Sample records for optical computerized tomography

  1. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yunyun; Li Zhenhua; Song Yang

    2009-05-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  2. Computerized tomography versus magnetic resonance imaging: a comparative study in hypothalamic-pituitary and parasellar pathology.

    PubMed

    Webb, S M; Ruscalleda, J; Schwarzstein, D; Calaf-Alsina, J; Rovira, A; Matos, G; Puig-Domingo, M; de Leiva, A

    1992-05-01

    We wished to analyse the relative value of computerized tomography and magnetic resonance in patients referred for evaluation of pituitary and parasellar lesions. We performed a separate evaluation by two independent neuroradiologists of computerized tomography and magnetic resonance images ordered numerically and anonymously, with no clinical data available. We studied 40 patients submitted for hypothalamic-pituitary study; 31 were carried out preoperatively, of which histological confirmation later became available in 14. The remaining nine patients were evaluated postoperatively. Over 40 parameters relating to the bony margins, cavernous sinuses, carotid arteries, optic chiasm, suprasellar cisterns, pituitary, pituitary stalk and extension of the lesion were evaluated. These reports were compared with the initial ones offered when the scans were ordered, and with the final diagnosis. Concordance between initial computerized tomography and magnetic resonance was observed in 27 cases (67.5%); among the discordant cases computerized tomography showed the lesion in two, magnetic resonance in 10, while in the remaining case reported to harbour a microadenoma on computerized tomography the differential diagnosis between a true TSH-secreting microadenoma and pituitary resistance to thyroid hormones is still unclear. Both neuroradiologists coincided in their reports in 32 patients (80%); when the initial report was compared with those of the neuroradiologists, concordance was observed with at least one of them in 34 instances (85%). Discordant results were observed principally in microadenomas secreting ACTH or PRL and in delayed puberty. In the eight patients with Cushing's disease (histologically confirmed in six) magnetic resonance was positive in five and computerized tomography in two; the abnormal image correctly identified the side of the lesion at surgery. In patients referred for evaluation of Cushing's syndrome or hyperprolactinaemia (due to microadenomas) or after surgery, magnetic resonance is clearly preferable to computerized tomography. In macroadenomas both scans are equally diagnostic but magnetic resonance offers more information on pituitary morphology and neighbouring structures. Nevertheless, there are cases in which the results of computerized tomography and magnetic resonance will complement each other, since different parameters are analysed with each examination and discordant results are encountered.

  3. Computerized tomography in neuro-ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, I.F.; Sanders, M.D.

    This highly specialized text is organized into sections that cover anatomy, diseases of the orbit, visual loss, optic nerve disease, disorders of eye movement, and heredofamilial, developmental, and metabolic disorders.

  4. Heidelberg Retina Tomography Analysis in Optic Disks with Anatomic Particularities

    PubMed Central

    Alexandrescu, C; Pascu, R; Ilinca, R; Popescu, V; Ciuluvica, R; Voinea, L; Celea, C

    2010-01-01

    Due to its objectivity, reproducibility and predictive value confirmed by many large scale statistical clinical studies, Heidelberg Retina Tomography has become one of the most used computerized image analysis of the optic disc in glaucoma. It has been signaled, though, that the diagnostic value of Moorfieds Regression Analyses and Glaucoma Probability Score decreases when analyzing optic discs with extreme sizes. The number of false positive results increases in cases of megalopapilllae and the number of false negative results increases in cases of small size optic discs. The present paper is a review of the aspects one should take into account when analyzing a HRT result of an optic disc with anatomic particularities. PMID:21254731

  5. An Application of Computerized Axial Tomography (CAT) Technology to Mass Raid Tracking

    DTIC Science & Technology

    1989-08-01

    ESD-TR-89-305 MTR-10542 An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking By John K. Barr August 1989...NO 11. TITLE (Include Security Classification) An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking 12...by block number) Computerized Axial Tomography ( CAT ) Scanner Electronic Support Measures (ESM) Fusion (continued) 19. ABSTRACT (Continue on

  6. Can computerized tomography accurately stage childhood renal tumors?

    PubMed

    Abdelhalim, Ahmed; Helmy, Tamer E; Harraz, Ahmed M; Abou-El-Ghar, Mohamed E; Dawaba, Mohamed E; Hafez, Ashraf T

    2014-07-01

    Staging of childhood renal tumors is crucial for treatment planning and outcome prediction. We sought to identify whether computerized tomography could accurately predict the local stage of childhood renal tumors. We retrospectively reviewed our database for patients diagnosed with childhood renal tumors and treated surgically between 1990 and 2013. Inability to retrieve preoperative computerized tomography, intraoperative tumor spillage and nonWilms childhood renal tumors were exclusion criteria. Local computerized tomography stage was assigned by a single experienced pediatric radiologist blinded to the pathological stage, using a consensus similar to the Children's Oncology Group Wilms tumor staging system. Tumors were stratified into up-front surgery and preoperative chemotherapy groups. The radiological stage of each tumor was compared to the pathological stage. A total of 189 tumors in 179 patients met inclusion criteria. Computerized tomography staging matched pathological staging in 68% of up-front surgery (70 of 103), 31.8% of pre-chemotherapy (21 of 66) and 48.8% of post-chemotherapy scans (42 of 86). Computerized tomography over staged 21.4%, 65.2% and 46.5% of tumors in the up-front surgery, pre-chemotherapy and post-chemotherapy scans, respectively, and under staged 10.7%, 3% and 4.7%. Computerized tomography staging was more accurate in tumors managed by up-front surgery (p <0.001) and those without extracapsular extension (p <0.001). The validity of computerized tomography staging of childhood renal tumors remains doubtful. This staging is more accurate for tumors treated with up-front surgery and those without extracapsular extension. Preoperative computerized tomography can help to exclude capsular breach. Treatment strategy should be based on surgical and pathological staging to avoid the hazards of inaccurate staging. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250.

    PubMed

    Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C

    2015-08-01

    Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    PubMed Central

    Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger

    2011-01-01

    With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640

  9. Diagnostic Yield of Transbronchial Biopsy in Comparison to High Resolution Computerized Tomography in Sarcoidosis Cases

    PubMed

    Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan

    2018-04-25

    This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License

  10. Infantile Autism and Computerized Tomography Brain-Scan Findings: Specific versus Nonspecific Abnormalities.

    ERIC Educational Resources Information Center

    Balottin, Umberto; And Others

    1989-01-01

    The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)

  11. [The clinical economic analysis of the methods of ischemic heart disease diagnostics].

    PubMed

    Kalashnikov, V Iu; Mitriagina, S N; Syrkin, A L; Poltavskaia, M G; Sorokina, E G

    2007-01-01

    The clinical economical analysis was applied to assess the application of different techniques of ischemic heart disease diagnostics - the electro-cardiographic monitoring, the treadmill-testing, the stress-echo cardiographic with dobutamine, the single-photon computerized axial tomography with load, the multi-spiral computerized axial tomography with coronary arteries staining in patients with different initial probability of disease occurrence. In all groups, the best value of "cost-effectiveness" had the treadmill-test. The patients with low risk needed 17.4 rubles to precise the probability of ischemic heart disease occurrence at 1%. In the group with medium and high risk this indicator was 9.4 and 24.7 rubles correspondingly. It is concluded that to precise the probability of ischemic heart disease occurrence after tredmil-test in the patients with high probability it is appropriate to use the single-photon computerized axial tomography with load and in the case of patients with low probability the multi-spiral computerized axial tomography with coronary arteries staining.

  12. Anthropometric and computerized tomographic measurements of lower extremity lean body mass.

    PubMed

    Buckley, D C; Kudsk, K A; Rose, B S; Fatzinger, P; Koetting, C A; Schlatter, M

    1987-02-01

    The loss of lean muscle mass is one of the hallmarks of protein-calorie malnutrition. Anthropometry is a standardized technique used to assess the response of muscle mass to nutrition therapy by quantifying the muscle and fat compartments. That technique does not accurately reflect actual limb composition, whereas computerized tomography does. Twenty lower extremities on randomly chosen men and women patients were evaluated by anthropometry and computerized tomography. Total area, muscle plus bone area, total volume, and muscle plus bone volume were correlated, using Heymsfield's equation and computerized tomography-generated areas. Anthropometrics overestimated total and muscle plus bone cross-sectional areas at almost every level. Anthropometry overestimated total area and total volume by 5% to 10% but overestimated muscle plus bone area and muscle plus bone volume by as much as 40%. Anthropometry, while easily performed and useful in large population groups for epidemiological studies, offers a poor assessment of lower extremity composition. On the other hand, computerized tomography is also easily performed and, while impractical for large population groups, does offer an accurate assessment of the lower extremity tissue compartments and is an instrument that might be used in research on lean muscle mass.

  13. Fiber Optic Communication System For Medical Images

    NASA Astrophysics Data System (ADS)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  14. Initial clinical experience with computerized tomography of the body.

    PubMed

    Stephens, D H; Sheedy, P F; Hattery, R R; Hartman, G W

    1976-04-01

    Computerized tomography of the body, now possible with an instrument that can complete a scan rapidly enough to permit patients to suspend respiration, adds an important new dimension to radiologic diagnosis. Cross-sectional antomy is uniquely reconstructed to provide accurate diagnostic information for various disorders throughout the body.

  15. Lymphatic Drainage from Renal Tumors In Vivo: A Prospective Sentinel Node Study Using SPECT/CT Imaging.

    PubMed

    Kuusk, Teele; De Bruijn, Roderick; Brouwer, Oscar R; De Jong, Jeroen; Donswijk, Maarten; Grivas, Nikolaos; Hendricksen, Kees; Horenblas, Simon; Prevoo, Warner; Valdés Olmos, Renato A; Van Der Poel, Henk G; Van Rhijn, Bas W G; Wit, Esther M; Bex, Axel

    2018-06-01

    Lymphatic drainage from renal tumors is unpredictable. In vivo drainage studies of primary lymphatic landing sites may reveal the variability and dynamics of lymphatic connections. The purpose of this study was to investigate the lymphatic drainage pattern of renal tumors in vivo with single photon emission/computerized tomography after intratumor radiotracer injection. We performed a phase II, prospective, single arm study to investigate the distribution of sentinel nodes from renal tumors on single photon emission/computerized tomography. Patients with cT1-3 (less than 10 cm) cN0M0 renal tumors of any subtype were enrolled in analysis. After intratumor ultrasound guided injection of 0.4 ml 99m Tc-nanocolloid we performed preoperative imaging of sentinel nodes with lymphoscintigraphy and single photon emission/computerized tomography. Sentinel and locoregional nonsentinel nodes were resected with a γ probe combined with a mobile γ camera. The primary study end point was the location of sentinel nodes outside the locoregional retroperitoneal templates on single photon emission/computerized tomography. Using a Simon minimax 2-stage design to detect a 25% extralocoregional retroperitoneal template location of sentinel nodes on imaging at α = 0.05 and 80% power at least 40 patients with sentinel node imaging on single photon emission/computerized tomography were needed. Of the 68 patients 40 underwent preoperative single photon emission/computerized tomography of sentinel nodes and were included in primary end point analysis. Lymphatic drainage outside the locoregional retroperitoneal templates was observed in 14 patients (35%). Eight patients (20%) had supradiaphragmatic sentinel nodes. Sentinel nodes from renal tumors were mainly located in the respective locoregional retroperitoneal templates. Simultaneous sentinel nodes were located outside the suggested lymph node dissection templates, including supradiaphragmatic sentinel nodes in more than a third of the patients. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Accurately Diagnosing Uric Acid Stones from Conventional Computerized Tomography Imaging: Development and Preliminary Assessment of a Pixel Mapping Software.

    PubMed

    Ganesan, Vishnu; De, Shubha; Shkumat, Nicholas; Marchini, Giovanni; Monga, Manoj

    2018-02-01

    Preoperative determination of uric acid stones from computerized tomography imaging would be of tremendous clinical use. We sought to design a software algorithm that could apply data from noncontrast computerized tomography to predict the presence of uric acid stones. Patients with pure uric acid and calcium oxalate stones were identified from our stone registry. Only stones greater than 4 mm which were clearly traceable from initial computerized tomography to final composition were included in analysis. A semiautomated computer algorithm was used to process image data. Average and maximum HU, eccentricity (deviation from a circle) and kurtosis (peakedness vs flatness) were automatically generated. These parameters were examined in several mathematical models to predict the presence of uric acid stones. A total of 100 patients, of whom 52 had calcium oxalate and 48 had uric acid stones, were included in the final analysis. Uric acid stones were significantly larger (12.2 vs 9.0 mm, p = 0.03) but calcium oxalate stones had higher mean attenuation (457 vs 315 HU, p = 0.001) and maximum attenuation (918 vs 553 HU, p <0.001). Kurtosis was significantly higher in each axis for calcium oxalate stones (each p <0.001). A composite algorithm using attenuation distribution pattern, average attenuation and stone size had overall 89% sensitivity, 91% specificity, 91% positive predictive value and 89% negative predictive value to predict uric acid stones. A combination of stone size, attenuation intensity and attenuation pattern from conventional computerized tomography can distinguish uric acid stones from calcium oxalate stones with high sensitivity and specificity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Computerized tomography as a diagnostic aid in acute hemorrhagic leukoencephalitis.

    PubMed

    Rothstein, T L; Shaw, C M

    1983-03-01

    Computerized tomography (CT) in a pathologically proven case of acute hemorrhagic leukoencephalitis (AHL) showed a mass effect and increased absorption coefficient in the right hemisphere within 18 hours of the onset of neurological symptoms. The changes corresponded to the site of white matter edema, necrosis, and petechial hemorrhages demonstrated postmortem. The early changes of CT reflect the hyperacute nature of AHL and differ from those of herpes simplex encephalitis.

  18. Comprehensive Digital Imaging Network Project At Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert

    1987-10-01

    The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.

  19. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.

  20. Otolaryngology and ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanafee, W.N.

    A literature review with 227 references of the diagnostic use of computerized tomography for head and neck problems is presented. The anatomy, congenital malformations, infectious diseases, and nioplasms of the auditory organs, paranasal sinuses, pharynx, larynx and salivary glands are examined in detail. A major impetus to the use of computerized tomography has been the realization by the health care industry that CT scanning offers details of tumors in the head and neck area that are not available by other modalities. (KRM)

  1. Computerized tomography using video recorded fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.

    1975-01-01

    A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.

  2. Technology in the Assessment of Learning Disability.

    ERIC Educational Resources Information Center

    Bigler, Erin D.; Lajiness-O'Neill, Renee; Howes, Nancy-Louise

    1998-01-01

    Reviews recent neuroradiologic and brain imaging techniques in the assessment of learning disability. Technologies reviewed include computerized tomography; magnetic resonance imaging; electrophysiological and metabolic imaging; computerized electroencepholographic studies of evoked potentials, event-related potentials, spectral analysis, and…

  3. Computerized tomography platform using beta rays

    NASA Astrophysics Data System (ADS)

    Paetkau, Owen; Parsons, Zachary; Paetkau, Mark

    2017-12-01

    A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.

  4. Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study.

    PubMed

    Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V

    2009-04-01

    We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, <0.001 and 0.0002, respectively). When comparing measurement errors between stones of different composition in vitro, the error for calcium oxalate calculi was significantly different from the gold standard for all methods except bone window settings with magnification. For uric acid calculi the measurement error was observed only in standard soft tissue window settings. In vivo 4.0x magnified bone windows was superior to 4.0x magnified soft tissue windows in measurement accuracy. Magnified bone window measurements were not statistically different from digital caliper measurements (mean underestimation vs digital caliper 0.3 mm, p = 0.4), while magnified soft tissue windows were statistically distinct (mean underestimation 1.4 mm, p = 0.001). In this study magnified bone windows were the most accurate method of stone measurements in vitro and in vivo. Therefore, we recommend the routine use of magnified bone windows for computerized tomography measurement of stones. In vitro the measurement error in calcium oxalate stones was greater than that in uric acid stones, suggesting that stone composition may be responsible for measurement inaccuracies.

  5. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  6. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  7. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance

    Science.gov Websites

    Radiopharmaceuticals, DOE Technical Report, 1977 Emission Computed Tomography: A New Technique for the Quantitative Extending the Power of Nuclear Magnetic Resonance Techniques Magnetic Resonance Imaging Research Top Some

  8. Research on ionospheric tomography based on variable pixel height

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  9. Computerized tomography calibrator

    NASA Technical Reports Server (NTRS)

    Engel, Herbert P. (Inventor)

    1991-01-01

    A set of interchangeable pieces comprising a computerized tomography calibrator, and a method of use thereof, permits focusing of a computerized tomographic (CT) system. The interchangeable pieces include a plurality of nestable, generally planar mother rings, adapted for the receipt of planar inserts of predetermined sizes, and of predetermined material densities. The inserts further define openings therein for receipt of plural sub-inserts. All pieces are of known sizes and densities, permitting the assembling of different configurations of materials of known sizes and combinations of densities, for calibration (i.e., focusing) of a computerized tomographic system through variation of operating variables thereof. Rather than serving as a phanton, which is intended to be representative of a particular workpiece to be tested, the set of interchangeable pieces permits simple and easy standardized calibration of a CT system. The calibrator and its related method of use further includes use of air or of particular fluids for filling various openings, as part of a selected configuration of the set of pieces.

  10. Computerized design and generation of space-variant holographic filters. II - Applications of space-variant filters to optical computing

    NASA Technical Reports Server (NTRS)

    Ambs, P.; Fainman, Y.; Esener, S.; Lee, S. H.

    1988-01-01

    Holographic optical elements (HOEs) of space-variant impulse response have been designed and generated using a computerized optical system. HOEs made of dichromated gelatin have been produced and used for spatial light modulator defect removal and optical interconnects. Experimental performance and characteristics are presented.

  11. The poppy seed test for colovesical fistula: big bang, little bucks!

    PubMed

    Kwon, Eric O; Armenakas, Noel A; Scharf, Stephen C; Panagopoulos, Georgia; Fracchia, John A

    2008-04-01

    Diagnosis of a colovesical fistula is often challenging, and usually involves numerous invasive and expensive tests and procedures. The poppy seed test stands out as an exception to this rule. We evaluated the accuracy and cost-effectiveness of various established diagnostic tests used to evaluate a suspected colovesical fistula. We identified 20 prospectively entered patients with surgically confirmed colovesical fistulas between 2000 and 2006. Each patient was evaluated preoperatively with a (51)chromium nuclear study, computerized tomography of the abdomen and pelvis with oral and intravenous contrast medium, and the poppy seed test. Costs were calculated using institutional charges, 2006 Medicare limiting approved charges and the market price, respectively. The z test was used to compare the proportion of patients who tested positive for a fistula with each of these modalities. The chromium study was positive in 16 of 20 patients (80%) at a cost of $490.83 per study. Computerized tomography was positive in 14 of 20 patients (70%) at a cost of $652.92 per study. The poppy seed test was positive in 20 of 20 patients (100%) at a cost of $5.37 per study. The difference in the proportion of patients who tested positive for a fistula on computerized tomography and the poppy seed test was statistically significant (p = 0.03). There was no difference between the chromium group and the computerized tomography or poppy seed group (p = 0.72 and 0.12, respectively). The poppy seed test is an accurate, convenient and inexpensive diagnostic test. It is an ideal initial consideration for evaluating a suspected colovesical fistula.

  12. Positron emission tomography/computerized tomography in lung cancer

    PubMed Central

    Vural, Gulin Ucmak

    2014-01-01

    Positron emission tomography (PET) using 2-(18F)-flouro-2-deoxy-D-glucose (FDG) has emerged as a useful tool in the clinical work-up of lung cancer. This review article provides an overview of applications of PET in diagnosis, staging, treatment response evaluation, radiotherapy planning, recurrence assessment and prognostication of lung cancer. PMID:24914421

  13. Clinical anatomy of the orbitomeningeal foramina: variational anatomy of the canals connecting the orbit with the cranial cavity.

    PubMed

    Macchi, Veronica; Regoli, Marì; Bracco, Sandra; Nicoletti, Claudio; Morra, Aldo; Porzionato, Andrea; De Caro, Raffaele; Bertelli, Eugenio

    2016-03-01

    In addition to the optic canal and the superior orbital fissure, orbits are connected with the cranial cavity via inconstant canals including the orbitomeningeal foramen. This study has been carried out in order to define many anatomical and radiological details of the orbitomeningeal foramen that are relevant in the clinical practice. Almost 1000 skulls and 50 computerized tomographies were examined to determine incidence, number, length, and caliber of the orbitomeningeal foramen as well as the topography of their orbital and cranial openings. A retrospective study of angiographies carried out on more than 100 children was performed to look for arteries candidate to run through the orbitomeningeal foramen. Orbitomeningeal foramina were detected in 59.46% of skulls and in 54% of individuals by computerized tomography. Orbits with two to five foramina were found. Canals were classified as M-subtype or A-subtype depending on their cranial opening. Large foramina, with the caliber ranging between 1 and 3 mm, were found in 12.17% of orbitomeningeal foramen-bearing orbits. By computed tomography the average caliber measured 1.2 ± 0.3 and 1.5 ± 0.5 mm (p < 0.005) at the orbital and cranial openings, respectively (p < 0.005). Angiographies showed meningo-lacrimal and meningo-ophthalmic arteries, meningeal branches of the lacrimal and supraorbital arteries, and some unidentified arteries that could pass through the orbitomeningeal foramina. Orbitomeningeal foramina are a common occurrence. When large they may house important arteries that can be the source of severe bleedings during deep dissection of the lateral wall of the orbit. Orbital surgeons should be aware of their existence.

  14. The role of preoperative CT scan in patients with tracheoesophageal fistula: a review.

    PubMed

    Garge, Saurabh; Rao, K L N; Bawa, Monika

    2013-09-01

    The morbidity and mortality associated with esophageal atresia with or without a fistula make it a challenging congenital abnormality for the pediatric surgeon. Anatomic factors like inter-pouch gap and origin of fistula are not taken into consideration in various prognostic classifications. The preoperative evaluation of these cases with computerized tomography (CT) has been used by various investigators to delineate these factors. We reviewed these studies to evaluate the usefulness of this investigation in the intra operative and post operative period. A literature search was done on all peer-reviewed articles published on preoperative computed tomography (CT) in cases of tracheoesophageal fistula using the PUBMED and MEDLINE search engines. Key words included tracheoesophageal fistula, computerized tomography, virtual bronchoscopy, and 3D computerized tomography reconstruction. Further, additional articles were selected from the list of references obtained from the retrieved publications. A total of 8 articles were selected for analysis. In most of the studies, comprising 96 patients, observations noted in preoperative CT were confirmed during surgery. In a study by Mahalik et al [Mahalik SK, Sodhi KS, Narasimhan KL, Rao KL. Role of preoperative 3D CT reconstruction for evaluation of patients with esophageal atresia and tracheoesophageal fistula. Pediatr Surg Int. 2012 Jun 22. [Epub ahead of print

  15. [The role of multidetector computer tomography in diagnosis of acute pancreatitis].

    PubMed

    Lohanikhina, K Iu; Hordiienko, K P; Kozarenko, T M

    2014-10-01

    With the objective to improve the diagnostic semiotics of an acute pancreatitis (AP) 35 patients were examined, using 64-cut computeric tomograph Lightspeed VCT (GE, USA) with intravenous augmentation in arterial and portal phases. Basing on analysis of the investigations conducted, using multidetector computeric tomography (MDCT), the AP semiotics was systematized, which is characteristic for oedematous and destructive forms, diagnosed in 19 (44.2%) and 16 (45.8%) patients, accordingly. The procedure for estimation of preservation of the organ functional capacity in pancreonecrosis pres- ence was elaborated, promoting rising of the method diagnostic efficacy by 5.3 - 9.4%.

  16. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.

    PubMed

    Ferreira, F J O; Crispim, V R; Silva, A X

    2010-06-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. An Analysis of the Need for a Whole-Body CT Scanner at US Darnall Army Community Hospital

    DTIC Science & Technology

    1980-05-01

    TASK IWORK UNIT ELEMENT NO. I NO.JC NO. rSSION NO. Ij6T’,WAM ’"Aa1W% A WHOLE BODY CT SCANNER AT DARNALL ARMY COMUNITY HOSPITAL 16PTR3OAL tUTHOR(S)* a...computerized axial tomography or CT. Computerized tomography experiments "were conducted by Godfrey Hounsfield at Central Research Laboratories, EMI, Ltd. in...remained the same, with clinical and nursing unit facilities to support a one division post. Presently, Fort Hood is the home of the III US Army Corps, the

  18. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  19. Setup errors and effectiveness of Optical Laser 3D Surface imaging system (Sentinel) in postoperative radiotherapy of breast cancer.

    PubMed

    Wei, Xiaobo; Liu, Mengjiao; Ding, Yun; Li, Qilin; Cheng, Changhai; Zong, Xian; Yin, Wenming; Chen, Jie; Gu, Wendong

    2018-05-08

    Breast-conserving surgery (BCS) plus postoperative radiotherapy has become the standard treatment for early-stage breast cancer. The aim of this study was to compare the setup accuracy of optical surface imaging by the Sentinel system with cone-beam computerized tomography (CBCT) imaging currently used in our clinic for patients received BCS. Two optical surface scans were acquired before and immediately after couch movement correction. The correlation between the setup errors as determined by the initial optical surface scan and CBCT was analyzed. The deviation of the second optical surface scan from the reference planning CT was considered an estimate for the residual errors for the new method for patient setup correction. The consequences in terms for necessary planning target volume (PTV) margins for treatment sessions without setup correction applied. We analyzed 145 scans in 27 patients treated for early stage breast cancer. The setup errors of skin marker based patient alignment by optical surface scan and CBCT were correlated, and the residual setup errors as determined by the optical surface scan after couch movement correction were reduced. Optical surface imaging provides a convenient method for improving the setup accuracy for breast cancer patient without unnecessary imaging dose.

  20. Ionospheric tomography using ADS-B signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Noël, J.-M.

    2014-07-01

    Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.

  1. Technological Advances in the Study of Reading: An Introduction.

    ERIC Educational Resources Information Center

    Henk, William A.

    1991-01-01

    Describes the purpose and functional operation of new computer-driven technologies such as computerized axial tomography, positron emissions transaxial tomography, regional cerebral blood flow monitoring, magnetic resonance imaging, and brain electrical activity mapping. Outlines their current contribution to the knowledge base. Speculates on the…

  2. Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.

    PubMed

    Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F

    1980-01-01

    Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.

  3. Cost-effectiveness analysis of 3-D computerized tomography colonography versus optical colonoscopy for imaging symptomatic gastroenterology patients.

    PubMed

    Gomes, Manuel; Aldridge, Robert W; Wylie, Peter; Bell, James; Epstein, Owen

    2013-04-01

    When symptomatic gastroenterology patients have an indication for colonic imaging, clinicians have a choice between optical colonoscopy (OC) and computerized tomography colonography with three-dimensional reconstruction (3-D CTC). 3-D CTC provides a minimally invasive and rapid evaluation of the entire colon, and it can be an efficient modality for diagnosing symptoms. It allows for a more targeted use of OC, which is associated with a higher risk of major adverse events and higher procedural costs. A case can be made for 3-D CTC as a primary test for colonic imaging followed if necessary by targeted therapeutic OC; however, the relative long-term costs and benefits of introducing 3-D CTC as a first-line investigation are unknown. The aim of this study was to assess the cost effectiveness of 3-D CTC versus OC for colonic imaging of symptomatic gastroenterology patients in the UK NHS. We used a Markov model to follow a cohort of 100,000 symptomatic gastroenterology patients, aged 50 years or older, and estimate the expected lifetime outcomes, life years (LYs) and quality-adjusted life years (QALYs), and costs (£, 2010-2011) associated with 3-D CTC and OC. Sensitivity analyses were performed to assess the robustness of the base-case cost-effectiveness results to variation in input parameters and methodological assumptions. 3D-CTC provided a similar number of LYs (7.737 vs 7.739) and QALYs (7.013 vs 7.018) per individual compared with OC, and it was associated with substantially lower mean costs per patient (£467 vs £583), leading to a positive incremental net benefit. After accounting for the overall uncertainty, the probability of 3-D CTC being cost effective was around 60 %, at typical willingness-to-pay values of £20,000-£30,000 per QALY gained. 3-D CTC is a cost-saving and cost-effective option for colonic imaging of symptomatic gastroenterology patients compared with OC.

  4. Primary Malignant Lymphoma in a Spinal Cord Presenting as an Epidural Mass with Myelopathy: A Case Report

    PubMed Central

    Cho, Jae-Hoon; Cho, Dae-Chul; Sung, Joo-Kyung

    2012-01-01

    We report the case of a 47-year-old man who presented with progressive paraparesis and sphincter changes over 2 weeks. Magnetic resonance imaging revealed a spinal epidural mass from T9 to L2. We performed a decompressive laminectomy and mass removal. The histopathology was consistent with a small lymphocytic lymphoma. No metastatic lesion was noted in the chest and abdomen-pelvic computerized tomography (CT) and positron emission tomography computerized tomography (PET-CT) scan. The final diagnosis was primary spinal lymphoma, so we performed chemotherapy combined with radiotherapy. At one year follow-up, he had no neurological deficit and no recurrence on neurologic and radiologic exams. Primary spinal cord lymphomas should be considered in the differential diagnosis of spinal cord tumors. Early surgical management is mandatory to achieve a recovery of neurologic function, especially if the patient has a neurological deficit. PMID:25983828

  5. Congenital Anomaly of Single Dominant Right Coronary Artery with Hypoplastic Left Coronary Artery.

    PubMed

    Chuang, Cheng-Yen; Chen, Yen-Chou; Cheng, Ho-Shun; Hsieh, Ming-Hsiung

    2015-11-01

    With the popularization of new imaging technology, more people are deciding to undergo non-invasive studies such as multidetector computerized tomography (MDCT) before receiving coronary angiography. For this reason, coronary anomalies of coronary artery are being encountered more frequently. We here report a 68-year-old male presenting with typical angina. The MDCT images suggested chronic total occlusion of the left anterior descending (LAD) artery with collateral circulation from the right coronary artery (RCA). The patient's coronary angiography showed a congenital coronary anomaly with a single dominant RCA supplying the entire coronary circulation of the heart with both LAD and left circumflex artery hypoplasia. Angiography; Anomaly; Computerized tomography; Coronary artery.

  6. [The importance of neurological examinations in the age of the technological revolution].

    PubMed

    Berbel-García, A; González-Spínola, J; Martínez-Salio, A; Porta-Etessam, J; Pérez-Martínez, D A; de Toledo, M; Sáiz-Díaz, R A

    Neurologic practice and care have been modified in many important ways during the past ten years, to adapt to the explosion of new information and new technology. Students, residents and practicing physicians have been continuing programs to a model that focuses almost exclusively on the applications to neurologic disorders of the new knowledge obtained from biomedical research. On the other hand high demand for outpatient neurologic care prevents adequate patient's evaluation. Case 1: 65 years old female. Occipital headache diagnosed of tensional origin (normal computerized tomography). Two months later is re-evaluated due to intractable pain and hypoglossal lesion. An amplified computerized tomography revealed a occipital condyle metastasis. Case 2: 21 years old female. Clinical suspicion of demyelinating disease due to repeated facial paresis and sensitive disorder. General exploration and computerized tomography revealed temporo-mandibular joint. Case 3: 60 years old female. Valuation of anticoagulant therapy due to repeated transient ischemic attacks. She suffered from peripheral facial palsy related to auditory cholesteatoma. Neurologic education is nowadays orientated to new technologies. On the other hand, excessive demand prevents adequate valuation and a minute exploration is substituted by complementary evaluations. These situations generate diagnostic mistakes or iatrogenic. It would be important a consideration of the neurologic education profiles and fulfillment of consultations time recommendations for outpatients care.

  7. Quality inspection of anisotropic scintillating lead tungstate (PbWO 4) crystals through measurement of interferometric fringe pattern parameters

    NASA Astrophysics Data System (ADS)

    Cocozzella, N.; Lebeau, M.; Majni, G.; Paone, N.; Rinaldi, D.

    2001-08-01

    Scintillating crystals are widely used as detectors in radiographic systems, computerized axial tomography devices and in calorimeters employed in high-energy physics. This paper results from a project motivated by the development of the CMS calorimeter at CERN, which will make use of a large number of scintillating crystals. In order to prevent crystals from breaking because of internal residual stress, a quality control system based on optic inspection of interference fringe patterns was developed. The principle of measurement procedures was theoretically modelled, and then a dedicated polariscope was designed and built, in order to observe the crystals under induced stresses or to evaluate the residual internal stresses. The results are innovative and open a new perspective for scintillating crystals quality control: the photoelastic constant normal to the optic axis of the lead tungstate crystals (PbWO 4) was measured, and the inspection procedure developed is applicable to mass production, not only to optimize the crystal processing, but also to establish a quality inspection procedure.

  8. Optical quantitation of absorbers in variously shaped turbid media based on the microscopic Beer-Lambert law. A new approach to optical computerized tomography.

    PubMed

    Tsuchiya, Y; Urakami, T

    1998-02-09

    To determine the concentrations of an absorber in variously shaped turbid media such as human tissue, we propose analytical expressions for diffuse re-emission in time and frequency domains, based on the microscopic Beer-Lambert law that holds true when we trace a zigzag photon path in the medium. Our expressions are implicit for the scattering properties, the volume shape, and the source-detector separation. We show that three observables are sufficient to determine the changes in the concentration and the absolute concentrations of an absorber in scattering media as long as the scattering property remains constant. The three observables are: the re-emission, the mean pathlength or group delay, and the extinction coefficient of the absorber. We also show that our equations can be extended to describe photon migration in nonuniform media. The validity of the predictions is confirmed by measuring a tissue-like phantom.

  9. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  10. Strut fracture and disc embolization of a Björk-Shiley mitral valve prosthesis: localization of embolized disc by computerized axial tomography.

    PubMed

    Larrieu, A J; Puglia, E; Allen, P

    1982-08-01

    The case of a patient who survived strut fracture and embolization of a Björk-Shiley mitral prosthetic disc is presented. Prompt surgical treatment was directly responsible for survival. In addition, computerized axial tomography of the abdomen aided in localizing and retrieving the embolized disc, which was lodged at the origin of the superior mesenteric artery. A review of similar case reports from the literature supports our conclusions that the development of acute heart failure and absent or muffled prosthetic heart sounds in a patient with a Björk-Shiley prosthetic heart valve inserted prior to 1978 should raise the possibility of valve dysfunction and lead to early reoperation.

  11. Comparison of microtomography and optical coherence tomography on apical endodontic filling analysis.

    PubMed

    Suassuna, Fernanda Clotilde Mariz; Maia, Ana Marly Araújo; Melo, Daniela Pita; Antonino, Antônio Celso Dantas; Gomes, Anderson Stevens Leônidas; Bento, Patrícia Meira

    2018-02-01

    To comparein vitro differences in the apical filling regarding working length (WL) change and presence of voids and to validate optical coherence tomography (OCT) in comparison with computerized microtomography (µCT) for the detection of failures in the apical filling. Forty-five uniradicular teeth with round canals, divided into groups (n = 15) following the obturation protocols: LC (lateral condensation), TMC (thermomechanical compaction) and SC (single cone). Samples were scanned using µCT (parameters: 80 kV, 222 µA, and resolution of 11 µm), OCT (parameters: SSOCT, 1300 nm and axial resolution of 12 µm), and periapical digital radiography. The images were analyzsed by two blind and calibrated observers using ImageJ software to measure the boundary of the obturation WL and voids presence. Categorical and metric data were submitted to inferential analysis, and the validity of the OCT as a diagnostic test was assessed with performance and reliability tests. The WL average remained constant for all obturation techniques and image methods. OCT showed adequate sensitivity and specificity to detect voids in the WL of apical obturations in vitro in comparison with µCT. Both image methods found a higher number of voids for LC technique (µCT p = 0.011/OCT p = 0.002). OCT can be used in apical obturation voids assessment and the LC technique revealed more voids with larger dimensions.

  12. Preoperative Computerized Tomography and Magnetic Resonance Imaging of the Pancreas Predicts Pancreatic Mass and Functional Outcomes After Total Pancreatectomy and Islet Autotransplant.

    PubMed

    Young, Michael C; Theis, Jake R; Hodges, James S; Dunn, Ty B; Pruett, Timothy L; Chinnakotla, Srinath; Walker, Sidney P; Freeman, Martin L; Trikudanathan, Guru; Arain, Mustafa; Robertson, Paul R; Wilhelm, Joshua J; Schwarzenberg, Sarah J; Bland, Barbara; Beilman, Gregory J; Bellin, Melena D

    2016-08-01

    Approximately two thirds of patients will remain on insulin therapy after total pancreatectomy with islet autotransplant (TPIAT) for chronic pancreatitis. We investigated the relationship between measured pancreas volume on computerized tomography or magnetic resonance imaging and features of chronic pancreatitis on imaging, with subsequent islet isolation and diabetes outcomes. Computerized tomography or magnetic resonance imaging was reviewed for pancreas volume (Vitrea software) and presence or absence of calcifications, atrophy, and dilated pancreatic duct in 97 patients undergoing TPIAT. Relationship between these features and (1) islet mass isolated and (2) diabetes status at 1-year post-TPIAT were evaluated. Pancreas volume correlated with islet mass measured as total islet equivalents (r = 0.50, P < 0.0001). Mean islet equivalents were reduced by more than half if any one of calcifications, atrophy, or ductal dilatation were observed. Pancreatic calcifications increased the odds of insulin dependence 4.0 fold (1.1, 15). Collectively, the pancreas volume and 3 imaging features strongly associated with 1-year insulin use (P = 0.07), islet graft failure (P = 0.003), hemoglobin A1c (P = 0.0004), fasting glucose (P = 0.027), and fasting C-peptide level (P = 0.008). Measures of pancreatic parenchymal destruction on imaging, including smaller pancreas volume and calcifications, associate strongly with impaired islet mass and 1-year diabetes outcomes.

  13. Computerized tomography-guided sphenopalatine ganglion pulsed radiofrequency treatment in 16 patients with refractory cluster headaches: Twelve- to 30-month follow-up evaluations.

    PubMed

    Fang, Luo; Jingjing, Lu; Ying, Shen; Lan, Meng; Tao, Wang; Nan, Ji

    2016-02-01

    Sphenopalatine ganglion percutaneous radiofrequency thermocoagulation treatment can improve the symptoms of cluster headaches to some extent. However, as an ablation treatment, radiofrequency thermocoagulation treatment also has side effects. To preliminarily evaluate the efficacy and safety of a non-ablative computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion in patients with refractory cluster headaches. We included and analysed 16 consecutive cluster headache patients who failed to respond to conservative therapy from the Pain Management Center at the Beijing Tiantan Hospital between April 2012 and September 2013 treated with pulsed radiofrequency treatment of sphenopalatine ganglion. Eleven of 13 episodic cluster headaches patients and one of three chronic cluster headaches patient were completely relieved of the headache within an average of 6.3 ± 6.0 days following the treatment. Two episodic cluster headache patients and two chronic cluster headache patients showed no pain relief following the treatment. The mean follow-up time was 17.0 ± 5.5 months. All patients enrolled in this study showed no treatment-related side effects or complications. Our data show that patients with refractory episodic cluster headaches were quickly, effectively and safely relieved from the cluster period after computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion, suggesting that it may be a therapeutic option if conservative treatments fail. © International Headache Society 2015.

  14. Identifying and classifying hyperostosis frontalis interna via computerized tomography.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel

    2010-12-01

    The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.

  15. Computerized PET/CT image analysis in the evaluation of tumour response to therapy

    PubMed Central

    Wang, J; Zhang, H H

    2015-01-01

    Current cancer therapy strategy is mostly population based, however, there are large differences in tumour response among patients. It is therefore important for treating physicians to know individual tumour response. In recent years, many studies proposed the use of computerized positron emission tomography/CT image analysis in the evaluation of tumour response. Results showed that computerized analysis overcame some major limitations of current qualitative and semiquantitative analysis and led to improved accuracy. In this review, we summarize these studies in four steps of the analysis: image registration, tumour segmentation, image feature extraction and response evaluation. Future works are proposed and challenges described. PMID:25723599

  16. Preoperative predictive model of cervical lymph node metastasis combining fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography findings and clinical factors in patients with oral or oropharyngeal squamous cell carcinoma.

    PubMed

    Mochizuki, Yumi; Omura, Ken; Nakamura, Shin; Harada, Hiroyuki; Shibuya, Hitoshi; Kurabayashi, Toru

    2012-02-01

    This study aimed to construct a preoperative predictive model of cervical lymph node metastasis using fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography ((18)F-FDG PET/CT) findings in patients with oral or oropharyngeal squamous cell carcinoma (SCC). Forty-nine such patients undergoing preoperative (18)F-FDG PET/CT and neck dissection or lymph node biopsy were enrolled. Retrospective comparisons with spatial correlation between PET/CT and the anatomical sites based on histopathological examinations of surgical specimens were performed. We calculated a logistic regression model, including the SUVmax-related variable. When using the optimal cutoff point criterion of probabilities calculated from the model that included either clinical factors and delayed-phase SUVmax ≥0.087 or clinical factors and maximum standardized uptake (SUV) increasing rate (SUV-IR) ≥ 0.100, it significantly increased the sensitivity, specificity, and accuracy (87.5%, 65.7%, and 75.2%, respectively). The use of predictive models that include clinical factors and delayed-phase SUVmax and SUV-IR improve preoperative nodal diagnosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Epilepsy Surgery

    MedlinePlus

    ... monitor the brain's activity and detect abnormalities. Single-photon emission computerized tomography (SPECT). The scan image varies ... off anti-seizure drugs after a year or two. By Mayo Clinic Staff . Mayo Clinic Footer Legal ...

  18. Bone Scan

    MedlinePlus

    ... your doctor might order additional imaging called single-photon emission computerized tomography (SPECT). This imaging can help ... radioactivity from the tracers is usually completely eliminated two days after the scan. Results A doctor who ...

  19. [Aqueductal stenosis in the neurofibromatosis type 1. Presentation of 19 infantile patients].

    PubMed

    Pascual-Castroviejo, I; Pascual-Pascual, S I; Velázquez-Fragua, R; Viaño, J; Carceller-Benito, F

    To present a series of infantile patients with aqueductal stenosis associated with neurofibromatosis type 1 (NF1). Nineteen patients with ages below 16 years, 11 girls and 8 boys, with NF1 presented hydrocephalus due to aqueductal stenosis. All patients, except one who died before the imaging study was performed and was diagnosed by autopsy, were studied by pneumoencephalography (since 1965 to 1974), computerized tomography (CT) (since 1975 to 1984), magnetic resonance (MR) or MR and CT (since 1985 to 2004) (two children had been studied by pneumoencephalography some years before) most times to discard optic pathway tumor and, in few patients, because of intracranial hypertension. All patients showed three ventricular hydrocephalus with aqueductal stenosis. Eleven patients showed optic pathway tumor. One patient had a benign aqueductal tumor that impaired the normal flow of cerebrospinal fluid. Neurological features of hydrocephalus occurred very rapidly in some patients and after several years of evolution in others. Two boys showed precocious puberty. All patients were treated with shunt. In our series, aqueductal stenosis occurred in about 5% of children with NF1. Aqueductal stenosis and hydrocephalus were identified at a short age because many patients were studied suspecting optic pathway tumor. Eleven patients (about 60%) associated optic pathway tumor and aqueductal stenosis.

  20. Retinal nerve fiber layer thickness and neuropsychiatric manifestations in systemic lupus erythematosus.

    PubMed

    Shulman, S; Shorer, R; Wollman, J; Dotan, G; Paran, D

    2017-11-01

    Background Cognitive impairment is frequent in systemic lupus erythematosus. Atrophy of the corpus callosum and hippocampus have been reported in patients with systemic lupus erythematosus, and diffusion tensor imaging studies have shown impaired white matter integrity, suggesting that white matter damage in systemic lupus erythematosus may underlie the cognitive impairment as well as other neuropsychiatric systemic lupus erythematosus manifestations. Retinal nerve fiber layer thickness, as assessed by optical coherence tomography, has been suggested as a biomarker for white matter damage in neurologic disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Retinal nerve fiber layer thinning may occur early, even in patients with mild clinical symptoms. Aim The objective of this study was to assess the association of retinal nerve fiber layer thickness, as a biomarker of white matter damage in systemic lupus erythematosus patients, with neuropsychiatric systemic lupus erythematosus manifestations, including cognitive impairment. Methods Twenty-one consecutive patients with systemic lupus erythematosus underwent neuropsychological testing using a validated computerized battery of tests as well as the Rey-Auditory verbal learning test. All 21 patients, as well as 11 healthy, age matched controls, underwent optical coherence tomography testing to assess retinal nerve fiber layer thickness. Correlations between retinal nerve fiber layer thickness and results in eight cognitive domains assessed by the computerized battery of tests as well as the Rey-Auditory verbal learning test were assessed in patients with systemic lupus erythematosus, with and without neuropsychiatric systemic lupus erythematosus, and compared to retinal nerve fiber layer thickness in healthy controls. Results No statistically significant correlation was found between retinal nerve fiber layer thickness in patients with systemic lupus erythematosus as compared to healthy controls. When evaluating by subgroups, no correlation was found between patients with or without neuropsychiatric systemic lupus erythematosus or cognitive impairment and retinal nerve fiber layer thickness. Conclusion Retinal nerve fiber layer thickness of systemic lupus erythematosus patients was not found to be statistically different compared to controls. Within systemic lupus erythematosus patients there was no correlation between retinal nerve fiber layer thickness and cognitive impairment or other neuropsychiatric systemic lupus erythematosus manifestations.

