Science.gov

Sample records for optical depth precise

  1. Aerosol optical depth determination in the UV using a four-channel precision filter radiometer

    NASA Astrophysics Data System (ADS)

    Carlund, Thomas; Kouremeti, Natalia; Kazadzis, Stelios; Gröbner, Julian

    2017-03-01

    The determination of aerosol properties, especially the aerosol optical depth (AOD) in the ultraviolet (UV) wavelength region, is of great importance for understanding the climatological variability of UV radiation. However, operational retrievals of AOD at the biologically most harmful wavelengths in the UVB are currently only made at very few places. This paper reports on the UVPFR (UV precision filter radiometer) sunphotometer, a stable and robust instrument that can be used for AOD retrievals at four UV wavelengths. Instrument characteristics and results of Langley calibrations at a high-altitude site were presented. It was shown that due to the relatively wide spectral response functions of the UVPFR, the calibration constants (V0) derived from Langley plot calibrations underestimate the true extraterrestrial signals. Accordingly, correction factors were introduced. In addition, the instrument's spectral response functions also result in an apparent air-mass-dependent decrease in ozone optical depth used in the AOD determinations. An adjusted formula for the calculation of AOD, with a correction term dependent on total column ozone amount and ozone air mass, was therefore introduced. Langley calibrations performed 13-14 months apart resulted in sensitivity changes of ≤ 1.1 %, indicating good instrument stability. Comparison with a high-accuracy standard precision filter radiometer, measuring AOD at 368-862 nm wavelengths, showed consistent results. Also, very good agreement was achieved by comparing the UVPFR with AOD at UVB wavelengths derived with a Brewer spectrophotometer, which was calibrated against the UVPFR at an earlier date. Mainly due to non-instrumental uncertainties connected with ozone optical depth, the total uncertainty of AOD in the UVB is higher than that reported from AOD instruments measuring in UVA and visible ranges. However, the precision can be high among instruments using harmonized algorithms for ozone and Rayleigh optical depth as

  2. Mars-GRAM: Increasing the Precision of Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.

    2010-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. A comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, density factor values were determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with TES observations for MapYears 1 and 2 at comparable dust loading. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths.

  3. PRECISE MEASUREMENT OF THE REIONIZATION OPTICAL DEPTH FROM THE GLOBAL 21 cm SIGNAL ACCOUNTING FOR COSMIC HEATING

    SciTech Connect

    Fialkov, Anastasia; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2016-04-10

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  4. Precise Measurement of the Reionization Optical Depth from the Global 21 cm Signal Accounting for Cosmic Heating

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-04-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  5. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  6. Ultra-Precision Optics

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under a Joint Sponsored Research Agreement with Goddard Space Flight Center, SEMATECH, Inc., the Silicon Valley Group, Inc. and Tinsley Laboratories, known as SVG-Tinsley, developed an Ultra-Precision Optics Manufacturing System for space and microlithographic applications. Continuing improvements in optics manufacture will be able to meet unique NASA requirements and the production needs of the lithography industry for many years to come.

  7. Precision optical navigation guidance system

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Nolan, P.; Johnson, D.; Dellosa, M.; Volfson, L.; Fallahpour, A.; Willner, A.

    2016-05-01

    We present the new precision optical navigation guidance system approach that provides continuous, high quality range and bearing data to fixed wing aircraft during landing approach to an aircraft carrier. The system uses infrared optical communications to measure range between ship and aircraft with accuracy and precision better than 1 meter at ranges more than 7.5 km. The innovative receiver design measures bearing from aircraft to ship with accuracy and precision better than 0.5 mRad. The system provides real-time range and bearing updates to multiple aircraft at rates up to several kHz, and duplex data transmission between ship and aircraft.

  8. Precision optical reference frequencies

    NASA Astrophysics Data System (ADS)

    Riehle, Fritz; Schnatz, Harald; Zinner, G.; Trebst, Tilmann; Helmcke, Juergen

    1999-05-01

    Optical reference frequencies are provided by lasers of which the frequencies are stabilized to suitable absorption lines. Presently, twelve reference frequencies/wavelengths within the wavelengths range from 243 nm to 10.3 micrometers are recommended by the International Committee of Weights and Measures as references for the realization of the meter and scientific applications. As typical examples, we describe a diode-pumped, frequency doubled YAG-laser stabilized to an absorption line of molecular iodine and a Ca-stabilized laser. The latter one has been developed in two versions, a transportable system utilizing a small beam of thermal Ca atoms and a stationary standard based on laser cooled and trapped Ca atoms. The frequency of the Ca standard based on cold Ca atoms has been measured by a frequency chain allowing a phase-coherent comparison against the primary standard of time and frequency, the caesium clock. Its value is vCa equals 455 986 240 494.13 kHz with a relative standard uncertainty of 2.5 (DOT) 10-13.

  9. Precision optical metrology without lasers

    NASA Astrophysics Data System (ADS)

    Bergmann, Ralf B.; Burke, Jan; Falldorf, Claas

    2015-07-01

    Optical metrology is a key technique when it comes to precise and fast measurement with a resolution down to the micrometer or even nanometer regime. The choice of a particular optical metrology technique and the quality of results depends on sample parameters such as size, geometry and surface roughness as well as user requirements such as resolution, measurement time and robustness. Interferometry-based techniques are well known for their low measurement uncertainty in the nm range, but usually require careful isolation against vibration and a laser source that often needs shielding for reasons of eye-safety. In this paper, we concentrate on high precision optical metrology without lasers by using the gradient based measurement technique of deflectometry and the finite difference based technique of shear interferometry. Careful calibration of deflectometry systems allows one to investigate virtually all kinds of reflecting surfaces including aspheres or free-form surfaces with measurement uncertainties below the μm level. Computational Shear Interferometry (CoSI) allows us to combine interferometric accuracy and the possibility to use cheap and eye-safe low-brilliance light sources such as e.g. fiber coupled LEDs or even liquid crystal displays. We use CoSI e.g. for quantitative phase contrast imaging in microscopy. We highlight the advantages of both methods, discuss their transfer functions and present results on the precision of both techniques.

  10. Ultrasonic precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  11. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  12. Ultra-precision processes for optics manufacturing

    NASA Technical Reports Server (NTRS)

    Martin, William R.

    1991-01-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  13. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  14. Depth selective acousto-optic flow measurement

    PubMed Central

    Tsalach, Adi; Schiffer, Zeev; Ratner, Eliahu; Breskin, Ilan; Zeitak, Reuven; Shechter, Revital; Balberg, Michal

    2015-01-01

    Optical based methods for non-invasive measurement of regional blood flow tend to incorrectly assess cerebral blood flow, due to contribution of extra-cerebral tissues to the obtained signal. We demonstrate that spectral analysis of phase-coded light signals, tagged by specific ultrasound patterns, enables differentiation of flow patterns at different depths. Validation of the model is conducted by Monte Carlo simulation. In-vitro experiments demonstrate good agreement with the simulations' results and provide a solid validation to depth discrimination ability. These results suggest that signal contamination originating from extra-cerebral tissue may be eliminated using spectral analysis of ultrasonically tagged light. PMID:26713201

  15. Aerosol Optical Depth Determinations for BOREAS

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)

    1994-01-01

    Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10

  16. Precision Fiber Optic Sensor Market Forecast

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeff D.; Glasco, Jon; Dixon, Frank W.

    1986-01-01

    The worldwide market for precision fiber optic sensors is forecasted, 1984-1994. The forecast is based upon o Analysis of fiber optic sensor and related component current technology, and a forecast of technology advancement o Review and projection of demand for precision sensing, and the penetration which fiber optics will make into this market The analysis and projections are based mainly on interviews conducted worldwide with research teams, government agencies, systems contractors, medical and industrial laboratories, component suppliers and others. The worldwide market for precision (interferometric) fiber optic sensing systems is forecasted to exceed $0.8 billion by 1994. The forecast is segmented by geographical region (Europe, Japan and North America) and by function; o Gyroscope o Sonar o Gradiometer/Magnetometer o Other - Chemical Composition - Atmospheric Acoustic - Temperature - Position - Pressure Requirements for components are reviewed. These include special fiber, emitters and detectors, modulators, couplers, switches, integrated optical circuits and integrated optoelectronics. The advancement in component performance is forecasted. The major driving forces creating fiber optic sensor markets are reviewed. These include fiber optic sensor technical and economic advantages, increasingly stringent operational requirements, and technology evolution. The leading fiber optic sensor and related component development programs are reviewed. Component sources are listed. Funding sources for sensor and component development are outlined, and trends forecasted.

  17. Precision optical interferometry in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    POINTS, an astrometric Optical interferometer with a nominal measurement accuracy of 5 microarcseconds for the angle between a pair of stars separated by about 90 deg, is presently under consideration by two divisions of NASA-OSSA. It will be a powerful new multi-disciplinary tool for astronomical research. If chosen as the TOPS-1 (Toward Other Planetary Systems) instrument by the Solar-System Exploration Division, it will perform a definitive search for extra-solar planetary systems, either finding and characterizing a large number of them or showing that they are far less numerous than now believed. If chosen as the AIM (Astrometric Interferometry Mission) by the Astrophysics Division, POINTS will open new areas of astrophysical research and change the nature of the questions being asked in some old areas. In either case. it will be the first of a new class of powerful instruments in space and will prove the technology for the larger members of that class to follow. Based on a preliminary indication of the observational needs of the two missions, we find that a single POINTS mission will meet the science objectives of both TOPS-1 and AIM. The instrument detects dispersed fringe (channel led spectrum) and therefore can tolerate large pointing errors.

  18. Diurnal variations in optical depth at Mars

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  19. Diurnal variations in optical depth at Mars

    NASA Astrophysics Data System (ADS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-05-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  20. High precision Woelter optic calibration facility

    SciTech Connect

    Morales, R.I.; Remington, B.A.; Schwinn, T. )

    1995-01-01

    We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter type I x-ray optics used at Nova. The primary component of the facility is a new, very versatile, high brightness x-ray source consisting of a focused DC electron beam incident onto a precision manipulated target-pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray charge-coupled device camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An [ital in] [ital situ] laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.

  1. Extinction and optical depth of contrails

    NASA Astrophysics Data System (ADS)

    Voigt, C.; Schumann, U.; Jessberger, P.; Jurkat, T.; Petzold, A.; Gayet, J.-F.; Krämer, M.; Thornberry, T.; Fahey, D. W.

    2011-06-01

    One factor limiting the understanding of the climate impact from contrails and aircraft induced cloud modifications is the accurate determination of their optical depth. To this end, 14 contrails were sampled for 2756 s with instruments onboard the research aircraft Falcon during the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign in November 2008. The young (<10 min old) contrails were produced by 9 commercial aircraft with weights of 47 to 508 t, among them the largest operating passenger aircraft, the Airbus A380. The contrails were observed at temperatures between 214 and 224 K and altitudes between 8.8 and 11.1 km. The measured mean in-contrail relative humidity with respect to ice was 89 ± 12%. Six contrails were observed in cloud free air, the others were embedded in thin cirrus clouds. The observed contrails exhibited a mean ice water content of 2 mg m-3 and had a mean number concentration of 117 cm-3 and effective radius of 2.9 μm assuming asphericle particles with an aspect ratio of 0.5. Probability density functions of the extinction, with a mean (median) of 1.2 (0.7) km-1, and of the optical depth τ, with a mean (median) of 0.27 (0.13), are derived from the in situ measurements and are likely representative for young contrails from the present-day commercial aircraft fleet at observation conditions. Radiative transfer estimates using the in-situ measured contrail optical depth lead to a year-2005 estimate of line-shaped contrail radiative forcing of 15.9 mWm-2 with an uncertainty range of 11.1-47.7 mWm-2.

  2. Developments in precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Fess, Edward; Bechtold, Mike; Wolfs, Frank; Bechtold, Rob

    2013-09-01

    Optical systems that utilize complex optical geometries such as aspheres and freeform optics require precise control through the manufacturing process. As the preparatory stage for polishing, this is especially true for grinding. The quality of the grinding process can greatly influence the polishing process and the resultant finished product. OptiPro has performed extensive development work in evaluating components of a precision grinding machine to determine how they influence the overall manufacturing process. For example, spindle technology has a strong effect on how a grinding machine will perform. Through metrology techniques that measure the vibration characteristics of a machine and measurements of grinding forces with a dynamometer, OptiPro has also developed a detailed knowledge of how the machine can influence the grinding process. One of the outcomes of this work has led OptiPro to develop an ultrasonic head for their grinding platform to aid in reducing grinding forces. Initial results show a reduction in force by ~50%.

  3. THEMIS Observations of Atmospheric Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.; Richardson, Mark I.

    2003-01-01

    The Mars Odyssey spacecraft entered into Martian orbit in October 2001 and after successful aerobraking began mapping in February 2002 (approximately Ls=330 deg.). Images taken by the Thermal Emission Imaging System (THEMIS) on-board the Odyssey spacecraft allow the quantitative retrieval of atmospheric dust and water-ice aerosol optical depth. Atmospheric quantities retrieved from THEMIS build upon existing datasets returned by Mariner 9, Viking, and Mars Global Surveyor (MGS). Data from THEMIS complements the concurrent MGS Thermal Emission Spectrometer (TES) data by offering a later local time (approx. 2:00 for TES vs. approx. 4:00 - 5:30 for THEMIS) and much higher spatial resolution.

  4. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  5. Precision optical displacement measurements using biphotons

    NASA Astrophysics Data System (ADS)

    Lyons, Kevin; Pang, Shengshi; Kwiat, Paul G.; Jordan, Andrew N.

    2016-04-01

    We propose and examine the use of biphoton pairs, such as those created in parametric down-conversion or four-wave mixing, to enhance the precision and the resolution of measuring optical displacements by position-sensitive detection. We show that the precision of measuring a small optical beam displacement with this method can be significantly enhanced by the correlation between the two photons, given the same optical mode. The improvement is largest if the correlations between the photons are strong, and falls off as the biphoton correlation weakens. More surprisingly, we find that the smallest resolvable parameter of a simple split detector scales as the inverse of the number of biphotons for small biphoton number ("Heisenberg scaling"), because the Fisher information diverges as the parameter to be estimated decreases in value. One usually sees this scaling only for systems with many entangled degrees of freedom. We discuss the transition for the split-detection scheme to the standard quantum limit scaling for imperfect correlations as the biphoton number is increased. An analysis of an N -pixel detector is also given to investigate the benefit of using a higher resolution detector. The physical limit of these metrology schemes is determined by the uncertainty in the birth zone of the biphoton in the nonlinear crystal.

  6. Ultra-Light Precision Membrane Optics

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Gunter, Kent; Patrick, Brian; Marty, Dave; Bates, Kevin; Gatlin, Romona; Clayton, Bill; Rood, Bob; Brantley, Whitt (Technical Monitor)

    2001-01-01

    SRS Technologies and NASA Marshall Space Flight Center have conducted a research effort to explore the possibility of developing ultra-lightweight membrane optics for future imaging applications. High precision optical flats and spherical mirrors were produced under this research effort. The thin film mirrors were manufactured using surface replication casting of CPI(Trademark), a polyimide material developed specifically for UV hardness and thermal stability. In the course of this program, numerous polyimide films were cast with surface finishes better than 1.5 nanometers rms and thickness variation of less than 63 nanometers. Precision membrane optical flats were manufactured demonstrating better than 1/13 wave figure error when measured at 633 nanometers. The aerial density of these films is 0.037 kilograms per square meter. Several 0.5-meter spherical mirrors were also manufactured. These mirrors had excellent surface finish (1.5 nanometers rms) and figure error on the order of tens of microns. This places their figure error within the demonstrated correctability of advanced wavefront correction technologies such as real time holography.

  7. High precision optical surface metrology using deflectometry

    NASA Astrophysics Data System (ADS)

    Huang, Run

    Software Configurable Optical Test System (SCOTS) developed at University of Arizona is a highly efficient optical metrology technique based on the principle of deflectometry, which can achieve comparable accuracy with interferometry but with low-cost hardware. In a SCOTS test, an LCD display is used to generate structured light pattern to illuminate the test optics and the reflected light is captured by a digital camera. The surface slope of test optics is determined by triangulation of the display pixels, test optics, and the camera. The surface shape is obtained by the integration of the slopes. Comparing to interferometry, which has long served as an accurate non-contact optical metrology technology, SCOTS overcomes the limitation of dynamic range and sensitivity to environment. It is able to achieve high dynamic range slope measurement without requiring null optics. In this dissertation, the sensitivity and performance of the test system have been analyzed comprehensively. Sophisticated calibrations of system components have been investigated and implemented in different metrology projects to push this technology to a higher accuracy including low-order terms. A compact on-axis SCOTS system lowered the testing geometry sensitivity in the metrology of 1-meter highly aspheric secondary mirror of Large Binocular Telescope. Sub-nm accuracy was achieved in testing a high precision elliptical X-ray mirror by using reference calibration. A well-calibrated SCOTS was successfully constructed and is, at the time of writing this dissertation, being used to provide surface metrology feedback for the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope which is a 4-meter off-axis parabola with more than 8 mm aspherical departure.

  8. Aerosol optical depth characteristics in Yinchuan area

    NASA Astrophysics Data System (ADS)

    Zhang, Yaya; Mao, Jiandong; Rao, Zhimin; Zhang, Fan

    2013-08-01

    Sand dust aerosol is the main component of aerosol in troposphere atmosphere of East Asia, which can produce the extensive influence on the ecosystem, atmosphere environment and atmosphere chemistry through intensive sand dust weather process. For investigation of the aerosol optical depth (AOD) and its temporal-spatial evolution over this area, a series of observation experiments were carried out by a sun photometer CE-318 located at Beifang University of Nationality( 106°E, 38°29'N ), Yinchuan Ningxia province of China from September 2012 to April 2013 and many direct solar radiation datum were obtained. The experiments results were analyzed in detail and some conclusions are obtained as follows: (1) For daily evolution of AOD, the variation trend are divided into four types: ①the AOD values are relatively steady in whole day; ② the AOD values increase from morning to afternoon; ③ the AOD values are greater at noon than that in the morning and afternoon; ④there is a peak in the variation trends of AOD from 9:00~12:00 in the morning, but it is small at other time. (2) For month evolution, the minimum AOD average value appears in September and the maximum one appears in April. (3) For the seasonal changes trend, the average AOD values in the April are bigger than that in the autumn. (4) In addition, during the observation period, one dust weather process was observed and the change characteristic of AOD of dust aerosol was obtained and analyzed.

  9. Smoke optical depths - Magnitude, variability, and wavelength dependence

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.

    1988-01-01

    An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.

  10. Improved evaluation of optical depth components from Langley plot data

    NASA Technical Reports Server (NTRS)

    Biggar, S. F.; Gellman, D. I.; Slater, P. N.

    1990-01-01

    A simple, iterative procedure to determine the optical depth components of the extinction optical depth measured by a solar radiometer is presented. Simulated data show that the iterative procedure improves the determination of the exponent of a Junge law particle size distribution. The determination of the optical depth due to aerosol scattering is improved as compared to a method which uses only two points from the extinction data. The iterative method was used to determine spectral optical depth components for June 11-13, 1988 during the MAC III experiment.

  11. The Navy Precision Optical Interferometer: an update

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Baines, Ellyn K.; Schmitt, Henrique R.; Restaino, Sergio R.; Clark, James H.; Benson, James A.; Hutter, Donald J.; Zavala, Robert T.; van Belle, Gerard T.

    2016-08-01

    We describe the current status of the Navy Precision Optical Interferometer (NPOI), including developments since the last SPIE meeting. The NPOI group has added stations as far as 250m from the array center and added numerous infrastructure improvements. Science programs include stellar diameters and limb darkening, binary orbits, Be star disks, exoplanet host stars, and progress toward high-resolution stellar surface imaging. Technical and infrastructure projects include on-sky demonstrations of baseline bootstrapping with six array elements and of the VISION beam combiner, control system updates, integration of the long delay lines, and updated firmware for the Classic beam combiner. Our plans to add up to four 1.8 m telescopes are no longer viable, but we have recently acquired separate funding for adding three 1 m AO-equipped telescopes and an infrared beam combiner to the array.

  12. Ultra-precision turning of complex spiral optical delay line

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  13. Optical vortex beam based optical fan for high-precision optical measurements and optical switching.

    PubMed

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen

    2014-09-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high-precision optical measurements and high-capacity and high-speed optical communications. Here we show a method for the construction of a simple and robust scheme to rotate a light beam such as a fan, which is based on a combination of these two properties and using the thermal-dispersion and electro-optical effect of birefringent crystals. Using a computer-based digital image-processing technique, we determine the temperature and thermal-dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science, and optical communication networks.

  14. Black Hole Advective Accretion Disks with Optical Depth Transition

    SciTech Connect

    Artemove, Y.V.; Bisnovatyi-Kogan, G.S.; Igumenshchev, I.V.; Novikov, I.D.

    2006-02-01

    We have constructed numerically global solutions of advective accretion disks around black holes that describe a continuous transition between the effectively optically thick outer and optically thin inner disk regions. We have concentrated on models of accretion flows with large mass accretion rates, and we have employed a bridging formula for radiative losses at high and low effective optical depths.

  15. Microphysical and Dynamical Influences on Cirrus Cloud Optical Depth Distributions

    SciTech Connect

    Kay, J.; Baker, M.; Hegg, D.

    2005-03-18

    Cirrus cloud inhomogeneity occurs at scales greater than the cirrus radiative smoothing scale ({approx}100 m), but less than typical global climate model (GCM) resolutions ({approx}300 km). Therefore, calculating cirrus radiative impacts in GCMs requires an optical depth distribution parameterization. Radiative transfer calculations are sensitive to optical depth distribution assumptions (Fu et al. 2000; Carlin et al. 2002). Using raman lidar observations, we quantify cirrus timescales and optical depth distributions at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in Lamont, OK (USA). We demonstrate the sensitivity of outgoing longwave radiation (OLR) calculations to assumed optical depth distributions and to the temporal resolution of optical depth measurements. Recent work has highlighted the importance of dynamics and nucleation for cirrus evolution (Haag and Karcher 2004; Karcher and Strom 2003). We need to understand the main controls on cirrus optical depth distributions to incorporate cirrus variability into model radiative transfer calculations. With an explicit ice microphysics parcel model, we aim to understand the influence of ice nucleation mechanism and imposed dynamics on cirrus optical depth distributions.

  16. Aerosol spectral optical depths: Jet fuel and forest fire smokes

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; Livingston, J. M.

    1990-12-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral optical depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  17. Electro-optical liquid depth sensor

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Atwood, S. O.

    1976-01-01

    Transducer utilizes absorptive properties of water to determine variations in depth without disturbing liquid. Instrument is inexpensive, simple, and small and thus can be used in lieu of direct graduated scale readout or capacitive, ultrasonic, resistive or inducive sensors when these are impractical because of complexity or cost.

  18. Depth.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space-a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.

  19. Towards Improved Cirrus Cloud Optical Depths from CALIPSO

    NASA Astrophysics Data System (ADS)

    Garnier, Anne; Vaughan, Mark; Pelon, Jacques; Winker, David; Trepte, Chip; Young, Stuart

    2016-06-01

    This paper reviews recent advances regarding the retrieval of optical depths of semi-transparent cirrus clouds using synergetic analyses of perfectly collocated observations from the CALIOP lidar and the IIR infrared radiometer aboard the CALIPSO satellite.

  20. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  1. A disposable flexible skin patch for clinical optical perfusion monitoring at multiple depths

    NASA Astrophysics Data System (ADS)

    Farkas, Dana L.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Podolsky, Matthew J.; Christian, James F.; Ward, Brent B.; Vartarian, Mark; Feinberg, Stephen E.; Lee, Seung Yup; Parikh, Urmi; Mycek, Mary-Ann; Joyner, Michael J.; Johnson, Christopher P.; Paradis, Norman A.

    2016-03-01

    Stable, relative localization of source and detection fibers is necessary for clinical implementation of quantitative optical perfusion monitoring methods such as diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy (DRS). A flexible and compact device design is presented as a platform for simultaneous monitoring of perfusion at a range of depths, enabled by precise location of optical fibers in a robust and secure adhesive patch. We will discuss preliminary data collected on human subjects in a lower body negative pressure model for hypovolemic shock. These data indicate that this method facilitates simple and stable simultaneous monitoring of perfusion at multiple depths and within multiple physiological compartments.

  2. Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process.

    PubMed

    Jin, Jonghan; Kim, Jae Wan; Kang, Chu-Shik; Kim, Jong-Ahn; Lee, Sunghun

    2012-02-27

    We have proposed and demonstrated a novel method to measure depths of through silicon vias (TSVs) at high speed. TSVs are fine and deep holes fabricated in silicon wafers for 3D semiconductors; they are used for electrical connections between vertically stacked wafers. Because the high-aspect ratio hole of the TSV makes it difficult for light to reach the bottom surface, conventional optical methods using visible lights cannot determine the depth value. By adopting an optical comb of a femtosecond pulse laser in the infra-red range as a light source, the depths of TSVs having aspect ratio of about 7 were measured. This measurement was done at high speed based on spectral resolved interferometry. The proposed method is expected to be an alternative method for depth inspection of TSVs.

  3. Mechanism Design Principle for Optical-Precision, Deployable Instruments

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    The present paper is intended to be a guide for the design of 'microdynamically quiet' deployment mechanisms for optical-precision structures, such as deployable telescope mirrors and optical benches. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are neither newly developed guidelines nor are they uniquely applicable to high-precision deployment mechanisms. However, the application of these guidelines to the design of deployment mechanisms is a rather new practice, so efforts are made herein to illustrate the process through the discussion of specific examples. The present paper summarizes a more extensive set of design guidelines for optical-precision mechanisms that are under development.

  4. Optical Frequency Synthesizer for Precision Spectroscopy

    NASA Astrophysics Data System (ADS)

    Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Knight, J. C.; Wadsworth, W. J.; Russell, P. St. J.

    2000-09-01

    We have used the frequency comb generated by a femtosecond mode-locked laser and broadened to more than an optical octave in a photonic crystal fiber to realize a frequency chain that links a 10 MHz radio frequency reference phase-coherently in one step to the optical region. By comparison with a similar frequency chain we set an upper limit for the uncertainty of this new approach to 5.1×10-16. This opens the door for measurement and synthesis of virtually any optical frequency and is ready to revolutionize frequency metrology.

  5. Depth Profilometry via Multiplexed Optical High-Coherence Interferometry

    PubMed Central

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289

  6. Measuring Mean Cup Depth in the Optic Nerve Head

    PubMed Central

    Johnstone, John K.; Rhodes, Lindsay; Fazio, Massimo; Smith, Brandon; Wang, Lan; Downs, J. Crawford; Owsley, Cynthia; Girkin, Christopher A.

    2016-01-01

    Since the deformation of structures in the optic nerve head (ONH) is associated with glaucoma and other diseases of the optic nerve, measurement of this deformation is of current research interest. This paper considers the computation of cup depth, a measurement of the depth of the internal limiting membrane (ILM). The computation of cup depth requires a reference structure against which to measure the ILM, and the construction of two reference structures is discussed, one based on Bruch's membrane opening (BMO) and the other based on the anterior surface of the peripapillary sclera (AS). A main focus of the paper is the robust computation of mean cup depth, which requires a good sampling of a reconstruction of the ILM surface. To evaluate our algorithm, the construction of synthetic datasets is considered. PMID:27942258

  7. Precise earthquake locations show evidence of internal structures at intermediate-depth earthquake nests

    NASA Astrophysics Data System (ADS)

    Prieto, G.; Florez, M.; Dionicio, V.; Barrett, S. A.; Beroza, G. C.

    2012-12-01

    The mechanism for intermediate depth and deep earthquakes is still under debate. The temperatures and pressures are above the point where ordinary fractures ought to occur. Earthquake nests are regions of highly concentrated seismicity within subducting lithosphere that are isolated from nearby activity and may be key in revealing the mechanics of intermediate-depth earthquakes. We present precise earthquake locations of intermediate-depth earthquakes in the Bucaramanga nest, Colombia using double-difference algorithms combined with depth phases recorded at regional and teleseismic distances. Our results show an alignment of seismicity along subhorizontal and/or subvertical regions within the nest and a preferential location of larger earthquakes at the bottom of the cluster. These observed features might suggest preexisting structures within the subducting slab or some process that allows concentration of deformation and repeating ruptures along fractures.

  8. Extending the depth of field through unbalanced optical path difference.

    PubMed

    Chu, Kaiqin; George, Nicholas; Chi, Wanli

    2008-12-20

    We describe a simple method to extend the depth of field of a conventional camera by inserting a transparent annular ring in front of the pupil of the lens. The insertion of the ring creates an unbalanced optical path difference across the lens aperture, which partitions the pupil and leads to an extended depth of field. This system is analyzed by diffraction and random process theory. Experiments are reported that are in good agreement with the theory.

  9. Seasonal and Interannual Variability of Polar Stratospheric Cloud Optical Depth

    NASA Astrophysics Data System (ADS)

    Pitts, M. C.; Poole, L. R.; Thomason, L. W.; Damadeo, R. P.

    2013-12-01

    In addition to their important role in ozone depletion, polar stratospheric clouds (PSCs) may also impact stratospheric radiation and dynamics. Earlier studies indicated that PSCs could significantly affect radiative heating rates, but the magnitude and even the sign of the effect varied greatly from study to study, depending on many factors, e.g. PSC optical depth and underlying tropospheric cloud cover. A more recent study, which assumed nominal PSC conditions of 100% cloud fraction and visible optical depth of 0.01 for non-ice PSCs and 0.04 for ice PSCs, suggested that PSCs could produce significant perturbations to the radiative heating rates in the Antarctic stratosphere. A comprehensive evaluation of the radiative effects of PSCs requires more accurate knowledge of PSC characteristics over the entire polar region and throughout complete seasons. With the advent of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission in 2006, a more complete picture of PSC composition and occurrence is now emerging. The polarization-sensitive CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) lidar system onboard the CALIPSO spacecraft is acquiring, on average, over 300,000 backscatter profiles per day at latitudes poleward of 55° (including the polar night region up to 82°), providing a unique opportunity to examine the distribution of PSC optical depth on vortex-wide scales and over entire PSC seasons. In this paper, we describe an approach to calculate PSC optical depth from the CALIOP 532-nm attenuated backscatter measurements. We retrieve the PSC extinction profile downward from cloud top using a composition-dependent extinction-to-backscatter ratio and then integrate the extinction profile to derive PSC optical depth. We then examine this multi-year PSC optical depth record to determine the spatial and seasonal variability for the Arctic and Antarctic, respectively. Multi-year composites provide insight to the interannual

  10. Neutron depth profiling study of lithium niobate optical waveguides

    NASA Astrophysics Data System (ADS)

    Kolářova, P.; Vacík, J.; Špirková-Hradilová, J.; Červená, J.

    1998-05-01

    The relation between optical properties and the structure of proton exchanged and annealed proton exchanged optical waveguides in lithium niobate was studied using the mode spectroscopy and neutron depth profiling methods. We have found a close correlation between the lithium depletion and the depth profile of the extraordinary refractive index. The form of the observed dependence between Li depletion and refractive index depends on the fabrication procedure by which the waveguide was prepared but it is highly reproducible for specimens prepared by the same procedure.

  11. Dual focus diffractive optical element with extended depth of focus

    NASA Astrophysics Data System (ADS)

    Uno, Katsuhiro; Shimizu, Isao

    2014-09-01

    A dual focus property and an extended depth of focus were verified by a new type of diffractive lens displaying on liquid crystal on silicon (LCoS) devices. This type of lens is useful to read information on multilayer optical discs and tilted discs. The radial undulation of the phase groove on the diffractive lens gave the dual focus nature. The focal extension was performed by combining the dual focus lens with the axilens that was invented for expanding the depth of focus. The number of undulations did not affect the intensity along the optical axis but the central spot of the diffraction pattern.

  12. Achievable Precision for Optical Ranging Systems

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Erkmen, Baris I.

    2012-01-01

    Achievable RMS errors in estimating the phase, frequency, and intensity of a direct-detected intensity-modulated optical pulse train are presented. For each parameter, the Cramer-Rao-Bound (CRB) is derived and the performance of the Maximum Likelihood estimator is illustrated. Approximations to the CRBs are provided, enabling an intuitive understanding of estimator behavior as a function of the signaling parameters. The results are compared to achievable RMS errors in estimating the same parameters from a sinusoidal waveform in additive white Gaussian noise. This establishes a framework for a performance comparison of radio frequency (RF) and optical science. Comparisons are made using parameters for state-of-the-art deep-space RF and optical links. Degradations to the achievable errors due to clock phase noise and detector jitter are illustrated.

  13. A comparison of hydrographically and optically derived mixed layer depths

    USGS Publications Warehouse

    Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.

    2005-01-01

    Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.

  14. Polar stratospheric optical depth observed between 1978 and 1985

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Trepte, C. R.

    1987-01-01

    Observations of the stratospheric optical depth at 1.0 micron obtained for high latitudes are presented for a 7-year period. Weekly averaged data determined from measurements made by the Stratospheric Aerosol Measurement experiment from October 1978-1985 show that the overall yearly values in both polar regions are controlled by volcanic perturbations, with most volcanic effects being experienced in Arctic latitudes. Conservatively, peak values found in the Antarctic region were approximately 0.02 and in the Arctic region about 0.55. Probable values for these regions are estimated to be 0.26 and 0.11, respectively. The weekly averaged data also show the seasonal fluctuations due to microphysical and dynamical processes. Comparison of the optical depth record with a weekly averaged 50-mbar temperature record indicates that polar stratospheric clouds are present in the southern high latitudes each year near this level from early June to early September. A depression observed in the optical depth record each austral spring season is believed to be the result of the downward displacement of particles caused by subsidence and sedimentation during the course of winter. Following the breakup of the vortex, optical depth values increase as aerosol is transported poleward. These features are noted to be present in the Arctic region as well, but on a smaller scale because of the satellite sampling methodology and the averaging scheme employed.

  15. Automatic and Precise Localization and Cortical Labeling of Subdural and Depth Intracranial Electrodes

    PubMed Central

    Qin, Chaoyi; Tan, Zheng; Pan, Yali; Li, Yanyan; Wang, Lin; Ren, Liankun; Zhou, Wenjing; Wang, Liang

    2017-01-01

    Object: Subdural or deep intracerebral electrodes are essential in order to precisely localize epileptic zone in patients with medically intractable epilepsy. Precise localization of the implanted electrodes is critical to clinical diagnosing and treatment as well as for scientific studies. In this study, we sought to automatically and precisely extract intracranial electrodes using pre-operative MRI and post-operative CT images. Method: The subdural and depth intracranial electrodes were readily detected using clustering-based segmentation. Depth electrodes were tracked by fitting a quadratic curve to account for potential bending during the neurosurgery. The identified electrodes can be manipulated using a graphic interface and labeled to cortical areas in individual native space based on anatomical parcellation and displayed in the volume and surface space. Results: The electrodes' localizations were validated with high precision. The electrode coordinates were normalized to a standard space. Moreover, the probabilistic value being to a specific area or a functional network was provided. Conclusions: We developed an integrative toolbox to reconstruct and label the intracranial electrodes implanted in the patients with medically intractable epilepsy. This toolbox provided a convenient way to allow inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature. PMID:28261083

  16. The Navy Precision Optical Interferometer (NPOI): An Update

    DTIC Science & Technology

    2013-01-01

    by outside investigators, cover a broad range of stellar astrophysics as well as observations of geostationary satellites. Keywords: optical...interferometry 1. Introduction In October, 1994, when the Navy Precision Optical Interferometer (NPOI), then known as the Navy Prototype Optical Interferometer...we wished but at a quickened pace in the last three years. The last general introduction to the NPOI appeared in 1998 [Armstrong et al., 1998b], four

  17. Eddington limit for a gaseous stratus with finite optical depth

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-06-01

    The Eddington luminosity of a spherical source is usually defined for a uniformly extending normal plasma. We usually suppose that the gas can accrete to the central object at the sub-Eddington luminosity, while it would be blown off from the central luminous source in the super-Eddington case. We reconsider this central dogma of the Eddington limit under the radiative transfer effect for the purely scattering case, using analytical and numerical methods. For the translucent isolated gas cloud (stratus) with finite optical depth, the concept of the Eddington luminosity is drastically changed. In an heuristic way, we find that the critical condition is approximately expressed as Γ = (1 + μ* + τc)/2, where Γ (=L/LE) is the central luminosity L normalized by the Eddington luminosity LE, τc is the optical depth of the stratus, and μ* (=√{1-R_*^2/R^2}) is the direction cosine of the central object, R* being the radius of the central object, and R the distance from the central object. When the optical depth of the stratus is around unity, the classical Eddington limit roughly holds for the stratus; Γ ˜ 1. However, when the optical depth is greater than unity, the critical condition becomes roughly Γ ˜ τc/2, and the stratus would infall on to the central source even at the highly super-Eddington luminosity. When the optical depth is less than unity, on the other hand, the critical condition reduces to Γ ≳ (1 + μ*)/2, and the stratus could be blown off in some limited ranges, depending on μ*. This new concept of the Eddington limit for the isolated stratus could drastically change the accretion and outflow physics of highly inhomegeneous plasmas, with relevance for astrophysical jets and winds and supermassive black hole formation.

  18. Optical fiber couplers for precision spaceborne metrology.

    PubMed

    Killow, Christian J; Fitzsimons, Ewan D; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry; Bogenstahl, Johanna

    2016-04-01

    We describe the optical and mechanical design, construction philosophy, and testing of a pair of matched, spaceflight-qualified fiber couplers. The couplers were developed for the LISA Pathfinder mission but are relevant for other applications-both on ground and in space-where a robust fiber coupler with well-controlled beam parameters and stable beam pointing is required. This particular implementation of the design called for two couplers providing collimated beams with individual waist sizes and positions. The target values were a 522 μm waist 145 mm after the collimating lens for one coupler and a virtual 520 μm waist 194 mm before the collimating lens for the second coupler. Values of (542±4)  μm at (142±19) mm and (500±8)  μm at (-275±8)  mm were achieved, fully meeting the mission requirements. To control spurious noise effects in the interferometer, the optical system design also specified tight limits on relative beam curvature at an intended interference point. With nominal curvatures at this location of ∼2.35  m, the matching between the outputs of the two fiber couplers was measured to be λ/33 peak-valley over the central 1 mm of the beams. Results showing pointing stability of 3 μrad/°C over a 50°C range are presented. The vibration, shock, and thermal vacuum environmental testing conditions to which a pair of qualification fiber couplers were subjected-without change in performance-are listed.

  19. Perspective on precision machining, polishing, and optical requirements

    SciTech Connect

    Sanger, G.M.

    1981-08-18

    While precision machining has been applied to the manufacture of optical components for a considerable period, the process has, in general, had its thinking restricted to producing only the accurate shapes required. The purpose of this paper is to show how optical components must be considered from an optical (functional) point of view and that the manufacturing process must be selected on that basis. To fill out this perspective, simplistic examples of how optical components are specified with respect to form and finish are given, a comparison between optical polishing and precision machining is made, and some thoughts on which technique should be selected for a specific application are presented. A short discussion of future trends related to accuracy, materials, and tools is included.

  20. Ship-based Aerosol Optical Depth Measurements Near Antarctica

    NASA Astrophysics Data System (ADS)

    Sakerin, S. M.; Smirnov, A.; Kabanov, D. M.; Turchinovich, Y. S.; Holben, B. N.; Radionov, V. F.; Slutsker, I.

    2006-12-01

    Aerosol optical properties over the oceans were studied in November 2005 January 2006 onboard the R/V Akademik Fedorov within the framework of the 51st Russian Antarctic Expedition. Measurements were made with the handheld sunphotometer Microtops II. The sunphotometer was calibrated against the AERONET reference CIMEL radiometer. The direct sun measurements were acquired in five spectral channels at 340, 440, 675, 870 and 936 nm. Aerosol optical depth was retrieved by applying the AERONET processing algorithm (Version 2). The paper presents results of measurements along the Atlantic transect and in the Antarctic region, where the main data volume was obtained (spanning 20 days). During the measurement period near Antarctica aerosol optical depth was low (daily averages varied within 0.02-0.04 at a wavelength 440 nm). Average spectral dependence of aerosol optical depth showed usual monotonic behavior, decreasing from 0.037 at 440 nm to 0.022 at 870 nm. Daily averaged Angstrom parameter was 0.84. Spatial and temporal variations in the Antarctic region were less or about 0.02 which is comparable with the measurement uncertainty. For a few days Microtops was collocated with the stationary sunphotometer ABAS-3 from the coastal Antarctic station Myrnyi and took simultaneous measurements. Presented results are compared with the long-term observations in Antarctica.

  1. Depth resolution enhancement in double-detection optical scanning holography.

    PubMed

    Ou, Haiyan; Poon, Ting-Chung; Wong, Kenneth K Y; Lam, Edmund Y

    2013-05-01

    We propose an optical scanning holography system with enhanced axial resolution using two detections at different depths. By scanning the object twice, we can obtain two different sets of Fresnel zone plates to sample the same object, which in turn provides more information for the sectional image reconstruction process. We develop the computation algorithm that makes use of such information, solving a constrained optimization problem using the conjugate gradient method. Simulation results show that this method can achieve a depth resolution up to 1 μm.

  2. Precision glass molding: an integrative approach for the production of high precision micro-optics

    NASA Astrophysics Data System (ADS)

    Hünten, Martin; Klocke, Fritz; Dambon, Olaf

    2010-02-01

    Miniaturization and integration are the dominating factors for the success of numerous optical devices. Conventional manufacturing processes for the fabrication of precise glass optics by means of grinding and polishing cannot cope the increasing demands in terms of precision, volume and costs. Here, precision glass molding is the enabling technology to meet these demands of the future optical products and applications. Since the market requests further miniaturization and integration of the micro optical components the possession of the entire sequence of processes is absolutely essential. With the accomplished and ongoing developments at the Fraunhofer IPT, the replication of double-sided (a)spherical and (a)cylindrical glass lenses with form accuracies of < 150 nm as well as lens arrays and even freeform optics could be realized. Therefore, a sequence of processes needs to be passed. The FEM-simulation of the molding process which was driven to a point capable to simulate even the molding of freeform optics is the first process step. Further on, new mold design concepts were generated to enable the replication of free formed optics. The research works focusing on the mold manufacturing led to sophisticated grinding process strategies able to realized complex mold geometries such as lens arrays. With regard to the coating of the molds, proceedings were developed assuring a defect free and uniform coating which enables the longevity of the molds and therewith helps reducing the final costs per lens. Thus, the precision glass molding becomes more and more interesting even for highly complex mid volume lots, characteristic for European or US optics manufacturer.

