considered a modality that can replace biopsy. However, it may be a useful adjunct, improving the accuracy of EUS-fine needle aspiration biopsy (EUS-FNAB) by selecting the most suspicious area to be targeted. Even more, it may be useful for guiding further clinical management when EUS-FNAB is negative or inconclusive. In the present paper we will discuss the current knowledge of EUS elastography, including the technical aspects, along with its applications in the differential diagnosis between benign and malignant solid pancreatic masses and lymph nodes, as well as its aid in the differentiation between normal pancreatic tissues and chronic pancreatitis. Moreover, the emergent indication and future perspectives are summarized, such as the benefit of EUS elastography in EUS-guided fine needle aspiration biopsy, and its uses for characterization of lesions in liver, biliary tract, adrenal glands and GI tract. PMID:26715804
NASA Astrophysics Data System (ADS)
Tumlinson, Alexandre R.; Hariri, Lida P.; Drexler, Wolfgang; Barton, Jennifer K.
2008-02-01
Optical coherence tomography, optical coherence microscopy, reflectance confocal microscopy, and darkfield microscopy all derive contrast from the intensity of endogenous tissue scatter. We have imaged excised mouse colon tissue with these complimentary technologies to make conclusions about structural origins of scatter in the mouse colonic mucosa observed with endoscopic OCT. We find hyperintense scattering both from the cytoplasm of epithelial cells and from the boundary between epithelia and the lamina propria. We find almost no scatter from the portion of epithelial cells containing the nucleus. These observations substantiate explanations for the appearance of colonic crypts and the luminal surface.
Rothman, Adam L; Mangalesh, Shwetha; Chen, Xi; Toth, Cynthia A
2016-01-01
Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment. PMID:28539807
Common-path low-coherence interferometry fiber-optic sensor guided microincision
NASA Astrophysics Data System (ADS)
Zhang, Kang; Kang, Jin U.
2011-09-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.
Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography
Jia, Yali; Liu, Gangjun; Gordon, Andrew Y.; Gao, Simon S.; Pechauer, Alex D.; Stoddard, Jonathan; McGill, Trevor J.; Jayagopal, Ashwath; Huang, David
2015-01-01
We demonstrate the proof of concept of a novel Fourier-domain optical coherence tomography contrast mechanism using gold nanorod contrast agents and a spectral fractionation processing technique. The methodology detects the spectral shift of the backscattered light from the nanorods by comparing the ratio between the short and long wavelength halves of the optical coherence tomography signal intensity. Spectral fractionation further divides the halves into sub-bands to improve spectral contrast and suppress speckle noise. Herein, we show that this technique can detect gold nanorods in intralipid tissue phantoms. Furthermore, cellular labeling by gold nanorods was demonstrated using retinal pigment epithelial cells in vitro. PMID:25836459
Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence.
Dikmelik, Yamaç; Davidson, Frederic M
2005-08-10
High-speed free-space optical communication systems have recently used fiber-optic components. The received laser beam in such a system must be coupled into a single-mode fiber at the input of the receiver module. However, propagation through atmospheric turbulence degrades the spatial coherence of a laser beam and limits the fiber-coupling efficiency. We numerically evaluate the fiber-coupling efficiency for laser light distorted by atmospheric turbulence. We also investigate the use of a coherent fiber array as a receiver structure and find that a coherent fiber array that consists of seven subapertures would significantly increase the fiber-coupling efficiency.
[Real-time elastography in the diagnosis of prostate cancer: personal experience].
Romagnoli, Andrea; Autieri, Gaspare; Centrella, Danilo; Gastaldi, Christian; Pedaci, Giuseppe; Rivolta, Lorenzo; Pozzi, Emilio; Anghileri, Alessio; Cerabino, Maurizio; Bianchi, Carlo Maria; Roggia, Alberto
2010-01-01
Prostate cancer is the most common cancer in men. In the future, a significant further increase in the incidence of prostate cancer is expected. The indication to perform a prostate biopsy is digital rectal examination suspicious for prostate cancer, total prostate specific antigen (PSA) value, free PSA/total PSA ratio, PSA density and PSA velocity, and an evidence of hypoechoic area at transrectal ultrasound scan. Unfortunately the specificity and sensibility are still poor. The aim of this retrospective study is to evaluate the specificity and sensibility of real time elastography versus ultrasound transrectal B-mode scan. We retrospectively evaluated 108 pts. having undergone TRUS-guided transrectal prostate biopsy (10 samples). The indication for biopsy is: digital rectal examination, total prostate specific antigen (PSA) value, PSA ratio, PSA density and PSA velocity suspicious for prostate cancer, and/or an evidence of hypoechoic area at transrectal ultrasound scan, and/or hard area at real-time elastography. The mean age of patients is 66.8 years, mean PSA 6.5 ng/mL, and mean ratio 16.5%. We compared the histopathological findings of needle prostate biopsies with the results of transrectal ultrasound and transrectal real-time elastography. 32/108 (29.6%) pts. were positive for prostate cancer (mean Gleason score 7.08), mean PSA 14 ng/mL and mean ratio 9.5%. Transrectal ultrasound scan shows a sensibility of 69% and specificity of 68%. Transrectal ultrasound scan shows a VPP of 51.4%. Transrectal ultrasound scan shows a VPN of 80.9%. Real-time elastography shows a sensibility of 56% and specificity of 85.7%. Real-time elastography shows a VPP of 60.1%. Real-time elastography shows a VPN of 83%. Elastography has a significantly higher specificity for the detection of prostate cancer than the conventionally used examinations including DRE and TRUS. It is a useful real-time diagnostic method because it is not invasive, and simultaneous evaluation is possible while performing TRUS.