  1. Brain Lesions

    MedlinePlus

    ... seen on a brain-imaging test, such as magnetic resonance imaging (MRI) or computerized tomography (CT). On ... A cohort study. PLOS One. 2013;8:e71467. Magnetic resonance imaging (MRI). National Multiple Sclerosis Society. http:// ...

  2. Methanol poisoning

    MedlinePlus

    ... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...

  3. CT scan (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  4. Head CT (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  5. Carotid Angioplasty and Stenting

    MedlinePlus

    ... and of the blood flow to the brain. Magnetic resonance angiography (MRA) or computerized tomography angiography (CTA). ... vessels by using either radiofrequency waves in a magnetic field or by using X-rays with contrast ...

  6. Windshield washer fluid

    MedlinePlus

    ... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...

  7. Coping with Memory Loss

    MedlinePlus

    ... either using computerized axial tomography (CAT) scans or magnetic resonance imaging (MRI) – can help to identify strokes and tumors, which can sometimes cause memory loss. “The goal is to rule out factors ...

  8. Recurrent Urinary Tract Infections Due to Bacterial Persistence or Reinfection in Women-Does This Factor Impact Upper Tract Imaging Findings?

    PubMed

    Wu, Yuefeng Rose; Rego, Lauren L; Christie, Alana L; Lavelle, Rebecca S; Alhalabi, Feras; Zimmern, Philippe E

    2016-08-01

    We compared the rates of upper tract imaging abnormalities of recurrent urinary tract infections due to bacterial persistence or reinfection. Following institutional review board approval we reviewed a prospectively maintained database of women with documented recurrent urinary tract infections (3 or more per year) and trigonitis. We searched for demographic data, urine culture findings and findings on radiology interpreted upper tract imaging, including renal ultrasound, computerized tomography or excretory urogram. Patients with irretrievable images, absent or incomplete urine culture results for review, no imaging performed, an obvious source of recurrent urinary tract infections or a history of pyelonephritis were excluded from analysis. Of 289 women from 2006 to 2014 with symptomatic recurrent urinary tract infections 116 met study inclusion criteria. Mean ± SD age was 65.0 ± 14.4 years. Of the women 95% were white and 81% were postmenopausal. Almost a third were sexually active and none had prolapse stage 2 or greater. Of the 116 women 48 (41%) had persistent and 68 (59%) had reinfection recurrent urinary tract infection. Imaging included ultrasound in 52 patients, computerized tomography in 26, ultrasound and computerized tomography in 31, and excretory urogram with ultrasound/computerized tomography in 7. Of the total of 58 imaging findings in 55 women 57 (98%) were noncontributory. One case (0.9%) of mild hydronephrosis was noted in the persistent recurrent urinary tract infection group but it was not related to any clinical parameters. Escherichia coli was the dominant bacteria in 71% of persistent and 47% of reinfection recurrent urinary tract infections in the most recently reported urine culture. This study reaffirms that upper tract imaging is not indicated for bacterial reinfection, recurrent urinary tract infections. However, the same conclusion can be extended to recurrent urinary tract infections secondary to bacterial persistence, thus, questioning the routine practice of upper tract studies in white postmenopausal women with recurrent urinary tract infections and trigonitis. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Computed Tomography Status

    DOE R&D Accomplishments Database

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  10. Optical and tomographic imaging of a middle ear malformation in the bullfrog (Rana catesbeiana).

    PubMed

    Horowitz, Seth S; Simmons, Andrea Megela; Ketten, Darlene R

    2005-08-01

    Using a combination of in vivo computerized tomography and histological staining, a middle ear anomaly in two wild-caught American bullfrogs (Rana catesbeiana) is characterized. In these animals, the tympanic membrane, extrastapes, and pars media (shaft) of the stapes are absent on one side of the head, with the other side exhibiting normal morphology. The pars interna (footplate) of the stapes and the operculum are present in their normal positions at the entrance of the otic capsule on both the affected and unaffected sides. The pattern of deformity suggests a partial failure of development of tympanic pathway tissues, but with a preservation of the opercularis pathway. While a definitive proximate cause of the condition could not be determined, the anomalies show similarities to developmental defects in mammalian middle ear formation.

  11. Optical and tomographic imaging of a middle ear malformation in the bullfrog (Rana catesbeiana)

    PubMed Central

    Horowitz, Seth S.; Simmons, Andrea Megela; Ketten, Darlene R.

    2005-01-01

    Using a combination of in vivo computerized tomography and histological staining, a middle ear anomaly in two wild-caught American bullfrogs (Rana catesbeiana) is characterized. In these animals, the tympanic membrane, extrastapes, and pars media (shaft) of the stapes are absent on one side of the head, with the other side exhibiting normal morphology. The pars interna(footplate) of the stapes and the operculum are present in their normal positions at the entrance of the otic capsule on both the affected and unaffected sides. The pattern of deformity suggests a partial failure of development of tympanic pathway tissues, but with a preservation of theopercularis pathway. While a definitive proximate cause of the condition could not be determined, the anomalies show similarities to developmental defects in mammalian middle ear formation. PMID:16158670

  12. Few CT Scan Abnormalities Found Even in Neurologically Impaired Learning Disabled Children.

    ERIC Educational Resources Information Center

    Denckla, Martha Bridge; And Others

    1985-01-01

    Most of 32 learning disabled children (seven to 14 years old) with neurological lateralization characteristics marked by right and left hemispheres had a normal CT (computerized tomography) scan. (CL)

  13. Prostate Enlargement: Benign Prostatic Hyperplasia (BPH)

    MedlinePlus

    ... such as ultrasound, a computerized tomography scan, or magnetic resonance imaging to guide the biopsy needle into ... heats and destroys selected portions of prostate tissue. Shields protect the urethra from heat damage. Transurethral microwave ...

  14. SPECT (Single-Photon Emission Computerized Tomography) Scan

    MedlinePlus

    ... can become damaged or even die. Reduced pumping efficiency. SPECT can show how completely your heart chambers ... radioactive tracer SPECT scans aren't safe for women who are pregnant or breast-feeding because the ...

  15. Non-Hodgkin Lymphoma (For Parents)

    MedlinePlus

    ... chest X-ray a computerized tomography (CT or CAT) scan , which rotates around the patient and creates an ... ray (Video) Getting an MRI (Video) Getting a CAT Scan (Video) Chemotherapy Hodgkin Lymphoma Stem Cell Transplants Can ...

  16. The mobile hospital technology industry: focus on the computerized tomography scanner.

    PubMed

    Hartley, D; Moscovice, I

    1996-01-01

    This study of firms offering mobile hospital technology to rural hospitals in eight northwestern states found that several permanently parked computerized tomography (CT) units were found where mobile routes had atrophied due to the purchase of fixed units by former mobile CT hospital clients. Based on a criterion of 140 scans per month per unit as a threshold of profitable production, units owned by larger firms (those that operate five or more units) were more likely to be profitable than units owned by smaller firms (71% versus 20%, P = 0.03). A substantial number of rural hospitals lose money on mobile CT due to low Medicare reimbursement. In some areas, mobile hospital technology is a highly competitive industry. Evidence was found that several firms compete in some geographic areas and that some firms have lost hospital clients to competing vendors.

  17. Magnetic resonance imaging and computerized tomography in malignant external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.

    1986-05-01

    In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to themore » interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.« less

  18. Uroradiographic manifestations of Burkitt's lymphoma in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernbach, S.K.; Glass, R.B.

    1986-05-01

    The radiological studies of 18 children with biopsy proved Burkitt's lymphoma were analyzed retrospectively. Before therapy the genitourinary tract was evaluated in 15 children by excretory urography, sonography, computerized tomography and/or gallium citrate scintigraphy. Genitourinary abnormalities were detected in 9 children. Changes due to tumor included renal or ureteral displacement in 4 children, hydronephrosis in 3 and intraparenchymal masses in 4. Extrinsic compression of the bladder causing no compromise of function was seen in only 2 children. Gonadal involvement occurred in 2 boys and 1 girl. The modality of choice for evaluating the genitourinary tract in patients with Burkitt's lymphomamore » has been excretory urography. Since ultrasound and computerized tomography provide more direct information about tumor deposits within the kidney and retroperitoneum, either should be performed in this population before initiation of chemotherapy.« less

  19. Rectus sheath hematoma: three case reports

    PubMed Central

    Kapan, Selin; Turhan, Ahmet N; Alis, Halil; Kalayci, Mustafa U; Hatipoglu, Sinan; Yigitbas, Hakan; Aygun, Ersan

    2008-01-01

    Introduction Rectus sheath hematoma is an uncommon cause of acute abdominal pain. It is an accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear. It could occur spontaneously or after trauma. They are usually located infraumblically and often misdiagnosed as acute abdomen, inflammatory diseases or tumours of the abdomen. Case presentation We reported three cases of rectus sheath hematoma presenting with a mass in the abdomen and diagnosed by computerized tomography. The patients recovered uneventfully after bed rest, intravenous fluid replacement, blood transfusion and analgesic treatment. Conclusion Rectus sheath hematoma is a rarely seen pathology often misdiagnosed as acute abdomen that may lead to unnecessary laparotomies. Computerized tomography must be chosen for definitive diagnosis since ultrasonography is subject to error due to misinterpretation of the images. Main therapy is conservative management. PMID:18221529

  20. A novel color vision test for detection of diabetic macular edema.

    PubMed

    Shin, Young Joo; Park, Kyu Hyung; Hwang, Jeong-Min; Wee, Won Ryang; Lee, Jin Hak; Lee, In Bum; Hyon, Joon Young

    2014-01-02

    To determine the sensitivity of the Seoul National University (SNU) computerized color vision test for detecting diabetic macular edema. From May to September 2003, a total of 73 eyes of 73 patients with diabetes mellitus were examined using the SNU computerized color vision test and optical coherence tomography (OCT). Color deficiency was quantified as the total error score on the SNU test and as error scores for each of four color quadrants corresponding to yellows (Q1), greens (Q2), blues (Q3), and reds (Q4). SNU error scores were assessed as a function of OCT foveal thickness and total macular volume (TMV). The error scores in Q1, Q2, Q3, and Q4 measured by the SNU color vision test increased with foveal thickness (P < 0.05), whereas they were not correlated with TMV. Total error scores, the summation of Q1 and Q3, the summation of Q2 and Q4, and blue-yellow (B-Y) error scores were significantly correlated with foveal thickness (P < 0.05), but not with TMV. The observed correlation between SNU color test error scores and foveal thickness indicates that the SNU test may be useful for detection and monitoring of diabetic macular edema.

  1. Novel advancements in colposcopy: historical perspectives and a systematic review of future developments.

    PubMed

    Adelman, Marisa Rachel

    2014-07-01

    To describe novel innovations and techniques for the detection of high-grade dysplasia. Studies were identified through the PubMed database, spanning the last 10 years. The key words (["computerized colposcopy" or "digital colposcopy" or "spectroscopy" or "multispectral digital colposcopy" or "dynamic spectral imaging", or "electrical impedance spectroscopy" or "confocal endomicroscopy" or "confocal microscopy"or "optical coherence tomography"] and ["cervical dysplasia" or cervical precancer" or "cervix" or "cervical"]) were used. The inclusion criteria were published articles of original research referring to noncolposcopic evaluation of the cervix for the detection of cervical dysplasia. Only English-language articles from the past 10 years were included, in which the technologies were used in vivo, and sensitivities and specificities could be calculated. The single author reviewed the articles for inclusion. Primary search of the database yielded 59 articles, and secondary cross-reference yielded 12 articles. Thirty-two articles met the inclusion criteria. An instrument that globally assesses the cervix, such as computer-assisted colposcopy, optical spectroscopy, and dynamic spectral imaging, would provided the most comprehensive estimate of disease and is therefore best suited when treatment is preferred. Electrical impedance spectroscopy, confocal microscopy, and optical coherence tomography provide information at the cellular level to estimate histology and are therefore best suited when deferment of treatment is preferred. If a device is to eventually replace the colposcope, it will likely combine technologies to best meet the needs of the target population, and as such, no single instrument may prove to be universally appropriate. Analyses of false-positive rates, additional colposcopies and biopsies, cost, and absolute life-savings will be important when considering these technologies and are limited thus far.

  2. Comparative examination of the accuracy of a mechanical and an optical system in CT and MRT based instrument navigation.

    PubMed

    Hassfeld, S; Mühling, J

    2000-12-01

    The aim of an intraoperative instrument navigation system is to support the surgeon in the localization of anatomical regions and to guide the use of surgical instruments. An overview of technical principles and literature reports on various navigation systems is provided here. The navigation accuracy (tested on a plastic phantom under simulated operating room conditions) of the mechanical Viewing Wand system and the optical SPOCS system amounts to 1 to 3 mm for computerized tomography (CT) data, with a significant inverse dependence on the layer thickness. The values for magnetic resonance tomography (MRT) data are significantly higher. In regard to the choice of registration points, a statistically inverse dependence exists between the number of points and the distance between the points. During the time period between autumn 1993 and mid-1999, more than 120 clinical applications were performed. The intraoperative accuracy was in the range of < or = 3 mm. Registering the patient position with preoperatively inserted screw markers achieved accuracy values of < or = 2 mm. The instrument navigation technique has proved to be very advantageous for the spatial orientation of the surgeons. The possibility of checking resection borders has opened up new perspectives in tumor surgery. A quality improvement and a reduction of the operational risks as well as a considerable decline in the stress placed on the patient can be expected in the near future due the techniques of computer-assisted surgery.

  3. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu; Paige, David F.

    2014-04-15

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °Cmore » ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.« less

  4. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  5. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars.

    PubMed

    Acar, Buket; Kamburoğlu, Kıvanç; Tatar, İlkan; Arıkan, Volkan; Çelik, Hakan Hamdi; Yüksel, Selcen; Özen, Tuncer

    2015-12-01

    This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images. Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth.

  6. Using three-dimensional-computerized tomography as a diagnostic tool for temporo-mandibular joint ankylosis: a case report.

    PubMed

    Kao, S Y; Chou, J; Lo, J; Yang, J; Chou, A P; Joe, C J; Chang, R C

    1999-04-01

    Roentgenographic examination has long been a useful diagnostic tool for temporo-mandibular joint (TMJ) disease. The methods include TMJ tomography, panoramic radiography and computerized tomography (CT) scan with or without injection of contrast media. Recently, three-dimensional CT (3D-CT), reconstructed from the two-dimensional image of a CT scan to simulate the soft tissue or bony structure of the real target, was proposed. In this report, a case of TMJ ankylosis due to traumatic injury is presented. 3D-CT was employed as one of the presurgical roentgenographic diagnostic tools. The conventional radiographic examination including panoramic radiography and tomography showed lesions in both sides of the mandible. CT scanning further suggested that the right-sided lesion was more severe than that on the left. With 3D-CT image reconstruction the size and extent of the lesions were clearly observable. The decision was made to proceed with an initial surgical approach on the right side. With condylectomy and condylar replacement using an autogenous costochondral graft on the right side, the range of mouth opening improved significantly. In this case report, 3D-CT demonstrates its advantages as a tool for the correct and precise diagnosis of TMJ ankylosis.

  7. Mini-Stroke vs. Regular Stroke: What's the Difference?

    MedlinePlus

    ... may need various diagnostic tests, such as a magnetic resonance imaging (MRI) scan or a computerized tomography ( ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...

  8. Mineral & Bone Disorder in Chronic Kidney Disease

    MedlinePlus

    ... stages of CKD. Slowed bone growth leads to short stature, which may remain with a child into adulthood. ... and local anesthetic. The health care provider uses imaging techniques such as ultrasound or a computerized tomography ...

  9. Computerized literature reference system: use of an optical scanner and optical character recognition software.

    PubMed

    Lossef, S V; Schwartz, L H

    1990-09-01

    A computerized reference system for radiology journal articles was developed by using an IBM-compatible personal computer with a hand-held optical scanner and optical character recognition software. This allows direct entry of scanned text from printed material into word processing or data-base files. Additionally, line diagrams and photographs of radiographs can be incorporated into these files. A text search and retrieval software program enables rapid searching for keywords in scanned documents. The hand scanner and software programs are commercially available, relatively inexpensive, and easily used. This permits construction of a personalized radiology literature file of readily accessible text and images requiring minimal typing or keystroke entry.

  10. MULTIMODAL IMAGING OF ACUTE EXUDATIVE POLYMORPHOUS VITELLIFORM MACULOPATHY WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY.

    PubMed

    Skondra, Dimitra; Nesper, Peter L; Fawzi, Amani A

    2017-05-16

    To report a case of acute exudative polymorphous vitelliform maculopathy including the findings of optical coherence tomography angiography and adaptive optics scanning laser ophthalmoscopy. Findings on clinical examination, color fundus photography, spectral-domain optical coherence tomography, infrared reflectance, autofluorescence, optical coherence tomography angiography, and adaptive optics scanning laser ophthalmoscopy. A 54-year-old white man with no significant medical history and history of smoking presented with bilateral multiple serous and vitelliform detachments consistent with acute exudative polymorphous vitelliform maculopathy. Extensive infectious, inflammatory, and malignancy workup was negative. Spectral-domain optical coherence tomography showed thickened, hyperreflective ellipsoid zone, subretinal fluid, and focal as well as diffuse subretinal hyperreflective material corresponding to the vitelliform lesions. Optical coherence tomography angiography showed normal retinal and choroidal vasculature, whereas adaptive optics scanning laser ophthalmoscopy showed circular focal "target" lesions at the level of the photoreceptors in the area of foveal detachment. Multimodal imaging is valuable in evaluating patients with acute exudative polymorphous vitelliform maculopathy.

  11. Biopsy: Types of Biopsy Procedures Used to Diagnose Cancer

    MedlinePlus

    ... procedure — such as X-ray, computerized tomography (CT), magnetic resonance imaging (MRI) or ultrasound — with a needle ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...

  12. Intravenous leiomyomatosis of the uterus with extension to the right heart

    PubMed Central

    2011-01-01

    A 42-year-old woman admitted with debilitation and engorgement both lower extremities. Transthoracic two-dimensional echocardiography, abdominal ultrasound and computerized tomography revealed a lobulated pelvic mass, a mass within right internal iliac vein, both common iliac vein, as well as the inferior vena cava, extending into the right atrium. In addition, echocardiography and abdominal ultrasound showed the tumor of right atrium and inferior vena cave has no stalk and has well-demarcated borders with the wall of right atrium and inferior vena cave. Hence, the presumptive diagnosis of IVL was made by echocardiography and abdominal ultrasound and the presumptive diagnosis of sarcoma with invasion in right internal iliac vein, both common iliac vein, the inferior vena cava, as well as the right atrium was made by multi-detector-row computerized tomography. The patient underwent a one-stage combined multidisciplinary thoraco-abdominal operation under general anaesthetic. Subsequently the pathologic report confirmed IVL. PMID:21943238

  13. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  14. A motion artefact study and locally deforming objects in computerized tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-11-01

    Movements of the object during the data collection in computerized tomography can introduce motion artefacts in the reconstructed image. They can be reduced by employing information about the dynamic behaviour within the reconstruction step. However, inaccuracies concerning the movement are inevitable in practice. In this article, we give an explicit characterization of what is visible in an image obtained by a reconstruction algorithm with incorrect motion information. Then, we use this result to study in detail the situation of locally deforming objects, i.e. individual parts of the object have a different dynamic behaviour. In this context, we prove that additional artefacts arise due to the global nature of the Radon transform, even if the motion is exactly known. Based on our analysis, we propose a numerical scheme to reduce these artefacts in the reconstructed image. All our results are illustrated by numerical examples.

  15. MOEMS optical delay line for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.

    2014-09-01

    Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.

  16. Olfactory Neuroblastoma: A Rare Cause of External Ophthalmoplegia, Proptosis and Compressive Optic Neuropathy.

    PubMed

    Kartı, Ömer; Zengin, Mehmet Özgür; Çelik, Ozan; Tokat, Taşkın; Küsbeci, Tuncay

    2018-04-01

    Olfactory neuroblastoma (ONB), which is a neuroectodermal tumor of the nasal cavity, is a rare and locally aggressive malignancy that may invade the orbit via local destruction. In this study, we report a patient with proptosis, external ophthalmoplegia, and compressive optic neuropathy caused by ONB. A detailed clinical examination including ocular imaging and histopathological studies were performed. The 62-year-old female patient presented to our clinic with complaints of proptosis and visual deterioration in the left eye. Her complaints started 2 months prior to admission. Visual acuity in the left eye was counting fingers from 2 meters. There was relative afferent pupillary defect. She had 6 mm of proptosis and limitation of motility. Fundus examination was normal in the right eye, but there was a hyperemic disc, and increased vascular tortuosity and dilation of the retinal veins in the left eye. Computerized tomography and magnetic resonance imaging of the brain and orbits demonstrated a large heterogeneous mass in the left superior nasal cavity with extensions into the ethmoidal sinuses as well as into the left orbit, compressing the medial rectus muscle and optic nerve. Endoscopic biopsy of the lesion was consistent with an ONB (Hyams' grade III). Orbital invasion may occur in patients with ONB. Therefore, it is important to be aware of this malignancy because some patients present with ophthalmic signs such as external ophthalmoplegia, proptosis, or compressive optic neuropathy.

  17. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    PubMed

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p < 0.0001) and ultrasound pachymetry (p = < .0001). Ultrasound pachymetry readings had better 95% limits of agreement with swept source optical coherence tomography than slit scanning topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p < 0.05 for all). Overall, reproducibility coefficients and intraclass correlation coefficients were significantly better with swept source optical coherence tomography for measurement of central corneal thickness, anterior best-fit sphere and, posterior best-fit sphere (all p < 0.001). Corneal thickness and elevation measurements were significantly different between swept source optical coherence tomography and slit scanning topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  18. Radiation Hard Sensors for Surveillance.

    DTIC Science & Technology

    1988-03-11

    track position measurements were noted. E. Heijne (CERN) reported on the degradation of silicon detectors for doses larger than 2x10 11 muons /cm 2...Workshop on Transmission and Emission Computerized Tomography , July 1978, Seoul, Korea Nahmias C., Kenyon D.B., Garnett E.S.: Optimization of...crystal size in emission computed tomography . IEEE Trans ,.-.e Nucl Sci NS-27: 529-532, 1980. Mullani N.A., Ficke D.C., Ter-Pogossian M.M.: Cesium Fluoride

  19. Computerized Tomography Measures During and After Artificial Lengthening of the Vocal Tract in Subjects With Voice Disorders.

    PubMed

    Guzman, Marco; Miranda, Gonzalo; Olavarria, Christian; Madrid, Sofia; Muñoz, Daniel; Leiva, Miguel; Lopez, Lorena; Bortnem, Cori

    2017-01-01

    The present study aimed to observe the effect of two types of tubes on vocal tract bidimensional and tridimensional images. Ten participants with hyperfunctional dysphonia were included. Computerized tomography was performed during production of sustained [a:], followed by sustained phonation into a drinking straw, and then repetition of sustained [a:]. A similar procedure was performed with a stirring straw after 15 minutes of vocal rest. Anatomic distances and area measures were obtained from computerized tomography midsagittal and transversal images. Vocal tract total volume was also calculated. During tube phonation, increases were measured in the vertical length of the vocal tract, oropharyngeal area, hypopharyngeal area, outlet of the epilaryngeal tube, and inlet to the lower pharynx. Also, the larynx was lower, and more closure was noted between the velum and the nasal passage. Tube phonation causes an increased total vocal tract volume, mostly because of the increased cross-sectional areas in the pharyngeal region. This change is more prominent when the tube offers more airflow resistance (stirring straw) compared with less airflow resistance (drinking straw). Based on our data and previous studies, it seems that vocal tract changes are not dependent on the voice condition (vocally trained, untrained, or disordered voices), but on the exercise itself and the type of instructions given to subjects. Tube phonation is a good option to reach therapeutic goals (eg, wide pharynx and low larynx) without giving biomechanical instructions, but only asking patients to feel easy voice and vibratory sensations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  20. Three-Dimensional Planning in Maxillofacial Fracture Surgery: Computer-Aided Design/Computer-Aided Manufacture Surgical Splints by Integrating Cone Beam Computerized Tomography Images Into Multislice Computerized Tomography Images.

    PubMed

    Ren, Jiayin; Zhou, Zhongwei; Li, Peng; Tang, Wei; Guo, Jixiang; Wang, Hu; Tian, Weidong

    2016-09-01

    This study aimed to evaluate an innovative workflow for maxillofacial fracture surgery planning and surgical splint designing. The maxillofacial multislice computerized tomography (MSCT) data and dental cone beam computerized tomography (CBCT) data both were obtained from 40 normal adults and 58 adults who suffered fractures. The each part of the CBCT dentition image was registered into MSCT image by the use of the iterative closest point algorithm. Volume evaluation of the virtual splints that were designed by the registered MSCT images and MSCT images of the same object was performed. Eighteen patients (group 1) were operated without any splint. Twenty-one (group 2) and 19 patients (group 3) used the splints designed according to the MSCT images and registered MSCT images, respectively. The authors' results showed that the mean errors between the 2 models ranged from 0.53 to 0.92 mm and the RMS errors ranged from 0.38 to 0.69 mm in fracture patients. The mean errors between the 2 models ranged from 0.47 to 0.85 mm and the RMS errors ranged from 0.33 to 0.71 mm in normal adults. 72.22% patients in group 1 recovered occlusion. 85.71% patients in group 2, and 94.73% patients in group 3 reconstructed occlusion. There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients (P <0.05). The MSCT images based splints' volume was statistically significantly distinct from the registered MSCT splints' volume in normal adults (P <0.05). There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients and normal adults (P <0.05). The occlusion recovery rate of group 3 was better than that of group 1 and group 2. The way of integrating CBCT images into MSCT images for splints designing was feasible. The volume of the splints designed by MSCT images tended to be smaller than the splints designed by the integrated MSCT images. The patients operated with splints tended to regain occlusion. The patients who were operated with the splints which were designed according to registered MSCT images tended to get occlusal recovered.

  1. SPECTRAL DOMAIN VERSUS SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF THE RETINAL CAPILLARY PLEXUSES IN SICKLE CELL MACULOPATHY.

    PubMed

    Jung, Jesse J; Chen, Michael H; Frambach, Caroline R; Rofagha, Soraya; Lee, Scott S

    2018-01-01

    To compare the spectral domain and swept source optical coherence tomography angiography findings in two cases of sickle cell maculopathy. A 53-year-old man and a 24-year-old man both with sickle cell disease (hemoglobin SS) presented with no visual complaints; Humphrey visual field testing demonstrated asymptomatic paracentral scotomas that extended nasally in the involved eyes. Clinical examination and multimodal imaging including spectral domain and swept source optical coherence tomography, and spectral domain optical coherence tomography angiography and swept source optical coherence tomography angiography (Carl Zeiss Meditec Inc, Dublin, CA) were performed. Fundus examination of both patients revealed subtle thinning of the macula. En-face swept source optical coherence tomography confirmed the extent of the thinning correlating with the functional paracentral scotomas on Humphrey visual field. Swept source optical coherence tomography B-scan revealed multiple confluent areas of inner nuclear thinning and significant temporal retinal atrophy. En-face 6 × 6-mm spectral domain optical coherence tomography angiography of the macula demonstrated greater loss of the deep capillary plexus compared with the superficial capillary plexus. Swept source optical coherence tomography angiography 12 × 12-mm imaging captured the same macular findings and loss of both plexuses temporally outside the macula. In these two cases of sickle cell maculopathy, deep capillary plexus ischemia is more extensive within the macula, whereas both the superficial capillary plexus and deep capillary plexus are involved outside the macula likely due to the greater oxygen demands and watershed nature of these areas. Swept source optical coherence tomography angiography clearly demonstrates the angiographic extent of the disease correlating with the Humphrey visual field scotomas and confluent areas of inner nuclear atrophy.

  2. Evaluation of effects of anterior palatoplasty operation on upper airway parameters in computed tomography in patients with pure snoring and obstructive sleep apnea syndrome.

    PubMed

    Selcuk, Adin; Ozer, Tulay; Esen, Erkan; Ozdogan, Fatih; Ozel, Halil Erdem; Yuce, Turgut; Caliskan, Sebla; Dasli, Sinem; Bilal, Nagihan; Genc, Gulden; Genc, Selahattin

    2017-05-01

    To investigate changes in upper airway volume parameters measured by computerized tomography scans in patients with surgically treated by anterior palatoplasty of whom having pure snoring and mild-moderate obstructive sleep apnea. A prospective study on consecutively anterior palatoplasty performed pure snoring and obstructive sleep apnea patients. Computerized tomography scans were obtained preoperatively and following anterior palatoplasty procedure to measure changes in upper airway volume. Patients underwent diagnostic drug induced sleep endoscopy to assess the site of obstruction. Preoperative and postoperative measurements were compared using student's t test and Chi-square test. Twenty-two patients (16 men and 6 women, age 48.22 ± 9.23, body mass index 25.85 ± 2.57) completed the trial. Anterior palatoplasty was associated with an increase in total upper airway volume from 4.81 ± 1.73 cm 3 before treatment to 6.57 ± 2.03 cm 3 after treatment (p < 0.005). Change in soft palate thickness did not vary significantly (p < 0.039). The mean soft palate length has changed from 4.13 ± 0.41 to 3.93 ± 0.51 cm (p < 0.001). The preoperative and postoperative measurements of cross-sectional areas and volumes all showed significant difference except velopharynx minimal lateral airway dimension. The operational procedure increased the total upper airway volume much more in men than in women (p < 0.05). Results of this study indicate that anterior palatoplasty operation appears to produce significant increase in upper airway volume and cross sectional area. It does not seem to have an effect on lateral airway dimension. Computerized tomography is a quick and noninvasive imaging technique that allows for quantitative assessment of the velopharyngeal patency changes.

  3. Pathophysiologic study of chronic infarcts with I-123 isopropyl iodo-amphetamine (IMP): the importance of periinfarct area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynaud, C.; Rancurel, G.; Samson, Y.

    1987-01-01

    Seventeen chronic cerebral infarcts were investigated by a highly sensitive, dedicated brain single photon emission computerized tomography system using /sup 123/I-isopropyl iodoamphetamine (IMP) and /sup 133/Xe. IMP uptake was measured 10 minutes, 2 hours, and 5 hours after injection, and regional cerebral blood flow was measured with 133Xe. In 4 cases a positron emission tomography system was used to measure the rCBF and the regional metabolic rate of oxygen with C15O2 and 15O2. The results obtained allowed us to identify 2 abnormal zones. One, the central area, was characterized by a severe decrease in IMP uptake and rCBF averaging 34%more » and 46% respectively and by a hypodense image on the x-ray computerized tomography scan. The second, the periinfarct or ''peripheral area'' was characterized by a moderate decrease in IMP uptake and regional cerebral blood flow averaging 13 and 19% respectively; this area extended around the central area and had a normal density on computerized tomography scan. The IMP hypofixation of the peripheral area observed at the 10th minute tended to disappear at the 5th hour. The volume of this area was often found to be quite large, covering more than 30% of a hemisphere whereas the central area did not exceed 25%. Volume appeared to be correlated with the neurological status of the patient. The nature of the peripheral area is not established with certainty. It may be caused by deafferentation of areas not directly affected by the ischemic insult and/or selective ischemic neuronal loss. The results stress the important role played by the peripheral area, which may be useful in establishing the prognosis and evaluating the efficacy of therapy in individual stroke cases.« less

  4. The Supraclavicular Artery Perforator Flap: A Comparative Study of Imaging Techniques Used in Preoperative Mapping.

    PubMed

    Sheriff, Hemin Oathman; Mahmood, Kawa Abdullah; Hamawandi, Nzar; Mirza, Aram Jamal; Hawas, Jawad; Moreno, Esther Granell; Clavero, Juan Antonio; Hankins, Christopher; Masia, Jaume

    2018-05-18

     The supraclavicular artery flap is an excellent flap for head and neck reconstruction. The aim of this study is to assess imaging techniques to define the precise vascular boundaries of this flap.  Six imaging techniques were used for supraclavicular artery mapping in 65 cases; handheld Doppler, triplex ultrasound, computed tomography angiography, magnetic resonance angiography, digital subtraction angiography, and indocyanine green angiography. We checked the site of the perforators, the course of a supraclavicular artery, and anatomical mapping of the supraclavicular artery.  Handheld Doppler identified perforators' sites in 80% of the cases but showed no results for the course of the vessel. Triplex ultrasound identified the site of perforators in 52.9%, and partial mapping of the course of a supraclavicular artery in 64.7% of the cases. Computerized tomography angiography showed the site of perforators in 60%, and the course of supraclavicular artery completely in 45%, and partially in an additional 30%of the cases examined. Magnetic resonance angiography showed negative results for all parameters. Digital subtraction angiography showed the partial course of a supraclavicular artery in 62.5%, but showed no perforators. Indocyanine green angiography showed the site of perforators in 60% and a partial course of supraclavicular artery distal to perforators in 60%.Anatomical mapping of the vessel was possible with computerized tomography angiogram completely in 45%, and partially in 30%, and was also possible with indocyanine green angiography partially in 60%.  Computerized tomography angiography showed best results in the mapping of the supraclavicular artery, but with an inability to define the perforator perfusion territories, and also with risks of irradiation, while indocyanine green angiography is a good alternative as it could precisely map the superficial course of the artery and angiosomes, with no radiation exposure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Clinical results of computerized tomography-based simulation with laser patient marking.

    PubMed

    Ragan, D P; Forman, J D; He, T; Mesina, C F

    1996-02-01

    Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.

  6. Evaluation of computed tomography numbers for treatment planning of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mira, J.G.; Fullerton, G.D.; Ezekiel, J.

    1982-09-01

    Computerized tomography numbers (CTN) were evaluated in 32 computerized tomography scans performed on patients with carcinoma of the lung, with the aim of evaluating CTN in normal (lung, blood, muscle, etc) and pathologic tissues (tumor, atelectasis, effusion, post-radiation fibrosis). Our main findings are: 1. Large individual CTN variations are encountered in both normal and pathologic tissues, above and below mean values. Hence, absolute numbers are meaningless. Measurements of any abnormal intrathoracic structure should be compared in relation to normal tissue CTN values in the same scan. 2. Tumor and complete atelectasis have CTN basically similar to soft tissue. Hence, thesemore » numbers are not useful for differential diagnosis. 3. Effusions usually have lower CTN and can be distinguished from previous situations. 4. Dosimetry based on uniform lung density assumptions (i.e., 300 mg/cm/sup 3/) might produce substantial dose errors as lung CTN exhibit variations indicating densities well above and below this value. 5. Preliminary information indicates that partial atelectasis and incipient post-radiation fibrosis can have very low CTN. Hence, they can be differentiated from solid tumors in certain cases, and help in differential diagnosis of post radiation recurrence within the radiotherapy field versus fibrosis.« less

  7. Sarcoidosis Occurring After Lymphoma

    PubMed Central

    London, Jonathan; Grados, Aurélie; Fermé, Christophe; Charmillon, Alexandre; Maurier, François; Deau, Bénédicte; Crickx, Etienne; Brice, Pauline; Chapelon-Abric, Catherine; Haioun, Corinne; Burroni, Barbara; Alifano, Marco; Le Jeunne, Claire; Guillevin, Loïc; Costedoat-Chalumeau, Nathalie; Schleinitz, Nicolas; Mouthon, Luc; Terrier, Benjamin

    2014-01-01

    Abstract Sarcoidosis is a granulomatous disease that most frequently affects the lungs with pulmonary infiltrates and/or bilateral hilar and mediastinal lymphadenopathy. An association of sarcoidosis and lymphoproliferative disease has previously been reported as the sarcoidosis-lymphoma syndrome. Although this syndrome is characterized by sarcoidosis preceding lymphoma, very few cases of sarcoidosis following lymphoma have been reported. We describe the clinical, biological, and radiological characteristics and outcome of 39 patients presenting with sarcoidosis following lymphoproliferative disease, including 14 previously unreported cases and 25 additional patients, after performing a literature review. Hodgkin lymphoma and non-Hodgkin lymphoma were equally represented. The median delay between lymphoma and sarcoidosis was 18 months. Only 16 patients (41%) required treatment. Sarcoidosis was of mild intensity or self-healing in most cases, and overall clinical response to sarcoidosis was excellent with complete clinical response in 91% of patients. Sarcoidosis was identified after a follow-up computerized tomography scan (CT-scan) or 18fluorodeoxyglucose-positron emission tomography/computerized tomography (18FDG-PET/CT) evaluation in 18/34 patients (53%). Sarcoidosis is therefore a differential diagnosis to consider when lymphoma relapse is suspected on a CT-scan or 18FDG-PET/CT, emphasizing the necessity to rely on histological confirmation of lymphoma relapse. PMID:25380084

  8. Use of Noncontrast Computed Tomography and Computed Tomographic Perfusion in Predicting Intracerebral Hemorrhage After Intravenous Alteplase Therapy.

    PubMed

    Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K

    2017-06-01

    Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic stroke receiving intravenous alteplase. © 2017 American Heart Association, Inc.

  9. The potential of positron emission tomography/computerized tomography (PET/CT) scanning as a detector of high-risk patients with oral infection during preoperative staging.

    PubMed

    Yamashiro, Keisuke; Nakano, Makoto; Sawaki, Koichi; Okazaki, Fumihiko; Hirata, Yasuhisa; Takashiba, Shogo

    2016-08-01

    It is sometimes difficult to determine during the preoperative period whether patients have oral infections; these patients need treatment to prevent oral infection-related complications from arising during medical therapies, such as cancer therapy and surgery. One of the reasons for this difficulty is that basic medical tests do not identify oral infections, including periodontitis and periapical periodontitis. In this report, we investigated the potential of positron emission tomography/computerized tomography (PET/CT) as a diagnostic tool in these patients. We evaluated eight patients during the preoperative period. All patients underwent PET/CT scanning and were identified as having the signs of oral infection, as evidenced by (18)F-fludeoxyglucose (FDG) localization in the oral regions. Periodontal examination and orthopantomogram evaluation showed severe infection or bone resorption in the oral regions. (18)F-FDG was localized in oral lesions, such as severe periodontitis, apical periodontitis, and pericoronitis of the third molar. The densities of (18)F-FDG were proportional to the degree of inflammation. PET/CT is a potential diagnostic tool for oral infections. It may be particularly useful in patients during preoperative staging, as they frequently undergo scanning at this time, and those identified as having oral infections at this time require treatment before cancer therapy or surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Document Indexing for Image-Based Optical Information Systems.

    ERIC Educational Resources Information Center

    Thiel, Thomas J.; And Others

    1991-01-01

    Discussion of image-based information retrieval systems focuses on indexing. Highlights include computerized information retrieval; multimedia optical systems; optical mass storage and personal computers; and a case study that describes an optical disk system which was developed to preserve, access, and disseminate military documents. (19…

  11. Ultrasound-Mediated Biophotonic Imaging: A Review of Acousto-Optical Tomography and Photo-Acoustic Tomography

    PubMed Central

    Wang, Lihong V.

    2004-01-01

    This article reviews two types of ultrasound-mediated biophotonic imaging–acousto-optical tomography (AOT, also called ultrasound-modulated optical tomography) and photo-acoustic tomography (PAT, also called opto-acoustic or thermo-acoustic tomography)–both of which are based on non-ionizing optical and ultrasonic waves. The goal of these technologies is to combine the contrast advantage of the optical properties and the resolution advantage of ultrasound. In these two technologies, the imaging contrast is based primarily on the optical properties of biological tissues, and the imaging resolution is based primarily on the ultrasonic waves that either are provided externally or produced internally, within the biological tissues. In fact, ultrasonic mediation overcomes both the resolution disadvantage of pure optical imaging in thick tissues and the contrast and speckle disadvantages of pure ultrasonic imaging. In our discussion of AOT, the relationship between modulation depth and acoustic amplitude is clarified. Potential clinical applications of ultrasound-mediated biophotonic imaging include early cancer detection, functional imaging, and molecular imaging. PMID:15096709

  12. Three-dimensional Cross-Platform Planning for Complex Spinal Procedures: A New Method Adaptive to Different Navigation Systems.

    PubMed

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf

    2017-08-01

    A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or guidance system able to read DICOM data sets, expanding the possibilities of embedded planning software.

  13. Neurologic applications of positron emission tomography.

    PubMed

    Lenzi, G L; Pantano, P

    1984-11-01

    The impact of computerized neuroimaging in the neurologic sciences has been so dramatic that it has completely changed our approach to the individual patient. Further changes may be expected from the newborn positron emission tomography (PET) and nuclear magnetic resonance (NMR) in order to help the reader digest a large bulk of data and fully realize the present state of the art of PET, the authors have shaped this review mainly on results rather than on methods and on published reports rather than on future potential.

  14. Repeatability of Computerized Tomography-Based Anthropomorphic Measurements of Frailty in Patients With Pulmonary Fibrosis Undergoing Lung Transplantation.

    PubMed

    McClellan, Taylor; Allen, Brian C; Kappus, Matthew; Bhatti, Lubna; Dafalla, Randa A; Snyder, Laurie D; Bashir, Mustafa R

    To determine interreader and intrareader repeatability and correlations among measurements of computerized tomography-based anthropomorphic measurements in patients with pulmonary fibrosis undergoing lung transplantation. This was an institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study of 23 randomly selected subjects (19 male and 4 female; median age = 69 years; range: 66-77 years) with idiopathic pulmonary fibrosis undergoing pulmonary transplantation, who had also undergone preoperative thoracoabdominal computerized tomography. Five readers of varying imaging experience independently performed the following cross-sectional area measurements at the inferior endplate of the L3 vertebral body: right and left psoas muscles, right and left paraspinal muscles, total abdominal musculature, and visceral and subcutaneous fat. The following measurements were obtained at the inferior endplate of T6: right and left paraspinal muscles with and without including the trapezius muscles and subcutaneous fat. Three readers repeated all measurements to assess intrareader repeatability. Intrareader repeatability was nearly perfect (interclass correlation coefficients = 0.99, P < 0.001). Interreader agreement was excellent across all 5 readers (interclass correlation coefficients: 0.71-0.99, P < 0.001). Coefficients of variance between measures ranged from 3.2%-6.8% for abdominal measurements, but were higher for thoracic measurements, up to 23.9%. Correlation between total paraspinal and total psoas muscle area was strong (r 2 = 0.67, P < 0.001). Thoracic and abdominal musculature had a weaker correlation (r 2 = 0.35-0.38, P < 0.001). Measures of thoracic and abdominal muscle and fat area are highly repeatable in patients with pulmonary fibrosis undergoing lung transplantation. Measures of muscle area are strongly correlated among abdominal locations, but inversely correlated between abdominal and thoracic locations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Renal calyceal anatomy characterization with 3-dimensional in vivo computerized tomography imaging.

    PubMed

    Miller, Joe; Durack, Jeremy C; Sorensen, Mathew D; Wang, James H; Stoller, Marshall L

    2013-02-01

    Calyceal selection for percutaneous renal access is critical for safe, effective performance of percutaneous nephrolithotomy. Available anatomical evidence is contradictory and incomplete. We present detailed renal calyceal anatomy obtained from in vivo 3-dimentional computerized tomography renderings. A total of 60 computerized tomography urograms were randomly selected. The renal collecting system was isolated and 3-dimensional renderings were constructed. The primary plane of each calyceal group of 100 kidneys was determined. A coronal maximum intensity projection was used for simulated percutaneous access. The most inferior calyx was designated calyx 1. Moving superiorly, the subsequent calyces were designated calyx 2 and, when present, calyx 3. The surface rendering was rotated to assess the primary plane of the calyceal group and the orientation of the select calyx. The primary plane of the upper pole calyceal group was mediolateral in 95% of kidneys and the primary plane of the lower pole calyceal group was anteroposterior in 95%. Calyx 2 was chosen in 90 of 97 simulations and it was appropriate in 92%. Calyx 3 was chosen in 7 simulations but it was appropriate in only 57%. Calyx 1 was not selected in any simulation and it was anteriorly oriented in 75% of kidneys. Appropriate lower pole calyceal access can be reliably accomplished with an understanding of the anatomical relationship between individual calyceal orientation and the primary plane of the calyceal group. Calyx 2 is most often appropriate for accessing the anteroposterior primary plane of the lower pole. Calyx 1 is most commonly oriented anterior. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Childhood Psychosis and Computed Tomographic Brain Scan Findings.

    ERIC Educational Resources Information Center

    Gillberg, Christopher; Svendsen, Pal

    1983-01-01

    Computerized tomography (CT) of the brain was used to examine 27 infantile autistic children, 9 children with other kinds of childhood psychoses, 23 children with mental retardation, and 16 normal children. Gross abnormalities were seen in 26 percent of the autism cases. (Author/SEW)

  17. Checking the possibility of controlling fuel element by X-ray computerized tomography

    NASA Astrophysics Data System (ADS)

    Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.

    2017-08-01

    The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.