  3. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    NASA Technical Reports Server (NTRS)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  4. Contrails of Small and Very Large Optical Depth

    NASA Technical Reports Server (NTRS)

    Atlas, David; Wang, Zhien

    2010-01-01

    This work deals with two kinds of contrails. The first comprises a large number of optically thin contrails near the tropopause. They are mapped geographically using a lidar to obtain their height and a camera to obtain azimuth and elevation. These high-resolution maps provide the local contrail geometry and the amount of optically clear atmosphere. The second kind is a single trail of unprecedentedly large optical thickness that occurs at a lower height. The latter was observed fortuitously when an aircraft moving along the wind direction passed over the lidar, thus providing measurements for more than 3 h and an equivalent distance of 620 km. It was also observed by Geostationary Operational Environmental Satellite (GOES) sensors. The lidar measured an optical depth of 2.3. The corresponding extinction coefficient of 0.023 per kilometer and ice water content of 0.063 grams per cubic meter are close to the maximum values found for midlatitude cirrus. The associated large radar reflectivity compares to that measured by ultrasensitive radar, thus providing support for the reality of the large optical depth.

  5. Design of an optical system with large depth of field using in the micro-assembly

    NASA Astrophysics Data System (ADS)

    Li, Rong; Chang, Jun; Zhang, Zhi-jing; Ye, Xin; Zheng, Hai-jing

    2013-08-01

    Micro system currently is the mainstream of application and demand of the field of micro fabrication of civilian and national defense. Compared with the macro assembly, the requirements on location accuracy of the micro-assembly system are much higher. Usually the dimensions of the components of the micro-assembly are mostly between a few microns to several hundred microns. The general assembly precision requires for the sub-micron level. Micro system assembly is the bottleneck of micro fabrication currently. The optical stereo microscope used in the field of micro assembly technology can achieve high-resolution imaging, but the depth of field of the optical imaging system is too small. Thus it's not conducive to the three-dimensional observation process of the micro-assembly. This paper summarizes the development of micro system assembly at home and abroad firstly. Based on the study of the core features of the technology, a program is proposed which uses wave front coding technology to increase the depth of field of the optical imaging system. In the wave front coding technology, by combining traditional optical design with digital image processing creatively, the depth of field can be greatly increased, moreover, all defocus-related aberrations, such as spherical aberration, chromatic aberration, astigmatism, Ptzvel(field) curvature, distortion, and other defocus induced by the error of assembling and temperature change, can be corrected or minimized. In this paper, based on the study of theory, a set of optical microscopy imaging system is designed. This system is designed and optimized by optical design software CODE V and ZEMAX. At last, the imaging results of the traditional optical stereo microscope and the optical stereo microscope applied wave front coding technology are compared. The results show that: the method has a practical operability and the phase plate obtained by optimized has a good effect on improving the imaging quality and increasing the

  6. Space camera optical axis pointing precision measurement system

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Meng, Fanbo; Yang, Zijun; Guo, Yubo; Ye, Dong

    2016-01-01

    In order to realize the space camera which on satellite optical axis pointing precision measurement, a monocular vision measurement system based on object-image conjugate is established. In this system the algorithms such as object-image conjugate vision models and point by point calibration method are applied and have been verified. First, the space camera axis controller projects a laser beam to the standard screen for simulating the space camera's optical axis. The laser beam form a target point and has been captured by monocular vision camera. Then the two-dimensional coordinates of the target points on the screen are calculated by a new vision measurement model which based on a looking-up and matching table, the table has been generated by object-image conjugate algorithm through point by point calibration. Finally, compare the calculation of coordinates offered by measurement system with the theory of coordinate offered by optical axis controller, the optical axis pointing precision can be evaluated. Experimental results indicate that the absolute precision of measurement system up to 0.15mm in 2m×2m FOV. This measurement system overcome the nonlinear distortion near the edge of the FOV and can meet the requirement of space camera's optical axis high precision measurement and evaluation.

  7. Diurnal variations in optical depth at Mars: Observations and interpretations

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1988-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  8. Diurnal variations in optical depth at Mars: Observations and interpretations

    NASA Astrophysics Data System (ADS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1988-05-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  9. Nighttime Aerosol Optical Depth Variability From Astronomical Photometry

    NASA Astrophysics Data System (ADS)

    Musat, I. C.; Ellingson, R. G.

    2006-12-01

    A technique for determination of the short-term (6 minutes intervals) variability of the aerosol optical depth (AOD) during nighttime from broadband visible measurements of star irradiances during clear nights was developed for the instrument called the Whole Sky Imager (WSI), placed at the Atmospheric Radiation Measurement (ARM) observation site in Oklahoma. The AOD is inferred indirectly from simultaneous observations of extinction of stars having different colors (spectra) and different elevations above the horizon, and takes into account the other sources for starlight attenuation in the atmosphere which might be present and which are measured by other instruments at the site at compatible timescales (e.g., precipitable water vapor content, columnar ozone amount, observed atmospheric stratification). The total error of the new method is a combination of the absolute star flux measurement error with the WSI and a systematic error in the models assumed for the other atmospheric components causing the starlight extinction. The relative error in the aerosol optical depth determined through this method is found to be below 4%. For the validation of the results, the comparison of the aerosol optical depth measured with the Lidar at 10 minutes intervals (at 355nm) with the AOD determined from WSI (in visible) shows a good agreement for the data in the interval studied (1999-2003).

  10. Random Walks and Effective Optical Depth in Relativistic Flow

    NASA Astrophysics Data System (ADS)

    Shibata, Sanshiro; Tominaga, Nozomu; Tanaka, Masaomi

    2014-05-01

    We investigate the random walk process in relativistic flow. In the relativistic flow, photon propagation is concentrated in the direction of the flow velocity due to the relativistic beaming effect. We show that in the pure scattering case, the number of scatterings is proportional to the size parameter ξ ≡ L/l 0 if the flow velocity β ≡ v/c satisfies β/Γ Gt ξ-1, while it is proportional to ξ2 if β/Γ Lt ξ-1, where L and l 0 are the size of the system in the observer frame and the mean free path in the comoving frame, respectively. We also examine the photon propagation in the scattering and absorptive medium. We find that if the optical depth for absorption τa is considerably smaller than the optical depth for scattering τs (τa/τs Lt 1) and the flow velocity satisfies \\beta \\gg \\sqrt{2\\tau _a/\\tau _s}, then the effective optical depth is approximated by τ* ~= τa(1 + β)/β. Furthermore, we perform Monte Carlo simulations of radiative transfer and compare the results with the analytic expression for the number of scatterings. The analytic expression is consistent with the results of the numerical simulations. The expression derived in this study can be used to estimate the photon production site in relativistic phenomena, e.g., gamma-ray burst and active galactic nuclei.

  11. Remote Sensing of Atmospheric Optical Depth Using a Smartphone Sun Photometer

    PubMed Central

    Cao, Tingting; Thompson, Jonathan E.

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12–0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations. PMID:24416199

  12. Precision optical angular position marker system for rotating machinery

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1983-01-01

    An optical system is described which generates one or more markers of the angular shaft position of rotating machinery. The system consists of a light source, an optical cable, a machinery mounted lens assembly, a light detector, and a signal conditioner. Light reflected by targets on the rotor is converted to a digital output signal. The system is highly immune to extreme environments of vibration and temperature and achieved a 0.002 percent precision under operational test conditions.

  13. Precision spectral manipulation: A demonstration using a coherent optical memory

    SciTech Connect

    Sparkes, B. M.; Cairns, C.; Hosseini, M.; Higginbottom, D.; Campbell, G. T.; Lam, P. K.; Buchler, B. C.

    2014-12-04

    The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. Here we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  14. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging

    NASA Astrophysics Data System (ADS)

    Wen, Xiang; Jacques, Steven L.; Tuchin, Valery V.; Zhu, Dan

    2012-06-01

    The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied together could a 15 min treatment achieve a three fold increase in the OCT reflectance from a 300 μm depth and 31% enhancement in image depth Zthreshold.

  15. Strategies for precision adhesive bonding of micro-optical systems

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Kotnur Venu, Vyshak; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian

    2015-02-01

    Today's piezo-based micromanipulator technology allows for highly precise manipulation of optical components. A crucial question for the quality of optical assemblies is the misalignment after curing. The challenge of statistical deviations in the curing process requires a sophisticated knowledge on the relevant process parameters. An approach to meet these requirements is the empirical analysis such as characterization of shrinkage. Gaining sophisticated knowledge about the statistical process of adhesive bonding advances the quality of related production steps like beam-shaping optics, mounting of turning mirrors for fiber coupling or building resonators evaluating power, mode characteristics and beam shape. Maximizing the precision of these single assembly steps fosters the scope of improving the overall efficiency of the entire laser system. At Fraunhofer IPT research activities on the identification of relevant parameters for improved adhesive bonding precision have been undertaken and are ongoing. The influence of the volumetric repeatability of different automatic and manual dispensing methods play an important role. Also, the evaluation of UV-light sources and the relating illumination properties have a significant influence on the bonding result. Furthermore, common UV-curing adhesives are being examined on their performance and reliability for both highest precision prototyping, as well as their application as robust bonding medium in automated optics assembly cells. This paper sums up the parameters of most influence. Overall goal of these activities is the development of a prediction model for optimized shrinkage compensation and thus improved assembly quality.

  16. High-precision measurement of magnetic penetration depth in superconducting films

    NASA Astrophysics Data System (ADS)

    He, X.; Gozar, A.; Sundling, R.; Božović, I.

    2016-11-01

    The magnetic penetration depth (λ) in thin superconducting films is usually measured by the mutual inductance technique. The accuracy of this method has been limited by uncertainties in the geometry of the solenoids and in the film position and thickness, by parasitic coupling between the coils, etc. Here, we present several improvements in the apparatus and the method. To ensure the precise thickness of the superconducting layer, we engineer the films at atomic level using atomic-layer-by-layer molecular beam epitaxy. In this way, we also eliminate secondary-phase precipitates, grain boundaries, and pinholes that are common with other deposition methods and that artificially increase the field transmission and thus the apparent λ. For better reproducibility, the thermal stability of our closed-cycle cryocooler used to control the temperature of the mutual inductance measurement has been significantly improved by inserting a custom-built thermal conductivity damper. Next, to minimize the uncertainties in the geometry, we fused a pair of small yet precisely wound coils into a single sapphire block machined to a high precision. The sample is spring-loaded to exactly the same position with respect to the solenoids. Altogether, we can measure the absolute value of λ with the accuracy better than ±1%.

  17. High-precision measurement of magnetic penetration depth in superconducting films

    SciTech Connect

    He, X.; Gozar, A.; Sundling, R.; Božović, I.

    2016-11-01

    We report that the magnetic penetration depth (λ) in thin superconducting films is usually measured by the mutual inductance technique. The accuracy of this method has been limited by uncertainties in the geometry of the solenoids and in the film position and thickness, by parasitic coupling between the coils, etc. Here, we present several improvements in the apparatus and the method. To ensure the precise thickness of the superconducting layer, we engineer the films at atomic level using atomic-layer-by-layer molecular beam epitaxy. In this way, we also eliminate secondary-phase precipitates, grain boundaries, and pinholes that are common with other deposition methods and that artificially increase the field transmission and thus the apparent λ. For better reproducibility, the thermal stability of our closed-cycle cryocooler used to control the temperature of the mutual inductance measurement has been significantly improved by inserting a custom-built thermal conductivity damper. Next, to minimize the uncertainties in the geometry, we fused a pair of small yet precisely wound coils into a single sapphire block machined to a high precision. Lastly, the sample is spring-loaded to exactly the same position with respect to the solenoids. Altogether, we can measure the absolute value of λ with the accuracy better than ±1%.

  18. High-precision measurement of magnetic penetration depth in superconducting films

    DOE PAGES

    He, X.; Gozar, A.; Sundling, R.; ...

    2016-11-01

    We report that the magnetic penetration depth (λ) in thin superconducting films is usually measured by the mutual inductance technique. The accuracy of this method has been limited by uncertainties in the geometry of the solenoids and in the film position and thickness, by parasitic coupling between the coils, etc. Here, we present several improvements in the apparatus and the method. To ensure the precise thickness of the superconducting layer, we engineer the films at atomic level using atomic-layer-by-layer molecular beam epitaxy. In this way, we also eliminate secondary-phase precipitates, grain boundaries, and pinholes that are common with other depositionmore » methods and that artificially increase the field transmission and thus the apparent λ. For better reproducibility, the thermal stability of our closed-cycle cryocooler used to control the temperature of the mutual inductance measurement has been significantly improved by inserting a custom-built thermal conductivity damper. Next, to minimize the uncertainties in the geometry, we fused a pair of small yet precisely wound coils into a single sapphire block machined to a high precision. Lastly, the sample is spring-loaded to exactly the same position with respect to the solenoids. Altogether, we can measure the absolute value of λ with the accuracy better than ±1%.« less

  19. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2016-02-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.

  20. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-09-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Earth and Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian and Earth meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during night-time from moonlight measurements. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL Sun-photometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.79 for the whole data set and 0.96 considering only the cloud-free days. From the whole dataset, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further analysis and comparisons are required, results indicate the potential of ODS measurements to detect sub-visual clouds.

  1. Constraints on the Optical Depth of Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Flender, Samuel; Nagai, Daisuke; McDonald, Michael

    2017-03-01

    Future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel’dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the average {τ }500 (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.

  2. RANDOM WALKS AND EFFECTIVE OPTICAL DEPTH IN RELATIVISTIC FLOW

    SciTech Connect

    Shibata, Sanshiro; Tominaga, Nozomu; Tanaka, Masaomi

    2014-05-20

    We investigate the random walk process in relativistic flow. In the relativistic flow, photon propagation is concentrated in the direction of the flow velocity due to the relativistic beaming effect. We show that in the pure scattering case, the number of scatterings is proportional to the size parameter ξ ≡ L/l {sub 0} if the flow velocity β ≡ v/c satisfies β/Γ >> ξ{sup –1}, while it is proportional to ξ{sup 2} if β/Γ << ξ{sup –1}, where L and l {sub 0} are the size of the system in the observer frame and the mean free path in the comoving frame, respectively. We also examine the photon propagation in the scattering and absorptive medium. We find that if the optical depth for absorption τ{sub a} is considerably smaller than the optical depth for scattering τ{sub s} (τ{sub a}/τ{sub s} << 1) and the flow velocity satisfies β≫√(2τ{sub a}/τ{sub s}), then the effective optical depth is approximated by τ{sub *} ≅ τ{sub a}(1 + β)/β. Furthermore, we perform Monte Carlo simulations of radiative transfer and compare the results with the analytic expression for the number of scatterings. The analytic expression is consistent with the results of the numerical simulations. The expression derived in this study can be used to estimate the photon production site in relativistic phenomena, e.g., gamma-ray burst and active galactic nuclei.

  3. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  4. Strategies for Improved CALIPSO Aerosol Optical Depth Estimates

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Kuehn, Ralph E.; Tackett, Jason L.; Rogers, Raymond R.; Liu, Zhaoyan; Omar, A.; Getzewich, Brian J.; Powell, Kathleen A.; Hu, Yongxiang; Young, Stuart A.; Avery, Melody A.; Winker, David M.; Trepte, Charles R.

    2010-01-01

    In the spring of 2010, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) project will be releasing version 3 of its level 2 data products. In this paper we describe several changes to the algorithms and code that yield substantial improvements in CALIPSO's retrieval of aerosol optical depths (AOD). Among these are a retooled cloud-clearing procedure and a new approach to determining the base altitudes of aerosol layers in the planetary boundary layer (PBL). The results derived from these modifications are illustrated using case studies prepared using a late beta version of the level 2 version 3 processing code.

  5. Depth resolved detection of lipid using spectroscopic optical coherence tomography

    PubMed Central

    Fleming, Christine P.; Eckert, Jocelyn; Halpern, Elkan F.; Gardecki, Joseph A.; Tearney, Guillermo J.

    2013-01-01

    Optical frequency domain imaging (OFDI) can identify key components related to plaque vulnerability but can suffer from artifacts that could prevent accurate identification of lipid rich regions. In this paper, we present a model of depth resolved spectral analysis of OFDI data for improved detection of lipid. A quadratic Discriminant analysis model was developed based on phantom compositions known chemical mixtures and applied to a tissue phantom of a lipid-rich plaque. We demonstrate that a combined spectral and attenuation model can be used to predict the presence of lipid in OFDI images. PMID:24009991

  6. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  7. Seasonal variability of aerosol optical depth over Indian subcontinent

    USGS Publications Warehouse

    Prasad, A.K.; Singh, R.P.; Singh, A.; Kafatos, M.

    2005-01-01

    Ganga basin extends 2000 km E-W and about 400 km N-S and is bounded by Himalayas in the north. This basin is unequivocally found to be affected by high aerosols optical depth (AOD) (>0.6) throughout the year. Himalayas restricts movement of aerosols toward north and as a result dynamic nature of aerosol is seen over the Ganga basin. High AOD in this region has detrimental effects on health of more than 460 million people living in this part of India besides adversely affecting clouds formation, monsoonal rainfall pattern and Normalized Difference Vegetation Index (NDVI). Severe drought events (year 2002) in Ganga basin and unexpected failure of monsoon several times, occurred in different parts of Indian subcontinent. Significant rise in AOD (18.7%) over the central part of basin (Kanpur region) have been found to cause substantial decrease in NDVI (8.1%) since 2000. A negative relationship is observed between AOD and NDVI, magnitude of which differs from region to region. Efforts have been made to determine general distribution of AOD and its dominant departure in recent years spatially using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The seasonal changes in aerosol optical depth over the Indo-Gangetic basin is found to very significant as a result of the increasing dust storm events in recent years. ?? 2005 IEEE.

  8. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  9. Parameterization of cirrus optical depth and cloud fraction

    SciTech Connect

    Soden, B.

    1995-09-01

    This research illustrates the utility of combining satellite observations and operational analysis for the evaluation of parameterizations. A parameterization based on ice water path (IWP) captures the observed spatial patterns of tropical cirrus optical depth. The strong temperature dependence of cirrus ice water path in both the observations and the parameterization is probably responsible for the good correlation where it exists. Poorer agreement is found in Southern Hemisphere mid-latitudes where the temperature dependence breaks down. Uncertainties in effective radius limit quantitative validation of the parameterization (and its inclusion into GCMs). Also, it is found that monthly mean cloud cover can be predicted within an RMS error of 10% using ECMWF relative humidity corrected by TOVS Upper Troposphere Humidity. 1 ref., 2 figs.

  10. Aerosol Optical Depth: A study using Thailand based Brewer Spectrophotometers

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Sudhibrabha, Sumridh; Hanprasert, Kesrin

    2015-12-01

    The Aerosol Optical Depth (AOD) was retrieved from the direct-sun Brewer observation by the application of the Beer's law for the years 1997-2011 at two monitoring sites in Thailand (Bangkok and Songkhla). AOD values measured in Bangkok exhibited higher values than Songkhla. In addition, AOD values were higher in the morning and evening in Bangkok. In contrast, the AOD values in Songkhla were slightly lower during the mornings and late afternoons. The variation of AOD was seasonal in Bangkok, with the higher values found in summer (from Mid-February to Mid-May) compared with rainy season (Mid-May to Mid-October), whilst there was no clear seasonal pattern of AOD in Songkhla.

  11. Single atom visibility in STEM optical depth sectioning

    DOE PAGES

    Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.; ...

    2016-10-19

    The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. In this paper, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided amore » cold field emission source is used. Finally, these results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.« less

  12. Single atom visibility in STEM optical depth sectioning

    SciTech Connect

    Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.; Findlay, Scott D.; Shibata, Naoya; Ikuhara, Yuichi

    2016-10-19

    The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. In this paper, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided a cold field emission source is used. Finally, these results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.

  13. Single atom visibility in STEM optical depth sectioning

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.; Findlay, Scott D.; Shibata, Naoya; Ikuhara, Yuichi

    2016-10-01

    The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. Here, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided a cold field emission source is used. These results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.

  14. Peripheral Processing Facilitates Optic Flow-Based Depth Perception

    PubMed Central

    Li, Jinglin; Lindemann, Jens P.; Egelhaaf, Martin

    2016-01-01

    Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light

  15. Eight-year climatology of dust optical depth on Mars

    NASA Astrophysics Data System (ADS)

    Montabone, L.; Forget, F.; Millour, E.; Wilson, R. J.; Lewis, S. R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M. T.; Smith, M. D.; Wolff, M. J.

    2015-05-01

    We have produced a multiannual climatology of airborne dust from martian year 24-31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced spatio-temporal grid, using an iterative procedure that is weighted in space, time, and retrieval quality. The lack of observations at certain times and locations introduces missing grid points in the maps, which therefore may result in irregularly gridded (i.e. incomplete) fields. In order to evaluate the strengths and weaknesses of the resulting gridded maps, we compare with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability, in addition to provide a basis for instrument intercomparison. Finally, we have produced regularly gridded maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modeling

  16. All-optical relative intensity noise suppression method for the high precision fiber optic gyroscope

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Zhang, Yuhui

    2016-10-01

    The relative intensity noise (RIN) is a main factor that limits the detection accuracy of the high precision fiber optic gyroscope (FOG). The RIN spectrum is determined by the normalized autocorrelation of the optical spectrum of the broadband source and is intrinsically different from other fundamental noises. In this paper, we propose an all-optical technique to suppress the RIN. With the power addition of the optical waves from the signal optical path and the reference optical path, the RIN is effectively eliminated at the eigen frequency of the FOG, which is also the demodulation window for the rotation rate signal. Compared with the traditional optical configuration of the FOG, there is only one additional optical component. Experimental results show that, with this method, we can achieve a nearly 3-fold improvement in the angular random walk coefficient. The improved optical configuration for RIN suppression is simple to realize and suitable for engineering application.

  17. Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy.

    PubMed

    Hennessy, Ricky; Goth, Will; Sharma, Manu; Markey, Mia K; Tunnell, James W

    2014-01-01

    The sampling depth of light for diffuse reflectance spectroscopy is analyzed both experimentally and computationally. A Monte Carlo (MC) model was used to investigate the effect of optical properties and probe geometry on sampling depth. MC model estimates of sampling depth show an excellent agreement with experimental measurements over a wide range of optical properties and probe geometries. The MC data are used to define a mathematical expression for sampling depth that is expressed in terms of optical properties and probe geometry parameters.

  18. Depth-resolved 3D visualization of coronary microvasculature with optical microangiography

    NASA Astrophysics Data System (ADS)

    Qin, Wan; Roberts, Meredith A.; Qi, Xiaoli; Murry, Charles E.; Zheng, Ying; Wang, Ruikang K.

    2016-11-01

    In this study, we propose a novel implementation of optical coherence tomography-based angiography combined with ex vivo perfusion of fixed hearts to visualize coronary microvascular structure and function. The extracorporeal perfusion of Intralipid solution allows depth-resolved angiographic imaging, control of perfusion pressure, and high-resolution optical microangiography. The imaging technique offers new opportunities for microcirculation research in the heart, which has been challenging due to motion artifacts and the lack of independent control of pressure and flow. With the ability to precisely quantify structural and functional features, this imaging platform has broad potential for the study of the pathophysiology of microvasculature in the heart as well as other organs.

  19. Integrating an optical tool inspection system to a precision lathe

    NASA Astrophysics Data System (ADS)

    Barkman, W. E.; Babelay, E. F., Jr.; Williams, R. R.

    1992-03-01

    Optical inspection systems are readily available for the bench-top inspection of a variety of subjects including cutting tools. However, the integration of optical tool inspection techniques into precision machining operations requires the consideration of several factors. Some of the questions that must be answered include: What kinds of tools will be used? What tool characteristics are important to measure? How are these characteristics expressed in a meaningful form that will enhance the quality of the manufacturing process? What will be done with the tool inspection data? Will the inspection be performed on-line, in real-time, to what resolution and accuracy, etc.? This paper describes the integration of an on-machine optical tool inspection/compensation system (OTICS) to a precision turning machine at the Oak Ridge Y-12 Plant. OTICS is an IBM personal computer (PC) based system that uses a vision interface board to collect cutting tool form data. This information is used by the PC to prepare a compensated part program that avoids the workpiece errors that are associated with imperfect cutting tools. Machining tests have demonstrated the system's ability to produce workpiece contour accuracies of 0.0002 in. when using cutting tools with errors as large as 0.0046 in.

  20. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-10-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  1. Navy precision optical interferometer measurements of 10 stellar oscillators

    SciTech Connect

    Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Benson, James A.; Zavala, R. T.; Van Belle, Gerard T.

    2014-02-01

    Using the Navy Precision Optical Interferometer, we measured the angular diameters of 10 stars that have previously measured solar-like oscillations. Our sample covered a range of evolutionary stages but focused on evolved subgiant and giant stars. We combined our angular diameters with Hipparcos parallaxes to determine the stars' physical radii, and used photometry from the literature to calculate their bolometric fluxes, luminosities, and effective temperatures. We then used our results to test the scaling relations used by asteroseismology groups to calculate radii and found good agreement between the radii measured here and the radii predicted by stellar oscillation studies. The precision of the relations is not as well constrained for giant stars as it is for less evolved stars.

  2. All-fiber bidirectional optical parametric oscillator for precision sensing.

    PubMed

    Gowda, R; Nguyen, N; Diels, J-C; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-05-01

    We present the design and operation of an all-fiber, synchronously pumped, bidirectional optical parametric oscillator (OPO) for precision sensing applications. The fiber-based OPO (FOPO) generates two frequency combs with identical repetition rates but different carrier offset frequencies. A narrow beatnote was observed with full-width at half-maximum (FWHM) linewidth of <10  Hz when the two frequency combs were overlapped on a photodetector. The all-fiber design removes the need for free-space alignment and adjustment. In addition, an external delay line to overlap the two pulse trains in time on the detector is not needed since our unique design provides automatic delay compensation. We expect the novel FOPO to find important applications in precision measurements including rotation sensing with ultra-large sensing area and sensitivity.

  3. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  4. Highly precise and robust packaging of optical components

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Winzen, Matthias; Liermann, Erik; Faidel, Heinrich; Westphalen, Thomas; Miesner, Jörn; Luttmann, Jörg; Hoffmann, Dieter

    2012-03-01

    In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 °C to +50 °C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements.

  5. Precision glass molding: Toward an optimal fabrication of optical lenses

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Liu, Weidong

    2016-12-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  6. Precise Stabilization of the Optical Frequency of WGMRs

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Matsko, Andrey; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    Crystalline whispering gallery mode resonators (CWGMRs) made of crystals with axial symmetry have ordinary and extraordinary families of optical modes. These modes have substantially different thermo-refractive constants. This results in a very sharp dependence of differential detuning of optical frequency on effective temperature. This frequency difference compared with clock gives an error signal for precise compensation of the random fluctuations of optical frequency. Certain crystals, like MgF2, have turnover points where the thermo-refractive effect is completely nullified. An advantage for applications using WGMRs for frequency stabilization is in the possibility of manufacturing resonators out of practically any optically transparent crystal. It is known that there are crystals with negative and zero thermal expansion at some specific temperatures. Doping changes properties of the crystals and it is possible to create an optically transparent crystal with zero thermal expansion at room temperature. With this innovation s stabilization technique, the resultant WGMR will have absolute frequency stability The expansion of the resonator s body can be completely compensated for by nonlinear elements. This results in compensation of linear thermal expansion (see figure). In three-mode, the MgF2 resonator, if tuned at the turnover thermal point, can compensate for all types of random thermal-related frequency drift. Simplified dual-mode method is also available. This creates miniature optical resonators with good short- and long-term stability for passive secondary frequency ethalon and an active resonator for active secondary frequency standard (a narrowband laser with long-term stability).

  7. Algorithm research of high-precision optical interferometric phase demodulation based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhi, Chunxiao; Sun, Jinghua

    2012-11-01

    Optical interferometric phase demodulation algorithm is provided based on the principle of phase generated carrier (PGC), which can realize the optical interference measurement of high-precision signal demodulation, applied to optical fiber displacement, vibration sensor. Modulated photoelectric detection signal is performanced by interval 8 frequency multiplication sampling. The samples calculate the phase modulation depth and phase error through a feedback loop to achieve optimum working point control. On the other hand the results of sampling calculate precision of numerical of the phase. The algorithm uses the addition and subtraction method instead of correlation filtering and other related complex calculation process of the traditional PGC digital demodulation, making full use of FPGA data processing with advantage of high speed and parallel; This method can give full play to the advantage of FPGA performance. Otherwise, the speed at the same time, FPGA can also ensure that the phase demodulation precision, wide dynamic range, and give full play to the advantage of completing the data access by single clock cycle.

  8. A novel precision face grinder for advanced optic manufacture

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Peng, Y.; Wang, Z.; Yang, W.; Bi, G.; Ke, X.; Lin, X.

    2010-10-01

    In this paper, a large-scale NC precision face grinding machine is developed. This grinding machine can be used to the precision machining of brittle materials. The base and the machine body are independent and the whole structure is configured as a "T" type. The vertical column is seat onto the machine body at the middle center part through a double of precision lead rails. The grinding wheel is driven with a hydraulic dynamic and static spindle. The worktable is supported with a novel split thin film throttle hydrostatic lead rails. Each of motion-axis of the grinding machine is equipped with a Heidenhain absolute linear encoder, and then a closed feedback control system is formed with the adopted Fanuc 0i-MD NC system. The machine is capable of machining extremely flat surfaces on workpiece up to 800mmx600mm. The maximums load bearing of the work table is 620Kg. Furthermore, the roughness of the machined surfaces should be smooth (Ra<50nm-100nm), and the form accuracy less than 2μm (+/-1μm)/200x200mm. After the assembly and debugging of the surface grinding machine, the worktable surface has been self-ground with 60# grinding wheel and the form accuracy is 3μm/600mm×800mm. Then the grinding experiment was conduct on a BK7 flat optic glass element (400mmx250mm) and a ceramic disc (Φ100mm) with 60# grinding wheel, and the measuring results show the surface roughness and the form accuracy of the optic glass device are 0.07μm and 1.56μm/200x200mm, and these of the ceramic disc are 0.52μm and 1.28μm respectively.

  9. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.

  10. Precision 3-D microscopy with intensity modulated fibre optic scanners

    NASA Astrophysics Data System (ADS)

    Olmos, P.

    2016-01-01

    Optical 3-D imagers constitute a family of precision and useful instruments, easily available on the market in a wide variety of configurations and performances. However, besides their cost they usually provide an image of the object (i.e. a more or less faithful representation of the reality) instead of a truly object's reconstruction. Depending on the detailed working principles of the equipment, this reconstruction may become a challenging task. Here a very simple yet reliable device is described; it is able to form images of opaque objects by illuminating them with an optical fibre and collecting the reflected light with another fibre. Its 3-D capability comes from the spatial filtering imposed by the fibres together with their movement (scanning) along the three directions: transversal (surface) and vertical. This unsophisticated approach allows one to model accurately the entire optical process and to perform the desired reconstruction, finding that information about the surface which is of interest: its profile and its reflectance, ultimately related to the type of material.

  11. Depth-resolved ballistic imaging in a low-depth-of-field optical Kerr gated imaging system

    NASA Astrophysics Data System (ADS)

    Zheng, Yipeng; Tan, Wenjiang; Si, Jinhai; Ren, YuHu; Xu, Shichao; Tong, Junyi; Hou, Xun

    2016-09-01

    We demonstrate depth-resolved imaging in a ballistic imaging system, in which a heterodyned femtosecond optical Kerr gate is introduced to extract useful imaging photons for detecting an object hidden in turbid media and a compound lens is proposed to ensure both the depth-resolved imaging capability and the long working distance. Two objects of about 15-μm widths hidden in a polystyrene-sphere suspension have been successfully imaged with approximately 600-μm depth resolution. Modulation-transfer-function curves with the object in and away from the object plane have also been measured to confirm the depth-resolved imaging capability of the low-depth-of-field (low-DOF) ballistic imaging system. This imaging approach shows potential for application in research of the internal structure of highly scattering fuel spray.

  12. An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar

    SciTech Connect

    Lo, C; Comstock, JM; Flynn, C

    2006-10-01

    The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when τ approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

  13. Study on manufacturing method of optical surface with high precision in angle and surface

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi

    2016-10-01

    This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.

  14. Ice Cloud Optical Depth Retrievals from CRISM Multispectral Images

    NASA Astrophysics Data System (ADS)

    Klassen, David R.

    2014-11-01

    cubes.Presented here are the results of this PCA/TT work to find the singular set of spectral endmembers and their use in recovering ice cloud optical depth from the MRO-CRISM multispectral image cubes.

  15. Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics

    NASA Astrophysics Data System (ADS)

    Romero, Lenny A.; Millán, María. S.; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej

    2015-01-01

    The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed.

  16. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmüller, Klaus; Pozzer, Andrea; Metzger, Swen; Stenchikov, Georgiy L.; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

  17. Intercomparison of Desert Dust Optical Depth from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; Brindley, H.; DeSouza-Machado, S.; Deuze, J. L.; Diner, D.; Ducos, F.; Grey, W.; Hsu, C.; Kalashnikova, O. V.; Kahn, R.; North, P. R. J.; Salustro, C.; Smith, A.; Tanre, D.; Torres, O.; Veihelmann, B,

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  18. Aerosol optical depths and their contributing sources in Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Chan, K. L.

    2017-01-01

    In this paper, we present a quantitative investigation of the contributions of different aerosols to the aerosol optical depths (AODs) in Taiwan using a global chemical transport model (GEOS-Chem) and remote sensing measurements. The study focus is on the period from June 2012 to October 2013. Five different types of aerosols are investigated: sea salt, dust, sulfate, organic carbon and black carbon. Three of these aerosols, namely sulfate, organic carbon and black carbon, have significant anthropogenic sources. Model simulation results were compared with both ground based sun photometer measurements and MODerate resolution Imaging Spectroradiometer (MODIS) satellite observations. The model data shows good agreement with satellite observations (R = 0.72) and moderate correlation with sun photometer measurements (R = 0.52). Simulation results show the anthropogenic aerosols contribute ∼65% to the total AOD in Taipei, while natural originated aerosols only show a minor impact (∼35%). Among all the aerosols, sulfate is the dominating species, contributing 62.4% to the annual average total AOD. Organic carbon and black carbons respectively contribute 7.3% and 1.5% to the annual averaged total AOD. The annual average contributions of sea salt and dust aerosols to the total AOD are 26.4% and 2.4%, respectively. A sensitivity study was performed to identify the contributions of anthropogenic aerosol sources in each region to the AODs in Taipei. North-East Asia was identified as the major contributing source region of anthropogenic aerosols to Taipei, accounting for more than 50% of total sulfate, 32% of total organic carbon and 51% of total black carbon aerosols. South-East Asia is the second largest contributing source region, contributing 35%, 24% and 34% of total sulfate, organic carbon and black carbon aerosols, respectively. The aerosols from continents other than Asia only show minor impacts to the aerosol load in Taipei. In addition, a case study of a biomass

  19. Aerosol optical depth increase in partly cloudy conditions

    NASA Astrophysics Data System (ADS)

    Chand, Duli; Wood, Robert; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven; Schichtel, Bret; Moore, Tom

    2012-09-01

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter than further away from the clouds, leading to an increase in the retrieved aerosol optical depth (τ). Mechanisms contributing to this enhancement or increase, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but the extent to which each of these factors influence the observed enhancement (Δτ) is poorly known. Here we used 11 years of daily global observations at 10 × 10 km2 resolution from the MODIS on the NASA Terra satellite to quantify τ as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky τ is enhanced by Δτ = 0.05 in cloudy conditions (CF = 0.8-0.9). This enhancement in Δτ corresponds to relative enhancement of 25% in cloudy conditions (CF = 0.8-0.9) compared with relatively clear conditions (CF = 0.1-0.2). Unlike the absolute enhancement Δτ, the relative increase in τis rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependentτeffects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  20. Aerosol optical depth increase in partly cloudy conditions

    SciTech Connect

    Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

    2012-09-14

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  1. Optical sensor for precision in-situ spindle health monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Rui

    An optical sensor which can record in-situ measurements of the dynamic runout of a precision miniature spindle system in a simple and low-cost manner is proposed in this dissertation. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the miniature spindle with non-contact sensors, typically capacitive sensors which are calibrated with a flat target surface not a curved target surface. Due to the different behavior of an electric field between a flat plate and a curved surface and an electric field between two flat plates, capacitive sensors is not suitable for measuring target surfaces smaller than its effective sensing area. The proposed sensor utilizes curved-edge diffraction (CED), which uses the effect of cylindrical surface curvature on the diffraction phenomenon in the transition regions adjacent to shadow, transmission, and reflection boundaries. The laser diodes light incident on the cylindrical surface of precision spindle and photodetectors collect the total field produced by the diffraction around the target surface. Laser diode in the different two direction are incident to the spindle shaft edges along the X and Y axes, four photodetectors collect the total fields produced by interference of multiple waves due to CED around the spindle shaft edges. The X and Y displacement can be obtained from the total fields using two differential amplifier configurations, respectively. Precision miniature spindle (shaft φ5.0mm) runout was measured, and the proposed sensor can perform curve at the different speed of rotation from 1500rpm to 8000rpm in the X and Y axes, respectively. On the other hand, CED also show changes for different running time and temperature of spindle. These results indicate that the proposed sensor promises to be effective for in-situ monitoring of the miniature spindle's health with high resolution, wide bandwidth, and low-cost.

  2. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  3. Precision Assembly of Complex Cellular Microenvironments using Holographic Optical Tweezers

    PubMed Central

    Kirkham, Glen R.; Britchford, Emily; Upton, Thomas; Ware, James; Gibson, Graham M.; Devaud, Yannick; Ehrbar, Martin; Padgett, Miles; Allen, Stephanie; Buttery, Lee D.; Shakesheff, Kevin

    2015-01-01

    The accurate study of cellular microenvironments is limited by the lack of technologies that can manipulate cells in 3D at a sufficiently small length scale. The ability to build and manipulate multicellular microscopic structures will facilitate a more detailed understanding of cellular function in fields such as developmental and stem cell biology. We present a holographic optical tweezers based technology to accurately generate bespoke cellular micro-architectures. Using embryonic stem cells, 3D structures of varying geometries were created and stabilized using hydrogels and cell-cell adhesion methods. Control of chemical microenvironments was achieved by the temporal release of specific factors from polymer microparticles positioned within these constructs. Complex co-culture micro-environmental analogues were also generated to reproduce structures found within adult stem cell niches. The application of holographic optical tweezers-based micromanipulation will enable novel insights into biological microenvironments by allowing researchers to form complex architectures with sub-micron precision of cells, matrices and molecules. PMID:25716032

  4. Developing Geostationary Satellite Imaging at the Navy Precision Optical Interferometer

    NASA Astrophysics Data System (ADS)

    van Belle, G.; von Braun, K.; Armstrong, J. T.; Baines, E. K.; Schmitt, H. R.; Jorgensen, A. M.; Elias, N.; Mozurkewich, D.; Oppenheimer, R.; Restaino, S.

    The Navy Precision Optical Interferometer (NPOI) is a six-beam long-baseline optical interferometer, located in Flagstaff, Arizona; the facility is operated by a partnership between Lowell Observatory, the US Naval Observatory, and the Naval Research Laboratory. NPOI operates every night of the year (except holidays) in the visible with baselines between 8 and 100 meters (up to 432m is available), conducting programs of astronomical research and technology development for the partners. NPOI is the only such facility as yet to directly observe geostationary satellites, enabling milliarcsecond resolution of these objects. To enhance this capability towards true imaging of geosats, a program of facility upgrades will be outlined. These upgrades include AO-assisted large apertures feeding each beam line, new visible and near-infrared instrumentation on the back end, and infrastructure supporting baseline-wavelength bootstrapping which takes advantage of the spectral and morphological features of geosats. The large apertures will enable year-round observations of objects brighter than 10th magnitude in the near-IR. At its core, the system is enabled by a approach that tracks the low-resolution (and thus, high signal-to-noise), bright near-IR fringes between aperture pairs, allowing multi-aperture phasing for high-resolution visible light imaging. A complementary program of visible speckle and aperture masked imaging at Lowell's 4.3-m Discovery Channel Telescope, for constraining the low-spatial frequency imaging information, will also be outlined, including results from a pilot imaging study.

  5. Random depth access full-field heterodyne low-coherence interferometry utilizing acousto-optic modulation and a complementary metaloxide semiconductor camera.

    PubMed

    Egan, Patrick; Connelly, Michael J; Lakestani, Fereydoun; Whelan, Maurice P

    2006-04-01

    With analog scanning, time-domain low-coherence interferometry lacks precise depth information, and optical carrier generation demands a linear scanning speed. Full-field heterodyne low-coherence interferometry that uses a logarithmic complementary metal-oxide semiconductor camera, acousto-optic modulation, and digital depth stepping is reported, with which random regions of interest, lateral and axial, can be accessed. Furthermore, nanometer profilometry is possible through heterodyne phase retrieval of the interference signal. The approach demonstrates inexpensive yet high-precision functional machine vision offering true digital random access in three dimensions.

  6. Assessment of Optic Nerve Head Drusen Using Enhanced Depth Imaging and Swept Source Optical Coherence Tomography

    PubMed Central

    Silverman, Anna L.; Tatham, Andrew J.; Medeiros, Felipe A.; Weinreb, Robert N.

    2015-01-01

    Background Optic nerve head drusen (ONHD) are calcific deposits buried or at the surface of the optic disc. Although ONHD may be associated with progressive visual field defects, the mechanism of drusen-related field loss is poorly understood. Methods for detecting and imaging disc drusen include B-scan ultrasonography, fundus autofluorescence, and optical coherence tomography (OCT). These modalities are useful for drusen detection but are limited by low resolution or poor penetration of deep structures. This review was designed to assess the potential role of new OCT technologies in imaging ONHD. Evidence Acquisition Critical appraisal of published literature and comparison of new imaging devices to established technology. Results The new imaging modalities of enhanced depth imaging optical coherence tomography (EDI-OCT) and swept source optical coherence tomography (SS-OCT) are able to provide unprecedented in vivo detail of ONHD. Using these devices it is now possible to quantify optic disc drusen dimensions and assess integrity of neighboring retinal structures, including the retinal nerve fiber layer. Conclusions EDI-OCT and SS-OCT have the potential to allow better detection of longitudinal changes in drusen and neural retina and improve our understanding of drusen-related visual field loss. PMID:24662838

  7. Ion microscopy with resonant ionization mass spectrometry : time-of-flight depth profiling with improved isotopic precision.