[Application of spectral optical coherent tomography (SOCT) in ophthalmology].
Bieganowski, Lech; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kałuzny, Jakub J
2004-01-01
The article describes spectral optical coherent tomography (SOCT) constructed by Medical Physics Group, Faculty of Physics, Astronomy and Informatics at Nicholas Copernicus University in Toruń (Poland). It presents the physical bases for the functioning of the constructed device and includes pictures of optical sections of various elements of the eyeball: an optic disc and the region of central fovea, a cornea and angle structures (trabecular meshwork). The article also discusses potential application of SOCT in ophthalmic diagnosis of anterior and posterior segments of the eye.
Zhang, Lijia; Liu, Bo; Xin, Xiangjun
2015-06-15
A secure enhanced coherent optical multi-carrier system based on Stokes vector scrambling is proposed and experimentally demonstrated. The optical signal with four-dimensional (4D) modulation space has been scrambled intra- and inter-subcarriers, where a multi-layer logistic map is adopted as the chaotic model. An experiment with 61.71-Gb/s encrypted multi-carrier signal is successfully demonstrated with the proposed method. The results indicate a promising solution for the physical secure optical communication.
Analog signal processing for optical coherence imaging systems
NASA Astrophysics Data System (ADS)
Xu, Wei
Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.
Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel
2014-09-01
The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0.914) was the highest compared with the other combined parameters. There was a statistically significant difference in the values of the quantitative shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio (cutoff, 3.56) appeared to be the most discriminatory parameter.
NASA Astrophysics Data System (ADS)
Ryseva, Ekaterina; Zhukova, Ekaterina
2013-05-01
The wide field and spectral methods of optical coherence microscopy were used for extensive studying the photographs printed in the early 20th century. Tomographic images (B-scans) of photo and paper materials are presented and discussed.
Studies of dynamic processes in biomedicine by high-speed spectral optical coherence tomography
NASA Astrophysics Data System (ADS)
Wojtkowski, M.; Kowalczyk, A.
2007-02-01
This contribution demonstrates potential of Spectral Optical Coherence Tomography (SOCT) for studies of dynamic processes in biomedicine occurring at various time scales. Several examples from ophthalmology, optometry, surgery, neurology are given to illustrate the extension of SOCT beyond pure morphological investigations.
Adiabatic passage in photon-echo quantum memories
NASA Astrophysics Data System (ADS)
Demeter, Gabor
2013-11-01
Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.
Role of coherence in microsphere-assisted nanoscopy
NASA Astrophysics Data System (ADS)
Perrin, Stephane; Lecler, Sylvain; Leong-Hoi, Audrey; Montgomery, Paul C.
2017-06-01
The loss of the information, due to the diffraction and the evanescent waves, limits the resolving power of classical optical microscopy. In air, the lateral resolution of an optical microscope can approximated at half of the wavelength using a low-coherence illumination. Recently, several methods have been developed in order to overcome this limitation and, in 2011, a new far-field and full-field imaging technique was proposed where a sub-diffraction-limit resolution has been achieved using a transparent microsphere. In this article, the phenomenon of super-resolution using microsphere-assisted microscopy is analysed through rigorous electro-magnetic simulations. The performances of the imaging technique are estimated as function of optical and geometrical parameters. Furthermore, the role of coherence is introduced through the temporal coherence of the light source and the phase response of the object.
Coherent Soft X-ray Diffraction Imaging of Coliphage PR772 at the Linac Coherent Light Source
Reddy, Hemanth, K.N.
2017-01-05
A dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source.
High-speed optical coherence tomography by circular interferometric ranging
NASA Astrophysics Data System (ADS)
Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.
2018-02-01
Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.
Experimental results of 5-Gbps free-space coherent optical communications with adaptive optics
NASA Astrophysics Data System (ADS)
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-07-01
In a free-space optical communication system with fiber optical components, the received signal beam must be coupled into a single-mode fiber (SMF) before being amplified and detected. The impacts analysis of tracking errors and wavefront distortion on SMF coupling show that under the condition of relatively strong turbulence, only the tracking errors compensation is not enough, and turbulence wavefront aberration is required to be corrected. Based on our previous study and design of SMF coupling system with a 137-element continuous surface deformable mirror AO unit, we perform an experiment of a 5-Gbps Free-space Coherent Optical Communication (FSCOC) system, in which the eye pattern and Bit-error Rate (BER) are displayed. The comparative results are shown that the influence of the atmospheric is fatal in FSCOC systems. The BER of coherent communication is under 10-6 with AO compensation, which drops significantly compared with the BER without AO correction.
Modeling of processes of formation of the images in optical-electronic systems
NASA Astrophysics Data System (ADS)
Grudin, B. N.; Plotnikov, V. S.; Fischenko, V. K.
2001-08-01
The digital model of the multicomponent coherent optical system with arbitrary layout of optical elements (lasers, lenses, phototransparencies with recording of the function of transmission of a specimens or filters, photoregistrars), constructed with usage of fast algorithms is considered. The model is realized as the program for personal computers in operational systems Windows 95, 98 and Windows NT. At simulation, for example, coherent system consisting of twenty elementary optical cascades a relative error in the output image as a rule does not exceed 0.25% when N >= 256 (N x N - the number of discrete samples on the image), and time of calculation of the output image on a computer (Pentium-2, 300 MHz) for N = 512 does not exceed one minute. The program of simulation of coherent optical systems will be utilized in scientific researches and at tutoring the students of Far East State University.