  18. Skeletal maturity assessment with the use of cone-beam computerized tomography.

    PubMed

    Joshi, Vajendra; Yamaguchi, Tetsutaro; Matsuda, Yukiko; Kaneko, Norikazu; Maki, Kotarou; Okano, Tomohiro

    2012-06-01

    The aim of the study was to compare cervical vertebrae maturity assessed with the use of cone-beam computerized tomography (CBCT) with the hand-wrist maturation method and cervical vertebrae maturation assessed with the use of lateral cephalography for the assessment of skeletal maturity. Assessment of skeletal maturation was done using skeletal maturity indicators (SMI) from hand-wrist radiography, cervical vertebrae maturity index (CVMI) from CBCT and lateral cephalography (cephalo-CVMI). The Spearman correlation coefficient was used for statistical analysis. We observed a significant relationship between CBCT-CVMI and cephalo-CVMI as well as between CBCT-CVMI and SMI stages. The Spearman correlation coefficient value between CBCT-CVMI and cephalo-CVMI was 0.975 (P < .0001) and between CBCT-CVMI and SMI was 0.961(P < .0001). Cervical vertebrae maturity assessment with CBCT provided a reliable assessment of pubertal growth spurt, and therefore CBCT can be used to assess skeletal maturity. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Contrast-enhanced multidetector computerized tomography for odontogenic cysts and cystic-appearing tumors of the jaws: is it useful?

    PubMed

    Kakimoto, Naoya; Chindasombatjaroen, Jira; Tomita, Seiki; Shimamoto, Hiroaki; Uchiyama, Yuka; Hasegawa, Yoko; Kishino, Mitsunobu; Murakami, Shumei; Furukawa, Souhei

    2013-01-01

    The purpose of this study was to investigate the usefulness of computerized tomography (CT), particularly contrast-enhanced CT, in differentiation of jaw cysts and cystic-appearing tumors. We retrospectively analyzed contrast-enhanced CT images of 90 patients with odontogenic jaw cysts or cystic-appearing tumors. The lesion size and CT values were measured and the short axis to long axis (S/L) ratio, contrast enhancement (CE) ratio, and standard deviation ratio were calculated. The lesion size and the S/L ratio of keratocystic odontogenic tumors were significantly different from those of radicular cysts and follicular cysts. There were no significant differences in the CE ratio among the lesions. Multidetector CT provided diagnostic information about the size of odontogenic cysts and cystic-appearing tumors of the jaws that was related to the lesion type, but showed no relation between CE ratio and the type of these lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    PubMed

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  1. Comparison between multislice and cone-beam computerized tomography in the volumetric assessment of cleft palate.

    PubMed

    Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso

    2011-08-01

    The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.

  2. Sarcoidosis Occurring After Solid Cancer: A Nonfortuitous Association

    PubMed Central

    Grados, Aurélie; Ebbo, Mikael; Bernit, Emmanuelle; Veit, Véronique; Mazodier, Karin; Jean, Rodolphe; Coso, Diane; Aurran-Schleinitz, Thérèse; Broussais, Florence; Bouabdallah, Reda; Gravis, Gwenaelle; Goncalves, Anthony; Giovaninni, Marc; Sève, Pascal; Chetaille, Bruno; Gavet-Bongo, Florence; Weitten, Thierry; Pavic, Michel; Harlé, Jean-Robert; Schleinitz, Nicolas

    2015-01-01

    Abstract The association between cancer and sarcoidosis is controversial. Some epidemiological studies show an increase of the incidence of cancer in patients with sarcoidosis but only few cases of sarcoidosis following cancer treatment have been reported. We conducted a retrospective case study from internal medicine and oncology departments for patients presenting sarcoidosis after solid cancer treatment. We also performed a literature review to search for patients who developed sarcoidosis after solid cancer. We describe the clinical, biological, and radiological characteristics and outcome of these patients. Twelve patients were included in our study. Various cancers were observed with a predominance of breast cancer. Development of sarcoidosis appeared in the 3 years following cancer and was asymptomatic in half of the patients. The disease was frequently identified after a follow-up positron emission tomography computerized tomography evaluation. Various manifestations were observed but all patients presented lymph node involvement. Half of the patients required systemic therapy. With a median follow-up of 73 months, no patient developed cancer relapse. Review of the literature identified 61 other patients for which the characteristics of both solid cancer and sarcoidosis were similar to those observed in our series. This report demonstrates that sarcoidosis must be considered in the differential diagnosis of patients with a history of malignancy who have developed lymphadenopathy or other lesions on positron emission tomography computerized tomography. Histological confirmation of cancer relapse is mandatory in order to avoid unjustified treatments. This association should be consider as a protective factor against cancer relapse. PMID:26181571

  3. Optical coherence tomography angiography in age-related macular degeneration: The game changer.

    PubMed

    Lupidi, Marco; Cerquaglia, Alessio; Chhablani, Jay; Fiore, Tito; Singh, Sumit Randhir; Cardillo Piccolino, Felice; Corbucci, Roberta; Coscas, Florence; Coscas, Gabriel; Cagini, Carlo

    2018-04-01

    Optical coherence tomography angiography is one of the biggest advances in ophthalmic imaging. It enables a depth-resolved assessment of the retinal and choroidal blood flow, far exceeding the levels of detail commonly obtained with dye angiographies. One of the first applications of optical coherence tomography angiography was in detecting the presence of choroidal neovascularization in age-related macular degeneration and establishing its position in relation to the retinal pigmented epithelium and Bruch's membrane, and thereby classifying the CNV as type 1, type 2, type 3, or mixed lesions. Optical coherence tomography angiograms, due to the longer wavelength used by optical coherence tomography, showed a more distinct choroidal neovascularization vascular pattern than fluorescein angiography, since there is less suffering from light scattering or is less obscured by overlying subretinal hemorrhages or exudation. Qualitative and quantitative assessments of optical coherence tomography angiography findings in exudative and nonexudative age-related macular degeneration have been largely investigated within the past 3 years both in clinical and experimental settings. This review constitutes an up-to-date of all the potential applications of optical coherence tomography angiography in age-related macular degeneration in order to better understand how to translate its theoretical usefulness into the current clinical practice.

  4. EN FACE IMAGING OF RETINAL ARTERY MACROANEURYSMS USING SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY.

    PubMed

    Hanhart, Joel; Strassman, Israel; Rozenman, Yaakov

    2017-01-01

    To describe the advantages of en face view with swept-source optical coherence tomography in assessing the morphologic features of retinal arterial macroaneurysms, their consequences on adjacent retina, planning laser treatment, and evaluating its effects. Three eyes were treated for retinal arterial macroaneurysms and followed by swept-source optical coherence tomography in 2014-2015. En face images of the retina and choroid were obtained by EnView, a swept-source optical coherence tomography program. Retinal arterial macroaneurysms have a typical optical coherence tomography appearance. En face view allows delineation of the macroaneurysm wall, thrombotic components within the dilation, and lumen measurement. Hemorrhage, lipids, and fluids can be precisely described in terms of amount and extent over the macula and depth. This technique is also practical for planning focal laser treatment and determining its effects. En face swept-source optical coherence tomography is a rapid, noninvasive, high-resolution, promising technology, which allows excellent visualization of retinal arterial macroaneurysms and their consequences on surrounding tissues. It could make angiography with intravenous injection redundant in planning and assessing therapy.

  5. Cost-Effective and High-Resolution Subsurface Characterization Using Hydraulic Tomography

    DTIC Science & Technology

    2017-08-28

    implementation and compare costs associated with HT and conventional methods. TECHNOLOGY DESCRIPTION The HT concept is analogous to the Computerized...develop guidance for HT field implementation and compare costs associated with HT and conventional methods. 15. SUBJECT TERMS Subsurface...3  2.1  TECHNOLOGY DESCRIPTION

  6. 32 CFR Appendix A to Part 199 - Acronyms

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...

  7. 32 CFR Appendix A to Part 199 - Acronyms

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...

  8. 32 CFR Appendix A to Part 199 - Acronyms

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...

  9. Non-Invasive Visualization and Quantitation of Cardiovascular Structure and Function.

    ERIC Educational Resources Information Center

    Ritman, E. L.; And Others

    1979-01-01

    Described is a new approach to investigative physiology based on computerized transaxial tomography, in which visualization and measurement of the internal structure of the cardiopulmonary system is possible without postmortem, biopsy, or vivisection procedures. Examples are given for application of the Dynamic Spatial Reconstructor (DSR). (CS)

  10. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.

    PubMed

    Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash

    2013-01-01

    To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.

  11. Characterization of dynamic physiology of the bladder by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  12. Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features.

    PubMed

    Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Duker, Jay S; Fujimoto, James G; Schuman, Joel S; Rehg, James M

    2011-10-21

    To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module.

  13. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy

    PubMed Central

    Shin, Ji Soo

    2017-01-01

    Purpose The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. Methods This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. Results The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 µm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Conclusions Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. PMID:29022292

  14. Optical Coherence Tomography Machine Learning Classifiers for Glaucoma Detection: A Preliminary Study

    PubMed Central

    Burgansky-Eliash, Zvia; Wollstein, Gadi; Chu, Tianjiao; Ramsey, Joseph D.; Glymour, Clark; Noecker, Robert J.; Ishikawa, Hiroshi; Schuman, Joel S.

    2007-01-01

    Purpose Machine-learning classifiers are trained computerized systems with the ability to detect the relationship between multiple input parameters and a diagnosis. The present study investigated whether the use of machine-learning classifiers improves optical coherence tomography (OCT) glaucoma detection. Methods Forty-seven patients with glaucoma (47 eyes) and 42 healthy subjects (42 eyes) were included in this cross-sectional study. Of the glaucoma patients, 27 had early disease (visual field mean deviation [MD] ≥ −6 dB) and 20 had advanced glaucoma (MD < −6 dB). Machine-learning classifiers were trained to discriminate between glaucomatous and healthy eyes using parameters derived from OCT output. The classifiers were trained with all 38 parameters as well as with only 8 parameters that correlated best with the visual field MD. Five classifiers were tested: linear discriminant analysis, support vector machine, recursive partitioning and regression tree, generalized linear model, and generalized additive model. For the last two classifiers, a backward feature selection was used to find the minimal number of parameters that resulted in the best and most simple prediction. The cross-validated receiver operating characteristic (ROC) curve and accuracies were calculated. Results The largest area under the ROC curve (AROC) for glaucoma detection was achieved with the support vector machine using eight parameters (0.981). The sensitivity at 80% and 95% specificity was 97.9% and 92.5%, respectively. This classifier also performed best when judged by cross-validated accuracy (0.966). The best classification between early glaucoma and advanced glaucoma was obtained with the generalized additive model using only three parameters (AROC = 0.854). Conclusions Automated machine classifiers of OCT data might be useful for enhancing the utility of this technology for detecting glaucomatous abnormality. PMID:16249492

  15. Changes in Macular Retinal Layers and Peripapillary Nerve Fiber Layer Thickness after 577-nm Pattern Scanning Laser in Patients with Diabetic Retinopathy.

    PubMed

    Shin, Ji Soo; Lee, Young Hoon

    2017-12-01

    The aim of this study was to evaluate the changes in thickness of each macular retinal layer, the peripapillary retinal nerve fiber layer (RNFL), and central macular thickness (CMT) after 577-nm pattern scanning laser (PASCAL) photocoagulation in patients with diabetic retinopathy. This retrospective study included 33 eyes with diabetic retinopathy that underwent 577-nm PASCAL photocoagulation. Each retinal layer thickness, peripapillary RNFL thickness, and CMT were measured by spectral-domain optical coherence tomography before 577-nm PASCAL photocoagulation, as well as at 1, 6, and 12 months after 577-nm PASCAL photocoagulation. Computerized intraretinal segmentation of optical coherence tomography was performed to identify the thickness of each retinal layer. The average thickness of the RNFL, ganglion cell layer, inner plexiform layer, inner nuclear layer, inner retinal layer, and CMT at each follow-up increased significantly from baseline (p < 0.001), whereas that of the retinal pigment epithelium at each follow-up decreased significantly from baseline (p < 0.001). The average thickness of the peripapillary RNFL increased significantly at one month (p < 0.001). This thickness subsequently recovered to 7.48 μm, and there were no significant changes at six or 12 months compared to baseline (p > 0.05). Each macular retinal layer and CMT had a tendency to increase for one year after 577-nm PASCAL photocoagulation, whereas the average thickness of retinal pigment epithelium decreased at one-year follow-up compared to the baseline. Although an increase in peripapillary RNFL thickness was observed one month after 577-nm PASCAL photocoagulation, there were no significant changes at the one-year follow-up compared to the baseline. © 2017 The Korean Ophthalmological Society

  16. Computerized Macular Pathology Diagnosis in Spectral Domain Optical Coherence Tomography Scans Based on Multiscale Texture and Shape Features

    PubMed Central

    Liu, Yu-Ying; Chen, Mei; Wollstein, Gadi; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.; Rehg, James M.

    2011-01-01

    Purpose. To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. Methods. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. Results. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. Conclusions. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module. PMID:21911579

  17. Neuroimaging in pediatric traumatic head injury: diagnostic considerations and relationships to neurobehavioral outcome.

    PubMed

    Bigler, E D

    1999-08-01

    Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.

  18. Blood platelets: computerized morphometry applied on optical images

    NASA Astrophysics Data System (ADS)

    Korobova, Farida V.; Ivanova, Tatyana V.; Gusev, Alexander A.; Shmarov, Dmitry A.; Kozinets, Gennady I.

    2000-11-01

    The new technology of computerized morphometric image analysis of platelets on blood smears was developed. In a basis of the device is included analysis of cytophotometric and morphometric parameters of platelets. Geometrical and optical parameters of platelets on 35 donors, platelet concentrates and 15 patients with haemorrhagic thrombocythaemia were investigated, average meanings for the area, diameter, its logarithms and optical density of platelets in norm were received. Distribution of the areas, diameters and optical densities of platelets of patients with haemorrhagic thrombocythaemia differed from those at the healthy people. After a course of treatment these meanings came nearer to normal. The important characteristics of platelets in platelet concentrates after three days of storage were in limits of normal meanings, but differed from those in whole blood platelets. Obtained data allow to enter the quantitative standards into investigation of platelets of the healthy people and at various alteration of thrombocytopoieses.

  19. COMPUTERIZED EXPERT SYSTEM FOR EVALUATION OF AUTOMATED VISUAL FIELDS FROM THE ISCHEMIC OPTIC NEUROPATHY DECOMPRESSION TRIAL: METHODS, BASELINE FIELDS, AND SIX-MONTH LONGITUDINAL FOLLOW-UP

    PubMed Central

    Feldon, Steven E

    2004-01-01

    ABSTRACT Purpose To validate a computerized expert system evaluating visual fields in a prospective clinical trial, the Ischemic Optic Neuropathy Decompression Trial (IONDT). To identify the pattern and within-pattern severity of field defects for study eyes at baseline and 6-month follow-up. Design Humphrey visual field (HVF) change was used as the outcome measure for a prospective, randomized, multi-center trial to test the null hypothesis that optic nerve sheath decompression was ineffective in treating nonarteritic anterior ischemic optic neuropathy and to ascertain the natural history of the disease. Methods An expert panel established criteria for the type and severity of visual field defects. Using these criteria, a rule-based computerized expert system interpreted HVF from baseline and 6-month visits for patients randomized to surgery or careful follow-up and for patients who were not randomized. Results A computerized expert system was devised and validated. The system was then used to analyze HVFs. The pattern of defects found at baseline for patients randomized to surgery did not differ from that of patients randomized to careful follow-up. The most common pattern of defect was a superior and inferior arcuate with central scotoma for randomized eyes (19.2%) and a superior and inferior arcuate for nonrandomized eyes (30.6%). Field patterns at 6 months and baseline were not different. For randomized study eyes, the superior altitudinal defects improved (P = .03), as did the inferior altitudinal defects (P = .01). For nonrandomized study eyes, only the inferior altitudinal defects improved (P = .02). No treatment effect was noted. Conclusions A novel rule-based expert system successfully interpreted visual field defects at baseline of eyes enrolled in the IONDT. PMID:15747764

  20. Fungal corneal ulcer and bacterial orbital cellulitis occur as complications of bacterial endophthalmitis after cataract surgery in an immunocompetent patient.

    PubMed

    Kim, Eun Chul; Kim, Man Soo; Kang, Nam Yeo

    2013-03-01

    To report a case of fungal corneal ulcer and bacterial orbital cellulitis as complications of bacterial endophthalmitis following cataract surgery. A 51-year-old man underwent anterior chamber irrigation and aspiration in the left eye one day after cataract surgery because of bacterial endophthalmitis. Marked lid swelling with purulent discharge was developed after 5 days. Slit lamp examination showed generalized corneal ulcer and pus in the total anterior chamber. A computerized tomography scan showed left retrobulbar fat stranding with thickened optic disc. Streptococcus pneumonia was cultured from corneal scraping, vireous, and subconjunctival pus. The patient improved gradually with antibiotics treatments, but the corneal ulcer did not fully recover 2 months after cataract surgery. Candida albicans was detected in repetitive corneal culture. After antifungal and antibacterial therapy, the corneal epithelium had healed, but phthisis bulbi had developed. Fungal corneal ulcer and bacterial orbital cellulitis can occur as complications of endophthalmitis in an immunocompetent patient.

  1. Fundus autofluorescence and optical coherence tomography findings in thiamine responsive megaloblastic anemia.

    PubMed

    Ach, Thomas; Kardorff, Rüdiger; Rohrschneider, Klaus

    2015-01-01

    To report ophthalmologic fundus autofluorescence and spectral domain optical coherence tomography findings in a patient with thiamine responsive megaloblastic anemia (TRMA). A 13-year-old girl with genetically proven TRMA was ophthalmologically (visual acuity, funduscopy, perimetry, electroretinogram) followed up over >5 years. Fundus imaging also included autofluorescence and spectral domain optical coherence tomography. During a 5-year follow-up, visual acuity and visual field decreased, despite a special TRMA diet. Funduscopy revealed bull's eye appearance, whereas fundus autofluorescence showed central and peripheral hyperfluorescence and perifoveal hypofluorescence. Spectral domain optical coherence tomography revealed affected inner segment ellipsoid band and irregularities in the retinal pigment epithelium and choroidea. Autofluorescence and spectral domain optical coherence tomography findings in a patient with TRMA show retinitis pigmentosa-like retina, retinal pigment epithelium, and choroid alterations. These findings might progress even under special TRMA diet, indispensable to life. Ophthalmologist should consider TRMA in patients with deafness and ophthalmologic disorders.

  2. Speckle contrast optical tomography: A new method for deep tissue three-dimensional tomography of blood flow

    PubMed Central

    Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut

    2014-01-01

    A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306

  3. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    PubMed

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  4. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma.

    PubMed

    Guerra, Ricardo Luz Leitão; Marback, Eduardo Ferrari; Silva, Igor Sandes Pessoa da; Maia Junior, Otacílio de Oliveira; Marback, Roberto Lorens

    2014-01-01

    The authors report fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (OCT) findings of two consecutive patients who presented with optic disk melanocytoma (ODM). A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.

  5. Near-Infrared Fluorescence-Enhanced Optical Tomography

    PubMed Central

    2016-01-01

    Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography. PMID:27803924

  6. Near-Infrared Fluorescence-Enhanced Optical Tomography.

    PubMed

    Zhu, Banghe; Godavarty, Anuradha

    2016-01-01

    Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography.

  7. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    PubMed

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Rare Forms of Castleman Disease Mimicking Malignancy: Mesenteric and Pancreatic Involvement.

    PubMed

    Ozsoy, Mustafa; Ozsoy, Zehra; Sahin, Suleyman; Arıkan, Yuksel

    2018-03-12

    Castleman disease is a lymphoproliferative disorder with unknown etiology and pathogenesis. While the disease may involve all parts of the body, the mediastinum appears to be the most common part of involvement. In this study, we present two cases of Castleman disease with different localizations that mimicked malignancy. A 62-year-old female patient presented with jaundice. Laboratory analysis indicated aspartate aminotransferase: 250 U/L, total bilirubin: 4 mg/dl, and carbohydrate antigen (CA) 19-9: 900 U/ml. Computerized tomography (CT) of the abdomen showed a mass originating from the pancreas head which resulted in a biliary tract obstruction. A positron emission tomography-computed tomography (PET/CT) showed that the only site of involvement was the pancreas head. A decision was made to perform pancreaticoduodenectomy. During intra-abdominal exploration, lymphadenopathies were identified in the surroundings of the retropancreatic portal vein and the hepatic artery. Histopathological investigation of the dissected lymph nodes demonstrated findings consistent with granulomatous plasma-cell-rich Castleman disease. A 55-year-old female patient presented with abdominal pain, nausea, and vomiting. Computerized tomography of the abdomen showed an abdominal mass of 7 cm, originating from the mesenterium, with high-contrast uptake in the mesenterium in the lower abdominal quadrant. The mesenteric mass was resected along with segmentary small intestine resection. Histopathological investigation of the mass showed a giant granulomatous structure that consisted of plasma cells consistent with Castleman disease. Castleman disease should be kept in mind during differential diagnosis of locally advanced lymph nodes observed during preoperative investigations and intraoperative exploration.

  9. Dark and white lesions observed in central serous chorioretinopathy on optical coherence tomography angiography.

    PubMed

    De Bats, Flore; Cornut, Pierre-Loïc; Wolff, Benjamin; Kodjikian, Laurent; Mauget-Faÿsse, Martine

    2018-03-01

    To describe abnormal dark (hyposignal) and white (hypersignal) lesions observed on optical coherence tomography angiography in central serous chorioretinopathy. Prospective, multicenter, and descriptive study including patients with active or quiescent central serous chorioretinopathy. All patients had undergone a complete ophthalmic examination. Abnormal dark lesions were detected as "dark spots" and "dark areas" on optical coherence tomography angiography. A "dark spot" could correspond to six different abnormalities: pigment epithelium detachment, subretinal deposit, "Lucency" within surrounding subretinal fibrin, choroidal cavitation, choroidal excavation, and choroidal fluid. A "dark area" could be related to a serous retinal detachment or choriocapillary compression. Abnormal white lesions were also detected: A "white spot" could correspond with the leaking point on fluorescein angiography or with hyper-reflective dots; A "white filamentous pattern" at the Brüch's membrane level corresponded to abnormal choroidal neovascular vessels. A semiology is described using optical coherence tomography angiography in central serous chorioretinopathy as abnormal dark and white lesions. Multimodal imaging is mandatory in addition to optical coherence tomography angiography to diagnose non-neovascular retinal and choroidal central serous chorioretinopathy lesions. However, optical coherence tomography angiography alone is helpful in detecting choroidal neovascular membrane in central serous chorioretinopathy.

  10. Robust Spatial Autoregressive Modeling for Hardwood Log Inspection

    Treesearch

    Dongping Zhu; A.A. Beex

    1994-01-01

    We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...

  11. Letter to the Editor: Use of Publicly Available Image Resources

    DOE PAGES

    Armato, Samuel G.; Drukker, Karen; Li, Feng; ...

    2017-05-11

    Here we write with regard to the Academic Radiology article entitled, “Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity” by Drs. Nishio and Nagashima (1). The authors also report on a computerized method to classify as benign or malignant lung nodules present in computed tomography (CT) scans.

  12. PubMed Central

    FOUNTOULAKIS, E.N.; PAPADAKI, E.; PANAGIOTAKI, I.; GIANNIKAKI, E.; LAGOUDIANAKIS, G.; BIZAKIS, J.

    2011-01-01

    SUMMARY Haemangiopericytoma is a rare soft tissue tumour, with great histological variability and unpredictable clinical and biological behaviour. The precise cell type origin is uncertain. One third of haemangiopericytomas occur in the head and neck area, but only a few cases have been reported regarding localization at the parapharyngeal space. Herewith, case is presented of a 54-year-old female, referred to our Department due to a parapharyngeal space tumour with non-specific imaging characteristics. The patient underwent radical excision of the tumour with a trans-cervical sub-mandibular approach. The histolopathologic examination revealed a neoplasm with the characteristic features of haemangiopericytoma. One year later, during the scheduled follow-up, the computerized tomography scan showed no evidence of recurrence or residual disease. The pre-operative evaluation of a haemangiopericytoma must include a thorough imaging evaluation with computerized tomography and magnetic resonance imaging, even if results may not be specific for haemangiopericytoma. Angiography and pre-operative embolization may be performed in cases of large tumours with significant vascularity. The treatment of choice is radical excision. The follow-up includes clinical evaluation every 6 months and annual magnetic resonance imaging for at least 3 years. PMID:22058597

  13. Application of Micromirror in Microsurgical Clipping to the Intracranial Aneurysms.

    PubMed

    Zhao, Chao; Ma, Zhiguo; Zhang, Yuhai; Mou, Shanling; Yang, Yunxue; Yang, Yonglin; Sun, Guoqing; Yao, Weicheng

    2018-05-01

    The aim of the study was to explore the values and disadvantages of micromirror in the intracranial aneurysm clipping surgery. Micromirror was used to assist microsurgical clipping to 36 intracranial aneurysms in 31 patients, of which 3 were carotid-ophthalmic artery aneurysms, 3 were anterior choroidal artery aneurysms, 11 were posterior communicating artery aneurysms, 7 were middle cerebral artery aneurysms, 10 were anterior communicating artery or anterior cerebral artery aneurysms, and the rest were a posterior cerebral artery aneurysm and a posterior inferior cerebellar artery aneurysm. The micromirror was used before and after clipping to observe the anatomic features of necks hidden behind and medial to aneurysms, to visualize surrounding neurovascular structures, and to verify the optimal clipping position. Intraoperative indocyanine green fluorescein angiography, postoperative computerized tomography angiography, and digital subtraction angiography confirmed the success of sufficient clipping. Intraoperative indocyanine green angiography, postoperative computerized tomography angiography , or digital subtraction angiography were performed and showed no case of wrong or insufficient clipping of aneurysm. Micromirror-assisted microsurgical clipping to the intracranial aneurysm is safe, sufficient, convenient, and practical.

  14. [Quantitative analysis method based on fractal theory for medical imaging of normal brain development in infants].

    PubMed

    Li, Heheng; Luo, Liangping; Huang, Li

    2011-02-01

    The present paper is aimed to study the fractal spectrum of the cerebral computerized tomography in 158 normal infants of different age groups, based on the calculation of chaotic theory. The distribution range of neonatal period was 1.88-1.90 (mean = 1.8913 +/- 0.0064); It reached a stable condition at the level of 1.89-1.90 during 1-12 months old (mean = 1.8927 +/- 0.0045); The normal range of 1-2 years old infants was 1.86-1.90 (mean = 1.8863 +/- 4 0.0085); It kept the invariance of the quantitative value among 1.88-1.91(mean = 1.8958 +/- 0.0083) during 2-3 years of age. ANOVA indicated there's no significant difference between boys and girls (F = 0.243, P > 0.05), but the difference of age groups was significant (F = 8.947, P < 0.001). The fractal dimension of cerebral computerized tomography in normal infants computed by box methods was maintained at an efficient stability from 1.86 to 1.91. It indicated that there exit some attractor modes in pediatric brain development.

  15. The application of compressive sampling in rapid ultrasonic computerized tomography (UCT) technique of steel tube slab (STS).

    PubMed

    Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao

    2018-01-01

    This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique.

  16. Optical Analogies for Teaching Physics of X-rays and CAT Scans*

    NASA Astrophysics Data System (ADS)

    Kalita, Spartak; Zollman, D. A.

    2006-12-01

    Our Modern Miracle Medical Machines project is devoted to improving motivation and performance of pre-med students in their undergraduate Physics classes. Under its framework we designed some non-traditional hands-on lab activities involving optical analogies to teach the application of contemporary physics to medical imaging. On the basis of our previous research (primarily clinical interviews with the target student population) we created activities using semi-transparent Lego blocks as analogs for understanding the image reconstruction process in computerized axial tomography (CAT or CT). Teaching interviews have been conducted with pre-med and other health-related majors using these materials. Students had to determine the shape of an object constructed of Lego blocks and hidden within a closed box. This arrangement imitated an unknown entity within a part of the human body. Using LEDs (light-emitting diodes) and a photo detector the students attempted to learn the contents of the box. They also had access to another similar Lego arrangement which they were free to open. Interviewees successfully transferred knowledge from their science and math classes (as well as from other sources) while completing activities and expressed great interest in this endeavor. Improvements to the activities have been based on the students’ feedback. *Supported by the National Science Foundation under grant 04-2675

  17. Multi-contrast imaging of human posterior eye by Jones matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yasuno, Yoshiaki

    2017-04-01

    A multi-contrast imaging of pathologic posterior eyes is demonstrated by Jones matrix optical coherence tomography (Jones matrix OCT). The Jones matrix OCT provides five tomographies, which includes scattering, local attenuation, birefringence, polarization uniformity, and optical coherence angiography, by a single scan. The hardware configuration, algorithms of the Jones matrix OCT as well as its application to ophthalmology is discussed.

  18. Three-dimensional multifunctional optical coherence tomography for skin imaging

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  19. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    PubMed

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  20. Microinterferometric optical phase tomography for measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices.

    PubMed

    Bachim, Brent L; Gaylord, Thomas K

    2005-01-20

    A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.

  1. Applications of Optical Coherence Tomography in Pediatric Clinical Neuroscience

    PubMed Central

    Avery, Robert A.; Rajjoub, Raneem D.; Trimboli-Heidler, Carmelina; Waldman, Amy T.

    2015-01-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve—the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. PMID:25803824

  2. Applications of optical coherence tomography in pediatric clinical neuroscience.

    PubMed

    Avery, Robert A; Rajjoub, Raneem D; Trimboli-Heidler, Carmelina; Waldman, Amy T

    2015-04-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve-the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. Georg Thieme Verlag KG Stuttgart · New York.

  3. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Reconstruction of vector physical fields by optical tomography

    NASA Astrophysics Data System (ADS)

    Kulchin, Yurii N.; Vitrik, O. B.; Kamenev, O. T.; Kirichenko, O. V.; Petrov, Yu S.

    1995-10-01

    Reconstruction of vector physical fields by optical tomography, with the aid of a system of fibre-optic measuring lines, is considered. The reported experimental results are used to reconstruct the distribution of the square of the gradient of transverse displacements of a flat membrane.

  4. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    NASA Astrophysics Data System (ADS)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.

  5. Is the cervical spine clear? Undetected cervical fractures diagnosed only at autopsy.

    PubMed

    Sweeney, J F; Rosemurgy, A S; Gill, S; Albrink, M H

    1992-10-01

    Undetected cervical-spine injuries are a nemesis to both trauma surgeons and emergency physicians. Radiographic protocols have been developed to avoid missing cervical-spine fractures but are not fail-safe. Three case reports of occult cervical fractures documented at autopsy in the face of normal cervical-spine radiographs and computerized tomography scans are presented.

  6. [Two cases of severe eye and cranial injuries due to firework explosions].

    PubMed

    Saunte, J P; Trojaborg, N S; Nielsen, O A; Thygesen, J

    1999-12-20

    Two patients who sustained serious facial, cranial and eye trauma secondary to recreational fireworks injuries are reported. Initial assessment included axial and coronary computerized tomography, control of haemorrhage, debridement of wound and brain, and in one patient bilateral excenteration of the globe. Both patients suffered from intracranial haemorrhage, but both recovered without severe neurological sequelae.

  7. The New Approach to Sport Medicine: 3-D Reconstruction

    ERIC Educational Resources Information Center

    Ince, Alparslan

    2015-01-01

    The aim of this study is to present a new approach to sport medicine. Comparative analysis of the Vertebrae Lumbales was done in sedentary group and Muay Thai athletes. It was done by acquiring three dimensional (3-D) data and models through photogrammetric methods from the Multi-detector Computerized Tomography (MDCT) images of the Vertebrae…

  8. Complementary use of optical coherence tomography and 5-aminolevulinic acid induced fluorescent spectroscopy for diagnosis of neoplastic processes in cervix and vulva

    NASA Astrophysics Data System (ADS)

    Sapozhnikova, Veronika V.; Shakhova, Natalia M.; Kamensky, Vladislav A.; Kuranov, Roman V.; Loshenov, Victor B.; Petrova, Svetlana A.

    2003-07-01

    A new approach to improving the diagnostic value of optical methods is suggested, which is based on a complementary investigation of different optical parameters of biotissues. The aim of this paper is comparative study of the feasibility of two optical methods - fluorescence spectroscopy and optical coherence tomography - for visualization of borders of neoplastic processes in the uterine cervix and vulva. Fluorescence spectroscopy is based on the detection of biochemical and optical coherence tomography on backscattering properties in norm and pathological changes of tissues. By means of these optical methods changes in biochemical and morphological properties of tissues were investigated. A parallel analysis of these two optical methods and histology from the center of tumors and their optical borders was made. Thirteen female patients with neoplastic changes in uterine cervix and vulva were enrolled in this study. The borders of the tumor determined by optical methods (fluorescence spectroscopy and optical coherence tomography) are coinciding with the biopsy proved ones. In addition, OCT and fluorescence borders of tumor in the uterine cervix and vulva exceeds colposcopically detectable borders, the averaging difference 2 mm. In future optical methods would considerably enhance diagnostic accuracy of conventional methods used in oncogynecology.

  9. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  10. Effective Heart Disease Detection Based on Quantitative Computerized Traditional Chinese Medicine Using Representation Based Classifiers.

    PubMed

    Shu, Ting; Zhang, Bob; Tang, Yuan Yan

    2017-01-01

    At present, heart disease is the number one cause of death worldwide. Traditionally, heart disease is commonly detected using blood tests, electrocardiogram, cardiac computerized tomography scan, cardiac magnetic resonance imaging, and so on. However, these traditional diagnostic methods are time consuming and/or invasive. In this paper, we propose an effective noninvasive computerized method based on facial images to quantitatively detect heart disease. Specifically, facial key block color features are extracted from facial images and analyzed using the Probabilistic Collaborative Representation Based Classifier. The idea of facial key block color analysis is founded in Traditional Chinese Medicine. A new dataset consisting of 581 heart disease and 581 healthy samples was experimented by the proposed method. In order to optimize the Probabilistic Collaborative Representation Based Classifier, an analysis of its parameters was performed. According to the experimental results, the proposed method obtains the highest accuracy compared with other classifiers and is proven to be effective at heart disease detection.

  11. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes.

    PubMed

    El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N

    2003-11-01

    To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.

  12. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system

    PubMed Central

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-01-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559

  13. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.

    PubMed

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-07-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.

  14. Evaluation of white-to-white distance and anterior chamber depth measurements using the IOL Master, slit-lamp adapted optical coherence tomography and digital photographs in phakic eyes.

    PubMed

    Wilczyński, Michał; Pośpiech-Zabierek, Aleksandra

    2015-01-01

    The accurate measurement of the anterior chamber internal diameter and depth is important in ophthalmic diagnosis and before some eye surgery procedures. The purpose of the study was to compare the white-to-white distance measurements performed using the IOL-Master and photography with internal anterior chamber diameter determined using slit lamp adapted optical coherence tomography in healthy eyes, and to compare anterior chamber depth measurements by IOL-Master and slit lamp adapted optical coherence tomography. The data were gathered prospectively from a non-randomized consecutive series of patients. The examined group consisted of 46 eyes of 39 patients. White-to-white was measured using IOL-Master and photographs of the eye were taken with a digital camera. Internal anterior chamber diameter was measured with slit-lamp adapted optical coherence tomography. Anterior chamber depth was measured using the IOL Master and slit-lamp adapted optical coherence tomography. Statistical analysis was performed using parametric tests. A Bland-Altman plot was drawn. White-to-white distance by the IOL Master was 11.8 +/- 0.40 mm, on photographs it was 11.29 +/- 0.58 mm and internal anterior chamber diameter by slit-lamp adapted optical coherence tomography was 11.34?0.54 mm. A significant difference was found between IOL-Master and slit-lamp adapted optical coherence tomography (p<0.01), as well as between IOL Master and digital photographs (p<0.01). There was no difference between SL-OCT and digital photographs (p>0.05). All measurements were correlated (Spearman p<0.001). Mean anterior chamber depth determined using the IOL-Master was 2.99 +/- 0.50 mm and by slit-lamp adapted optical coherence tomography was 2.56 +/- 0.46 mm. The difference was statistically significant (p<0.001). The correlation between the values was also statistically significant (Spearman, p<0.001). Automated measurements using IOL-Master yield constantly higher values than measurements based on direct eye visualization slit-lamp adapted optical coherence tomography and digital photographs. In order to obtain accurate measurements of the internal anterior chamber diameter and anterior chamber depth, a method involving direct visualization of intraocular structures should be used.

  15. Retinal Evaluation Using Optical Coherence Tomography (OCT) During Deep Space Gateway Missions

    NASA Astrophysics Data System (ADS)

    Stenger, M. B.; Laurie, S. S.; Macias, B. R.; Barr, Y. R.

    2018-02-01

    Optical Coherence Tomography (OCT) imaging will be conducted before, during, and after Deep Space Gateway missions to evaluate changes in the retina and, in particular, the optic nerve head and surrounding structures. Additional parameters will be collected before and after flight.

  16. Measurement of 3D refractive index distribution by optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan

    2018-01-01

    Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.

  17. TOWARD QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY: Visualizing Blood Flow Speeds in Ocular Pathology Using Variable Interscan Time Analysis.

    PubMed

    Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G

    2016-12-01

    Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.

  18. Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography.

    PubMed

    Grieve, Kate; Mouslim, Karima; Assayag, Osnath; Dalimier, Eugénie; Harms, Fabrice; Bruhat, Alexis; Boccara, Claude; Antoine, Martine

    2016-04-01

    Current techniques for the intraoperative analysis of sentinel lymph nodes during breast cancer surgery present drawbacks such as time and tissue consumption. Full-field optical coherence tomography is a novel noninvasive, high-resolution, fast imaging technique. This study investigated the use of full-field optical coherence tomography as an alternative technique for the intraoperative analysis of sentinel lymph nodes. Seventy-one axillary lymph nodes from 38 patients at Tenon Hospital were imaged minutes after excision with full-field optical coherence tomography in the pathology laboratory, before being handled for histological analysis. A pathologist performed a blind diagnosis (benign/malignant), based on the full-field optical coherence tomography images alone, which resulted in a sensitivity of 92% and a specificity of 83% (n = 65 samples). Regular feedback was given during the blind diagnosis, with thorough analysis of the images, such that features of normal and suspect nodes were identified in the images and compared with histology. A nonmedically trained imaging expert also performed a blind diagnosis aided by the reading criteria defined by the pathologist, which resulted in 85% sensitivity and 90% specificity (n = 71 samples). The number of false positives of the pathologist was reduced by 3 in a second blind reading a few months later. These results indicate that following adequate training, full-field optical coherence tomography can be an effective noninvasive diagnostic tool for extemporaneous sentinel node biopsy qualification. © The Author(s) 2015.

  19. Real-time optical coherence tomography observation of retinal tissue damage during laser photocoagulation therapy on ex-vivo porcine samples

    NASA Astrophysics Data System (ADS)

    Steiner, P.; Považay, B.; Stoller, M.; Morgenthaler, P.; Inniger, D.; Arnold, P.; Sznitman, R.; Meier, Ch.

    2015-07-01

    Retinal laser photocoagulation represents a widely used treatment for retinal pathologies such as diabetic chorioretinopathy or diabetic edema. For effective treatment, an appropriate choice of the treatment energy dose is crucial to prevent excessive tissue damage caused by over-irradiation of the retina. In this manuscript we investigate simultaneous and time-resolved optical coherence tomography for its applicability to provide feedback to the ophthalmologist about the introduced retinal damage during laser photocoagulation. Time-resolved and volumetric optical coherence tomography data of 96 lesions on ex-vivo porcine samples, set with a 577 nm laser prototype and irradiance of between 300 and 8800 W=cm2 were analyzed. Time-resolved scans were compared to volumetric scans of the lesion and correlated with ophthalmoscopic visibility. Lastly, image parameters extracted from optical coherence tomography Mscans, suitable for lesion classification were identified. Results presented in this work support the hypothesis that simultaneous optical coherence tomography provides valuable information about the extent of retinal tissue damage and may be used to guide retinal laser photocoagulation in the future.

  20. Photoacoustic tomography guided diffuse optical tomography for small-animal model

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao

    2015-03-01

    Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.

  1. The Reality, Direction, and Future of Computerized Publications.

    ERIC Educational Resources Information Center

    Levenstein, Nicholas

    1994-01-01

    Considers potential of personal computers, comparing development of computer today to that of cars in the 1920s. Examines recent changes in communications, university publications, and cultural habits. Explores technological issues, looking at modems and fiber optic cables, better screens, and CD-ROM and optical magnetic drives. (NB)

  2. Ionospheric Tomography Using Faraday Rotation of Automatic Dependant Surveillance Broadcast UHF Signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.

    2013-12-01

    The proposed launch of a satellite carrying the first space-borne ADS-B receiver by the Royal Military College of Canada (RMCC) will create a unique opportunity to study the modification of the 1090 MHz radio waves following propagation through the ionosphere from the transmitting aircraft to the passive satellite receiver(s). Experimental work successfully demonstrated that ADS-B data can be used to reconstruct two dimensional (2D) electron density maps of the ionosphere using computerized tomography (CT). The goal of this work is to evaluate the feasibility of CT reconstruction. The data is modelled using Ray-tracing techniques. This allows us to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation (FR) is determined and converted to total electron content (TEC) along the ray-paths. The resulting TEC is used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique (ART). This study concentrated on meso-scale structures 100-1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Multiple feature input electron density profile to ray-tracing program. Top: reconstructed relative electron density map of ray-trace input (Fig. 1) using TEC measurements and line-of-sight path. Bottom: reconstructed electron density map of ray-trace input using quiet background a priori estimate.

  3. Optical Tecnology Developments in Biomedicine: History, Current and Future

    PubMed Central

    Nioka, Shoko; Chen, Yu

    2011-01-01

    Biomedical optics is a rapidly emerging field for medical imaging and diagnostics. This paper reviews several biomedical optical technologies that have been developed and translated for either clinical or pre-clinical applications. Specifically, we focus on the following technologies: 1) near-infrared spectroscopy and tomography, 2) optical coherence tomography, 3) fluorescence spectroscopy and imaging, and 4) optical molecular imaging. There representative biomedical applications are also discussed here. PMID:23905030

  4. Optical signal-to-noise ratio measurement by optical homodyne tomography.

    PubMed

    Martelli, P; Pietralunga, S M; Ranzani, L; Siano, R; Martinelli, M

    2006-02-01

    An all-fiber optical homodyne tomography setup is introduced that measures the optical signal-to-noise ratio through reconstruction of the photon statistics. The scheme described has been conceived for applications to optical communications. In particular, the signal-to-noise ratio has been evaluated at lambda= 1.55 microm as a function of the received power. From the experimental data, in the case of optically amplified signals, the amplifier noise figure can be estimated.

  5. Osteochondrosis of the inferior pole of the scapula (Roca disease).

    PubMed

    Skaf, Abdalla; Taneja, Atul K

    2014-03-01

    We report a rare case of osteochondrosis of the inferior pole of the scapula in a 14-year-old boy, an amateur swimmer, that was diagnosed by a combination of clinical and imaging findings. Also known as Roca disease, this is the first article to report this entity in the English literature and demonstrates its computerized tomography and MRI features.

  6. Predicting internal red oak (Quercus rubra) log defect features using surface defect defect measurements

    Treesearch

    R. Edward Thomas

    2013-01-01

    Determining the defects located within a log is crucial to understanding the tree/log resource for efficient processing. However, existing means of doing this non-destructively requires the use of expensive x-ray/CT (computerized tomography), MRI (magnetic resonance imaging), or microwave technology. These methods do not lend themselves to fast, efficient, and cost-...

  7. The application of compressive sampling in rapid ultrasonic computerized tomography (UCT) technique of steel tube slab (STS)

    PubMed Central

    Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao

    2018-01-01

    This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique. PMID:29293593

  8. A Head and Neck Simulator for Radiology and Radiotherapy

    NASA Astrophysics Data System (ADS)

    Thompson, Larissa; Campos, Tarcísio P. R.

    2013-06-01

    Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.

  9. Validity of multislice computerized tomography for diagnosis of maxillofacial fractures using an independent workstation.

    PubMed

    Dos Santos, Denise Takehana; Costa e Silva, Adriana Paula Andrade; Vannier, Michael Walter; Cavalcanti, Marcelo Gusmão Paraiso

    2004-12-01

    The purpose of this study was to demonstrate the sensitivity and specificity of multislice computerized tomography (CT) for diagnosis of maxillofacial fractures following specific protocols using an independent workstation. The study population consisted of 56 patients with maxillofacial fractures who were submitted to a multislice CT. The original data were transferred to an independent workstation using volumetric imaging software to generate axial images and simultaneous multiplanar (MPR) and 3-dimensional (3D-CT) volume rendering reconstructed images. The images were then processed and interpreted by 2 examiners using the following protocols independently of each other: axial, MPR/axial, 3D-CT images, and the association of axial/MPR/3D images. The clinical/surgical findings were considered the gold standard corroborating the diagnosis of the fractures and their anatomic localization. The statistical analysis was carried out using validity and chi-squared tests. The association of axial/MPR/3D images indicated a higher sensitivity (range 95.8%) and specificity (range 99%) than the other methods regarding the analysis of all regions. CT imaging demonstrated high specificity and sensitivity for maxillofacial fractures. The association of axial/MPR/3D-CT images added important information in relationship to other CT protocols.