    SciTech Connect

    Pellin, M. J.; Veryovkin, I. V.; Levine, J.; Zinovev, A.; Davis, A. M.; Stephan, T.; Tripa, C. E.; King, B. V.; Savina, M. R.

    2010-01-01

    There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

  8. MatLab program for precision calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik

    2004-06-01

    Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for

  9. Aerosol Optical Depth over Africa retrieved from AATSR

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; de Leeuw, Gerrit; Kolmonen, Pekka; Sundström, Anu-Maija; Rodriques, Edith

    2010-05-01

    Aerosols produced over the African continent have important consequences for climate. In particular, large amounts of desert dust are produced over the Sahara and transported across the North Atlantic where desert dust deposition influences the eco system by iron fertilization, and further North over Europe with outbreaks as far as Scandinavia. Biomass burning occurs in most of the African continent south of the Sahara and causes a net positive radiating forcing resulting in local warming of the atmosphere layers. These effects have been studied during large field campaigns. Satellites can systematically provide information on aerosols over a large area such as Africa and beyond. To this end, we retrieved the Aerosol Optical Depth (AOD) at three wavelengths (555nm, 670nm, and 1600nm) over Africa from the reflectance measured at the top of the atmosphere by the AATSR (Advances Along Track Scanning Radiometer) flying on ENVISAT, for one year (1 May 2008 to 30 April 2009) to obtain information on the seasonal and spatial behaviour of the AOD, episodes of high AOD events and connect the retrieved AOD with the ground-based aerosol measurements. The AOD retrieval algorithm, which is applied to cloud-free pixels over land, is based on the comparison of the measured and modeled reflectance at the top of the atmosphere (TOA). The algorithm uses look-up-tables (LUTs) to compute the modeled TOA reflectance. For AOD retrieval, an aerosol in the atmosphere is assumed to be an external mixture of fine and coarse mode particles. The two aerosol types are mixed such that the spectral behavior of the reflectance due to aerosol best fits the measurements. Comparison with AERONET (Aerosol Roboric NETwork), which is a network of ground-based sun photometers which measure atmospheric aerosol properties, shows good agreement but with some overestimation of the AATSR retrieved AOD. Different aerosol models have been used to improve the comparison. The lack of AERONET stations in Africa

  10. [Effects of sensor's laying depth for precision irrigation on growth characteristics of maturate grapes].

    PubMed

    Wang, Yu-Ning; Fan, Jun; Li, Shi-Qing; Zheng, Chen; Wang, Quan-Jiu

    2012-08-01

    In order to approach the appropriate laying depth of soil moisture sensor to control irrigation amount, the sensors were laid at different soil depth to measure the soil moisture content, with the effects of definite irrigation amount on the growth characteristics of maturate grapes studied. The results showed that using the sensor laying at the soil depth 40 cm (SF40) to control irrigation amount, the biological characteristics of the grapes, including photosynthesis, grape yield, and water use efficiency were superior than those when the sensor was laid at the depth 20 cm (SF20) and under conventional furrow irrigation (CK). The grape brix degree in treatment SF40 was slightly lower than that in treatments SF20 and CK, but was still near 20%. In treatment SF40, the irrigated water could infiltrate or redistribute in the soil layers where the main roots of the grapes existed. It was suggested that laying soil moisture sensor at the depth 40 cm could better control the irrigation amount for the maturate grapes in the study area.

  11. Depth-of-field effects in wiggler radiation sources: Geometrical versus wave optics

    NASA Astrophysics Data System (ADS)

    Walker, Richard P.

    2017-02-01

    A detailed analysis is carried out of the optical properties of synchrotron radiation emitted by multipole wigglers, concentrating on the effective source size and brightness and the so-called "depth of field" effects, concerning which there has been some controversy in the literature. By comparing calculations made with both geometrical optics and wave optics methods we demonstrate that the two approaches are not at variance, and that the wave optics results tend towards those of geometrical optics under well-defined conditions.

  12. The new classic instrument for the navy precision optical interferometer

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Schmitt, H. R.; Armstrong, J. T.; Baines, E. K.; Hindsley, R.; Mozurkewich, D.; van Belle, G. T.

    2016-08-01

    The New Classic instrument was built as a electronics and computer upgrade to the existing Classic beam combiner at the Navy Precision Optical Interferometer (NPOI). The classic beam combiner is able to record 32 of 96 available channels and has a data throughput limitation which results in a low duty cycle. Additionally the computing power of the Classic system limited the amount of fringe tracking that was possible. The New Classic system implements a high-throughput data acquisition system which is capable of recording all 96 channels continuously. It also has a modern high-speed computer for data management and data processing. The computer is sufficiently powerful to implement more sophisticated fringe-tracking algorithms than the Classic system, including multi-baseline bootstrapping. In this paper we described the New Classic hardware and software, including the fringe-tracking algorithm, performance, and the user interface. We also show some initial results from the first 5-station, 4-baseline bootstrapping carried out in January 2015.

  13. Progress in the expansion of the Navy Precision Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Restaino, S. R.; Clark, J. H.; Schmitt, H. R.; Baines, E. K.; Hutter, D. J.; Benson, J. A.; Zavala, R. T.; Shankland, P. D.; van Belle, G.; Jorgensen, A. M.

    2014-01-01

    Over the past three years, the Navy Precision Optical Interferometer (NPOI) has been undergoing significant expansion toward its ultimate design goal of six siderostats that can be moved among up to 30 stations. The additional stations that will become available by next spring include E7 (98 m baseline with W7), plus E10 and W10 (432 m baseline between them). Several other close-in stations will produce baselines as short as 7 m tailored to large-scale targets. Significant upgrades to the NPOI backend are also under way. The VISION beam combiner, based on single-mode fiber spatial filtering and a photon-counting CCD and very similar in design to the MIRC combiner at the CHARA array, has been installed and is on its shakedown cruise. The NPOI's current "Classic" combiner is undergoing firmware improvements that will increase both the spectral range and the number of baselines simultaneously available. Coupled with concurrent improvements to the delay line controllers, these developments should significantly increase data quality and instrumental efficiency. Finally, many of the the initial preparations for adding four 1.8 m telescopes (the former Keck outrigger telescopes, now owned by USNO) have been completed, and funding for the first installations is anticipated.

  14. Precision of light intensity measurement in biological optical microscopy.

    PubMed

    Bernas, Tytus; Barnes, David; Asem, Elikplimi K; Robinson, J Paul; Rajwa, Bartek

    2007-05-01

    Standardization and calibration of optical microscopy systems have become an important issue owing to the increasing role of biological imaging in high-content screening technology. The proper interpretation of data from high-content screening imaging experiments requires detailed information about the capabilities of the systems, including their available dynamic range, sensitivity and noise. Currently available techniques for calibration and standardization of digital microscopes commonly used in cell biology laboratories provide an estimation of stability and measurement precision (noise) of an imaging system at a single level of signal intensity. In addition, only the total noise level, not its characteristics (spectrum), is measured. We propose a novel technique for estimation of temporal variability of signal and noise in microscopic imaging. The method requires registration of a time series of images of any stationary biological specimen. The subsequent analysis involves a multi-step process, which separates monotonic, periodic and random components of every pixel intensity change in time. The technique allows simultaneous determination of dark, photonic and multiplicative components of noise present in biological measurements. Consequently, a respective confidence interval (noise level) is obtained for each level of signal. The technique is validated using test sets of biological images with known signal and noise characteristics. The method is also applied to assess uncertainty of measurement obtained with two CCD cameras in a wide-field microscope.

  15. Surface errors in the course of machining precision optics

    NASA Astrophysics Data System (ADS)

    Biskup, H.; Haberl, A.; Rascher, R.

    2015-08-01

    Precision optical components are usually machined by grinding and polishing in several steps with increasing accuracy. Spherical surfaces will be finished in a last step with large tools to smooth the surface. The requested surface accuracy of non-spherical surfaces only can be achieved with tools in point contact to the surface. So called mid-frequency errors (MSFE) can accumulate with zonal processes. This work is on the formation of surface errors from grinding to polishing by conducting an analysis of the surfaces in their machining steps by non-contact interferometric methods. The errors on the surface can be distinguished as described in DIN 4760 whereby 2nd to 3rd order errors are the so-called MSFE. By appropriate filtering of the measured data frequencies of errors can be suppressed in a manner that only defined spatial frequencies will be shown in the surface plot. It can be observed that some frequencies already may be formed in the early machining steps like grinding and main-polishing. Additionally it is known that MSFE can be produced by the process itself and other side effects. Beside a description of surface errors based on the limits of measurement technologies, different formation mechanisms for selected spatial frequencies are presented. A correction may be only possible by tools that have a lateral size below the wavelength of the error structure. The presented considerations may be used to develop proposals to handle surface errors.

  16. Underwater optical wireless communications: depth dependent variations in attenuation.

    PubMed

    Johnson, Laura J; Green, Roger J; Leeson, Mark S

    2013-11-20

    Depth variations in the attenuation coefficient for light in the ocean were calculated using a one-parameter model based on the chlorophyll-a concentration C(c) and experimentally-determined Gaussian chlorophyll-depth profiles. The depth profiles were related to surface chlorophyll levels for the range 0-4  mg/m², representing clear, open ocean. The depth where C(c) became negligible was calculated to be shallower for places of high surface chlorophyll; 111.5 m for surface chlorophyll 0.8depth is the absolute minimum attenuation for underwater ocean communication links, calculated to be 0.0092  m⁻¹ at a wavelength of 430 nm. By combining this with satellite surface-chlorophyll data, it is possible to quantify the attenuation between any two locations in the ocean, with applications for low-noise or secure underwater communications and vertical links from the ocean surface.

  17. Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method

    NASA Astrophysics Data System (ADS)

    Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.

    2016-05-01

    Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to nonopaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud τ up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, τ for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are ~100 and ~72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are ~62%. The 3.7 µm channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloud water path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle.

  18. Egocentric Depth Judgements in Optical, See-Through Augmented Reality

    DTIC Science & Technology

    2007-06-01

    order design that repeated modulo eight subjects. Within each environment protocol block, our control program generated a list of 3 ðdistanceÞ 4...pp. 15-19, 2006. [18] M.S. Landy, L.T. Maloney, E.B. Johnston, and M. Young , “Measurement and Modeling of Depth Cue Combination: In Defense of Weak

  19. Updating Mars-GRAM to Increase the Accuracy of Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hiliary L.; Justus, C. G.; Badger, Andrew M.

    2010-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). During the Mars Science Laboratory (MSL) site selection process, it was discovered that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear set to 0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. As a preliminary fix to this pressure-density problem, density factor values were determined for tau=0.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. Currently, these density factors are fixed values for all latitudes and Ls. Results will be presented from work being done to derive better multipliers by including variation with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data. The addition of these more precise density factors to Mars-GRAM 2005 Release 1.4 will improve the results of the sensitivity studies done for large optical depths.

  20. Aerosol optical depth in clean marine and continental northeast Atlantic air

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; O'Dowd, C. D.; Jennings, S. G.

    2009-10-01

    The aerosol optical depth (AOD) and Ångström exponent for the period 2002-2004 is evaluated for clean marine and continentally influenced air masses over the northeast Atlantic region. Measurements were carried out at the Mace Head atmospheric research station on the west coast of Ireland using a precision filter radiometer which measures the aerosol optical depth at four wavelengths centered at 368, 412, 500, and 862 nm. The clean marine AOD at 500 nm is characterized by a mean value of 0.14 ± 0.06, exhibiting relatively small temporal variability. The Ångström exponent was less than 1 for the majority of cases, having an average value of 0.40 ± 0.29 in clean marine conditions. The latter is consistent with the presence of relatively large supermicron particles, such as sea salt dominating the marine aerosol size distribution. The Ångström exponent shows a distinct seasonal cycle in clean marine air, with maximum values being derived in the summer months and minimum values in the winter. In continental air masses, while the range and standard deviation of the AOD is larger than in clean marine conditions, the overall mean AOD (τ500 = 0.19 ± 0.12) is comparable with the clean marine AOD. The continental Ångström exponent is larger, having a mean value of 1.07 ± 0.32. This is attributed to a dominating accumulation mode in the presence of urban-industrial aerosol particles originating mainly from continental Europe. These results demonstrate how the natural marine AOD can rival polluted AOD over the northeast Atlantic region and highlight the importance of the natural marine aerosol contribution over oceans.

  1. Ultra-Precision Linear Actuator for optical systems

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben

    2000-10-01

    The Ultra-Precision Linear Actuator presented in this paper was developed for the Next Generation Space Telescopes' (NGST) primary mirror surface figure control. The development was a joint effort between Alson E. Hatheway, Inc (AEH) and Moog, Schaeffer Magnetics Division (SMD). The goal of this project was to demonstrate an extremely light weight, relatively high stiffness actuator capable of operating uniformly well over the range of 2- degree(s)K to 300 degree(s)K and achieving diffraction-limited performance (+/- 10 nm) in the optical band for weeks at a time, while consuming no electrical power and dissipating no heat. The essence of the design challenge was to develop a lightweight, high stiffness, low power, thermally stable linear positioning mechanism. Actuation systems with resolutions comparable to that of this design normally are operated in a closed-loop control system to compensate for any non-linearities and hysteresis inherent in their enabling technologies, such as piezoelectric and magnetostrictive transducers. These technologies require continuous application of power and therefore are not low power consumption devices. The development challenge was met through the use of Alson E. Hatheway's (AEH) patented Rubicontm elastic transducer which consists of two elastic elements; a soft spring and a stiff flexural member. Deflection of the soft spring applies a force input to the stiff flexure, which responds with a proportionally reduced output deflection. To maintain linearity, the displacements, and hence the stresses, developed in both elastic members are kept well below the elastic yield strength of the material. The AEH transducer is inherently linear and hysteresis free.

  2. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  3. Towards the development of a 30 year record of remotely sensed vegetation optical depth

    NASA Astrophysics Data System (ADS)

    de Jeu, Richard A. M.; Holmes, Thomas R. H.; van der Werf, Guido

    2009-09-01

    The framework for the development of a 30 year global record of remotely sensed vegetation optical depth is presented. The vegetation data set is derived from passive microwave observations and spans the period from November 1978 through the end of 2008. Different satellite sensor observations (i.e. Nimbus-7 SMMR, DMSP SSM/I, TRMM TMI, and AQUA AMSR-E). are used in a radiative transfer model to derive vegetation optical depth. Vegetation optical depth can directly be related to vegetation water content and is a function of biomass. The retrieval model is described and the quality of the retrieved vegetation optical depth is discussed. The new dataset will be merged into one consistent global product for the entire period of data record. To explore the potential to use this new product for long term vegetation modeling, the product was compared to total biomass from the biogeochemical model CASA. The results indicate that the vegetation optical depth can be an important contribution to the derivation of biophysical properties like biomass. It can also increase the reliability of optical sensor derived vegetation indices, because the microwave vegetation optical depth can be derived under cloudy conditions. This unique feature could create the possibility to improve the temporal resolution of other biophysical data products. The entire vegetation density dataset will be made available for download by the general science community and could give a significant contribution in climate research.

  4. Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations

    NASA Technical Reports Server (NTRS)

    Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee

    2011-01-01

    The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.

  5. Optical transfer of master hologram with 20-meter depth

    NASA Astrophysics Data System (ADS)

    Jepsen, Mary Lou; Dawson, Paula H.

    1993-03-01

    The optical transfer of a large-scale synthetic holographic master stereogram via Benton rainbow technique is discussed. The limits of this technique when the volume the rainbow hologram fills is increased to 8000 cubic meters are evaluated. Blur and accommodation present the primary difficulties. The choice of imagery plays a crucial role in minimizing these effects.

  6. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter. The aerosol optical depth (AOD) - a derived estimate from the satellite measured irradiance, can be compared against model derived estimate to provide an evaluation of the columnar ...

  7. Retrieval of the optical depth using an all-sky CCD camera.

    PubMed

    Olmo, Francisco J; Cazorla, Alberto; Alados-Arboledas, Lucas; López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier

    2008-12-01

    A new method is presented for retrieval of the aerosol and cloud optical depth using a CCD camera equipped with a fish-eye lens (all-sky imager system). In a first step, the proposed method retrieves the spectral radiance from sky images acquired by the all-sky imager system using a linear pseudoinverse algorithm. Then, the aerosol or cloud optical depth at 500 nm is obtained as that which minimizes the residuals between the zenith spectral radiance retrieved from the sky images and that estimated by the radiative transfer code. The method is tested under extreme situations including the presence of nonspherical aerosol particles. The comparison of optical depths derived from the all-sky imager with those retrieved with a sunphotometer operated side by side shows differences similar to the nominal error claimed in the aerosol optical depth retrievals from sunphotometer networks.

  8. Temporal variations in atmospheric water vapor and aerosol optical depth determined by remote sensing

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Mcallum, W. E.; Heidt, M.; Jeske, K.; Lee, J. T.; Demonbrun, D.; Morgan, A.; Potter, J.

    1977-01-01

    By automatically tracking the sun, a four-channel solar radiometer was used to continuously measure optical depth and atmospheric water vapor. The design of this simple autotracking solar radiometer is presented. A technique for calculating the precipitable water from the ratio of a water band to a nearby nonabsorbing band is discussed. Studies of the temporal variability of precipitable water and atmospheric optical depth at 0.610, 0.8730 and 1.04 microns are presented. There was good correlation between the optical depth measured using the autotracker and visibility determined from National Weather Service Station data. However, much more temporal structure was evident in the autotracker data than in the visibility data. Cirrus clouds caused large changes in optical depth over short time periods. They appear to be the largest deleterious atmospheric effect over agricultural areas that are remote from urban pollution sources.

  9. Anomalous Dispersion in Gases Derived from the Optical Depth. Theoretical Treatment: Line by Line Calculations

    DTIC Science & Technology

    1991-06-28

    AD-A238 853 ANOMALOUS DISPERSION IN GASES DERIVED FROM THE OPTICAL DEPTH. THEORETICAL TREATMENT; LINE BY LINE CALCULATIONS BY EGIL BINGEN . BJ0RNAR...06054 917 1 04 ANOMALOUS DISPERSION IN GASES DERIVED FROM THE OPTICAL DEPTH. THEORETICAL TREATMENT; LINE BY LINE CALCULATIONS by - EGII, BINGEN . BJORNAR... BINGEN Egil, YSTAD Bjornar 61 DISTRIBUTION STATEMENT Approved for pub’ic release. Distribution unlimited (Offentlig tilgjengelig) 7) INDEXING TERMS IN

  10. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations

    DOE PAGES

    Terai, C. R.; Klein, S. A.; Zelinka, M. D.

    2016-08-26

    The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less

  11. Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations

    SciTech Connect

    Terai, C. R.; Klein, S. A.; Zelinka, M. D.

    2016-08-26

    The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIP simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.

  12. Measuring fast optical depth variations in cloud edges with a CCD-array spectrometer

    NASA Astrophysics Data System (ADS)

    González, Josep-Abel; Calbó, Josep; Sanchez-Romero, Alejandro

    2017-02-01

    High frequency measurements of direct solar flux have been performed with a CCD spectrometer in six narrowband channels along the visible range. Measurements were performed in 1-sec intervals for conditions ranging from clear sky to scattered-to-broken cloud fields. The comparison between close time measurements allows obtaining information on the fast changes in optical depth associated to the pass of clouds or other changes in atmospheric conditions and constituents. The method used does not depend on the absolute calibration of the instrument, and minimizes the effects of changes in instrumental conditions (as temperature) and in air mass. The variations in optical depth in the sight direction can be associated to cloud and/or aerosol optical depth, provided that other atmospheric constituents, as ozone, remain constant. The aerosol exponent is used to characterize the spectral dependence of the changes in optical depth and for describing the evolution of the conglomerate of particles (either cloud droplets or aerosol particles) along the measurement periods. We found that rates in optical depth variations above 0.1/sec have to be attributed to sunlight occultation by cloud edges, as the spectral exponent drops to values near zero or even slightly negative. Variations in optical depth at rates below 0.01/sec are mainly related to aerosol effects.

  13. Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study.

    PubMed

    Su, Ya; Yao, X Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi

    2015-02-01

    We present detailed measurement results of optical attenuation's thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin.

  14. Post-depositional remanent magnetization lock-in depth in precisely dated varved sediments assessed by archaeomagnetic field models

    NASA Astrophysics Data System (ADS)

    Mellström, Anette; Nilsson, Andreas; Stanton, Tania; Muscheler, Raimund; Snowball, Ian; Suttie, Neil

    2015-01-01

    Accurate and precise chronologies are needed to evaluate the existence and effect of a post-depositional remanent magnetization lock-in process on sedimentary palaeomagnetic records. Here we present lock-in modelling results of two palaeomagnetic records from varved lake sediments (lakes Kälksjön and Gyltigesjön) in Sweden by using model predictions based on archaeomagnetic data. We used the 14C wiggle-match dating technique to improve the precision of the Kälksjön varve chronology in the period between 3000 and 2000 cal BP, which is characterized by pronounced palaeomagnetic secular variation. This method allowed us to infer an age model with uncertainties of ±20 years (95.4% probability range). Furthermore, we compared the palaeomagnetic record of Kälksjön to Gyltigesjön, which has a corresponding 14C wiggle-matched chronology. The ages of palaeomagnetic features derived from the wiggle-matched varve chronologies are older than those predicted by the archaeomagnetic models. Lock-in modelling was performed with different filter functions to explain the temporal offset and the amplitude of the lake sediment palaeomagnetic data. The analyses suggest that a linear lock-in function with lock-in depths (the depth below which no more natural magnetic remanence is acquired) that range between 30 and 80 cm in Kälksjön and 50 and 160 cm in Gyltigesjön are most appropriate to explain the data. These relatively deep lock-in depths in sediments without a bioturbated 'mixed-zone' can be attributed to the relatively high organic contents and low density of the lake sediments, which contribute to a thick unconsolidated upper zone of the sediment sequence in which re-alignment of magnetic particles can take place.

  15. Precision Control of Ultracold Molecules in Optical Lattices

    DTIC Science & Technology

    2011-07-20

    control and precision. For example, a Stark-cancellation, or magic frequency , technique has enabled state-of-the-art neutral atom clocks. This approach...NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT Standard Form 298...precision frequency measurements with the goal to find evidence for a possible time variation of the electron-proton mass ratio. The proposal also included

  16. Chromatic error correction of diffractive optical elements at minimum etch depths

    NASA Astrophysics Data System (ADS)

    Barth, Jochen; Gühne, Tobias

    2014-09-01

    The integration of diffractive optical elements (DOE) into an optical design opens up new possibilities for applications in sensing and illumination. If the resulting optics is used in a larger spectral range we must correct not only the chromatic error of the conventional, refractive, part of the design but also of the DOE. We present a simple but effective strategy to select substrates which allow the minimum etch depths for the DOEs. The selection depends on both the refractive index and the dispersion.

  17. In-process optical metrology for precision machining

    SciTech Connect

    Langenbeck, P.

    1987-01-01

    This book contains papers divided among the following sections: Optical technology in the Netherlands; Shape and microfinish as a function of machine performance and stiffness; Repsonse of material to ideal micromachining and diamond tools; Micromachined components in optical systems, scanning interferometry; Contactless microtopography and profilometry; and Automated interferometric validation scatterometry, ellipsometry.

  18. Cloud Optical Depth Retrievals from Solar Background "signal" of Micropulse Lidars

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, A.; Wiscombe, W.; Valencia, S.; Welton, E. J.

    2007-01-01

    Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10-15% for overcast stratus and broken clouds. In fact, for broken cloud situations one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.

  19. High-precision steering of multipleholographic optical traps

    NASA Astrophysics Data System (ADS)

    Schmitz, Christian H. J.; Spatz, Joachim P.; Curtis, Jennifer E.

    2005-10-01

    Locating and steering entire ensembles of microscopic objects has become extremely practical with the emergence of holographic optical tweezers. Application of this technology to single molecule experiments requires great accuracy in the spatial positioning of optical traps. This paper calculates the theoretical position resolution of a single holographic beam, predicting that sub-nanometer resolution is easily achieved. Experimental corroboration of the spatial resolution's inverse dependence on the hologram's number of pixels and phase levels is presented. To at least a nanometer range position resolution, multiple optical tweezers created by complex superposition holograms also follow the theoretical predictions for a single beam.

  20. Ultrabroadband optical chirp linearization for precision metrology applications.

    PubMed

    Roos, Peter A; Reibel, Randy R; Berg, Trenton; Kaylor, Brant; Barber, Zeb W; Babbitt, Wm Randall

    2009-12-01

    We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.

  1. Method for making precisely configured flakes useful in optical devices

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Kosc, Tanya Z.; Marshall, Kenneth L.

    2007-07-03

    Precisely configured, especially of geometric shape, flakes of liquid crystal material are made using a mechanically flexible polymer mold with wells having shapes which are precisely configured by making the mold with a photolithographically manufactured or laser printed master. The polymer liquid crystal is poured into the wells in the flexible mold. When the liquid crystal material has solidified, the flexible mold is bent and the flakes are released and collected for use in making an electrooptical cell utilizing the liquid crystal flakes as the active element therein.

  2. Estimating vegetation optical depth using L-band passive microwave airborne data in HiWATER

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Chai, Linna

    2014-11-01

    In this study, a relationship between polarization differences of soil emissivity at different incidence angles was constructed from a large quantity of simulated soil emissivity based on the Advanced Integrated Emission Model (AIEM) input parameters include: a frequency of 1.4 GHz (L-band), incident angles varying from 1°to 60° at a 1° interval, a wide range of soil moisture content and land surface roughness parameters. Then, we used this relationship and the ω-τ zero-order radiation transfer model to develop an inversion method of low vegetation optical depth at L-band, this work were under the assumption that there was no significant polarization difference between the vegetation signals. Based on this inversion method of low vegetation optical depth, we used the land surface passive microwave brightness temperature of Heihe Watershed obtained by airborne Polarimetric L-band Multibeam Radiometer (PLMR) in 2012 Heihe Watershed Allied Telemetry Experimental Research (HiWATER) to retrieve the corn optical depth in the flight areas, then the results were compared with the measured corn LAI. Results show that the retrieved corn optical depths were consisted with the measured LAI of corn. It proved that the corn optical depth inversion method proposed in this study was feasible. Moreover, the method was promising to apply to the satellite observations.

  3. Improving Mars-GRAM: Increasing the Accuracy of Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.

    2010-01-01

    Extensively utilized for numerous mission applications, the Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model. In a Monte-Carlo mode, Mars-GRAM's perturbation modeling capability is used to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). Mars-GRAM has been found to be inexact when used during the Mars Science Laboratory (MSL) site selection process for sensitivity studies for MapYear=0 and large optical depth values such as tau=3. Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM) from the surface to 80 km altitude. Mars-GRAM with the MapYear parameter set to 0 utilizes results from a MGCM run with a fixed value of tau=3 at all locations for the entire year. Imprecise atmospheric density and pressure at all altitudes is a consequence of this use of MGCM with tau=3. Density factor values have been determined for tau=0.3, 1 and 3 as a preliminary fix to this pressure-density problem. These factors adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. These density factors are fixed values for all latitudes and Ls and are included in Mars-GRAM Release 1.3. Work currently being done, to derive better multipliers by including variations with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data, will be highlighted in the presentation. The TES limb data utilized in this process has been validated by a comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS). This comparison study was undertaken for locations on Mars of varying latitudes, Ls, and LTST. The more precise density factors will be included in Mars-GRAM 2005 Release 1.4 and thus improve the results of future sensitivity studies done for large

  4. Asian dust height and infrared optical depth retrievals over land from hyperspectral longwave infrared radiances

    NASA Astrophysics Data System (ADS)

    Yao, Zhigang; Li, Jun; Han, Hyo-Jin; Huang, Allen; Sohn, B. J.; Zhang, Peng

    2012-10-01

    The dust top height and infrared optical depth over land are retrieved from the Atmospheric Infrared Sounder (AIRS) longwave infrared measurements by using a one-dimensional-variation retrieval algorithm for different Asian dust storms. By combining particle size measurements from a 10-year ground observation data set from the Dunhuang Skynet station located to the east of the Taklimakan Desert in China and the Optical Properties of Aerosols and Clouds data set of optical properties, the mineral dust scattering and absorption coefficients are obtained and then used to compute brightness temperatures with RTTOV 9.3. The retrieved dust thermal infrared optical depths are compared with the Ozone Monitoring Instrument and Moderate Resolution Imaging Spectroradiometer (MODIS) products. The retrieved dust top heights are compared against the extinction backscatter profiles obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization lidar. Infrared optical depths from AIRS correlate favorably with visible optical depths from MODIS, and dust top heights agree reasonably with lidar observations for the single-layered dust storms over the Taklimakan Desert.

  5. Precise annealing of focal plane arrays for optical detection

    DOEpatents

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  6. Precise evaluation of the Helmholtz equation for optical propagation.

    PubMed

    Pond, John E; Sutton, George W

    2015-01-01

    A precise computational integration of the Helmholtz equation was performed for laser propagation of an electromagnetic wave with no approximations or linearization. This computation integration was performed using 64-bit processors. This is illustrated for a uniform monochromatic beam from a circular aperture that has a uniform intensity. It predicts many Arago spots and near-field intensity fluctuations for a large ratio of aperture size to wavelength and converges to the usual Airy pattern in the far field.

  7. Challenges in mold manufacturing for high precision molded diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  8. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  9. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  10. Measurement of optical penetration depth and refractive index of human tissue

    NASA Astrophysics Data System (ADS)

    Xie, Shusen; Li, Hui; Li, Buhong

    2003-01-01

    Experimental techniques for measurement of optical penetration depth and refractive index of human tissue are presented, respectively. Optical penetration depth can be obtained from the measurement of the relative fluence-depth distribution inside the target tissue. The depth of normal and carcinomatous human lung tissues irradiated with the wavelengths of 406.7, 632.8 and 674.4 nm in vitro are respectively determined. In addition, a novel simple method based on total internal reflection for measuring the refractive index of biotissue in vivo is developed, and the refractive indices of skin from people of different age, sex and skin color are measured. Their refractive indices are almost same and the average is 1.533.

  11. Studies on aerosol optical depth in biomass burning areas using satellite and ground-based observations

    NASA Astrophysics Data System (ADS)

    Kant, Yogesh; Ghosh, A. B.; Sharma, M. C.; Gupta, Prabhat K.; Prasad, V. Krishna; Badarinath, K. V. S.; Mitra, A. P.

    2000-02-01

    Biomass burning in the tropics is a source of trace gas fluxes and particulate matter. During the last decade, the shifting cultivation practices have been increased in the tropical forest of Eastern Ghats, Andhra Pradesh, India. In order to quantify the fluxes emitted from the biomass burning due to shifting cultivation practices, a field experiment has been conducted on February 16-25, 1999. The present study provides the variation of aerosol optical depth over the shifting cultivation areas of Rampa Revenue Division, Eastern Ghats using a sunphotometer in synchronism with satellite data. Optical depth values increased up to 2.0 during the burning phase and then returned to normal values (0.2-0.5). The atmospheric correction of the satellite data using the optical depth values suggested improvement in the overall contrast of the image and increase in the dynamic range of the normalized difference vegetation index (NDVI) values of various features in the image.

  12. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2014-08-20

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.

  13. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    USGS Publications Warehouse

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  14. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Sorokin, Mikail; Stone, Tom; Eck, Thomas F.; Hoff, Raymond; Welton, Ellsworth; Holben, Brent

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.

  15. Increasing the penetration depth for ultrafast laser tissue ablation using glycerol based optical clearing

    NASA Astrophysics Data System (ADS)

    Gabay, Ilan; Subramanian, Kaushik G.; Martin, Chris; Yildirim, Murat; Tuchin, Valery V.; Ben-Yakar, Adela

    2016-03-01

    Background: Deep tissue ablation is the next challenge in ultrafast laser microsurgery. By focusing ultrafast pulses below the tissue surface one can create an ablation void confined to the focal volume. However, as the ablation depth increases in a scattering tissue, increase in the required power can trigger undesired nonlinear phenomena out of focus that restricts our ability to ablate beyond a maximum ablation depth of few scattering lengths. Optical clearing (OC) might reduce the intensity and increase the maximal ablation depth by lowering the refractive index mismatch, and therefore reducing scattering. Some efforts to ablate deeper showed out of focus damage, while others used brutal mechanical methods for clearing. Our clinical goal is to create voids in the scarred vocal folds and inject a biomaterial to bring back the tissue elasticity and restore phonation. Materials and methods: Fresh porcine vocal folds were excised and applied a biocompatible OC agent (75% glycerol). Collimated transmittance was monitored. The tissue was optically cleared and put under the microscope for ablation threshold measurements at different depths. Results: The time after which the tissue was optically cleared was roughly two hours. Fitting the threshold measurements to an exponential decay graph indicated that the scattering length of the tissue increased to 83+/-16 μm, which is more than doubling the known scattering length for normal tissue. Conclusion: Optical clearing with Glycerol increases the tissue scattering length and therefore reduces the energy for ablation and increases the maximal ablation depth. This technique can potentially improve clinical microsurgery.

  16. Measurements of total column ozone, precipitable water content and aerosol optical depth at Sofia

    NASA Astrophysics Data System (ADS)

    Kaleyna, P.; Kolev, N.; Savov, P.; Evgenieva, Ts.; Danchovski, V.; Muhtarov, P.

    2016-03-01

    This article reports the results of a study related to variations in total ozone content, aerosol optical depth, water vapor content and Ångström coefficients from summer campaign carried out in June-July 2014, at two sites in the city of Sofia (Astronomical Observatory in the Borisova Gradina Park and National Institute of Geophysics, Geodesy and Geography (NIGGG)). The results of data analysis indicate the following: Spectral dependence of aerosol optical depth (AOD); Greater AOD values due to greater portion of aerosols; Inverse relationship between the time variations of AOD or water vapor and ozone.

  17. Analytical Derivation of the Vegetation Optical Depth from the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Meesters, Antoon G. C. A.; DeJeu, Richard A. M.; Owe, Manfred

    2006-01-01

    A numerical solution for the canopy optical depth in an existing microwave-based land surface parameter retrieval model is presented. The optical depth is derived from the microwave polarization difference index and the dielectric constant of the soil. The original procedure used an approximation in the form of a logarithmic decay function to define this relationship, and was derived through a series of lengthy polynomials. These polynomials had to be recalculated when the scattering albedo or antenna incidence angle changes. The new procedure is computationally more efficient and accurate.

  18. Design and fabrication of an optical probe with a phase filter for extended depth of focus.

    PubMed

    Xing, Jingchao; Kim, Junyoung; Yoo, Hongki

    2016-01-25

    The trade-off between spot size and depth of focus (DOF) often limits the performance of optical systems, such as optical coherence tomography and optical tweezers. Although researchers have proposed various methods to extend the DOF in free-space optics, many are difficult to implement in miniaturized optical probes due to space limitations. In this study, we present an optical probe with an extended DOF using a binary phase spatial filter (BPSF). The BPSF pattern was fabricated on the distal tip of an optical probe with a diameter of 1 mm by replica molding soft lithography, which can be easily implemented in a miniaturized optical probe due to its simple configuration. We optimized the BPSF pattern to enhance DOF, spot diameter, and light efficiency. To evaluate the fabricated endoscopic optical probe, we measured the three-dimensional point spread function of the BPSF probe and compared it with a probe without BPSF. The BPSF probe has a spot diameter of 3.56 μm and a DOF of 199.7 μm, while the probe without BPSF has a spot diameter of 3.69 μm and a DOF of 73.9 μm, representing a DOF gain of 2.7. We anticipate that this optical probe can be used in biomedical applications, including optical imaging and optical trapping techniques.

  19. Fabrication of precision optics using an imbedded reference surface

    DOEpatents

    Folta, James A.; Spiller, Eberhard

    2005-02-01

    The figure of a substrate is very precisely measured and a figured-correcting layer is provided on the substrate. The thickness of the figure-correcting layer is locally measured and compared to the first measurement. The local measurement of the figure-correcting layer is accomplished through a variety of methods, including interferometry and fluorescence or ultrasound measurements. Adjustments in the thickness of the figure-correcting layer are made until the top of the figure-correcting layer matches a desired figure specification.

  20. Precise digital demodulation for fiber optic interferometer sensors

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei; Berezhnoi, Andrei; Kudryashov, Aleksei; Liokumovich, Leonid

    2016-03-01

    Different methods are used in the interferometer sensors for target signal extraction. Digital technologies provide new opportunities for precise signal detection. We have developed the principle of signal demodulation using an additional harmonic phase modulation and digital signal processing. The principle allows implementation of processing algorithms using different ratios between modulation and discretization frequencies. The expressions allowing calculation of the phase difference using the inverse trigonometric functions were derived. The method was realized in LabVIEW programming environment and was demonstrated for various signal shapes.

  1. Precision Targeting With a Tracking Adaptive Optics Scanning Laser Ophthalmoscope

    DTIC Science & Technology

    2006-01-01

    galvanometers placed at appropriate conjugates within the path of the adaptive optics scanning laser ophthalmoscope. The input to the “master” control loop is...loop is the scaled position signals from the master galvanometers . The slave tracking mirrors are placed at conjugates to the center of rotation of the...slave systems), and analog-to-digital and digital-to- analog converters (ADC and DACs) to receive reflectometer signals and drive galvanometers . The

  2. Measuring changes in the scattering properties of Intralipid at different depths with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kinnunen, Matti; Myllylä, Risto

    2007-07-01

    Optical coherence tomography (OCT) is a powerful tool for imaging tissue structure. The images provide information on a micrometer scale. By averaging depth scans, an intensity profile can be formed as a function of depth. The slope of a straight line fitted to the OCT signal depth profile contains information on light attenuation in the sample at different depths. This slope can be used to detect changes in the scattering properties of the sample, especially in a single scattering region. In this article, the effect of fitting the line at different depths on detection sensitivity was studied in Intralipid phantoms with different concentrations. Different glucose concentrations were also used with 5 % Intralipid samples. Different depths were studied because the depth of the dermis and the thicknesses of skin layers in human skin vary in different body locations. The results show that the sensitivity of detecting changes in the scattering properties of Intralipid is better at a depth corresponding to that of the dermis in the human arm (0.166 - 0.276 mm) than at a depth equaling the dermis in the forefinger (0.441 - 0.579 mm). For this reason, the applicability of the single scattering model for fitting the straight line to different depths of the OCT signal is limited, and a more comprehensive model for extracting changes in scattering is recommended at greater depths. This has to be kept in mind when determining the depth position for registering glucose-induced changes in vivo with an OCT-based glucose sensor.

  3. Antenna pointing compensation based on precision optical measurement techniques

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L.; Vivian, H. C.

    1988-01-01

    The pointing control loops of the Deep Space Network 70 meter antennas extend only to the Intermediate Reference Structure (IRS). Thus, distortion of the structure forward of the IRS due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade blind pointing accuracy. A system is described which can provide real time bias commands to the pointing control system to compensate for environmental effects on blind pointing performance. The bias commands are computed in real time based on optical ranging measurements of the structure from the IRS to a number of selected points on the primary and secondary reflectors.

  4. Precision Targeting with a Tracking adaptive Optics Scanning Laser Ophthalmoscope

    DTIC Science & Technology

    2006-02-01

    in Figure 2) but drives two galvanometers placed at appropriate conjugates within the path of the adaptive optics scanning laser ophthalmoscope...reflectometer. The input to the "slave" control loop is the scaled position signals from the master galvanometers . The slave tracking mirrors are placed at...signals and drive galvanometers . The DSP has a loop rate of 62.5 kHz (compared to 16 kHz in the previously-used real-time processing board) for a

  5. Inverse problem theory in the optical depth profilometry of thin films

    NASA Astrophysics Data System (ADS)

    Power, J. F.

    2002-12-01

    The problem of nondestructive measurement of composition with depth on the scale of ˜0.1-500 μm, in polymers and related materials, has many applications in traditional and recent areas of thin film processing. This article reviews the optical depth profilometry techniques operating on this scale based on optical absorption, photoluminescence, elastic, and inelastic scattering. These methods include photoacoustic and photothermal imaging (including pulsed laser opto-acoustic profiling), attenuated total reflectance infrared, integrated optical spectroscopy methods (based on excitation of planar waveguide structures), confocal scanning microscopy, and the recent technique of light profile microscopy. The profiling of planar structures is emphasized. A common element of all of these methods is that depth mapping requires the solution of a linear inverse problem, where a map of the sample properties is mathematically reconstructed from a set of experimental measurements. This problem is to some extent ill conditioned in some or all regimes of measurement, with the result that depth maps may show sensitivity to data errors. A method is presented for assessing performance of the above experimental depth profilometry techniques in terms of ill conditioning as indicated by: spatial resolution, sensitivity to data errors, and apparent multiplicity of solutions. This method is applied a priori given a knowledge of the linear response theory and measurement parameters Application is made to individual profiling techniques, the performance of each in applications is reviewed, and an inter-comparison is made based on the conditioning of the inverse problem.

  6. Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2014-02-16

    In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

  7. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  8. INTEGRATING LIDAR AND SATELLITE OPTICAL DEPTH WITH AMBIENT MONITORING FOR 3-DIMENSIONAL PARTICULATE CHARACTERIZATION

    EPA Science Inventory

    A combination of in-situ PM2.5, sunphotometers, upward pointing lidar and satellite aerosol optical depth (AOD) instruments have been employed to better understand variability in the correlation between AOD and PM2.5 at the surface. Previous studies have shown good correlation be...

  9. Direct numerical modeling of Saturn's dense rings at high optical depth

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Ballouz, Ronald-Louis; Morishima, Ryuji

    2015-11-01

    Saturn's B ring exhibits complex optical depth structure of uncertain origin. We are investigating the extent to which viscous overstability and/or gravitational wakes can give rise to this structure, via discrete particle numerical simulations. We use the parallelized N-body tree code pkdgrav with a soft-sphere collision model for detailed treatment of particle collisional physics, including multi-point persistent contact with static, sliding, rolling, and twisting friction forces. This enables us to perform local simulations with millions of particles, realistic sizes, and configurable material properties in high-optical-depth ring patches with near-linear scaling across multiple processors. Recent code improvements to the collision search algorithm provide a further roughly factor of 2 speedup. We present results from the first year of this study in which a library of simulations with different optical depths was constructed. Parameters explored include normal (dynamical) optical depths between 0.5 (approximately 100,000 particles) and 4.0 (approximately 8.3 million particles) in ring patches of dimension 6 by 6 critical Toomre wavelengths, using material parameters ranging from highly elastic smooth spheres to rough "gravel"-like particles. We also vary the particle internal densities to enhance (low density)/suppress (high density) viscous overstability in order to compare against gravitational instability in these different regimes. These libraries will be used to carry out simulated observations for comparison with Cassini CIRS temperature measurements and UVIS occulation data of Saturn's dense rings.