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging
Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.
2016-01-01
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635
Li, Kangning; Ma, Jing; Tan, Liying; Yu, Siyuan; Zhai, Chao
2016-06-10
The performances of fiber-based free-space optical (FSO) communications over gamma-gamma distributed turbulence are studied for multiple aperture receiver systems. The equal gain combining (EGC) technique is considered as a practical scheme to mitigate the atmospheric turbulence. Bit error rate (BER) performances for binary-phase-shift-keying-modulated coherent detection fiber-based free-space optical communications are derived and analyzed for EGC diversity receptions through an approximation method. To show the net diversity gain of a multiple aperture receiver system, BER performances of EGC are compared with a single monolithic aperture receiver system with the same total aperture area (same average total incident optical power on the aperture surface) for fiber-based free-space optical communications. The analytical results are verified by Monte Carlo simulations. System performances are also compared for EGC diversity coherent FSO communications with or without considering fiber-coupling efficiencies.
DLP technolgy: applications in optical networking
NASA Astrophysics Data System (ADS)
Yoder, Lars A.; Duncan, Walter M.; Koontz, Elisabeth M.; So, John; Bartlett, Terry A.; Lee, Benjamin L.; Sawyers, Bryce D.; Powell, Donald; Rancuret, Paul
2001-11-01
For the past five years, Digital Light Processing (DLP) technology from Texas Instruments has made significant inroads in the projection display market. With products encompassing the world's smallest data & video projectors, HDTVs, and digital cinema, DLP is an extremely flexible technology. At the heart of these display solutions is Texas Instruments Digital Micromirror Device (DMD), a semiconductor-based light switch array of thousands of individually addressable, tiltable, mirror-pixels. With success of the DMD as a spatial light modulator in the visible regime, the use of DLP technology under the constraints of coherent, infrared light for optical networking applications is being explored. As a coherent light modulator, the DMD device can be used in Dense Wavelength Division Multiplexed (DWDM) optical networks to dynamically manipulate and shape optical signals. This paper will present the fundamentals of using DLP with coherent wavefronts, discuss inherent advantages of the technology, and present several applications for DLP in dynamic optical networks.
Optical design and simulation of a new coherence beamline at NSLS-II
NASA Astrophysics Data System (ADS)
Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.
2017-08-01
We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.
NASA Astrophysics Data System (ADS)
Fabritius, T.; Alarousu, E.; Prykäri, T.; Hast, J.; Myllylä, Risto
2006-02-01
Due to the highly light scattering nature of paper, the imaging depth of optical methods such as optical coherence tomography (OCT) is limited. In this work, we study the effect of refractive index matching on improving the imaging depth of OCT in paper. To this end, four different refractive index matching liquids (ethanol, 1-pentanol, glycerol and benzyl alcohol) with a refraction index between 1.359 and 1.538 were used in experiments. Low coherent light transmission was studied in commercial copy paper sheets, and the results indicate that benzyl alcohol offers the best improvement in imaging depth, while also being sufficiently stable for the intended purpose. Constructed cross-sectional images demonstrate visually that the imaging depth of OCT is considerably improved by optical clearing. Both surfaces of paper sheets can be detected along with information about the sheet's inner structure.
Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V
2016-09-07
Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.
Chirp optical coherence tomography of layered scattering media.
Haberland, U H; Blazek, V; Schmitt, H J
1998-07-01
A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.
NASA Astrophysics Data System (ADS)
Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.
2003-07-01
We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).
Coherent radio-frequency detection for narrowband direct comb spectroscopy.
Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N
2016-02-22
We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.
Multipion correlations induced by isospin conservation of coherent emission
Gangadharan, Dhevan
2016-09-15
Recent measurements have revealed a significant suppression of multipion Bose–Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose–Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made formore » two, three- and four-pion correlation functions and compared to the data from the LHC.« less
Nuclear spin cooling by electric dipole spin resonance and coherent population trapping
NASA Astrophysics Data System (ADS)
Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei
2017-09-01
Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.
Frequency multiplexed long range swept source optical coherence tomography
Zurauskas, Mantas; Bradu, Adrian; Podoleanu, Adrian Gh.
2013-01-01
We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample. PMID:23760762
2017-12-01
AD_________________ (Leave blank) Award Number: W81XWH-13-1-0155 TITLE: Electromagnetic -Optical Coherence Tomography Guidance of Transbronchial...2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 July 2013 - 30 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Electromagnetic -Optical...SUPPLEMENTARY NOTES 14. ABSTRACT We present a novel high-resolution multimodality imaging platform utilizing CT and electromagnetic (EM) navigation for spatial
Long Coherence Length 193 nm Laser for High-Resolution Nano-Fabrication
2008-06-27
in the non-linear optical up-converter, as well as specifying their interaction lengths, phase -matching angles, coatings, temperatures of operation...when optical path differences between interfering beams become comparable to the temporal coherence length of the source, the fringe contrast diminishes...switched, intracavity frequency doubled Nd:YAG laser drives an optical parametric oscillator (OPO) running at 710 nm. A portion of the 532 nm light
Towards the Early Detection of Breast Cancer in Young Women
2005-10-01
T. Shiina, and F. Tranquart. Progress in Freehand Elastography of the Breast . IEICE Transactions on Information and Systems, E85D (1):5–14, 2002. [3...Meaney, Naomi R. Miller, Tsuyoshi Shiina, and Francois Tranquart. Progress in freehand elastography of the breast . IEICE Transactions on Information...solution of the non-linear inverse elasticity problem 28 [26] Liew HL and Pinsky PM. Recovery of shear modulus in elastography using an adjoint method
[Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].