  10. Classification and Current Management of Inner Ear Malformations.

    PubMed

    Sennaroğlu, Levent; Bajin, Münir Demir

    2017-09-29

    Morphologically congenital sensorineural hearing loss can be investigated under two categories. The majority of congenital hearing loss causes (80%) are membranous malformations. Here, the pathology involves inner ear hair cells. There is no gross bony abnormality and, therefore, in these cases high-resolution computerized tomography and magnetic resonance imaging of the temporal bone reveal normal findings. The remaining 20% have various malformations involving the bony labyrinth and, therefore, can be radiologically demonstrated by computerized tomography and magnetic resonance imaging. The latter group involves surgical challenges as well as problems in decision-making. Some cases may be managed by a hearing aid, others need cochlear implantation, and some cases are candidates for an auditory brainstem implantation (ABI). During cochlear implantation, there may be facial nerve abnormalities, cerebrospinal fluid leakage, electrode misplacement or difficulty in finding the cochlea itself. During surgery for inner ear malformations, the surgeon must be ready to modify the surgical approach or choose special electrodes for surgery. In the present review article, inner ear malformations are classified according to the differences observed in the cochlea. Hearing and language outcomes after various implantation methods are closely related to the status of the cochlear nerve, and a practical classification of the cochlear nerve deficiency is also provided.

  11. Analysis of rocket beacon transmissions for computerized reconstruction of ionospheric densities

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Chaturvedi, P. K.; Fulford, J. A.; Forsyth, P. A.; Anderson, D. N.; Zalesak, S. T.

    1993-01-01

    Three methods are described to obtain ionospheric electron densities from transionospheric, rocket-beacon TEC data. First, when the line-of-sight from a ground receiver to the rocket beacon is tangent to the flight trajectory, the electron concentration can be obtained by differentiating the TEC with respect to the distance to the rocket. A similar method may be used to obtain the electron-density profile if the layer is horizontally stratified. Second, TEC data obtained during chemical release experiments may be interpreted with the aid of physical models of the disturbed ionosphere to yield spatial maps of the modified regions. Third, computerized tomography (CT) can be used to analyze TEC data obtained along a chain of ground-based receivers aligned along the plane of the rocket trajectory. CT analysis of TEC data is used to reconstruct a 2D image of a simulated equatorial plume. TEC data is computed for a linear chain of nine receivers with adjacent spacings of either 100 or 200 km. The simulation data are analyzed to provide an F region reconstruction on a grid with 15 x 15 km pixels. Ionospheric rocket tomography may also be applied to rocket-assisted measurements of amplitude and phase scintillations and airglow intensities.

  12. Clinical technique for invasive cervical root resorption

    PubMed Central

    Silveira, Luiz Fernando Machado; Silveira, Carina Folgearini; Martos, Josué; Piovesan, Edno Moacir; César Neto, João Batista

    2011-01-01

    This clinical case report describes the diagnosis and treatment of an external invasive cervical resorption. A 17-year-old female patient had a confirmed diagnosis of invasive cervical resorption class 4 by cone beam computerized tomography. Although, there was no communication with the root canal, the invasive resorption process was extending into the cervical and middle third of the root. The treatment of the cervical resorption of the lateral incisor interrupted the resorptive process and restored the damaged root surface and the dental functions without any esthetic sequelae. Both the radiographic examination and computed tomography are imperative to reveal the extent of the defect in the differential diagnosis. PMID:22144822

  13. An analysis of regional cerebral blood flow in impulsive murderers using single photon emission computed tomography.

    PubMed

    Amen, Daniel G; Hanks, Chris; Prunella, Jill R; Green, Aisa

    2007-01-01

    The authors explored differences in regional cerebral blood flow in 11 impulsive murderers and 11 healthy comparison subjects using single photon emission computed tomography. The authors assessed subjects at rest and during a computerized go/no-go concentration task. Using statistical parametric mapping software, the authors performed voxel-by-voxel t tests to assess significant differences, making family-wide error corrections for multiple comparisons. Murderers were found to have significantly lower relative rCBF during concentration, particularly in areas associated with concentration and impulse control. These results indicate that nonemotionally laden stimuli may result in frontotemporal dysregulation in people predisposed to impulsive violence.

  14. Screening and Biosensor-Based Approaches for Lung Cancer Detection

    PubMed Central

    Wang, Lulu

    2017-01-01

    Early diagnosis of lung cancer helps to reduce the cancer death rate significantly. Over the years, investigators worldwide have extensively investigated many screening modalities for lung cancer detection, including computerized tomography, chest X-ray, positron emission tomography, sputum cytology, magnetic resonance imaging and biopsy. However, these techniques are not suitable for patients with other pathologies. Developing a rapid and sensitive technique for early diagnosis of lung cancer is urgently needed. Biosensor-based techniques have been recently recommended as a rapid and cost-effective tool for early diagnosis of lung tumor markers. This paper reviews the recent development in screening and biosensor-based techniques for early lung cancer detection. PMID:29065541

  15. Spectral optical coherence tomography for ophthalmologic applications

    NASA Astrophysics Data System (ADS)

    Targowski, Piotr; Bajraszewski, Tomasz; Gorczyńska, Iwona; Szkulmowska, Anna; Szkulmowski, Maciej; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kaluzny, Jakub J.; Kaluzny, Bartłomiej J.

    2006-09-01

    The overview of the Spectral Optical Coherence Tomography an alternative method to more popular Time domain modality is given. Examples from medical practice utilizing high resolution, ultra fast SOCT device are presented.

  16. The Development, Commercialization, and Impact of Optical Coherence Tomography.

    PubMed

    Fujimoto, James; Swanson, Eric

    2016-07-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.

  17. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography

    PubMed Central

    Singh, Manmohan; Raghunathan, Raksha; Piazza, Victor; Davis-Loiacono, Anjul M.; Cable, Alex; Vedakkan, Tegy J.; Janecek, Trevor; Frazier, Michael V.; Nair, Achuth; Wu, Chen; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    We present an analysis of imaging murine embryos at various embryonic developmental stages (embryonic day 9.5, 11.5, and 13.5) by optical coherence tomography (OCT) and optical projection tomography (OPT). We demonstrate that while OCT was capable of rapid high-resolution live 3D imaging, its limited penetration depth prevented visualization of deeper structures, particularly in later stage embryos. In contrast, OPT was able to image the whole embryos, but could not be used in vivo because the embryos must be fixed and cleared. Moreover, the fixation process significantly altered the embryo morphology, which was quantified by the volume of the eye-globes before and after fixation. All of these factors should be weighed when determining which imaging modality one should use to achieve particular goals of a study. PMID:27375945

  18. Simulation study on compressive laminar optical tomography for cardiac action potential propagation

    PubMed Central

    Harada, Takumi; Tomii, Naoki; Manago, Shota; Kobayashi, Etsuko; Sakuma, Ichiro

    2017-01-01

    To measure the activity of tissue at the microscopic level, laminar optical tomography (LOT), which is a microscopic form of diffuse optical tomography, has been developed. However, obtaining sufficient recording speed to determine rapidly changing dynamic activity remains major challenges. For a high frame rate of the reconstructed data, we here propose a new LOT method using compressed sensing theory, called compressive laminar optical tomography (CLOT), in which novel digital micromirror device-based illumination and data reduction in a single reconstruction are applied. In the simulation experiments, the reconstructed volumetric images of the action potentials that were acquired from 5 measured images with random pattern featured a wave border at least to a depth of 2.5 mm. Consequently, it was shown that CLOT has potential for over 200 fps required for the cardiac electrophysiological phenomena. PMID:28736675

  19. [The importance of axial computer tomography of the neurocranium in neurotraumatology (1) (author's transl)].

    PubMed

    Gustorf, R

    1979-07-01

    Computer tomography enables exact diagnostic clarification of intracranial lesions in trauma of the neurocranium. Subdural or epidural as well as intracerebral haemorrhages can be localised, and a circumscribed contusion and cerebral oedema become tangible. The article reports on 90 patients subjected to computerized tomography following trauma of the neurocranium. In about 50% of the cases, the trauma had been caused by a traffic accident. About 27% of the accident victims were children and adolescents. In about one-half of the examined persons, subdural or epidural haemorrhages were found, whereas in about 20% of the cases, contusions, partly with mild haemorrhages, were seen. In about 10% of the cases a more or less severe oedema was seen. About 20% of the patients yielded no abnormal finding by CT in accordance with the age of the patient.

  20. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy

    DTIC Science & Technology

    2016-04-01

    6 1. INTRODUCTION Lung cancer is the leading cause of cancer related death accounting for more deaths than breast , prostate and colon...the cancer has spread, at which time patients have little chance of cure. Macroscopic imaging modalities including CT and bronchoscopy have made...Electromagnetic Navigation , Biopsy Guidance, Optical Microscopy, Optical Coherence Tomography, Lung Cancer , Optical needle. 3. OVERALL PROJECT SUMMARY

  1. LUNGx Challenge for computerized lung nodule classification

    DOE PAGES

    Armato, Samuel G.; Drukker, Karen; Li, Feng; ...

    2016-12-19

    The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less

  2. LUNGx Challenge for computerized lung nodule classification

    PubMed Central

    Armato, Samuel G.; Drukker, Karen; Li, Feng; Hadjiiski, Lubomir; Tourassi, Georgia D.; Engelmann, Roger M.; Giger, Maryellen L.; Redmond, George; Farahani, Keyvan; Kirby, Justin S.; Clarke, Laurence P.

    2016-01-01

    Abstract. The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. Ten groups applied their own methods to 73 lung nodules (37 benign and 36 malignant) that were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. The continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community. PMID:28018939

  3. LUNGx Challenge for computerized lung nodule classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armato, Samuel G.; Drukker, Karen; Li, Feng

    The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less

  4. Massively parallel diffuse optical tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandusky, John V.; Pitts, Todd A.

    Diffuse optical tomography systems and methods are described herein. In a general embodiment, the diffuse optical tomography system comprises a plurality of sensor heads, the plurality of sensor heads comprising respective optical emitter systems and respective sensor systems. A sensor head in the plurality of sensors heads is caused to act as an illuminator, such that its optical emitter system transmits a transillumination beam towards a portion of a sample. Other sensor heads in the plurality of sensor heads act as observers, detecting portions of the transillumination beam that radiate from the sample in the fields of view of themore » respective sensory systems of the other sensor heads. Thus, sensor heads in the plurality of sensors heads generate sensor data in parallel.« less

  5. Colovesical fistula causing an uncommon reason for failure of computed tomography colonography: a case report.

    PubMed

    Neroladaki, Angeliki; Breguet, Romain; Botsikas, Diomidis; Terraz, Sylvain; Becker, Christoph D; Montet, Xavier

    2012-07-23

    Computed tomography colonography, or virtual colonoscopy, is a good alternative to optical colonoscopy. However, suboptimal patient preparation or colon distension may reduce the diagnostic accuracy of this imaging technique. We report the case of an 83-year-old Caucasian woman who presented with a five-month history of pneumaturia and fecaluria and an acute episode of macrohematuria, leading to a high clinical suspicion of a colovesical fistula. The fistula was confirmed by standard contrast-enhanced computed tomography. Optical colonoscopy was performed to exclude the presence of an underlying colonic neoplasm. Since optical colonoscopy was incomplete, computed tomography colonography was performed, but also failed due to inadequate colon distension. The insufflated air directly accumulated within the bladder via the large fistula. Clinicians should consider colovesical fistula as a potential reason for computed tomography colonography failure.

  6. Optical coherence tomography findings of bilateral foveal leukemic infiltration.

    PubMed

    Le, John Q; Braich, Puneet S; Brar, Vikram S

    2016-01-01

    We report a case of a 59-year-old man with a history of atypical chronic myelogenous leukemia who presented with a several-week history of decreased vision in both eyes. His clinical examination revealed bilateral foveal infiltration, which was also demonstrated on optical coherence tomography. After a failed induction with imatinib (Gleevec(®)), he was treated with omacetaxine (Synribo(®)) with an appropriate hematologic response. As his leukemia improved with chemotherapy, his retinal lesions regressed as demonstrated by serial optical coherence tomography and fundus photographs, with near complete restoration of foveal architecture.

  7. Mid-Frequency Sonar Interactions with Beaked Whales

    DTIC Science & Technology

    2011-06-30

    Beaked Whale, was not completed. However, several other goals were achieved, including synthesis of a morphometric model of a beaked whale. This and work...induced acoustic fields inside beaked whales and other marine mammals. Another high-level goal was to acquire new high-resolution morphometric and...range 1-10 kHz; collecting high-resolution morphometric data through computerized tomography (CT) scans on marine mammal specimens, and constructing

  8. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.

    PubMed

    Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia

    2013-03-01

    To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  9. Combined spectral-domain optical coherence tomography and hyperspectral imaging applied for tissue analysis: Preliminary results

    NASA Astrophysics Data System (ADS)

    Dontu, S.; Miclos, S.; Savastru, D.; Tautan, M.

    2017-09-01

    In recent years many optoelectronic techniques have been developed for improvement and the development of devices for tissue analysis. Spectral-Domain Optical Coherence Tomography (SD-OCT) is a new medical interferometric imaging modality that provides depth resolved tissue structure information with resolution in the μm range. However, SD-OCT has its own limitations and cannot offer the biochemical information of the tissue. These data can be obtained with hyperspectral imaging, a non-invasive, sensitive and real time technique. In the present study we have combined Spectral-Domain Optical Coherence Tomography (SD-OCT) with Hyperspectral imaging (HSI) for tissue analysis. The Spectral-Domain Optical Coherence Tomography (SD-OCT) and Hyperspectral imaging (HSI) are two methods that have demonstrated significant potential in this context. Preliminary results using different tissue have highlighted the capabilities of this technique of combinations.

  10. Wavelength-encoded tomography based on optical temporal Fourier transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chi; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150 -μm (ideally 36 μm) resolution is achieved based on a 7.5-nm bandwidth swept-pump,more » using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.« less

  11. An algorithm for localization of optical disturbances in turbid media using time-resolved diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    Optical structure disturbances localization algorithm for time-resolved diffuse optical tomography of biological objects is described. The key features of the presented algorithm are: the initial approximation for the spatial distribution of the optical characteristics based on the Homogeneity Index and the assumption that all the absorbing and scattering inhomogeneities in an investigated object are spherical and have the same absorption and scattering coefficients. The described algorithm can be used in the brain structures diagnosis, in traumatology and optical mammography.

  12. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  13. Fiber-optic-bundle-based optical coherence tomography.

    PubMed

    Xie, Tuqiang; Mukai, David; Guo, Shuguang; Brenner, Matthew; Chen, Zhongping

    2005-07-15

    A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.

  14. The Development, Commercialization, and Impact of Optical Coherence Tomography

    PubMed Central

    Fujimoto, James; Swanson, Eric

    2016-01-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function – diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an “ecosystem” consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact – all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459

  15. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Attenburrow, Don P.; Winlove, C. Peter; Matcher, Stephen J.

    2005-08-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. × 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  16. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts

    NASA Astrophysics Data System (ADS)

    Yang, Victor X. D.; Gordon, Maggie L.; Tang, Shou-Jiang; Marcon, Norman E.; Gardiner, Geoffrey; Qi, Bing; Bisland, Stuart; Seng-Yue, Emily; Lo, Stewart; Pekar, Julius; Wilson, Brian C.; Vitkin, I. Alex

    2003-09-01

    We previously described a fiber based Doppler optical coherence tomography system [1] capable of imaging embryo cardiac blood flow at 4~16 frames per second with wide velocity dynamic range [2]. Coupling this system to a linear scanning fiber optical catheter design that minimizes friction and vibrations, we report here the initial results of in vivo endoscopic Doppler optical coherence tomography (EDOCT) imaging in normal rat and human esophagus. Microvascular flow in blood vessels less than 100 µm diameter was detected using a combination of color-Doppler and velocity variance imaging modes, during clinical endoscopy using a mobile EDOCT system.

  17. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  18. Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem.

    PubMed

    Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis

    2009-04-01

    Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

  19. Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots.

    PubMed

    Kim, David Y; Hwang, John C; Moore, Anthony T; Bird, Alan C; Tsang, Stephen H

    2010-09-01

    The purpose of this study was to describe the findings of fundus autofluores-cence (FAF) and optical coherence tomography in a series of patients with congenital grouped albinotic spots. Three eyes of three patients with congenital grouped albinotic spots were evaluated with FAF and optical coherence tomography imaging to evaluate the nature of the albinotic spots. In all three eyes with congenital grouped albinotic spots, FAF imaging showed autofluorescent spots corresponding to the albinotic spots seen on stereo biomicroscopy. One eye also had additional spots detected on FAF imaging that were not visible on stereo biomicroscopy or color fundus photographs. Fundus autofluorescence imaging of the spots showed decreased general autofluorescence and decreased peripheral autofluorescence surrounding central areas of retained or increased autofluorescence. Optical coherence tomography showed a disruption in signal from the hyperreflective layer corresponding to the inner and outer segment junction and increased signal backscattering from the choroid in the area of the spots. Fluorescein angiography showed early and stable hyperfluorescence of the spots without leakage. In this case series, FAF showed decreased autofluorescence of the spots consistent with focal retinal pigment epithelium atrophy or abnormal material blocking normal autofluorescence and areas of increased autofluorescence suggesting retinal pigment epithelium dysfunction. The findings of optical coherence tomography and fluorescein angiography suggest photoreceptor and retinal pigment epithelium layer abnormalities. Fundus autofluorescence and optical coherence tomography are useful noninvasive diagnostic adjuncts that can aid in the diagnosis of congenital grouped albinotic spots, help determine extent of disease, and contribute to our understanding of its pathophysiology.

  20. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

    PubMed

    Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G

    2017-01-01

    To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.

  1. CMT for materials science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, J.

    This session is comprised of two articles by John Kinney describing biomedical and other uses for computerized tomography. In the first article, Kinney describes the use of a three-dimensional x-ray tomographic microscope to image the trabecular bone architecture of the proximal tibias of rats in vivo. Research in this field may help to detect the earliest stages of hypoestrogenemic bone loss and may help to more rapidly test the effectiveness of new clinical treatments for this major public health problem. The second article describes recent advances in X-ray tomography using synchrotron radiation to evaluate microstructures in ceramic matrix composites, bonemore » loss in osteoporosis, and the development of carries lesions in teeth.« less

  2. EDITORIAL: Recent developments in biomedical optics

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.; Hebden, Jeremy C.; Tuchin, Valery V.

    2004-04-01

    The rapid growth in laser and photonic technology has resulted in new tools being proposed and developed for use in the medical and biological sciences. Specifically, a discipline known as biomedical optics has emerged which is providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. New laser sources, detectors and measurement techniques are yielding powerful new methods for the study of diseases on all scales, from single molecules, to specific tissues and whole organs. For example, novel laser microscopes permit spectroscopic and force measurements to be performed on single protein molecules; new optical devices provide information on molecular dynamics and structure to perform `optical biopsy' non-invasively and almost instantaneously; and optical coherence tomography and diffuse optical tomography allow visualization of specific tissues and organs. Using genetic promoters to derive luciferase expression, bioluminescence methods can generate molecular light switches, which serve as functional indicator lights reporting cellular conditions and responses in living animals. This technique could allow rapid assessment of and response to the effects of anti-tumour drugs, antibiotics, or antiviral drugs. This issue of Physics in Medicine and Biology highlights recent research in biomedical optics, and is based on invited contributions to the International Conference on Advanced Laser Technology (Focused on Biomedical Optics) held at Cranfield University at Silsoe on 19--23 September 2003. This meeting included sessions devoted to: diffuse optical imaging and spectroscopy; optical coherence tomography and coherent domain techniques; optical sensing and applications in life science; microscopic, spectroscopic and opto-acoustic imaging; therapeutic and diagnostic applications; and laser interaction with organic and inorganic materials. Twenty-one papers are included in this special issue. The first paper gives an overview on the current status of scanning laser ophthalmoscopy and its role in bioscience and medicine, while the second paper describes the current problems in tissue engineering and the potential role for optical coherence tomography. The following seven papers present and discuss latest developments in infrared spectroscopy and diffuse optical tomography for medical diagnostics. Eight further papers report recent advances in optical coherence tomography, covering new and evolving methods and instrumentation, theoretical and numerical modelling, and its clinical applications. The remaining papers cover miscellaneous topics in biomedical optics, including new developments in opto-acoustic imaging techniques, laser speckle imaging of blood flow in microcirculations, and potential of hollow-core photonic-crystal fibres for laser dentistry. We thank all the authors for their valuable contributions and their prompt responses to reviewers' comments. We are also very grateful to the reviewers for their hard work and their considerable efforts to meet tight deadlines.

  3. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  4. LASER BIOLOGY AND MEDICINE: Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes

    NASA Astrophysics Data System (ADS)

    Kuranov, R. V.; Sapozhnikova, V. V.; Shakhova, N. M.; Gelikonov, V. M.; Zagainova, E. V.; Petrova, S. A.

    2002-11-01

    A combined application of optical methods [optical coherent tomography (OCT), cross-polarisation optical coherent tomography, and fluorescence spectroscopy] is proposed for obtaining information on morphological and biochemical changes occurring in tissues in norm and pathology. It is shown that neoplastic and scar changes in esophagus can be distinguished using a combination of polarisation and standard OCT due to the difference between the depolarising properties of the tissues caused by the structural properties of collagenic fibres in stroma. It is shown that OCT combined with fluorescence spectroscopy with the use of 5-aminolevulinic acid is promising for determining the boundaries of carcinoma of the uterine cervix and vulva. It is found that the tumour boundary detected by optical methods coincides with the morphological boundary and extends beyond colposcopically determined boundary by about 2 mm.

  5. Combined application of optical methods to increase the information content of optical coherent tomography in diagnostics of neoplastic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranov, R V; Sapozhnikova, V V; Shakhova, N M

    2002-11-30

    A combined application of optical methods [optical coherent tomography (OCT), cross-polarisation optical coherent tomography, and fluorescence spectroscopy] is proposed for obtaining information on morphological and biochemical changes occurring in tissues in norm and pathology. It is shown that neoplastic and scar changes in esophagus can be distinguished using a combination of polarisation and standard OCT due to the difference between the depolarising properties of the tissues caused by the structural properties of collagenic fibres in stroma. It is shown that OCT combined with fluorescence spectroscopy with the use of 5-aminolevulinic acid is promising for determining the boundaries of carcinoma ofmore » the uterine cervix and vulva. It is found that the tumour boundary detected by optical methods coincides with the morphological boundary and extends beyond colposcopically determined boundary by about 2 mm. (laser biology and medicine)« less

  6. Early prosthetic aortic valve infection identified with the use of positron emission tomography in a patient with lead endocarditis.

    PubMed

    Amraoui, Sana; Tlili, Ghoufrane; Sohal, Manav; Bordenave, Laurence; Bordachar, Pierre

    2016-12-01

    18-Fluorodeoxyglucose positron emission tomography/computerized tomography (FDG PET/CT) scanning has recently been proposed as a diagnostic tool for lead endocarditis (LE). FDG PET/CT might be also useful to localize associated septic emboli in patients with LE. We report an interesting case of a LE patient with a prosthetic aortic valve in whom a trans-esophageal echocardiogram did not show associated aortic endocarditis. FDG PET/CT revealed prosthetic aortic valve infection. A second TEE performed 2 weeks after identified aortic vegetation. A longer duration of antimicrobial therapy with serial follow-up echocardiography was initiated. There was also increased uptake in the sigmoid colon, corresponding to focal polyps resected during a colonoscopy. FDG PET/CT scanning seems to be highly sensitive for prosthetic aortic valve endocarditis diagnosis. This promising diagnostic tool may be beneficial in LE patients, by identifying septic emboli and potential sites of pathogen entry.

  7. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  8. Electro-optical hybrid slip ring

    NASA Astrophysics Data System (ADS)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility. A laboratory scale non-contact Electro-Optical Hybrid Slip Ring system was successfully constructed, and its performance was determined. Experimental results affirmed the advantages of this new technology over current slip ring design.

  9. Dosimetry control and monitoring of selective retina therapy using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kaufmann, Daniel; Burri, Christian; Arnold, Patrik; Koch, Volker M.; Meier, Christoph; Považay, Boris; Justiz, Joern

    2017-07-01

    Selective retina therapy and optical coherence tomography have been combined to monitor laser-tissue interaction in real-time. An ex-vivo study of porcine eyes unveils mechanisms that enable automated and accurate dose-control during laser-therapy.

  10. Optical coherence tomography findings of bilateral foveal leukemic infiltration

    PubMed Central

    Le, John Q; Braich, Puneet S; Brar, Vikram S

    2016-01-01

    We report a case of a 59-year-old man with a history of atypical chronic myelogenous leukemia who presented with a several-week history of decreased vision in both eyes. His clinical examination revealed bilateral foveal infiltration, which was also demonstrated on optical coherence tomography. After a failed induction with imatinib (Gleevec®), he was treated with omacetaxine (Synribo®) with an appropriate hematologic response. As his leukemia improved with chemotherapy, his retinal lesions regressed as demonstrated by serial optical coherence tomography and fundus photographs, with near complete restoration of foveal architecture. PMID:27540313

  11. IN VIVO CHARACTERIZATION OF ORAL PEMPHIGUS VULGARIS BY OPTICAL COHERENCE TOMOGRAPHY.

    PubMed

    Di Stasio, D; Lauritano, D; Romano, A; Salerno, C; Minervini, G; Minervini, G; Gentile, E; Serpico, R; Lucchese, A

    2015-01-01

    Pemphigus vulgaris (PV) is an autoimmune disease that manifests as intraepithelial blisters in skin and mucous membranes. We report the case of a 62-year-old female patient with clinical picture of desquamative gingivitis and a histological and serological diagnosis of pemphigus vulgaris. The aim of this study is to analyse bollous oral diseases in order to evaluate the feasibility to image epithelial architecture of oral mucosae using in vivo optical coherence tomography. Optical coherence tomography seems to be a valid non-invasive auxiliary diagnostic device able to show in vivo the epithelial layers and basal membrane.

  12. Towards non-invasive in vivo measurements of nanoparticle concentrations using 3D optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Tsyboulski, Dmitri; Liopo, Anton; Su, Richard; Ermilov, Sergei; Bachilo, Sergei; Weisman, R. Bruce; Oraevsky, Alexander A.

    2013-03-01

    In this report, we demonstrate the feasibility of using optoacoustic tomography for deducing biodistributions of nanoparticles in animal models. The redistribution of single-walled carbon nanotubes (SWCNTs) was visualized in living mice. Nanoparticle concentrations in harvested organs were measured spectroscopically using the intrinsic optical absorption and fluorescence of SWCNTs. Observed increases in optoacoustic signal brightness in tissues were compared with increases in optical absorptivity coefficients caused by SWCNT accumulation. The methodology presented in this report paves the way for measuring concentrations of optically absorbing agents in small animals using optoacoustic tomography.

  13. Spontaneous closure of macular hole in a patient with x-linked juvenile retinoschisis.

    PubMed

    Gao, Hua; Province, William D; Peracha, Mohammed O

    2010-01-01

    To observe macular hole in a patient with juvenile retinoschisis. A 4-year-old boy with X-linked juvenile retinoschisis was examined and followed-up for 2 years. Optical coherence tomography was used to study his maculae. A full-thickness macular hole was detected by clinical examination and optical coherence tomography. Spontaneous closure of the macular hole was noticed and confirmed by optical coherence tomography 2 years later with visual improvement. Macular hole in patients with juvenile retinoschisis should be observed for at least a short period of time before a surgical repair is considered.

  14. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  15. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu; Wang, Ken Kang-Hsin; Wong, John W.

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is tomore » develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.« less

  16. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    PubMed Central

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.

    2015-01-01

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3.0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems. PMID:25832060

  17. Improving diffuse optical tomography with structural a priori from fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan

    2012-03-01

    We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.

  18. Fréchet derivative with respect to the shape of a strongly convex nonscattering region in optical tomography

    NASA Astrophysics Data System (ADS)

    Hyvönen, Nuutti

    2007-10-01

    The aim of optical tomography is to reconstruct the optical properties inside a physical body, e.g. a neonatal head, by illuminating it with near-infrared light and measuring the outward flux of photons on the object boundary. Because a brain consists of strongly scattering tissue with imbedded cavities filled by weakly scattering cerebrospinal fluid, propagation of near-infrared photons in the human head can be treated by combining the diffusion approximation of the radiative transfer equation with geometrical optics to obtain the radiosity-diffusion forward model of optical tomography. At the moment, a disadvantage with the radiosity-diffusion model is that the locations of the transparent cavities must be known in advance in order to be able to reconstruct the physiologically interesting quantities, i.e., the absorption and the scatter in the strongly scattering brain tissue. In this work we show that the boundary measurement map of optical tomography is Fréchet differentiable with respect to the shape of a strongly convex nonscattering region. Using this result, we introduce a numerical algorithm for approximating an unknown nonscattering cavity by a ball if the background diffuse optical properties of the object are known. The functionality of the method is demonstrated through two-dimensional numerical experiments.

  19. Comparison of optical projection tomography and optical coherence tomography for assessment of murine embryonic development

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Vadakkan, Tegy; Piazza, Victor; Udan, Ryan; Frazier, Michael V.; Janecek, Trevor; Dickinson, Mary E.; Larin, Kirill V.

    2015-03-01

    The murine model is a common model for studying developmental diseases. In this study, we compare the performance of the relatively new method of Optical Projection Tomography (OPT) to the well-established technique of Optical Coherence Tomography (OCT) to assess murine embryonic development at three stages, 9.5, 11.5, and 13.5 days post conception. While both methods can provide spatial resolution at the micrometer scale, OPT can provide superior imaging depth compared to OCT. However, OPT requires samples to be fixed, placed in an immobilization media such as agar, and cleared before imaging. Because OCT does not require fixing, it can be used to image embryos in vivo and in utero. In this study, we compare the efficacy of OPT and OCT for imaging murine embryonic development. The data demonstrate the superior capability of OPT for imaging fine structures with high resolution in optically-cleared embryos while only OCT can provide structural and functional imaging of live embryos ex vivo and in utero with micrometer scale resolution.

  20. How to evaluate and compare maintenance contracts: a checklist.

    PubMed

    Gustine, S M; Young, P

    1986-07-01

    Several factors need to be considered when comparing computerized tomography (CT) maintenance contracts. Five areas in particular require careful review to ensure that an institution is getting maximum value for its contract dollars: the credibility of the servicing company; the servicing engineer's qualifications and commitments; a thorough understanding of contract terminology; accurate analysis standards; and professionalism. The following article examines each of these areas in closer detail.

  1. Ruptured intracranial dermoid: an unusual cause of headache in an older patient.

    PubMed

    Rajapakse, Anoja; Diack, Alison

    2008-02-01

    A 76-year-old woman with a history of migraine presented with worsening headache. Computerized tomography brain scan and magnetic resonance imaging brain scan showed the presence of fat globules in the cerebrospinal fluid space. This appearance was suggestive of ruptured intracranial dermoid. She recovered spontaneously. While headache is a known presentation of ruptured intracranial dermoid, the condition is unusual to present in older people.

  2. Phenylpropanolamine and cerebral hemorrhage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, J.R.; LeBlanc, H.J.

    1985-05-01

    Computerized tomography, carotid angiograms, and arteriography were used to diagnose several cases of cerebral hemorrhage following the use of phenylpropanolamine. The angiographic picture in one of the three cases was similar to that previously described in association with amphetamine abuse and pseudoephedrine overdose, both substances being chemically and pharmacologically similar to phenylpropanolamine. The study suggests that the arterial change responsible for symptoms may be due to spasm rather than arteriopathy. 14 references, 5 figures.

  3. Mid-Frequency Sonar Interactions With Beaked Whales

    DTIC Science & Technology

    2009-09-30

    to acquire new high-resolution morphometric and physical-property data on beaked whales for use in the model. It is hoped that the availability of such... morphometric and physical-property data on beaked whales for use in the model. It is hoped that the availability of such a system, together with high-quality... morphometric data through computerized tomography (CT) scans on marine mammal carcasses, and constructing finite-element models of the anatomy

  4. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    DTIC Science & Technology

    2016-12-01

    best uses of the device for naval medicine. 14. SUBJECT TERMS traumatic brain injuries, electroencephalography, EEG, use case study 15. NUMBER OF...Traumatic Brain Injury NCS Non-Convulsive Seizures PD Parkinson’s Disease QEEG Quantitative EEG SPECT Single-Photon Emission Computerized Tomography...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION This study examines the diagnosis of traumatic brain injuries (TBI). Early detection and diagnosis is

  5. Dual scan CT image recovery from truncated projections

    NASA Astrophysics Data System (ADS)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  6. Optical Coherence Tomography Angiography of Retinal Cavernous Hemangioma.

    PubMed

    Pierro, Luisa; Marchese, Alessandro; Gagliardi, Marco; Bandello, Francesco

    2017-08-01

    Retinal cavernous hemangioma is a rare, benign, retinal tumor characterized by angiomatous proliferation of vessels within the inner retina or the optic disc.1 Here we report a case of retinal cavernous hemangioma on the margin of the optic disc in the right eye of a 61-year-old asymptomatic female. The lesion was studied with multimodal imaging which included structural optical coherence tomography, fluorescein angiography, blue fundus auto-fluorescence, optical coherence tomography angiography (OCTA) (DRI OCT Triton; Topcon, Tokyo, Japan) and visual field examination. Blood circulation inside retinal cavernous hemangioma lesion is typically low-stagnant.2 However, OCTA demonstrated blood flow inside the lesion, illustrating its vascular circulation.3 Visual field was within the normal limits, except from a slight enlargement of the blind spot. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:684-685.]. Copyright 2017, SLACK Incorporated.

  7. A modified conjugate gradient method based on the Tikhonov system for computerized tomography (CT).

    PubMed

    Wang, Qi; Wang, Huaxiang

    2011-04-01

    During the past few decades, computerized tomography (CT) was widely used for non-destructive testing (NDT) and non-destructive examination (NDE) in the industrial area because of its characteristics of non-invasiveness and visibility. Recently, CT technology has been applied to multi-phase flow measurement. Using the principle of radiation attenuation measurements along different directions through the investigated object with a special reconstruction algorithm, cross-sectional information of the scanned object can be worked out. It is a typical inverse problem and has always been a challenge for its nonlinearity and ill-conditions. The Tikhonov regulation method is widely used for similar ill-posed problems. However, the conventional Tikhonov method does not provide reconstructions with qualities good enough, the relative errors between the reconstructed images and the real distribution should be further reduced. In this paper, a modified conjugate gradient (CG) method is applied to a Tikhonov system (MCGT method) for reconstructing CT images. The computational load is dominated by the number of independent measurements m, and a preconditioner is imported to lower the condition number of the Tikhonov system. Both simulation and experiment results indicate that the proposed method can reduce the computational time and improve the quality of image reconstruction. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Brachytherapy of prostate cancer after colectomy for colorectal cancer: pilot experience.

    PubMed

    Koutrouvelis, Panos G; Theodorescu, Dan; Katz, Stuart; Lailas, Niko; Hendricks, Fred

    2005-01-01

    We present a method of brachytherapy for prostate cancer using a 3-dimensional stereotactic system and computerized tomography guidance in patients without a rectum due to previous treatment for colorectal cancer. From June 1994 to November 2003 a cohort of 800 patients were treated with brachytherapy for prostate cancer. Four patients had previously been treated for colorectal cancer with 4,500 cGy external beam radiation therapy, abdominoperineal resection and chemotherapy, while 1 underwent abdominoperineal resection alone for ulcerative colitis. Because of previous radiation therapy, these patients were not candidates for salvage external beam radiation therapy or radical prostatectomy and they had no rectum for transrectal ultrasound guided transperineal brachytherapy or cryotherapy. A previously described, 3-dimensional stereotactic system was used for brachytherapy in these patients. The prescribed radiation dose was 120 to 144 Gy with iodine seeds in rapid strand format. Patient followup included clinical examination and serum prostate specific antigen measurement. Average followup was 18.6 months. Four patients had excellent biochemical control, while 1 had biochemical failure. Patients did not experience any gastrointestinal morbidity. One patient had a stricture of the distal ureter, requiring a stent. Three-dimensional computerized tomography guided brachytherapy for prostate cancer in patients with a history of colorectal cancer who have no rectum is a feasible method of treatment.

  9. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon.

    PubMed

    Caillaud, C; Serre-Cousiné, O; Anselme, F; Capdevilla, X; Préfaut, C

    1995-10-01

    We investigated the computerized tomographies (CTs) of the thorax and the pulmonary diffusing capacity for CO (DLCO) in eight male athletes before and after a triathlon. DLCO and alveolar volume (VA) were simultaneously measured during 9 s of breath holding. The transfer coefficient (KCO = DLCO/VA) was then calculated. CT scanning was performed during breath holding with the subjects in the supine position. Scanner analysis was done by 1) counting the linear and polygonal opacities (index of interstitial fluid accumulation) and 2) calculating the physical mean lung density and the mean slice mass. Results showed a significant reduction in DLCO (44.9 +/- 2.3 vs. 42.9 +/- 1.7 ml.min-1.mmHg-1; P < 0.05) and KCO (6.0 +/- 0.3 vs. 5.6 +/- 0.3 ml.min-1.mmHg-1.l of VA-1; P < 0.05) after the triathlon and an increase in mean lung density (0.21 +/- 0.009 vs. 0.25 +/- 0.01 g/cm3; P < 0.0001). The number of polygonal and linear opacities increased after the race (P < 0.001). This study confirmed that DLCO and KCO decrease in elite athletes after a long-distance race and showed a concomitant increase in CT lung density and in the number of opacities.

  10. Experience with single photon emission computerized tomography (SPECT) in follow-up of sternotomy healing.

    PubMed

    Harjula, A; Järvinen, A; Mattila, S; Porkka, L

    1985-01-01

    Single photon emission computerized tomography (SPECT) was performed thrice in ten patients undergoing open-heart surgery--preoperatively and 2 and 12 weeks postoperatively. The operations were done for ischemic heart disease (5), aortic valvular stenosis (2), aortic valvular insufficiency (1), leaking mitral prosthetic valve (1) and combined aortic and mitral valvular stenosis and insufficiency (1). The healing process in the longitudinally divided sternum was evaluated from the SPECT study. Four conventional static images in two dimensions were registered in anteroposterior, posteroanterior and left and right lateral projections. A tomographic study was done. Quantitative analyses were performed. The ratio of the sternal counts to the counts from a thoracic vertebra was calculated for use as a reference. The activity ratios showed a similar pattern in six cases, with initial increases and at 12 weeks slight decrease compared with the preoperative values. In two cases the activity was still increasing after 12 postoperative weeks. One patient, with sternotomy also one year previously, showed only slightly increased activity. The activity at the areas of the sternal wires was increased in six cases. The study thus revealed differing patterns of isotope uptake, although recovery was uneventful in all patients. The differences may reflect the possibility that the operative course and the preoperative clinical status can influence the healing mechanisms.

  11. Parametric electrical impedance tomography for measuring bone mineral density in the pelvis using a computational model.

    PubMed

    Kimel-Naor, Shani; Abboud, Shimon; Arad, Marina

    2016-08-01

    Osteoporosis is defined as bone microstructure deterioration resulting a decrease of bone's strength. Measured bone mineral density (BMD) constitutes the main tool for Osteoporosis diagnosis, management, and defines patient's fracture risk. In the present study, parametric electrical impedance tomography (pEIT) method was examined for monitoring BMD, using a computerized simulation model and preliminary real measurements. A numerical solver was developed to simulate surface potentials measured over a 3D computerized pelvis model. Varying cortical and cancellous BMD were simulated by changing bone conductivity and permittivity. Up to 35% and 16% change was found in the real and imaginary modules of the calculated potential, respectively, while BMD changes from 100% (normal) to 60% (Osteoporosis). Negligible BMD relative error was obtained with SNR>60 [dB]. Position changes errors indicate that for long term monitoring, measurement should be taken at the same geometrical configuration with great accuracy. The numerical simulations were compared to actual measurements that were acquired from a healthy male subject using a five electrodes belt bioimpedance device. The results suggest that pEIT may provide an inexpensive easy to use tool for frequent monitoring BMD in small clinics during pharmacological treatment, as a complementary method to DEXA test. Copyright © 2016. Published by Elsevier Ltd.

  12. The reliability of Cavalier's principle of stereological method in determining volumes of enchondromas using the computerized tomography tools.

    PubMed

    Acar, Nihat; Karakasli, Ahmet; Karaarslan, Ahmet; Mas, Nermin Ng; Hapa, Onur

    2017-01-01

    Volumetric measurements of benign tumors enable surgeons to trace volume changes during follow-up periods. For a volumetric measurement technique to be applicable, it should be easy, rapid, and inexpensive and should carry a high interobserver reliability. We aimed to assess the interobserver reliability of a volumetric measurement technique using the Cavalier's principle of stereological methods. The computerized tomography (CT) of 15 patients with a histopathologically confirmed diagnosis of enchondroma with variant tumor sizes and localizations was retrospectively reviewed for interobserver reliability evaluation of the volumetric stereological measurement with the Cavalier's principle, V = t × [((SU) × d) /SL]2 × Σ P. The volumes of the 15 tumors collected by the observers are demonstrated in Table 1. There was no statistical significance between the first and second observers ( p = 0.000 and intraclass correlation coefficient = 0.970) and between the first and third observers ( p = 0.000 and intraclass correlation coefficient = 0.981). No statistical significance was detected between the second and third observers ( p = 0.000 and intraclass correlation coefficient = 0.976). The Cavalier's principle with the stereological technique using the CT scans is an easy, rapid, and inexpensive technique in volumetric evaluation of enchondromas with a trustable interobserver reliability.

  13. Assessment of radiation exposure in dental cone-beam computerized tomography with the use of metal-oxide semiconductor field-effect transistor (MOSFET) dosimeters and Monte Carlo simulations.

    PubMed

    Koivisto, J; Kiljunen, T; Tapiovaara, M; Wolff, J; Kortesniemi, M

    2012-09-01

    The aims of this study were to assess the organ and effective dose (International Commission on Radiological Protection (ICRP) 103) resulting from dental cone-beam computerized tomography (CBCT) imaging using a novel metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter device, and to assess the reliability of the MOSFET measurements by comparing the results with Monte Carlo PCXMC simulations. Organ dose measurements were performed using 20 MOSFET dosimeters that were embedded in the 8 most radiosensitive organs in the maxillofacial and neck area. The dose-area product (DAP) values attained from CBCT scans were used for PCXMC simulations. The acquired MOSFET doses were then compared with the Monte Carlo simulations. The effective dose measurements using MOSFET dosimeters yielded, using 0.5-cm steps, a value of 153 μSv and the PCXMC simulations resulted in a value of 136 μSv. The MOSFET dosimeters placed in a head phantom gave results similar to Monte Carlo simulations. Minor vertical changes in the positioning of the phantom had a substantial affect on the overall effective dose. Therefore, the MOSFET dosimeters constitute a feasible method for dose assessment of CBCT units in the maxillofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Successful Treatment of Lung Calciphylaxis With Sodium Thiosulfate in a Patient With Sickle Cell Disease

    PubMed Central

    Arrestier, Romain; Dudreuilh, Caroline; Remy, Philippe; Boulahia, Ghada; Bentaarit, Bouteina; Leibler, Claire; Adedjouma, Amir; Kofman, Tomek; Matignon, Marie; Sahali, Dil; Dufresne, Roger; Deux, Jean-Francois; Colin, Charlotte; Grimbert, Philippe; Lang, Philippe; Bartolucci, Pablo; Maitre, Bernard; Tran Van Nhieu, Jeanne; Audard, Vincent

    2016-01-01

    Abstract Calciphylaxis is a small vessel vasculopathy, characterized by medial wall calcification that develops in a few patients with chronic renal failure. The prognosis of skin calciphylaxis has improved considerably since the introduction of sodium thiosulfate (STS), but it remains unclear whether this therapy is effective against organ lesions related to calciphylaxis. Pulmonary calciphylaxis is a usually fatal medical condition that may occur in association with skin involvement in patients with end-stage renal disease. We report here the case of a 49-year-old woman homozygous sickle cell disease patient on chronic hemodialysis with biopsy-proven systemic calciphylaxis involving the lungs and skin. On admission, ulcerative skin lesions on the lower limbs and bilateral pulmonary infiltrates on chest computerized tomography scan were the main clinical and radiological findings. Skin and bronchial biopsies demonstrated calciphylaxis lesions. The intravenous administration of STS in association with cinacalcet for 8 consecutive months led to a clear improvement in skin lesions and thoracic lesions on chest computerized tomography scan. This case suggests for the first time that organ lesions related to calciphylaxis, and particularly lung injury, are potentially reversible. This improvement probably resulted from the combination of 3 interventions (more frequent dialysis, cinacalcet, and STS), rather than the administration of STS alone. PMID:26871829

  15. Comment on "Optical-fiber-based Mueller optical coherence tomography".

    PubMed

    Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2004-12-15

    We comment on the recent Letter by Jiao et al. [Opt. Lett. 28, 1206 (2003)] in which a polarization-sensitive optical coherence tomography system was presented. Interrogating a sample with two orthogonal incident polarization states cannot always recover birefringence correctly. A previously presented fiber-based polarization-sensitive system was inaccurately characterized, and its method of eliminating the polarization distortion caused by single-mode optical fiber was presented earlier by Saxer et al. [Opt. Lett. 25, 1355 (2000)].