  10. Empirical Relationship between particulate matter and Aerosol Optical Depth over Northern Tien-Shan, Central Asia

    EPA Science Inventory

    Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...

  11. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter.

    The aerosol optical depth (AOD) - a derived estimate from the satellite-measured radiance, can be compared against model estimates to provide an evaluation of the columnar ae...

  12. Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.; Zorzano, María-Paz; Lemmon, Mark; Martín-Torres, Javier; Mendaza de Cal, Teresa

    2016-12-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately 1.75 Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270°, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time.

  13. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  14. Effects of Aerosol Optical Depth on diffuse UV and visible radiation

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.; Cho, H.; Kim, Y.

    2007-12-01

    Ultraviolet radiation (UV, 300-367nm) was measured with a UV-multifilter rotating shadowband radiometer (UV- MFRSR) at Yonsei University, Seoul (37.57°N, 126.97°) for 7 months from January to July 2006 and visible irradiance (400-700 nm) also measured with a MFRSR for 12 months of 2006 at the same station. Spectral UV_AOD and vis_AOD were retrieved using the Langley method and Beer-Bouguer-Lambert's law, and compared with AOD obtained from Skyradiometer to validate their values. The diffuse and direct irradiance were analyzed to investigate the dependence on total optical depth (TOD) and aerosol optical depth (AOD). The direct-horizontal solar irradiance decreases exponentially as the optical depth increases according to the Beer- Bouguer-Lambert's Law. As the TOD and AOD increase, the diffuse-horizontal UV radiation gradually increases and shows a maximum value at some critical optical depth for a given SZA. Similar analysis was performed on the relation between the diffuse irradiance and AOD. RAF(radiation amplification factor) was used to correct the ozone effects on UV. These results provide empirical equations for the amount of diffuse irradiance in UV and visible wavelengths.

  15. Aerosol Optical Depth as Observed by the Mars Science Laboratory REMS UV Photodiodes

    NASA Technical Reports Server (NTRS)

    Smith, M. D.; Zorzano, M.-P.; Lemmon, M.; Martin-Torres, J.; Mendaza de Cal, T.

    2017-01-01

    Systematic observations taken by the REMS UV photodiodes on a daily basis throughout the landed Mars Science Laboratory mission provide a highly useful tool for characterizing aerosols above Gale Crater. Radiative transfer modeling is used to model the approximately two Mars Years of observations taken to date taking into account multiple scattering from aerosols and the extended field of view of the REMS UV photodiodes. The retrievals show in detail the annual cycle of aerosol optical depth, which is punctuated with numerous short timescale events of increased optical depth. Dust deposition onto the photodiodes is accounted for by comparison with aerosol optical depth derived from direct imaging of the Sun by Mastcam. The effect of dust on the photodiodes is noticeable, but does not dominate the signal. Cleaning of dust from the photodiodes was observed in the season around Ls=270deg, but not during other seasons. Systematic deviations in the residuals from the retrieval fit are indicative of changes in aerosol effective particle size, with larger particles present during periods of increased optical depth. This seasonal dependence of aerosol particle size is expected as dust activity injects larger particles into the air, while larger aerosols settle out of the atmosphere more quickly leading to a smaller average particle size over time. A full description of these observations, the retrieval algorithm, and the results can be found in Smith et al. (2016).

  16. PAH 8μm Emission as a Diagnostic of HII Region Optical Depth

    NASA Astrophysics Data System (ADS)

    Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.

    2017-01-01

    PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.

  17. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    PubMed Central

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-01-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids. PMID:26576666

  18. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    NASA Astrophysics Data System (ADS)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-11-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  19. Cloud-free aerosol optical depth determination over oceans from satellite radiometry

    SciTech Connect

    Wagener, R.; Nemesure, S.; Benkovitz, C.M.; Schwartz, S.E.; Berkowitz, C.M.; Ghan, S.J.

    1993-06-01

    Shortwave radiative forcing of climate by anthropogenic sulfate aerosol has been estimated to be of comparable global-average magnitude, but opposite sign, to longwave forcing by greenhouse gases (Charlson et al., 1992). It is therefore important that this forcing be accurately represented in climate models. Sulfate concentrations calculated by a Global Chemistry Model driven by operational meteorological data (GChM; Benkovitz et al., this meeting) exhibit high spatial and temporal variations that closely reproduce observations at continental sites. However, because of the sparsity of sulfate concentration measurements over oceans, aerosol optical depth determinations from satellite data are needed to evaluate the performance of the model over oceans. Previous studies of aerosol optical depths over oceans have employed Advanced Very High Resolution Radiometer Global Area Coverage (AVHRR GAC) data (Rao et al., 1989; Durkee et al., 1991) that should yield the required information, but the emphasis in these studies has been to produce wide spatial coverage by time averaging for periods of a week to a month, thereby masking the high spatial and temporal variability associated with the data and required for model evaluation. The Rao et al. method is employed in the production of the weekly composite aerosol maps by NOAA since June 1987. The authors report results obtained with a modified Durkee algorithm that provides instantaneous optical depths averaged over individual GChM model grid cells (1.125{degrees} x 1.125{degrees}) for comparison with optical depths predicted by the chemistry model at the same times and places (Berkowitz et al., this meeting). The optical depth retrieval is improved by a more accurate removal of sun-glint contamination, using the formulation of (Cox and Munk, 1956) for sun-glint probability as a function of wind speed, together with the wind speeds available from the operational meteorological data used to drive the chemistry model.

  20. Microlensing Optical Depth towards the Galactic Bulge Using Clump Giants from the MACHO Survey

    SciTech Connect

    Popowski, P; Griest, K; Thomas, C L; Cook, K H; Bennett, D P; Becker, A C; Alves, D R; Minniti, D; Drake, A J; Alcock, C; Allsman, R A; Axelrod, T S; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D

    2005-07-14

    Using 7 years of MACHO survey data, we present a new determination of the optical depth to microlensing towards the Galactic bulge. We select the sample of 62 microlensing events (60 unique) on clump giant sources and perform a detailed efficiency analysis. We use only the clump giant sources because these are bright bulge stars and are not as strongly affected by blending as other events. Using a subsample of 42 clump events concentrated in an area of 4.5 deg{sup 2} with 739000 clump giant stars, we find {tau} = 2.17{sub -0.38}{sup +0.47} x 10{sup -6} at (l,b) = (1{sup o}.50, -2{sup o}.68), somewhat smaller than found in most previous MACHO studies, but in excellent agreement with recent theoretical predictions. We also present the optical depth in each of the 19 fields in which we detected events, and find limits on optical depth for fields with no events. The errors in optical depth in individual fields are dominated by Poisson noise. We measure optical depth gradients of (1.06 {+-} 0.71) x 10{sup -6}deg{sup -1} and (0.29 {+-} 0.43) x 10{sup -6}deg{sup -1} in the galactic latitude b and longitude l directions, respectively. Finally, we discuss the possibility of anomalous duration distribution of events in the field 104 centered on (l,b) = (3{sup o}.11, -3{sup o}.01) as well as investigate spatial clustering of events in all fields.

  1. Precision molding of optics: a review of its development and applications

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, G.; Zhao, X.; Dambon, Olaf; Klocke, F.; Yi, A. Y.

    2016-09-01

    Compression molding of precision optics is gradually becoming a viable manufacturing process for low cost high performance optical elements. In this process, a glass preform in the form of gob or disk is heated rapidly above its glass transition temperature then pressed between two optical mold halves to finish dimensions. The molded lens is first cooled slowly then at a fast cooling rate to room temperature to complete the process. For more than a decade, the authors have conducted a collaborated research in glass molding using both experiments and numerical modeling. In this presentation, we will discuss the recent work in molding of both conventional glass optics and extreme high temperature glass optics - fused silica material. In addition, development of graphene like coatings for precision glass molding will also be described.

  2. Process influences and correction possibilities for high precision injection molded freeform optics

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2016-08-01

    Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.

  3. Analytic Inversion of Emission Lines of Arbitrary Optical Depth for the Structure of Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Ignace, R.; Hendry, M. A.

    2000-07-01

    We derive a method for inverting emission-line profiles formed in supernova ejecta. The derivation assumes spherical symmetry and homologous expansion [i.e., v(r)~r], is analytic, and even takes account of occultation by a pseudophotosphere. Previous inversion methods have been developed that are restricted to optically thin lines, but the particular case of homologous expansion permits an analytic result for lines of arbitrary optical depth. In fact, we show that the quantity that is generically retrieved is the run of line intensity Iλ with radius in the ejecta. This result is quite general and so could be applied to resonance lines, recombination lines, etc. As a specific example, we show how to derive the run of (Sobolev) optical depth τλ with radius in the case of a pure resonance scattering emission line.

  4. Extending the effective imaging depth in spectral domain optical coherence tomography by dual spatial frequency encoding

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Wang, Qingqing; Liu, Youwen; Wang, Jiming

    2016-03-01

    We present a spatial frequency domain multiplexing method for extending the imaging depth range of a SDOCT system without any expensive device. This method uses two reference arms with different round-trip optical delay to probe different depth regions within the sample. Two galvo scanners with different pivot-offset distances in the reference arms are used for spatial frequency modulation and multiplexing. While simultaneously driving the galvo scanners in the reference arms and the sample arm, the spatial spectrum of the acquired two-dimensional OCT spectral interferogram corresponding to the shallow and deep depth of the sample will be shifted to the different frequency bands in the spatial frequency domain. After data filtering, image reconstruction and fusion the spatial frequency multiplexing SDOCT system can provide an approximately 1.9 fold increase in the effective ranging depth compared with that of a conventional single-reference-arm full-range SDOCT system.

  5. Precision Calculation of Blackbody Radiation Shifts for Optical Frequency Metrology

    SciTech Connect

    Safronova, M. S.; Kozlov, M. G.; Clark, Charles W.

    2011-09-30

    We show that three group IIIB divalent ions, B{sup +}, Al{sup +}, and In{sup +}, have anomalously small blackbody radiation (BBR) shifts of the ns{sup 2} {sup 1}S{sub 0}-nsnp {sup 3}P{sub 0}{sup o} clock transitions. The fractional BBR shifts for these ions are at least 10 times smaller than those of any other present or proposed optical frequency standards at the same temperature, and are less than 0.3% of the Sr clock shift. We have developed a hybrid configuration-interaction + coupled-cluster method that provides accurate treatment of correlation corrections in such ions and yields a rigorous upper bound on the uncertainty of the final results. We reduce the BBR contribution to the fractional frequency uncertainty of the Al{sup +} clock to 4x10{sup -19} at T=300 K. We also reduce the uncertainties due to this effect at room temperature to 10{sup -18} level for B{sup +} and In{sup +} to facilitate further development of these systems for metrology and quantum sensing.

  6. Optically-Selected Cluster Catalogs As a Precision Cosmology Tool

    SciTech Connect

    Rozo, Eduardo; Wechsler, Risa H.; Koester, Benjamin P.; Evrard, August E.; McKay, Timothy A.; /Michigan U.

    2007-03-26

    We introduce a framework for describing the halo selection function of optical cluster finders. We treat the problem as being separable into a term that describes the intrinsic galaxy content of a halo (the Halo Occupation Distribution, or HOD) and a term that captures the effects of projection and selection by the particular cluster finding algorithm. Using mock galaxy catalogs tuned to reproduce the luminosity dependent correlation function and the empirical color-density relation measured in the SDSS, we characterize the maxBCG algorithm applied by Koester et al. to the SDSS galaxy catalog. We define and calibrate measures of completeness and purity for this algorithm, and demonstrate successful recovery of the underlying cosmology and HOD when applied to the mock catalogs. We identify principal components--combinations of cosmology and HOD parameters--that are recovered by survey counts as a function of richness, and demonstrate that percent-level accuracies are possible in the first two components, if the selection function can be understood to {approx} 15% accuracy.

  7. Precision shaping of transparent materials for optical devices with VUV laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian J.

    2004-04-01

    The precision machining of glass by laser ablation has been expanded with the short wavelength of the 157 nm of the F2 excimer laser. The high absorption of this wavelength in any optical glass, especially in UV-grade fused silica, offers a new approach to generate high quality surfaces, addressing also micro-optical components. In this paper, the machining of basic diffractive and refractive optical components and the required machining and process technology is presented. Applications that are addressed are cylindrical and rotational symmetrical micro lenses and diffractive optics like phase transmission grating and diffractive optical elements (DOEs). These optical surfaces have been machined into bulk material as well as on fiber end surfaces, to achieve compact (electro)-optical elements with high functionality and packaging density. The short wavelength of 157 nm used in the investigations require either vacuum or high purity inert gas environments. The influence of different ambient conditions is presented.

  8. High precision deflection measurement of microcantilever in an optical pickup head based atomic force microscopy

    SciTech Connect

    Lee, Sang Heon

    2012-11-15

    This paper presents the methodology to measure the precise deflection of microcantilever in an optical pickup head based atomic force microscopy. In this paper, three types of calibration methods have been proposed: full linearization, sectioned linearization, and the method based on astigmatism. In addition, the probe heads for easy calibration of optical pickup head and fast replacement of optical pickup head have been developed. The performances of each method have been compared through a set of experiments and constant height mode operation which was not possible in the optical pickup head based atomic force microscopy has been carried out successfully.

  9. Terminal speed of a gaseous stratus with finite optical depth over a luminous flat source

    NASA Astrophysics Data System (ADS)

    Masuda, Takao; Fukue, Jun

    2016-06-01

    We reexamine the terminal speed of a moving stratus irradiated by an infinite flat source, considering relativistic radiative transfer in the stratus. For the case of a particle, V. Icke (1989, A&A, 216, 294) analytically derived the terminal speed of (4-√{7})c/3 ˜ 0.45 c, whereas the terminal speed of a stratus with finite optical depth is calculated under the Eddington approximation (J. Fukue, 2014, PASJ, 66, 13), and becomes larger up to 0.7 c in the optically thin limit. In this paper, we numerically calculate radiative transfer in the stratus without the Eddington approximation, and obtain the terminal speed. In the optically thick limit the terminal speed approaches 0.47 c. In the optically thin limit, in contrast to the previous analytical study, it becomes small as the optical depth decreases, and approaches 0.26 c. This is due to the anisotropic effect of the radiation field in the optically thin regime.

  10. Fiber-optic annular detector array for large depth of field photoacoustic macroscopy.

    PubMed

    Bauer-Marschallinger, Johannes; Höllinger, Astrid; Jakoby, Bernhard; Burgholzer, Peter; Berer, Thomas

    2017-03-01

    We report on a novel imaging system for large depth of field photoacoustic scanning macroscopy. Instead of commonly used piezoelectric transducers, fiber-optic based ultrasound detection is applied. The optical fibers are shaped into rings and mainly receive ultrasonic signals stemming from the ring symmetry axes. Four concentric fiber-optic rings with varying diameters are used in order to increase the image quality. Imaging artifacts, originating from the off-axis sensitivity of the rings, are reduced by coherence weighting. We discuss the working principle of the system and present experimental results on tissue mimicking phantoms. The lateral resolution is estimated to be below 200 μm at a depth of 1.5 cm and below 230 μm at a depth of 4.5 cm. The minimum detectable pressure is in the order of 3 Pa. The introduced method has the potential to provide larger imaging depths than acoustic resolution photoacoustic microscopy and an imaging resolution similar to that of photoacoustic computed tomography.

  11. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications.

    PubMed

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-02-19

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m).

  12. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications

    PubMed Central

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-01-01

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727

  13. Depth-correction algorithm that improves optical quantification of large breast lesions imaged by diffuse optical tomography

    PubMed Central

    Tavakoli, Behnoosh; Zhu, Quing

    2011-01-01

    Optical quantification of large lesions imaged with diffuse optical tomography in reflection geometry is depth dependence due to the exponential decay of photon density waves. We introduce a depth-correction method that incorporates the target depth information provided by coregistered ultrasound. It is based on balancing the weight matrix, using the maximum singular values of the target layers in depth without changing the forward model. The performance of the method is evaluated using phantom targets and 10 clinical cases of larger malignant and benign lesions. The results for the homogenous targets demonstrate that the location error of the reconstructed maximum absorption coefficient is reduced to the range of the reconstruction mesh size for phantom targets. Furthermore, the uniformity of absorption distribution inside the lesions improve about two times and the median of the absorption increases from 60 to 85% of its maximum compared to no depth correction. In addition, nonhomogenous phantoms are characterized more accurately. Clinical examples show a similar trend as the phantom results and demonstrate the utility of the correction method for improving lesion quantification. PMID:21639570

  14. A study on ultra-precision machining technique for Al6061-T6 to fabricate space infrared optics

    NASA Astrophysics Data System (ADS)

    Ryu, Geun-man; Lee, Gil-jae; Hyun, Sang-won; Sung, Ha-yeong; Chung, Euisik; Kim, Geon-hee

    2014-08-01

    In this paper, analysis of variance on designed experiments with full factorial design was applied to determine the optimized machining parameters for ultra-precision fabrication of the secondary aspheric mirror, which is one of the key elements of the space cryogenic infrared optics. A single point diamond turning machine (SPDTM, Nanotech 4μpL Moore) was adopted to fabricate the material, AL6061-T6, and the three machining parameters of cutting speed, feed rate and depth of cut were selected. With several randomly assigned experimental conditions, surface roughness of each condition was measured by a non-contact optical profiler (NT2000; Vecco). As a result of analysis using Minitab, the optimum cutting condition was determined as following; cutting speed: 122 m/min, feed rate: 3 mm/min and depth of cut: 1 μm. Finally, a 120 mm diameter aspheric secondary mirror was attached to a particularly designed jig by using mixture of paraffin and wax and successfully fabricated under the optimum machining parameters. The profile of machined surface was measured by a high-accuracy 3-D profilometer(UA3P; Panasonic) and we obtained the geometrical errors of 30.6 nm(RMS) and 262.4 nm(PV), which satisfy the requirements of the space cryogenic infrared optics.

  15. Research on the high-precision non-contact optical detection technology for banknotes

    NASA Astrophysics Data System (ADS)

    Jin, Xiaofeng; Liang, Tiancai; Luo, Pengfeng; Sun, Jianfeng

    2015-09-01

    The technology of high-precision laser interferometry was introduced for optical measurement of the banknotes in this paper. Taking advantage of laser short wavelength and high sensitivity, information of adhesive tape and cavity about the banknotes could be checked efficiently. Compared with current measurement devices, including mechanical wheel measurement device, Infrared measurement device, ultrasonic measurement device, the laser interferometry measurement has higher precision and reliability. This will improve the ability of banknotes feature information in financial electronic equipment.

  16. Development of Wet-Etching Tools for Precision Optical Figuring

    SciTech Connect

    Rushford, M C; Dixit, S N; Hyde, R; Britten, J A; Nissen, J; Aasen, M; Toeppen, J; Hoaglan, C; Nelson, C; Summers, L; Thomas, I

    2004-01-27

    This FY03 final report on Wet Etch Figuring involves a 2D thermal tool. Its purpose is to flatten (0.3 to 1 mm thickness) sheets of glass faster thus cheaper than conventional sub aperture tools. An array of resistors on a circuit board was used to heat acid over the glass Optical Path Difference (OPD) thick spots and at times this heating extended over the most of the glass aperture. Where the acid is heated on the glass it dissolves faster. A self-referencing interferometer measured the glass thickness, its design taking advantage of the parallel nature and thinness of these glass sheets. This measurement is used in close loop control of the heating patterns of the circuit board thus glass and acid. Only the glass and acid were to be moved to make the tool logistically simple to use in mass production. A set of 4-circuit board, covering 80 x 80-cm aperture was ordered, but only one 40 x 40-cm board was put together and tested for this report. The interferometer measurement of glass OPD was slower than needed on some glass profiles. Sometimes the interference fringes were too fine to resolve which would alias the sign of the glass thickness profile. This also caused the phase unwrapping code (FLYNN) to struggle thus run slowly at times taking hours, for a 10 inch square area. We did extensive work to improve the speed of this code. We tried many different phase unwrapping codes. Eventually running (FLYNN) on a farm of networked computers. Most of the work reported here is therefore limited to a 10-inch square aperture. Researched into fabricating a better interferometer lens from Plexiglas so to have less of the scattered light issues of Fresnel lens groves near field scattering patterns, this set the Nyquest limit. There was also a problem with the initial concept of wetting the 1737 glass on its bottom side with acid. The wetted 1737 glass developed an Achromatic AR coating, spoiling the reflection needed to see glass thickness interference fringes. In response

  17. MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias

    2014-08-01

    Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.

  18. Optical-precision alignment of diffraction grating mold in moire interferometry

    NASA Technical Reports Server (NTRS)

    Joh, D.

    1992-01-01

    A high-precision optical method is presented for aligning diffraction grating molds with the edges of specimens in moire interferometry. The alignment fixture is simple and convenient to operate. The conventional method of grating-mold alignment has a wide band of uncertainty in the range of error which is not compatible with the required precision of high-sensitivity moire interferometry. Following a description of the alignment technique, both the single-edge and parallel-edge guide bar optical alignment methods are introduced and compared.

  19. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum

    2016-06-01

    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  20. Three-dimensional optical metrology with color-coded extended depth of focus.

    PubMed

    Hasman, E; Keren, S; Davidson, N; Friesem, A A

    1999-04-01

    A novel method of rapid three-dimensional optical metrology that is based on triangulation of a configuration of color-coded light stripes is presented. The method exploits polychromatic illumination and a combined diffractive-refractive element, so the incident light is focused upon a stripe that is axially dispersed, greatly increasing the depth-measuring range without any decrease in the axial or the lateral resolution. The discrimination of each color stripe is further improved by spectral coding and decoding techniques. An 18-fold increase in the depth of focus was experimentally obtained while diffraction-limited light stripes were completely maintained.

  1. Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device

    NASA Astrophysics Data System (ADS)

    Salvador, M.; Prauzner, J.; Köber, S.; Meerholz, K.; Jeong, K.; Nolte, D. D.

    2008-12-01

    We present coherence-gated holographic imaging using a highly sensitive photorefractive (PR) polymer composite as the recording medium. Due to the high sensitivity of the composite holographic recording at intensities as low as 5 mW/cm2 allowed for a frame exposure time of only 500ms. Motivated by regenerative medical applications, we demonstrate optical depth sectioning of a polymer foam for use as a cell culture matrix. An axial resolution of 18 μm and a transverse resolution of 30 μm up to a depth of 600 μm was obtained using an off-axis recording geometry.

  2. Optical depth retrievals from Delta-T SPN1 measurements of broadband solar irradiance at ground

    NASA Astrophysics Data System (ADS)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick

    2016-04-01

    The SPN1 radiometer, manufactured by Delta-T Devices Ltd., is an instrument designed for the measurement of global solar irradiance and its components (diffuse, direct) at ground level. In the present study, the direct irradiance component has been used to retrieve an effective total optical depth, by applying the Beer-Lambert law to the broadband measurements. The results have been compared with spectral total optical depths derived from two Cimel CE318 and Prede POM01 sun-sky radiometers, located at the Burjassot site in Valencia (Spain), during years 2013 - 2015. The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. In turn, the Beer-Lambert law has been applied to the broadband direct solar component to obtain an effective total optical depth, representative of the total extinction in the atmosphere. For the assessment of the total optical depth values retrieved with the SPN1, two different sun-sky radiometers (Cimel CE318 and Prede POM01L) have been employed. Both instruments belong to the international networks AERONET and SKYNET. The modified SUNRAD package has been applied in both Cimel and Prede instruments. Cloud affected data has been removed by applying the Smirnov cloud-screening procedure in the SUNRAD algorithm. The broadband SPN1 total optical depth has been analysed by comparison with the spectral total optical depth from the sun-sky radiometer measurements at wavelengths 440, 500, 675, 870 and 1020 nm. The slopes and intercepts have been estimated to be 0.47 - 0.98 and 0.055 - 0.16 with increasing wavelength. The average correlation coefficients and RMSD were 0.80 - 0.83 and 0.034 - 0.036 for all the channels. The

  3. Implications for GCM Modeling of MARCI/TES ACB Optical Depth Differences

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Kahre, Melinda A.; Wolff, Michael J.; Haberle, Robert; Hollingsworth, Jeffery L.

    2016-10-01

    The Aphelion Cloud Belt (ACB) is a well-studied phenomenon of Mars. HST violet images and microwave observations [e.g. 1-3] helped characterize its seasonal morphology and measure typical optical depths. Follow up, long-term studies by orbiting instruments [e.g. 4-6] characterized the growth and decline of the ACB as well as a baseline set of zonally averaged optical depths as a function of latitude and season. All this work provided ground-truth for the assessment and modification of Mars GCMs and current models provide good agreement with observations [e.g. 7-8].We will present recent analyses of MARCI and TES ACB optical depths that show a wavelength dependance on the timing of the peak zonal-average optical depth that implies a possible evolution in average effective radius of ACB cloud particles as the ACB ages. As we will show, this difference in timing of the optical depth peak between short and long wavelength bands is not seen in the Ames MGCM. In order to begin understanding these differences, we will present retrieved ACB cloud particle sizes from the Ames MGCM to compare to the optical depth observations and calculations and discuss possible model adjustments that may lead to better fits. Aligning model and observation results should lead to a better understanding of what is physically driving the particle size evolution.[1] James, P. B., et al. 1996, JGR, 101, 18883[2] Clancy, R. T., et al. 1996, Icarus, 122, 36[3] Wolff, M. J., et al. 1999, in The Fifth International Conference on Mars, July 19-24, 1999, Pasadena, California, 6173[4] Pearl, J. C., et al. 2001, JGR, 106, 12325[5] Smith, M. D., et al. 2003, JGR-Planets, 108, 1[6] Smith, M. D. 2004, Icarus, 167, 148[7] Montmessin, F., et al. 2004, JGR-Planets, 109, E10004[8] Haberle, R. M., et al. 2010, in BAAS, 42, 1031

  4. Engineering Stark Potentials for Precision Measurements: Optical Lattice Clock and Electrodynamic Surface Trap

    SciTech Connect

    Katori, Hidetoshi; Takamoto, Masao; Hachisu, Hidekazu; Fujiki, Jun; Higashi, Ryoichi; Yasuda, Masami; Kishimoto, Tetsuo

    2005-05-05

    Employing the engineered electric fields, we demonstrate novel platforms for precision measurements with neutral atoms. (1) Applying the light shift cancellation technique, atoms trapped in an optical lattice reveal 50-Hz-narrow optical spectrum, yielding nearly an order of magnitude improvement over existing neutral-atom-based clocks. (2) Surface Stark trap has been developed to manipulate scalar atoms that are intrinsically robust to decoherence.

  5. Flexible, non-contact and high-precision measurements of optical components

    NASA Astrophysics Data System (ADS)

    Beutler, A.

    2016-06-01

    A high-accuracy cylindrical coordinate measuring instrument developed for the measurement of optical components is presented. It is equipped with an optical point sensor system including a high aperture probe. This setup allows measurements to be performed with high accuracy in a flexible way. Applications include the measurement of the topography of high-precision aspheric and freeform lenses and diffractive structures. High measuring speeds guarantee the implementation in a closed-loop production process.

  6. Precision Narrow-Angle Astrometry of Binary Stars with the Navy Prototype Optical Interferometer

    DTIC Science & Technology

    2004-01-01

    precision into accuracy. Keywords: Optical interferometry, interferometric imaging, NPOI, binary stars, extrasolar planets 1. MOTIVATION As Michelson realized...interferometry, are equivalent to using ≈ 0.5(d/r0)2 baselines, where d is the telescope diameter and r0 is the Fried parameter. Extrasolar planet searches of...Dubarry Ave., Lanham, MD 20706, USA; ABSTRACT The Navy Prototype Optical Interferometry (NPOI) group has started an astrometric search for planets in

  7. Aerosol optical depth distribution in extratropical cyclones over the Northern Hemisphere oceans

    NASA Astrophysics Data System (ADS)

    Naud, Catherine M.; Posselt, Derek J.; Heever, Susan C.

    2016-10-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database, the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere midlatitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the postcold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  8. Depth estimation of laser glass drilling based on optical differential measurements of acoustic response

    NASA Astrophysics Data System (ADS)

    Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev

    2016-09-01

    We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.

  9. Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2016-01-01

    Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.

  10. Measuring Aerosol Optical Depth (AOD) and Aerosol Profiles Simultaneously with a Camera Lidar

    NASA Astrophysics Data System (ADS)

    Barnes, John; Pipes, Robert; Sharma, Nimmi C. P.

    2016-06-01

    CLidar or camera lidar is a simple, inexpensive technique to measure nighttime tropospheric aerosol profiles. Stars in the raw data images used in the CLidar analysis can also be used to calculate aerosol optical depth simultaneously. A single star can be used with the Langley method or multiple star pairs can be used to reduce the error. The estimated error from data taken under clear sky conditions at Mauna Loa Observatory is approximately +/- 0.01.

  11. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  12. Measurements of stratospheric volcanic aerosol optical depth from NOAA TIROS Observational Vertical Sounder (TOVS) observations

    NASA Astrophysics Data System (ADS)

    Pierangelo, CléMence; ChéDin, Alain; Chazette, Patrick

    2004-02-01

    We show that the infrared optical depth of stratospheric volcanic aerosols produced by the eruption of Mount Pinatubo in June 1991 may be retrieved from the observations of the High-Resolution Infrared Radiation Sounder (HIRS-2) on board the polar meteorological satellites of the National Oceanic and Atmospheric Administration (NOAA). Evolution of the concentration in time and in space, in particular the migration of the aerosols from the tropics to the Northern and Southern Hemispheres, is found to be consistent with our knowledge of the consequences of this eruption. The method relies on the analysis of the differences between the satellite observations and simulations from an aerosol-free radiative transfer model using collocated radiosonde data as the prime input. Thus aerosol optical depths are retrieved directly without making assumptions about the aerosol size distribution or absorption coefficient. The aerosol optical depths reached a maximum in August 1991 in the tropical zone (0.055 at 8.3 μm, 0.03 at 4.0 μm, and 0.02 at 11.1 μm). The peak occurred in November 1991 in the southern midlatitudes and in March/April 1992 in the northern midlatitudes. A reanalysis of the almost 25 year archive of NOAA TIROS-N Operational Vertical Sounder (TOVS) observations holds considerable promise for improved knowledge of the atmosphere loading in volcanic aerosols.

  13. A geostatistical approach for producing daily Level-3 MODIS aerosol optical depth analyses

    NASA Astrophysics Data System (ADS)

    Ruiz-Arias, J. A.; Dudhia, J.; Lara-Fanego, V.; Pozo-Vázquez, D.

    2013-11-01

    The daily Level-3 MODIS (dL3M) aerosol optical depth product is a global daily spatial aggregation of the Level-2 MODIS aerosol optical depth (10-km spatial resolution) into a regular grid with a resolution of 1° × 1°. Aerosol optical depth is a seminal parameter for surface solar radiation assessment, in particular, for those applications involving direct irradiance. However, the dL3M AOD is prone to data gaps originated mostly by the unfeasibility of retrieving reliable estimates under cloudy conditions. In addition, its usability is also constrained by regional biases owing to some other reasons. In this work we propose a methodology for bias reduction and data-gaps removal of the dL3M AOD dataset. The result is a database of daily regularly-gridded AOD suitable for use in surface solar radiation applications and large-scale and long-term studies involving AOD without requiring a previous costly data assimilation process involving numerical weather prediction models. The method consists of an empirical approach to bias reduction, data-gaps removal by kriging interpolation and, finally, where reliable ground observations are available, an optimal interpolation procedure. The method was tested in the North American region, where it was able to reduce the initial mean error from 0.067 to 0.001, the root mean square error from 0.130 to 0.057, and increase the squared correlation coefficient from 23% to 58%, as compared against ground measurements.

  14. In-depth fiber optic two-photon polymerization and its applications in micromanipulation

    NASA Astrophysics Data System (ADS)

    Mishra, Yogeshwar N.; Ingle, Ninad D.; Pinto, Mervyn; Mohanty, Samarendra K.

    2011-02-01

    Two photon polymerization (TPP) has enabled three-dimensional microfabrication with sub-diffraction limited spatial resolution. However, depth at which TPP could be achieved, has been limited due to the high numerical aperture microscope objective, used to focus the ultrafast laser beam. Here, we report fiber-optic two photon polymerization (FTP) for in-depth fabrication of microstructures from a photopolymerizable resin. A cleaved single mode optical fiber coupled with tunable femtosecond laser could achieve TPP, forming extended waveguide on the fiber itself. The length of the FTP tip was found to depend on the laser power and exposure duration. Microfabricated fiber tip using FTP was employed to deliver continuous wave laser beam on to polystyrene microspheres in order to transport and manipulate selected particles by scattering force and 2D trapping. Such microstructures formed by TPP on tip of the fiber will also enable puncture and micro-surgery of cellular structures. With use of a cleaved fiber or axicon tip, FTP structures were fabricated on curved surfaces at large depth. The required Power for FTP and the polymerization rate was faster while using an axicon tip optical fiber. This enabled fabrication of complex octopus-like microstructures.

  15. Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities.

    PubMed

    Tang, Qinggong; Lin, Jonathan; Tsytsarev, Vassiliy; Erzurumlu, Reha S; Liu, Yi; Chen, Yu

    2017-01-01

    Understanding the functional wiring of neural circuits and their patterns of activation following sensory stimulations is a fundamental task in the field of neuroscience. Furthermore, charting the activity patterns is undoubtedly important to elucidate how neural networks operate in the living brain. However, optical imaging must overcome the effects of light scattering in the tissue, which limit the light penetration depth and affect both the imaging quantitation and sensitivity. Laminar optical tomography (LOT) is a three-dimensional (3-D) in-vivo optical imaging technique that can be used for functional imaging. LOT can achieve both a resolution of 100 to [Formula: see text] and a penetration depth of 2 to 3 mm based either on absorption or fluorescence contrast, as well as large field-of-view and high acquisition speed. These advantages make LOT suitable for 3-D depth-resolved functional imaging of the neural functions in the brain and spinal cords. We review the basic principles and instrumentations of representative LOT systems, followed by recent applications of LOT on 3-D imaging of neural activities in the rat forepaw stimulation model and mouse whisker-barrel system.

  16. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-08-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  17. Freeform metrology using swept-source optical coherence tomography with custom pupil-relay precision scanning configuration

    NASA Astrophysics Data System (ADS)

    Yao, Jianing; Xu, Di; Zhao, Nan; Rolland, Jannick P.

    2015-10-01

    The recent advances in the optics manufacturing industry to achieve the capability of fabricating rotationally nonsymmetric optical quality surfaces have considerably stimulated the optical designs with freeform components. This opens up new horizons for novel optical systems with larger fields of view and higher performance, or significantly more compact in volume at equal performance compared to conventional systems. A bottleneck to the broad industrial applications of freeform optics remains the lack of a high performance optical metrology tool capable of measuring significant surface departures and slopes of the parts. To address this issue, we have developed a fiber-based swept-source optical coherence tomography (SS-OCT) system for point-cloud freeform metrology, where two-axis galvanometer scanners are leveraged for high-speed lateral scans. We specifically designed a custom all-reflective achromatic pupil relay system to achieve a diffraction-limited scanning configuration. Coupled with a large field-of-view (FOV) telecentric scan lens, the imaging covers 28.9 mm × 28.9 mm FOV with 35 μm lateral resolution and more than 600 μm depth of focus. Freeform metrology is demonstrated for an Alvarez surface of 400 μm surface sag. The high sensitivity of the SS-OCT system allows for capturing the slope variations of the part up to the maximum slope that is 5 degrees in this case. Specific surface reconstruction, rendering and fitting algorithms were developed to evaluate the metrology results and investigate the accuracy and precision of the measurements.

  18. Precision evaluation of lens systems using a nodal slide/MTF optical bench

    NASA Astrophysics Data System (ADS)

    Doherty, Victor J.; Chapnik, Philip D.

    1992-01-01

    A compact, self-contained production instrument designed to permit the rapid and precise performance characterization of a wide variety of lenses and optical systems has been developed by Eidolon Corporation. The Eidolon Production Nodal Slide/MTF Measurement System can be used to measure effective focal length (EFL), distortion, field curvature, chromatic aberration, spot size, and modulation transfer function (MTF).

  19. Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements

    SciTech Connect

    Yin B.; Vogelmann A.; Min Q.; Duan M.; Bartholomew M. J.; Turner D. D.

    2011-12-13

    A Thin-Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed in a field test at the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plains site. The TCRSR measures the forward-scattering lobe of the direct solar beam (i.e., the solar aureole) through an optically thin cloud (optical depth < 8). We applied the retrieval algorithm of Min and Duan (2005) to the TCRSR measurements of the solar aureole to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid-water path (LWP). After careful calibration and preprocessing, our results indicate that the TCRSR is able to retrieve simultaneously these three properties for optically thin water clouds. Colocated instruments, such as the MultiFilter Rotating Shadowband Radiometer (MFRSR), atmospheric emitted radiance interferometer (AERI), and Microwave Radiometer (MWR), are used to evaluate our retrieval results. The relative difference between retrieved CODs from the TCRSR and those from the MFRSR is less than 5%. The distribution of retrieved LWPs from the TCRSR is similar to those from the MWR and AERI. The differences between the TCRSR-based retrieved DERs and those from the AERI are apparent in some time periods, and the uncertainties of the DER retrievals are discussed in detail in this article.

  20. Spectral domain optical coherence tomography with extended depth-of-focus by aperture synthesis

    NASA Astrophysics Data System (ADS)

    Bo, En; Liu, Linbo

    2016-10-01

    We developed a spectral domain optical coherence tomography (SD-OCT) with an extended depth-of-focus (DOF) by synthetizing aperture. For a designated Gaussian-shape light source, the lateral resolution was determined by the numerical aperture (NA) of the objective lens and can be approximately maintained over the confocal parameter, which was defined as twice the Rayleigh range. However, the DOF was proportional to the square of the lateral resolution. Consequently, a trade-off existed between the DOF and lateral resolution, and researchers had to weigh and judge which was more important for their research reasonably. In this study, three distinct optical apertures were obtained by imbedding a circular phase spacer in the sample arm. Due to the optical path difference between three distinct apertures caused by the phase spacer, three images were aligned with equal spacing along z-axis vertically. By correcting the optical path difference (OPD) and defocus-induced wavefront curvature, three images with distinct depths were coherently summed together. This system digitally refocused the sample tissue and obtained a brand new image with higher lateral resolution over the confocal parameter when imaging the polystyrene calibration beads.

  1. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  2. Ion beam and plasma jet based methods in ultra-precision optics manufacturing

    NASA Astrophysics Data System (ADS)

    Arnold, Th.; Boehm, G.; Paetzelt, H.; Pietag, F.

    2015-01-01

    Ion beam and plasma jet based techniques can be used in alternative machining processes for generating and finishing of ultra-precision optical surfaces. Since atomistic mechanisms are responsible for surface material modification, etching, and deposition, very high accuracy on the atomic level can be achieved. Various advanced techniques like pulse-width modulated ion beam figuring, sub-aperture reactive ion beam etching, or ion beam assisted structuring, planarization and smoothing technologies have been investigated aiming at precision on sub-nanometer height scale and lateral scales ranging over the full spatial wavelength range from nanometers to meters. Additionally, different atmospheric reactive plasma jet processes and plasma jet assisted process chains for generating, correction and smoothing of complex shaped optical surfaces like aspheres with large departures to best fit sphere or free forms exhibiting strong gradients have been developed in the last decade. In the paper an overview to the most recent trends of non-conventional ultra-precision optics processing is given and latest results of optics manufacturing are shown. Specific examples are given to demonstrate that form generation (e.g. for laser beam shaping optics) and surface finishing and polishing using atmospheric plasma jet tools are promising applications exhibiting advantages with respect to process efficiency and flexibility. Furthermore, the capabilities of ion beam surface figure correction using a new approach to control the tool function are demonstrated.

  3. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    NASA Technical Reports Server (NTRS)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  4. A Neural Network Approach to Infer Optical Depth of Thick Ice Clouds at Night

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Hong, G.; Sun-Mack, S.; Chen, Yan; Smith, W. L., Jr.

    2016-01-01

    One of the roadblocks to continuously monitoring cloud properties is the tendency of clouds to become optically black at cloud optical depths (COD) of 6 or less. This constraint dramatically reduces the quantitative information content at night. A recent study found that because of their diffuse nature, ice clouds remain optically gray, to some extent, up to COD of 100 at certain wavelengths. Taking advantage of this weak dependency and the availability of COD retrievals from CloudSat, an artificial neural network algorithm was developed to estimate COD values up to 70 from common satellite imager infrared channels. The method was trained using matched 2007 CloudSat and Aqua MODIS data and is tested using similar data from 2008. The results show a significant improvement over the use of default values at night with high correlation. This paper summarizes the results and suggests paths for future improvement.

  5. Optical depth of molecular gas in starburst galaxies - Is M82 the prototype?

    NASA Technical Reports Server (NTRS)

    Verter, F.; Rickard, L. J.

    1989-01-01

    An attempt is made to survey the CO(2-1) emission toward the centers of 17 IR-luminous galaxies which have previously been detected in CO(1-0). These galaxies span a wide range of size and L(FIR)/L(B) ratio, many have multiple-wavelength studies establishing them as starbursts, and some bear a morphological resemblance to M 82. Nine galaxies are detected and useful upper limits are placed on the remaining eight. Using the CO(2-1)/CO(1-0) ratio of antenna temperature as a diagnostic of optical depth, it is found that all of the galaxies contain predominantly optically thick molecular gas. This implies that the phase of starburst during which the molecular gas is optically thin, currently witnessed in M 82, is either uncommon or short-lived.

  6. A method for cleaning optical precision surface of laser gyro cavity

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Jiao, Ling Yan; Lin, Na Na; Zhang, Dong

    2016-10-01

    Laser gyro is the only one non-electromechanical high-precision inertial sensitive instruments in aircraft inertial guidance systems. Ultra high vacuum acquisition is a key segment during the manufacturing process of laser gyro. The surface cleanliness and integrity have decisive influence on the sealing performance of ultra-high vacuum. A cleaning technology for the optical surface of laser gyro cavity was found by experiment. Meanwhile, the analysis of the adsorption mechanism of contaminant on the laser gyro cavity surface and overview of common optical element cleaning technology were given. The result showed that the new cleaning technology improved the cleanliness of the cavity optical surface without any damage and provided a reliable solution for chronic leak of high precision laser gyro cavity.