Shin, Jung Woo; Park, Neung Hwa
2016-07-25
The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.
2010-01-01
We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with <4 μm axial resolution (OCT and OCM), and 14 μm (OCT) and <2 μm (OCM) transverse resolution. The system allows seamless switching between low and high magnifications in a way similar to traditional microscopy. Good correspondence is observed between optical images and histological sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.
Dong, Ze; Yu, Jianjun; Chien, Hung-Chang; Chi, Nan; Chen, Lin; Chang, Gee-Kung
2011-06-06
We introduce an "ultra-dense" concept into next-generation WDM-PON systems, which transmits a Nyquist-WDM uplink with centralized uplink optical carriers and digital coherent detection for the future access network requiring both high capacity and high spectral efficiency. 80-km standard single mode fiber (SSMF) transmission of Nyquist-WDM signal with 13 coherent 25-GHz spaced wavelength shaped optical carriers individually carrying 100-Gbit/s polarization-multiplexing quadrature phase-shift keying (PM-QPSK) upstream data has been experimentally demonstrated with negligible transmission penalty. The 13 frequency-locked wavelengths with a uniform optical power level of -10 dBm and OSNR of more than 50 dB are generated from a single lightwave via a multi-carrier generator consists of an optical phase modulator (PM), a Mach-Zehnder modulator (MZM), and a WSS. Following spacing the carriers at the baud rate, sub-carriers are individually spectral shaped to form Nyquist-WDM. The Nyquist-WDM channels have less than 1-dB crosstalk penalty of optical signal-to-noise ratio (OSNR) at 2 × 10(-3) bit-error rate (BER). Performance of a traditional coherent optical OFDM scheme and its restrictions on symbol synchronization and power difference are also experimentally compared and studied.
NASA Astrophysics Data System (ADS)
Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi
2018-01-01
Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.
Optical coherence domain reflectometry guidewire
Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis
2001-01-01
A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.
Dental Optical Coherence Tomography
Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Tsai, Jui-che; Lin, Kun-Feng; Sun, Chia-Wei
2013-01-01
This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed. PMID:23857261
Compact low-cost detection electronics for optical coherence imaging
Akcay, A. C.; Lee, K. S.; Furenlid, L. R.; Costa, M. A.; Rolland, J. P.
2015-01-01
A compact and low-cost detection electronics scheme for optical coherence imaging is demonstrated. The performance of the designed electronics is analyzed in comparison to a commercial lock-in amplifier of equal bandwidth. Images of a fresh-onion sample are presented for each detection configuration. PMID:26617422
Spectral-domain optical coherence tomography for endoscopic imaging
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Li, Qiao; Li, Wanhui; Wang, Yi; Yu, Daoyin
2007-02-01
Optical coherence tomography (OCT) is an emerging cross-sectional imaging technology. It uses broadband light sources to achieve axial image resolutions on the few micron scale. OCT is widely applied to medical imaging, it can get cross-sectional image of bio-tissue (transparent and turbid) with non-invasion and non-touch. In this paper, the principle of OCT is presented and the crucial parameters of the system are discussed in theory. With analysis of different methods and medical endoscopic system's feature, a design which combines the spectral domain OCT (SDOCT) technique and endoscopy is put forward. SDOCT provides direct access to the spectrum of the optical signal. It is shown to provide higher imaging speed when compared to time domain OCT. At the meantime, a novel OCT probe which uses advanced micromotor to drive reflecting prism is designed according to alimentary tract endoscopic feature. A simple optical coherence tomography system has been developed based on a fiber-based Michelson interferometer and spectrometer. An experiment which uses motor to drive prism to realize rotating imaging is done. Images obtained with this spectral interferometer are presented. The results verify the feasibility of endoscopic optical coherence tomography system with rotating scan.
Optical manipulation of valley pseudospin
Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.
2016-09-19
The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however,more » remained out of reach. In this paper, we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe 2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. Finally, this study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.« less
Wong, Chee Wai; Wong, Doric; Mathur, Ranjana
2014-01-01
A 37-year-old Bangladeshi male presented with an inferotemporal optic disk pit and serous macular detachment in the left eye. Imaging with spectral domain optical coherence tomography (OCT) revealed a multilayer macular schisis pattern with a small subfoveal outer retinal dehiscence. This case illustrates a rare phenotype of optic disk maculopathy with macular schisis and a small outer retinal layer dehiscence. Spectral domain OCT was a useful adjunct in delineating the retinal layers in optic disk pit maculopathy, and revealed a small area of outer retinal layer dehiscence that could only have been detected on high-resolution OCT. PMID:25349471
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.
NASA Astrophysics Data System (ADS)
Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.
2013-03-01
Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.
Nonlinear Sensing With Collective States of Ultracold Atoms in Optical Lattices
2015-04-02
20) E. Tiesinga, “Particle-hole Pair Coherence in Mott insulator quench dynamics” at the June 2014, Division of atomic, molecular, and optical...Jian, Philip R. Johnson, Eite Tiesinga. Particle-Hole Pair Coherence in Mott Insulator Quench Dynamics, P H Y S I C A L R E V I EW L E T T E R S (01...lattices. We focused on techniques that make use of the coherent superposition states in atom number. These state are not unlike the photon number
Extinction measurement of dense media by an optical coherence tomography technique
NASA Astrophysics Data System (ADS)
Ago, Tomoki; Iwai, Toshiaki; Yokota, Ryoko
2016-10-01
The optical coherence tomography will make progress as the next stage toward a spectroscopic analysis technique. The spectroscopic analysis is based on the Beer-Lambert law. The absorption and scattering coefficients even for the dense medium can be measured by the Beer-Lambert law because the OCT can detect only the light keeping the coherency which propagated rectilinearly and retro-reflected from scatters. This study is concerned with the quantitative verification of Beer-Lambert law in the OCT imaging.