  16. Laser interference fringe tomography: a novel 3D imaging technique for pathology

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan

    2011-03-01

    Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.

  17. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging

    NASA Astrophysics Data System (ADS)

    Wen, Xiang; Jacques, Steven L.; Tuchin, Valery V.; Zhu, Dan

    2012-06-01

    The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied together could a 15 min treatment achieve a three fold increase in the OCT reflectance from a 300 μm depth and 31% enhancement in image depth Zthreshold.

  18. Instrumentation in Diffuse Optical Imaging

    PubMed Central

    Zhang, Xiaofeng

    2014-01-01

    Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804

  19. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography.

    PubMed

    Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping

    2004-09-01

    Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.

  20. CAPILLARY NETWORK ANOMALIES IN BRANCH RETINAL VEIN OCCLUSION ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Rispoli, Marco; Savastano, Maria Cristina; Lumbroso, Bruno

    2015-11-01

    To analyze the foveal microvasculature features in eyes with branch retinal vein occlusion (BRVO) using optical coherence tomography angiography based on split spectrum amplitude decorrelation angiography technology. A total of 10 BRVO eyes (mean age 64.2 ± 8.02 range between 52 years and 76 years) were evaluated by optical coherence tomography angiography (XR-Avanti; Optovue). The macular angiography scan protocol covered a 3 mm × 3 mm area. The focus of angiography analysis were two retinal layers: superficial vascular network and deep vascular network. The following vascular morphological congestion parameters were assessed in the vein occlusion area in both the superficial and deep networks: foveal avascular zone enlargement, capillary non-perfusion occurrence, microvascular abnormalities appearance, and vascular congestion signs. Image analyses were performed by 2 masked observers and interobserver agreement of image analyses was 0.90 (κ = 0.225, P < 0.01). In both superficial and deep network of BRVO, a decrease in capillary density with foveal avascular zone enlargement, capillary non-perfusion occurrence, and microvascular abnormalities appearance was observed (P < 0.01). The deep network showed the main vascular congestion at the boundary between healthy and nonperfused retina. Optical coherence tomography angiography in BRVO allows to detect foveal avascular zone enlargement, capillary nonperfusion, microvascular abnormalities, and vascular congestion signs both in the superficial and deep capillary network in all eyes. Optical coherence tomography angiography technology is a potential clinical tool for BRVO diagnosis and follow-up, providing stratigraphic vascular details that have not been previously observed by standard fluorescein angiography. The normal retinal vascular nets and areas of nonperfusion and congestion can be identified at various retinal levels. Optical coherence tomography angiography provides noninvasive images of the retinal capillaries and vascular networks.

  1. A multimodal imaging platform with integrated simultaneous photoacoustic microscopy, optical coherence tomography, optical Doppler tomography and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dadkhah, Arash; Zhou, Jun; Yeasmin, Nusrat; Jiao, Shuliang

    2018-02-01

    Various optical imaging modalities with different optical contrast mechanisms have been developed over the past years. Although most of these imaging techniques are being used in many biomedical applications and researches, integration of these techniques will allow researchers to reach the full potential of these technologies. Nevertheless, combining different imaging techniques is always challenging due to the difference in optical and hardware requirements for different imaging systems. Here, we developed a multimodal optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissue in micrometer scale. This imaging system integrates photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and fluorescence microscopy in one platform. Optical-resolution PAM (OR-PAM) provides absorption-based imaging of biological tissues. Spectral domain OCT is able to provide structural information based on the scattering property of biological sample with no need for exogenous contrast agents. In addition, ODT is a functional extension of OCT with the capability of measurement and visualization of blood flow based on the Doppler effect. Fluorescence microscopy allows to reveal molecular information of biological tissue using autofluoresce or exogenous fluorophores. In-vivo as well as ex-vivo imaging studies demonstrated the capability of our multimodal imaging system to provide comprehensive microscopic information on biological tissues. Integrating all the aforementioned imaging modalities for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the near future.

  2. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.

    PubMed

    Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja

    2016-11-01

    Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.

  3. Marginal adaptation of ceramic veneers investigated with en face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negruţiu, Meda-Lavinia; Petrescu, Emanuela; Rominu, Mihai; Marcauteanu, Corina; Rominu, Roxana; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-07-01

    The aim of this study was to analyze the quality of marginal adaptation and gap width of Empress veneers using en-face optical coherence tomography. The results prove the necessity of investigating the marginal adaptation after each veneer bonding process.

  4. Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography.

    PubMed

    Garcia, Jose Mauricio Botto de Barros; Isaac, David Leonardo Cruvinel; Sardeiro, Tainara; Aquino, Érika; Avila, Marcos

    2017-01-01

    This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980), an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.

  5. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2010-01-01

    Reconstruction algorithms are presented for a two-step solution of the bioluminescence tomography (BLT) problem. In the first step, a priori anatomical information provided by x-ray computed tomography or by other methods is used to solve the continuous wave (cw) diffuse optical tomography (DOT) problem. A Taylor series expansion approximates the light fluence rate dependence on the optical properties of each region where first and second order direct derivatives of the light fluence rate with respect to scattering and absorption coefficients are obtained and used for the reconstruction. In the second step, the reconstructed optical properties at different wavelengths are used to calculate the Green’s function of the system. Then an iterative minimization solution based on the L1 norm shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. This provides an efficient BLT reconstruction algorithm with the ability to determine relative source magnitudes and positions in the presence of noise. PMID:21258486

  6. Ceramic and polymeric dental onlays evaluated by photo-elasticity, optical coherence tomography, and micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Negrutiu, Meda; Topala, Florin; Ionita, Ciprian; Negru, Radu; Fabriky, Mihai; Marcauteanu, Corina; Bradu, Adrian; Dobre, George; Marsavina, Liviu; Rominu, Mihai; Podoleanu, Adrian

    2011-10-01

    Dental onlays are restorations used to repair rear teeth that have a mild to moderate amount of decay. They can also be used to restore teeth that are cracked or fractured if the damage is not severe enough to require a dental crown. The use of onlays requires less tooth reduction than does the use of metal fillings. This allows dentists to conserve more of a patient's natural tooth structure in the treatment process. The aims of this study are to evaluate the biomechanical comportment of the dental onlays, by using the 3D photo elasticity method and to investigate the integrity of the structures and their fitting to the dental support. For this optical coherence tomography and micro-computed tomography were employed. Both methods were used to investigate 37 dental onlays, 17 integral polymeric and 20 integral ceramic. The results permit to observe materials defects inside the ceramic or polymeric onlays situate in the biomechanically tensioned areas that could lead to fracture of the prosthetic structure. Marginal fitting problems of the onlays related to the teeth preparations were presented in order to observe the possibility of secondary cavities. The resulted images from the optical coherence tomography were verified by the micro-computed tomography. In conclusion, the optical coherence tomography can be used as a clinical method in order to evaluate the integrity of the dental ceramic and polymeric onlays and to investigate the quality of the marginal fitting to the teeth preparations.

  7. [Application of spectral optical coherent tomography (SOCT) in ophthalmology].

    PubMed

    Bieganowski, Lech; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kałuzny, Jakub J

    2004-01-01

    The article describes spectral optical coherent tomography (SOCT) constructed by Medical Physics Group, Faculty of Physics, Astronomy and Informatics at Nicholas Copernicus University in Toruń (Poland). It presents the physical bases for the functioning of the constructed device and includes pictures of optical sections of various elements of the eyeball: an optic disc and the region of central fovea, a cornea and angle structures (trabecular meshwork). The article also discusses potential application of SOCT in ophthalmic diagnosis of anterior and posterior segments of the eye.

  8. Computerized Doppler Tomography and Spectrum Analysis of Carotid Artery Flow

    PubMed Central

    Morton, Paul; Goldman, Dave; Nichols, W. Kirt

    1981-01-01

    Contrast angiography remains the definitive study in the evaluation of atherosclerotic occlusive vascular disease. However, a safer technique for serial screening of symptomatic patients and for routine follow up is necessary. Computerized pulsed Doppler ultrasonic arteriography is a noninvasive technique developed by Miles6 for imaging lateral, antero-posterior and transverse sections of the carotid artery. We [ill] this system with new software and hardware to analyze the three-dimensional blood flow data. The system now provides information about the location of the occlusive process in the artery and a semi-quantitative evaluation of the degree of obstruction. In addition, we interfaced a digital signal analyzer to the system which permits spectrum analysis of the pulsed Doppler signal. This addition has allowed us to identify lesions which are not yet hemodynamically significant. ImagesFig. 2bFig. 2c

  9. Optical coherence tomography of the preterm eye: from retinopathy of prematurity to brain development

    PubMed Central

    Rothman, Adam L; Mangalesh, Shwetha; Chen, Xi; Toth, Cynthia A

    2016-01-01

    Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment. PMID:28539807

  10. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography

    PubMed Central

    Jia, Yali; Liu, Gangjun; Gordon, Andrew Y.; Gao, Simon S.; Pechauer, Alex D.; Stoddard, Jonathan; McGill, Trevor J.; Jayagopal, Ashwath; Huang, David

    2015-01-01

    We demonstrate the proof of concept of a novel Fourier-domain optical coherence tomography contrast mechanism using gold nanorod contrast agents and a spectral fractionation processing technique. The methodology detects the spectral shift of the backscattered light from the nanorods by comparing the ratio between the short and long wavelength halves of the optical coherence tomography signal intensity. Spectral fractionation further divides the halves into sub-bands to improve spectral contrast and suppress speckle noise. Herein, we show that this technique can detect gold nanorods in intralipid tissue phantoms. Furthermore, cellular labeling by gold nanorods was demonstrated using retinal pigment epithelial cells in vitro. PMID:25836459

  11. High-speed optical coherence tomography by circular interferometric ranging

    NASA Astrophysics Data System (ADS)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  12. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  13. Studies of dynamic processes in biomedicine by high-speed spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wojtkowski, M.; Kowalczyk, A.

    2007-02-01

    This contribution demonstrates potential of Spectral Optical Coherence Tomography (SOCT) for studies of dynamic processes in biomedicine occurring at various time scales. Several examples from ophthalmology, optometry, surgery, neurology are given to illustrate the extension of SOCT beyond pure morphological investigations.

  14. The influence of glass fibers on elongational viscosity studied by means of optical coherence tomography and X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aigner, M., E-mail: michael.aigner@jku.at; Köpplmayr, T., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at; Lang, C., E-mail: thomas.koepplmayr@jku.at, E-mail: Christian.lang@jku.at

    2014-05-15

    We report on the flow characteristics of glass-fiber-reinforced polymers in elongational rheometry. Unlike polymers with geometrically isotropic fillers, glass-fiber-reinforced polymers exhibit flow behavior and rheology that depend heavily on the orientation, the length distribution and the content of the fibers. One of the primary objectives of this study was to determine the effect of fiber orientation, concentration and distribution on the entrance pressure drop by means of optical coherence tomography (OCT), full-field optical coherence microscopy (FF-OCM), and X-ray computed tomography (X-CT). Both pressure drop and melt flow were analyzed using a special elongation die (Thermo Scientific X-Die [3]) for inlinemore » measurements. Samples with a variety of fiber volume fractions, fiber lengths and processing temperatures were measured.« less

  15. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie

    2015-08-01

    Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.

  16. Chirp optical coherence tomography of layered scattering media.

    PubMed

    Haberland, U H; Blazek, V; Schmitt, H J

    1998-07-01

    A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.

  17. In vivo size and shape measurement of the human upper airway using endoscopic longrange optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Armstrong, Julian J.; Leigh, Matthew S.; Walton, Ian D.; Zvyagin, Andrei V.; Alexandrov, Sergey A.; Schwer, Stefan; Sampson, David D.; Hillman, David R.; Eastwood, Peter R.

    2003-07-01

    We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range. We demonstrate the use of one such long-range delay line in a catheter-based optical coherence tomography system and present profiles of the human upper airway and esophagus in vivo with a radial scan range of 26 millimeters. Such quantitative upper airway profiling should prove valuable in investigating the pathophysiology of airway collapse during sleep (obstructive sleep apnea).

  18. Optical coherence tomography measurement of the retinal nerve fiber layer in normal and juvenile glaucomatous eyes.

    PubMed

    Mrugacz, Malgorzata; Bakunowicz-Lazarczyk, Alina

    2005-01-01

    The aim of this study was to quantitatively assess and compare the thickness of the retinal nerve fiber layer (RNFL) in normal and glaucomatous eyes of children using the optical coherence tomograph. The mean RNFL thickness of normal eyes (n=26) was compared with that of glaucomatous eyes (n=26). The eyes were classified into diagnostic groups based on conventional ophthalmological physical examination, Humphrey 30-2 visual fields, stereoscopic optic nerve head photography, and optical coherence tomography. The mean RNFL was significantly thinner in glaucomatous eyes than in normal eyes: 95+/-26.3 and 132+/-24.5 microm, respectively. More specifically, the RNFL was significantly thinner in glaucomatous eyes than in normal eyes in the inferior quadrant: 87+/-23.5 and 122+/-24.2 microm, respectively. The mean and inferior quadrant RFNL thicknesses as measured by the optical coherence tomograph showed a statistically significant correlation with glaucoma. Optical coherence tomography may contribute to tracking of juvenile glaucoma progression. Copyright (c) 2005 S. Karger AG, Basel.

  19. Frequency multiplexed long range swept source optical coherence tomography

    PubMed Central

    Zurauskas, Mantas; Bradu, Adrian; Podoleanu, Adrian Gh.

    2013-01-01

    We present a novel swept source optical coherence tomography configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire multiple B-scans originating from different depths. The sensitivity range of the configuration is evaluated while acquiring five simultaneous B-scans. Then the configuration is employed to demonstrate long range B-scan imaging by combining two simultaneous B-scans from a mouse head sample. PMID:23760762

  20. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy

    DTIC Science & Technology

    2017-12-01

    AD_________________ (Leave blank) Award Number: W81XWH-13-1-0155 TITLE: Electromagnetic -Optical Coherence Tomography Guidance of Transbronchial...2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 July 2013 - 30 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Electromagnetic -Optical...SUPPLEMENTARY NOTES 14. ABSTRACT We present a novel high-resolution multimodality imaging platform utilizing CT and electromagnetic (EM) navigation for spatial

  1. Tutorial on photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Yao, Junjie; Wang, Lihong V.

    2016-06-01

    Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT's basic principles, major implementations, imaging contrasts, and recent applications.

  2. Spectral domain optical coherence tomography imaging in optic disk pit associated with outer retinal dehiscence

    PubMed Central

    Wong, Chee Wai; Wong, Doric; Mathur, Ranjana

    2014-01-01

    A 37-year-old Bangladeshi male presented with an inferotemporal optic disk pit and serous macular detachment in the left eye. Imaging with spectral domain optical coherence tomography (OCT) revealed a multilayer macular schisis pattern with a small subfoveal outer retinal dehiscence. This case illustrates a rare phenotype of optic disk maculopathy with macular schisis and a small outer retinal layer dehiscence. Spectral domain OCT was a useful adjunct in delineating the retinal layers in optic disk pit maculopathy, and revealed a small area of outer retinal layer dehiscence that could only have been detected on high-resolution OCT. PMID:25349471

  3. Can PET-CT imaging and radiokinetic analyses provide useful clinical information on atypical femoral shaft fracture in osteoporotic patients?

    PubMed

    Chesnut, C Haile; Chesnut, Charles H

    2012-03-01

    Atypical femoral shaft fractures are associated with the extended usage of nitrogen-containing bisphosphonates as therapy for osteoporosis. For such fractures, the positron emission tomography (PET) procedure, coupled with computerized tomography (CT), provides a potential imaging modality for defining aspects of the pathogenesis, site specificity, and possible prodromal abnormalities prior to fracture. PET-CT may assess the radiokinetic variables K1 (a putative marker for skeletal blood flow) and Ki (a putative marker for skeletal bone formation), and when combined with PET imaging modalities and CT skeletal site localization, may define the site of such radiokinetic findings. Further studies into the clinical usage of PET-CT in patients with atypical femoral shaft fractures are warranted.

  4. [Mobile CT at neurointensive sections--it is possible].

    PubMed

    Frost, Majbritt; Stenkær, Susanne; Kellenberger, Simone; Ehlers, Lars

    2011-01-24

    Intrahospital transportation can be complicated and hazardous. Mobile computerized tomography (CT) of the head performed at the neurointensive care unit is a new technique that minimizes the need for transportation of unstable patients. Even small changes in physiological parameters can be detrimental for these patients and cause secondary injury and thus affect their prognoses. The portable CT scanner in the neurointensive care unit holds great potential, but the high price level may limit its use.

  5. Hypomelanosis of Ito. Case report with involvement of the central nervous system and review of the literature.

    PubMed

    Rosemberg, S; Arita, F N; Campos, C; Alonso, F

    1984-02-01

    A case of hypomelanosis of Ito in a ten-year-old black boy with mental retardation, epilepsy and abnormalities of the white matter of the cerebral hemispheres revealed by a computerized tomography is presented. This is the 41st reported case on this disease, a number of which have shown neurological signs. A review of the literature with emphasis on the neurological manifestations is performed.

  6. Ultrahigh-speed ultrahigh-resolution adaptive optics: optical coherence tomography system for in-vivo small animal retinal imaging

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Xu, Jing; Zawadzki, Robert J.; Sarunic, Marinko V.

    2013-03-01

    Small animal models of human retinal diseases are a critical component of vision research. In this report, we present an ultrahigh-resolution ultrahigh-speed adaptive optics optical coherence tomography (AO-OCT) system for small animal retinal imaging (mouse, fish, etc.). We adapted our imaging system to different types of small animals in accordance with the optical properties of their eyes. Results of AO-OCT images of small animal retinas acquired with AO correction are presented. Cellular structures including nerve fiber bundles, capillary networks and detailed double-cone photoreceptors are visualized.

  7. Dental Optical Coherence Tomography

    PubMed Central

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Tsai, Jui-che; Lin, Kun-Feng; Sun, Chia-Wei

    2013-01-01

    This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed. PMID:23857261

  8. SIMULATION STUDY FOR GASEOUS FLUXES FROM AN AREA SOURCE USING COMPUTED TOMOGRAPHY AND OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...

  9. Orbital dermoid and epidermoid cysts: case study.

    PubMed

    Veselinović, Dragan; Krasić, Dragan; Stefanović, Ivan; Veselinović, Aleksandar; Radovanović, Zoran; Kostić, Aleksandar; Cvetanović, Marija

    2010-01-01

    Dermoid and epidermoid cysts of the orbit belong to choristomas, tumours that originate from the aberrant primordial tissue. Clinically, they manifest as cystic movable formations mostly localized in the upper temporal quadrant of the orbit. They are described as both superficial and deep formations with most frequently slow intermittent growth. Apart from aesthetic effects, during their growth, dermoid and epidermoid cysts can cause disturbances in the eye motility, and in rare cases, also an optical nerve compression syndrome. In this paper, we described a child with a congenital orbital dermoid cyst localized in the upper-nasal quadrant that was showing signs of a gradual enlargement and progression. The computerized tomography revealed a cyst of 1.5-2.0 cm in size. At the Maxillofacial Surgery Hospital in Nis, the dermoid cyst was extirpated in toto after orbitotomy performed by superciliary approach. Postoperative course was uneventful, without inflammation signs, and after two weeks excellent functional and aesthetic effects were achieved. Before the decision to treat the dermoid and epidermoid cysts operatively, a detailed diagnostic procedure was necessary to be done in order to locate the cyst precisely and determine its size and possible propagation into the surrounding periorbital structures. Apart from cosmetic indications, operative procedures are recommended in the case of cysts with constant progressions, which cause the pressure to the eye lobe, lead to motility disturbances and indirectly compress the optical nerve and branches of the cranial nerves III, IV and VI.

  10. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    PubMed Central

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  11. Spectral-domain optical coherence tomography for endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Li, Qiao; Li, Wanhui; Wang, Yi; Yu, Daoyin

    2007-02-01

    Optical coherence tomography (OCT) is an emerging cross-sectional imaging technology. It uses broadband light sources to achieve axial image resolutions on the few micron scale. OCT is widely applied to medical imaging, it can get cross-sectional image of bio-tissue (transparent and turbid) with non-invasion and non-touch. In this paper, the principle of OCT is presented and the crucial parameters of the system are discussed in theory. With analysis of different methods and medical endoscopic system's feature, a design which combines the spectral domain OCT (SDOCT) technique and endoscopy is put forward. SDOCT provides direct access to the spectrum of the optical signal. It is shown to provide higher imaging speed when compared to time domain OCT. At the meantime, a novel OCT probe which uses advanced micromotor to drive reflecting prism is designed according to alimentary tract endoscopic feature. A simple optical coherence tomography system has been developed based on a fiber-based Michelson interferometer and spectrometer. An experiment which uses motor to drive prism to realize rotating imaging is done. Images obtained with this spectral interferometer are presented. The results verify the feasibility of endoscopic optical coherence tomography system with rotating scan.

  12. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    PubMed

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  13. Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut

    2006-02-01

    Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.

  14. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales

    DOE PAGES

    Chon, Michael J.; Daly, Matthew; Wang, Bin; ...

    2017-06-10

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less

  15. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales.

    PubMed

    Chon, Michael J; Daly, Matthew; Wang, Bin; Xiao, Xianghui; Zaheri, Alireza; Meyers, Marc A; Espinosa, Horacio D

    2017-12-01

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this study, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration, reaching up to ~ 25kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. The results of this study are expected to be useful as design principles for high performance biomimetic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Lamellae spatial distribution modulates fracture behavior and toughness of african pangolin scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chon, Michael J.; Daly, Matthew; Wang, Bin

    Pangolin scales form a durable armor whose hierarchical structure offers an avenue towards high performance bio-inspired materials design. In this paper, the fracture resistance of African pangolin scales is examined using single edge crack three-point bend fracture testing in order to understand toughening mechanisms arising from the structures of natural mammalian armors. In these mechanical tests, the influence of material orientation and hydration level are examined. The fracture experiments reveal an exceptional fracture resistance due to crack deflection induced by the internal spatial orientation of lamellae. An order of magnitude increase in the measured fracture resistance due to scale hydration,more » reaching up to ~ 25 kJ/m 2 was measured. Post-mortem analysis of the fracture samples was performed using a combination of optical and electron microscopy, and X-ray computerized tomography. Interestingly, the crack profile morphologies are observed to follow paths outlined by the keratinous lamellae structure of the pangolin scale. Most notably, the inherent structure of pangolin scales offers a pathway for crack deflection and fracture toughening. Finally, the results of this study are expected to be useful as design principles for high performance biomimetic applications.« less

  17. Toward identifying specification requirements for digital bone-anchored prosthesis design incorporating substructure fabrication: a pilot study.

    PubMed

    Eggbeer, Dominic; Bibb, Richard; Evans, Peter

    2006-01-01

    This paper is the first in a series that aims to identify the specification requirements for advanced digital technologies that may be used to design and fabricate complex, soft tissue facial prostheses. Following a review of previously reported techniques, appropriate and currently available technologies were selected and applied in a pilot study. This study uses a range of optical surface scanning, computerized tomography, computer-aided design, and rapid prototyping technologies to capture, design, and fabricate a bone-anchored auricular prosthesis, including the retentive components. The techniques are assessed in terms of their effectiveness, and the results are used to identify future research and specification requirements to direct developments. The case study identifies that while digital technologies may be used to design implant-retained facial prostheses, many limitations need to be addressed to make the techniques clinically viable. It also identifies the need to develop a more robust specification that covers areas such as resolution, accuracy, materials, and design, against which potential technologies may be assessed. There is a need to develop a specification against which potential technologies may be assessed for their suitability in soft tissue facial prosthetics. The specification will be developed using further experimental research studies.

  18. Tutorial on photoacoustic tomography

    PubMed Central

    Zhou, Yong; Yao, Junjie; Wang, Lihong V.

    2016-01-01

    Abstract. Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications. PMID:27086868

  19. Optical coherence tomography in gastroenterology: a review and future outlook

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Leggett, Cadman L.; Trindade, Arvind J.; Sethi, Amrita; Swager, Anne-Fré; Joshi, Virendra; Bergman, Jacques J.; Mashimo, Hiroshi; Nishioka, Norman S.; Namati, Eman

    2017-12-01

    Optical coherence tomography (OCT) is an imaging technique optically analogous to ultrasound that can generate depth-resolved images with micrometer-scale resolution. Advances in fiber optics and miniaturized actuation technologies allow OCT imaging of the human body and further expand OCT utilization in applications including but not limited to cardiology and gastroenterology. This review article provides an overview of current OCT development and its clinical utility in the gastrointestinal tract, including disease detection/differentiation and endoscopic therapy guidance, as well as a discussion of its future applications.

  20. Use of optical coherence topography for objective assessment of fundus torsion.

    PubMed

    Sophocleous, Sophocles

    2017-02-23

    Objective assessment of fundus torsion is currently performed with indirect ophthalmoscopy or fundus photography. Using the infrared image of the macular scan of the optical coherence tomography one can assess the presence and amount of fundus torsion. In addition, the line scan through the fovea can be used as a reference to confirm the position of the foveal pit in relation to the optic nerve head. Two cases are used to demonstrate how to assess fundus torsion with the use of the optical coherence tomography. 2017 BMJ Publishing Group Ltd.

  1. Optical Coherence Tomography Angiography and Ultra-Widefield Optical Coherence Tomography in a Child With Incontinentia Pigmenti.

    PubMed

    Kim, Sang Jin; Yang, Jianlong; Liu, Gangjun; Huang, David; Campbell, J Peter

    2018-04-01

    Incontinentia pigmenti (IP) is a rare X-linked dominant disorder that can cause retinal nonperfusion, neovascularization, and retinal detachment. Evaluation of the peripheral retinal vasculature and appropriate treatment can reduce the risk of blindness. The authors report the use of a handheld prototype optical coherence tomography angiography (OCTA) and ultra-widefield OCT (UWF-OCT) during exam under anesthesia of a 2-year-old with a history of severe early onset IP. UWF-OCT and OCTA may be used as noninvasive imaging modalities for IP and similar retinal vascular disorders in supine young children. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:273-275.]. Copyright 2018, SLACK Incorporated.

  2. Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography

    PubMed Central

    Birk, Udo Jochen; Rieckher, Matthias; Konstantinides, Nikos; Darrell, Alex; Sarasa-Renedo, Ana; Meyer, Heiko; Tavernarakis, Nektarios; Ripoll, Jorge

    2010-01-01

    The application of optical projection tomography to in-vivo experiments is limited by specimen movement during the acquisition. We present a set of mathematical correction methods applied to the acquired data stacks to correct for movement in both directions of the image plane. These methods have been applied to correct experimental data taken from in-vivo optical projection tomography experiments in Caenorhabditis elegans. Successful reconstructions for both fluorescence and white light (absorption) measurements are shown. Since no difference between movement of the animal and movement of the rotation axis is made, this approach at the same time removes artifacts due to mechanical drifts and errors in the assumed center of rotation. PMID:21258448

  3. Fingerprint imaging from the inside of a finger with full-field optical coherence tomography

    PubMed Central

    Auksorius, Egidijus; Boccara, A. Claude

    2015-01-01

    Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes. PMID:26601009

  4. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Klyen, Blake R.; Shavlakadze, Thea; Radley-Crabb, Hannah G.; Grounds, Miranda D.; Sampson, David D.

    2011-07-01

    Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

  5. Molecular Optical Simulation Environment (MOSE): A Platform for the Simulation of Light Propagation in Turbid Media

    PubMed Central

    Ren, Shenghan; Chen, Xueli; Wang, Hailong; Qu, Xiaochao; Wang, Ge; Liang, Jimin; Tian, Jie

    2013-01-01

    The study of light propagation in turbid media has attracted extensive attention in the field of biomedical optical molecular imaging. In this paper, we present a software platform for the simulation of light propagation in turbid media named the “Molecular Optical Simulation Environment (MOSE)”. Based on the gold standard of the Monte Carlo method, MOSE simulates light propagation both in tissues with complicated structures and through free-space. In particular, MOSE synthesizes realistic data for bioluminescence tomography (BLT), fluorescence molecular tomography (FMT), and diffuse optical tomography (DOT). The user-friendly interface and powerful visualization tools facilitate data analysis and system evaluation. As a major measure for resource sharing and reproducible research, MOSE aims to provide freeware for research and educational institutions, which can be downloaded at http://www.mosetm.net. PMID:23577215

  6. Characterization of the dental pulp using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kauffman, C. M. F.; Carvalho, M. T.; Araujo, R. E.; Freitas, A. Z.; Zezell, D. M.; Gomes, A. S. L.

    2006-02-01

    The inner structure of teeth, i.e. the root canal anatomy, is very complex. However a good knowledge of endodontic architecture is the first step towards successful endodontic treatment. Optical coherence tomography (OCT) is a powerful technique to generate images of hard and soft tissue. Its images show dependency on the optical properties of the tissue under analysis. Changes in the scattering and absorption of tissues can be observed through the OCT images. In this work, we used optical coherence tomography to perform in vitro studies of the inner structure of the first molar of albino rats (Rattus norvegicus). Focusing on the pulp chamber and in the root canal, we compare the images generated with the OCT technique to the histology. We are analyzing the feasibility of OCT to help on the diagnostic of endodontic diseases.

  7. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis.

    PubMed

    O'Neill, Marisol; Huang, Gene O; Lamb, Dolores J

    2017-12-01

    The murine penis model has enriched our understanding of anomalous penile development. The morphologic characterization of the murine penis using conventional serial sectioning methods is labor intensive and prone to errors. To develop a novel application of micro-computerized tomography (micro-CT) with iodine staining for rapid, non-destructive morphologic study of murine penis structure. Penises were dissected from 10 adult wild-type mice and imaged using micro-CT with iodine staining. Images were acquired at 5-μm spatial resolution on a Bruker SkyScan 1272 micro-CT system. After images were acquired, the specimens were washed of any remaining iodine and embedded in paraffin for conventional histologic examination. Histologic and micro-CT measurements for all specimens were made by 2 independent observers. Measurements of penile structures were made on virtual micro-CT sections and histologic slides. The Lin concordance correlation coefficient demonstrated almost perfect strength of agreement for interobserver variability for histologic section (0.9995, 95% CI = 0.9990-0.9997) and micro-CT section (0.9982, 95% CI = 0.9963-0.9991) measurements. Bland-Altman analysis for agreement between the 2 modalities of measurement demonstrated mean differences of -0.029, 0.022, and -0.068 mm for male urogenital mating protuberance, baculum, and penile glans length, respectively. There did not appear to be a bias for overestimation or underestimation of measured lengths and limits of agreement were narrow. The enhanced ability offered by micro-CT to phenotype the murine penis has the potential to improve translational studies examining the molecular pathways contributing to anomalous penile development. The present study describes the first reported use of micro-CT with iodine staining for imaging the murine penis. Producing repeated histologic sections of identical orientation was limited by inherent imperfections in mounting and tissue sectioning, but this was compensated for by using micro-CT reconstructions to identify matching virtual sections. This study demonstrates the successful use of micro-CT with iodine staining, which has the potential for submicron spatial resolution, as a non-destructive method of characterizing murine penile morphology. O'Neill M, Huang GO, Lamb DJ. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis. J Sex Med 2017;14:1533-1539. Copyright © 2017. Published by Elsevier Inc.

  8. Impact of renal anatomy on shock wave lithotripsy outcomes for lower pole kidney stones: results of a prospective multifactorial analysis controlled by computerized tomography.

    PubMed

    Torricelli, Fabio C M; Marchini, Giovanni S; Yamauchi, Fernando I; Danilovic, Alexandre; Vicentini, Fabio C; Srougi, Miguel; Monga, Manoj; Mazzucchi, Eduardo

    2015-06-01

    We evaluated which variables impact fragmentation and clearance of lower pole calculi after shock wave lithotripsy. We prospectively evaluated patients undergoing shock wave lithotripsy for a solitary 5 to 20 mm lower pole kidney stone between June 2012 and August 2014. Patient body mass index and abdominal waist circumference were recorded. One radiologist blinded to shock wave lithotripsy outcomes measured stone size, area and density, stone-to-skin distance, infundibular length, width and height, and infundibulopelvic angle based on baseline noncontrast computerized tomography. Fragmentation, success (defined as residual fragments less than 4 mm in asymptomatic patients) and the stone-free rate were evaluated by noncontrast computerized tomography 12 weeks postoperatively. Univariate and multivariate analysis was performed. A total of 100 patients were enrolled in the study. Mean stone size was 9.1 mm. Overall fragmentation, success and stone-free rates were 76%, 54% and 37%, respectively. On logistic regression body mass index (OR 1.27, 95% CI 1.11-1.49, p = 0.004) and stone density (OR 1.0026, 95% CI 1.0008-1.0046, p = 0.005) significantly impacted fragmentation. Stone size (OR 1.24, 95% CI 1.07-1.48, p = 0.039) and stone density (OR 1.0021, 95% CI 1.0007-1.0037, p = 0.012) impacted the success rate while stone size (OR 1.24, 95% CI 1.04-1.50, p = 0.029), stone density (OR 1.0015, 95% CI 1.0001-1.0032, p = 0.046) and infundibular length (OR 1.1035, 95% CI 1.015-1.217, p = 0.015) impacted the stone-free rate. The best outcomes were found in patients with a body mass index of 30 kg/m(2) or less, stones 10 mm or less and 900 HU or less, and an infundibular length of 25 mm or less. The coexistence of significant unfavorable variables led to a stone-free rate of less than 20%. Obese patients with higher than 10 mm density stones (greater than 900 HU) in the lower pole of the kidney with an infundibular length of greater than 25 mm should be discouraged from undergoing shock wave lithotripsy. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    NASA Astrophysics Data System (ADS)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  10. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases.

    PubMed

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J; Elsner, Peter; Kaatz, Martin

    2009-07-01

    We report on the first clinical study based on optical coherence tomography (OCT) in combination with multiphoton tomography (MPT) and dermoscopy. 47 patients with a variety of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art OCT systems for dermatology including multibeam swept source OCT, (ii) the femtosecond laser multiphoton tomograph, and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface. OCT images reflect modifications of the intratissue refractive index whereas MPT is based on nonlinear excitation of endogenous fluorophores and second harmonic generation. A stack of cross-sectional OCT "wide field" images with a typical field of view of 5 x 2 mm(2) gave fast information on the depth and the volume of the lesion. Multiphoton tomography provided 0.36 x 0.36 mm(2) horizontal/diagonal optical sections within seconds of a particular region of interest with superior submicron resolution down to a tissue depth of 200 mum. The combination of OCT and MPT provides a unique powerful optical imaging modality for early detection of skin cancer and other skin diseases as well as for the evaluation of the efficiency of treatments.

  11. Application of optical longitudinal tomography for dental introscopy

    NASA Astrophysics Data System (ADS)

    Levin, Gennady G.; Burgansky, Alexander A.; Levandovski, Alexei G.

    1997-08-01

    A new method of dental introscopy in-vitro is suggested by the authors. This method implies the usage of longitudinal tomography techniques and is characterized by non-invasive and non-harmful diagnostics features, as well as interactive regime of image reconstruction which lets an operator (doctor) to control the diagnostics process in real time. He-Ne laser emission is used for obtaining of the projections. By the means of longitudinal tomography, images of different sections of an object (tooth) can be reconstructed. An experiment was held by the authors in which 100 projections of a tooth (premolar) were obtained and images of 10 different sections were reconstructed. These images were later compared to real sections of the tooth. This experiment proved that optical longitudinal tomography can be successfully used for dental introscopy. Authors claim that optical tomographic methods can be used for diagnostics of other biological objects as well. Such objects are characterized by spatial geometrical anisotropy (tubular bones, phalanxes of fingers, penis, etc.). It is especially promising to use this method for children's dentistry. the authors discuss some features of the data acquisition system for optical longitudinal tomography. Reconstruction algorithms are described. The results of experimental reconstruction are presented and advantages of this diagnostics method are discussed.

  12. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  13. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update.

    PubMed

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.

  14. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    PubMed Central

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future. PMID:29181321

  15. [Pay attention on optical coherence tomography evaluation for optic nerve diseases].

    PubMed

    Wang, M

    2016-12-11

    Optical coherence tomography(OCT) had become the most important imaging technique in ophthalmology. OCT is able to segment the retinal nerve fiber layer and retinal ganglion cell layer accurately. Quantitative analysis can be performed for both layers. OCT is very important to evaluate the neuron and axon loss in optic nerve diseases diagnosis. Meanwhile, OCT has great value for differentiating glaucoma and macular diseases from optic nerve diseases. This review presented OCT application in optic nerve diseases diagnosis, differentiation diagnosis, the key points in use and the features of en face OCT and OCT angiography. It gave us suggestions that it should be pay more attention to OCT examination in diagnosis and treatment of optic nerve diseases. (Chin J Ophthalmol, 2016, 52: 885 - 888) .

  16. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY.

    PubMed

    Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2018-01-10

    To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.

  17. Design and testing of prototype handheld scanning probes for optical coherence tomography

    PubMed Central

    Demian, Dorin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-01-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic—for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat—in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. PMID:25107512

  18. Design and testing of prototype handheld scanning probes for optical coherence tomography.

    PubMed

    Demian, Dorin; Duma, Virgil-Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-08-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic-for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat-in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. © IMechE 2014.

  19. Assessment of using ultrasound images as prior for diffuse optical tomography regularization matrix

    NASA Astrophysics Data System (ADS)

    Althobaiti, Murad; Vavadi, Hamed; Zhu, Quing

    2017-02-01

    Imaging of tissue with Ultrasound-guided diffuse optical tomography (DOT) is a rising imaging technique to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. Near-infrared optical imaging received a lot of attention in research as a possible technique to be used for such purpose especially for breast tumors. Since DOT images contrast is closely related to oxygenation and deoxygenating of the hemoglobin, which is an important factor in differentiating malignant and benign tumors. One of the optical imaging modalities used is the diffused optical tomography (DOT); which probes deep scattering tissue (1-5cm) by NIR optical source-detector probe and detects NIR photons in the diffusive regime. The photons in the diffusive regime usually reach the detector without significant information about their source direction and the propagation path. Because of that, the optical reconstruction problem of the medium characteristics is ill-posed even with the tomography and Back-projection techniques. The accurate recovery of images requires an effective image reconstruction method. Here, we illustrate a method in which ultrasound images are encoded as prior for regularization of the inversion matrix. Results were evaluated using phantom experiments of low and high absorption contrasts. This method improves differentiation between the low and the high contrasts targets. Ultimately, this method could improve malignant and benign cases by increasing reconstructed absorption ratio of malignant to benign. Besides that, the phantom results show improvements in target shape as well as the spatial resolution of the DOT reconstructed images.

  20. Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy.

    PubMed

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen

    2014-08-25

    Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.

  1. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun

    2016-12-01

    We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.

  2. Cerebral infarction in association with Ecstasy abuse.

    PubMed Central

    Manchanda, S.; Connolly, M. J.

    1993-01-01

    A previously fit 35 year old man presented with a right hemiparesis and dysphasia 36 hours after abuse of Ecstasy (3,4-methylenedioxymethamphetamine). Computerized axial tomography scan demonstrated an extensive acute left cerebral infarction and carotid digital subtraction angiogram, 2 days after admission, revealed left middle cerebral artery occlusion. There were no other known risk factors and all other investigations were negative. The patient made a partial recovery. We propose an association between Ecstasy abuse and cerebral infarction. PMID:7904748

  3. Cerebral infarction in association with Ecstasy abuse.

    PubMed

    Manchanda, S; Connolly, M J

    1993-11-01

    A previously fit 35 year old man presented with a right hemiparesis and dysphasia 36 hours after abuse of Ecstasy (3,4-methylenedioxymethamphetamine). Computerized axial tomography scan demonstrated an extensive acute left cerebral infarction and carotid digital subtraction angiogram, 2 days after admission, revealed left middle cerebral artery occlusion. There were no other known risk factors and all other investigations were negative. The patient made a partial recovery. We propose an association between Ecstasy abuse and cerebral infarction.

  4. Keeping the Edge. Air Force Materiel Command Cold War Context (1945-1991). Volume 2: Installations and Facilities

    DTIC Science & Technology

    2003-08-01

    connector increased the strength of the joints by spreading the load more equally over the cross section of the wood, and in fact made the "all-wood...strength of the timber joints by spreading the load more equally over the cross section of the wood. The Timber Engineering Company established a...Laboratory Computerized Axial Tomography Columbia Broadcasting System Comprehensive Display System Corps of Engineers Ballistic Missile Construction

  5. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  6. An Anatomical Study of Maxillary-Zygomatic Complex Using Three-Dimensional Computerized Tomography-Based Zygomatic Implantation

    PubMed Central

    Zhao, Shijie; Liu, Hui; Sun, Zhipeng; Wang, Jianwei

    2017-01-01

    Objective To obtain anatomical data of maxillary-zygomatic complex based on simulating the zygomatic implantation using cadaver heads and three-dimensional computerized tomography (3D-CT). Methods Simulating zygomatic implantation was performed using seven cadaver heads and 3D-CT images from forty-eight adults. After measuring the maxillary-zygomatic complex, we analyzed the position between the implantation path and the maxillary sinus cavity as well as the distance between the implantation path and the zygomatic nerve. Results The distance from the starting point to the endpoint of the implant was 56.85 ± 5.35 mm in cadaver heads and 58.15 ± 7.37 mm in 3D-CT images. For the most common implantation path (80.20%), the implant went through the maxillary sinus cavity completely. The projecting points of the implant axis (IA) on the surface of zygoma were mainly located in the region of frontal process of zygomatic bone close to the lateral orbital wall. The distances between IA and zygomatic nerve in 53 sides were shorter than 2 mm. Conclusion The simulating zygomatic implantation on cadaver skulls and 3D-CT imaging provided useful anatomical data of the maxillary-zygomatic complex. It is necessary to take care to avoid the zygomatic nerve injury during implantation, because it frequently appears on the route of implantation. PMID:29376077

  7. Preoperative Computerized Tomography and Magnetic Resonance Imaging of the Pancreas Predicts Pancreatic Mass and Functional Outcomes After Total Pancreatectomy and Islet Autotransplant

    PubMed Central

    Young, Michael C.; Theis, Jake R.; Hodges, James S.; Dunn, Ty B.; Pruett, Timothy L.; Chinnakotla, Srinath; Walker, Sidney P.; Freeman, Martin L.; Trikudanathan, Guru; Arain, Mustafa; Robertson, R. Paul; Wilhelm, Joshua J.; Schwarzenberg, Sarah J.; Bland, Barbara; Beilman, Gregory J.; Bellin, Melena D.

    2015-01-01

    Objectives About two-thirds of patients will remain on insulin therapy after total pancreatectomy with islet autotransplant (TPIAT) for chronic pancreatitis. We investigated the relationship between measured pancreas volume on computerized tomography (CT) or magnetic resonance imaging (MRI), and features of chronic pancreatiits on imaging, with subsequent islet isolation and diabetes outcomes. Methods CT or MRI was reviewed for pancreas volume (Vitrea software), and presence or absence of calcifications, atrophy, and dilated pancreatic duct in 97 patients undergoing TPIAT. Relationship between these features and: (1) islet mass isolated and (2) diabetes status at 1 year post-TPAIT were evaluated. Results Pancreas volume correlated with islet mass measured as total islet equivalents (r=0.50, p<0.0001). Mean islet equivalents was reduced by more than half if any one of calcifications, atrophy, or ductal dilatation were observed. Pancreatic calcifications increased the odds of insulin dependence 4.0 fold (1.1, 15). Collectively, the pancreas volume and 3 imaging features strongly associated with 1 year insulin use (p=0.07), islet graft failure (p=0.003), Hemoglobin A1c (p=0.0004), fasting glucose (p=0.027), and fasting C-peptide level (p=0.008). Conclusions Measures of pancreatic parenchymal destruction on imaging, including smaller pancreas volume and calcifications associate strongly with impaired islet mass and 1 year diabetes outcomes. PMID:26745861

  8. Color intensity projections: A rapid approach for evaluating four-dimensional CT scans in treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cover, Keith S.; Lagerwaard, Frank J.; Senan, Suresh

    2006-03-01

    Purpose: Four-dimensional computerized tomography scans (4DCT) enable intrafractional motion to be determined. Because more than 1500 images can be generated with each 4DCT study, tools for efficient data visualization and evaluation are needed. We describe the use of color intensity projections (CIP) for visualizing mobility. Methods: Four-dimensional computerized tomography images of each patient slice were combined into a CIP composite image. Pixels largely unchanged over the component images appear unchanged in the CIP image. However, pixels whose intensity changes over the phases of the 4DCT appear in the CIP image as colored pixels, and the hue encodes the percentage ofmore » time the tissue was in each location. CIPs of 18 patients were used to study tumor and surrogate markers, namely the diaphragm and an abdominal marker block. Results: Color intensity projections permitted mobility of high-contrast features to be quickly visualized and measured. In three selected expiratory phases ('gating phases') that were reviewed in the sagittal plane, gating would have reduced mean tumor mobility from 6.3 {+-} 2.0 mm to 1.4 {+-} 0.5 mm. Residual tumor mobility in gating phases better correlated with residual mobility of the marker block than that of the diaphragm. Conclusion: CIPs permit immediate visualization of mobility in 4DCT images and simplify the selection of appropriate surrogates for gated radiotherapy.« less

  9. The potential for non-invasive study of mummies: validation of the use of computerized tomography by post factum dissection and histological examination of a 17th century female Korean mummy

    PubMed Central

    Lim, Do-Seon; Lee, In Sun; Choi, Ki-Ju; Lee, Soong Deok; Oh, Chang Seok; Kim, Yi-Suk; Bok, Gi Dae; Kim, Myeung Ju; Yi, Yang Su; Lee, Eun-Joo; Shin, Dong Hoon

    2008-01-01

    The socio-cultural antipathies of some descendants with regard to invasive examinations of age-old human remains make permission for dissection of Korean mummies of the Joseon Dynasty (1392–1910) difficult to obtain. Overcoming this obstacle necessitated the use of non-invasive techniques, such as multi-detector computerized tomography (MDCT) and endoscopic examination, enabling determination of the preservation status of internal organs of mummies without significantly damaging the mummies themselves. However, MDCT alone cannot clearly differentiate specific mummified organs. Therefore, in much the same way as diagnostic radiologists make their MDCT readings on living patients more reliable by means of comparison with accumulated post-factum data from autopsies or histological studies, examinations of mummies by invasive techniques should not be decried as mere destruction of age-old human remains. Rather, providing that due permission from descendants and/or other relevant authorities can be obtained, dissection and histological examination should be performed whenever opportunities arise. Therefore, in this study, we compared the radiological data acquired from a 17th century mummy with our dissection results for the same subject. As accumulation of this kind of data could be very crucial for correct interpretation of MDCT findings on Korean mummies, we will perform similar trials on other Korean mummies found in forthcoming days if conditions permit. PMID:19014355

  10. Computerized ionospheric tomography based on geosynchronous SAR

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  11. Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinerstein, S.L.; Kovarsky, J.