  7. Non-contact precision profile measurement to rough-surface objects with optical frequency combs

    NASA Astrophysics Data System (ADS)

    Onoe, Taro; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu

    2016-12-01

    In this research, we developed a new method for the high precision and contactless profile measurement of rough-surfaced objects using optical frequency combs. The uncertainty of the frequency beats of an optical frequency comb is very small (relative uncertainty is 10-10 in our laboratory). In addition, the wavelengths corresponding to these frequency beats are long enough to measure rough-surfaced objects. We can conduct high-precision measurement because several GHz frequency beats can be used if the capability of the detector permits. Moreover, two optical frequency combs with Rb-stabilized repetition frequencies are used for the measurement instead of an RF frequency oscillator; thus, we can avoid the cyclic error caused by the RF frequency oscillator. We measured the profile of a wood cylinder with a rough surface (diameter is approximately 113.2 mm) and compared the result with that of coordinate measuring machine (CMM).

  8. Precision beam pointing control with jitter attenuation by optical deflector exhibiting dynamic hysteresis in COIL

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Hua; Zhang, Zeng-Bao; Zhang, Zhi-Guo; Liu, Qin; He, Xin; Shi, Wen-Bo; Mao, Jian-Qin; Jin, Yu-Qi

    2015-02-01

    Due to the existence of various disturbances during the lasing process of the chemical oxygen iodine laser (COIL), the optical beam pointing performance is severely degraded. In this paper, an adaptive control methodology is proposed for the precise pointing control of the optical beam with active beam jitter rejection using a giant magnetostrictive optical deflector (GMOD) which exhibits severe dynamic hysteresis nonlinearity. In particular, a least square support vector machine (LS-SVM) based fast compensator is employed to eliminate the dynamic hysteresis without the inverse model construction. Then an improved feedforward adaptive filter is developed to deal with jitter attenuation when the full-coherent reference signal is unavailable. To improve the stability and overall robustness of the controller, especially when a large initial bias exists, a PI controller is placed in parallel with the adaptive filter. Experimental results validate the precise pointing ability of the proposed control method.

  9. Development of a new process for manufacturing precision gobs out of new developed low Tg optical glasses for precise pressing of aspherical lenses; Technical Digest

    NASA Astrophysics Data System (ADS)

    Jaschek, Rainer; Klein, Christopher; Schenk, Christian; Schneider, Klaus; Freund, Jochen; Simone, Ritter

    2005-05-01

    Aspherical lenses or refractive elements out of optical glass can be produced either by grinding and polishing of glass or by precise molding of glass preforms. The first process is applied for lenses with larger geometries and smaller production quantities. On the other hand, precise molding is used for volume production of lenses within a diameter range between 1 mm and around 30 mm. The addressed products can be found in the consumer markets (digital imaging, digital projection and digital storage). Different preform types can be used for precise molding: polished spherical near shape preforms, polished balls, polished discs and precision gobs. The latter are made directly from the glass melt. This paper describes a newly developed process, which results in fire-polished gobs with very low surface roughness and excellent volume accuracy. Since precision gobs are mostly made for precise molding, they must meet specific process requirements apart form their optical values, such as allowing low molding temperatures and shorter process cycles times. Therefore, this paper also describes the latest results in the development of low Tg glasses, which are designed for the volume production of precision molded optical components. Beside the important parameters like nd, nd as well as Tg, other properties like chemical durability, devitrification resistance, thermal expansion and conductivity coefficients are important for optimizing the precise molding process. The characteristics of three new low Tg glasses in the FK-, PK- as well as SK-region are presented. These glasses are environmentally friendly, since they are free of lead and arsenic.

  10. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with the highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.

  11. THE OPTICAL DEPTH OF H II REGIONS IN THE MAGELLANIC CLOUDS

    SciTech Connect

    Pellegrini, E. W.; Oey, M. S.; Jaskot, A. E.; Zastrow, J.; Winkler, P. F.; Points, S. D.; Smith, R. C.

    2012-08-10

    We exploit ionization-parameter mapping (IPM) as a powerful tool to measure the optical depth of star-forming H II regions. Our simulations using the photoionization code CLOUDY and our new, SURFBRIGHT surface-brightness simulator demonstrate that this technique can directly diagnose most density-bounded, optically thin nebulae using spatially resolved emission-line data. We apply this method to the Large and Small Magellanic Clouds (LMC and SMC), using the data from the Magellanic Clouds Emission Line Survey. We generate new H II region catalogs based on photoionization criteria set by the observed ionization structure in the [S II]/[O III] ratio and H{alpha} surface brightness. The luminosity functions from these catalogs generally agree with those from H{alpha}-only surveys. We then use IPM to crudely classify all the nebulae into optically thick versus optically thin categories, yielding fundamental new insights into Lyman-continuum (LyC) radiation transfer. We find that in both galaxies, the frequency of optically thin objects correlates with H{alpha} luminosity, and that the numbers of these objects dominate above log L/(erg s{sup -1}) {>=} 37.0. The frequencies of optically thin objects are 40% and 33% in the LMC and SMC, respectively. Similarly, the frequency of optically thick regions correlates with H I column density, with optically thin objects dominating at the lowest N(H I). The integrated escape luminosity of ionizing radiation is dominated by the largest regions and corresponds to luminosity-weighted, ionizing escape fractions from the H II region population of {>=}0.42 and {>=}0.40 in the LMC and SMC, respectively. These values correspond to global galactic escape fractions of 4% and 11%, respectively. This is sufficient to power the ionization rate of the observed diffuse ionized gas in both galaxies. Since our optical depth estimates tend to be underestimates, and also omit the contribution from field stars without nebulae, our results suggest

  12. Precise locating approach of the beacon based on gray gradient segmentation interpolation in satellite optical communications.

    PubMed

    Wang, Qiang; Liu, Yuefei; Chen, Yiqiang; Ma, Jing; Tan, Liying; Yu, Siyuan

    2017-03-01

    Accurate location computation for a beacon is an important factor of the reliability of satellite optical communications. However, location precision is generally limited by the resolution of CCD. How to improve the location precision of a beacon is an important and urgent issue. In this paper, we present two precise centroid computation methods for locating a beacon in satellite optical communications. First, in terms of its characteristics, the beacon is divided into several parts according to the gray gradients. Afterward, different numbers of interpolation points and different interpolation methods are applied in the interpolation area; we calculate the centroid position after interpolation and choose the best strategy according to the algorithm. The method is called a "gradient segmentation interpolation approach," or simply, a GSI (gradient segmentation interpolation) algorithm. To take full advantage of the pixels of the beacon's central portion, we also present an improved segmentation square weighting (SSW) algorithm, whose effectiveness is verified by the simulation experiment. Finally, an experiment is established to verify GSI and SSW algorithms. The results indicate that GSI and SSW algorithms can improve locating accuracy over that calculated by a traditional gray centroid method. These approaches help to greatly improve the location precision for a beacon in satellite optical communications.

  13. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography

    PubMed Central

    Tang, Qinggong; Wang, Jianting; Frank, Aaron; Lin, Jonathan; Li, Zhifang; Chen, Chao-wei; Jin, Lily; Wu, Tongtong; Greenwald, Bruce D.; Mashimo, Hiroshi; Chen, Yu

    2016-01-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is difficult to detect the subsurface lesions. In this research, we investigated the feasibility of a novel multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. The C57BL/6J-ApcMin/J mice were imaged using OCT and FLOT, and the correlated histopathological diagnosis was obtained. Quantitative structural (scattering coefficient) and molecular (relative enzyme activity) parameters were obtained from OCT and FLOT images for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 88.23% (82.35%) for sensitivity (specificity) compared to either modality alone. This study suggested that combining OCT and FLOT is promising for subsurface cancer detection, diagnosis, and characterization. PMID:28018738

  14. Examination of Optical Depth Effects on Fluorescence Imaging of Cardiac Propagation

    PubMed Central

    Bray, Mark-Anthony; Wikswo, John P.

    2003-01-01

    Optical mapping with voltage-sensitive dyes provides a high-resolution technique to observe cardiac electrodynamic behavior. Although most studies assume that the fluorescent signal is emitted from the surface layer of cells, the effects of signal attenuation with depth on signal interpretation are still unclear. This simulation study examines the effects of a depth-weighted signal on epicardial activation patterns and filament localization. We simulated filament behavior using a detailed cardiac model, and compared the signal obtained from the top (epicardial) layer of the spatial domain with the calculated weighted signal. General observations included a prolongation of the action upstroke duration, early upstroke initiation, and reduction in signal amplitude in the weighted signal. A shallow filament was found to produce a dual-humped action potential morphology consistent with previously reported observations. Simulated scroll wave breakup exhibited effects such as the false appearance of graded potentials, apparent supramaximal conduction velocities, and a spatially blurred signal with the local amplitude dependent upon the immediate subepicardial activity; the combination of these effects produced a corresponding change in the accuracy of filament localization. Our results indicate that the depth-dependent optical signal has significant consequences on the interpretation of epicardial activation dynamics. PMID:14645100

  15. On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Charrois, L.; Cosme, E.; Dumont, M.; Lafaysse, M.; Morin, S.; Libois, Q.; Picard, G.

    2015-12-01

    This paper examines the ability of optical reflectance data assimilation to improve snow depth and snow water equivalent simulations from a detailed multilayer snowpack model. The direct use of reflectance data, instead of higher level snow products, rules out uncertainties due to commonly used retrieval algorithms. Data assimilation is performed with an ensemble-based method, the Sequential Importance Resampling Particle filter, to represent simulation uncertainties. Here, model uncertainties are essentially ascribed to meteorological forcings. An original method of stochastic perturbation is implemented to explicitly simulate the consequences of these uncertainties on the snowpack estimates. The assimilation of spectral reflectances from the MODerate Imaging Spectrometer (MODIS) sensor is examined, through twin experiments based on synthetic observations, over five seasons at the Col du Lautaret, located in the French Alps. Overall, the assimilation of MODIS-like data reduces root mean square errors (RMSE) on snow depth and snow water equivalent by a factor of 2. At this study site, the lack of MODIS data on cloudy days does not affect the assimilation performance significantly. The combined assimilation of MODIS-like reflectances and a few snow depth measurements throughout the 2010/11 season further reduces RMSEs by a factor of roughly 3.5. This work suggests that the assimilation of optical reflectances should become an essential component of spatialized snowpack simulation and forecast systems. The assimilation of real MODIS data will be investigated in future works.

  16. Automated, Depth-resolved Estimation of the Attenuation Coefficient From Optical Coherence Tomography Data

    PubMed Central

    Smith, Gennifer T.; Dwork, Nicholas; O’Connor, Daniel; Sikora, Uzair; Lurie, Kristen L.; Pauly, John M.; Ellerbee, Audrey K.

    2015-01-01

    We present a method for automated, depth-resolved extraction of the attenuation coefficient from Optical Coherence Tomography (OCT) data. In contrast to previous automated, depth-resolved methods, the Depth-Resolved Confocal (DRC) technique derives an invertible mapping between the measured OCT intensity data and the attenuation coefficient while considering the confocal function and sensitivity fall-off, which are critical to ensure accurate measurements of the attenuation coefficient in practical settings (e.g., clinical endoscopy). We also show that further improvement of the estimated attenuation coefficient is possible by formulating image denoising as a convex optimization problem that we term Intensity Weighted Horizontal Total Variation (iwhTV). The performance and accuracy of DRC alone and DRC+iwhTV are validated with simulated data, optical phantoms, and ex-vivo porcine tissue. Our results suggest that implementation of DRC+iwhTV represents a novel way to improve OCT contrast for better tissue characterization through quantitative imaging. PMID:26126286

  17. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu

    2016-03-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.

  18. Studies of aerosol optical depth with use of Microtops sun photometers and MODIS detectors

    NASA Astrophysics Data System (ADS)

    Makuch, Przemyslaw; Zawadzka, Olga; Markowicz, Krzystof M.; Zielinski, Tymon; Petelski, Tomasz; Strzalkowska, Agata; Rozwadowska, Anna; Gutowska, Dorota

    2013-04-01

    We would like to describe the results of a research campaign aimed at the studies of aerosol optical properties in the regions of the open Baltic Sea as well as coastal areas. During the campaign we carried out simultaneous measurements of aerosol optical depth at 4 stations with use of the hand-held Microtops II sunphotometers. The studies were complemented with the MODIS aerosol data. In order to obtain the full picture of the aerosol situation over the study area we added air mass back-trajectories at various altitudes and wind fields. Such complex information facilitated the proper conclusions regarding aerosol optical depth and Angstroem exponent for the four locations and discussion of the changes of aerosol properties with distance and meteorological factors. We show that Microtops II sunphotometers are reliable instruments for field campaigns. They are easy to operate and provide good quality results. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.

  19. Restraint of range walk error in a Geiger-mode avalanche photodiode lidar to acquire high-precision depth and intensity information.

    PubMed

    Xu, Lu; Zhang, Yu; Zhang, Yong; Yang, Chenghua; Yang, Xu; Zhao, Yuan

    2016-03-01

    There exists a range walk error in a Geiger-mode avalanche photodiode (Gm-APD) lidar because of the fluctuation in the number of signal photoelectrons. To restrain this range walk error, we propose a new returning-wave signal processing technique based on the Poisson probability response model and the Gaussian functions fitting method. High-precision depth and intensity information of the target at the distance of 5 m is obtained by a Gm-APD lidar using a 6 ns wide pulsed laser. The experiment results show that the range and intensity precisions are 1.2 cm and 0.015 photoelectrons, respectively.

  20. Improved accuracy in periodontal pocket depth measurement using optical coherence tomography

    PubMed Central

    2017-01-01

    Purpose The purpose of this study was to examine whether periodontal pocket could be satisfactorily visualized by optical coherence tomography (OCT) and to suggest quantitative methods for measuring periodontal pocket depth. Methods We acquired OCT images of periodontal pockets in a porcine model and determined the actual axial resolution for measuring the exact periodontal pocket depth using a calibration method. Quantitative measurements of periodontal pockets were performed by real axial resolution and compared with the results from manual periodontal probing. Results The average periodontal pocket depth measured by OCT was 3.10±0.15 mm, 4.11±0.17 mm, 5.09±0.17 mm, and 6.05±0.21 mm for each periodontal pocket model, respectively. These values were similar to those obtained by manual periodontal probing. Conclusions OCT was able to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal pocket depth can be established regardless of the position of periodontal pocket in the OCT image. PMID:28261520

  1. Non-contact high precision measurement of surface form tolerances and central thickness for optical elements

    NASA Astrophysics Data System (ADS)

    Lou, Ying

    2010-10-01

    The traditional contact measuring methods could not satisfy the current optical elements measuring requirements. Noncontact high precision measuring theory, principle and instrument of the surface form tolerances and central thickness for optical elements were studied in the paper. In comparison with other types of interferometers, such as Twyman-Green and Mach-Zehnder, a Fizeau interferometer has the advantages of having fewer optical components, greater accuracy, and is easier to use. Some relations among the 3/A(B/C), POWER/PV and N/ΔN were studied. The PV with POWER removed can be the reference number of ΔN. The chromatic longitudinal aberration of a special optical probe can be used for non-contanct central thickness measurement.

  2. Effect of Binary Source Companions on the Microlensing Optical Depth Determination toward the Galactic Bulge Field

    NASA Astrophysics Data System (ADS)

    Han, Cheongho

    2005-11-01

    Currently, gravitational microlensing survey experiments toward the Galactic bulge field use two different methods of minimizing the blending effect for the accurate determination of the optical depth τ. One is measuring τ based on clump giant (CG) source stars, and the other is using ``difference image analysis'' (DIA) photometry to measure the unblended source flux variation. Despite the expectation that the two estimates should be the same assuming that blending is properly considered, the estimates based on CG stars systematically fall below the DIA results based on all events with source stars down to the detection limit. Prompted by the gap, we investigate the previously unconsidered effect of companion-associated events on τ determination. Although the image of a companion is blended with that of its primary star and thus not resolved, the event associated with the companion can be detected if the companion flux is highly magnified. Therefore, companions work effectively as source stars to microlensing, and thus the neglect of them in the source star count could result in a wrong τ estimation. By carrying out simulations based on the assumption that companions follow the same luminosity function as primary stars, we estimate that the contribution of the companion-associated events to the total event rate is ~5fbi% for current surveys and can reach up to ~6fbi% for future surveys monitoring fainter stars, where fbi is the binary frequency. Therefore, we conclude that the companion-associated events comprise a nonnegligible fraction of all events. However, their contribution to the optical depth is not large enough to explain the systematic difference between the optical depth estimates based on the two different methods.

  3. In-depth quantification by using multispectral time-resolved diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zouaoui, Judy; Hervé, Lionel; Di Sieno, Laura; Planat-Chrétien, Anne; Berger, Michel; Dalla Mora, Alberto; Pifferi, Antonio; Derouard, Jacques; Dinten, Jean-Marc

    2015-07-01

    Near-infrared diffuse optical tomography (DOT) is a medical imaging which gives the distribution of the optical properties of biological tissues. To obtain endogenous chromophore features in the depth of a scattering medium, a multiwavelength/time-resolved (MW/TR) DOT setup was used. Reconstructions of the three-dimensional maps of chromophore concentrations of probed media were obtained by using a data processing technique which manages Mellin-Laplace Transforms of their MW/TR optical signals and those of a known reference medium. The point was to put a constraint on the medium absorption coefficient by using a material basis composed of a given set of chromophores of known absorption spectra. Experimental measurements were conducted by injecting the light of a picosecond near- infrared laser in the medium of interest and by collecting, for several wavelengths and multiple positions, the backscattered light via two fibers (with a source-detector separation of 15 mm) connected to fast-gated single-photon avalanche diodes (SPAD) and coupled to a time-correlated single-photon counting (TCSPC) system. Validations of the method were performed in simulation in the same configuration as the experiments for different combination of chromophores. Evaluation of the technique in real conditions was investigated on liquid phantoms composed of an homogenous background and a 10 mm depth inclusion formed of combination of intralipid and inks scanned at 30 positions and at three wavelengths. Both numerical and preliminary phantom experiments confirm the potential of this method to determine chromophore concentrations in the depth of biological tissues.

  4. UVIS ring occultations show F ring feature location and optical depth correlated with Prometheus

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Esposito, L. W.; Albers, N.

    2010-05-01

    We find 24 statistically significant features in the F ring occultations using the High Speed Photometer (HSP) channel of the Cassini Ultraviolet Imaging Spectrograph (UVIS). These features are likely transient clumps of material embedded in the ring, each of which attenuates stellar signal during an occultation because the ring material is more densely packed at that location. In fact, two of these features are opaque, indicating they may be solid moonlets. Two trends are evident in the azimuthal location of these 24 F ring features with respect to that of Prometheus. First, the orbital locations of these features are mostly opposite Prometheus, as 11 of the 24 occupy the orbital region separated from Prometheus by 180° ± 20°. Second, average feature optical depth is maximum near the antipode of Prometheus in orbit. Our hypothesis is that these results show aggregation and disaggregation of clumps after Prometheus passes by. As Prometheus passes interior to the F ring, it encounters material once every synodic period, 68 days. Optical depth indicates density of ring material along the line of sight, so as material clumps together, we expect to see higher optical depths. Thus we infer that the encounter stimulates clumping of material that reaches a maximum 180° downstream. This may reinforce similar evidence that Ring-Moon interaction stimulates clumping in the F ring region from Cassini imaging (Beurle, et al., 2010) and at the B ring edge (Esposito, et al., 2010). Esposito, et al. (2010) suggest that the combined mass and velocity evolution of the ring system resembles a predator/prey model. This research was supported by the Cassini Project.

  5. Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background

    SciTech Connect

    Kunze, Kerstin E.

    2015-06-01

    Damping of magnetic fields via ambipolar diffusion and decay of magnetohydrodynamical (MHD) turbulence in the post decoupling era heats the intergalactic medium (IGM). Delayed recombination of hydrogen atoms in the IGM yields an optical depth to scattering of the cosmic microwave background (CMB). The optical depth generated at z >> 10 does not affect the ''reionization bump'' of the CMB polarization power spectrum at low multipoles, but affects the temperature and polarization power spectra at high multipoles. Writing the present-day energy density of fields smoothed over the damping scale at the decoupling epoch as ρ{sub B,0}=B{sub 0}{sup 2}/2, we constrain B{sub 0} as a function of the spectral index, n{sub B}. Using the Planck 2013 likelihood code that uses the Planck temperature and lensing data together with the WMAP 9-year polarization data, we find the 95% upper bounds of B{sub 0}<0.63, 0.39, and 0.18 nG for n{sub B}=−2.9, −2.5, and −1.5, respectively. For these spectral indices, the optical depth is dominated by dissipation of the decaying MHD turbulence that occurs shortly after the decoupling epoch. Our limits are stronger than the previous limits ignoring the effects of the fields on ionization history. Inverse Compton scattering of CMB photons off electrons in the heated IGM distorts the thermal spectrum of CMB. Our limits on B{sub 0} imply that the y-type distortion from dissipation of fields in the post decoupling era should be smaller than 10{sup −9}, 4×10{sup −9}, and 10{sup −9}, respectively.

  6. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  7. Fabrication of the Advanced X-ray Astrophysics Facility (AXAF) Optics: A Deterministic, Precision Engineering Approach to Optical Fabrication

    NASA Technical Reports Server (NTRS)

    Gordon, T. E.

    1995-01-01

    The mirror assembly of the AXAF observatory consists of four concentric, confocal, Wolter type 1 telescopes. Each telescope includes two conical grazing incidence mirrors, a paraboloid followed by a hyperboloid. Fabrication of these state-or-the-art optics is now complete, with predicted performance that surpasses the goals of the program. The fabrication of these optics, whose size and requirements exceed those of any previous x-ray mirrors, presented a challenging task requiring the use of precision engineering in many different forms. Virtually all of the equipment used for this effort required precision engineering. Accurate metrology required deterministic support of the mirrors in order to model the gravity distortions which will not be present on orbit. The primary axial instrument, known as the Precision Metrology Station (PMS), was a unique scanning Fizeau interferometer. After metrology was complete, the optics were placed in specially designed Glass Support Fixtures (GSF's) for installation on the Automated Cylindrical Grinder/Polishers (ACG/P's). The GSF's were custom molded for each mirror element to match the shape of the outer surface to minimize distortions of the inner surface. The final performance of the telescope is expected to far exceed the original goals and expectations of the program.

  8. Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin

    1996-01-01

    The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.

  9. Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.

    2010-01-01

    The poster provides an overview of techniques to improve the Mars Global Reference Atmospheric Model (Mars-GRAM) sensitivity. It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for TES MapYear = 0 and large optical depth values such as tau = 3 is less than realistic. A preliminary fix has been made to Mars-GRAM by adding a density factor value that was determined for tau = 0.3, 1 and 3.

  10. Aerosol optical depth measurements by means of a Sun photometer network in Switzerland

    NASA Astrophysics Data System (ADS)

    Ingold, T.; MäTzler, C.; KäMpfer, N.; Heimo, A.

    2001-11-01

    Within the Swiss Atmospheric Radiation Monitoring program (CHARM) the Swiss Meteorological Institute - MeteoSwiss operates a network of presently six Sun photometer stations. Aerosol optical depths (AOD) at 368, 500, and 778 nm were determined from measurements of the relative direct solar irradiance, primarily to provide climatological information relevant in particular to climate change studies. The six instruments are located at various sites representative of high and low altitudes at the north and south part of the Alps in areas free from urban pollution in Switzerland. AOD time series of recordings back to 1991 are discussed, when data were first collected at Davos. An important aerosol layer is often present over stations at lower sites, showing seasonal variability and regional differences for the observed tropospheric aerosols. A classification scheme for synoptic weather types was applied to separate the AOD data into groups corresponding to different atmospheric transport conditions. On average, lower AODs are measured within advective weather situations than within convective ones. However, at the high Alpine sites such a classification is incomplete for AOD characterization due to orographically induced vertical motion. Monthly averaged values of AOD at 500 nm ranged from 0.05 during winter up to 0.3 in summer. The scale height of the aerosol optical depth is found to be 1-2 km depending on season. The high mountain sites are more suitable to the study stratospheric aerosols, for example, the change of the aerosol content and of its size distribution due to Mount Pinatubo eruption was clearly identified at Davos. In 1996 the aerosol optical depth returned to pre-Pinatubo values. Minimum AODs of ≈0.004-0.007 measured at 500 nm in 1997 are in good agreement with widely reported aerosol optical depth measurements of the stratospheric background aerosols. Besides the Pinatubo-affected period aerosol characterization by means of the Angström power law

  11. Improved Aerosol Optical Depth and Particle Size Index from Satellite Detected Radiance

    DTIC Science & Technology

    1991-12-01

    the central Pacific. Another environmental factor discussed by Benedict (1989) was the eruption of the Kilauea volcano in Hawaii (17°N, 157°W...another near 1O0N. A distinction can be made between an influence from Kilauea volcano at 20°N and DMS production leading to non-sea-salt sulfate...natural dust or anthropogenic pollutants. There is another peak near 8°N. Since Figure 8 revealed little optical depth from the eruption of Kilauea , this

  12. Multilevel micro-structuring of glassy carbon for precision glass molding of diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-03-01

    A consumer market for diffractive optical elements in glass can only be created if high efficient elements are available at affordable prices. In diffractive optics the efficiency and optical properties increases with the number of levels used, but in the same way the costs are multiplied by the number if fabrication steps. Replication of multilevel diffractive optical elements in glass would allow cost efficient fabrication but a suitable mold material is needed. Glassy carbon shows a high mechanical strength, thermal stability and non-sticking adhesion properties, which makes it an excellent candidate as mold material for precision compression molding of low and high glass-transition temperature materials. We introduce an 8 level micro structuring process for glassy carbon molds with standard photolithography and a Ti layer as hard mask for reactive ion etching. The molds were applied to thermal imprinting onto low and high transition temperature glass. Optical performance was tested for the molded samples with different designs for laser beamsplitters. The results show a good agreement to the design specification. Our result allow us to show limitations of our fabrication technique and we discussed the suitability of precision glass molding for cost efficient mass production with a high quality.

  13. Sub-nanometer interferometry and precision turning for large optical fabrication

    SciTech Connect

    Klingmann, J L; Sommargren, G E

    1999-04-01

    At Lawrence Livermore National Laboratory (LLNL), we have the unique combination of precision turning and metrology capabilities critical to the fabrication of large optical elements. We have developed a self-referenced interferometer to measure errors in aspheric optics to sub- nanometer accuracy over 200-millimeter apertures, a dynamic range of 5{approximately}10. We have utilized diamond turning to figure optics for X-ray to IR wavelengths and, with fast-tool-servo technology, can move optical segments from off-axis to on-axis. With part capacities to 2.3-meters diameter and the metrology described above, segments of very large, ultra-lightweight mirrors can potentially be figured to final requirements. precision of diamond-turning will carryover although the surface finish may be degraded. Finally, the most critical component of a fabrication process is the metrology that enables an accurate part. Well characterized machines are very repeatable and part accuracy must come from proper metrology. A self- referencing interferometer has been developed that can measure accurately to sub-nanometer values. As with traditional interferometers, measurements are fast and post- processed data provides useful feedback to the user. The simplicity of the device allows it to be used on large optics and systems.

  14. An Analytic Inversion of Emission Lines of Arbitrary Optical Depth for the Structure of Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Ignace, R.; Hendry, M. A.

    2000-05-01

    We have derived a method for inverting emission line profiles formed in supernova ejecta. The derivation assumes spherical symmetry and homologous expansion (i.e., v(r) r). The inversion is analytic and even takes account of occultation by a pseudo-photosphere. Previous inversion methods have been developed which are restricted to optically thin lines, but the particular case of homologous expansion permits an analytic inversion for lines of arbitrary optical depth. In fact, we show that the quantity that is generically retrieved is the run of line intensity Iλ with radius in the ejecta shell. This result could be applied to resonance lines, recombination lines, or lines dominated by collisional de-excitation.

  15. An ultra-high optical depth cold atomic ensemble for quantum memories

    NASA Astrophysics Data System (ADS)

    Sparkes, B. M.; Bernu, J.; Hosseini, M.; Geng, J.; Glorieux, Q.; Altin, P. A.; Lam, P. K.; Robins, N. P.; Buchler, B. C.

    2013-12-01

    Quantum memories for light lie at the heart of long-distance provably-secure communication. Demand for a functioning quantum memory, with high efficiency and coherence times approaching a millisecond, is therefore at a premium. Here we report on work towards this goal, with the development of a 87Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F = 2 → F' = 3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble we implemented the gradient echo memory (GEM) scheme on the D1 line. Our data shows a memory efficiency of 80 ± 2% and coherence times up to 195 μs.

  16. Gradient echo memory in an ultra-high optical depth cold atomic ensemble

    NASA Astrophysics Data System (ADS)

    Sparkes, B. M.; Bernu, J.; Hosseini, M.; Geng, J.; Glorieux, Q.; Altin, P. A.; Lam, P. K.; Robins, N. P.; Buchler, B. C.

    2013-08-01

    Quantum memories are an integral component of quantum repeaters—devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a 87Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F = 2 → F‧ = 3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble we implemented the gradient echo memory (GEM) scheme on the D1 line. Our data shows a memory efficiency of 80 ± 2% and coherence times up to 195 μs, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.

  17. Broadband optical mammography instrument for depth-resolved imaging and local dynamic measurements

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Nishanth; Kainerstorfer, Jana M.; Sassaroli, Angelo; Anderson, Pamela G.; Fantini, Sergio

    2016-02-01

    We present a continuous-wave instrument for non-invasive diffuse optical imaging of the breast in a parallel-plate transmission geometry. The instrument measures continuous spectra in the wavelength range 650-1000 nm, with an intensity noise level <1.5% and a spatial sampling rate of 5 points/cm in the x- and y-directions. We collect the optical transmission at four locations, one collinear and three offset with respect to the illumination optical fiber, to recover the depth of optical inhomogeneities in the tissue. We imaged a tissue-like, breast shaped, silicone phantom (6 cm thick) with two embedded absorbing structures: a black circle (1.7 cm in diameter) and a black stripe (3 mm wide), designed to mimic a tumor and a blood vessel, respectively. The use of a spatially multiplexed detection scheme allows for the generation of on-axis and off-axis projection images simultaneously, as opposed to requiring multiple scans, thus decreasing scan-time and motion artifacts. This technique localizes detected inhomogeneities in 3D and accurately assigns their depth to within 1 mm in the ideal conditions of otherwise homogeneous tissue-like phantoms. We also measured induced hemodynamic changes in the breast of a healthy human subject at a selected location (no scanning). We applied a cyclic, arterial blood pressure perturbation by alternating inflation (to a pressure of 200 mmHg) and deflation of a pneumatic cuff around the subject's thigh at a frequency of 0.05 Hz, and measured oscillations with amplitudes up to 1 μM and 0.2 μM in the tissue concentrations of oxyhemoglobin and deoxyhemoglobin, respectively. These hemodynamic oscillations provide information about the vascular structure and functional integrity in tissue, and may be used to assess healthy or abnormal perfusion in a clinical setting.

  18. Precise measurement of volume of eccrine sweat gland in mental sweating by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato

    2015-04-01

    We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). In this paper, we propose a method for extraction of the specific eccrine sweat gland by means of the connected component extraction process and the adaptive threshold method, where the en face OCT images are constructed by the swept-source OCT. In the experiment, we demonstrate precise measurement of the volume of the sweat gland in response to the external stimulus.

  19. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  20. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  1. Simple fiber-optic confocal microscopy with nanoscale depth resolution beyond the diffraction barrier.

    PubMed

    Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir

    2007-09-01

    A novel fiber-optic confocal approach for ultrahigh depth-resolution (optic confocal microscope approach that is compatible with a differential confocal microscope technique. To improve the dynamic range of the resolving laser power and to achieve a high resolution in the nanometric range, we have designed a simple apertureless reflection confocal microscope with a highly sensitive single-mode-fiber confocal output. The fiber-optic design is an effective alternative to conventional pinhole-based confocal systems and offers a number of advantages in terms of spatial resolution, flexibility, miniaturization, and scanning potential. Furthermore, the design is compatible with the differential confocal pinhole microscope based on the use of the sharp diffraction-free slope of the axial confocal response curve rather than the area around the maximum of that curve. Combining the advantages of ultrahigh-resolution fiber-optic confocal microscopy, we can work beyond the diffraction barrier in the subwavelength (below 200 nm) nanometric range exploiting confocal nanobioimaging of single cell and intracellular analytes.

  2. Ship-based Aerosol Optical Depth Measurements in the Atlantic Ocean, Comparison with Satellite Retrievals and GOCART Model

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sakerin, S.; Kabanov, D.; Slutsker, I.; Remer, L. A.; Kahn, R.; Ignatov, A.; Chin, M.; Diehl, T. L.; Mishchenko, M.; Liu, L.; Kucsera, T. L.; Giles, D.; Eck, T. F.; Torres, O.; Kopelevich, O.

    2005-12-01

    Aerosol optical depth measurements were made in October -December 2004 aboard of R/V Akademik Sergey Vavilov. The cruise area included the Atlantic transect from North Sea to Cape Town and then a crossing in the South Atlantic to Ushuaia, Argentina. The hand-held Microtops II sunphotometer was used to acquire 314 series of measurements spanning 38 days. The sunphotometer was pre-calibrated at the NASA Goddard Space Flight Center against a master sun/sky radiometer instrument of the Aerosol Robotic Network (AERONET). The direct sun measurements were acquired in five spectral channels: 340, 440, 675, 870 and 940 nm. To retrieve aerosol optical depths we applied AERONET processing algorithm (Version 2) to the raw data. Aerosol optical depth values were close to background oceanic conditions (0.04-0.08) in the open oceanic areas not influenced by continental sources. Spectral dependence can be described as almost neutral (Angstrom parameter was less than 0.6), especially in the Southern Atlantic. A notable latitudinal variability of optical depth was observed between 15N and 21S, which was associated with the aerosol transport from Africa. Correlations between optical depth and meteorological parameters were considered and comparison between ship-based measurements and AERONET sites along the cruise track was made. Aerosol optical depths were compared to the global transport model (GOCART) simulations and satellite retrievals from MODIS, MISR, and AVHRR.

  3. THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.

    2009-01-01

    We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330 ) and December 2008 (MY 29, Ls=183). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at approximately 5:00 PM local time than in the TES retrievals at approximately 2:00 PM, suggestive of possible local time variation of clouds.

  4. CALIOP and AERONET Aerosol Optical Depth Comparisons: One Size Fits None

    NASA Technical Reports Server (NTRS)

    Omar, A. H.; Winker, D. M.; Tackett, J. L.; Giles, D. M.; Kar, J.; Liu, Z.; Vaughan, M. A.; Powell, K. A.; Trepte, C. R.

    2013-01-01

    We compare the aerosol optical depths (AOD) retrieved from backscatter measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite with coincident Aerosol Robotic Network (AERONET) measurements. Overpass coincidence criteria of +/- 2 h and within a 40 km radius are satisfied at least once at 149 globally distributed AERONET sites from 2006 to 2010. Most data pairs (>80%) use AERONET measurements acquired +/- 30 min of the overpass. We examine the differences in AOD estimates between CALIOP and AERONET for various aerosol, environmental, and geographic conditions. Results show CALIOP AOD are lower than AERONET AOD especially at low optical depths as measured by AERONET (500 nm AOD<0.1). Furthermore, the median relative AOD difference between the two measurements is 25% of the AERONET AOD for AOD>0.1. Differences in AOD between CALIOP and AERONET are possibly due to cloud contamination, scene inhomogeneity, instrument view angle differences, CALIOP retrieval errors, and detection limits. Comparison of daytime to nighttime number of 5 km 60m (60m in the vertical) features detected by CALIOP show that there are 20% more aerosol features at night. We find that CALIPSO and AERONET do not agree on the cloudiness of scenes. Of the scenes that meet the above coincidence criteria, CALIPSO finds clouds in more than 45% of the coincident atmospheric columns AERONET classifies as clear.

  5. Aerosol Optical Depth at Cape Grim 1986 - 2014: What does it tell us?

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen

    2015-04-01

    The Cape Grim Baseline Air Pollution Station is located near the northwest tip of Tasmania (Australia), a site chosen to permit measurement of the atmospheric environment over the southern oceans. Atmospheric measurements began in the late 1970s, and observations of Aerosol Optical Depth (AOD) using automated sunphotometers began in 1986. Since then, measurements have continued with a range of different instruments operating at a varying number of wavelengths. The site is challenging for these measurements as it is exposed to a sea-salt laden atmosphere, which presents both instrumental issues (corrosion) and measurement complications (salt fouling of the windows) in addition to the high frequency of cloud. The dataset has been processed to produce a record of half-hourly AOD for the period 1986 - 2014 and investigated for internal consistency. In general the AOD is small (around 0.05 at 500nm). The impact of the Mount Pinatubo eruption in 1991 can be clearly observed, along with a persistent annual cycle. This has been further analyzed fitting to all wavelengths measured to derive an averaged optical depth (at 500 nm) and some preliminary aerosol size distribution information.

  6. The Origin and Optical Depth of Ionizing Photons in the Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.

    2014-09-01

    Our understanding of radiative feedback and star formation in galaxies at high redshift is hindered by the rarity of similar systems at low redshift. However, the recently identified Green Pea (GP) galaxies are similar to high-redshift galaxies in their morphologies and star formation rates and are vital tools for probing the generation and transmission of ionizing photons. The GPs contain massive star clusters that emit copious amounts of high-energy radiation, as indicated by intense [OIII] 5007 emission and HeII 4686 emission. We focus on six GP galaxies with high ratios of [O III] 5007,4959/[O II] 3727 ~10 or more. Such high ratios indicate gas with a high ionization parameter or a low optical depth. The GP line ratios and ages point to chemically homogeneous massive stars, Wolf-Rayet stars, or shock ionization as the most likely sources of the He II emission. Models including shock ionization suggest that the GPs may have low optical depths, consistent with a scenario in which ionizing photons escape along passageways created by recent supernovae. The GPs and similar galaxies can shed new light on cosmic reionization by revealing how ionizing photons propagate from massive star clusters to the intergalactic medium.

  7. THEMIS observations of Mars aerosol optical depth from 2002-2008

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.

    2009-08-01

    We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, L=330°) and December 2008 (MY 29, L=183°). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval [Smith, M.D., Bandfield, J.L., Christensen, P.R., Richardson, M.I., 2003. J. Geophys. Res. 108, doi:10.1029/2003JE002114] to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at ˜5:00 PM local time than in the TES retrievals at ˜2:00 PM, suggestive of possible local time variation of clouds.

  8. Composite axilens-axicon diffractive optical elements for generation of ring patterns with high focal depth

    NASA Astrophysics Data System (ADS)

    Dharmavarapu, Raghu; Vijayakumar, A.; Brunner, R.; Bhattacharya, Shanti

    2016-03-01

    A binary Fresnel Zone Axilens (FZA) is designed for the infinite conjugate mode and the phase profile of a refractive axicon is combined with it to generate a composite Diffractive Optical Element (DOE). The FZA designed for two focal lengths generates a line focus along the propagation direction extending between the two focal planes. The ring pattern generated by the axicon is focused through this distance and the radius of the ring depends on the propagation distance. Hence, the radius of the focused ring pattern can be tuned, during the design process, within the two focal planes. The integration of the two functions was carried out by shifting the location of zones of FZA with respect to the phase profile of the refractive axicon resulting in a binary composite DOE. The FZAs and axicons were designed for different focal depth values and base angles respectively, in order to achieve different ring radii within the focal depth of each element. The elements were simulated using scalar diffraction formula and their focusing characteristics were analyzed. The DOEs were fabricated using electron beam direct writing and evaluated using a fiber coupled diode laser. The tunable ring patterns generated by the DOEs have prospective applications in microdrilling as well as microfabrication of circular diffractive and refractive optical elements.

  9. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons

    PubMed Central

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-01-01

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm−2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon–phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth. PMID:26514372

  10. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons.

    PubMed

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-10-30

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm(-2). This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon-phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth.

  11. The stabilization of a multiplexed optical fiber interferometer system for on-line precision measurement

    NASA Astrophysics Data System (ADS)

    Fang, Xie; Chen, Zhi Min

    2008-12-01

    The stabilization of a multiplexed optical fiber interferometer system for on-line displacement precision measurement with a simple electric feedback loop is presented. Based on the characteristics of fiber Bragg gratings, the multiplexed optical fiber interferometer system includes two independent optical fiber Michelson interferometers of which the optical path is almost overlapped. One interferometer is used for the stabilization while the other interferometer is used for the measurement. A feed back signal from the feedback loop is driving a tube PZT on which one arm of the fiber interferometer is wounded. The phase-shift in the two arms of the interferometer resulting from the temperature fluctuations and other types of environmental disturbances is compensated. The bandwidth of the feedback loop is 5kHz. This makes the multiplexed fiber interferometer system stable enough for the on-line precision measurement. An active phase tracking technique is applied for signal processing to achieve high resolution. The measurement resolution of the system is less than 2nm.

  12. On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Charrois, Luc; Cosme, Emmanuel; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Libois, Quentin; Picard, Ghislain

    2016-05-01

    This paper examines the ability of optical reflectance data assimilation to improve snow depth and snow water equivalent simulations from a chain of models with the SAFRAN meteorological model driving the detailed multilayer snowpack model Crocus now including a two-stream radiative transfer model for snow, TARTES. The direct use of reflectance data, allowed by TARTES, instead of higher level snow products, mitigates uncertainties due to commonly used retrieval algorithms.Data assimilation is performed with an ensemble-based method, the Sequential Importance Resampling Particle filter, to represent simulation uncertainties. In snowpack modeling, uncertainties of simulations are primarily assigned to meteorological forcings. Here, a method of stochastic perturbation based on an autoregressive model is implemented to explicitly simulate the consequences of these uncertainties on the snowpack estimates.Through twin experiments, the assimilation of synthetic spectral reflectances matching the MODerate resolution Imaging Spectroradiometer (MODIS) spectral bands is examined over five seasons at the Col du Lautaret, located in the French Alps. Overall, the assimilation of MODIS-like data reduces by 45 % the root mean square errors (RMSE) on snow depth and snow water equivalent. At this study site, the lack of MODIS data on cloudy days does not affect the assimilation performance significantly. The combined assimilation of MODIS-like reflectances and a few snow depth measurements throughout the 2010/2011 season further reduces RMSEs by roughly 70 %. This work suggests that the assimilation of optical reflectances has the potential to become an essential component of spatialized snowpack simulation and forecast systems. The assimilation of real MODIS data will be investigated in future works.