NASA Astrophysics Data System (ADS)
Li, Yong; Yang, Aiying; Guo, Peng; Qiao, Yaojun; Lu, Yueming
2018-01-01
We propose an accurate and nondata-aided chromatic dispersion (CD) estimation method involving the use of the cross-correlation function of two heterodyne detection signals for coherent optical communication systems. Simulations are implemented to verify the feasibility of the proposed method for 28-GBaud coherent systems with different modulation formats. The results show that the proposed method has high accuracy for measuring CD and has good robustness against laser phase noise, amplified spontaneous emission noise, and nonlinear impairments.
Performance analysis of a coherent free space optical communication system based on experiment.
Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun
2017-06-26
Based on our previous study and designed experimental AO system with a 97-element continuous surface deformable mirror, we conduct the performance analysis of a coherent free space optical communication (FSOC) system for mixing efficiency (ME), bit error rate (BER) and outage probability under different Greenwood frequency and atmospheric coherent length. The results show that the influence of the atmospheric temporal characteristics on the performance is slightly stronger than that of the spatial characteristics when the receiving aperture and the number of sub-apertures are given. This analysis result provides a reference for the design of the coherent FSOC system.
Laser Controlled Tunneling in a Vertical Optical Lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaufils, Q.; Tackmann, G.; Wang, X.
2011-05-27
Raman laser pulses are used to induce coherent tunneling between neighboring sites of a vertical 1D optical lattice. Such tunneling occurs when the detuning of a probe laser from the atomic transition frequency matches multiples of the Bloch frequency, allowing for a spectroscopic control of the coupling between Wannier-Stark (WS) states. In particular, we prepare coherent superpositions of WS states of adjacent sites, and investigate the coherence time of these superpositions by realizing a spatial interferometer. This scheme provides a powerful tool for coherent manipulation of external degrees of freedom of cold atoms, which is a key issue for quantummore » information processing.« less
Time-reversed wave mixing in nonlinear optics
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-01-01
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing. PMID:24247906
NASA Astrophysics Data System (ADS)
Arroyo, Junior; Saavedra, Ana Cecilia; Guerrero, Jorge; Montenegro, Pilar; Aguilar, Jorge; Pinto, Joseph A.; Lobo, Julio; Salcudean, Tim; Lavarello, Roberto; Castañeda, Benjamín.
2018-03-01
Breast cancer is a public health problem with 1.7 million new cases per year worldwide and with several limitations in the state-of-art screening techniques. Ultrasound elastography involves a set of techniques intended to facilitate the noninvasive diagnosis of cancer. Among these, Vibro-elastography is an ultrasound-based technique that employs external mechanical excitation to infer the elastic properties of soft tissue. In this paper, we evaluate the Vibro-elastography performance in the differentiation of benign and malignant breast lesions. For this study, a group of 18 women with clinically confirmed tumors or suspected malignant breast lesions were invited to participate. For each volunteer, an elastogram was obtained, and the mean elasticity of the lesion and the adjacent healthy tissue were calculated. After the acquisition, the volunteers underwent core-needle biopsy. The histopathological results allowed to validate the Vibro-elastography diagnosis, which ranged from benign to malignant lesions. Results indicate that the mean elasticity value of the benign lesions, malignant lesions and healthy breast tissue were 39.4 +/- 12 KPa, 55.4 +/- 7.02 KPa and 23.91 +/- 4.57 kPa, respectively. The classification between benign and malignant breast cancer was performed using Support Vector Machine based on the measured lesion stiffness. A ROC curve permitted to quantify the accuracy of the differentiation and to define a suitable cutoff value of stiffness, obtaining an AUC of 0.90 and a cutoff value of 44.75 KPa. The results obtained suggest that Vibro-elastography allows differentiating between benign and malignant lesions. Furthermore, the elasticity values obtained for benign, malignant and healthy tissue are consistent with previous reports.