    1984-08-01

    A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less

  12. Discrepancies between leg-to-leg bioelectrical Impedance analysis and computerized tomography in abdominal visceral fat measurement.

    PubMed

    Lu, Hsueh-Kuan; Chen, Yu-Yawn; Yeh, Chinagwen; Chuang, Chih-Lin; Chiang, Li-Ming; Lai, Chung-Liang; Casebolt, Kevin M; Huang, Ai-Chun; Lin, Wen-Long; Hsieh, Kuen-Chang

    2017-08-22

    The aim of this study was to evaluate leg-to-leg bioelectrical impedance analysis (LBIA) using a four-contact electrode system for measuring abdominal visceral fat area (VFA). The present study recruited 381 (240 male and 141 female) Chinese participants to compare VFA measurements estimated by a standing LBIA system (VFALBIA) with computerized tomography (CT) scanned at the L4-L5 vertebrae (VFA CT ). The total mean body mass index (BMI) was 24.7 ± 4.2 kg/m 2 . Correlation analysis, regression analysis, Bland-Altman plot, and paired sample t-tests were used to analyze the accuracy of the VFA LBIA . For the total subjects, the regression line was VFA LBIA  = 0.698 VFA CT  + 29.521, (correlation coefficient (r) = 0.789, standard estimate of error (SEE) = 24.470 cm 2 , p < 0.001), Lin's correlation coefficient (CCC) was 0.785; and the limit of agreement (LOA; mean difference ±2 standard deviation) ranged from -43.950 to 67.951 cm 2 , LOA% (given as a percentage of mean value measured by the CT) was 48.2%. VFA LBIA and VFA CT showed significant difference (p < 0.001). Collectively, the current study indicates that LBIA has limited potential to accurately estimate visceral fat in a clinical setting.

  13. Dental status of three Egyptian mummies: radiological investigation by multislice computerized tomography.

    PubMed

    Gerloni, Alessandro; Cavalli, Fabio; Costantinides, Fulvio; Costantinides, Fulvia; Bonetti, Stefano; Paganelli, Corrado

    2009-06-01

    The aim of the study was to provide a paleopathologic and radiologic overview of the jaws and teeth of 3 Egyptian mummies preserved in the Civic Museum of History and Art in Trieste. Computerized tomography (CT) imaging and postprocessing techniques were used to examine the oral structures. A 16-slice CT scanner was used (Aquilion 16; Toshiba Medical Systems Europe, Zoetermeer, The Netherlands). Scans were obtained at high resolution. Orthogonal-plane and 3-dimensional (3D) reconstructions were created along with curved reconstructions of the lower and upper jaws. Determination of decayed/missing teeth (DMT) and decayed/missing/tooth surfaces (DMTs) were made with 3D images. Analyses revealed differences in the embalming techniques and state of preservation of the bodies. Marked wear of the occlusal surfaces was a characteristic finding in all of the mummies. The DMT and DMTs were low compared with values for contemporary populations. Two mummies had fully erupted third molars. All mummies exhibited bone changes consistent with periodontitis. The CT evaluations of the oral structures of the mummies provided insight into the dental status and oral diseases of these ancient Egyptians. The low DMT and DMTs values and indications of periodontitis may be associated with the lifestyle of these Egyptians. The fully erupted and well aligned third molars may represent a morphologic adaptation of the arches to the muscular activity associated with grinding tough foods.

  14. Enhanced in vivo visualization of the microcirculation by topical application of fructose solution confirmed with correlation mapping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Enfield, Joey; McGrath, James; Daly, Susan M.; Leahy, Martin

    2016-08-01

    Changes within the microcirculation can provide an early indication of the onset of a plethora of ailments. Various techniques have thus been developed that enable the study of microcirculatory irregularities. Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique, which enables mapping of vasculature networks at the capillary level in a noninvasive and noncontact manner. This technique is an extension of conventional optical coherence tomography (OCT) and is therefore likewise limited in the penetration depth of ballistic photons in biological media. Optical clearing has previously been demonstrated to enhance the penetration depth and the imaging capabilities of OCT. In order to enhance the achievable maximum imaging depth, we propose the use of optical clearing in conjunction with the cmOCT technique. We demonstrate in vivo a 13% increase in OCT penetration depth by topical application of a high-concentration fructose solution, thereby enabling the visualization of vessel features at deeper depths within the tissue.

  15. Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression.

    PubMed

    Mwanza, Jean-Claude; Budenz, Donald L

    2016-03-01

    Optical coherence tomography (OCT) aids in the diagnosis and long-term monitoring of various ocular diseases, including glaucoma. Initially, the retinal nerve fiber layer was the only OCT structural parameter used in glaucoma. Subsequent research has resulted in more retinal and optic nerve head parameters. In addition, OCT is being investigated for its ability to assess ocular hemodynamics. This review summarizes these spectral domain-optical coherence tomography (SDOCT) parameters in the context of glaucoma. Several new SDOCT retinal nerve fiber layer, optic nerve head, and macular parameters with good glaucoma diagnostic ability have been added to existing ones recently. The combination of SDOCT and Doppler or angiography has also resulted in hemodynamic parameters that may prove to be useful in the functional assessment in glaucoma. OCT technology is advancing not only as a tool for structural assessment, but also as a multimodality tool to assess both structure and function to enhance our understanding of glaucoma, and ultimately clinical decisions.

  16. High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Wang, Zhenguo; Pan, Yingtian

    2003-12-01

    We report a new rapid-scanning optical delay device suitable for high-speed optical coherence tomography (OCT) in which an acousto-optic modulator (AOM) is used to independently modulate the Doppler frequency shift of the reference light beam for optical heterodyne detection. Experimental results show that the fluctuation of the measured Doppler frequency shift is less than +/-0.2% over 95% duty cycle of OCT imaging, thus allowing for enhanced signal-to-noise ratio of optical heterodyne detection. The increased Doppler frequency shift by AOM also permits complete envelop demodulation without the compromise of reducing axial resolution; if used with a resonant rapid-scanning optical delay, it will permit high-performance real-time OCT imaging. Potentially, this new rapid-scanning optical delay device will improve the performance of high-speed Doppler OCT techniques.

  17. One step linear reconstruction method for continuous wave diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  18. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.

    PubMed

    Morgan, Jessica I W

    2016-05-01

    Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  19. DETECTION OF MICROVASCULAR CHANGES IN EYES OF PATIENTS WITH DIABETES BUT NOT CLINICAL DIABETIC RETINOPATHY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    de Carlo, Talisa E; Chin, Adam T; Bonini Filho, Marco A; Adhi, Mehreen; Branchini, Lauren; Salz, David A; Baumal, Caroline R; Crawford, Courtney; Reichel, Elias; Witkin, Andre J; Duker, Jay S; Waheed, Nadia K

    2015-11-01

    To evaluate the ability of optical coherence tomography angiography to detect early microvascular changes in eyes of diabetic individuals without clinical retinopathy. Prospective observational study of 61 eyes of 39 patients with diabetes mellitus and 28 control eyes of 22 age-matched healthy subjects that received imaging using optical coherence tomography angiography between August 2014 and March 2015. Eyes with concomitant retinal, optic nerve, and vitreoretinal interface diseases and/or poor-quality images were excluded. Foveal avascular zone size and irregularity, vessel beading and tortuosity, capillary nonperfusion, and microaneurysm were evaluated. Foveal avascular zone size measured 0.348 mm² (0.1085-0.671) in diabetic eyes and 0.288 mm² (0.07-0.434) in control eyes (P = 0.04). Foveal avascular zone remodeling was seen more often in diabetic than control eyes (36% and 11%, respectively; P = 0.01). Capillary nonperfusion was noted in 21% of diabetic eyes and 4% of control eyes (P = 0.03). Microaneurysms and venous beading were noted in less than 10% of both diabetic and control eyes. Both diabetic and healthy control eyes demonstrated tortuous vessels in 21% and 25% of eyes, respectively. Optical coherence tomography angiography was able to image foveal microvascular changes that were not detected by clinical examination in diabetic eyes. Changes to the foveal avascular zone and capillary nonperfusion were more prevalent in diabetic eyes, whereas vessel tortuosity was observed with a similar frequency in normal and diabetic eyes. Optical coherence tomography angiography may be able to detect diabetic eyes at risk of developing retinopathy and to screen for diabetes quickly and noninvasively before the systemic diagnosis is made.

  20. Fundus autofluorescence, optical coherence tomography, and electroretinogram findings in choroidal sclerosis.

    PubMed

    Hwang, John C; Kim, David Y; Chou, Chai Lin; Tsang, Stephen H

    2010-01-01

    The purpose of this study was to describe fundus autofluorescence (FAF), optical coherence tomography, and electroretinogram findings in choroidal sclerosis. This is a retrospective case series. Eight eyes of four patients with choroidal sclerosis were evaluated with FAF, optical coherence tomography, and electroretinogram testing. In all eight eyes, FAF imaging showed hypofluorescent placoid lesions corresponding to areas of chorioretinal atrophy seen on stereo biomicroscopy. Prominent hyperfluorescent linear markings underlying regions of atrophic disease were observed in all eyes, likely representative of normal choroidal vessel autofluorescence. In two eyes, FAF showed punctate hypofluorescent lesions in the fovea that were not visualized on biomicroscopy. In one eye, FAF identified a central island of preserved retinal pigment epithelium that was not realized on ophthalmoscopic examination. Optical coherence imaging was significant for loss of choroidal fine tubular structures, retinal pigment epithelium, and outer nuclear layer in regions of chorioretinal atrophy. Full-field electroretinogram testing showed generalized rod-cone dysfunction in all patients with a lower B- to A-wave ratio in two patients. Fundus autofluorescence and optical coherence tomography are nonin-vasive diagnostic adjuncts that can aid in the diagnosis of choroidal sclerosis. Fundus autofluorescence may be a more sensitive marker of disease extent and progression than clinical examination alone. Electroretinogram testing can result in an electronegative maximal response.

  1. Wavelet methods in multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Helin, T.; Yudytskiy, M.

    2013-08-01

    The next generation ground-based telescopes rely heavily on adaptive optics for overcoming the limitation of atmospheric turbulence. In the future adaptive optics modalities, like multi-conjugate adaptive optics (MCAO), atmospheric tomography is the major mathematical and computational challenge. In this severely ill-posed problem, a fast and stable reconstruction algorithm is needed that can take into account many real-life phenomena of telescope imaging. We introduce a novel reconstruction method for the atmospheric tomography problem and demonstrate its performance and flexibility in the context of MCAO. Our method is based on using locality properties of compactly supported wavelets, both in the spatial and frequency domains. The reconstruction in the atmospheric tomography problem is obtained by solving the Bayesian MAP estimator with a conjugate-gradient-based algorithm. An accelerated algorithm with preconditioning is also introduced. Numerical performance is demonstrated on the official end-to-end simulation tool OCTOPUS of European Southern Observatory.

  2. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    NASA Astrophysics Data System (ADS)

    Taguchi, K.; Sugiyama, J.; Totsuka, M.; Imanaka, S.

    2012-03-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  3. Test target for characterizing 3D resolution of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao

    2014-12-01

    Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  4. 3D optical tomography in the presence of void regions

    NASA Astrophysics Data System (ADS)

    Riley, J.; Dehghani, Hamid; Schweiger, Martin; Arridge, Simon R.; Ripoll, Jorge; Nieto-Vesperinas, Manuel

    2000-12-01

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.

  5. 3D optical tomography in the presence of void regions.

    PubMed

    Riley, J; Dehghani, H; Schweiger, M; Arridge, S; Ripoll, J; Nieto-Vesperinas, M

    2000-12-18

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.

  6. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    PubMed

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  7. Early detection of tooth wear by en-face optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Mărcăuteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Demjan, Eniko; Hughes, Mike; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-02-01

    Excessive dental wear (pathological attrition and/or abfractions) is a frequent complication in bruxing patients. The parafunction causes heavy occlusal loads. The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-face optical coherence tomography was used for investigating and imaging of several extracted tooth, with a normal morphology, derived from patients with active bruxism and from subjects without parafunction. We found a characteristic pattern of enamel cracks in patients with first degree bruxism and with a normal tooth morphology. We conclude that the en-face optical coherence tomography is a promising non-invasive alternative technique for the early detection of occlusal overload, before it becomes clinically evident as tooth wear.

  8. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  9. Differentiation of benign from malignant cervical lymph nodes in patients with head and neck cancer using PET/CT imaging.

    PubMed

    Payabvash, Seyedmehdi; Meric, Kaan; Cayci, Zuzan

    2016-01-01

    To differentiate malignant from benign cervical lymph nodes in patients with head/neck cancer. In this retrospective study, 39 patients with primary head/neck cancer who underwent Positron Emission Tomography (PET)/Computerized Tomography (CT) and image-guided lymph node biopsy were included. Overall, 23 (59%) patients had biopsy-proven malignant cervical lymphadenopathy. Malignant lymph nodes had higher maximum standardized uptake (SUV-max) value (P<.001) and short-axis diameter (P=.015) compared to benign nodes. An SUV-max of ≥2.5 was 100% sensitive, and an SUV-max ≥5.5 was 100% specific for malignant lymphadenopathy. The PET/CT SUV-max value can help with differentiation of malignant cervical lymph nodes in patients with head/neck cancer. Published by Elsevier Inc.

  10. The use of microtomography in bone tissue and biomaterial three-dimensional analysis.

    PubMed

    Bedini, Rossella; Meleo, Deborah; Pecci, Raffaella; Pacifici, Luciano

    2009-01-01

    X-ray computed microtomography (micro-CT, microComputerised Tomography) is a miniaturized form of conventional computerized axial tomography (CAT ). This sophisticated technology enables 3D riconstruction of the internal structure of small X-ray opaque objects without sample destruction or preparation. The aim of this study is to show the possible applications of micro-CT in the analysis of bone graft materials of different origins (i.e. homologous, heterologous, alloplastic) in order to define their morphometric properties by means of SkyScan 1072 3D microtomography system. Since there is a close relationship between the properties of the materials and their microstructure, it is necessary to examine them using the highest levels of resolution before being able to improve existing materials or create new products.

  11. Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography

    PubMed Central

    Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle

    2015-01-01

    Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382

  12. Microfabricated endoscopic probe integrated MEMS micromirror for optical coherence tomography bioimaging.

    PubMed

    Wang, Ming-Fang; Xu, Yingshun; Prem, C S; Chen, Kelvin Wei Sheng; Xie, Jin; Mu, Xiaojing; Tan, Chee Wei; Yu, Aibin; Feng, Hanhua

    2010-01-01

    In this paper, we present a miniaturized endoscopic probe, consisted of MEMS micromirror, silicon optical bench (SiOB), grade index (GRIN) lens, single mode optical fiber (SMF) and transparent housing, for optical coherence tomography (OCT) bioimaging. Due to the use of the MEMS micromirror, the endoscopic OCT system is highly suitable for non-invasive imaging diagnosis of a wide variety of inner organs. The probe engineering and proof of concept were demonstrated by obtaining the two-dimensional OCT images with a cover slide and an onion used as standard samples and the axial resolution was around 10µm.

  13. Fiber optic-based optical coherence tomography (OCT) for dental applications

    NASA Astrophysics Data System (ADS)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  14. Optical Coherence Tomography

    PubMed Central

    Huang, David; Swanson, Eric A.; Lin, Charles P.; Schuman, Joel S.; Stinson, William G.; Chang, Warren; Hee, Michael R.; Flotte, Thomas; Gregory, Kenton; Puliafito, Carmen A.; Fujimoto, James G.

    2015-01-01

    A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as ~10−10 of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively. PMID:1957169

  15. University Faculty Teaching Activities in an Electronic Curriculum.

    ERIC Educational Resources Information Center

    Eisner, John; Carter, Thomas

    1989-01-01

    Discusses the changes in the instructional activities of university faculty members as a result of new computer-related educational technologies. Topics discussed include computer-assisted instruction; computer-managed instruction; optical discs; microcomputers; lecturing versus computer-based tutorials; videodiscs; computerized evaluative…

  16. Physics and engineering aspects of cell and tissue imaging systems: microscopic devices and computer assisted diagnosis.

    PubMed

    Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong

    2013-01-01

    The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.

  17. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    PubMed

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  18. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Tseng-Lin; Lo, Yu-Lung; Liao, Chia-Chi; Phan, Quoc-Hung

    2018-04-01

    A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.

  19. Fiber optic in vivo imaging in the mammalian nervous system

    PubMed Central

    Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J

    2010-01-01

    The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896

  20. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry

    NASA Astrophysics Data System (ADS)

    Prykäri, Tuukka; Czajkowski, Jakub; Alarousu, Erkki; Myllylä, Risto

    2010-05-01

    Optical coherence tomography (OCT), a technique for the noninvasive imaging of turbid media, based on low-coherence interferometry, was originally developed for the imaging of biological tissues. Since the development of the technique, most of its applications have been related to the area of biomedicine. However, from early stages, the vertical resolution of the technique has already been improved to a submicron scale. This enables new possibilities and applications. This article presents the possible applications of OCT in paper industry, where submicron or at least a resolution close to one micron is required. This requirement comes from the layered structure of paper products, where layer thickness may vary from single microns to tens of micrometers. This is especially similar to the case with high-quality paper products, where several different coating layers are used to obtain a smooth surface structure and a high gloss. In this study, we demonstrate that optical coherence tomography can be used to measure and evaluate the quality of the coating layer of a premium glossy photopaper. In addition, we show that for some paper products, it is possible to measure across the entire thickness range of a paper sheet. Furthermore, we suggest that in addition to topography and tomography images of objects, it is possible to obtain information similar to gloss by tracking the magnitude of individual interference signals in optical coherence tomography.

  1. Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.

    2006-08-01

    Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.

  2. High frame-rate en face optical coherence tomography system using KTN optical beam deflector

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Shinya, Yusuke; Imai, Tadayuki; Toyoda, Seiji; Kobayashi, Junya; Sakamoto, Tadashi

    2017-02-01

    We developed high frame-rate en face optical coherence tomography (OCT) system using KTa1-xNbxO3 (KTN) optical beam deflector. In the imaging system, the fast scanning was performed at 200 kHz by the KTN optical beam deflector, while the slow scanning was performed at 800 Hz by the galvanometer mirror. As a preliminary experiment, we succeeded in obtaining en face OCT images of human fingerprint with a frame rate of 800 fps. This is the highest frame-rate obtained using time-domain (TD) en face OCT imaging. The 3D-OCT image of sweat gland was also obtained by our imaging system.

  3. All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line.

    PubMed

    Choi, Eunseo; Na, Jihoon; Ryu, Seon; Mudhana, Gopinath; Lee, Byeong

    2005-02-21

    We have implemented an all-fiber optical delay line using two linearly chirped fiber Bragg gratings cascaded in reverse order and all-fiber optics components. The features of the proposed all-fiber based technique for variable delay line are discussed theoretically and demonstrated experimentally. The non-invasive cross-sectional images of biomedical samples as well as a transparent glass plate obtained with implemented all-fiber delay line having the axial resolution of 100 mum and the dynamic range of 50dB are presented to validates the imaging performance and demonstrate the feasibility of the delay line for optical coherence tomography.

  4. Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields

    PubMed Central

    Vaz, Fernando T; Ramalho, Mário; Pedrosa, Catarina; Lisboa, Maria; Kaku, Paulo; Esperancinha, Florindo

    2016-01-01

    Aim To determine the relationship between macular thickness (MT) and visual field (VF) parameters, as well as with changes in the retinal nerve fiber layer (RNFL) thickness in patients with glaucoma and ocular hypertension (OH). Materials and methods Cross-sectional statistical analysis of spectral domain optical coherence tomography (SD-OCT) compared with several VF parameters (mean defect - MD and loss variance - LV), in a nonrandom sample of 70 eyes from patients with glaucoma or OH. Statistical analysis was performed using Statistical Package for Social Sciences®. The correlation coefficient used was determined by Spearman correlation and the value of p < 0.05 was considered statistically significant. Results A significant correlation was seen between VF parameters and decrease in MT (MD: r = –0.363, p = 0.002; LV: r=–0.378, p = 0.001). The results were more significant when we compared the LV in the group with average MT 270 to 300 μm (r = –0.413, p = 0.015). Asymmetry between the superior macula and inferior macula correlated with LV (r = 0.432, p = 0.019) in the group with MT < 270 μm. There was also a significant correlation between thinning of superior-temporal and inferior-temporal RNFL and the decrease of the superior and inferior MT respectively (p < 0.001). Conclusion Spectral domain optical coherence tomography measurements of retinal thickness in the macula correlate with VF parameters and RNFL parameters in glaucoma patients. This relationship was first demonstrated with static computerized perimetry made with Octopus 101®. These results can be a valuable aid for evaluating and monitoring of glaucoma patients, establishing a correlation between structure and function. Measurements of retinal thickness in the macula may be an additional instrument for early detection of structural changes and its correlation with functional defects. How to cite this article Mota M, Vaz FT, Ramalho M, Pedrosa C, Lisboa M, Kaku P, Esperancinha F. Macular Thickness Assessment in Patients with Glaucoma and Its Correlation with Visual Fields. J Curr Glaucoma Pract 2016;10(3):85-90. PMID:27857487

  5. [Evaluation of diabetic microangiopathy using optical coherence tomography angiography].

    PubMed

    Czakó, Cecília; Sándor, Gábor László; Ecsedy, Mónika; Szepessy, Zsuzsanna; Borbándy, Ágnes; Resch, Miklós; Papp, András; Récsán, Zsuzsa; Horváth, Hajnalka; Nagy, Zoltán Zsolt; Kovács, Illés

    2018-02-01

    Optical coherence tomography angiography is a non-invasive imaging technique that is able to visualize the different retinal vascular layers using motion contrast to detect blood flow without intravenous dye injection. This method might help to assess microangiopathy in diabetic retinopathy during screening and follow-up. To quantify retinal microvasculature alterations in both eyes of diabetic patients in relation to systemic risk factors using optical coherence tomography angiography. Both eyes of 36 diabetic patients and 45 individuals without diabetes were examined. Duration of diabetes, insulin therapy, blood pressure, HbA 1c , dyslipidemia, axial length and the presence of diabetic retinopathy were recorded. Retinal vessel density was measured by optical coherence tomography angiography. The effect of risk factors on vessel density and between-eye asymmetry was assessed using multivariable regression analysis. Vessel density was significantly lower and between-eye difference was significantly higher in diabetic patients compared to controls (p<0.05). Both vessel density and between-eye asymmetry significantly correlated with diabetes duration (p<0.05) after controlling for the effect of risk factors. The between-eye asymmetry in vessel density was significantly higher in patients without clinically detectable diabetic retinopathy compared to control subjects (p<0.001). There is a decrease in retinal vessel density and an increase in between-eye asymmetry in patients with diabetes compared to healthy subjects. By using optical coherence tomography angiography, the detection of these microvascular alterations is possible before clinically detectable diabetic retinopathy and might serve as a useful tool in both screening and timing of treatment. Orv Hetil. 2018; 159(8): 320-326.

  6. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model.

    PubMed

    Spaide, Richard F; Curcio, Christine A

    2011-09-01

    To evaluate the validity of commonly used anatomical designations for the four hyperreflective outer retinal bands seen in current-generation optical coherence tomography, a scale model of outer retinal morphology was created using published information for direct comparison with optical coherence tomography scans. Articles and books concerning histology of the outer retina from 1900 until 2009 were evaluated, and data were used to create a scale model drawing. Boundaries between outer retinal tissue compartments described by the model were compared with intensity variations of representative spectral-domain optical coherence tomography scans using longitudinal reflectance profiles to determine the region of origin of the hyperreflective outer retinal bands. This analysis showed a high likelihood that the spectral-domain optical coherence tomography bands attributed to the external limiting membrane (the first, innermost band) and to the retinal pigment epithelium (the fourth, outermost band) are correctly attributed. Comparative analysis showed that the second band, often attributed to the boundary between inner and outer segments of the photoreceptors, actually aligns with the ellipsoid portion of the inner segments. The third band corresponded to an ensheathment of the cone outer segments by apical processes of the retinal pigment epithelium in a structure known as the contact cylinder. Anatomical attributions and subsequent pathophysiologic assessments pertaining to the second and third outer retinal hyperreflective bands may not be correct. This analysis has identified testable hypotheses for the actual correlates of the second and third bands. Nonretinal pigment epithelium contributions to the fourth band (e.g., Bruch membrane) remain to be determined.

  7. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay

    PubMed Central

    Morgan, Jessica I. W.

    2016-01-01

    Purpose Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Recent findings Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Summary Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. PMID:27112222

  8. CT diagnosis of a clinically unsuspected acute appendicitis complicating infectious mononucleosis.

    PubMed

    Zissin, R; Brautbar, O; Shapiro-Feinberg, M

    2001-01-01

    Acute appendicitis is a rare complication of infectious mononucleosis (IM). We describe a patient with IM and splenic rupture with a computerized tomography (CT) diagnosis of acute appendicitis during the acute phase of the infectious disease. Diagnostic imaging features of acute appendicitis were found on an abdominal CT performed for the evaluation of postoperative fever. Histologic examination confirmed the CT diagnosis of the clinically unsuspected acute appendicitis. Our case is unique both for the rarity of this complication and the lack of clinical symptoms.

  9. Spontaneous thrombosis of congenital extrahepatic portosystemic shunt (Abernethy malformation) simulating inguinal hernia incarceration.

    PubMed

    Afzal, Samara; Nair, Amit; Grainger, Jennie; Latif, Sherif; Rehman, Atiq-ur

    2010-08-01

    Tender lumps in the inguinal region are often explored emergently to treat suspected hernial strangulation. We discuss the case of an adult male who presented acutely with a tender inguinal swelling and raised inflammatory markers and was therefore deemed as requiring surgical exploration. However preoperative abdominal computerized tomography (CT) revealed an extensive thrombosing congenital venous malformation of portosystemic origin with extension into the symptomatic inguinal canal. A potentially lethal exsanguination from surgery was thus avoided.

  10. Subdural abscess secondary to covert dental sepsis

    PubMed Central

    Sprott, Mae S.; Hall, K.; Newman, P. K.; Welbury, R. R.; Ingham, H. R.

    1981-01-01

    The bacterial flora of a subdural abscess in a 17-year-old male, with radiological evidence of unilateral infection of the maxillary and frontal air sinuses, was typical of that encountered in the dental sulcus. Extensive examination revealed no primary focus of infection other than apical infection in the 2 upper first molar teeth, which were extracted. Treatment with ampicillin, gentamicin and metronidazole rapidly controlled the subdural infection, and resolution, as evidenced by computerized tomography, was complete at 10 months. PMID:7335566

  11. MODERN BEAMS FOR ANCIENT MUMMIES COMPUTERIZED TOMOGRAPHY OF THE HOLOCENE MUMMIFIED REMAINS FROM WADI TAKARKORI (ACACUS, SOUTH-WESTERN LIBYA; MIDDLE PASTORAL).

    PubMed

    Di Vincenzo, Fabio; Carbone, Iacopo; Ottini, Laura; Profico, Antonio; Ricci, Francesca; Tafuri, Mary Anne; Fornaciari, Gino; Manzi, Giorgio

    2015-01-01

    The Middle Pastoral human remains from Wadi Takarkori in the Libyan Acacus mountains (Fezzan) are exceptionally preserved partial mummies ranging between 6100 and 5000 uncal years BP; this small sample represents the most ancient of its kind ever found. In this report, we present a survey of the skeletal anatomy of these mummifed corpses, based on high resolution CT-scan data, including a preliminary phenetic interpretation of their cranial morphology.

  12. Endoscopic drainage and cystoduodedonstomy in a child with pancreatic pseudocyst.

    PubMed

    Ateş, Ufuk; Küçük, Gönül; Çınar, Kubilay; Bahadır, Berktuğ; Bektaş, Mehmet; Göllü, Gülnur; Bingöl Koloğlu, Meltem

    2017-11-01

    An 11-year-old morbidly obese boy was diagnosed with pancreatic pseudocyst. Following fine needle aspiration, the cyst recurred in 1-month follow-up. Therefore, endoscopic drainage and cystoduodenostomy was performed following endosonography. Control ultrasonography (USG) revealed a completely shrunken cyst. During the 3 years of follow-up, the patient was asymptomatic with no evidence of cyst on computerized tomography scans. Endoscopic drainage and cystoduodenostomy is a minimally invasive, effective, and safe approach in the management of pancreatic pseudocysts in children.

  13. The basics of intravascular optical coherence tomography

    PubMed Central

    Jąkała, Jacek; Kałuża, Grzegorz L.; Partyka, Łukasz; Proniewska, Klaudia; Pociask, Elżbieta; Zasada, Wojciech; Wojakowski, Wojciech; Gąsior, Zbigniew; Dudek, Dariusz

    2015-01-01

    Optical coherence tomography (OCT) has opened new horizons for intravascular coronary imaging. It utilizes near-infrared light to provide a microscopic insight into the pathology of coronary arteries in vivo. Optical coherence tomography is also capable of identifying the chemical composition of atherosclerotic plaques and detecting traits of their vulnerability. At present it is the only tool to measure the thickness of the fibrous cap covering the lipid core of the atheroma, and thus it is an exceptional modality to detect plaques that are prone to rupture (thin fibrous cap atheromas). Moreover, it facilitates distinguishing between plaque rupture and plaque erosion as a cause of acute intracoronary thrombosis. Optical coherence tomography is applied to guide angioplasties of coronary lesions and to assess outcomes of percutaneous coronary interventions broadly. It identifies stent malapposition, dissections, and thrombosis with unprecedented precision. Furthermore, OCT helps to monitor vessel healing after stenting. It evaluates the coverage of stent struts by the neointima and detects in-stent neoatherosclerosis. With so much potential, new studies are warranted to determine OCT's clinical impact. The following review presents the technical background, basics of OCT image interpretation, and practical tips for adequate OCT imaging, and outlines its established and potential clinical application. PMID:26161097

  14. Advancements in optical techniques and imaging in the diagnosis and management of bladder cancer.

    PubMed

    Rose, Tracy L; Lotan, Yair

    2018-03-01

    Accurate detection and staging is critical to the appropriate management of urothelial cancer (UC). The use of advanced optical techniques during cystoscopy is becoming more widespread to prevent recurrent nonmuscle invasive bladder cancer. Standard of care for muscle-invasive UC includes the use of computed tomography and/or magnetic resonance imaging, but staging accuracy of these tests remains imperfect. Novel imaging modalities are being developed to improve current test performance. Positron emission tomography/computed tomography has a role in the initial evaluation of select patients with muscle-invasive bladder cancer and in disease recurrence in some cases. Several novel immuno-positron emission tomography tracers are currently in development to address the inadequacy of current imaging modalities for monitoring of tumor response to newer immune-based treatments. This review summaries the current standards and recent advances in optical techniques and imaging modalities in localized and metastatic UC. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Comprehensive vascular imaging using optical coherence tomography-based angiography and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Zabihian, Behrooz; Chen, Zhe; Rank, Elisabet; Sinz, Christoph; Bonesi, Marco; Sattmann, Harald; Ensher, Jason; Minneman, Michael P.; Hoover, Erich; Weingast, Jessika; Ginner, Laurin; Leitgeb, Rainer; Kittler, Harald; Zhang, Edward; Beard, Paul; Drexler, Wolfgang; Liu, Mengyang

    2016-09-01

    Studies have proven the relationship between cutaneous vasculature abnormalities and dermatological disorders, but to image vasculature noninvasively in vivo, advanced optical imaging techniques are required. In this study, we imaged a palm of a healthy volunteer and three subjects with cutaneous abnormalities with photoacoustic tomography (PAT) and optical coherence tomography with angiography extension (OCTA). Capillaries in the papillary dermis that are too small to be discerned with PAT are visualized with OCTA. From our results, we speculate that the PA signal from the palm is mostly from hemoglobin in capillaries rather than melanin, knowing that melanin concentration in volar skin is significantly smaller than that in other areas of the skin. We present for the first time OCTA images of capillaries along with the PAT images of the deeper vessels, demonstrating the complementary effective imaging depth range and the visualization capabilities of PAT and OCTA for imaging human skin in vivo. The proposed imaging system in this study could significantly improve treatment monitoring of dermatological diseases associated with cutaneous vasculature abnormalities.

  16. Ultra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman.

    PubMed

    de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D; Duker, Jay S; Fujimoto, James G; Waheed, Nadia K

    We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed mild hyperfluorescence and staining of the lesions. Spectral-domain optical coherence tomography (SD-OCT) OS showed accumulations in the temporal macula at Bruch's membrane. UHR-OCT provided improved axial resolution compared to the standard 5 μm on the commercial SD-OCT and confirmed the presence of deposits in Bruch's membrane, consistent with drusen. The retinal layers were draped over the excrescences but did not show any disruption.

  17. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    NASA Astrophysics Data System (ADS)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  18. Color mapping of one specific velocity of a biological fluid flows with complex geometry using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    The method of Doppler color mapping of one specific (previously chosen) velocity in a turbulent flow inside biological tissues using optical coherence tomography is described. The key features of the presented method are: the raw data are separated into three parts, corresponding to the unmoving biological tissue, the positively and negatively directed biological fluid flows; the further independent signal processing procedure yields the structure image and two images of the chosen velocity, which are then normalised, encoded and joined. The described method can be used to obtain in real time the anatomical maps of the chosen velocities in normal and pathological states. The described method can be applied not only in optical coherence tomography, but also in endoscopic and Doppler ultrasonic medical imaging systems.

  19. Tomographic reconstruction of melanin structures of optical coherence tomography via the finite-difference time-domain simulation

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Hao; Wang, Shiang-Jiu; Tseng, Snow H.

    2015-03-01

    Optical coherence tomography (OCT) provides high resolution, cross-sectional image of internal microstructure of biological tissue. We use the Finite-Difference Time-Domain method (FDTD) to analyze the data acquired by OCT, which can help us reconstruct the refractive index of the biological tissue. We calculate the refractive index tomography and try to match the simulation with the data acquired by OCT. Specifically, we try to reconstruct the structure of melanin, which has complex refractive indices and is the key component of human pigment system. The results indicate that better reconstruction can be achieved for homogenous sample, whereas the reconstruction is degraded for samples with fine structure or with complex interface. Simulation reconstruction shows structures of the Melanin that may be useful for biomedical optics applications.

  20. Time efficient Gabor fused master slave optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cernat, Ramona; Bradu, Adrian; Rivet, Sylvain; Podoleanu, Adrian

    2018-02-01

    In this paper the benefits in terms of operation time that Master/Slave (MS) implementation of optical coherence tomography can bring in comparison to Gabor fused (GF) employing conventional fast Fourier transform based OCT are presented. The Gabor Fusion/Master Slave Optical Coherence Tomography architecture proposed here does not need any data stitching. Instead, a subset of en-face images is produced for each focus position inside the sample to be imaged, using a reduced number of theoretically inferred Master masks. These en-face images are then assembled into a final volume. When the channelled spectra are digitized into 1024 sampling points, and more than 4 focus positions are required to produce the final volume, the Master Slave implementation of the instrument is faster than the conventional fast Fourier transform based procedure.

  1. BILATERAL SUBRETINAL FLUID AND RETINAL VASCULOPATHY ASSOCIATED WITH SUBACUTE SCLEROSING PANENCEPHALITIS.

    PubMed

    Agarwal, Aniruddha; Singh, Ramandeep; Kumar, Abiraj; Dogra, Mangat R; Gupta, Amod

    2017-01-01

    To report a case of bilateral retinopathy associated with subacute sclerosing panencephalitis. History and clinical examination, fluorescein angiography, and optical coherence tomography. We report a rare case of unilateral, followed by bilateral retinopathy, subretinal fluid, and vasculopathy in a young boy. History of missed measles vaccination, behavioral and neurologic symptoms, and electroencephalogram suggested a diagnosis of subacute sclerosing panencephalitis. Retinal imaging using optical coherence tomography was performed to document changes in the retinal microstructure through the natural course of the disease. Within 8 weeks, the changes progressed to retinal atrophy in both eyes. The progressive course of retinitis associated with subacute sclerosing panencephalitis can be monitored on optical coherence tomography. Retinitis is subacute sclerosing panencephalitis rapidly progressive from the acute stage to the stage of atrophy, involving full thickness of the retina.

  2. Engineering of Nanoscale Contrast Agents for Optical Coherence Tomography.

    PubMed

    Gordon, Andrew Y; Jayagopal, Ashwath

    2014-01-30

    Optical coherence tomography has emerged as valuable imaging modalityin ophthalmology and other fields by enabling high-resolution three-dimensional imaging of tissue. In this paper, we review recent progress in the field of contrast-enhanced optical coherence tomography (OCT). We discuss exogenous and endogenous sources of OCT contrast, focusing on their use with standard OCT systems as well as emerging OCT-based imaging modalities. We include advances in the processing of OCT data that generate improved tissue contrast, including spectroscopic OCT (SOCT), as well as work utilizing secondary light sources and/or detection mechanisms to create and detect enhanced contrast, including photothermal OCT (PTOCT) and photoacoustic OCT (PAOCT). Finally, we conclude with a discussion of the translational potential of these developments as well as barriers to their clinical use.

  3. Central serous chorioretinopathy treatment with spironolactone: a challenge-rechallenge case.

    PubMed

    Ryan, Edwin H; Pulido, Christine M

    2015-01-01

    To present a case of central serous chorioretinopathy (CSC) treatment with spironolactone in a challenge-rechallenge pattern. At presentation, fundus photography, fluorescein angiography, spectral domain optical coherence tomography, and enhanced depth imaging ocular coherence tomography were performed in both eyes. The patient was prescribed 25 mg spironolactone daily along with serum potassium monitoring. At follow-ups, spectral domain optical coherence tomography and enhanced depth imaging ocular coherence tomography were performed. A 37-year-old white male accountant presenting with CSC. Spironolactone treatment resolved the CSC. After the patient discontinued treatment, it returned. After returning to daily treatment, the CSC again resolved. Spironolactone was an effective treatment of CSC in this case. Other groups have reported similar findings with eplerenone, a similar drug.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, K; Zhang, B; Eslami, S

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used tomore » provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100.« less

  5. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  6. Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography.

    PubMed

    Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F

    2005-10-01

    We present a generalized analysis of fiber-based polarization-sensitive optical coherence tomography with an emphasis on determination of sample optic axis orientation. The polarization properties of a fiber-based system can cause an overall rotation in a Poincaré sphere representation such that the plane of possible measured sample optic axes for linear birefringence and diattenuation no longer lies in the QU-plane. The optic axis orientation can be recovered as an angle on this rotated plane, subject to an offset and overall indeterminacy in sign such that only the magnitude, but not the direction, of a change in orientation can be determined. We discuss the accuracy of optic axis determination due to a fundamental limit on the accuracy with which a polarization state can be determined as a function of signal-to-noise ratio.

  7. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    NASA Astrophysics Data System (ADS)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  8. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-02-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery.

  9. Birefringence measurement of retinal nerve fiber layer using polarization-sensitive spectral domain optical coherence tomography with Jones matrix based analysis

    NASA Astrophysics Data System (ADS)

    Yamanari, Masahiro; Miura, Masahiro; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2007-02-01

    Birefringence of retinal nerve fiber layer is measured by polarization-sensitive spectral domain optical coherence tomography using the B-scan-oriented polarization modulation method. Birefringence of the optical fiber and the cornea is compensated by Jones matrix based analysis. Three-dimensional phase retardation map around the optic nerve head and en-face phase retardation map of the retinal nerve fiber layer are shown. Unlike scanning laser polarimetry, our system can measure the phase retardation quantitatively without using bow-tie pattern of the birefringence in the macular region, which enables diagnosis of glaucoma even if the patients have macular disease.

  10. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  11. Extended depth of focus adaptive optics spectral domain optical coherence tomography.

    PubMed

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-10-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA.

  12. Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography.

    PubMed

    Benoit a la Guillaume, Emilie; Bortolozzo, Umberto; Huignard, Jean-Pierre; Residori, Stefania; Ramaz, Francois

    2013-02-01

    Photorefractive Bi(12)SiO(20) single crystal is used for acousto-optic imaging in thick scattering media in the green part of the spectrum, in an adaptive speckle correlation configuration. Light fields at the output of the scattering sample exhibit typical speckle grains of 1 μm size within the volume of the nonlinear crystal. This heterogeneous illumination induces a complex refractive index structure without applying a reference beam on the crystal, leading to a self-referenced diffraction correlation scheme. We demonstrate that this simple and robust configuration is able to perform axially resolved ultrasound modulated optical tomography of thick scattering media with an improved optical etendue.

  13. CHARACTERIZING PHOTORECEPTOR CHANGES IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY USING ADAPTIVE OPTICS.

    PubMed

    Roberts, Philipp K; Nesper, Peter L; Onishi, Alex C; Skondra, Dimitra; Jampol, Lee M; Fawzi, Amani A

    2018-01-01

    To characterize lesions of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) by multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO). We included patients with APMPPE at different stages of evolution of the placoid lesions. Color fundus photography, spectral domain optical coherence tomography, infrared reflectance, fundus autofluorescence, and AOSLO images were obtained and registered to correlate microstructural changes. Eight eyes of four patients (two women) were included and analyzed by multimodal imaging. Photoreceptor reflectivity within APMPPE lesions was more heterogeneous than in adjacent healthy areas. Hyperpigmentation on color fundus photography appeared hyperreflective on infrared reflectance and on AOSLO. Irregularity of the interdigitation zone and the photoreceptor inner and outer segment junctions (IS/OS) on spectral domain optical coherence tomography was associated with photoreceptor hyporeflectivity on AOSLO. Interruption of the interdigitation zone or IS/OS was associated with loss of photoreceptor reflectivity on AOSLO. Irregularities in the reflectivity of the photoreceptor mosaic are visible on AOSLO even in inactive APMPPE lesions, where the photoreceptor bands on spectral domain optical coherence tomography have recovered. Adaptive optics scanning laser ophthalmoscopy combined with multimodal imaging has the potential to enhance our understanding of photoreceptor involvement in APMPPE.

  14. PARACENTRAL ACUTE MIDDLE MACULOPATHY ASSOCIATED WITH RETINAL ARTERY OCCLUSION AFTER COSMETIC FILLER INJECTION.

    PubMed

    Sridhar, Jayanth; Shahlaee, Abtin; Shieh, Wen-Shi; Rahimy, Ehsan

    2017-01-01

    To report a single case of paracentral acute middle maculopathy in association with retinal artery occlusion in the setting of ipsilateral facial cosmetic filler injection. Case report. A 35-year-old woman presenting with sudden vision loss to finger count vision immediately after left nasal fat pad cosmetic filler injection. Dilated funduscopic examination revealed a swollen optic disc with multiple branch arterial occlusions with visible embolic material. Fluorescein angiography confirmed multiple branch arterial occlusions in addition to a focal choroidal infarction in the macula. Spectral-domain optical coherence tomography revealed middle retinal hyperreflectivity in the superotemporal macula consistent with paracentral acute middle maculopathy. En face optical coherence tomography demonstrated a superotemporal area of whitening at the level of the deep capillary plexus corresponding to the paracentral acute middle maculopathy lesion seen on spectral-domain optical coherence tomography. On twelve-month follow-up, final visual acuity was 20/100 due to optic neuropathy. Emboli from cosmetic facial filler injections may rarely result in ipsilateral arterial occlusions and now have a novel association with paracentral acute middle maculopathy likely due to deep capillary plexus feeder vessel occlusion.