  13. RBS measurement of depth profiles of erbium incorporated into lithium niobate for optical amplifier applications

    NASA Astrophysics Data System (ADS)

    Peřina, Vratislav; Vacík, Jiří; Hnatovicz, Vladimír.; Červená, Jarmila; Kolářová, Pavla; Špirková-Hradilová, Jarmila; Schröfel, Josef

    1998-04-01

    Rutherford Backscattering Spectrometry (RBS) was used for the determination of Er 3+ concentration profiles in locally doped lithium niobate. The doped layers are the basic substrates for the fabrication of optical waveguiding structures which may be utilized as planar optical amplifiers and waveguiding lasers making use of the 4I 13/2 → 4I 15/2 transition in Er 3+, which falls into the third low loss telecommunication window (1.5 μm). We present a new aproach of fabrication of locally doped lithium niobate single crystal wafers. The doping occurs under moderate temperature (˜350°C) from reaction melts containing ca. 10 wt% of erbium nitrate. The erbium content in particular cuts varies dramatically between ca. 3 at.% in the Y- and Z-cut up to 20 at.% in the X-cuts. Erbium ions are localized in a 50 nm thick layer, but they can be diffused deeper into the substrate by subsequent annealing at 350°C. The Er concentrations of the samples doped at moderated temperature are compared with the Er concentrations of the samples doped by a standard high-temperature diffusion (>1000°C) from evaporated metal layers. To utilize the Er doped substrates in integrated optic circuits high quality waveguides must be subsequently fabricated. For that we used the Annealed Proton Exchange (APE) method with adipic acid. For the actual fabrication of the waveguides the following order of operation should be kept: the erbium doping should be done before the APE because the substantially changed structure of APE layers prevents the doping process. The APE process is checked by measurements of lithium depth profiles by Neutron Depth Profiling (NDP).

  14. A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2011-09-01

    The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.

  15. Focusing of photomechanical waves with an optical lens for depth-targeted molecular delivery

    NASA Astrophysics Data System (ADS)

    Shimada, Takuichirou; Sato, Shunichi; Kawauchi, Satoko; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2014-02-01

    We have been developing molecular delivery systems based on photomechanical waves (PMWs), which are generated by the irradiation of a laser absorbing material with nanosecond laser pulses. This method enables highly site-specific delivery in the horizontal plane of the tissue. However, targeting in the vertical direction is a remaining challenge. In this study, we developed a novel PMW focusing device for deeper tissue targeting. A commercial optical concave lens and black natural rubber sheet (laser absorber) were attached to the top and bottom end of a cylindrical spacer, respectively, which was filled with water. A laser pulse was transmitted through the lens and water and hit the rubber sheet to induce a plasma, generating a PMW. The PMW was propagated both downward and upward. The downward wave (1st wave) was diffused, while the upward (2nd wave) wave was reflected with the concave surface of the lens and focused at a depth determined by the geometrical parameters. To attenuate the 1st wave, a small-diameter silicon sponge rubber disk was adhered just under the rubber sheet concentrically with the laser axis. With the lens of f = -40 mm, the 2nd wave was focused to a diameter of 5.7 mm at a targeted depth of 20 mm, which was well agreed with the result of calculation by ray tracing. At a laser fluence of 5.1 J/cm2, peak pressure of the PMW reached ~40 MPa at the depth of 20 mm. Under this condition, we examined depth-targeted gene delivery to the rat skin.

  16. Depth discrimination in acousto-optic cerebral blood flow measurement simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.

    2016-03-01

    Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.

  17. Optical gating and streaking of free electrons with sub-optical cycle precision

    PubMed Central

    Kozák, M.; McNeur, J.; Leedle, K. J.; Deng, H.; Schönenberger, N.; Ruehl, A.; Hartl, I.; Harris, J. S.; Byer, R. L.; Hommelhoff, P.

    2017-01-01

    The temporal resolution of ultrafast electron diffraction and microscopy experiments is currently limited by the available experimental techniques for the generation and characterization of electron bunches with single femtosecond or attosecond durations. Here, we present proof of principle experiments of an optical gating concept for free electrons via direct time-domain visualization of the sub-optical cycle energy and transverse momentum structure imprinted on the electron beam. We demonstrate a temporal resolution of 1.2±0.3 fs. The scheme is based on the synchronous interaction between electrons and the near-field mode of a dielectric nano-grating excited by a femtosecond laser pulse with an optical period duration of 6.5 fs. The sub-optical cycle resolution demonstrated here is promising for use in laser-driven streak cameras for attosecond temporal characterization of bunched particle beams as well as time-resolved experiments with free-electron beams. PMID:28120930

  18. Precise in situ etch depth control of multilayered III−V semiconductor samples with reflectance anisotropy spectroscopy (RAS) equipment

    PubMed Central

    Kleinschmidt, Ann-Kathrin; Barzen, Lars; Strassner, Johannes; Doering, Christoph; Bock, Wolfgang; Wahl, Michael; Kopnarski, Michael

    2016-01-01

    Reflectance anisotropy spectroscopy (RAS) equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE)) of monocrystalline multilayered III–V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS) reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL) is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible. PMID:28144528

  19. Method of optical coherence tomography with parallel depth-resolved signal reception and fibre-optic phase modulators

    SciTech Connect

    Morozov, A N; Turchin, I V

    2013-12-31

    The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resulting field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)

  20. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  1. Heritability of ocular component dimensions in mice phenotyped using depth-enhanced swept source optical coherence tomography.

    PubMed

    Wang, Ling; Považay, Boris; Chen, Yen Po; Hofer, Bernd; Drexler, Wolfgang; Guggenheim, Jeremy A

    2011-10-01

    The range of genetic and genomic resources available makes the mouse a powerful model for the genetic dissection of complex traits. Because accurate, high-throughput phenotypic characterisation is crucial to the success of such endeavours, we recently developed an optical coherence tomography (OCT) system with extended depth range scanning capability for measuring ocular component dimensions in mice. In order to test whether the accuracy and reproducibility of our OCT system was sufficient for gene mapping studies, we carried out an experiment designed to estimate the heritability of mouse ocular component dimensions. High-resolution, two dimensional tomograms were obtained for both eyes of 11 pairs of 8 week-old outbred MF1 mice. Subsequently, images were obtained when their offspring were aged 8 weeks. Biometric data were extracted after image segmentation, reconstruction of the geometric shape of each surface, and calculation of intraocular distances. The repeatability of measurements was evaluated for 12 mice scanned on consecutive days. Heritability estimates were calculated using variance components analysis. Sets of tomograms took ∼2 s to acquire. Biometric data could be obtained for 98% of the 130 eyes scanned. The 95% limits of repeatability ranged from ±6 to ±16 μm for the axial ocular component dimensions. The heritability of the axial ocular components was 0.6-0.8, except for corneal thickness, which had a heritability not significantly different from zero. In conclusion, axial ocular component dimensions are highly heritable in mice, as they are in humans. OCT with extended depth range scanning can be used to rapidly phenotype individual mice with sufficient accuracy and precision to permit gene mapping studies.

  2. Double Feedforward Control System Based on Precise Disturbance Modeling for Optical Disk

    NASA Astrophysics Data System (ADS)

    Sakimura, Naohide; Nakazaki, Tatsuya; Ohishi, Kiyoshi; Miyazaki, Toshimasa; Koide, Daiichi; Tokumaru, Haruki; Takano, Yoshimichi

    2013-09-01

    Optical disk drive systems must realize high-precision tracking control for their proper operation. For this purpose, we previously proposed a tracking control system that is composed of a high-gain servo controller (HGSC) and a feedforward controller with an equivalent-perfect tracking control (E-PTC) system. However, it is difficult to design the control parameter for actual multi-harmonic disturbances. In this paper, we propose a precise disturbance model of an actual optical disk using the experimental spectrum data of a feedback controller and describe the design of a fine tracking control system. In addition, we propose a double feedforward control (DFFC) system for further high-precision control. The proposed DFFC system is constructed using two zero phase error tracking (ZPET) control systems based on error prediction and trajectory command prediction. Our experimental results confirm that the proposed system effectively suppresses the tracking error at 6000 rpm, which is the disk rotation speed of Digital Versatile Disk Recordable (DVD+R).

  3. Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sakerin, S. M.; Kabanov, D. M.; Slutsker, I.; Chin, M.; Diehl, T. L.; Remer, L. A.; Kahn, R.; Ignatov, A.; Liu, L.; Mishchenko, M.; Eck, T. F.; Kucsera, T. L.; Giles, D.; Kopelevich, O. V.

    2006-07-01

    Aerosol optical depth measurements were made in October-December 2004 onboard the R/V Akademik Sergey Vavilov. The cruise area included an Atlantic transect from North Sea to Cape Town and then a crossing in the South Atlantic to Argentina. In the open oceanic areas not influenced by continental sources aerosol optical depth values were close to background oceanic conditions (τa ~ 0.06-0.08). Spectral dependence, especially in the high latitude Southern Atlantic, can be considered as quasi-neutral (Angstrom parameter α was less than 0.4). Back-trajectory analysis allowed statistical division of the aerosol optical parameters and showed similar properties for the North Atlantic polar marine, South Atlantic subtropical marine and South Atlantic polar marine air. Ship-borne aerosol optical depth comparisons to GOCART model and satellite retrievals revealed systematic biases. Satellite retrieved optical depths are generally higher by 0.02-0.07 (depending on the sensor), especially in low τa conditions. GOCART model simulated optical depths correlate well with the ship measurements and, despite overall bias and a notable disparity with the observations in a number of cases, about 30% agree within +/-0.01.

  4. Aerosol optical depth over complex topography: comparison of AVHRR, MERIS and MODIS aerosol products

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Popp, Christoph; Hauser, Adrian; Wunderle, Stefan

    Aerosols are a key component in the Earth's atmosphere, influencing the radiation budget due to scattering and absorption of solar and terrestrial radiation and changing cloud physics by serving as cloud condensation nuclei. Furthermore, dispersed particles alter visibility and affect human health. Remote sensing techniques are a common means to monitor aerosol variability on large spatial scales. The accuracy of these retrievals is highest over surfaces with well known spectral properties and low reflectance (e.g. oceans). The retrieval over brighter and heterogeneous land surfaces is more demanding, since temporally unstable surface reflectance and a reduced aerosol signal may result in larger errors. Regions with highly complex topography, like the Alps, can exhibit even larger errors, basically due to directional effects caused by the topography, temporal snow coverage, and usually higher cloud amount. Ground validation of remote sensing aerosol products is generally performed using sun photometer measurements from the AErosol RObotic NETwork (AERONET). However, the lack of such sites in the central parts of the Alps renders validation difficult. To study the potential of aerosol remote sensing in regions with complex topography, namely in the Alps, we make use of an unusual situation on one of the major trans-alpine traffic routes in June 2006: A fatal rock fall caused the nearly one month closure of the Gotthard route in the Central Swiss Reuss Valley. Large parts of the traffic were redirected to the San Bernardino route (eastern Switzerland), which had a large impact on the local traffic amount, and thereby on air quality. Herein we compare the performance of three different sensors (AVHRR, MERIS, MODIS) in detecting this obvious change in the aerosol optical depth of the two alpine valleys in summer 2006. First results from AVHRR show a clear reduction (47%) of the aerosol optical depth along the Gotthard route compared to the five year monthly mean (2003

  5. Global and Seasonal Aerosol Optical Depths Derived From Ultraviolet Observations by Satellites (TOMS)

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Torres, O.

    1999-01-01

    It has been shown that absorbing aerosols (dust, smoke, volcanic ash) can be detected in the ultraviolet wavelengths (331 nm to 380 nm) from satellite observations (TOMS, Total Ozone Mapping Spectrometer) over both land and water. The theoretical basis for these observations and their conversions to optical depths is discussed in terms of an aerosol index AI or N-value residue (assigned positive for absorbing aerosols). The theoretical considerations show that negative values of the AI frequently represent the presence of non-absorbing aerosols (NA) in the troposphere (mostly pollution in the form of sulfates, hydrocarbons, etc., and some natural sulfate aerosols) with particle sizes near 0.1 to 0.2 microns or less. The detection of small-particle non-absorbing aerosols from the measured backscattered radiances is based on the observed wavelength dependence from Mie scattering after the background Rayleigh scattering is subtracted. The Mie scattering from larger particles, 1 micron or more (e.g., cloud water droplets) has too small a wavelength dependence to be detected by this method. In regions that are mostly cloud free, aerosols of all sizes can be seen in the single channel 380 nm or 360 nm radiance data. The most prominent Al feature observed is the strong asymmetry in aerosol amount between the Northern and Southern Hemispheres, with the large majority of NA occurring above 20degN latitude. The maximum values of non-absorbing aerosols are observed over the eastern U.S. and most of western Europe corresponding to the areas of highest industrial pollution. Annual cycles in the amount of NA are observed over Europe and North America with maxima occurring in the summer corresponding to times of minimum wind transport. Similarly, the maxima in the winter over the Atlantic Ocean occurs because of wind borne transport from the land. Most regions of the world have the maximum amount of non-absorbing aerosol in the December to January period except for the eastern

  6. Nonisothermal glass molding for the cost-efficient production of precision freeform optics

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Dambon, Olaf; Klocke, Fritz

    2016-07-01

    Glass molding has become a key replication-based technology to satisfy intensively growing demands of complex precision optics in the today's photonic market. However, the state-of-the-art replicative technologies are still limited, mainly due to their insufficiency to meet the requirements of mass production. This paper introduces a newly developed nonisothermal glass molding in which a complex-shaped optic is produced in a very short process cycle. The innovative molding technology promises a cost-efficient production because of increased mold lifetime, less energy consumption, and high throughput from a fast process chain. At the early stage of the process development, the research focuses on an integration of finite element simulation into the process chain to reduce time and labor-intensive cost. By virtue of numerical modeling, defects including chill ripples and glass sticking in the nonisothermal molding process can be predicted and the consequent effects are avoided. In addition, the influences of process parameters and glass preforms on the surface quality, form accuracy, and residual stress are discussed. A series of experiments was carried out to validate the simulation results. The successful modeling, therefore, provides a systematic strategy for glass preform design, mold compensation, and optimization of the process parameters. In conclusion, the integration of simulation into the entire nonisothermal glass molding process chain will significantly increase the manufacturing efficiency as well as reduce the time-to-market for the mass production of complex precision yet low-cost glass optics.

  7. A Precision Optical Calibration Module (POCAM) for IceCube-Gen2

    NASA Astrophysics Data System (ADS)

    Jurkovič, M.; Abraham, K.; Holzapfel, K.; Krings, K.; Resconi, E.; Veenkamp, J.

    2016-04-01

    We present here a new concept of an in-situ self-calibrated isotropic light source for the future IceCube-Gen2 neutrino detector called the Precision Optical Calibration Module (POCAM). IceCube-Gen2 will be a matrix of light sensors buried deep in the ice at the geographic South Pole. The timing, the location, and the amount of Cherenkov light deposited by the secondary charged particles are used to reconstruct the properties of the incident neutrinos. The reconstruction relies on a detailed detector model that includes the response of optical modules to the Cherenkov light, as well as the optical properties of the detector medium - the natural Antarctic ice. To understand these properties, both natural, and artificial light sources are already used for calibration. New calibration devices are being developed in order to improve the precision of these measurements, and reduce systematic errors. The POCAM concept is based on the principle of an inverted integrating sphere. The main components are LEDs emitting light at several wavelengths and solid-state light sensors e.g. calibrated photodiode or silicon photomultipliers to monitor the emitted light intensity. We report on the current status of the POCAM R&D.

  8. Precision assembly and alignment of large optic modules for the National Ignition Facility

    SciTech Connect

    Hurst, P.; Grasz, E.

    1998-05-12

    The National Ignition Facility (NIF), currently under design and construction at Lawrence Livermore National Laboratory (LLNL), will be the world`s biggest laser. The optics for the multipass, 192-beam, high-power, neodymium-glass laser will be assembled and aligned in the NIF Optics Assembly Building (OAB), adjacent to the huge Laser and Target Area Building (LTAB), where they will be installed. To accommodate the aggressive schedule for initial installation and activation, rapid assembly and alignment of large aperture optics into line replaceable units (LRUs) will occur through the use of automated handling, semi-autonomous operations, and strict protocols. The OAB will have to maintain rigorous cleanliness levels, achieve both commonality and versatility to handle the various optic types, and allow for just-in-time processing and delivery of the optics into the LTAB without undoing their strict cleanliness and precise alignment. This paper describes the Project`s design philosophy of modularity and hardware commonality and presents the many design challenges encountered. It also describes how, by using a mixture of commercially available and newly designed equipment, we have developed unique systems for assembly and alignment, inspection and verification, and LRU loading and transfer.

  9. An optical fiber multiplexing interferometric system for measuring remote and high precision step height

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-02-01

    In this paper, an optical fiber multiplexing interferometric system including a Fizeau interferometer and a Michelson interferometer is designed for remote and high precision step height measurement. The Fizeau interferometer which is inserted in the remote sensing field is used for sensing the measurand, while the Michelson interferometer which is stabilized by a feedback loop works in both modes of low coherence interferometry and high coherence interferometry to demodulate the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by using the symmetrical peak-searching method to address the peak of the low coherence interferogram precisely and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  10. Remote and high precision step height measurement with an optical fiber multiplexing interferometric system

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-03-01

    An optical fiber multiplexing low coherence and high coherence interferometric system, which includes a Fizeau interferometer as the sensing element and a Michelson interferometer as the demodulating element, is designed for remote and high precision step height measurement. The Fizeau interferometer is placed in the remote field for sensing the measurand, while the Michelson interferometer which works in both modes of low coherence interferometry and high coherence interferometry is employed for demodulating the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by searching precisely the peak of the low coherence interferogram symmetrically from two sides of the low coherence interferogram and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  11. Initial simulation study on high-precision radio measurements of the depth of shower maximum with SKAI-low

    NASA Astrophysics Data System (ADS)

    Zilles, Anne; Buitink, Stijn; Huege, Tim

    2017-03-01

    As LOFAR has shown, using a dense array of radio antennas for detecting extensive air showers initiated by cosmic rays in the Earth's atmosphere makes it possible to measure the depth of shower maximum for individual showers with a statistical uncertainty less than 20g/cm2. This allows detailed studies of the mass composition in the energy region around 1017 eV where the transition from a Galactic to an Extragalactic origin could occur. Since SKA1-low will provide a much denser and very homogeneous antenna array with a large bandwidth of 50 - 350 MHz it is expected to reach an uncertainty on the Xmax reconstruction of less than 10g/cm2. We present first results of a simulation study with focus on the potential to reconstruct the depth of shower maximum for individual showers to be measured with SKA1-low. In addition, possible influences of various parameters such as the numbers of antennas included in the analysis or the considered frequency bandwidth will be discussed.

  12. Determination of Aerosol Optical Depth and Land Surface Directional Reflectances Using Multiangle Imagery

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.

    1997-01-01

    Spectral aerosol optical depths, surface hemispherical-directional reflectance factors, and bihemispherical reflectances (albedos) are retrieved for an area of Glacier National Park using spectral, multiangle imagery obtained with the airborne advanced solid state array spectroradiometer (ASAS). The retrieval algorithms are described and are identical in principle to those being devised for use by the multiangle imaging spectroradiometer (MISR) which will fly on the EOS-AMI spacecraft in 1998. As part of its science mission, MISR will produce global coverage of both aerosol amounts an an surface reflection properties. The results in this paper represent the initial effort in applying the MISR algorithms to real data. These algorithms will undergo additional testing and validation as more multiangle data become available.

  13. Accounting for High-biases in the MODIS Aerosol Optical Depth Retrieval

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Patadia, F.; Mattoo, S.; Platnick, S. E.

    2015-12-01

    Aerosol optical depth retrieved from observations made by the MODIS instrument, onboard Terra and Aqua satellites, has been extensively validated against ground based AERONET AOD. Global validation of the current Collection 6 (C6) AOD over ocean indicates that 68% of retrieved AOD agrees to within 0.03 ± 10% * AERONET AOD. However there does exist high bias in MODIS AOD retrievals. There are a number of reasons for over-estimation. One is cloud contamination, which is where undetected clouds are retrieved as aerosol. A second is 3D radiative effects, where observed radiance is enhanced due to scattering from clouds. Here we parse out and attempt to quantify the contributions from the cloud contamination in AOD retrieval over ocean. Among other reasons for high bias are wrong aerosol models, improper surface characterization, error in local windspeed data and adjacency effects.

  14. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography.

    PubMed

    Zhang, Yun; Dong, Bo; Bai, Yulei; Ye, Shuangli; Lei, Zhenkun; Zhou, Yanzhou

    2015-10-19

    An updated B-scan method is proposed for measuring the evolution of thermal deformation fields in polymers. In order to measure the distributions of out-of-plane deformation and normal strain field, phase-contrast spectral optical coherence tomography (PC-SOCT) was performed with the depth range and resolution of 4.3 mm and 10.7 μm, respectively, as thermal loads were applied to three different multilayer samples. The relation between temperature and material refractive index was predetermined before the measurement. After accounting for the refractive index, the thermal deformation fields in the polymer were obtained. The measured thermal expansion coefficient of silicone sealant was approximately equal to its reference value. This method allows correctly assessing the mechanical properties in semitransparent polymers.

  15. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  16. Spatial and temporal variations in the atmospheric aerosol optical depth at the ARM CART Site

    SciTech Connect

    Nash, T.M.; Cheng, M.D.

    1998-02-01

    In an effort to better characterize the inputs to radiative transfer models and research-grade global climate simulation models (GCMs) the columnar aerosol loading, measured as the aerosol optical depth (AOD), has been computed for five facilities within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site. Characterization of the AOD reported here show clear evidence that the spatial and temporal gradient exists at a much finer linear scale than those of the CART site. The annual variations of median AOD are on the order of 0.30 at all five facilities. The Spearman correlation and varimax-rotated PCA indicated the AOD values vary consistently across the CART site. The Northwest corner facility (EF-1) was the single facility that behaved differently from the rest. This sub-GCM grid variation can not be ignored if the model is to be used to accurately predict future climate change.

  17. Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slustsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Michail

    2013-01-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, 99.53%. Only 0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  18. Assessment of error in aerosol optical depth measured by AERONET due to aerosol forward scattering

    NASA Astrophysics Data System (ADS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slutsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Mikhail

    2012-12-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, ∼99.53%. Only ∼0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  19. Martian Surface NIR Spectral Modeling for Ice Cloud Optical Depth Retrievals using CRISM Mapping Data

    NASA Astrophysics Data System (ADS)

    Klassen, D. R.

    2011-10-01

    One goal in the study of Mars is to understand its water cycle and the total water budget. As part of this, I am working on trying to measure water ice content in Martian clouds. The catch is that in order to measure the water abundance in clouds using near-infrared (NIR) spectra, one must know the surface spectrum, since it is an input for radiative transfer modeling—but to get the surface spectrum, one must be able to remove the effects of the atmosphere and aerosols. I will present four primary methods of modeling away the surface in order to retrieve the ice cloud (and dust) optical depth and compare and contrast them for both ease-of-use and apparent accuracy.

  20. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  1. SAGE and SAM II measurements of global stratospheric aerosol optical depth and mass loading

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Mccormick, M. P.

    1984-01-01

    Several volcanic eruptions between November 1979 and April 1981 have injected material into the stratosphere. The SAGE and SAM II satellite systems have measured, with global coverage, the 1-micron extinction produced by this material, and examples of the data product are shown in the form of global maps of stratospheric optical depth and altitude-latitude plots of zonal mean extinction. These data, and that for the volcanically quiet period in early 1979, have been used to determine the changes in the total stratospheric mass loading. Estimates have also been made of the contribution to the total aerosol mass from each eruption. It has been found that between 1979 and mid-1981, the total stratospheric aerosol mass increased from a background level of approximately 570,000 metric tons to a peak of approximately 1,300,000 metric tons.

  2. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  3. Precise determination of atomic g-factor ratios from a dual isotope magneto-optical trap

    SciTech Connect

    Chan, I.; Barrett, B.; Kumarakrishnan, A.

    2011-09-15

    We demonstrate a technique, for carrying out precise measurements of atomic g-factor ratios, which relies on measurements of Larmor oscillations from coherences between magnetic sublevels in the ground states of {sup 85}Rb and {sup 87}Rb atoms confined in a dual isotope magneto-optical trap. We show that a measurement of g{sub F}{sup (87)}/g{sub F}{sup (85)} with a resolution of 0.69 parts per 10{sup 6} is possible by recording the ratio of Larmor frequencies in the presence of a constant magnetic field. This represents the most precise single measurement of g{sub F}{sup (87)}/g{sub F}{sup (85)} without correcting for systematic effects.

  4. Aerosol optical depth derived from solar radiometry observations at northern mid-latitude sites

    SciTech Connect

    Laulainen, N.S.; Larson, N.R.; Michalsky, J.J.; Harrison, L.C.

    1994-01-01

    Routine, automated solar radiometry observations began with the development of the Mobile Automated Scanning Photometer (MASP) and its installation at the Rattlesnake Mountain Observatory (RMO). We have introduced a microprocessor controlled rotating shadowband radiometer (RSR), both the single detector and the multi-filter/detector (MFRSR) versions to replace the MASP. The operational mode of the RSRs is substantially different than the MASP or other traditional sun-tracking radiometers, because, by virtue of the automated rotating shadowband, the total and diffuse irradiance on a horizontal plane are measured and the direct-normal component deduced through computation from the total and diffuse components by the self-contained microprocessor. Because the three irradiance components are measured using the same detector for a given wavelength, the calibration coefficients are identical for each component, thus reducing errors when comparing them. The MFRSR is the primary radiometric instrument in the nine-station Quantitative Links Network (QLN) established in the eastern United States in late 1991. Data from this network are being used to investigate how cloud- and aerosol-induced radiative effects vary in time and with cloud structure and type over a mid-latitude continental region. This work supports the DOE Quantitative Links Program to quantify linkages between changes in atmospheric composition and climate forcing. In this paper we describe the setup of the QLN and present aerosol optical depth results from the on-going measurements at PNL/RMO, as well as preliminary results from the QLN. From the time-series of data at each site, we compare seasonal variability and geographical differences, as well as the effect of the perturbation to the stratosphere by Mt. Pinatubo. Analysis of the wavelength dependence of optical depth also provides information on the evolution and changes in the size distribution of the aerosols.

  5. Trends in aerosol optical depth over Indian region: Potential causes and impact indicators

    NASA Astrophysics Data System (ADS)

    Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Gogoi, Mukunda M.; Nair, Vijayakumar S.; Kompalli, Sobhan Kumar; Satheesh, S. K.; Niranjan, K.; Ramagopal, K.; Bhuyan, P. K.; Singh, Darshan

    2013-10-01

    first regional synthesis of long-term (back to ~ 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported ~ 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

  6. Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey

    2013-01-01

    A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.

  7. Extended scan depth optical coherence tomography for evaluating ocular surface shape

    PubMed Central

    Shen, Meixiao; Cui, Lele; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua

    2011-01-01

    Spectral domain optical coherence tomography (SD-OCT) with extended scan depth makes it possible for quantitative measurement of the entire ocular surface shape. We proposed a novel method for ocular surface shape measurement using a custom-built anterior segment SD-OCT, which will serve on the contact lens fitting. A crosshair alignment system was applied to reduce the misalignment and tilting of the eye. An algorithm was developed to automatically segment the ocular surface. We also described the correction of the image distortion from the segmented dataset induced by the nontelecentric scanning system and tested the accuracy and repeatability. The results showed high accuracy of SD-OCT in measuring a bicurved test surface with a maximum height error of 17.4 μm. The repeatability of in vivo measurement was also good. The standard deviations of the height measurement within a 14-mm wide range were all less than 35 μm. This work demonstrates the feasibility of using extended depth SD-OCT to perform noninvasive evaluation of the ocular surface shape. PMID:21639575

  8. Hyperscale Analysis of River Morphology Though Optical Remote Mapping of Water Depths

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.

    2007-12-01

    The science of in-channel river processes and forms has profited enormously from the introduction of specialized remote sensing tools such as LiDAR and hyperspectral imaging during the past decade. However, the cost and lack of historical data make them a less than ideal choice for many geomorphic questions. As an alternative to high-performance technology, a new analytical technique applied to older color aerial imagery allows extraction of the three-dimensional river environment over enormous distances. In clearwater rivers, some light often reaches the riverbed and returns to the surface, providing optical information about different components of the physical habitat structure. The HAB-2 transform combines the Beer-Lambert law of light absorption with hydrodynamic rules to allow the estimation of river depth at each image pixel, and it allows separation of the depth effect from the remaining image information. The widespread availability of CIR digital orthophotoquads across much of the United States allows the use of HAB approaches to extract three dimensional data for large area riverscapes at scales from about a meter to that of the entire watershed. The rapid and widespread utility of image-based river DTMs allows hitherto unparalleled investigation of geomorphic structures. As one example of this utility, HAB- calibrated high-resolution imagery of the Nueces River watershed, Texas, shows systematic deviations from the classic theory of the downstream hydraulic geometry as well as an unprecedented level of randomness at most scales.

  9. Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion

    NASA Astrophysics Data System (ADS)

    Dugan, J. P.; Piotrowski, C. C.; Williams, J. Z.

    2001-08-01

    Visible images of nearshore ocean waves obtained from an aircraft have been utilized to estimate the surface currents and water depth below the waves. A digital framing camera was mounted in a motion-stabilized turret and used to obtain temporal sequences of high-quality optical images of shoaling ocean waves. Data on the position and attitude of the camera/turret were used to map the image data to a rectilinear coordinate system at the level of the surface, effectively separating the spatial and temporal modulations due to the waves. The resulting three-dimensional (3-D) space-time data sets were Fourier transformed to obtain frequency-wave number spectra of these modulations. These spectra contain information on the propagation characteristics of the waves, such as their wavelengths and frequencies, and their directions and speeds of propagation. The water depth and current vector have been estimated by choosing these parameters so that a "best" fit is obtained between the theoretical dispersion relation for linear gravity waves and these 3-D wave spectra. Image data sets were acquired during the Shoaling Waves Experiment (SHOWEX) along the quasi-linear coastline in the vicinity of the Army Corps of Engineers' Field Research Facility (FRF) near Duck on the North Carolina Outer Banks. Summary wave parameters and bathymetry and current retrievals are typically within 10% of contemporaneous in situ measurements, though outliers occur.

  10. Optical Estimation of Depth and Current in a Ebb Tidal Delta Environment

    NASA Astrophysics Data System (ADS)

    Holman, R. A.; Stanley, J.

    2012-12-01

    A key limitation to our ability to make nearshore environmental predictions is the difficulty of obtaining up-to-date bathymetry measurements at a reasonable cost and frequency. Due to the high cost and complex logistics of in-situ methods, research into remote sensing approaches has been steady and has finally yielded fairly robust methods like the cBathy algorithm for optical Argus data that show good performance on simple barred beach profiles and near immunity to noise and signal problems. In May, 2012, data were collected in a more complex ebb tidal delta environment during the RIVET field experiment at New River Inlet, NC. The presence of strong reversing tidal currents led to significant errors in cBathy depths that were phase-locked to the tide. In this paper we will test methods for the robust estimation of both depths and vector currents in a tidal delta domain. In contrast to previous Fourier methods, wavenumber estimation in cBathy can be done on small enough scales to resolve interesting nearshore features.

  11. Extended scan depth optical coherence tomography for evaluating ocular surface shape

    NASA Astrophysics Data System (ADS)

    Shen, Meixiao; Cui, Lele; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua

    2011-05-01

    Spectral domain optical coherence tomography (SD-OCT) with extended scan depth makes it possible for quantitative measurement of the entire ocular surface shape. We proposed a novel method for ocular surface shape measurement using a custom-built anterior segment SD-OCT, which will serve on the contact lens fitting. A crosshair alignment system was applied to reduce the misalignment and tilting of the eye. An algorithm was developed to automatically segment the ocular surface. We also described the correction of the image distortion from the segmented dataset induced by the nontelecentric scanning system and tested the accuracy and repeatability. The results showed high accuracy of SD-OCT in measuring a bicurved test surface with a maximum height error of 17.4 μm. The repeatability of in vivo measurement was also good. The standard deviations of the height measurement within a 14-mm wide range were all less than 35 μm. This work demonstrates the feasibility of using extended depth SD-OCT to perform noninvasive evaluation of the ocular surface shape.

  12. Precise measurement of instantaneous volume of eccrine sweat gland in mental sweating by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato

    2015-03-01

    We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). We propose a method for extraction of the target eccrine sweat gland by use of the connected component extraction process and the adaptive threshold method, where the en-face OCT images are constructed by the SS-OCT. Furthermore, we demonstrate precise measurement of instantaneous volume of the sweat gland in response to the external stimulus. The dynamic change of instantaneous volume of eccrine sweat gland in mental sweating is performed by this method during the period of 300 sec with the frame intervals of 3.23 sec.

  13. High precision long-term stable fiber-based optical synchronization system

    NASA Astrophysics Data System (ADS)

    Li, Yurong; Wang, Xiaochao; Jiang, Youen; Qiao, Zhi; Li, Rao; Fan, Wei

    2016-10-01

    A fiber-based high precision long-term stable time synchronization system for multi-channel laser pulses is presented using fiber pulse stacker combined with high-speed optical-electrical conversion and electronics processing technology. This scheme is used to synchronize two individual lasers including a mode-lock laser and a time shaping pulse laser system. The relative timing jitter between two laser pulses achieved with this system is 970 fs (rms) in five minutes and 3.5 ps (rms) in five hours. The synchronization system is low cost and can work at over several tens of MHz repetition rate.

  14. Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 Global Change Expedition

    NASA Astrophysics Data System (ADS)

    Reddy, Patrick J.; Kreiner, Fred W.; Deluisi, John J.; Kim, Young

    1990-09-01

    Aerosol optical depths and values for the Angstrom exponent, alpha, were retrieved from carefully calibrated sunphotometer measurements which were made during the Global Change Expedition (GCE) of the NOAA ship Mt. Mitchell in July, August, and September 1988. Sunphotometer observations were acquired at wavelengths of 380, 500, 675, and 778 nm. Optical depths and alphas have been segregated into five categories associated with probable air mass source regions determined through back trajectories at the 1000-, 850-, 700-, and 500-mbar levels. The results for the three most distinct air mass types are summarized here. The mean 500- nm aerosol optical depth for North American air is 0.56 (±0.32), the mean for Atlantic air is 0.16 (±0.02), and the mean for Saharan air is 0.39 (±0.12). Alpha for mean GCE aerosol optical depth data for predominantly North American air masses is 1.15 (± 0.11), alpha for Atlantic air is 1.00 (±0.40), and for Saharan air, alpha is 0.37 (±0.18). There is a significant difference between alpha for Saharan air and alpha for North American or Atlantic air. There is also a significant difference between the mean 500-nm optical depth for North American aerosols and Atlantic aerosols.

  15. Comparison of Materials for Use in the Precision Grinding of Optical Components

    SciTech Connect

    Evans, Boyd M. III; Miller, Arthur C. Jr.; Egert, Charles M.

    1997-12-31

    Precision grinding of optical components is becoming an accepted practice for rapidly and deterministically fabrication optical surfaces to final or near-final surface finish and figure. In this paper, a comparison of grinding techniques and materials is performed. Flat and spherical surfaces were ground in three different substrate materials: BK7 glass, chemical vapor deposited (CVD) silicon carbide ceramic, and sapphire. Spherical surfaces were used to determine the contouring capacity of the process, and flat surfaces were used for surface finish measurements. The recently developed Precitech Optimum 2800 diamond turning and grinding platform was used to grind surfaces in 40mm diameter substrates sapphire and silicon carbide substrates and 200 mm BK7 glass substrates using diamond grinding wheels. The results of this study compare the surface finish and figure for the three materials.

  16. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  17. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest.

    PubMed

    Alföldy, B; Osán, J; Tóth, Z; Török, S; Harbusch, A; Jahn, C; Emeis, S; Schäfer, K

    2007-09-20

    The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.

  18. Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory.

    PubMed

    Vasilyev, O B; Leyva, A; Muhila, A; Valdes, M; Peralta, R; Kovalenko, A P; Welch, R M; Berendes, T A; Isakov, V Y; Kulikovskiy, Y P; Sokolov, S S; Strepanov, N N; Gulidov, S S; von Hoyningen-Huene, W

    1995-07-20

    A spectroradiometer with wedge interference filters (SWIF) (the filters were produced by Carl Zeiss, Jena, Germany) and a CCD matrix (which was of Russian production) that functions as the sensor has been designed and built for use in ground-based optical sensing of the atmosphere and the Earth's surface in the spectral range of 0.35-1.15 µm. Absolute calibration of this instrument was performed through a series of observations of direct solar radiation at Mauna Loa Observatory (MLO) in Hawaii in May and June 1993. Spectral optical depth (SOD) measurements that were made during these field experiments provided detailed spectral information about both aerosol extinction (scattering plus absorption) and molecular absorption in the atmosphere above the site at MLO. The aerosol-SOD measurements were compared with narrow-band radiometer measurements at wavelengths of 380, 500, and 778 nm The SWIF and narrow-band radiometer measurements are in agreement to within the experimental error. At a wavelength of 500 nm, the aerosol SOD was found to be approximately 0.045. Adescription of the SWIF instrument, its absolute calibration, and the determination of atmospheric SOD's at MLO are presented.

  19. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  20. A New Method for Modeling Optical Depth Effects in Cometary Emission Lines

    NASA Astrophysics Data System (ADS)

    Gersch, Alan; A'Hearn, M. F.

    2008-09-01

    We create a model of the carbon monoxide IR spectra of a cometary coma including optical depth effects using Coupled Escape Probability (CEP), a new exact method for line radiative transfer solutions (see Elitzur & Asensio Ramos, 2005). In the CEP method a plane parallel atmosphere is divided into vertical "zones". Each zone's distribution of fractional populations in molecular energy levels is determined using statistical equilibrium. All the zones are coupled through terms resembling escape probability expressions, which encapsulate the self-radiation due to scattering and absorption between zones. This enables a self-consistent solution for the line radiation produced even in optically thick cases. We have implemented the CEP approach to calculate the line emission of the CO IR 1-0 ro-vibrational spectra, for arbitrary conditions such as those found in cometary comae. The coma itself is modeled using numerical integration of the expanding coma gas from the nucleus outwards (see, e.g. Chin & Weaver, 1984.) Our model of the coma uses the CEP method for integrating CO emission throughout the coma in a piecewise manner which yields a model spectra for any observed line of sight through the coma. We have constructed spectral "maps" of the coma of comet Tempel-1 in various frequencies, corresponding to observations during the approach and impact of the Deep Impact mission. These are compared with the actual Deep Impact observations to better understand the coma composition.

  1. Titan's 2 micron Surface Albedo and Haze Optical Depth in 1996-2004

    SciTech Connect

    Gibbard, S; de Pater, I; Macintosh, B; Roe, H; Max, C; Young, E; McKay, C

    2004-05-04

    We observed Titan in 1996-2004 with high-resolution 2 {micro}m speckle and adaptive optics imaging at the W.M. Keck Observatory. By observing in a 2 {micro}m broadband filter we obtain images that have contributions from both Titan's surface and atmosphere. We have modeled Titan's atmosphere using a plane-parallel radiative transfer code that has been corrected to agree with 3-D Monte Carlo predictions. We find that Titan's surface albedo ranges from {le} 0:02 in the darkest equatorial region of the trailing hemisphere to {approx_equal} 0:1 in the brightest areas of the leading hemisphere. Over the past quarter of a Saturnian year haze optical depth in Titan's Southern hemisphere has decreased substantially from a value of 0.48 in 1996 down to 0.18 in 2004, while the northern haze has been increasing over the past few years. As a result of these changes, in 2004 the North/South haze asymmetry at K' band has disappeared.

  2. Global long-term passive microwave satellite-based retrievals of vegetation optical depth

    NASA Astrophysics Data System (ADS)

    Liu, Yi Y.; de Jeu, Richard A. M.; McCabe, Matthew F.; Evans, Jason P.; van Dijk, Albert I. J. M.

    2011-09-01

    Vegetation optical depth (VOD) retrievals from three satellite-based passive microwave instruments were merged to produce the first long-term global microwave-based vegetation product. The resulting VOD product spans more than two decades and shows seasonal cycles and inter-annual variations that generally correspond with those observed in the Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI). Some notable differences exist in the long-term trends: the NDVI, operating in the optical regime, is sensitive to chlorophyll abundance and photosynthetically active biomass of the leaves, whereas the microwave-based VOD is an indicator of the vegetation water content in total above-ground biomass, i.e., including wood and leaf components. Preliminary analyses indicate that the fluctuations in VOD typically correlated to precipitation variations, and that the mutually independent VOD and NDVI do not necessarily respond in identical manners. Considering both products together provides a more robust structural characterization and assessment of long-term vegetation dynamics at the global scale.

  3. Depths-encoded angular compounding for speckle reduction in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cao, Zhaoyuan; Qian, Jie; Chen, Xinjian; Mo, Jianhua

    2016-03-01

    Optical coherence tomography (OCT) is one of the successful inventions in medical imaging as a clinic routine in the past decades. This imaging technique is based on low coherence interferometer and consequently suffers from speckle noise inherently, which can degrade image quality and obscure micro-structures. Therefore, effective speckle reduction techniques have been always desired and researched since optical coherence tomography was invented. In this study, we proposed an angular compounding method to reduce speckle noise of OCT image. Two different angular light paths are created on the sample arm using two beam splitters. The epi-detection scheme creates three different combinations of the two angular light paths above, which produce three images in single B-scan. To compound these three images, these three images are separated in depth by delaying one light path relative to the other. Compared to those reported angular compounding methods, our method showed an advantage of faster imaging speed. This method was evaluated on an artificial eye model. The results demonstrated a 1.46-fold improvement in speckle contrast.

  4. Titan's 2 μm surface albedo and haze optical depth in 1996-2004

    NASA Astrophysics Data System (ADS)

    Gibbard, S. G.; de Pater, I.; Macintosh, B. A.; Roe, H. G.; Max, C. E.; Young, E. F.; McKay, C. P.

    2004-07-01

    We observed Titan in 1996-2004 with high-resolution 2 μm speckle and adaptive optics imaging at the W. M. Keck Observatory. By observing in a 2 μm broadband filter we obtain images that have contributions from both Titan's surface and atmosphere. We have modeled Titan's atmosphere using a plane-parallel radiative transfer code that has been corrected to agree with 3-D Monte Carlo predictions. We find that Titan's surface albedo ranges from <=0.02 in the darkest equatorial region of the trailing hemisphere to $\\simeq$0.1 in the brightest areas of the leading hemisphere. Over the past quarter of a Saturnian year haze optical depth in Titan's Southern hemisphere has decreased substantially from a value of 0.48 in 1996 down to 0.18 in 2004, while the northern haze has been increasing over the past few years. As a result of these changes, in 2004 the North/South haze asymmetry at K' band has disappeared.