Bota, Simona; Sporea, Ioan; Peck-Radosavljevic, Markus; Sirli, Roxana; Tanaka, Hironori; Iijima, Hiroko; Saito, Hidetsugu; Ebinuma, Hirotoshi; Lupsor, Monica; Badea, Radu; Fierbinteanu-Braticevici, Carmen; Petrisor, Ana; Friedrich-Rust, Mireen; Sarrazin, Christoph; Takahashi, Hirokazu; Ono, Naofumi; Piscaglia, Fabio; Marinelli, Sara; D'Onofrio, Mirko; Gallotti, Anna; Salzl, Petra; Popescu, Alina; Danila, Mirela
2013-09-01
Acoustic Radiation Force Impulse Elastography is a new method for non-invasive evaluation of liver fibrosis. To evaluate the impact of elevated alanine aminotransferase levels on liver stiffness assessment by Acoustic Radiation Force Impulse Elastography. A multicentre retrospective study including 1242 patients with chronic liver disease, who underwent liver biopsy and Acoustic Radiation Force Impulse. Transient Elastography was also performed in 512 patients. The best Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis was 1.29 m/s in cases with normal alanine aminotransferase levels and 1.44 m/s in patients with alanine aminotransferase levels>5 × the upper limit of normal. The best cut-off for predicting liver cirrhosis were 1.59 and 1.75 m/s, respectively. Acoustic Radiation Force Impulse cut-off for predicting significant fibrosis and cirrhosis were relatively similar in patients with normal alanine aminotransferase and in those with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal: 1.29 m/s vs. 1.36 m/s and 1.59 m/s vs. 1.57 m/s, respectively. For predicting cirrhosis, the Transient Elastography cut-offs were significantly higher in patients with alanine aminotransferase levels between 1.1 and 5 × the upper limit of normal compared to those with normal alanine aminotransferase: 12.3 kPa vs. 9.1 kPa. Liver stiffness values assessed by Acoustic Radiation Force Impulse and Transient Elastography are influenced by high aminotransferase levels. Transient Elastography was also influenced by moderately elevated aminotransferase levels. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Elsharkawy, Aisha; Alboraie, Mohamed; Fouad, Rabab; Asem, Noha; Abdo, Mahmoud; Elmakhzangy, Hesham; Mehrez, Mai; Khattab, Hany; Esmat, Gamal
2017-12-01
Transient elastography is widely used to assess fibrosis stage in chronic hepatitis C (CHC). We aimed to establish and validate different transient elastography cut-off values for significant fibrosis and cirrhosis in CHC genotype 4 patients. The data of 100 treatment-naive CHC patients (training set) and 652 patients (validation set) were analysed. The patients were subjected to routine pretreatment laboratory investigations, liver biopsy and histopathological staging of hepatic fibrosis according to the METAVIR scoring system. Transient elastography was performed before and in the same week as liver biopsy using FibroScan (Echosens, Paris, France). Transient elastography results were correlated to different stages of hepatic fibrosis in both the training and validation sets. ROC curves were constructed. In the training set, the best transient elastography cut-off values for significant hepatic fibrosis (≥F2 METAVIR), advanced hepatic fibrosis (≥F3 METAVIR) and cirrhosis (F4 METAVIR) were 7.1, 9 and 12.2 kPa, with sensitivities of 87%, 87.5% and 90.9% and specificities of 100%, 99.9% and 99.9%, respectively. The application of these cut-offs in the validation set showed sensitivities of 85.5%, 82.8% and 92% and specificities of 86%, 89.4% and 99.01% for significant hepatic fibrosis, advanced hepatic fibrosis and cirrhosis, respectively. Transient elastography performs well for significant hepatic fibrosis, advanced hepatic fibrosis and cirrhosis, with validated cut-offs of 7.1, 9 and 12.2 kPa, respectively, in genotype 4 CHC patients. Copyright © 2017 Pan-Arab Association of Gastroenterology. Published by Elsevier B.V. All rights reserved.
Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel
2012-01-01
By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique
2014-10-01
Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young’s modulus over the range of normal and cirrhotic liver stiffnesses. The Young’s modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.
Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique
2014-10-07
Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young's modulus over the range of normal and cirrhotic liver stiffnesses. The Young's modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.
2015-01-01
Endometrial polyps and submucosal fibroids are common causes of abnormal uterine bleeding (AUB) and less commonly infertility. The prevalence of such intrauterine lesions increases with age during the reproductive years, and usually decreases after menopause. The first-line imaging examination in the diagnosis of endometrial polyps as well as submucosal fibroidsis ultrasound, but its accuracy is not obvious. Elastography is an ultrasound-based imaging modality that is used to assess the stiffness of examined tissues. Considering the fact that endometrial polyps derive from soft endometrial tissue and submucosal fibroids are made of hard muscle tissue, elastography seems a perfect tool to differentiate between such lesions. I present two groups of patients with AUB and intrauterine lesions suspected on ultrasound. In the first group of patients, elastography showed that the stiffness of the lesion was similar to the endometrium and softer than the myometrium. During hysteroscopies endometrial polyps were removed. In the second group of patients, elastography showed that the stiffness of the lesion was similar to the myometrium and harder than the endometrium. During hysteroscopies submucosal fibroids were removed. In both groups, the diagnosis was confirmed by the pathological examination in all cases. It was demonstrated that with the use of elastography it is possible to assess the stiffness of intrauterine lesions, which may be useful in differentiating between endometrial polyps and submucosal fibroids. PMID:26327901
Woźniak, Sławomir
2015-06-01
Endometrial polyps and submucosal fibroids are common causes of abnormal uterine bleeding (AUB) and less commonly infertility. The prevalence of such intrauterine lesions increases with age during the reproductive years, and usually decreases after menopause. The first-line imaging examination in the diagnosis of endometrial polyps as well as submucosal fibroidsis ultrasound, but its accuracy is not obvious. Elastography is an ultrasound-based imaging modality that is used to assess the stiffness of examined tissues. Considering the fact that endometrial polyps derive from soft endometrial tissue and submucosal fibroids are made of hard muscle tissue, elastography seems a perfect tool to differentiate between such lesions. I present two groups of patients with AUB and intrauterine lesions suspected on ultrasound. In the first group of patients, elastography showed that the stiffness of the lesion was similar to the endometrium and softer than the myometrium. During hysteroscopies endometrial polyps were removed. In the second group of patients, elastography showed that the stiffness of the lesion was similar to the myometrium and harder than the endometrium. During hysteroscopies submucosal fibroids were removed. In both groups, the diagnosis was confirmed by the pathological examination in all cases. It was demonstrated that with the use of elastography it is possible to assess the stiffness of intrauterine lesions, which may be useful in differentiating between endometrial polyps and submucosal fibroids.