  15. Anterior Segment Optical Coherence Tomography for Tear Meniscus Evaluation and its Correlation with other Tear Variables in Healthy Individuals

    PubMed Central

    Dhasmana, Renu; Nagpal, Ramesh Chander

    2016-01-01

    Introduction Dry eye is one of the most common ocular diseases in this cyber era. Despite availability of multiple tests, no single test is accurate for the diagnosis of dry eye. Anterior segment optical coherence tomography is the recent tool which can be added in the armentarium of dry eye tests. Aim To evaluate tear meniscus with anterior segment optical coherence tomography and its correlation with other tear variables in normal healthy individuals. Materials and Methods In this prospective cross-sectional observational study, right eye of 203 consecutive patients were studied. All the patients were divided into three groups Group 1, 2 and 3 according to their age ≤20 years, 21-40 years and >40 years respectively. All patients underwent routine ophthalmologic examinations along with slit-lamp bio-microscopy for tear meniscus height measurement, tear film break up time, Schirmer’s I test (with anaesthesia) and optical coherence tomography imaging of inferior tear meniscus height. After focusing of the instrument with a Cross Line (CL) centered on lower tear meniscus at 6’0 clock of cornea, a 6 mm long scan was obtained. The tear meniscus height (μm) and tear meniscus area (mm2) were measured manually with help of callipers by joining upper corneo-meniscus junction to the lower lid-meniscus junction and tear meniscus height and area within the plotted line respectively and calculated by using the integrated analysis available in the custom software. Results There was significant decrease in the all tear variables with the increase in the age. According to age groups in group 1, the mean Schirmer’s (24.0±4.9)mm, tear film break up time (11.1±1.9) sec, tear meniscus height on slit lamp (600.2±167.3)mm were higher but decreased in group 2 (21.5±5.4,10.8±1.4, 597.5±186.3) and group 3 (19.8 ± 5.1, 10.2 ± 1.6, 485.6 ± 157.7) respectively. Schirmer’s test values and tear film break up time were similar in both sexes (p=0.1 and p= 0.9). Tear meniscus height on slit lamp and Optical coherence based tear meniscus area were similar in both sexes (p=0.5 and p=0.1). However, tear meniscus height on optical coherence tomography was significantly higher in females (p=0.04). Value of Schirmer’s and tear film break up time (r =0.2; p= 0.001) and Schirmer’s and tear meniscus height on slit lamp (r=0.6; p<0.001) had positive correlation. Tear meniscus height and tear meniscus area on optical coherence tomography had positive correlation (r =.9; p<0.001). Conclusion On optical coherence tomography tear meniscus height and area significantly correlated. Despite higher values of Schirmer’s, tear film break up time, Slit lamp based tear meniscus height in younger age group the tear meniscus height and tear meniscus area with optical coherence tomography were lower. PMID:27437253

  16. Development and Implementation of a Segment/Junction Box Level Database for the ITS Fiber Optic Conduit Network

    DOT National Transportation Integrated Search

    2012-03-01

    This project initiated the development of a computerized database of ITS facilities, including conduits, junction : boxes, cameras, connections, etc. The current system consists of a database of conduit sections of various lengths. : Over the length ...

  17. Optical biopsy of lymph node morphology using optical coherence tomography.

    PubMed

    Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A

    2005-10-01

    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

  18. LASER BIOLOGY AND MEDICINE: Visualisation of details of a complicated inner structure of model objects by the method of diffusion optical tomography

    NASA Astrophysics Data System (ADS)

    Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.; Shutov, I. V.

    2002-11-01

    An approximate algorithm is tested for solving the problem of diffusion optical tomography in experiments on the visualisation of details of the inner structure of strongly scattering model objects containing scattering and semitransparent inclusions, as well as absorbing inclusions located inside other optical inhomogeneities. The stability of the algorithm to errors is demonstrated, which allows its use for a rapid (2 — 3 min) image reconstruction of the details of objects with a complicated inner structure.

  19. Using late arriving photons for diffuse optical tomography of biological objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proskurin, S G

    2011-05-31

    The issues of detecting the inhomogeneities are studied aimed at mapping the distribution of absorption and scattering in soft tissues. A modification of the method of diffuse optical tomography is proposed for detecting directly and determining the region of spatial localisation of such absorbing and scattering inhomogeneities as a cyst, a hematoma, a tumour, as well as for measuring the degree of oxygenation or deoxygenation of blood, in which the late arriving photons that diffuse through the scattering object are used. (optical technologies in biophysics and medicine)

  20. Quantum-optical coherence tomography with classical light.

    PubMed

    Lavoie, J; Kaltenbaek, R; Resch, K J

    2009-03-02

    Quantum-optical coherence tomography (Q-OCT) is an interferometric technique for axial imaging offering several advantages over conventional methods. Chirped-pulse interferometry (CPI) was recently demonstrated to exhibit all of the benefits of the quantum interferometer upon which Q-OCT is based. Here we use CPI to measure axial interferograms to profile a sample accruing the important benefits of Q-OCT, including automatic dispersion cancellation, but with 10 million times higher signal. Our technique solves the artifact problem in Q-OCT and highlights the power of classical correlation in optical imaging.

  1. Feasibility of Prostate Cancer Diagnosis by Transrectal Photo-acoustic Imaging

    DTIC Science & Technology

    2013-03-01

    prostate. Transrectal ultrasound has been used as a guiding tool to direct tissue needle biopsy for prostate cancer diagnosis; it cannot be utilized for...tool currently available for prostate cancer detection; needle biopsy is the current practice for diagnosis of the disease, aiming randomly in the...developing an integrated approach between ultrasound and optical tomography, namely, transrectal ultrasound - guided diffuse optical tomography (TRUS

  2. Validation of diffuse optical tomography using a bi-functional optical-MRI contrast agent and a hybrid MRI-DOT system

    NASA Astrophysics Data System (ADS)

    Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin

    2013-03-01

    Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"

  3. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  4. Experimental validation of a linear model for data reduction in chirp-pulse microwave CT.

    PubMed

    Miyakawa, M; Orikasa, K; Bertero, M; Boccacci, P; Conte, F; Piana, M

    2002-04-01

    Chirp-pulse microwave computerized tomography (CP-MCT) is an imaging modality developed at the Department of Biocybernetics, University of Niigata (Niigata, Japan), which intends to reduce the microwave-tomography problem to an X-ray-like situation. We have recently shown that data acquisition in CP-MCT can be described in terms of a linear model derived from scattering theory. In this paper, we validate this model by showing that the theoretically computed response function is in good agreement with the one obtained from a regularized multiple deconvolution of three data sets measured with the prototype of CP-MCT. Furthermore, the reliability of the model as far as image restoration in concerned, is tested in the case of space-invariant conditions by considering the reconstruction of simple on-axis cylindrical phantoms.

  5. Investigating line- versus point-laser excitation for three-dimensional fluorescence imaging and tomography employing a trimodal imaging system

    NASA Astrophysics Data System (ADS)

    Cao, Liji; Peter, Jörg

    2013-06-01

    The adoption of axially oriented line illumination patterns for fluorescence excitation in small animals for fluorescence surface imaging (FSI) and fluorescence optical tomography (FOT) is being investigated. A trimodal single-photon-emission-computed-tomography/computed-tomography/optical-tomography (SPECT-CT-OT) small animal imaging system is being modified for employment of point- and line-laser excitation sources. These sources can be arbitrarily positioned around the imaged object. The line source is set to illuminate the object along its entire axial direction. Comparative evaluation of point and line illumination patterns for FSI and FOT is provided involving phantom as well as mouse data. Given the trimodal setup, CT data are used to guide the optical approaches by providing boundary information. Furthermore, FOT results are also being compared to SPECT. Results show that line-laser illumination yields a larger axial field of view (FOV) in FSI mode, hence faster data acquisition, and practically acceptable FOT reconstruction throughout the whole animal. Also, superimposed SPECT and FOT data provide additional information on similarities as well as differences in the distribution and uptake of both probe types. Fused CT data enhance further the anatomical localization of the tracer distribution in vivo. The feasibility of line-laser excitation for three-dimensional fluorescence imaging and tomography is demonstrated for initiating further research, however, not with the intention to replace one by the other.

  6. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOEpatents

    Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  7. Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system.

    PubMed

    Chitnis, Danial; Cooper, Robert J; Dempsey, Laura; Powell, Samuel; Quaggia, Simone; Highton, David; Elwell, Clare; Hebden, Jeremy C; Everdell, Nicholas L

    2016-10-01

    We present the first three-dimensional, functional images of the human brain to be obtained using a fibre-less, high-density diffuse optical tomography system. Our technology consists of independent, miniaturized, silicone-encapsulated DOT modules that can be placed directly on the scalp. Four of these modules were arranged to provide up to 128, dual-wavelength measurement channels over a scalp area of approximately 60 × 65 mm 2 . Using a series of motor-cortex stimulation experiments, we demonstrate that this system can obtain high-quality, continuous-wave measurements at source-detector separations ranging from 14 to 55 mm in adults, in the presence of hair. We identify robust haemodynamic response functions in 5 out of 5 subjects, and present diffuse optical tomography images that depict functional haemodynamic responses that are well-localized in all three dimensions at both the individual and group levels. This prototype modular system paves the way for a new generation of wearable, wireless, high-density optical neuroimaging technologies.

  8. Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe

    NASA Astrophysics Data System (ADS)

    Gurbani, Saumya S.; Wilkening, Paul; Zhao, Mingtao; Gonenc, Berk; Cheon, Gyeong Woo; Iordachita, Iulian I.; Chien, Wade; Taylor, Russell H.; Niparko, John K.; Kang, Jin U.

    2014-05-01

    Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.

  9. In-vivo, real-time cross-sectional images of retina using a GPU enhanced master slave optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2016-03-01

    In our previous reports we demonstrated a novel Fourier domain optical coherence tomography method, Master Slave optical coherence tomography (MS-OCT), that does not require resampling of data and can deliver en-face images from several depths simultaneously. While ideally suited for delivering information from a selected depth, the MS-OCT has been so far inferior to the conventional FFT based OCT in terms of time of producing cross section images. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real-time by assembling several T-scans from different depths. We analyze the conditions that ensure a real-time B-scan imaging operation, and demonstrate in-vivo real-time images from human fovea and the optic nerve, of comparable resolution and sensitivity to those produced using the traditional Fourier domain based method.

  10. Towards femtosecond laser surgery guidance in the posterior eye: utilization of optical coherence tomography and adaptive optics for focus positioning and shaping

    NASA Astrophysics Data System (ADS)

    Krüger, Alexander; Hansen, Anja; Matthias, Ben; Ripken, Tammo

    2014-02-01

    Although fs-laser surgery is clinically established in the field of corneal flap cutting for laser in situ keratomileusis, surgery with fs-laser in the posterior part of the eye is impaired by focus degradation due to aberrations. Precise targeting and keeping of safety distance to the retina also relies on an intraoperative depth resolved imaging. We demonstrate a concept for image guided fs-laser surgery in the vitreous body combining adaptive optics (AO) for focus reshaping and optical coherence tomography (OCT) for focus position guidance. The setup of the laboratory system consist of an 800 nm fs-laser which is focused into a simple eye model via a closed loop adaptive optics system with Hartmann-Shack sensor and a deformable mirror to correct for wavefront aberrations. A spectral domain optical coherence tomography system is used to target phantom structures in the eye model. Both systems are set up to share the same scanner and focusing optics. The use of adaptive optics results in a lowered threshold energy for laser induced breakdown and an increased cutting precision. 3D OCT imaging of porcine retinal tissue prior and immediately after fs-laser cutting is also demonstrated. In the near future OCT and AO will be two essential assistive components in possible clinical systems for fs-laser based eye surgery beyond the cornea.

  11. [Macula study in Stargardt's disease].

    PubMed

    Maia, Otacílio de Oliveira; Takahashi, Walter Yukihiko; Arantes, Tiago Eugênio Faria e; Barreto, Raquel Barbosa Paes; Andrade Neto, João Lins de

    2008-01-01

    To evaluate de macular structural damage in Stargardt's disease by optical coherence tomography, correlating with visual acuity and disease duration. Patients with Stargardt's disease were included and submitted to visual acuity (logMAR) measurement and complementary examinations performed were color fundus photographs, fluorescein angiography and optical coherence tomography. All cases were reexamined for diagnostic confirmation and the duration of symptoms was determined. The control group was composed of the same number of subjects, matched by sex and age, without any ophthalmologic alteration. The sample was composed of 22 patients (44 eyes) with Stargardt's disease, 11 (50%) males and 11 (50%) females. The duration of the disease varied from 3 to 21 years (mean of 11.4 +/- 5.3 years). The groups did not show significant differences in age (p= 0.98) and sex. Concerning the macular thickness in optical coherence tomography, the variation in the study group differed significantly from the control group, presenting smaller values of thickness (p<0.001). There was negative and significant correlation between the duration of disease and the macular thickness assessed by optical coherence tomography (r=-0.57 and p=0.005). There was positive correlation between the duration of the disease and the visual acuity (r=0.50 and p=0.0167) and negative correlation between the visual acuity and the macular thickness in optical coherence tomography (r=-0.83 and p=0.0001). It was evidenced that patients with Stargardt's disease have a thinner macular thickness when compared to normal subjects, and this reduction is related to the duration of symptoms of the disease. Additionally, the thickness and also the duration of the disease influence the visual prognosis of the patients.

  12. Investigation of Retinal Morphology Alterations Using Spectral Domain Optical Coherence Tomography in a Mouse Model of Retinal Branch and Central Retinal Vein Occlusion

    PubMed Central

    Ebneter, Andreas; Agca, Cavit; Dysli, Chantal; Zinkernagel, Martin S.

    2015-01-01

    Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions. PMID:25775456

  13. DETECTION OF TYPE 1 CHOROIDAL NEOVASCULAR MEMBRANES USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN TUBERCULAR POSTERIOR UVEITIS.

    PubMed

    Aggarwal, Kanika; Agarwal, Aniruddha; Sharma, Aman; Sharma, Kusum; Gupta, Vishali

    2018-04-23

    To study optical coherence tomography angiography (OCTA) and multimodal imaging features of Type 1 inflammatory choroidal neovascularization (CNV) in tubercular serpiginous-like choroiditis and response to anti-vascular endothelial growth factor therapy. In this study, multimodal imaging was performed using OCTA, enhanced-depth imaging optical coherence tomography, fluorescein angiography, and indocyanine green angiography. Correlation of OCTA with other imaging modalities in the detection of CNV was performed. The changes in CNV configuration after anti-vascular endothelial growth factor therapy were assessed. In this study, nine eyes (8 patients; 5 females; mean age: 32.5 ± 11.57 years) with diagnosis of tubercular serpiginous-like choroiditis were included. All the eyes had presence of low-lying pigment epithelial detachments on enhanced-depth imaging optical coherence tomography. Using OCTA, it was possible to detect Type 1 CNV in all eyes. Type 1 CNV networks comprised fine anastomotic network of vessels, some of which had a hairpin loop configuration. After anti-vascular endothelial growth factor therapy, there was a decrease in branching and anastomosis. The visual acuity significantly improved from 0.49 ± 0.26 (20/60 Snellen equivalent) at baseline to 0.26 ± 0.17 (20/36 Snellen equivalent) (P = 0.03) in all eyes. Type 1 CNV can occur among patients with tubercular serpiginous-like choroiditis, leading to significant visual loss even in the healed stages of the disease. Optical coherence tomography angiography can help in the detection of Type 1 CNV where conventional multimodal imaging, including fluorescein angiography and OCT, fails to make a definitive diagnosis and thereby guide the initiation of anti-vascular endothelial growth factor therapy.

  14. Acoustic Inversion in Optoacoustic Tomography: A Review

    PubMed Central

    Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel

    2013-01-01

    Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060

  15. Fourier Domain Optical Coherence Tomography With 3D and En Face Imaging of the Punctum and Vertical Canaliculus: A Step Toward Establishing a Normative Database.

    PubMed

    Kamal, Saurabh; Ali, Mohammad Javed; Ali, Mohammad Hasnat; Naik, Milind N

    2016-01-01

    To report the features of Fourier domain optical coherence tomography imaging of the normal punctum and vertical canaliculus. Prospective, interventional series of consecutive healthy and asymptomatic adults, who volunteered for optical coherence tomography imaging, were included in the study. Fourier domain optical coherence tomography images of the punctum and vertical canaliculus along with 3D and En face images were captured using the RTVue scanner with a corneal adaptor module and a wide-angled lens. Maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were calculated. Statistical analysis was performed using Pearson correlation test, and scatter plot matrices were analyzed. A total of 103 puncta of 52 healthy subjects were studied. Although all the images could depict the punctum and vertical canaliculus and all the desired measurements could be obtained, occasional tear debris within the canaliculus was found to be interfering with the imaging. The mean maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were recorded as 214.71 ± 73 μm, 125.04 ± 60.69 μm, and 890.41 ± 154.76 μm, respectively, with an insignificant correlation between them. The maximum recorded vertical canalicular height in all the cases was far less than the widely reported depth of 2 mm. High-resolution 3D and En face images provided a detailed topography of punctal surface and overview of vertical canaliculus. Fourier domain optical coherence tomography with 3D and En face imaging is a useful noninvasive modality to image the proximal lacrimal system with consistently reproducible high-resolution images. This is likely to help clinicians in the management of proximal lacrimal disorders.

  16. Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Mengyang; Chen, Zhe; Sinz, Christoph; Rank, Elisabet; Zabihian, Behrooz; Zhang, Edward Z.; Beard, Paul C.; Kittler, Harald; Drexler, Wolfgang

    2017-02-01

    All optical photoacoustic tomography (PAT) using a planar Fabry-Perot interferometer polymer film sensor has been demonstrated for in vivo human palm imaging with an imaging penetration depth of 5 mm. The relatively larger vessels in the superficial plexus and the vessels in the dermal plexus are visible in PAT. However, due to both resolution and sensitivity limits, all optical PAT cannot reveal the smaller vessels such as capillary loops and venules. Melanin absorption also sometimes causes difficulties in PAT to resolve vessels. Optical coherence tomography (OCT) based angiography, on the other hand, has been proven suitable for microvasculature visualization in the first couple millimeters in human. In our work, we combine an all optical PAT system with an OCT system featuring a phase stable akinetic swept source. This multimodal PAT/OCT/OCT-angiography system provides us co-registered human skin vasculature information as well as the structural information of cutaneous. The scanning units of the sub-systems are assembled into one probe, which is then mounted onto a portable rack. The probe and rack design gives six degrees of freedom, allowing the multimodal optical imaging probe to access nearly all regions of human body. Utilizing this probe, we perform imaging on patients with various skin disorders as well as on healthy controls. Fused PAT/OCT-angiography volume shows the complete blood vessel network in human skin, which is further embedded in the morphology provided by OCT. A comparison between the results from the disordered regions and the normal regions demonstrates the clinical translational value of this multimodal optical imaging system in dermatology.

  17. Lifelong physical activity in maintaining bone strength in older men and women of the Age, Gene/Environment Susceptibility-Reykjavik Study.

    PubMed

    Rianon, N J; Lang, T F; Sigurdsson, G; Eiriksdottir, G; Sigurdsson, S; Garcia, M; Pajala, S; Koster, A; Yu, B; Selwyn, B J; Taylor, W C; Kapadia, A S; Gudnason, V; Launer, L J; Harris, T B

    2012-09-01

    We examined if lifelong physical activity is important for maintaining bone strength in the elderly. Associations of quantitative computerized tomography-acquired bone measures (vertebral and femoral) and self-reported physical activity in mid-life (mean age, 50 years), in old age (≥65 years), and throughout life (recalled during old age) were investigated in 2,110 men and 2,682 women in the AGES-Reykjavik Study. Results conclude lifelong physical activity with continuation into old age (≥65 years) best maintains better bone health later in life. Skeletal loading is thought to modulate the loss of bone in later life, and physical activity is a chief means of affecting bone strength by skeletal loading. Despite much discussion regarding lifelong versus early adulthood physical activity for preventing bone loss later in life, inconsistency still exists regarding how to maintain bone mass later in life (≥65 years). We examined if lifelong physical activity is important for maintaining bone strength in the elderly. The associations of quantitative computerized tomography-acquired vertebral and femoral bone measures and self-reported physical activity in mid-life (mean age, 50 years), in old age (≥65 years), and throughout life (recalled during old age) were investigated in 2,110 men and 2,682 women in the AGES-Reykjavik Study. Our findings conclude that lifelong physical activity with continuation into old age (≥65 years) best maintains better bone health in the elderly.

  18. Percutaneous nephrolithotomy in pediatric patients: is computerized tomography a must?

    PubMed

    Gedik, Abdullah; Tutus, Ali; Kayan, Devrim; Yılmaz, Yakup; Bircan, Kamuran

    2011-02-01

    The aim of this study was to retrospectively evaluate the results of pediatric percutaneous nephrolithotomy (PNL) cases, and discuss the results and necessity of non-contrast computerized tomography (CT) in these cases. In all, 48 pediatric patients who underwent PNL were retrospectively evaluated. Before PNL, either intravenous urography or CT was performed. In all patients, we evaluated the PNL time, scopy time with stone burden, and complications. During the PNL procedure, we switched to open surgery in two cases: in one because of renal pelvis perforation and in the other because of transcolonic access. In one patient who was scheduled to undergo PNL, we performed open surgery, primarily because we detected a retrorenal colon with CT. The stone burden in 45 patients who underwent PNL was 445 ± 225 mm(2), the PNL time was 51 ± 23 min, and the scopy time was 6.1 ± 2.7 min. We removed nephrostomy tubes 1-4 days after the procedure. In two patients, 24 h after removal of nephrostomy tubes, we inserted double J stents because of prolonged urine extravasation from the tract. In all, 34 of the 45 patients were stone-free, 5 patients had clinically insignificant stone fragments, and 6 patients had residual stones. PNL is a safe and effective method in the treatment of pediatric patients with kidney stones. Clinical experience is the most important factor in obtaining stone-free results. CT should be performed in all pediatric patients in order to prevent colon perforation.

  19. [Utility of methoxy isobutyl isonitrile (MIBI) scintigraphy, ultrasound and computerized axial tomography in preoperative topographic diagnosis of hiperparathyroidism].

    PubMed

    Gómez Palacios, Angel; Gómez Zábala, Jesús; Gutiérrez, María Teresa; Expósito, Amaya; Barrios, Borja; Zorraquino, Angel; Taibo, Miguel Angel; Iturburu, Ignacio

    2006-12-01

    1. To assess the sensitivity of scintigraphy using methoxy isobutyl isonitrile (MIBI). 2. To compare its resolution with that of ultrasound (US) and computerized axial tomography (CAT). 3. To use its diagnostic reliability to determine whether selective approaches can be used to treat hyperparathyroidism (HPT). A study of 76 patients who underwent surgery for HPT between 1996 and 2005 was performed. MIBI scintigraphy and cervical US were used for whole-body scanning in all patients; CAT was used in 47 patients. Intraoperative and postoperative biopsies were used for final evaluation of the tests, after visualization and surgical extirpation. The results of scintigraphy were positive in 65 patients (85.52%). The diagnosis was correct in all of the single images. Multiple images were due to hyperplasia and parathyroid adenomas with thyroid disease (5.2%). Three images, incorrectly classified as negative (3.94%), were positive. The sensitivity of US was 63% and allowed detection of three MIBI-negative adenomas (4%). CAT was less sensitive (55%), but detected a further three MIBI-negative adenomas (4%). 1. The sensitivity of MIBI reached 89.46%. In the absence of thyroid nodules, MIBI diagnosed 100% of single lesions. Pathological thyroid processes produced false-positive results (5.2%) and there were diagnostic errors (4%). 2. MIBI scintigraphy was more sensitive than US and CAT. 3. Positive, single image scintigraphy allows a selective cervical approach. US and CAT may help to save a further 8% of patients (with negative scintigraphy).

  20. Prevalence of Extracochlear Electrodes: Computerized Tomography Scans, Cochlear Implant Maps, and Operative Reports.

    PubMed

    Holder, Jourdan T; Kessler, David M; Noble, Jack H; Gifford, René H; Labadie, Robert F

    2018-06-01

    To quantify and compare the number of cochlear implant (CI) electrodes found to be extracochlear on postoperative computerized tomography (CT) scans, the number of basal electrodes deactivated during standard CI mapping (without knowledge of the postoperative CT scan), and the extent of electrode insertion noted by the surgeon. Retrospective. Academic Medical Center. Two hundred sixty-two patients underwent standard cochlear implantation and postoperative temporal bone CT scanning. Scans were analyzed to determine the number of extracochlear electrodes. Standard CI programming had been completed without knowledge of the extracochlear electrodes identified on the CT. These standard CI maps were reviewed to record the number of deactivated basal electrodes. Lastly, each operative report was reviewed to record the extent of reported electrode insertion. 13.4% (n = 35) of CIs were found to have at least one electrode outside of the cochlea on the CT scan. Review of CI mapping indicated that audiologists had deactivated extracochlear electrodes in 60% (21) of these cases. Review of operative reports revealed that surgeons correctly indicated the number of extracochlear electrodes in 6% (2) of these cases. Extracochlear electrodes were correctly identified audiologically in 60% of cases and in surgical reports in 6% of cases; however, it is possible that at least a portion of these cases involved postoperative electrode migration. Given these findings, postoperative CT scans can provide information regarding basal electrode location, which could help improve programming accuracy, associated frequency allocation, and audibility with appropriate deactivation of extracochlear electrodes.

  1. Staphylococcus caprae native mitral valve infective endocarditis.

    PubMed

    Kwok, T'ng Choong; Poyner, Jennifer; Olson, Ewan; Henriksen, Peter; Koch, Oliver

    2016-10-01

    Staphylococcus caprae is a rare cause of infective endocarditis. Here, we report a case involving the native mitral valve in the absence of an implantable cardiac electronic device. A 76-year-old man presented with a 2 week history of confusion and pyrexia. His past medical history included an open reduction and internal fixation of a humeral fracture 17 years previously, which remained non-united despite further revision 4 years later. There was no history of immunocompromise or farm-animal contact. Two sets of blood culture bottles, more than 12 h apart, were positive for S. caprae . Trans-thoracic echocardiography revealed a 1×1.2 cm vegetation on the mitral valve, with moderate mitral regurgitation. Due to ongoing confusion, he had a magnetic resonance imaging brain scan, which showed a subacute small vessel infarct consistent with a thromboembolic source. A humeral SPECT-CT (single-photon emission computerized tomography-computerized tomography) scan showed no clear evidence of acute osteomyelitis. Surgical vegetectomy and mitral-valve repair were considered to reduce the risk of further systemic embolism and progressive valve infection. However, the potential risks of surgery to this patient led to a decision to pursue a cure with antibiotic therapy alone. He remained well 3 months after discharge, with repeat echocardiography demonstrating a reduction in the size of the vegetation (0.9 cm). Management of this infection was challenging due to its rarity and its unclear progression, complicated by the dilemma surrounding surgical intervention in a patient with a complex medical background.

  2. Computerized tomography tailored for the assessment of microscopic hematuria.

    PubMed

    Lang, Erich K; Macchia, Richard J; Thomas, Raju; Ruiz-Deya, Gilberto; Watson, Richard A; Richter, Frank; Irwin R, Robert; Marberger, Michael; Mydlo, Jack; Lechner, Gerhard; Cho, Kyunghee C; Gayle, Brian

    2002-02-01

    We report the results of a multicenter study of arterial, corticomedullary, nephrographic and excretory phase helical computerized tomography (CT) for detecting and characterizing abnormalities causing asymptomatic microscopic hematuria. We evaluated 350 consecutive patients, including 216 men and 134 women 23 to 88 years old, with asymptomatic microscopic hematuria of undetermined cause at 4 medical centers. Patients with known urological pathology were excluded from study. We performed 4 helical CT sequences, including pre-enhancement phase imaging from kidney to symphysis pubis, arterial phase imaging of the kidney and lower pelvis, corticomedullary nephrographic phase imaging of the kidney and lower pelvis, and excretory phase imaging from kidney to symphysis pubis with 2 to 5 mm. collimation and 1 to 1.5 pitch. Of 171 proved lesions 158 were correctly diagnosed. There were 10 false-positive and 13 false-negative diagnoses, indicating 0.9239 sensitivity, 0.9441 specificity, 0.9404 positive and 0.9285 negative predictive values, (p <0.001). All cases of congenital renal lesions, calculous disease, ureteral lesion and neoplastic lesion of the bladder were correctly diagnosed, as were 40 of 41 inflammatory renal, 21 of 23 renal masses and 13 of 16 inflammatory bladder lesions. In 27 patients with renal calculi the study was limited to pre-enhancement spiral CT. A positive diagnosis rate of 45.1% (158 of 350 cases) for the causes of heretofore refractory cases of hematuria with high sensitivity and specificity attest to the effectiveness of our hematuria CT protocol and support its use.

  3. To Find a Better Dosimetric Parameter in the Predicting of Radiation-Induced Lung Toxicity Individually: Ventilation, Perfusion or CT based.

    PubMed

    Xiao, Lin-Lin; Yang, Guoren; Chen, Jinhu; Wang, Xiaohui; Wu, Qingwei; Huo, Zongwei; Yu, Qingxi; Yu, Jinming; Yuan, Shuanghu

    2017-03-15

    This study aimed to find a better dosimetric parameter in predicting of radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) individually: ventilation(V), perfusion (Q) or computerized tomography (CT) based. V/Q single-photon emission computerized tomography (SPECT) was performed within 1 week prior to radiotherapy (RT). All V/Q imaging data was integrated into RT planning system, generating functional parameters based on V/Q SPECT. Fifty-seven NSCLC patients were enrolled in this prospective study. Fifteen (26.3%) patients underwent grade ≥2 RILT, the remaining forty-two (73.7%) patients didn't. Q-MLD, Q-V20, V-MLD, V-V20 of functional parameters correlated more significantly with the occurrence of RILT compared to V20, MLD of anatomical parameters (r = 0.630; r = 0.644; r = 0.617; r = 0.651 vs. r = 0.424; r = 0.520 p < 0.05, respectively). In patients with chronic obstructive pulmonary diseases (COPD), V functional parameters reflected significant advantage in predicting RILT; while in patients without COPD, Q functional parameters reflected significant advantage. Analogous results were existed in fractimal analysis of global pulmonary function test (PFT). In patients with central-type NSCLC, V parameters were better than Q parameters; while in patients with peripheral-type NSCLC, the results were inverse. Therefore, this study demonstrated that choosing a suitable dosimetric parameter individually can help us predict RILT accurately.

  4. Preoperative evaluation of hilar vessel anatomy with 3-D computerized tomography in living kidney donors.

    PubMed

    Tombul, S T; Aki, F T; Gunay, M; Inci, K; Hazirolan, T; Karcaaltincaba, M; Erkan, I; Bakkaloglu, A; Yasavul, U; Bakkaloglu, M

    2008-01-01

    Digital subtract angiography is the gold standard for anatomic assessment of renal vasculature for living renal donors. However, multidetector-row computerized tomography (MDCT) is less invasive than digital subtract angiography and provides information of kidney stones and other intra-abdominal organs. In this study, preoperative MDCT angiography results were compared with the peroperative findings to evaluate the accuracy of MDCT for the evaluation of renal anatomy. From December 2002 to May 2007, all 60 consecutive living kidney donors were evaluated with MDCT angiography preoperatively. We reported the number and origin of renal arteries, presence of early branching arteries, and any intrinsic renal artery disease. Renal venous anatomy was evaluated for the presence of accessory, retroaortic, and circumaortic veins using venous phase axial images. The calyces and ureters were assessed with delayed topograms. The results of the MDCT angiography were compared with the peroperative findings. A total of 67 renal arteries were seen peroperatively in 60 renal units. Preoperative MDCT angiography detected 64 of them. The two arteries not detected by MDCT had diameters less than 3 mm. Anatomic variations were present in nine veins, five of which were detected by CT angiography. Sensitivity of MDCT angiography for arteries and veins was 95% and 93%, respectively. Positive predictive values were 100% for both arteries and veins. MDCT angiography offers a less invasive, rapid, and accurate preoperative investigation modality for vascular anatomy in living kidney donors. It also provides sufficient information about extrarenal anatomy important for donor surgery.

  5. Computerized tomography with 3-dimensional reconstruction for the evaluation of renal size and arterial anatomy in the living kidney donor.

    PubMed

    Janoff, Daniel M; Davol, Patrick; Hazzard, James; Lemmers, Michael J; Paduch, Darius A; Barry, John M

    2004-01-01

    Computerized tomography (CT) with 3-dimensional (3-D) reconstruction has gained acceptance as an imaging study to evaluate living renal donors. We report our experience with this technique in 199 consecutive patients to validate its predictions of arterial anatomy and kidney volumes. Between January 1997 and March 2002, 199 living donor nephrectomies were performed at our institution using an open technique. During the operation arterial anatomy was recorded as well as kidney weight in 98 patients and displacement volume in 27. Each donor had been evaluated preoperatively by CT angiography with 3-D reconstruction. Arterial anatomy described by a staff radiologist was compared with intraoperative findings. CT estimated volumes were reported. Linear correlation graphs were generated to assess the reliability of CT volume predictions. The accuracy of CT angiography for predicting arterial anatomy was 90.5%. However, as the number of renal arteries increased, predictive accuracy decreased. The ability of CT to predict multiple arteries remained high with a positive predictive value of 95.2%. Calculated CT volume and kidney weight significantly correlated (0.654). However, the coefficient of variation index (how much average CT volume differed from measured intraoperative volume) was 17.8%. CT angiography with 3-D reconstruction accurately predicts arterial vasculature in more than 90% of patients and it can be used to compare renal volumes. However, accuracy decreases with multiple renal arteries and volume comparisons may be inaccurate when the difference in kidney volumes is within 17.8%.

  6. Association between gamma-glutamyltransferase and coronary artery calcification.

    PubMed

    Atar, Asli I; Yilmaz, Omer C; Akin, Kayihan; Selcoki, Yusuf; Er, Okan; Eryonucu, Beyhan

    2013-08-20

    The exact mechanisms behind the association between atherosclerosis and gamma-glutamyltransferase (GGT) are unclear. Coronary artery calcification (CAC) detected by computerized tomography is an important marker of atherosclerosis and its severity correlates with coronary plaque burden. The aim of this study was to investigate if serum GGT levels are associated with CAC in patients without known coronary heart disease (CHD) who had low-intermediate risk for CHD. Two hundred and seventy two patients who had low-intermediate risk for coronary artery disease were included in the study. Serum GGT levels were measured spectrophotometrically. CACS (Agatston method) were performed using a 64-slice computerized tomography scanner. The patients were grouped according to their GGT values in four quartiles. Patients in higher GGT quartiles had elevated CAC score (P<0.001). Patients in higher GGT quartiles were predominantly males (P<0.001) and were more likely to be smoking (P=0.004), and have elevated uric acid (P<0.001), fasting blood glucose (P<0.001), CRP levels (P=0.003) and 10-year total cardiovascular risk (P=0.007) and low HDL levels (P<0.001). Positive correlations were found between log GGT and CAC (r=0.233, P<0.001). In the multivariate analysis GGT, age, smoking and serum uric acid levels appeared as independent factors predictive of presence of CAC. We demonstrated a significant correlation between serum GGT levels and CAC and CHD risk factors. Serum GGT level was an independent marker of CAC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Variability in Cobb angle measurements using reformatted computerized tomography scans.

    PubMed

    Adam, Clayton J; Izatt, Maree T; Harvey, Jason R; Askin, Geoffrey N

    2005-07-15

    Survey of intraobserver and interobserver measurement variability. To assess the use of reformatted computerized tomography (CT) images for manual measurement of coronal Cobb angles in idiopathic scoliosis. Cobb angle measurements in idiopathic scoliosis are traditionally made from standing radiographs, whereas CT is often used for assessment of vertebral rotation. Correlating Cobb angles from standing radiographs with vertebral rotations from supine CT is problematic because the geometry of the spine changes significantly from standing to supine positions, and 2 different imaging methods are involved. We assessed the use of reformatted thoracolumbar CT images for Cobb angle measurement. Preoperative CT of 12 patients with idiopathic scoliosis were used to generate reformatted coronal images. Five observers measured coronal Cobb angles on 3 occasions from each of the images. Intraobserver and interobserver variability associated with Cobb measurement from reformatted CT scans was assessed and compared with previous studies of measurement variability using plain radiographs. For major curves, 95% confidence intervals for intraobserver and interobserver variability were +/-6.6 degrees and +/-7.7 degrees, respectively. For minor curves, the intervals were +/-7.5 degrees and +/-8.2 degrees, respectively. Intraobserver and interobserver technical error of measurement was 2.4 degrees and 2.7 degrees, with reliability coefficients of 88% and 84%, respectively. There was no correlation between measurement variability and curve severity. Reformatted CT images may be used for manual measurement of coronal Cobb angles in idiopathic scoliosis with similar variability to manual measurement of plain radiographs.

  8. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  9. Transient spectral domain optical coherence tomography findings in classic MEWDS: a case report.

    PubMed

    Lavigne, Luciana Castro; Isaac, David Leonardo Cruvinel; Duarte Júnior, José Osório; Avila, Marcos Pereira de

    2014-01-01

    The purpose of this study was to describe a patient with multiple evanescent white dot syndrome (MEWDS) who presented with classic retinal findings and transient changes in outer retinal anatomy. A 20-year-old man presented with mild blurred vision in the left eye, reporting flu-like symptoms 1 week before the visual symptoms started. Fundus examination of the left eye revealed foveal granularity and multiple scattered spots deep to the retina in the posterior pole. Fluorescein angiography and indocyanine green angiography showed typical MEWDS findings. Spectral Domain Optical Coherence Tomography has shown transient changes in outer retinal anatomy with disappearance of inner segment-outer segment junction and mild attenuation of external limiting membrane. Six months later, Spectral Domain Optical Coherence Tomography has shown complete resolution with recovery of normal outer retinal aspect.

  10. A common-path optical coherence tomography based electrode for structural imaging of nerves and recording of action potentials

    NASA Astrophysics Data System (ADS)

    Islam, M. Shahidul; Haque, Md. Rezuanul; Oh, Christian M.; Wang, Yan; Park, B. Hyle

    2013-03-01

    Current technologies for monitoring neural activity either use different variety of electrodes (electrical recording) or require contrast agents introduced exogenously or through genetic modification (optical imaging). Here we demonstrate an optical method for non-contact and contrast agent free detection of nerve activity using phase-resolved optical coherence tomography (pr-OCT). A common-path variation of the pr-OCT is recently implemented and the developed system demonstrated the capability to detect rapid transient structural changes that accompany neural spike propagation. No averaging over multiple trials was required, indicating its capability of single-shot detection of individual impulses from functionally stimulated Limulus optic nerve. The strength of this OCT-based optical electrode is that it is a contactless method and does not require any exogenous contrast agent. With further improvements in accuracy and sensitivity, this optical electrode will play a complementary role to the existing recording technologies in future.

  11. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging

    PubMed Central

    Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C.; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P.; Leitgeb, Rainer A.; Kittler, Harald; Drexler, Wolfgang

    2016-01-01

    Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo. PMID:27699106

  12. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  13. Optical clearing for luminal organ imaging with ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liang, Yanmei; Yuan, Wu; Mavadia-Shukla, Jessica; Li, Xingde

    2016-08-01

    The imaging depth of optical coherence tomography (OCT) in highly scattering biological tissues (such as luminal organs) is limited, particularly for OCT operating at shorter wavelength regions (such as around 800 nm). For the first time, the optical clearing effect of the mixture of liquid paraffin and glycerol on luminal organs was explored with ultrahigh-resolution spectral domain OCT at 800 nm. Ex vivo studies were performed on pig esophagus and bronchus, and guinea pig esophagus with different volume ratios of the mixture. We found that the mixture of 40% liquid paraffin had the best optical clearing effect on esophageal tissues with a short effective time of ˜10 min, which means the clearing effect occurs about 10 min after the application of the clearing agent. In contrast, no obvious optical clearing effect was identified on bronchus tissues.

  14. Optical-fiber-based Mueller optical coherence tomography.

    PubMed

    Jiao, Shuliang; Yu, Wurong; Stoica, George; Wang, Lihong V

    2003-07-15

    An optical-fiber-based multichannel polarization-sensitive Mueller optical coherence tomography (OCT) system was built to acquire the Jones or Mueller matrix of a scattering medium, such as biological tissue. For the first time to our knowledge, fiber-based polarization-sensitive OCT was dynamically calibrated to eliminate the polarization distortion caused by the single-mode optical fiber in the sample arm, thereby overcoming a key technical impediment to the application of optical fibers in this technology. The round-trip Jones matrix of the sampling fiber was acquired from the reflecting surface of the sample for each depth scan (A scan) with our OCT system. A new rigorous algorithm was then used to retrieve the calibrated polarization properties of the sample. This algorithm was validated with experimental data. The skin of a rat was imaged with this fiber-based system.

  15. Optical coherence tomography: A guide to interpretation of common macular diseases

    PubMed Central

    Bhende, Muna; Shetty, Sharan; Parthasarathy, Mohana Kuppuswamy; Ramya, S

    2018-01-01

    Optical coherence tomography is a quick, non invasive and reproducible imaging tool for macular lesions and has become an essential part of retina practice. This review address the common protocols for imaging the macula, basics of image interpretation, features of common macular disorders with clues to differentiate mimickers and an introduction to choroidal imaging. It includes case examples and also a practical algorithm for interpretation. PMID:29283118

  16. Pathogenesis of the dry eye syndrome observed by optical coherence tomography in vitro

    NASA Astrophysics Data System (ADS)

    Kray, Oya; Lenz, Markus; Spöler, Felix; Kray, Stefan; Kurz, Heinrich

    2011-06-01

    Three dimensional optical coherence tomography (OCT) is introduced as a valuable tool to analyze the pathogenesis of corneal diseases. Here, OCT in combination with a novel in vitro model for the dry eye syndrome enables an improved understanding of the underlying damaging process of the ocular surface. En-face OCT projections indicate a deep structural damage of the epithelium and anterior stroma by osmotic forces.

  17. An algorithm for improving the quality of structural images of turbid media in endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    High-quality OCT structural images reconstruction algorithm for endoscopic optical coherence tomography of biological tissue is described. The key features of the presented algorithm are: (1) raster scanning and averaging of adjacent Ascans and pixels; (2) speckle level minimization. The described algorithm can be used in the gastroenterology, urology, gynecology, otorhinolaryngology for mucous membranes and skin diagnostics in vivo and in situ.

  18. DISCORDANCE BETWEEN BLUE-LIGHT AUTOFLUORESCENCE AND NEAR-INFRARED AUTOFLUORESCENCE IN AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Heiferman, Michael J; Fawzi, Amani A

    2016-12-01

    To identify the origin and significance of discordance between blue-light autofluorescence (BL-AF; 488 nm) and near-infrared autofluorescence (NI-AF; 787 nm) in patients with age-related macular degeneration (AMD). A total of 86 eyes of 59 patients with a diagnosis of AMD were included in this cross-sectional study conducted between March 9, 2015 and May 1, 2015. A masked observer examined the BL-AF, NI-AF, and spectral-domain optical coherence tomography images. Areas with discordance of autofluorescence patterns between NI-AF and BL-AF images were correlated with structural findings at the corresponding location in optical coherence tomography scans. Seventy-nine eyes had discordance between BL-AF and NI-AF. The most common optical coherence tomography finding accounting for these discrepancies was pigment migration accounting for 35 lesions in 21 eyes. The most clinically relevant finding was geographic atrophy missed on BL-AF in 7 eyes. Our findings indicate that variations in the distribution of lipofuscin, melanin and melanolipofuscin account for the majority of discordance between BL-AF and NI-AF. Given our finding of missed geographic atrophy lesions on BL-AF in 24% of eyes with geographic atrophy (7/29 eyes), clinicians should consider multimodal imaging, including NI-AF and optical coherence tomography, especially in clinical trials of geographic atrophy.

  19. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope

    NASA Astrophysics Data System (ADS)

    Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.

    2009-11-01

    The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.

  20. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY SHOWS INNER CHOROIDAL ISCHEMIA IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY.

    PubMed

    Dolz-Marco, Rosa; Sarraf, David; Giovinazzo, Vincent; Freund, K Bailey

    2017-01-01

    To describe multimodal imaging findings of an evolving case of acute posterior multifocal placoid pigment epitheliopathy occurring in a young healthy male. Case report of a patient with acute posterior multifocal placoid pigment epitheliopathy including comprehensive systemic and ocular examinations. Ultra-widefield autofluorescence, fluorescein angiography, indocyanine green angiography, and serial optical coherence tomography angiography were performed. A 34-year-old male presented with acute vision loss in his left eye for 2 weeks. His best-corrected visual acuity was 20/20 in his right eye and 20/200 in his left eye. Dilated funduscopic examination revealed multiple creamy white deep retinal lesions showing macular involvement of the left eye with a diffuse area of pigmentary changes. The presence of multiple areas of hypoperfusion of the inner choroid were demonstrated with fluorescein and indocyanine green angiography. Serial optical coherence tomography angiography showed multiple evolving areas of decreased flow at the level of the inner choroid. Although the pathogenesis of acute posterior multifocal placoid pigment epitheliopathy remains unknown, there is growing evidence of a primary choroidal involvement with secondary damage to the overlying retinal pigment epithelium and the outer retinal layers. Optical coherence tomography angiography may provide valuable information for the diagnosis and follow-up of this condition avoiding invasive angiographic procedures.