  5. Motionless active depth from defocus system using smart optics for camera autofocus applications

    NASA Astrophysics Data System (ADS)

    Amin, M. Junaid; Riza, Nabeel A.

    2016-04-01

    This paper describes a motionless active Depth from Defocus (DFD) system design suited for long working range camera autofocus applications. The design consists of an active illumination module that projects a scene illuminating coherent conditioned optical radiation pattern which maintains its sharpness over multiple axial distances allowing an increased DFD working distance range. The imager module of the system responsible for the actual DFD operation deploys an electronically controlled variable focus lens (ECVFL) as a smart optic to enable a motionless imager design capable of effective DFD operation. An experimental demonstration is conducted in the laboratory which compares the effectiveness of the coherent conditioned radiation module versus a conventional incoherent active light source, and demonstrates the applicability of the presented motionless DFD imager design. The fast response and no-moving-parts features of the DFD imager design are especially suited for camera scenarios where mechanical motion of lenses to achieve autofocus action is challenging, for example, in the tiny camera housings in smartphones and tablets. Applications for the proposed system include autofocus in modern day digital cameras.

  6. Peripapillary choroidal thickness in Chinese children using enhanced depth imaging optical coherence tomography

    PubMed Central

    Wu, Xi-Shi; Shen, Li-Jun; Chen, Ru-Ru; Lyu, Zhe

    2016-01-01

    AIM To evaluate the peripapillary choroidal thickness (PPCT) in Chinese children, and to analyze the influencing factors. METHODS PPCT was measured with enhanced depth imaging optical coherence tomography (EDI-OCT) in 70 children (53 myopes and 17 non-myopes) aged 7 to 18y, with spherical equivalent refractive errors between 0.50 and −5.87 diopters (D). Peripapillary choroidal imaging was performed using circular scans of a diameter of 3.4 mm around the optic disc. PPCT was measured by EDI-OCT in six sectors: nasal (N), superonasal (SN), superotemporal (ST), temporal (T), inferotemporal (IT) and inferonasal (IN), as well as global RNFL thickness (G). RESULTS The mean global PPCT was 165.49±33.76 µm. The temporal, inferonasal, inferotemporal PPCT were significantly thinner than the nasal, superonasal, superotemporal segments PPCT were significantly thinner in the myopic group at temporal, superotemporal and inferotemporal segments. The axial length was significantly associated with the average global (β=−0.419, P=0.014), superonasal (β=−2.009, P=0.049) and inferonasal (β= −2.000, P=0.049) PPCT. The other factors (gender, age, SE) were not significantly associated with PPCT. CONCLUSION PPCT was thinner in the myopic group at temporal, superotemporal and inferotemporal segments. The axial length was found to be negatively correlated to PPCT. We need more further studies about the relationship between PPCT and myopia. PMID:27803863

  7. Precision-Deployable, Stable, Optical Benches for Cost-Effective Space Telescopes

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Pellegrino, S.; Dailey, D.; Marks, G.; Bookbinder, J.

    2012-05-01

    To explore the universe at the arcsecond resolution of Chandra, while increasing collecting area by at least an order of magnitude and maintaining affordability, we will need to make creative use of existing and new technology. Precision-deployable, stable, optical benches that fit inside smaller, lower-cost launch vehicles are a prime example of a technology well within current reach that will yield breakthrough benefits for future astrophysics missions. Deployable optical benches for astrophysical applications have a reputation for complexity; however, we are offering an approach, based on techniques used in space for decades, that reduces overall mission cost. Currently, deployable structures are implemented on JAXA’s Astro-H and NASA’s NuStar high-energy astrophysics missions. We believe it is now time to evolve these structures into precision, stable optical benches that are stiff, lightweight, and suitable for space telescopes with focal lengths of 20 meters or more. Such optical benches are required for advanced observatory class missions and can be scaled to Explorer and medium-class missions. To this end, we have formed a partnership between Space Structures Laboratory (SSL) at the California Institute of Technology, Northrop Grumman Aerospace Systems (NGAS), Northrop Grumman Astro Aerospace (Astro), and Smithsonian Astrophysical Observatory (SAO). Combining the expertise and tools from academia and industry is the most effective approach to take this concept to Technology Readiness Level (TRL) 6. We plan to perform small sub-scale demonstrations, functional tests, and analytical modeling in the academic environment. Using results from SSL, larger prototypes will be developed at facilities at NGAS in Redondo Beach and Carpinteria, CA.

  8. Depth-sensitive optical spectroscopy for noninvasive diagnosis of oral neoplasia

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard Alan

    Oral cancer is the 11th most common cancer in the world. Cancers of the oral cavity and oropharynx account for more than 7,500 deaths each year in the United States alone. Major advances have been made in the management of oral cancer through the combined use of surgery, radiotherapy and chemotherapy, improving the quality of life for many patients; however, these advances have not led to a significant increase in survival rates, primarily because diagnosis often occurs at a late stage when treatment is more difficult and less successful. Accurate, objective, noninvasive methods for early diagnosis of oral neoplasia are needed. Here a method is presented to noninvasively evaluate oral lesions using depth-sensitive optical spectroscopy (DSOS). A ball lens coupled fiber-optic probe was developed to enable preferential targeting of different depth regions in the oral mucosa. Clinical studies of the diagnostic performance of DSOS in 157 subjects were carried out in collaboration with the University of Texas M. D. Anderson Cancer Center. An overall sensitivity of 90% and specificity of 89% were obtained for nonkeratinized oral tissue relative to histopathology. Based on these results a compact, portable version of the clinical DSOS device with real-time automated diagnostic capability was developed. The portable device was tested in 47 subjects and a sensitivity of 82% and specificity of 83% were obtained for nonkeratinized oral tissue. The diagnostic potential of multimodal platforms incorporating DSOS was explored through two pilot studies. A pilot study of DSOS in combination with widefield imaging was carried out in 29 oral cancer patients, resulting in a combined sensitivity of 94% and specificity of 69%. Widefield imaging and spectroscopy performed slightly better in combination than each method performed independently. A pilot study of DSOS in combination with the optical contrast agents 2-NBDG, EGF-Alexa 647, and proflavine was carried out in resected tissue

  9. Effects of Configuration of Optical Combiner on Near-Field Depth Perception in Optical See-Through Head-Mounted Displays.

    PubMed

    Lee, Sangyoon; Hua, Hong

    2016-04-01

    The ray-shift phenomenon means the apparent distance shift in the display image plane between virtual and physical objects. It is caused by the difference in the refraction of virtual display and see-through optical paths derived from optical combiners that are necessary to provide a see-through capability in optical see-through head-mounted displays. In this work, through a human-subject experiment, we investigated the effects of ray-shift phenomenon induced by the optical combiner on depth perception for near-field distances (40 cm-100 cm). In our experiment, we considered three different configurations of optical combiner: horizontal-tilt and vertical-tilt configurations (using plate beamsplitters horizontally and vertically tilted by 45°, respectively), and non-tilt configuration (using rectangular solid waveguides). Participants' depth perception errors in these configurations were compared with those in an ordinary condition (i.e., the condition where physical objects are directly shown without the displays) and theoretically estimated ones. According to the experimental results, the measured percentage depth perception errors were similar to the theoretically estimated ones, where the amount of estimated percentage depth errors was greater than 0.3%. Furthermore, the participants showed significantly larger depth perception errors in the horizontal-tilt configuration than in an ordinary condition, while no large errors were found in the vertical-tilt configuration. In the non-tilt configuration, the results were dependent on the thickness of optical combiner and target distance.

  10. Optical Estimation of Depth Induced Wave Breaking Distributions over Complex Bathymetry

    NASA Astrophysics Data System (ADS)

    Keen, A. S.; Holman, R. A.

    2012-12-01

    Parametric depth-induced-breaking dissipation models have shown great skill at predicting time averaged wave heights across the surf zone. First proposed by Battjes & Janssen (1978), these models balance the incoming wave energy flux with a roller dissipation term. This roller dissipation term is estimated by calculating the dissipation for one characteristic broken wave and then multiplying this quantity by the fraction of broken waves. To describe the fraction of broken waves, a typical assumption asserts that wave heights are nearly Rayleigh distributed [Thornton & Guza (1983)] allowing a sea state to be described by only a few parameters. While many experiments have validated the cross shore wave height profiles, few field experiments have been performed to analyze the probability distribution of breaking wave heights over a barred beach profile. The goal of the present research is to determine the distribution of broken and unbroken wave heights across a natural barred beach profile. Field data collected during the Surf Zone Optics experiment (a Multi-disciplinary University Research Initiative) in Duck, North Carolina, consisted of an array of in-situ pressure sensors and optical remote sensing cameras. Sea surface elevation time series from the in-situ pressure sensors are used here to resolve wave height distributions at multiple locations across the surf zone. Breaking wave height distributions are resolved based upon a combination of the pressure sensor and optically based breaker detection algorithm. Since breaking is easily able to be tracked by video imaging, breaking waves are flagged in the sea surface elevation series and binned into a broken wave height distribution. Results of this analysis are compared with model predictions based upon the Battjes & Janssen (1978), Thornton & Guza (1983) and Janssen & Battjes (2007) models to assess the validity of each wave height distribution model.

  11. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  12. Precision Interferometric Measurements of Mirror Birefringence in High-Finesse Optical Resonators

    PubMed Central

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often non-uniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R = 99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μm, with precision limited by both quantum and technical noise sources. We report a splitting of δν = 618(1) Hz, significantly less than the intrinsic cavity linewidth of δcav ≈ 3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δn/n = 6.38(1) × 10−6. PMID:27088133

  13. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging

    PubMed Central

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J. Alexander; Bargmann, Cornelia I.

    2016-01-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a “precise color” MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  14. Ultrahigh and persistent optical depths of cesium in Kagomé-type hollow-core photonic crystal fibers.

    PubMed

    Kaczmarek, Krzysztof T; Saunders, Dylan J; Sprague, Michael R; Kolthammer, W Steven; Feizpour, Amir; Ledingham, Patrick M; Brecht, Benjamin; Poem, Eilon; Walmsley, Ian A; Nunn, Joshua

    2015-12-01

    Alkali-filled hollow-core fibers are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption (LIAD). However, until now these large optical depths could only be generated for seconds, at most once per day, severely limiting the practicality of the technology. Here we report the generation of the highest observed transient (>10(5) for up to a minute) and highest observed persistent (>2000 for hours) optical depths of alkali vapors in a light-guiding geometry to date, using a cesium-filled Kagomé-type hollow-core photonic crystal fiber (HC-PCF). Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.

  15. Precision Determination of Atmospheric Extinction at Optical and Near IR Wavelengths

    SciTech Connect

    Burke, David L.; Axelrod, T.; Blondin, Stephane; Claver, Chuck; Ivezic, Zeljko; Jones, Lynne; Saha, Abhijit; Smith, Allyn; Smith, R.Chris; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-08-24

    The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better, and absolute calibration of color measurements that are similarly accurate. This performance will need to be achieved with measurements made from multiple images taken over the course of many years, and these surveys will observe in less than ideal conditions. This paper describes a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration of ground-based observations. This strategy makes use of measurements of the spectra of a small catalog of bright 'probe' stars as they progress across the sky and back-light the atmosphere. The signatures of optical absorption by different atmospheric constituents are recognized in these spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately compute atmospheric extinction over a wide range of observing conditions. We present results of an observing campaign that demonstrate that correction for extinction due to molecular constituents and aerosols can be done with precisions of a few millimagnitudes with this technique.

  16. Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution

    PubMed Central

    Carter, Ashley R.; Seol, Yeonee; Perkins, Thomas T.

    2009-01-01

    The most commonly used optical-trapping assays are coupled to surfaces, yet such assays lack atomic-scale (∼0.1 nm) spatial resolution due to drift between the surface and trap. We used active stabilization techniques to minimize surface motion to 0.1 nm in three dimensions and decrease multiple types of trap laser noise (pointing, intensity, mode, and polarization). As a result, we achieved nearly the thermal limit (<0.05 nm) of bead detection over a broad range of trap stiffness (kT = 0.05–0.5 pN/nm) and frequency (Δf = 0.03–100 Hz). We next demonstrated sensitivity to one-basepair (0.34-nm) steps along DNA in a surface-coupled assay at moderate force (6 pN). Moreover, basepair stability was achieved immediately after substantial (3.4 pN) changes in force. Active intensity stabilization also led to enhanced force precision (∼0.01%) that resolved 0.1-pN force-induced changes in DNA hairpin unfolding dynamics. This work brings the benefit of atomic-scale resolution, currently limited to dual-beam trapping assays, along with enhanced force precision to the widely used, surface-coupled optical-trapping assay. PMID:19348774

  17. Precision optical asphere fabrication by plasma jet chemical etching (PJCE) and ion beam figuring

    NASA Astrophysics Data System (ADS)

    Schindler, Axel; Boehm, Georg; Haensel, Thomas; Frank, Wilfried; Nickel, Andreas; Rauschenbach, Bernd; Bigl, Frieder

    2001-12-01

    We develop a Plasma Jet Chemical Etching (PJCE) technique for high rate precision machining of optical materials aiming in a technology mature for precision asphere and free-form surface topology fabrication. The present contribution summarizes the achievements after about twelve months experience with a prototype production tool facility. PJCE is performed with the help of a microwave driven reactive plasma-jet working in a broad pressure range (10-600 mbar). We developed a moveable lightweight microwave plasma jet source for dwell time techniques performed in a roughly pumped process chamber equipped with a six axis system for precision workpiece and plasma source movement. Volume etch rates of some 10 mm3/min have been achieved for fused silica and silicon, respectively, using reactive (CF4,SF6,O2) and inert (Ar,He) gas mixtures and applying a microwave (2.45 GHz) power in the 100-200 W range. Large quartz plates (80-160 mm) have been figured using dwell time methods to achieve aspheric deformations of some 10 micrometers . The figured surfaces show shape errors of 1-2 micrometers and a microroughness of 50-100 nm RMS but no sub-surface damage enabling a small tool shape conserving post polishing up to the sub-nanometer roughness level. Thus, surface shaping to the nanometer error range can be done by ion beam finishing.

  18. Optical test bench for high precision metrology and alignment of zoom sub-assembly components

    NASA Astrophysics Data System (ADS)

    Leprêtre, F.; Levillain, E.; Wattellier, B.; Delage, P.; Brahmi, D.; Gascon, A.

    2013-09-01

    Thales Angénieux (TAGX) designs and manufactures zoom lens assemblies for cinema applications. These objectives are made of mobile lens assemblies. These need to be precisely characterized to detect alignment, polishing or glass index homogeneity errors, which amplitude may range to a few hundreds of nanometers. However these assemblies are highly aberrated with mainly spherical aberration (>30 μm PV). PHASICS and TAGX developed a solution based on the use of a PHASICS SID4HR wave front sensor. This is based on quadri-wave lateral shearing interferometry, a technology known for its high dynamic range. A 100-mm diameter He:Ne source illuminates the lens assembly entrance pupil. The transmitted wave front is then directly measured by the SID4- HR. The measured wave front (WFmeas) is then compared to a simulation from the lens sub-assembly optical design (WFdesign). We obtain a residual wave front error (WFmanufactured), which reveals lens imperfections due to its manufacturing. WFmeas=WFdesign+(WFEradius+WFEglass+WFEpolish)=WF design + WFmanufactured The optical test bench was designed so that this residual wave front is measured with a precision below 100 nm PV. The measurement of fast F-Number lenses (F/2) with aberrations up to 30 μm, with a precision of 100 nm PV was demonstrated. This bench detects mismatches in sub-assemblies before the final integration step in the zoom. Pre-alignment is also performed in order to overpass the mechanical tolerances. This facilitates the completed zoom alignment. In final, productivity gains are expected due to alignment and mounting time savings.

  19. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.

    PubMed

    Riris, Haris; Rodriguez, Michael; Allan, Graham R; Hasselbrack, William; Mao, Jianping; Stephen, Mark; Abshire, James

    2013-09-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled erbium-doped fiber amplifier and single photon-counting detector to measure oxygen absorption at 765 nm. Our results show good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km.

  20. Computation of effective groove depth in an optical disk with vector diffraction theory.

    PubMed

    Yeh, W H; Li, L; Mansuripur, M

    2000-01-10

    Results of vector diffraction simulations pertaining to the effective groove depth for various disks with different groove parameters, different coatings, and different incident polarizations are presented. The effective depth deviates from the physical depth if the track pitch approaches the wavelength of the light source. Moreover, the difference of the effective depth for the two polarization states is demonstrated. The effective depth is usually shallower than the physical depth, especially for deeper grooves. The ray-bending mechanism associated with the objective lens and the different response to s- and p-polarized light on reflection from the disk surface impact the effective depth for objective lenses with different numerical apertures.

  1. Development and Evaluation of a Simple Algorithm to Find Cloud Optical Depth with Emphasis on Thin Ice Clouds

    SciTech Connect

    Barnard, James C.; Long, Charles N.; Kassianov, Evgueni I.; McFarlane, Sally A.; Comstock, Jennifer M.; Freer, Matthew; McFarquhar, Greg

    2008-04-14

    We present here an algorithm for determining cloud optical depth, τ, using data from shortwave broadband irradiances, focusing on the case of optically thin clouds. This method is empirical and consists of applying a one-line equation to the shortwave flux analysis described by Long and Ackerman (2000). We apply this method to cirrus clouds observed at the Atmospheric Radiation Measurement Program’s (ARM) Darwin, Australia site during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) campaign and cirrus clouds observed at ARM’s Southern Great Plains (SGP) site. These cases were chosen because independent verification of cloud optical depth retrievals is possible. For the TWP-ICE case, the calculated optical depths compare favorably (to within about 1 unit) with a “first principles” τ calculated from a vertical profile of ice particle size distributions obtained from an aircraft sounding. For the SGP case, the results from the algorithm correspond reasonably well with τ values obtained from an average over other methods; some of which have been subject to independent verification. The medians of the two time series are 0.79 and 0.81, for the empirical and averaged values, respectively (although such close agreement is likely to be fortuitous). This tool may be applied wherever measurements of the three components of the shortwave broadband flux are available at 1- to 5-minute resolution. Because these measurements are made across the world, it then becomes possible to estimate optical depth at many locations.

  2. The Generation of Higher-order Laguerre-Gauss Optical Beams for High-precision Interferometry

    PubMed Central

    Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas

    2013-01-01

    Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry. PMID:23962813

  3. Keraring Intrastromal Segment Depth Measured by Spectral-Domain Optical Coherence Tomography in Eyes with Keratoconus

    PubMed Central

    Lavia, Carlo; D'Amelio, Savino

    2017-01-01

    Purpose. To evaluate agreement between measured and intended distance of Keraring (Mediphacos, Belo Horizonte, Brazil) intracorneal ring segments from the anterior and posterior corneal surfaces. Methods. Twenty-six Keraring ICRS implanted in 24 keratoconic eyes were examined. The distance from the Keraring apex to the anterior corneal surface and the distance from the inner and the outer corners to the posterior corneal surface were measured 3 months postoperatively using spectral-domain optical coherence tomography. Agreement between measured distance and intended distance was assessed by calculating the absolute differences and 95% limits of agreement (95% LoA). Results. The mean absolute difference was significantly lower (p < 0.001) for the measurements taken at the inner corner (23.54 ± 15.90 μm) than that for those taken at the apex (108.92 ± 62.72 μm) and the outer corner (108.35 ± 56.99 μm). The measurements taken at the inner corner were within ±25 and ±50 μm of the intended distance in 15/26 (57.7%) and 24/26 (92.3%) cases, respectively, and showed the narrowest 95% LoA with the intended distance (−57.61 to 55.15 μm). Conclusions. The distance of the inner corner from the posterior corneal surface showed the best agreement with the intended distance. This measurement is suitable for determining whether the actual Keraring depth matches the intended depth. PMID:28261495

  4. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  5. An electrically tunable plasmonic optical modulator with high modulation depth based on graphene-wrapped silver nanowire

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Tu, L.; Huang, Z.; Liu, L.; Zhan, P.; Sun, C.; Wang, Z.

    2016-12-01

    We report a systematic study of a graphene-wrapped plasmonic optical modulator with a high modulation depth. The optical modulator consists of a silver (Ag) nanowire as a single mode plasmonic waveguide being wrapped with a graphene monolayer as an electrically controllable absorbing material. While a thin dielectric spacing layer is used to electrically isolate the Ag nanowire from the graphene monolayer, we find it further promotes higher optical absorption by manipulating a strong electric field at its outer surface, where the graphene layer is located. By optimizing the dielectric layer thickness as well as the Ag nanowire radius, a strong optical modulation of 0.46 dB μm-1 with a high-speed characteristic at the operating wavelength of 785 nm is achieved. This design is further implemented at the telecommunication wavelength (1550 nm) with an optimized modulation depth of 1.07 dB μm-1.

  6. Evaluation of CALIOP 532-nm Aerosol Optical Depth Over Opaque Water Clouds

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Winker, D.; Omar, A.; Vaughan, M.; Kar, J.; Trepte, C.; Hu, Y.; Schuster, G.

    2015-01-01

    With its height-resolved measurements and near global coverage, the CALIOP lidar onboard the CALIPSO satellite offers a new capability for aerosol retrievals in cloudy skies. Validation of these retrievals is difficult, however, as independent, collocated and co-temporal data sets are generally not available. In this paper, we evaluate CALIOP aerosol products above opaque water clouds by applying multiple retrieval techniques to CALIOP Level 1 profile data and comparing the results. This approach allows us to both characterize the accuracy of the CALIOP above-cloud aerosol optical depth (AOD) and develop an error budget that quantifies the relative contributions of different error sources. We focus on two spatial domains: the African dust transport pathway over the tropical North Atlantic and the African smoke transport pathway over the southeastern Atlantic. Six years of CALIOP observations (2007-2012) from the northern hemisphere summer and early fall are analyzed. The analysis is limited to cases where aerosol layers are located above opaque water clouds so that a constrained retrieval technique can be used to directly retrieve 532 nm aerosol optical depth and lidar ratio. For the moderately dense Sahara dust layers detected in the CALIOP data used in this study, the mean/median values of the lidar ratios derived from a constrained opaque water cloud (OWC) technique are 45.1/44.4 +/- 8.8 sr, which are somewhat larger than the value of 40 +/- 20 sr used in the CALIOP Level 2 (L2) data products. Comparisons of CALIOP L2 AOD with the OWC-retrieved AOD reveal that for nighttime conditions the L2 AOD in the dust region is underestimated on average by approx. 26% (0.183 vs. 0.247). Examination of the error sources indicates that errors in the L2 dust AOD are primarily due to using a lidar ratio that is somewhat too small. The mean/median lidar ratio retrieved for smoke is 70.8/70.4 +/- 16.2 sr, which is consistent with the modeled value of 70 +/- 28 sr used in the

  7. ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Adams, P. J.; Shindell, D. T.

    2014-09-01

    The TwO-Moment Aerosol Sectional microphysics model (TOMAS) has been integrated into the state-of-the-art general circulation model, GISS ModelE2. TOMAS has the flexibility to select a size resolution as well as the lower size cutoff. A computationally efficient version of TOMAS is used here, which has 15 size bins covering 3 nm to 10 μm aerosol dry diameter. For each bin, it simulates the total aerosol number concentration and mass concentrations of sulphate, pure elementary carbon (hydrophobic), mixed elemental carbon (hydrophilic), hydrophobic organic matter, hydrophilic organic matter, sea salt, mineral dust, ammonium, and aerosol-associated water. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the TOMAS model is compared to the default aerosol model in ModelE2, which is a bulk aerosol model. Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of sulphur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as the bulk aerosol model) cannot capture the observed vertical distribution of sulphur dioxide over the Pacific Ocean possibly due to overly strong convective transport. The TOMAS model successfully captures observed aerosol number concentrations and cloud condensation nuclei concentrations. Anthropogenic aerosol burdens in the bulk aerosol model running in the same host model as TOMAS (ModelE2) differ by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. Larger differences are found for naturally

  8. The study about forming high-precision optical lens minimalized sinuous error structures for designed surface

    NASA Astrophysics Data System (ADS)

    Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro

    2016-09-01

    Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.

  9. Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations

    NASA Astrophysics Data System (ADS)

    Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki

    2016-11-01

    Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)-based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty reduction

  10. Retrieval of aerosol optical depth in the visible range with a Brewer spectrophotometer in Athens

    NASA Astrophysics Data System (ADS)

    Diémoz, Henri; Eleftheratos, Kostas; Kazadzis, Stelios; Amiridis, Vassilis; Zerefos, Christos S.

    2016-04-01

    A MkIV Brewer spectrophotometer has been operating in Athens since 2004. Direct-sun measurements originally scheduled for nitrogen dioxide retrievals were reprocessed to provide aerosol optical depths (AODs) at a wavelength of about 440 nm. A novel retrieval algorithm was specifically developed and the resulting AODs were compared to those obtained from a collocated Cimel filter radiometer belonging to the Aerosol Robotic Network (AERONET). The series are perfectly correlated, with Pearson's correlation coefficients being as large as 0.996 and with 90 % of AOD deviations between the two instruments being within the World Meteorological Organisation (WMO) traceability limits. In order to reach such a high agreement, several instrumental factors impacting the quality of the Brewer retrievals must be taken into account, including sensitivity to the internal temperature, and the state of the external optics and pointing accuracy must be carefully checked. Furthermore, the long-term radiometric stability of the Brewer was investigated and the performances of in situ Langley extrapolations as a way to track the absolute calibration of the Brewer were assessed. Other sources of error, such as slight shifts of the wavelength scale, are discussed and some recommendations to Brewer operators are drawn. Although MkIV Brewers are rarely employed to retrieve AODs in the visible range, they represent a key source of information about aerosol changes in the past three decades and a potential worldwide network for present and future coordinated AOD measurements. Moreover, a better understanding of the AOD retrieval at visible wavelengths will also contribute in improving similar techniques in the more challenging UV range.

  11. Influence of the Pinatubo eruption on the aerosol optical depth in the Arctic in the summer of 1993

    NASA Astrophysics Data System (ADS)

    Skouratov, S.

    In the summer of 1993, measurements of the spatial distribution of atmospheric optical aerosol thickness were conducted in the region of the Laptev Sea, the Kara Sea and the Taimyr peninsula, using an aircraft visible and UV band spectrophotometer. The Arctic atmosphere's aerosol optical depth was measured using I1-18 'Cyclone' aircraft-meteolab as a platform at an altitude ranges of 100-8500 m. It was observed that the troposphere aerosol was concentrated in the altitude range 100-4000 m. The light extinction of the troposphere column was approximately 0.05 for a wavelength of 400 nm. A comparison with the results of measurements made in the same region in March-April 1990 shows a decrease of more than 3-5 times in troposphere aerosol optical depth in the Arctic during summer months. It was also found that there was a relatively clean area above 4000 m in this season in the Arctic troposphere. In addition, an increase in aerosol optical thickness in the stratosphere is observed. The value of aerosol optical depth measured from the level 8200 m was 0.1 for a wavelength of 500 nm. The spectral dependence of the stratospheric optical thickness has a complicated form with at least two local maxima. Estimates of the size and concentration of stratospheric aerosol particles are in agreement with in-situ measurements after the Mount Pinatubo eruption.

  12. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  13. The estimation of Aerosol Optical Depth in eastern China based on regression analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Runhe; Liu, Chaoshun; Zhou, Cong

    2015-09-01

    The atmospheric pollution and air quality issues are getting worse in China, the formation mechanism of aerosols and their environment effects attracted more and more attention. Aerosol Optical Depth (AOD) is one of the most important parameters which can indicate the atmospheric turbidity and aerosol load. High-quality AOD data are significant for the study in the atmospheric environment (i.e., air quality). This paper used MODIS/Terra AOD in 2008 to improve the coverage of MODIS/Aqua AOD, which was based on linear regression analysis model. RMSE between estimation value and AquaAOD detected through satellite is 0.132. The average value of test data was 0.812. The average of regression result was 0.807. It showed that the regression model between AODTerra and AODAqua worked well. Also, we built two sets of estimation models (MODIS AOD and OMI AOD) through stepwise regression analysis model. One is using OMI AOD and meteorological elements to estimate MODIS AOD. The value of RMSE was 0.113, which represents 13.916% of the average(R2=0.782). The other one is using MODIS AOD and meteorological elements to estimate OMI AOD. RMSE of the model is 0.132, which represents 18.182% of the average (R2=0.726).

  14. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  15. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Kim, Jhoon; Song, Chul H.; Choi, Myungje; Cheng, Yafang; Carmichael, Gregory R.

    2014-12-01

    Planned geostationary satellites will provide aerosol optical depth (AOD) retrievals at high temporal and spatial resolution which will be incorporated into current assimilation systems that use low-Earth orbiting (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) AOD. The impacts of such additions are explored in a real case scenario using AOD from the Geostationary Ocean Color Imager (GOCI) on board of the Communication, Ocean, and Meteorology Satellite, a geostationary satellite observing northeast Asia. The addition of GOCI AOD into the assimilation system generated positive impacts, which were found to be substantial in comparison to only assimilating MODIS AOD. We found that GOCI AOD can help significantly to improve surface air quality simulations in Korea for dust, biomass burning smoke, and anthropogenic pollution episodes when the model represents the extent of the pollution episodes and retrievals are not contaminated by clouds. We anticipate future geostationary missions to considerably contribute to air quality forecasting and provide better reanalyses for health assessments and climate studies.

  16. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction

    NASA Astrophysics Data System (ADS)

    Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.

    2014-10-01

    The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.

  17. Estimation of aerosol optical depth at different wavelengths by multiple regression method.

    PubMed

    Tan, Fuyi; Lim, Hwee San; Abdullah, Khiruddin; Holben, Brent

    2016-02-01

    This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]-ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time.

  18. Multiple regression method to determine aerosol optical depth in atmospheric column in Penang, Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Zubir Matjafri, M.; Holben, B.

    2014-02-01

    Aerosol optical depth (AOD) from AERONET data has a very fine resolution but air pollution index (API), visibility and relative humidity from the ground truth measurements are coarse. To obtain the local AOD in the atmosphere, the relationship between these three parameters was determined using multiple regression analysis. The data of southwest monsoon period (August to September, 2012) taken in Penang, Malaysia, was used to establish a quantitative relationship in which the AOD is modeled as a function of API, relative humidity, and visibility. The highest correlated model was used to predict AOD values during southwest monsoon period. When aerosol is not uniformly distributed in the atmosphere then the predicted AOD can be highly deviated from the measured values. Therefore these deviated data can be removed by comparing between the predicted AOD values and the actual AERONET data which help to investigate whether the non uniform source of the aerosol is from the ground surface or from higher altitude level. This model can accurately predict AOD if only the aerosol is uniformly distributed in the atmosphere. However, further study is needed to determine this model is suitable to use for AOD predicting not only in Penang, but also other state in Malaysia or even global.

  19. Comparison of trend between aerosol optical depth and PM in East Asia

    NASA Astrophysics Data System (ADS)

    KIM, S. H.; Kim, J.; Choi, M.; KIM, M.; Jeong, U.

    2014-12-01

    East Asia is one of major source region of aerosol emission. For decades, vast amount of aerosol, which is emitted and transported from emission region such as desert and industrialized area, has significant effect in the air quality and public health. Moreover, by scattering solar radiation and moderating cloud microphysical system, aerosol plays an important role in climate system. As the Korean peninsula is located in the downwind side of East Asia, the distribution of aerosol in this region is affected by continental outflow and local emission, This study shows the long-term trend and regional distribution of PM10 concentration over 28 Korea Meteorological Administration (KMA) sites and aerosol optical depth (AOD) retrieved from Geostationary Ocean Color Imager (GOCI) at 550nm channel during the period from March 2011 to March 2014. Though AOD is a good indicator of PM10 concentration, there are some uncertainties in AOD caused largely by aerosol type, surface reflectance, and those in PM by relative humidity (RH), boundary layer height (BLH) and so on. In this study, retrieved AODs were compared with the observed PM10, and trends and correlations between AOD and PM10 have been calculated for different region and season over the Korean peninsula.

  20. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  1. Strong lensing in the MARENOSTRUM UNIVERSE. II. Scaling relations and optical depths

    NASA Astrophysics Data System (ADS)

    Fedeli, C.; Meneghetti, M.; Gottlöber, S.; Yepes, G.

    2010-09-01

    The strong lensing events that are observed in compact clusters of galaxies can, both statistically and individually, return important clues about the structural properties of the most massive structures in the Universe. Substantial work is ongoing in order to understand the degree of similarity between the lensing cluster population and the population of clusters as a whole, with members of the former being likely more massive, compact, and substructured than members of the latter. In this work we exploit synthetic clusters extracted from the MareNostrum Universe cosmological simulation in order to estimate the correlation between the strong lensing efficiency and other bulk properties of lensing clusters, such as the virial mass and the bolometric X-ray luminosity. We found that a positive correlation exist between all these quantities, with the substantial scatter being smaller for the luminosity-cross section relation. We additionally used the relation between the lensing efficiency and the virial mass in order to construct a synthetic optical depth that agrees well with the true one, while being extremely faster to be evaluated. We finally estimated what fraction of the total giant arc abundance is recovered when galaxy clusters are selected according to their dynamical activity or their X-ray luminosity. Our results show that there is a high probability for high-redshift strong lensing clusters to be substantially far away from dynamical equilibrium, and that 30-40% of the total amount of giant arcs are lost if looking only at very X-ray luminous objects.

  2. Comparison of PMCAMx aerosol optical depth predictions over Europe with AERONET and MODIS measurements

    NASA Astrophysics Data System (ADS)

    Panagiotopoulou, Antigoni; Charalampidis, Panagiotis; Fountoukis, Christos; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-11-01

    The ability of chemical transport model (CTM) PMCAMx to reproduce aerosol optical depth (AOD) measurements by the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) over Europe during the photochemically active period of May 2008 (EUCAARI campaign) is evaluated. Periods with high dust or sea-salt levels are excluded, so the analysis focuses on the ability of the model to simulate the mostly secondary aerosol and its interactions with water. PMCAMx reproduces the monthly mean MODIS and AERONET AOD values over the Iberian Peninsula, the British Isles, central Europe, and Russia with a fractional bias of less than 15 % and a fractional error of less than 30 %. However, the model overestimates the AOD over northern Europe, most probably due to an overestimation of organic aerosol and sulfates. At the other end, PMCAMx underestimates the monthly mean MODIS AOD over the Balkans, the Mediterranean, and the South Atlantic. These errors appear to be related to an underestimation of sulfates. Sensitivity tests indicate that the evaluation results of the monthly mean AODs are quite sensitive to the relative humidity (RH) fields used by PMCAMx, but are not sensitive to the simulated size distribution and the black carbon mixing state. The screening of the satellite retrievals for periods with high dust (or coarse particles in general) concentrations as well as the combination of the MODIS and AERONET datasets lead to more robust conclusions about the ability of the model to simulate the secondary aerosol components that dominate the AOD during this period.

  3. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity

    PubMed Central

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-01-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging. PMID:26137377

  4. Retrieval of aerosol optical depth over land using MSG/SEVIRI data

    NASA Astrophysics Data System (ADS)

    She, Lu; Xue, Yong; Guang, Jie; Di, Aojie

    2016-04-01

    In the present study we proposed an algorithm to estimate hourly Aerosol Optical Depth (AOD) using multi-temporal data from SEVIRI aboard Meteosat Second Generation (MSG). The algorithm coupled a Radiative Transfer Model with Ross-Li-sparse bidirectional reflectance factor (BRF) to calculate the AOD and bidirectional reflectance simultaneously using the visible and near-infrared (NIR) channel of SEVIRI data. We assume the surface albedo doesn't vary over a short time (e.g. 1 day), and a κ-ratio approach was used which assumes the ratio of surface reflectance in the visible and NIR channel for two observations is the same. In the inversion, the MODIS product (MCD43) was used as the prior information of the surface reflectance and the single scattering albedo (SSA) and asymmetry factor (g) were derived from six pre-defined aerosol types. The retrieved AOD and AngstrÖm exponent α were compared with Aerosol Robotic Network (AERONET) measurements, which shows good consistency.

  5. Validation of ASH Optical Depth and Layer Height from IASI using Earlinet Lidar Data

    NASA Astrophysics Data System (ADS)

    Balis, D.; Siomos, N.; Koukouli, M.; Clarisse, L.; Carboni, E.; Ventress, L.; Grainger, R.; Mona, L.; Pappalardo, G.

    2016-06-01

    The 2010 eruptions of the Icelandic volcano Eyjafjallajökull attracted the attention of the public and the scientific community to the vulnerability of the European airspace to volcanic eruptions. The European Space Agency project "Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards", called for the creation of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on improved and dedicated satellite-derived ash plume and sulphur dioxide level assessments, as well as an extensive validation, using among others ground-based measurements (Koukouli et al., 2014). The validation of volcanic ash levels and height extracted from IASI/MetopA is presented in this work with emphasis on the ash plume height and ash optical depth levels. European Aerosol Research Lidar Network [EARLINET] lidar measurements are compared to different satellite estimates for two eruptive episodes. The validation results are extremely promising within the estimated uncertainties of each of the comparative datasets.

  6. Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: A Novel Approach

    SciTech Connect

    Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

    2008-10-13

    A novel method for the retrieval of aerosol optical depth (AOD) under partly cloudy conditions has been suggested. The method exploits reflectance ratios, which are not sensitive to the three-dimensional (3D) effects of clouds. As a result, the new method provides an effective way to avoid the 3D cloud effects, which otherwise would have a large (up to 140%) contaminating impact on the aerosol retrievals. The 1D version of the radiative transfer model has been used to develop look-up tables (LUTs) of reflectance ratios as functions of two parameters describing the spectral dependence of AOD (a power law). The new method implements an innovative 2D inversion for simultaneous retrieval of these two parameters and, thus, the spectral behavior of AOD. The performance of the new method has been illustrated with a model-output inverse problem. We demonstrated that a new retrieval has the potential for (i) detection of clear pixels outside of cloud shadows and (ii) accurate (~15%) estimation of AOD for the majority of them.

  7. Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: Case Study

    SciTech Connect

    Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Ferrare, Richard; Hostetler, Chris A.; Alexandrov, Mikhail

    2010-10-06

    A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on June 12, 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm and 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15-30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount.

  8. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change

    NASA Technical Reports Server (NTRS)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; Ritter, C.; Sakai, T.; Santer, B. D.; Sato, M.; Schmidt, A.; Uchino, O.; Vernier, J. P.

    2014-01-01

    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  9. A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Top Height Fields

    NASA Technical Reports Server (NTRS)

    Prigarin, Sergei M.; Marshak, Alexander

    2007-01-01

    A simple and fast algorithm for generating two correlated stochastic twodimensional (2D) cloud fields is described. The algorithm is illustrated with two broken cumulus cloud fields: cloud optical depth and cloud top height retrieved from Moderate Resolution Imaging Spectrometer (MODIS). Only two 2D fields are required as an input. The algorithm output is statistical realizations of these two fields with approximately the same correlation and joint distribution functions as the original ones. The major assumption of the algorithm is statistical isotropy of the fields. In contrast to fractals and the Fourier filtering methods frequently used for stochastic cloud modeling, the proposed method is based on spectral models of homogeneous random fields. For keeping the same probability density function as the (first) original field, the method of inverse distribution function is used. When the spatial distribution of the first field has been generated, a realization of the correlated second field is simulated using a conditional distribution matrix. This paper is served as a theoretical justification to the publicly available software that has been recently released by the authors and can be freely downloaded from http://i3rc.gsfc.nasa.gov/Public codes clouds.htm. Though 2D rather than full 3D, stochastic realizations of two correlated cloud fields that mimic statistics of given fields have proved to be very useful to study 3D radiative transfer features of broken cumulus clouds for better understanding of shortwave radiation and interpretation of the remote sensing retrievals.

  10. Observations of Black Carbon and Aerosol Optical Depth in the Kali Gandaki Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Dhungel, S.; Panday, A. K.; Mahata, K. S.

    2012-12-01

    During recent years there has been increasing concern about the deposition of black carbon from the Indo-Gangetic Plains onto the glaciers and snowfields of the Tibetan Plateau. There has also been increasing concern about the rapid increase in air temperature at high altitudes over the Tibetan Plateau and the Himalaya. To date, there is very little knowledge about the transport pathways for pollutants traveling from the Indo-Gangetic Plains across the Himalaya to the Tibetan Plateau. The Kali Gandaki Valley in Nepal is one of the deepest gorges in the world, and has some of the highest up-valley winds in the world. It is also one of the most open connecting points for air from South Asia to reach the Tibetan Plateau. In 2010 the University of Virginia, in collaboration with ICIMOD and Nepal Wireless, established an atmospheric research station in Jomsom, Nepal (28.78N, 83.42E, 2900 m.a.s.l.). The station is equipped to measure black carbon (BC), carbon monoxide (CO), and ozone concentrations. It also has an automated weather station, a filter sampler, and a NASA Aeronet Sunphotometer. Observations of BC and aerosol optical depth (AOD) from Aeronet are analyzed and presented. Diurnal and seasonal patterns of BC have been observed with higher values during the day and lower at night and also highest during pre-monsoon and lowest during monsoon season, with observed BC concentrations exceeding 5 μg while average concentration around 3.7 μg.

  11. Theoretical gravity darkening as a function of optical depth. A first approach to fast rotating stars

    NASA Astrophysics Data System (ADS)

    Claret, A.

    2016-04-01

    Aims: Recent observations of very fast rotating stars show systematic deviations from the von Zeipel theorem and pose a challenge to the theory of gravity-darkening exponents (β1). In this paper, we present a new insight into the problem of temperature distribution over distorted stellar surfaces to try to reduce these discrepancies. Methods: We use a variant of the numerical method based on the triangles strategy, which we previously introduced, to evaluate the gravity-darkening exponents. The novelty of the present method is that the theoretical β1 is now computed as a function of the optical depth, that is, β1 ≡ β1(τ). The stellar evolutionary models, which are necessary to obtain the physical conditions of the stellar envelopes/atmospheres inherent to the numerical method, are computed via the code GRANADA. Results: When the resulting theoretical β1(τ) are compared with the best accurate data of very fast rotators, a good agreement for the six systems is simultaneously achieved. In addition, we derive an equation that relates the locus of constant convective efficiency in the Hertzsprung-Russell (HR) diagram with gravity-darkening exponents.