2018-01-01
This study aimed to assess and validate the repeatability and agreement of quantitative elastography of novel shear wave methods on four individual tissue-mimicking liver fibrosis phantoms with different known Young’s modulus. We used GE Logiq E9 2D-SWE, Philips iU22 ARFI (pSWE), Samsung TS80A SWE (pSWE), Hitachi Ascendus (SWM) and Transient Elastography (TE). Two individual investigators performed all measurements non-continued and in parallel. The methods were evaluated for inter- and intraobserver variability by intraclass correlation, coefficient of variation and limits of agreement using the median elastography value. All systems used in this study provided high repeatability in quantitative measurements in a liver fibrosis phantom and excellent inter- and intraclass correlations. All four elastography platforms showed excellent intra-and interobserver agreement (interclass correlation 0.981–1.000 and intraclass correlation 0.987–1.000) and no significant difference in mean elasticity measurements for all systems, except for TE on phantom 4. All four liver fibrosis phantoms could be differentiated by quantitative elastography, by all platforms (p<0.001). In the Bland-Altman analysis the differences in measurements were larger for the phantoms with higher Young’s modulus. All platforms had a coefficient of variation in the range 0.00–0.21 for all four phantoms, equivalent to low variance and high repeatability. PMID:29293527
Li, M H; Liu, Y; Liu, L S; Li, P X; Chen, Q
2016-05-24
To investigate the real-time tissue elastography and 3D contrast-enhanced ultrasonography(CEUS) in breast lumps differential diagnostic value. A total of 126 patients (180 lumps) with breast mass were retrospectively analyzed from December 2012 to December 2014 in Tumor Hospital Affiliated To Xinjiang Medical University.All patients were divided into three groups by using stratified random method.Each group was detected by real-time tissue elastography, 3D CEUS and two joint inspection.Each group of 42 cases (60 lumps) was confirmed by the pathological results as gold standard.Diagnostic sensitivity, specificity and coincidence rate of different methods were compared. The benign masses of ultrasound contrast showed the punctate, linear and nodular enhancement, and the border of enhancement was smooth.The malignant tumors were mainly dominated by uneven and high enhancement. There was no statistical difference in sensitivity, specificity and coincidence rate between elastography group and 3D CEUS group (64.7% vs 73.5%, 69.2% vs 76.9%, 66.7% vs 75.0%, all P>0.05). The sensitivity, specificity and coincidence rate of two joint inspection group were higher than those of elastography group and 3D CEUS group, the differences were statistically significant (97.1%, 92.3% and 98.3% , all P<0.05). 3D CEUS combined with real-time tissue elastography is of high value in the diagnosis of breast masses.
Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki
2017-07-01
The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Frequency-time coherence for all-optical sampling without optical pulse source
Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas
2016-01-01
Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift. PMID:27687495
NASA Technical Reports Server (NTRS)
Grinberg, J.; Jacobson, A.; Bleha, W.; Miller, L.; Fraas, L.; Boswell, D.; Myer, G.
1975-01-01
A new, high-performance device has been developed for application to real-time coherent optical data processing. The new device embodies a CdS photoconductor, a CdTe light-absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The noncoherent image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the ac voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state and the optical birefringence effect to create the bright on-state. The liquid crystal modulates the polarization of the coherent read-out light so an analyzer must be used to create an intensity modulated output beam.
Coherent Control to Prepare an InAs Quantum Dot for Spin-Photon Entanglement
NASA Astrophysics Data System (ADS)
Webster, L. A.; Truex, K.; Duan, L.-M.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2014-03-01
We optically generated an electronic state in a single InAs /GaAs self-assembled quantum dot that is a precursor to the deterministic entanglement of the spin of the electron with an emitted photon in the proposal of W. Yao, R.-B. Liu, and L. J. Sham [Phys. Rev. Lett. 95, 030504 (2005).]. A superposition state is prepared by optical pumping to a pure state followed by an initial pulse. By modulating the subsequent pulse arrival times and precisely controlling them using interferometric measurement of path length differences, we are able to implement a coherent control technique to selectively drive exactly one of the two components of the superposition to the ground state. This optical transition contingent on spin was driven with the same broadband pulses that created the superposition through the use of a two pulse coherent control sequence. A final pulse affords measurement of the coherence of this "preentangled" state.
Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.
Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim
2014-02-10
We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; ...
2016-11-07
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. We investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS 2 and MoSe 2) through a study combining microscopic theory with spectroscopic measurements. We also show that the excitonicmore » coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. Particularly, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures, in WS 2.« less
NASA Astrophysics Data System (ADS)
Aguirre, Aaron D.; Zhou, Chao; Lee, Hsiang-Chieh; Ahsen, Osman O.; Fujimoto, James G.
Cellular imaging of human tissues remains an important advance for many clinical applications of optical coherence tomography (OCT). Imaging cells with traditional OCT systems has not been possible due to the limited transverse resolution of such techniques. Optical coherence microscopy (OCM) refers to OCT methods that achieve high transverse resolution to visualize cells and subcellular features. This chapter provides a comprehensive discussion of the rationale for cellular imaging in human tissues as well as a review of the key technological advances required to achieve it. Time domain and Fourier domain OCM approaches are described with an emphasis on state of the art system designs, including miniaturized endoscopic imaging probes. Clinical applications are discussed and multiple examples of cellular imaging in human tissues are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav
2016-07-27
A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.