  1. Passively Driven Probe Based on Miniaturized Propeller for Intravascular Optical Coherence Tomography.

    PubMed

    Lu, Yu; Li, Zhongliang; Nan, Nan; Bu, Yang; Liu, Xuebo; Xu, Xiangdong; Wang, Xuan; Sasaki, Osami; Wang, Xiangzhao

    2018-03-26

    Optical coherent tomography (OCT) has enabled clinical applications ranging from ophthalmology to cardiology that revolutionized in vivo medical diagnostics in the last few decades, and a variety of endoscopic probes have been developed in order to meet the needs of various endoscopic OCT imaging. We propose a passive driven intravascular optical coherent tomography (IV-OCT) probe in this paper. Instead of using any electrically driven scanning device, the probe makes use of the kinetic energy of the fluid that flushes away the blood during the intravascular optical coherence tomography imaging. The probe converts it into the rotational kinetic energy of the propeller, and the rotation of the rectangular prism mounted on the propeller shaft enables the scanning of the beam. The probe is low cost, and enables unobstructed stable circumferential scanning over 360 deg. The experimental results show that the probe scanning speed can exceed 100 rotations per second (rps). Spectral-domain OCT imaging of a phantom and porcine cardiac artery are demonstrated with axial resolution of 13.6 μm, lateral resolution of 22 μm, and sensitivity of 101.7 dB. We present technically the passively driven IV-OCT probe in full detail and discuss how to optimize the probe in further.

  2. MULTIMODAL IMAGING OF CHOROIDAL LESIONS IN DISSEMINATED MYCOBACTERIUM CHIMAERA INFECTION AFTER CARDIOTHORACIC SURGERY.

    PubMed

    Böni, Christian; Al-Sheikh, Mayss; Hasse, Barbara; Eberhard, Roman; Kohler, Philipp; Hasler, Pascal; Erb, Stefan; Hoffmann, Matthias; Barthelmes, Daniel; Zweifel, Sandrine A

    2017-12-04

    To explore morphologic characteristics of choroidal lesions in patients with disseminated Mycobacterium chimaera infection subsequent to open-heart surgery. Nine patients (18 eyes) with systemic M. chimaera infection were reviewed. Activity of choroidal lesions were evaluated using biomicroscopy, fundus autofluorescence, enhanced depth imaging optical coherence tomography, fluorescein angiography/indocyanine green angiography, and optical coherence tomography angiography. Relationships of choroidal findings to systemic disease activity were sought. All 9 male patients, aged between 49 and 66 years, were diagnosed with endocarditis and/or aortic graft infection. Mean follow-up was 17.6 months. Four patients had only inactive lesions (mild disease). In all five patients (10 eyes) with progressive ocular disease, indocyanine green angiography was superior to other tests for revealing new lesions and active lesions correlated with hyporeflective choroidal areas on enhanced depth imaging optical coherence tomography. One eye with a large choroidal granuloma developed choroidal neovascularization. Optical coherence tomography angiography showed areas with reduced perfusion at the inner choroid. All 5 patients with progressive ocular disease had evidence of systemic disease activity within ±6 weeks' duration. Choroidal manifestation of disseminated M. chimaera infection indicates systemic disease activity. Multimodal imaging is suitable to recognize progressive ocular disease. We propose ophthalmologic screening examinations for patients with M. chimaera infection.

  3. Diffuse optical tomography for breast cancer imaging guided by computed tomography: A feasibility study.

    PubMed

    Baikejiang, Reheman; Zhang, Wei; Li, Changqing

    2017-01-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as hemoglobin, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer imaging. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at the wavelength of 650 nm and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements and width of measurement patch, have been investigated. Our results indicate that an air-cooling EMCCD camera is good enough for the transmission mode DOT imaging. We have also found that measurements at six angular projections are sufficient for DOT to reconstruct the optical targets with 2 and 4 times absorption contrast when the CT guidance is applied. Finally, we have described our future research plan on integration of a multispectral DOT imaging system into a breast CT scanner.

  4. Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography

    PubMed Central

    Sharma, Giriraj K.; Loy, Anthony Chin; Su, Erica; Jing, Joe; Chen, Zhongping; Wong, Brian J-F.; Verma, Sunil

    2016-01-01

    Objectives To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS). Results Intraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual “fly through” bronchoscopy. Conclusions This is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS. PMID:27354215

  5. High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound.

    PubMed

    Forget, Benoît-Claude; Ramaz, François; Atlan, Michaël; Selb, Juliette; Boccara, Albert-Claude

    2003-03-01

    We report new results on acousto-optical tomography in phantom tissues using a frequency chirp modulation and a CCD camera. This technique allows quick recording of three-dimensional images of the optical contrast with a two-dimensional scan of the ultrasound source in a plane perpendicular to the ultrasonic path. The entire optical contrast along the ultrasonic path is concurrently obtained from the capture of a film sequence at a rate of 200 Hz. This technique reduces the acquisition time, and it enhances the axial resolution and thus the contrast, which are usually poor owing to the large volume of interaction of the ultrasound perturbation.

  6. Diffuse Optics for Tissue Monitoring and Tomography

    PubMed Central

    Durduran, T; Choe, R; Baker, W B; Yodh, A G

    2015-01-01

    This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics. PMID:26120204

  7. Development of novel high-speed en face optical coherence tomography system using KTN optical beam deflector

    NASA Astrophysics Data System (ADS)

    Ohmi, Masato; Fukuda, Akihiro; Miyazu, Jun; Ueno, Masahiro; Toyoda, Seiji; Kobayashi, Junya

    2015-02-01

    We developed a novel high-speed en face optical coherence tomography (OCT) system using a KTa1-xNbxO3 (KTN) optical beam deflector. Using the imaging system, fast scanning was performed at 200 kHz by the KTN beam deflector, while slow scanning was performed at 400 Hz by the galvanometer mirror. In a preliminary experiment, we obtained en face OCT images of a human fingerprint at 400 fps. This is the highest speed reported in time-domain en face OCT imaging and is comparable to the speed of swept-source OCT. A 3D-OCT image of a sweat gland was also obtained by our imaging system.

  8. Camera calibration for multidirectional flame chemiluminescence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Zhang, Weiguang; Zhang, Yuhong; Yu, Xun

    2017-04-01

    Flame chemiluminescence tomography (FCT), which combines computerized tomography theory and multidirectional chemiluminescence emission measurements, can realize instantaneous three-dimensional (3-D) diagnostics for flames with high spatial and temporal resolutions. One critical step of FCT is to record the projections by multiple cameras from different view angles. For high accuracy reconstructions, it requires that extrinsic parameters (the positions and orientations) and intrinsic parameters (especially the image distances) of cameras be accurately calibrated first. Taking the focus effect of the camera into account, a modified camera calibration method was presented for FCT, and a 3-D calibration pattern was designed to solve the parameters. The precision of the method was evaluated by reprojections of feature points to cameras with the calibration results. The maximum root mean square error of the feature points' position is 1.42 pixels and 0.0064 mm for the image distance. An FCT system with 12 cameras was calibrated by the proposed method and the 3-D CH* intensity of a propane flame was measured. The results showed that the FCT system provides reasonable reconstruction accuracy using the camera's calibration results.

  9. Imaging lung perfusion

    PubMed Central

    Wielpütz, Mark O.; Kauczor, Hans-Ulrich

    2012-01-01

    From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1–12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique. PMID:22604884

  10. Nuclear medicine in clinical neurology: an update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldendorf, W.H.

    1981-01-01

    Isotope scanning using technetium 99m pertechnetate has fallen into disuse since the advent of x-ray computerized tomography. Regional brain blood flow studies have been pursued on a research basis. Increased regional blood flow during focal seizure activity has been demonstrated and is of use in localizing such foci. Cisternography as a predictive tool in normal pressure hydrocephalus is falling into disuse. Positron tomographic scanning is a potent research tool that can demonstrate both regional glycolysis and blood flow. Unfortunately, it is extremely expensive and complex to apply in a clinical setting. With support from the National Institutes of Health, sevenmore » extramural centers have been funded to develop positron tomographic capabilities, and they will greatly advance our knowledge of stroke pathophysiology, seizure disorders, brain tumors, and various degenerative diseases. Nuclear magnetic resonance imaging is a potentially valuable tool since it creates tomographic images representing the distribution of brain water. No tissue ionization is produced, and images comparable to second-generation computerized tomographic scans are already being produced in humans.« less

  11. Comprehensive Clinical Staging for Resectable Lung Cancer: Clinicopathological Correlations and the Role of Brain MRI.

    PubMed

    Vernon, Jordyn; Andruszkiewicz, Nicole; Schneider, Laura; Schieman, Colin; Finley, Christian J; Shargall, Yaron; Fahim, Christine; Farrokhyar, Forough; Hanna, Waël C

    2016-11-01

    In our model of comprehensive clinical staging (CCS) for lung cancer, patients with a computerized tomography scan of the chest and upper abdomen not showing distant metastases will then routinely undergo whole body positron emission tomography/computerized tomography and magnetic resonance imaging (MRI) of the brain before any therapeutic decision. Our aim was to determine the accuracy of CCS and the value of brain MRI in this population. A retrospective analysis of a prospectively entered database was performed for all patients who underwent lung cancer resection from January 2012 to June 2014. Demographics, clinical and pathological stage (seventh edition of the American Joint Committee on Cancer/Union for International Cancer Control tumor, node, and metastasis staging manual), and costs of staging were collected. Correlation between clinical and pathological stage was determined. Of 315 patients with primary lung cancer, 55.6% were female and the mean age was 70 ± 9.6 years. When correlation was analyzed without consideration for substages A and B, 49.8% of patients (158 of 315) were staged accurately, 39.7% (125 of 315) were overstaged, and 10.5% (32 of 315) were understaged. Only 4.7% of patients (15 of 315) underwent surgery without appropriate neoadjuvant treatment. Preoperative brain MRI detected asymptomatic metastases in four of 315 patients (1.3%). At a median postoperative follow-up of 19 months (range 6-43), symptomatic brain metastases developed in seven additional patients. The total cost of CCS in Canadian dollars was $367,292 over the study period, with $117,272 (31.9%) going toward brain MRI. CCS is effective for patients with resectable lung cancer, with less than 5% of patients being denied appropriate systemic treatment before surgery. Brain MRI is a low-yield and high-cost intervention in this population, and its routine use should be questioned. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  12. Variable pixel size ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei

    2017-06-01

    A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the proposed method offers an improvement of 8% compared with conventional constant pixel size tomography models in the forward modeling.

  13. Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore

    2016-12-01

    The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.

  14. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu

    2016-03-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.

  15. Dreamweaver and Flash: Strategies for Updating Communication Systems Instruction

    ERIC Educational Resources Information Center

    Hill, Roger B.

    2004-01-01

    The rate of innovation and change impacting technology education communication systems instruction has been vigorous for longer than most people can remember. Trends have included analog systems being replaced by digital systems, integration of networks and system devices, computerization, optical storage, and wireless transmission of data. The…

  16. Optical analysis of crystal growth

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Passeur, Andrea; Harper, Sabrina

    1994-01-01

    Processing and data reduction of holographic images from Spacelab presents some interesting challenges in determining the effects of microgravity on crystal growth processes. Evaluation of several processing techniques, including the Computerized Holographic Image Processing System and the image processing software ITEX150, will provide fundamental information for holographic analysis of the space flight data.

  17. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    PubMed

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  18. Quantitative polarization and flow evaluation of choroid and sclera by multifunctional Jones matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugiyama, S.; Hong, Y.-J.; Kasaragod, D.; Makita, S.; Miura, M.; Ikuno, Y.; Yasuno, Y.

    2016-03-01

    Quantitative evaluation of optical properties of choroid and sclera are performed by multifunctional optical coherence tomography. Five normal eyes, five glaucoma eyes and one choroidal atrophy eye are examined. The refractive error was found to be correlated with choroidal birefringence, polarization uniformity, and flow in addition to scleral birefringence among normal eyes. The significant differences were observed between the normal and the glaucoma eyes, as for choroidal polarization uniformity, flow and scleral birefringence. An automatic segmentation algorithm of retinal pigment epithelium and chorioscleral interface based on multifunctional signals is also presented.

  19. Diagnosis of cardiovascular diseases based on diffuse optical tomography system

    NASA Astrophysics Data System (ADS)

    Yu, Zong-Han; Wu, Chun-Ming; Lin, Yo-Wei; Chuang, Ming-Lung; Tsai, Jui-che; Sun, Chia-Wei

    2008-02-01

    Diffuse optical tomography (DOT) is a technique to assess the spatial variation in absorption and scattering properties of the biological tissues. DOT provides the measurement of changes in concentrations of oxy-hemoglobin and deoxy-hemoglobin. The oxygenation images are reconstructed by the measured optical signals with nearest-neighbor pairs of sources and detectors. In our study, a portable DOT system is built with optode design on a flexible print circuit board (FPCB). In experiments, the hemodynamics temporal evolution of exercises and vessel occlusions are observed with in vivo measurements form normal subjects and some patients in intensive care unit.

  20. Dental OCT

    NASA Astrophysics Data System (ADS)

    Colston, Bill W.; Sathyam, Ujwal S.; Dasilva, Luiz B.; Everett, Matthew J.; Stroeve, Pieter; Otis, L. L.

    1998-09-01

    We present here the first in vivo optical coherence tomography (OCT) images of human dental tissue. A novel dental optical coherence tomography system has been developed. This system incorporates the interferometer sample arm and transverse scanning optics into a handpiece that can be used intraorally to image human dental tissues. The average imaging depth of this system varied from 3 mm in hard tissues to 1.5 mm in soft tissues. We discuss the application of this imaging system for dentistry and illustrate the potential of our dental OCT system for diagnosis of periodontal disease, detection of caries, and evaluation of dental restorations.

  1. Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study.

    PubMed

    Di Sieno, Laura; Zouaoui, Judy; Hervé, Lionel; Pifferi, Antonio; Farina, Andrea; Martinenghi, Edoardo; Derouard, Jacques; Dinten, Jean-Marc; Mora, Alberto Dalla

    2016-11-01

    Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thus opening the way to the use of SiPMs for DOT, with the possibility to conceive a new generation of low-cost and reliable multichannel tomographic systems.

  2. Combined optical coherence tomography and hyper-spectral imaging using a double clad fiber coupler

    NASA Astrophysics Data System (ADS)

    Guay-Lord, Robin; Lurie, Kristen L.; Attendu, Xavier; Mageau, Lucas; Godbout, Nicolas; Ellerbee Bowden, Audrey K.; Strupler, Mathias; Boudoux, Caroline

    2016-03-01

    This proceedings shows the combination of Optical Coherence Tomography (OCT) and Hyper-Spectral Imaging (HSI) using a double-clad optical fiber. The single mode core of the fiber is used to transmit OCT signals, while the cladding, with its large collection area, provides an efficient way to capture the reflectance spectrum of the sample. The combination of both methods enables three-dimensional acquisition of sample morphology with OCT, enhanced by the molecular information contained in its hyper-spectral image. We believe that the combination of these techniques could result in endoscopes with enhanced tissue identification capability.

  3. Endoscopic Optical Coherence Tomography for Clinical Gastroenterology

    PubMed Central

    Tsai, Tsung-Han; Fujimoto, James G.; Mashimo, Hiroshi

    2014-01-01

    Optical coherence tomography (OCT) is a real-time optical imaging technique that is similar in principle to ultrasonography, but employs light instead of sound waves and allows depth-resolved images with near-microscopic resolution. Endoscopic OCT allows the evaluation of broad-field and subsurface areas and can be used ancillary to standard endoscopy, narrow band imaging, chromoendoscopy, magnification endoscopy, and confocal endomicroscopy. This review article will provide an overview of the clinical utility of endoscopic OCT in the gastrointestinal tract and of recent achievements using state-of-the-art endoscopic 3D-OCT imaging systems. PMID:26852678

  4. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography.

    PubMed

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2008-06-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance.

  5. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  6. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography

    PubMed Central

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2014-01-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051

  7. Development and Translation of Hybrid Optoacoustic/Ultrasonic Tomography for Early Breast Cancer Detection

    DTIC Science & Technology

    2015-09-01

    OAT) and laser-induced ultrasound tomography (LUT) to obtain coregistered maps of tissue optical absorption and speed of sound , displayed within the...computed tomography (UST) can provide high-resolution anatomical images of breast lesions based on three complementary acoustic properties (speed-of- sound ...tomography (UST) can provide high-resolution anatomical images of breast lesions based on three complementary acoustic properties (speed-of- sound

  8. Simultaneous multimodal ophthalmic imaging using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    PubMed Central

    Malone, Joseph D.; El-Haddad, Mohamed T.; Bozic, Ivan; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2016-01-01

    Scanning laser ophthalmoscopy (SLO) benefits diagnostic imaging and therapeutic guidance by allowing for high-speed en face imaging of retinal structures. When combined with optical coherence tomography (OCT), SLO enables real-time aiming and retinal tracking and provides complementary information for post-acquisition volumetric co-registration, bulk motion compensation, and averaging. However, multimodality SLO-OCT systems generally require dedicated light sources, scanners, relay optics, detectors, and additional digitization and synchronization electronics, which increase system complexity. Here, we present a multimodal ophthalmic imaging system using swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) for in vivo human retinal imaging. SESLO reduces the complexity of en face imaging systems by multiplexing spatial positions as a function of wavelength. SESLO image quality benefited from single-mode illumination and multimode collection through a prototype double-clad fiber coupler, which optimized scattered light throughput and reduce speckle contrast while maintaining lateral resolution. Using a shared 1060 nm swept-source, shared scanner and imaging optics, and a shared dual-channel high-speed digitizer, we acquired inherently co-registered en face retinal images and OCT cross-sections simultaneously at 200 frames-per-second. PMID:28101411

  9. Advances in optical coherence tomography in dermatology-a review

    NASA Astrophysics Data System (ADS)

    Olsen, Jonas; Holmes, Jon; Jemec, Gregor B. E.

    2018-04-01

    Optical coherence tomography (OCT) was introduced as an imaging system, but like ultrasonography, other measures, such as blood perfusion and polarization of light, have enabled the technology to approach clinical utility. This review aims at providing an overview of the advances in clinical research based on the improving technical aspects. OCT provides cross-sectional and en face images down to skin depths of 0.4 to 2.00 mm with optical resolution of 3 to 15 μm. Dynamic optical coherence tomography (D-OCT) enables the visualization of cutaneous microvasculature via detection of rapid changes in the interferometric signal of blood flow. Nonmelanoma skin cancer (NMSC) is the most comprehensively investigated topic, resulting in improved descriptions of morphological features and diagnostic criteria. A refined scoring system for diagnosing NMSC, taking findings from conventional and D-OCT into account, is warranted. OCT diagnosis of melanoma is hampered by the resolution and the optical properties of melanin. D-OCT may be of value in diseases characterized with dynamic changes in the vasculature of the skin and the addition of functional measures is strongly encouraged. In conclusion, OCT in dermatology is still an emerging technology that has great potential for improving further in the future.

  10. A laminar optical tomography system for the early cervical cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Cui, Shanshan; Jia, Mengyu; Chen, Xueying; Meng, Wei; Gao, Feng; Zhao, Huijuan

    2014-03-01

    Laminar optical tomography (LOT) is a new mesoscopic functional optical imaging technique, which is an extension of a confocal microscope and diffuse optical tomography to acquire both the coaxial and off-axis scattered light at the same time. In this paper, a LOT system with a larger detection area aiming at the in vivo detection of early cervical cancer is developed. The field of view of our system is 10 mm x 10 mm. In order to improve the image quality of the system, two methods were performed: the correction of image distortion and the restriction of returning light. The performance of the system with aperture stop was assessed by liquid phantom experiments. Comparing with the Monte Carlo simulation, the measurement results show that the average relative errors of eight different source-detector distances corresponding to 4 source points are lower than the errors of the system taking the frame of objective lens as the aperture stop by 5.7%, 4.8%, 6.1%, 6.1% respectively. Moreover, the experiment based on the phantom with specified structure and optical parameters to simulate the cervix demonstrates that the system perform well for the cervix measurement.

  11. Optical coherence tomography angiography in glaucoma care.

    PubMed

    Chansangpetch, Sunee; Lin, Shan C

    2018-05-14

    Rapid improvements in optical coherence tomography (OCT) technology have allowed for enhancement of both image resolution and scanning speed, and the development of vascular assessment modality. Optical coherence tomography angiography (OCTA) is the non-invasive in vivo imaging of the vasculature located within the retina and optic nerve head area. The principle of OCTA is to use the variations in OCT signals caused by moving particles as the contrast mechanism for imaging of flow. Several algorithms which aim to maximize the contrast signal and minimize the noise have been developed including the phase-based techniques, intensity-based techniques (e.g., split-spectrum amplitude decorrelation angiography (SSADA)), and complex-based techniques (e.g., optical microangiography (OMAG)). With its reliable technique, high image resolution, and current availability, OCTA has been widely used in the assessment of posterior segment diseases including glaucoma in which ocular perfusion dysfunction has been proposed as a pathophysiological mechanism. This review will provide the reader with information on the principle techniques of OCTA; the current literature on OCTA reproducibility; its applications to glaucoma detection and monitoring of progression; and the role of OCTA in the assessment of the vascular component in glaucoma pathogenesis.

  12. Comparative study of optic disc measurement by Copernicus optical coherence tomography and Heidelberg retinal tomography.

    PubMed

    Yang, Qing-Song; Yu, Ya-Jie; Li, Shu-Ning; Liu, Juan; Hao, Ying-Juan

    2012-08-01

    Copernicus optical coherence tomography (SOCT) is a new, ultra high-speed and high-resolution instrument available for clinical evaluation of optic nerve. The purpose of the study was to compare the agreements between SOCT and Heidelberg retinal tomography (HRT). A total of 44 healthy normal volunteers were recruited in this study. One eye in each subject was selected randomly. Agreement between SOCT and HRT-3 in measuring optic disc area was assessed using Bland-Altman plots. Relationships between measurements of optic nerve head parameter obtained by SOCT and HRT-3 were assessed by Pearson correlation. There was no significant difference in the average cup area (0.306 vs. 0.355 mm, P = 0.766), cup volume (0.158 vs. 0.130 mm, P = 0.106) and cup/disc ration (0.394 vs. 0.349 mm, P = 0.576) measured by the two instruments. However, other optic disc parameters from SOCT were significantly lower compared with HRT-3. The Bland-Altman plot revealed good agreement of cup area and cup volume measured by SOCT and HRT-3. Bad agreement of disc area, rim area, rim volume and cup/disc ratio were found between SOCT and HRT-3. The highest correlations between the two instruments were observed for cup area (r(2) = 0.783, P = 0.000) and cup/disc ratio (r(2) = 0.669, P = 0.000), whereas the lowest correlation was observed for disc area (r(2) = 0.100, P = 0.037), rim area (r(2) = 0.275, P = 0.000), cup volume (r(2) = 0.005, P = 0.391) and rim volume (r(2) = 0.021, P = 0.346). There were poor agreements between SOCT and HRT-3 for measurement of optic nerve parameters except cup area and cup volume. Measurement results of the two instruments are not interchangeable.

  13. Technical aspects of positron emission tomography/computed tomography in radiotherapy treatment planning.

    PubMed

    Scripes, Paola G; Yaparpalvi, Ravindra

    2012-09-01

    The usage of functional data in radiation therapy (RT) treatment planning (RTP) process is currently the focus of significant technical, scientific, and clinical development. Positron emission tomography (PET) using ((18)F) fluorodeoxyglucose is being increasingly used in RT planning in recent years. Fluorodeoxyglucose is the most commonly used radiotracer for diagnosis, staging, recurrent disease detection, and monitoring of tumor response to therapy (Lung Cancer 2012;76:344-349; Lung Cancer 2009;64:301-307; J Nucl Med 2008;49:532-540; J Nucl Med 2007;48:58S-67S). All the efforts to improve both PET and computed tomography (CT) image quality and, consequently, lesion detectability have a common objective to increase the accuracy in functional imaging and thus of coregistration into RT planning systems. In radiotherapy, improvement in target localization permits reduction of tumor margins, consequently reducing volume of normal tissue irradiated. Furthermore, smaller treated target volumes create the possibility of dose escalation, leading to increased chances of tumor cure and control. This article focuses on the technical aspects of PET/CT image acquisition, fusion, usage, and impact on the physics of RTP. The authors review the basic elements of RTP, modern radiation delivery, and the technical parameters of coregistration of PET/CT into RT computerized planning systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Imaging anatomy of the vestibular and visual systems.

    PubMed

    Gunny, Roxana; Yousry, Tarek A

    2007-02-01

    This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.

  15. Relatively Long Survival in Hepatocellular Carcinoma Presenting With Carcinoid Syndrome

    PubMed Central

    Nwokediuko, Sylvester Chuks; Uchenna, Ijoma; Esther, Ofoegbu; Okechukwu, Okafor; Augustine, Onuh; Charity, Ajuyah

    2010-01-01

    Hepatocelluar carcinoma is one of the commonest cancers in Nigeria. Some patients may manifest a variety of paraneoplastic syndromes. Carcinoid syndrome is an extremely rare presentation of hepatocellular carcinoma. A 57-year old man presented with recurrent facial flushing and diarrhea, tricuspid regurgitation, and very high level of urinary hydroxyindoleacetic acid (HIAA) as the first manifestation of a multicentric hepatic lesion which proved histologically to be hepatocellular carcinoma. The lesions also exhibited arterial hypervascularization on contrast enhanced computerized tomography. The patient is still alive after 6 years of symptoms. PMID:27956985

  16. A case report of a spontaneous oesophageal pleural fistula.

    PubMed

    Kumar, Sanjeev; Singh, Arshdeep; Matreja, Prithpal S; Kler, Sanjiv Kumar

    2013-03-01

    We are reporting a case of an asthmatic patient who presented to us with retrosternal chest pain, constipation, and shortness of breath, with features which were suggestive of a hydropneumothorax and shock. On recovery from the shock, the patient was found to have increased chest tube drainage, which was suggestive of an oesophageal rupture. The Computerized Tomography (CT) scan showed a fistulous track. The patient was diagnosed as a case of a spontaneous oesophageal pleural fistula (Spontaneous EPF) on the basis of her clinical and radiological findings.

  17. A Case Report of a Spontaneous Oesophageal Pleural Fistula

    PubMed Central

    Kumar, Sanjeev; Singh, Arshdeep; Matreja, Prithpal S; Kler, Sanjiv Kumar

    2013-01-01

    We are reporting a case of an asthmatic patient who presented to us with retrosternal chest pain, constipation, and shortness of breath, with features which were suggestive of a hydropneumothorax and shock. On recovery from the shock, the patient was found to have increased chest tube drainage, which was suggestive of an oesophageal rupture. The Computerized Tomography (CT) scan showed a fistulous track. The patient was diagnosed as a case of a spontaneous oesophageal pleural fistula (Spontaneous EPF) on the basis of her clinical and radiological findings. PMID:23634410

  18. Xeroradiography and ultrasonography in the evaluation of a penile injury.

    PubMed

    Oesterling, J E; Bromberg, W D; Albertsen, P C

    1986-04-01

    A 34-year-old white man presented with severe penile cellulitis following injection of epoxy glue into the shaft of the penis. Preoperative xeroradiography and ultrasonography localized the hardened masses of glue to the left corpus cavernosum and subcutaneous tissues. Under the guidance of intraoperative ultrasonography this foreign material was removed surgically. Postoperatively, the cellulitis resolved promptly and xeroradiography demonstrated no residual fragments. Although various modalities, including computerized tomography and roentgenography, are available to detect foreign bodies in soft tissues, xeroradiography and ultrasonography are ideally suited for use in the male external genitalia.

  19. Current Trends in the Management of Blunt Solid Organ Injuries.

    PubMed

    Taviloglu, Korhan; Yanar, Hakan

    2009-04-01

    The management of patients with solid organ injuries has changed since the introduction of technically advanced imaging tools, such as ultrasonography and multiple scan computerized tomography, interventional radiological techniques and modern intensive care units. In spite of this development in the management of these patients, major solid organ traumas can still be challenging. There has been great improvement in the non-operative management (NOM) of intra-abdominal solid organ injury in recent decades. In most cases treatment of injuries has shifted from early surgical treatment to NOM.

  20. Nuclear cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willerson, J.T.

    1979-01-01

    Nuclear Cardiology is a well-written, concise compendium of chapters that covers a wide range of topics in nuclear cardiology. Each chapter has been contributed by one or more recognized experts in the field, and the work is thoroughly referened. The physics and physiology of nuclear cardiology, myocardial imaging with /sup 201/Tl and /sup 99m/Tc pyrophosphate, left ventricular and right ventricular function, measurement of coronary blood flow with /sup 133/Xe, and microspheres are discussed, and there are chapters on metabolic imaging with positron emitters and on transmission computerized tomography of the heart.

  1. Neural network and its application to CT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  2. Nuclear magnetic resonance diagnosis of an anaplastic astrocytoma.

    PubMed

    Jackson, J A; Derman, H S; Harper, R L; Willcott, M R; Ford, J J; Schneiders, N J; McCrary, J A; Kelly, A; Bryan, R N

    1984-01-01

    A patient presented with an 8-month history of a progressive left homonymous visual field deficit, left hemiparesis, and a left thalamocortical sensory deficit that was not detectable by repeated conventional neurodiagnostic evaluations. Proton nuclear magnetic resonance (NMR) imaging revealed a right parietal lesion characterized by a prolonged T2 (spin-spin relaxation time). At surgery, the mass proved to be an anaplastic astrocytoma. NMR appears to be more sensitive than x-ray computerized tomography scanning in some patients with malignant gliomas and offers the clinician an additional probe with which to evaluate these patients.

  3. Appendiceal hemorrhage -- an uncommon cause of lower gastrointestinal bleeding.

    PubMed

    Chiang, Ching-Chung; Tu, Chi-Wen; Liao, Chi-Szu; Shieh, Min-Chieh; Sung, Tien-Chou

    2011-06-01

    Lower gastrointestinal bleeding is a common disease among elderly patients. The common sources of lower gastrointestinal bleeding include vascular disease, Crohn's disease, neoplasms, inflammatory bowel disease, hemorrhoids, and ischemic colitis. Lower gastrointestinal bleeding arising from the appendix is an extremely rare condition. We report a case of appendiceal hemorrhage in a young male. Diagnosis was made by multidetector computerized tomography during survey for hematochezia. The patient recovered well after appendectomy. The histological finding revealed focal erosion of appendix mucosa with bleeding. Copyright © 2011. Published by Elsevier B.V.

  4. Hepatic CT image query using Gabor features

    NASA Astrophysics Data System (ADS)

    Zhao, Chenguang; Cheng, Hongyan; Zhuang, Tiange

    2004-07-01

    A retrieval scheme for liver computerize tomography (CT) images based on Gabor texture is presented. For each hepatic CT image, we manually delineate abnormal regions within liver area. Then, a continuous Gabor transform is utilized to analyze the texture of the pathology bearing region and extract the corresponding feature vectors. For a given sample image, we compare its feature vector with those of other images. Similar images with the highest rank are retrieved. In experiments, 45 liver CT images are collected, and the effectiveness of Gabor texture for content based retrieval is verified.

  5. An interesting case of angiogenesis in cavernous hemangioma.

    PubMed

    Das, Dipankar; Bhattacharjee, Kasturi; Deka, Panna; Bhattacharjee, Harsha; Misra, Diva Kant; Koul, Akanksha; Kapoor, Deepika; Deka, Apurba

    2016-10-01

    Cavernous hemangioma is the most common orbital tumor in adult. There is lot of literatures for clinicopathological features of this tumor. These tumors had been studied for the model of angiogenesis in many of the experimental setups. We present a case of 34-year-old male with this tumor in the left eye with computerized tomography evidence. Postsurgical laboratory findings gave interesting evidence of tumor angiogenesis with tumor endothelial cells and sprouting of the small vessels endothelial cells. Podosome rosette could be conceptualized from the characteristic patterns seen in the tumor.

  6. Transrectal Near-Infrared Optical Tomography for Prostate Imaging

    DTIC Science & Technology

    2010-03-01

    valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 31-03-2010 2. REPORT TYPE Annual 3...technology of trans-rectal near-infrared (NIR) optical tomography for accurate, selective prostate biopsy. Prostate cancer is the most common non ...mice and recovered/homogenized for injection into the non -immune suppressed dog’s prostate gland. Under general anesthesia, ~2 cc of TVT cells

  7. Optical coherence tomography for the quantitative study of cerebrovascular physiology

    PubMed Central

    Srinivasan, Vivek J; Atochin, Dmitriy N; Radhakrishnan, Harsha; Jiang, James Y; Ruvinskaya, Svetlana; Wu, Weicheng; Barry, Scott; Cable, Alex E; Ayata, Cenk; Huang, Paul L; Boas, David A

    2011-01-01

    Doppler optical coherence tomography (DOCT) and OCT angiography are novel methods to investigate cerebrovascular physiology. In the rodent cortex, DOCT flow displays features characteristic of cerebral blood flow, including conservation along nonbranching vascular segments and at branch points. Moreover, DOCT flow values correlate with hydrogen clearance flow values when both are measured simultaneously. These data validate DOCT as a noninvasive quantitative method to measure tissue perfusion over a physiologic range. PMID:21364599

  8. Measuring refractive index and volume of liquid under high pressure with optical coherence tomography and light microscopy.

    PubMed

    Wang, Donglin; Yang, Kun; Zhou, Yin

    2016-03-20

    Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.

  9. Digital optical tomography system for dynamic breast imaging

    NASA Astrophysics Data System (ADS)

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  10. Spectral-domain optical coherence tomography of roth spots.

    PubMed

    Giovinazzo, Jerome; Mrejen, Sarah; Freund, K Bailey

    2013-01-01

    To describe the retinal findings of subacute bacterial endocarditis, their evolution after treatment, and analysis with spectral-domain optical coherence tomography. Retrospective chart review. A 21-year-old man presented with the sudden onset of a central scotoma in his left eye because of a sub-internal limiting membrane hemorrhage overlying the left fovea. When examined 2 weeks later, Roth spots were noted in his right eye. The patient was immediately referred to his internist and diagnosed with subacute bacterial endocarditis with cultures positive for Streptococcus viridans. He subsequently underwent aortic valve replacement surgery after 4 weeks of intravenous antibiotic therapy. When examined 4 weeks after valve replacement surgery, there was regression of the Roth spots. The present case demonstrates the importance of a funduscopic examination in the early diagnosis and management of subacute bacterial endocarditis. The analysis of Roth spots with spectral-domain optical coherence tomography suggested that they were septic emboli.

  11. A gantry-based tri-modality system for bioluminescence tomography

    PubMed Central

    Yan, Han; Lin, Yuting; Barber, William C.; Unlu, Mehmet Burcin; Gulsen, Gultekin

    2012-01-01

    A gantry-based tri-modality system that combines bioluminescence (BLT), diffuse optical (DOT), and x-ray computed tomography (XCT) into the same setting is presented here. The purpose of this system is to perform bioluminescence tomography using a multi-modality imaging approach. As parts of this hybrid system, XCT and DOT provide anatomical information and background optical property maps. This structural and functional a priori information is used to guide and restrain bioluminescence reconstruction algorithm and ultimately improve the BLT results. The performance of the combined system is evaluated using multi-modality phantoms. In particular, a cylindrical heterogeneous multi-modality phantom that contains regions with higher optical absorption and x-ray attenuation is constructed. We showed that a 1.5 mm diameter bioluminescence inclusion can be localized accurately with the functional a priori information while its source strength can be recovered more accurately using both structural and the functional a priori information. PMID:22559540

  12. In vitro imaging of remaining dentin and pulp chamber by optical coherence tomography: comparison between 850 and 1280 nm

    NASA Astrophysics Data System (ADS)

    Fonsêca, Déborah D. D.; Kyotoku, Bernardo B. C.; Maia, Ana M. A.; Gomes, Anderson S. L.

    2009-03-01

    We report the application of optical coherence tomography (OCT) to generate images of the remaining dentin and pulp chamber of in vitro human teeth. Bidimensional images of remaining dentin and of the pulp chamber were obtained parallel to the long axis of the teeth, by two OCT systems operating around 1280 and 850 nm, and compared to tomography images using the i-CAT® Cone Beam Volumetric Tomography system as the gold standard. The results demonstrated the efficacy of the OCT technique; furthermore, the wavelength close to 1280 nm presented greater penetration depth in the dentine than 850 nm, as expected from scattering and absorption coefficients. The OCT technique has great potential to be used on clinical practice, preventing accidental exposure of the pulp and promoting preventive restoration treatment.

  13. Effect of Intraocular Pressure and Anisotropy on the Optical Properties of the Cornea: A Study Using Polarization Sensitive Optical Coherence Tomography.

    PubMed

    Richhariya, Ashutosh; Verma, Yogesh; Rao, Divakar K; Roberts, Cynthia J; Mahmoud, Ashraf M; Sangwan, Virender S; Punjabi, Sunil; Gupta, Pradeep K

    2014-01-01

    We hypothesize that because of the anisotropic properties of the cornea, there should be a nonuniform change in birefringence with an increase in intraocular pressure (IOP). In this in vitro study, anisotropic properties, stress distribution within the cornea, and the effect of IOP on changes in stress level were investigated. Button inflation tests for deformation with polarization sensitive optical coherence tomography were used to demonstrate optical and material anisotropy on ex vivo human corneas. Inflation tests were performed on human donor corneoscleral rims. Using a turntable and hydrostatic column, each corneoscleral rim was subjected to a hydrostatic pressure of 0, 10, 15, and 20 mm Hg. At each pressure step, 4 scans at 0, 45, 90, and 135 degrees were taken by a polarization sensitive optical coherence tomography system, and the birefringence images and normal intensity-based images were recorded; images were later compiled for analysis. The retardation changed with the axis of orientation (P [T ≤ t] 1-tailed = 0.025) and IOP (P [T ≤ t] 1-tailed = 0.019). Optical thickness of the cornea decreased with increasing IOP. The optical properties of the cornea are modified with change in IOP. This is not uniform because of distinct anisotropic properties. Anisotropic properties may unpredictably affect the optical quality of cornea during or after the surgeries. Changes in corneal birefringence can be also used as a tool for measuring the IOP of the eye.

  14. Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging.

    PubMed

    Hintz, S R; Cheong, W F; van Houten, J P; Stevenson, D K; Benaron, D A

    1999-01-01

    Medical optical imaging (MOI) uses light emitted into opaque tissues to determine the interior structure. Previous reports detailed a portable time-of-flight and absorbance system emitting pulses of near infrared light into tissues and measuring the emerging light. Using this system, optical images of phantoms, whole rats, and pathologic neonatal brain specimens have been tomographically reconstructed. We have now modified the existing instrumentation into a clinically relevant headband-based system to be used for optical imaging of structure in the neonatal brain at the bedside. Eight medical optical imaging studies in the neonatal intensive care unit were performed in a blinded clinical comparison of optical images with ultrasound, computed tomography, and magnetic resonance imaging. Optical images were interpreted as correct in six of eight cases, with one error attributed to the age of the clot, and one small clot not seen. In addition, one disagreement with ultrasound, not reported as an error, was found to be the result of a mislabeled ultrasound report rather than because of an inaccurate optical scan. Optical scan correlated well with computed tomography and magnetic resonance imaging findings in one patient. We conclude that light-based imaging using a portable time-of-flight system is feasible and represents an important new noninvasive diagnostic technique, with potential for continuous monitoring of critically ill neonates at risk for intraventricular hemorrhage or stroke. Further studies are now underway to further investigate the functional imaging capabilities of this new diagnostic tool.

  15. A small animal time-resolved optical tomography platform using wide-field excitation

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek

    Small animal imaging plays a critical role in present day biomedical research by filling an important gap in the translation of research from the bench to the bedside. Optical techniques constitute an emerging imaging modality which have tremendous potential in preclinical applications. Optical imaging methods are capable of non-invasive assessment of the functional and molecular characteristics of biological tissue. The three-dimensional optical imaging technique, referred to as diffuse optical tomography, provides an approach for the whole-body imaging of small animal models and can provide volumetric maps of tissue functional parameters (e.g. blood volume, oxygen saturation etc.) and/or provide 3D localization and quantification of fluorescence-based molecular markers in vivo. However, the complex mathematical reconstruction problem associated with optical tomography and the cumbersome instrumental designs limits its adoption as a high-throughput quantitative whole-body imaging modality in current biomedical research. The development of new optical imaging paradigms is thus necessary for a wide-acceptance of this new technology. In this thesis, the design, development, characterization and optimization of a small animal optical tomography system is discussed. Specifically, the platform combines a highly sensitive time-resolved imaging paradigm with multi-spectral excitation capability and CCD-based detection to provide a system capable of generating spatially, spectrally and temporally dense measurement datasets. The acquisition of such data sets however can take long and translate to often unrealistic acquisition times when using the classical point source based excitation scheme. The novel approach in the design of this platform is the adoption of a wide-field excitation scheme which employs extended excitation sources and in the process allows an estimated ten-fold reduction in the acquisition time. The work described herein details the design of the imaging platform employing DLP-based excitation and time-gated intensified CCD detection and the optimal system operation parameters are determined. The feasibility this imaging approach and accuracy of the system in reconstructing functional parameters and fluorescence markers based on lifetime contrast is established through phantom studies. As a part of the system characterization, the effect of noise in time-resolved optical tomography is investigated and propagation of system noise in optical reconstructions is established. Furthermore, data processing and measurement calibration techniques aimed at reducing the effect of noise in reconstructions are defined. The optimization of excitation pattern selection is established through a novel measurement-guided iterative pattern correction scheme. This technique referred to as Adaptive Full-Field Optical Tomography was shown to improve reconstruction performances in murine models by reducing the dynamic range in photon flux measurements on the surface. Lastly, the application of the unique attributes of this platform to a biologically relevant imaging application, referred to as Forster Resonance Energy Transfer is described. The tomographic imaging of FRET interaction in vivo on a whole-body scale is achieved using the wide-field imaging approach based on lifetime contrast. This technique represents the first demonstration of tomographic FRET imaging in small animals and has significant potential in the development of optical imaging techniques in varied applications ranging from drug discovery to in vivo study of protein-protein interaction.

  16. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography

    PubMed Central

    Shirazi, Muhammad Faizan; Park, Kibeom; Wijesinghe, Ruchire Eranga; Jeong, Hyosang; Han, Sangyeob; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun

    2016-01-01

    An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products. PMID:27690043

  17. Intravascular Optical Imaging Technology for Investigating the Coronary Artery

    PubMed Central

    Suter, Melissa J.; Nadkarni, Seemantini K.; Weisz, Giora; Tanaka, Atsushi; Jaffer, Farouc A.; Bouma, Brett E.; Tearney, Guillermo J.

    2012-01-01

    There is an ever-increasing demand for new imaging methods that can provide additional information about the coronary wall to better characterize and stratify high-risk plaques, and to guide interventional and pharmacologic management of patients with coronary artery disease. While there are a number of imaging modalities that facilitate the assessment of coronary artery pathology, this review paper focuses on intravascular optical imaging modalities that provide information on the microstructural, compositional, biochemical, biomechanical, and molecular features of coronary lesions and stents. The optical imaging modalities discussed include angioscopy, optical coherence tomography, polarization sensitive-optical coherence tomography, laser speckle imaging, near-infrared spectroscopy, time-resolved laser induced fluorescence spectroscopy, Raman spectroscopy, and near-infrared fluorescence molecular imaging. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in the evaluation of the coronary artery in the future. PMID:21920342

  18. Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation

    PubMed Central

    Yu, Kai; Shi, Fei; Gao, Enting; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian

    2018-01-01

    Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a “hole” structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 ± 5.40 µm was achieved for layer segmentation, and a mean Dice coefficient of 0.925 ± 0.03 was achieved for optic disc region detection. PMID:29541497

  19. Optical coherence tomography imaging for evaluating the photo biomodulation effects on tissue regeneration in the oral cavity

    NASA Astrophysics Data System (ADS)

    Gimbel, Craig B.

    2008-03-01

    Optical Coherence Tomography (OCT) is a noninvasive method for imaging dental microstructure which has the potential of evaluating the health of periodontal tissue. OCT provides an "optical biopsy" of tissue 2-3 mm in depth. Optical biopsy is a measurement of the localized optical properties based on tissue type and pathology. This sixth modality of imaging was pioneered at Lawrence Livermore National Laboratory. OCT is based on the optical scattering signatures within tissue structure. With the use of a broad spectrum bandwidth light source, high resolution images, 10 times the resolution of radiographs, can detect important tissue interfaces within the periodontal sulcus and its' relationship to the attachment apparatus of the tooth. Multiple cross-sectional tomograms can be stacked to create two and three dimensional images providing information as to health of periodontal tissue important to both the clinician and researcher.

  20. Trends in optical coherence tomography applied to medical imaging

    NASA Astrophysics Data System (ADS)

    Podoleanu, Adrian G.

    2014-01-01

    The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.

Top