Kim, Sang Jin; Yang, Jianlong; Liu, Gangjun; Huang, David; Campbell, J Peter
2018-04-01
Incontinentia pigmenti (IP) is a rare X-linked dominant disorder that can cause retinal nonperfusion, neovascularization, and retinal detachment. Evaluation of the peripheral retinal vasculature and appropriate treatment can reduce the risk of blindness. The authors report the use of a handheld prototype optical coherence tomography angiography (OCTA) and ultra-widefield OCT (UWF-OCT) during exam under anesthesia of a 2-year-old with a history of severe early onset IP. UWF-OCT and OCTA may be used as noninvasive imaging modalities for IP and similar retinal vascular disorders in supine young children. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:273-275.]. Copyright 2018, SLACK Incorporated.
Common-path low-coherence interferometry fiber-optic sensor guided microincision
Zhang, Kang; Kang, Jin U.
2011-01-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than ±5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations. PMID:21950912
Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto
2016-06-01
We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.
Fingerprint imaging from the inside of a finger with full-field optical coherence tomography
Auksorius, Egidijus; Boccara, A. Claude
2015-01-01
Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes. PMID:26601009
Coherent Perfect Rotation: The conservative analogue of CPA
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Dawson, Nathan; Andrews, James
2012-06-01
The two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. In analogy with coherent perfect absorption (CPA) resonances, where counter-propagating light fields are completely converted into other degrees of freedom, we show that in a linear conservative medium only time-odd (Faraday) rotation is capable of coherent perfect rotation, by which we mean the complete transfer of any arbitrarily oriented polarization of light into the other orthogonal polarization via the application of phased counter-propagating light fields. This contributes to the understanding of the importance of time reversal symmetry in perfect mode conversion that may be of use in optical device design.
Faithful Solid State Optical Memory with Dynamically Decoupled Spin Wave Storage
NASA Astrophysics Data System (ADS)
Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe
2013-07-01
We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.
Faithful solid state optical memory with dynamically decoupled spin wave storage.
Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe
2013-07-12
We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.
Characterization of human scalp hairs by optical low-coherence reflectometry
NASA Astrophysics Data System (ADS)
Wang, X. J.; Milner, T. E.; Dhond, R. P.; Sorin, W. V.; Newton, S. A.; Nelson, J. S.
1995-03-01
Optical low-coherence reflectometry is used to investigate the internal structure and optical properties of human scalp hair. Regardless of hair color, the refractive index of the cortical region remains within the range of 1.56-1.59. The amplitude of the backscattered infrared light coupled into different-colored hair confirms the relative melanin content. Discontinuities in the refractive index permit identification of distinct structural layers within the hair shaft.
Coric, Dragan; Lai, Marco; Botsis, John; Luo, Aiping; Limberger, Hans G
2010-12-06
Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.
Pastor, D; Amaya, W; García-Olcina, R; Sales, S
2007-07-01
We present a simple theoretical model of and the experimental verification for vanishing of the autocorrelation peak due to wavelength detuning on the coding-decoding process of coherent direct sequence optical code multiple access systems based on a superstructured fiber Bragg grating. Moreover, the detuning vanishing effect has been explored to take advantage of this effect and to provide an additional degree of multiplexing and/or optical code tuning.
Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness
Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan
2014-01-01
The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780
Analisys of pectoralis major tendon in weightlifting athletes using ultrasonography and elastography
Pochini, Alberto de Castro; Ferretti, Mario; Kawakami, Eduardo Felipe Kin Ito; Fernandes, Artur da Rocha Corrêa; Yamada, Andre Fukunishi; de Oliveira, Gabriela Clemente; Cohen, Moisés; Andreoli, Carlos Vicente; Ejnisman, Benno
2015-01-01
ABSTRACT Objective To evaluate tendinopathy of the pectoralis major muscle in weightlifting athletes using ultrasound and elastography. Methods This study included 20 patients, 10 with rupture of the pectoralis major muscle and 10 control patients. We evaluated pectoralis major muscle contralateral tendon with ultrasonographic and elastography examinations. The ultrasonographic examinations were performed using a high-resolution B mode ultrasound device. The elastography evaluation was classified into three patterns: (A), if stiff (more than 50% area with blue staining); (B), if intermediate (more than 50% green); and (C), if softened (more than 50% red). Results Patients’ mean age was 33±5.3 years. The presence of tendinous injury measured by ultrasound had a significant different (p=0.0055), because 80% of cases had tendinous injury versus 10% in the Control Group. No significant differences were seen between groups related with change in elastography (p=0.1409). Conclusion Long-term bodybuilders had ultrasound image with more tendinous injury than those in Control Group. There was no statistical significance regarding change in tendon elasticity compared with Control Group. PMID:26761551
Ultrasound Elastography: Review of Techniques and Clinical Applications
Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.
2017-01-01
Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467
Fourier phase in Fourier-domain optical coherence tomography
Uttam, Shikhar; Liu, Yang
2015-01-01
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun
2007-11-01
A coherent optical en/decoder based on photonic crystal (PhC) for optical code-division-multiple (OCDM)-based optical label (OCDM-OL) optical packets switching (OPS) networks is proposed in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by the photonic crystal phase shifter and delayer using the appropriate design of fabrication. In this design, the combination calculation of the impurity and normal period layers is applied, according to the PhC transmission matrix theorem. The design and theoretical analysis of the PhC-based optical coherent en/decoder is mainly focused. In addition, the performances of the PhC-based optical en/decoders are analyzed in detail. The reflection, the transmission, delay characteristic and the optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by the numerical calculation, taking into account 1-Dimension (1D) PhC. Theoretical analysis and numerical results show that optical pulse is achieved to properly phase modulation and time delay by the proposed scheme, optical label based on OCDM is rewrote successfully by new code for OCDM-based OPS (OCDM-OPS), and an over 8.5 dB ration of auto- and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-09-21
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less