  12. Nine martian years of dust optical depth observations: A reference dataset

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Forget, Francois; Kleinboehl, Armin; Kass, David; Wilson, R. John; Millour, Ehouarn; Smith, Michael; Lewis, Stephen; Cantor, Bruce; Lemmon, Mark; Wolff, Michael

    2016-07-01

    We present a multi-annual reference dataset of the horizontal distribution of airborne dust from martian year 24 to 32 using observations of the martian atmosphere from April 1999 to June 2015 made by the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). Our methodology to build the dataset works by gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. The resulting (irregularly) gridded maps (one per sol) were validated with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. Finally, regular maps of CDOD are produced by spatially interpolating the irregularly gridded maps using a kriging method. These latter maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modelling applications. The two datasets (daily irregularly gridded maps and regularly kriged maps) for the nine available martian years are publicly available as NetCDF files and can be downloaded from the MCD website at the URL: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/index.html

  13. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-04-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  14. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2012-12-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  15. Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation

    NASA Astrophysics Data System (ADS)

    Pinte, C.; Harries, T. J.; Min, M.; Watson, A. M.; Dullemond, C. P.; Woitke, P.; Ménard, F.; Durán-Rojas, M. C.

    2009-05-01

    Aims: Solving the continuum radiative transfer equation in high opacity media requires sophisticated numerical tools. In order to test the reliability of such tools, we present a benchmark of radiative transfer codes in a 2D disc configuration. Methods: We test the accuracy of seven independently developed radiative transfer codes by comparing the temperature structures, spectral energy distributions, scattered light images, and linear polarisation maps that each model predicts for a variety of disc opacities and viewing angles. The test cases have been chosen to be numerically challenging, with midplane optical depths up 10^6, a sharp density transition at the inner edge and complex scattering matrices. We also review recent progress in the implementation of the Monte Carlo method that allow an efficient solution to these kinds of problems and discuss the advantages and limitations of Monte Carlo codes compared to those of discrete ordinate codes. Results: For each of the test cases, the predicted results from the radiative transfer codes are within good agreement. The results indicate that these codes can be confidently used to interpret present and future observations of protoplanetary discs.

  16. Choroidal changes observed with enhanced depth imaging optical coherence tomography in patients with mild Graves orbitopathy.

    PubMed

    Özkan, B; Koçer, Ç A; Altintaş, Ö; Karabaş, L; Acar, A Z; Yüksel, N

    2016-07-01

    PurposeTo evaluate the choroidal thickness in patients with Graves orbitopathy (GO) using enhanced depth imaging-optical coherence tomography (EDI-OCT).MethodsThirty-one patients with GO were evaluated prospectively. All subjects underwent ophthalmologic examination including best-corrected visual acuity, intraocular pressure measurement, biomicroscopic, and fundus examination. Choroidal thickness was measured at the central fovea. In addition, visual evoked potential measurement and visual field evaluation were performed.ResultsThe mean choroidal thickness was 377.8±7.4 μ in the GO group, and 334±13.7 μ in the control group. (P=0.004). There was a strong correlation between the choridal thickness and the clinical activity scores (CAS) of the patients (r=0.281, P=0.027). Additionally, there was a correlation between the choroidal thickness and the visual-evoked potential (VEP) P100 latency measurements of the patients (r=0.439, P=0.001).ConclusionsThe results of this study demonstrate that choroid is thicker in patients with GO. The choroidal thickness is also correlated with the CAS and VEP P100 latency measurements in these patients.

  17. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  18. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity.

    PubMed

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-05-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging.

  19. Spatio-temporal evaluation of resolution enhancement for passive microwave soil moisture and vegetation optical depth

    NASA Astrophysics Data System (ADS)

    Gevaert, A. I.; Parinussa, R. M.; Renzullo, L. J.; van Dijk, A. I. J. M.; de Jeu, R. A. M.

    2016-03-01

    Space-borne passive microwave radiometers are used to derive land surface parameters such as surface soil moisture and vegetation optical depth (VOD). However, the value of such products in regional hydrology is limited by their coarse resolution. In this study, the land parameter retrieval model (LPRM) is used to derive enhanced resolution (∼10 km) soil moisture and VOD from advanced microwave scanning radiometer (AMSR-E) brightness temperatures sharpened by a modulation technique based on high-frequency observations. A precipitation mask based on brightness temperatures was applied to remove precipitation artefacts in the sharpened LPRM products. The spatial and temporal patterns in the resulting products are evaluated against field-measured and modeled soil moisture as well as the normalized difference vegetation index (NDVI) over mainland Australia. Results show that resolution enhancement accurately sharpens the boundaries of different vegetation types, lakes and wetlands. Significant changes in temporal agreement between LPRM products and related datasets are limited to specific areas, such as lakes and coastal areas. Spatial correlations, on the other hand, increase over most of Australia. In addition, hydrological signals from irrigation and water bodies that were absent in the low-resolution soil moisture product become clearly visible after resolution enhancement. The increased information detail in the high-resolution LPRM products should benefit hydrological studies at regional scales.

  20. Fifteen-year aerosol optical depth climatology for Salt Lake City

    NASA Astrophysics Data System (ADS)

    Michalsky, Joseph; Lebaron, Brock

    2013-04-01

    Aerosol optical depth (AOD) and its wavelength dependence have been measured for the past 15 years in the Salt Lake City metropolitan area using a multifilter rotating shadowband radiometer. The instrument has not experienced a major hardware failure. It has been continuously field calibrated for extraterrestrial responses in its five aerosol channels. The instrument's cosine response was measured in 1996 and again in 2012. In our analysis of this 15 year data set, linear interpolation of these two cosine responses was used to approximate the angular response between the two characterizations. The Salt Lake City aerosol burden increased through the mid-2000s, but has dropped to its lowest level of the record since that time despite a population increase of approximately 25%. Annually, the aerosol burden is highest in midspring and midsummer with relatively coarse aerosols during the spring peak and fine aerosols during the summer peak. There is no indication of a diurnal cycle in AOD. There is a significant, but low, correlation between PM2.5 and 500 nm AOD, and a slightly lower correlation between PM10 and 500 nm AOD. The correlations between the surface-based measurements and total column AOD explain only 13% and 9% of the variance, respectively. Measurements are continuing to track future trends.

  1. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.

    PubMed

    He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut

    2016-12-26

    There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.

  2. Process output nonclassicality and nonclassicality depth of quantum-optical channels

    NASA Astrophysics Data System (ADS)

    Sabapathy, Krishna Kumar

    2016-04-01

    We introduce a quantum-optical notion of nonclassicality that we call the process output nonclassicality for multimode quantum channels. The motivation comes from an information-theoretic point of view and the emphasis is on the output states of a channel. We deem a channel to be "classical" if its outputs are always classical irrespective of the input, i.e., if the channel is nonclassicality breaking, and nonclassical otherwise. Our condition is stronger than the one considered by Rahimi-Keshari et al., [Phys. Rev. Lett. 110, 160401 (2013)], 10.1103/PhysRevLett.110.160401 and we compare the two approaches. Using our framework we then quantify the nonclassicality of a quantum process by introducing a noise-robustness type of measure that we call the nonclassicality depth of a channel. It characterizes a certain threshold noise beyond which a given channel outputs only classical states. We achieve this by generalizing a prescription by Lee [Phys. Rev. A 44, R2775 (1991), 10.1103/PhysRevA.44.R2775] to multimode states and then by extension to multimode channels.

  3. Use of Remotely Sensed Aerosol Optical Depth in Particulate Matter Forecasting for Urban Areas

    NASA Astrophysics Data System (ADS)

    Grant, S. L.; Crist, K.

    2011-12-01

    Cincinnati, a large metropolitan area in southwestern Ohio, has been listed as a non-attainment area based on the EPA 1997 PM2.5 (particulate matter with aerodynamic diameter < 2.5μm) standard with a number of unhealthy days reported annually for sensitive groups. AirNow provides air quality index for the city, but its accuracy largely depends on the air quality forecast models used and ground-based monitoring network measurements. These networks are inherently limited by their sparse distribution; nonetheless, they form an integral part of many decision-making structure and epidemiological studies. Remote sensing instruments such as MODIS provide daily aerosol optical depth (AOD) products with almost global spatial coverage, which are available on a near-real-time (NRT) basis. This work aims to show that the NRT AOD product obtained from MODIS can improve the air quality forecast in the Cincinnati area. To achieve this, an evaluation of the correlation of AOD retrievals with ground-based PM2.5 observations is carried out. Further to which, the MODIS AOD data is included as a variable in a statistical model to bolster current PM2.5 forecasting capabilities. Other key input parameters to the multiple linear regression model includes surface and vertical weather patterns, mixing height, local wind patterns, relative humidity and temperature.

  4. Observationally-constrained estimates of aerosol optical depths (AODs) over East Asia via data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Song, C. H.

    2015-12-01

    Not only aerosol's direct effect on climate by scattering and absorbing the incident solar radiation, but also they indirectly perturbs the radiation budget by influencing microphysics and dynamics of clouds. Aerosols also have a significant adverse impact on human health. With an importance of aerosols in climate, considerable research efforts have been made to quantify the amount of aerosols in the form of the aerosol optical depth (AOD). AOD is provided with ground-based aerosol networks such as the Aerosol Robotic NETwork (AERONET), and is derived from satellite measurements. However, these observational datasets have a limited areal and temporal coverage. To compensate for the data gaps, there have been several studies to provide AOD without data gaps by assimilating observational data and model outputs. In this study, AODs over East Asia simulated with the Community Multi-scale Air Quality (CMAQ) model and derived from the Geostationary Ocean Color Imager (GOCI) observation are interpolated via different data assimilation (DA) techniques such as Cressman's method, Optimal Interpolation (OI), and Kriging for the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March - May 2012). Here, the interpolated results using the three DA techniques are validated intensively by comparing with AERONET AODs to examine the optimal DA method providing the most reliable AODs over East Asia.

  5. Evaluation of SUNY satellite-to-irradiance model performance using ECMWF GEMS daily aerosol optical depth reanalysis data

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.

    The current version of the State University of New York (SUNY) radiative transfer model (RTM) uses climatological monthly averages derived from a National Renewable Energy Labs (NREL) gridded dataset to parameterize aerosol optical depth (AOD), water vapor and ozone. This is mostly due to the limited availability of high spatially and temporally resolved observations. Several global chemical transport models are analyzed and compared in depth to determine which daily AOD dataset should be implemented into the SUNY Model. After thorough comparison, the chemical transport model chosen was the Global and regional Earth-system Monitoring using satellite and in-situ data (GEMS) model developed by the European Center for Medium Range Weather Forecasts (ECMWF). Using daily AOD values instead of monthly climatological values, the SUNY Model better captures events of extreme aerosol loadings, which greatly improves the accuracy in calculations of direct normal irradiance (DNI) and to a lesser extent, global horizontal irradiance (GHI). In clear-sky conditions with the sun directly overhead, a change in AOD from 0.1 to 0.5 is found to cause a 55% (20%) decrease in DNI (GHI) for Desert Rock, Nevada in January. A calibration scheme is applied to the daily GEMS AOD reanalysis data. For each site, the monthly means of the GEMS daily AOD are corrected by a factor to match the currently used monthly climatological AOD in order to avoid large errors caused by changing the magnitude of the monthly average AOD. The performance of the SUNY model improved significantly for many of the stations analyzed in this work after applying the daily-calibrated GEMS AOD. The Root Mean Squared Error (RMSE) was the most notable statistical improvement, which measures the model’s precision compared to the observed measurements from a ground station, and many other statistical improvements are also evident. All 7 SURFRAD locations showed improvements in DNI RMSE after using the calibrated GEMS

  6. Shipboard Sunphotometer Measurements of Aerosol Optical Depth During ACE-2 and Comparison with Selected Ship, Aircraft and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, J. M.; Kapustin, V. N.; Schmid, B.; Russell, P. B.; Quinn, P. K.; Bates, T. S.; Durkee, P. A.; Nielsen, K.; Freudenthaler, V.; Wiegner, M.; Covert, D. S.

    2000-01-01

    We present analyses of aerosol optical depth (AOD) measurements taken with a shipboard six-channel tracking sunphotometer during ACE-2. For 10 July 1997, results are also shown for measurements acquired 70 km from the ship with a fourteen-channel airborne tracking sunphotometer.

  7. Precise Directed Assembly of Nanoparticles for Electronic, Optical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yilmaz, Cihan

    Assembly of nano building blocks offers a versatile route to the creation of complex 1, 2 and 3-dimensional homogenous or hybrid nanostructures with unique properties to be used in many applications including electronics, optics, energy, and biotechnology. Bottom-up directed assembly of nanoparticles has been recently considered as one of the best approaches to manufacture such functional and novel nanostructures. However, current directed assembly techniques have not been shown to make nanostructures homogeneous or hybrid materials with nanoscale precision at a high yield. This is mainly due to the lack of fundamental understanding of the forces driving the assembly of nanoparticles into organized nanostructures on surfaces and the difficulties in precisely controlling these forces to enable the repeatable and reliable assembly of various types of organic or inorganic nanoparticles. We experimentally and numerically investigated the fundamental mechanism of the electrophoretic directed assembly for different sizes and types of nanoparticles. The results showed that unlike large (such as 500nm) Polysterene Latex (PSL) particles, the electrophoretic assembly of 50nm and smaller PSL particles is significantly influenced by the Brownian diffusion. This results in random and low yield assembly for the smaller nanoparticles. In order to overcome the Brownian diffusion-limited assembly of 50nm or smaller particles, the electrophoretic velocity of the particles must be increased. This can be accomplished by increasing the electrophoretic force, which is a function of particle surface charge and applied voltage. The surface charge of the PSL particles is greatly influenced by the pH of the solution. At high pH values (pH 10.1 or above), the nanoparticles attain higher charge, which increases the electrophoretic force. Consequently, the Brownian diffusion can also be overcome by increasing the pH of the solution. Overcoming the Brownian motion at low pH values (<10

  8. Pupil tracking optical coherence tomography for precise control of pupil entry position.

    PubMed

    Carrasco-Zevallos, Oscar; Nankivil, Derek; Keller, Brenton; Viehland, Christian; Lujan, Brandon J; Izatt, Joseph A

    2015-09-01

    To maximize the collection efficiency of back-scattered light, and to minimize aberrations and vignetting, the lateral position of the scan pivot of an optical coherence tomography (OCT) retinal scanner should be imaged to the center of the ocular pupil. Additionally, several retinal structures including Henle's Fiber Layer (HFL) exhibit reflectivities that depend on illumination angle, which can be controlled by varying the pupil entry position of the OCT beam. In this work, we describe an automated method for controlling the lateral pupil entry position in retinal OCT by utilizing pupil tracking in conjunction with a 2D fast steering mirror placed conjugate to the retinal plane. We demonstrate that pupil tracking prevents lateral motion artifacts from impeding desired pupil entry locations, and enables precise pupil entry positioning and therefore control of the illumination angle of incidence at the retinal plane. We use our prototype pupil tracking OCT system to directly visualize the obliquely oriented HFL.

  9. Pupil tracking optical coherence tomography for precise control of pupil entry position

    PubMed Central

    Carrasco-Zevallos, Oscar; Nankivil, Derek; Keller, Brenton; Viehland, Christian; Lujan, Brandon J.; Izatt, Joseph A.

    2015-01-01

    To maximize the collection efficiency of back-scattered light, and to minimize aberrations and vignetting, the lateral position of the scan pivot of an optical coherence tomography (OCT) retinal scanner should be imaged to the center of the ocular pupil. Additionally, several retinal structures including Henle’s Fiber Layer (HFL) exhibit reflectivities that depend on illumination angle, which can be controlled by varying the pupil entry position of the OCT beam. In this work, we describe an automated method for controlling the lateral pupil entry position in retinal OCT by utilizing pupil tracking in conjunction with a 2D fast steering mirror placed conjugate to the retinal plane. We demonstrate that pupil tracking prevents lateral motion artifacts from impeding desired pupil entry locations, and enables precise pupil entry positioning and therefore control of the illumination angle of incidence at the retinal plane. We use our prototype pupil tracking OCT system to directly visualize the obliquely oriented HFL. PMID:26417510

  10. New tools for high-precision positioning of optical elements in high-NA microscope objectives

    NASA Astrophysics Data System (ADS)

    Heil, Joachim; Bauer, Tobias; Mueller, Willi; Sure, Thomas; Wesner, Joachim

    2004-02-01

    The precise positioning of the individual optical elements is essential for attaining diffraction limited performance in high-numerical-aperture (high-NA) microscope objectives. Tolerances are in the micron range or lower for high-end objectives, e.g. for broad-band scanning confocal applications, metrology objectives in general, and especially for deep ultraviolet (DUV) applications. The ever increasing demands on imaging performance ask for the continuous development and improvement of specialized measurement equipment for the production line. Our award-winning 150x/0.90-DUV-AT-infinity/0 objective for wafer inspection and metrology at 248nm employs air spacings in its doublets because of the instability of optical cements against DUV radiation. This comes however at the cost of a higher number of surfaces and even higher precision demands on their geometry, orientation and positioning. We present several tools enabling us to meet these requirements. A Fourier transform fringe analysis scheme is adapted to high-NA Fizeau interferometry for surface characterization. A white light Mirau interferometer for dimensional measurements on lens groups with sub-μm resolution enables us to keep surface distance errors lower than 2 μm. Residual aberrations of the objective are compensated for by translating special correction elements under observation of the wave-front using a DUV-Twyman-Green interferometer, which also incorporates a 903nm branch for the parfocal adjustment of the infrared (IR) autofocus feature of the objective. To adjust the shifting element for the elimination of on-axis coma, we compute an artificial (real-time) star test from the interferogram, allowing interactive manipulations of the element while monitoring their influence on the point spread function (PSF).

  11. Development of high precision digital driver of acoustic-optical frequency shifter for ROG

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Kong, Mei; Xu, Yameng

    2016-10-01

    We develop a high precision digital driver of the acoustic-optical frequency shifter (AOFS) based on the parallel direct digital synthesizer (DDS) technology. We use an atomic clock as the phase-locked loop (PLL) reference clock, and the PLL is realized by a dual digital phase-locked loop. A DDS sampling clock up to 320 MHz with a frequency stability as low as 10-12 Hz is obtained. By constructing the RF signal measurement system, it is measured that the frequency output range of the AOFS-driver is 52-58 MHz, the center frequency of the band-pass filter is 55 MHz, the ripple in the band is less than 1 dB@3MHz, the single channel output power is up to 0.3 W, the frequency stability is 1 ppb (1 hour duration), and the frequency-shift precision is 0.1 Hz. The obtained frequency stability has two orders of improvement compared to that of the analog AOFS-drivers. For the designed binary frequency shift keying (2-FSK) and binary phase shift keying (2-PSK) modulation system, the demodulating frequency of the input TTL synchronous level signal is up to 10 kHz. The designed digital-bus coding/decoding system is compatible with many conventional digital bus protocols. It can interface with the ROG signal detecting software through the integrated drive electronics (IDE) and exchange data with the two DDS frequency-shift channels through the signal detecting software.

  12. High precision optical fiber fluorescent temperature measurement system and data processing

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Bo, Xiaoxu; Gui, Feifei

    2010-08-01

    Generally, the theoretical analysis of the fluorescent life time temperature measurement is based on the assumption of the exponential life time characteristic, but in practice, the actual curve of the fluorescence are different from exponential. This is the key-influence on the stability of the high precision fluorescent measurement system. The differences are analyzed base on the theoretical mechanism of fluorescent, and a cutting and normalized method is given to describe the degree of the non-exponent of the actual fluorescent curve defer from the exponential curve. Several kinds of typical fluorescence materials spectrum and its cutting and normalized experiment results verify this theoretical analysis. Some effective measures to improve the non-exponent of the system are taken and are applied to a temperature measurement system based on actual fluorescent curve analysis with resolution 0.1°C, precisions +/-0.2°C, and real-time calibration is carried on. Based the theory base and the actuality of fluorescence optical fiber temperature sensor, two methods about fluorescence decay time constant are proposed. In the mean time, the mathematic model has been formed and analysis, so that the different schemes are selected in different situation.

  13. Relative Skills of Soil Moisutre and Vegetation Optical Depth Retrievals for Agricultural Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Han, E.; Crow, W. T.; Holmes, T. R.; Bolten, J. D.

    2012-12-01

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Microwave Scanning Radiometer (AMSR-E). This study aims to investigate added skills of VOD in addition to SM for agricultural drought monitoring using monthly LPRM-SM and VOD products from 2002 to 2011. First, the lagged rank cross-correlation between Normalized Difference Vegetation Index (NDVI) and the SM/VOD retrievals is used to evaluate the skills of the SM and VOD for drought monitoring. Interestingly, the highest rank cross-correlation between NDVI and VOD is found with lag of (+1) month (temporally lagged behind ranks of NDVI by 1 month), while the highest rank cross-correlation coefficient of SM is found with lag (-1) month (temporally precedes the ranks of NDVI by 1 month). Lagged responses of plants to the available water capacity in the root zone may explain this lagged peak of correlation of VOD. In order to understand this finding more systematically, additional analysis on the microwave polarization difference index and vertical/horizontal brightness temperature are conducted. Next, different types of observations (SM, VOD and NDVI) and hydrologic model results (Palmer model) are merged to improve predictive power. We adopt two different merging approaches (simple weighting method and auto-regressive model) to quantify the added skills of those different drought-related indices. The results show that adding more information rather than using solely SM observation increases lag (-1) month cross-correlation coefficient with NDVI. This result indicates that different observations/models have independent information to some degree. Therefore further analysis on error-correlations between the observations/model results is also conducted. This study suggests

  14. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  15. Influence of material removal programming on ion beam figuring of high-precision optical surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui

    2014-09-01

    Ion beam figuring (IBF) provides a nanometer/subnanometer precision fabrication technology for optical components, where the surface materials on highlands are gradually removed by the physical sputtering effect. In this deterministic method, the figuring process is usually divided into several iterations and the sum of the removed material in each iteration is expected to approach the ideally removed material as nearly as possible. However, we find that the material removal programming in each iteration would influence the surface error convergence of the figuring process. The influence of material removal programming on the surface error evolution is investigated through the comparative study of the contour removal method (CRM) and the geometric proportion removal method (PRM). The research results indicate that the PRM can maintenance the smoothness of the surface topography during the whole figuring process, which would benefit the stable operation of the machine tool and avoid the production of mid-to-high spatial frequency surface errors. Additionally, the CRM only has the corrective effect on the area above the contour line in each iteration, which would result in the nonuniform convergence of the surface errors in various areas. All these advantages distinguish PRM as an appropriate material removal method for ultraprecision optical surfaces.

  16. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS

  17. Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: Indication of indirect effect?

    NASA Astrophysics Data System (ADS)

    Chameides, W. L.; Luo, C.; Saylor, R.; Streets, D.; Huang, Y.; Bergin, M.; Giorgi, F.

    2002-05-01

    We consider two independently derived data sets. The first represents the annually averaged distribution of anthropogenic aerosols over East Asia as derived by a coupled regional climate/chemical transport model. The other is the annually averaged distributions of cloud optical depths and cloud amount over East Asia derived by the International Satellite Cloud Climatology Project (ISCCP) for 1990, 1991, 1992, and 1993. We find a remarkable similarity in the distributions of model-calculated anthropogenic aerosols and ISCCP-reported cloud optical depths, with both exhibiting a region of enhanced values extending over the east central portion of China, between the Sichuan Basin and the Yangtze Delta, and then in an easterly direction over the East China Sea, Japan, and South Korea, and the western edge of the Pacific Ocean. Linear regression between the estimated aerosol column burdens and the cloud optical depths yields an r2 > 0.6, indicating that the correlations are statistically significant at a confidence level that is >99.9% and that more than 60% of the variation in the cloud optical depths is related to variations in the anthropogenic aerosol abundances. Multivariate analysis involving the distributions of boundary layer relative humidity and precipitation over East Asia, as well as that of the model-calculated anthropogenic aerosols and the ISCCP-reported cloud properties, indicates that the relationship between anthropogenic aerosols and cloud optical depth is unique to these two variables and not symptomatic of a more general mechanism involving the hydrologic cycle. Trend analysis of the ISCCP data suggests that there was an upward trend in cloud optical depths over areas in East Asia impacted by air pollution during the early 1990s that would have corresponded to the likely increase in anthropogenic aerosol concentrations over this period in East Asia in response to growing anthropogenic emissions. A likely explanation for these findings is that there

  18. Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.

    2009-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3 is less than realistic. A comparison study between Mars atmospheric density estimates from Mars- GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars- GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. Unrealistic energy absorption by uniform atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage change in density at all altitudes. Consequently, the final result of a change in surface pressure is an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, a density factor value was determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear=0 with MapYears 1 and 2 MGCM output

  19. Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Arola, A.; Ferrare, R. A.; Hostetler, C. A.; Crumeyrolle, S. N.; Berkoff, T. A.; Welton, E. J.; Lolli, S.; Lyapustin, A.; Wang, Y.; Schafer, J. S.; Giles, D. M.; Anderson, B. E.; Thornhill, K. L.; Minnis, P.; Pickering, K. E.; Loughner, C. P.; Smirnov, A.; Sinyuk, A.

    2014-11-01

    During the July 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field experiment in Maryland, significant enhancements in Aerosol Robotic Network (AERONET) sun-sky radiometer measured aerosol optical depth (AOD) were observed in the immediate vicinity of non-precipitating cumulus clouds on some days. Both measured Ångström exponents and aerosol size distribution retrievals made before, during and after cumulus development often suggest little change in fine mode particle size; therefore, implying possible new particle formation in addition to cloud processing and humidification of existing particles. In addition to sun-sky radiometer measurements of large enhancements of fine mode AOD, lidar measurements made from both ground-based and aircraft-based instruments during the experiment also measured large increases in aerosol signal at altitudes associated with the presence of fair weather cumulus clouds. These data show modifications of the aerosol vertical profile as a result of the aerosol enhancements at and below cloud altitudes. The airborne lidar data were utilized to estimate the spatial extent of these aerosol enhancements, finding increased AOD, backscatter and extinction out to 2.5 km distance from the cloud edge. Furthermore, in situ measurements made from aircraft vertical profiles over an AERONET site during the experiment also showed large increases in aerosol scattering and aerosol volume after cloud formation as compared to before. The 15-year AERONET database of AOD measurements at the Goddard Space Flight Center (GSFC), Maryland site, was investigated in order to obtain a climatological perspective of this phenomenon of AOD enhancement. Analysis of the diurnal cycle of AOD in summer showed significant increases in AOD from morning to late afternoon, corresponding to the diurnal cycle of cumulus development.

  20. Correlation of aerosol mass near the ground with aerosol optical depth during two seasons in Munich

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Harbusch, Andreas; Emeis, Stefan; Koepke, Peter; Wiegner, Matthias

    2008-06-01

    Relations of the aerosol optical depth (AOD) with aerosol mass concentration near the ground, particulate matter (PM), have been studied on the basis of measurements. The objective is with respect to possible remote sensing methods to get information on the spatial and temporal variation of aerosols which is important for human health effects. Worldwide the AOD of the atmospheric column is routinely monitored by sun-photometers and accessible from satellite measurements also. It is implied here that the AOD is caused mainly by attenuation processes within the mixing layer because this layer includes nearly all atmospheric aerosols. Thus the mixing layer height (MLH) is required together with the AOD, measured by ground-based sun-photometers (around 560 nm), to get information about aerosols near the ground. MLH is determined here from surface-based remote sensing. Investigations were performed during two measurement campaigns in and near Munich in May and November/December 2003 on the basis of daily mean values. Using AOD and MLH measurements the aerosol extinction coefficient of the mixing layer has been calculated. This quantity was correlated with the measured PM10, PM2.5 and PM1 mass concentrations near the ground by performing a linear regression and thus providing a mass extinction efficiency giving squares of the correlation coefficients (R2) between 0.48 (PM1 during summer campaign) and 0.90 (PM2.5 during winter campaign). These correlations suggest that the derived mass extinction efficiencies represent a statistically significant relation between the aerosol extinction coefficients and the surface-based PM mass concentrations mainly during winter conditions.

  1. Assessment of OMI near-UV aerosol optical depth over Central and East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhao; Gu, Xingfa; Xu, Hui; Yu, Tao; Zheng, Fengjie

    2016-01-01

    Several essential improvements have been made in recent Ozone Monitoring Instrument (OMI) near-ultraviolet (UV) aerosol retrieval algorithm version (OMAERUV version 1.4.2), but few regional validations for its aerosol optical depth (AOD) product are conducted. This paper assessed the OMAERUV AOD product over Central and East Asia. The OMAERUV Level 2.0 AOD product was compared with Aerosol Robotic Network (AERONET) Level 2.0 direct Sun AOD measurement over 10 years (2005-2014) at 27 selected AERONET sites. A combined comparison of OMAERUV-AERONET AOD at 25 (2) sites was carried out and yielded correlation coefficient (ρ) of 0.63 (0.77), slope of 0.53 (0.57), y intercept of 0.18 (0.13), and 50.71% (57.24%) OMAERUV AOD fall within the expected uncertainty boundary (larger by 0.1 or ±30%) at 380 nm (440 nm). The more accurate (ρ > 0.70) OMAERUV retrievals are reported over eastern and northern China and South Korea. The two primary reasons for the underestimation of OMAERUV AOD over China are as follows: (1) the use of single-channel (388 nm) retrieval method retrieves scattering AOD and not total AOD, and (2) the spectral dependence of the imaginary part of the refractive index in the near-UV region assumed in the algorithm may not be representative of aerosols found over China. The comparisons for three predominant aerosol types indicate that smoke aerosol exhibits the best performance, followed by dust and nonabsorbing aerosol. It is consistent with the characteristic of near-UV wavelength that it is more sensitive to absorbent particles. The comprehensive yearly (2005-2014) comparison at 25 sites and comparison between two periods (2005-2006 and 2009-2014) at selected four sites show no discernible decrease of temporal trend, which indicates that the OMAERUV algorithm successfully maintains its quality of aerosol product despite post-2008 row anomaly instrument problem.

  2. Inter-Annual Variability of Aerosol Optical Depth over East Asia during 2000-2011 summers

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, Y.; Tao, S.

    2013-12-01

    Aerosols degrade air quality, perturb atmospheric radiation, and impact regional and global climate. Due to a rapid increase of anthropogenic emissions, aerosol loading over East Asia (EA) is markedly higher than other industrialized regions, motivating a need to characterize the evolution of aerosols and understand the associated drivers. Based on the MISR satellite data during 2000-2011, a wave-like inter-annual variation of summertime aerosol optical depth (SAOD) is observed over the highly populated North China Plain (NCP) in East Asia. Specifically, the peak to trough ratio of SAOD ranges from 1.4 to 1.6, with a period of 3-4y. This variation pattern differs apparently from what has been seen in EA emissions, indicating a periodic change in regional climate pattern during the past decade. Investigations on meteorological fields over the region reveal that the high SAOD is generally associated with enhanced Philippine Sea Anticyclone Anomaly (PSAA), which weakens southeasterlies over northeastern EA and depresses air ventilation. Alternatively, a higher temperature or lower relative humidity is found to be coincident with reduced SAOD. The behavior of PSAA has been found previously to be modulated by the El Niño southern oscillations (ENSO), which thereby could disturb the EA SAOD as well. Rather than changing coherently with the ENSO activity, SAOD peaks over the NCP are found to be accompanied by the rapid transition of El Niño warm to cold phases developed four months ahead. An index measuring the ENSO development during January-April is able to capture the inter-annual variability of NCP SAOD during 2000-2011. This indicates a need to integrate the consideration of large-scale periodic climate variability in the design of regional air quality policy.

  3. Trap depth optimization to improve optical properties of diopside-based nanophosphors for medical imaging

    NASA Astrophysics Data System (ADS)

    Maldiney, Thomas; Lecointre, Aurélie; Viana, Bruno; Bessière, Aurélie; Gourier, Didier; Bessodes, Michel; Richard, Cyrille; Scherman, Daniel

    2012-02-01

    Regarding its ability to circumvent the autofluorescence signal, persistent luminescence was recently shown to be a powerful tool for in vivo imaging and diagnosis applications in living animal. The concept was introduced with lanthanide-doped persistent luminescence nanoparticles (PLNP), from a lanthanide-doped silicate host Ca0.2Zn0.9Mg0.9Si2O6:Eu2+, Mn2+, Dy3+ emitting in the near-infrared window. In order to improve the behaviour of these probes in vivo and favour diagnosis applications, we showed that biodistribution could be controlled by varying the hydrodynamic diameter, but also the surface charges and functional groups. Stealth PLNP, with neutral surface charge obtained by polyethylene glycol (PEG) coating, can circulate for longer time inside the mice body before being uptaken by the reticulo-endothelial system. However, the main drawback of this first generation of PLNP was the inability to witness long-term monitoring, mainly due to the decay kinetic after several decades of minutes, unveiling the need to work on new materials with improved optical characteristics. We investigated a modified silicate host, diopside CaMgSi2O6, and increased its persistent luminescence properties by studying various Ln3+ dopants (for instance Ce, Pr, Nd, Tm, Ho). Such dopants create electron traps that control the long lasting phosphorescence (LLP). We showed that Pr3+ was the most suitable Ln3+ electron trap in diopside lattice, providing optimal trap depth, and resulting in the most intense luminescence decay curve after UV irradiation. A novel composition CaMgSi2O6:Eu2+,Mn2+,Pr3+ was obtained for in vivo imaging, displaying a strong near-infrared persistent luminescence centred on 685 nm, allowing improved and sensitive detection through living tissues.

  4. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ma, Y. M.; You, C.; Zhu, Z. K.

    2015-10-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by the Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP throughout the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is maybe partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental aerosol and smoke are also investigated, based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at an altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35° N in the middle of the plateau, and it is possibly associated with the high-altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  5. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Ma, Yaoming; You, Chao; Zhu, Zhikun

    2016-04-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is may be partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35°N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  6. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006.

    SciTech Connect

    Streets, D. G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C.; Decision and Information Sciences; Univ. of Illinois; NASA; Cornell Univ.; Forschungszentrum; Inst.for Atmospheric and Climate Science; Tsinghua Univ.

    2009-07-28

    Understanding the roles of human and natural sources in contributing to aerosol concentrations around the world is an important step toward developing efficient and effective mitigation measures for local and regional air quality degradation and climate change. In this study we test the hypothesis that changes in aerosol optical depth (AOD) over time are caused by the changing patterns of anthropogenic emissions of aerosols and aerosol precursors. We present estimated trends of contributions to AOD for eight world regions from 1980 to 2006, built upon a full run of the Goddard Chemistry Aerosol Radiation and Transport model for the year 2001, extended in time using trends in emissions of man-made and natural sources. Estimated AOD trends agree well (R > 0.5) with observed trends in surface solar radiation in Russia, the United States, south Asia, southern Africa, and East Asia (before 1992) but less well for Organization for Economic Co-operative Development (OECD) Europe (R < 0.5). The trends do not agree well for southeast Asia and for East Asia (after 1992) where large-scale inter- and intraannual variations in emissions from forest fires, volcanic eruptions, and dust storms confound our approach. Natural contributions to AOD, including forest and grassland fires, show no significant long-term trends (<1%/a), except for a small increasing trend in OECD Europe and a small decreasing trend in South America. Trends in man-made contributions to AOD follow the changing patterns of industrial and economic activity. We quantify the average contributions of key source types to regional AOD over the entire time period.

  7. Analysis of the origin of peak aerosol optical depth in springtime over the Gulf of Tonkin.

    PubMed

    Shan, Xiaoli; Xu, Jun; Li, Yixue; Han, Feng; Du, Xiaohui; Mao, Jingying; Chen, Yunbo; He, Youjiang; Meng, Fan; Dai, Xuezhi

    2016-02-01

    By aggregating MODIS (moderate-resolution imaging spectroradiometer) AOD (aerosol optical depth) and OMI (ozone monitoring instrument) UVAI (ultra violet aerosol index) datasets over 2010-2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin (17-23 °N, 105-110 °E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP (cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km. In contrast, aerosol loading in the low atmosphere (below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula (NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring.

  8. Improving Satellite Quantitative Precipitation Estimation Using GOES-Retrieved Cloud Optical Depth

    SciTech Connect

    Stenz, Ronald; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kuligowski, Robert J.

    2016-02-01

    To address significant gaps in ground-based radar coverage and rain gauge networks in the U.S., geostationary satellite quantitative precipitation estimates (QPEs) such as the Self-Calibrating Multivariate Precipitation Retrievals (SCaMPR) can be used to fill in both the spatial and temporal gaps of ground-based measurements. Additionally, with the launch of GOES-R, the temporal resolution of satellite QPEs may be comparable to that of Weather Service Radar-1988 Doppler (WSR-88D) volume scans as GOES images will be available every five minutes. However, while satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations particularly during convective events. Deep Convective Systems (DCSs) have large cloud shields with similar brightness temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds. Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often suffer from large errors because anvil regions (little/no precipitation) cannot be distinguished from rain-cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth (τ) has been found to reduce overestimates of precipitation in anvil regions (Stenz et al. 2014). A new rain mask algorithm incorporating both τ and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed analysis of performance in individual DCS components by utilizing the Feng et al. (2012) classification algorithm. SCaMPR estimates with the new rain mask applied benefited from significantly reduced overestimates of precipitation in anvil regions and overall improvements in skill scores.

  9. MODIS 3 km and 10 km aerosol optical depth for China: Evaluation and comparison

    NASA Astrophysics Data System (ADS)

    He, Qingqing; Zhang, Ming; Huang, Bo; Tong, Xuelian

    2017-03-01

    The recently released Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 introduced a fine scale aerosol optical depth (AOD) distribution, the 3 km product, which is expected to perform well in analyzing aerosols and identifying local air pollution, especially in the severely polluted atmosphere of China. However, few detailed evaluations of regional variations have been conducted. In this paper, we evaluate MODIS 3 km and 10 km AOD products for China against ground-based measurements and compare their performance with respect to spatial and temporal variations. The ground validations indicate that the two products are generally correlated well to ground-based observations. Spatially, the 3 km product slightly outperform the 10 km product in well-developed areas of southern China. Temporally, both products perform worse during spring and summer. Atmospheric clouds and underlying surface are two key factors that influence the accuracy and number of retrievals for both products. The comparison analysis reveals the newly introduced AOD product clearly shows good relationships with the coarse resolution retrievals in spatial and temporal variation but significant differences regarding details. The 3 km AOD product provides better aerosol gradients, more retrievals in bare areas of western China and some spikes of diurnal variation in cloudy days. Seasonal comparisons show the 3 km AOD product is higher than the 10 km product in all seasons, especially during spring and summer. Although the 3 km product for China generally performs slightly worse than the 10 km product, the added information of the MODIS 3 km AOD product shows potential for studying local aerosol characterization, and may facilitate studies of air pollution.

  10. Evaluation of MODIS aerosol optical depth for semi­-arid environments in complex terrain

    NASA Astrophysics Data System (ADS)

    Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2015-12-01

    The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.

  11. A merged aerosol dataset based on MODIS and MISR Aerosol Optical Depth products

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Gautam, Ritesh; Venkatachalam, Parvatham

    2016-05-01

    Aerosol Optical Depth (AOD) products available from MODIS and MISR observations are widely used for aerosol characterization, and global/environmental change studies. These products are based on different retrieval-algorithms, resolutions, sampling, and cloud-screening schemes, which have led to global/regional biases. Thus a merged product is desirable which bridges this gap by utilizing strengths from each of the sensors. In view of this, we have developed a "merged" AOD product based on MODIS and MISR AOD datasets, using Bayesian principles which takes error distributions from ground-based AOD measurements (from AERONET). Our methodology and resulting dataset are especially relevant in the scenario of combining multi-sensor retrievals for satellite-based climate data records; particularly for long-term studies involving AOD. Specifically for MISR AOD product, we also developed a methodology to produce a gap-filled dataset, using geostatistical methods (e.g. Kriging), taking advantage of available MODIS data. Merged and spatially-complete AOD datasets are inter-compared with other satellite products and with AERONET data at three stations- Kanpur, Jaipur and Gandhi College, in the Indo-Gangetic Plains. The RMSE of merged AOD (0.08-0.09) is lower than MISR (0.11-0.20) and MODIS (0.15-0.27). It is found that merged AOD has higher correlation with AERONET data (r within 0.92-0.95), compared to MISR (0.74-0.86) and MODIS (0.69-0.84) data. In terms of Expected Error, the accuracy of valid merged AOD is found to be superior as percent of merged AOD within error envelope are larger (71-92%), compared to MISR (43-61%) and MODIS (50-70%).

  12. Increase of Cloud Droplet Size with Aerosol Optical Depth: An Observational and Modeling Study

    SciTech Connect

    Yuan, Tianle; Li, Zhanqing; Zhang, Renyi; Fan, Jiwen

    2008-02-21

    Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general finding that DER may increase or decrease with aerosol loading depending on environmental conditions. The slope of the correlation between DER and AOD is driven primarily by water vapor amount, which explains 70% of the variance in our study. Various potential artifacts that may cause the positive relation are investigated including water vapor swelling, partially cloudy, atmospheric dynamics, cloud three-dimensional (3-D) and surface influence effects. None seems to be the primary cause for the observed phenomenon, although a certain degree of influence exists for some of the factors. Analyses are conducted over seven regions around the world representing different types of aerosols and clouds. Only two regions show positive dependence of DER on AOD, near coasts of the Gulf of Mexico and South China Sea, which implies physical processes may at work. Using a 2-D spectral-bin microphysics Goddard Cumulus Ensemble model (GCE) which incorporated a reformulation of the Köhler theory, two possible physical mechanisms are hypothesized. They are related to the effects of slightly soluble organics (SSO) particles and giant CCNs. Model simulations show a positive correlation between DER and AOD, due to a decrease in activated aerosols with an increasing SSO content. Addition of a few giant CCNs also increases the DER. Further investigations are needed to fully understand and clarify the observed phenomenon.

  13. Comparing the relationships between aerosol optical depth and cloud properties in observations and global models

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Quaas, Johannes

    2016-04-01

    Aerosols impact the climate both directly, through their interaction with radiation and indirectly, via their ability to act as cloud condensation nuclei (CCN), modifying cloud properties. The influence of aerosols on cloud properties is highly uncertain. Many relationships between aerosol optical depth (AOD) and cloud properties have been observed using satellite data, but previous work has shown that some of these relationships are the product of the strong AOD-cloud fraction (CF) relationship. The confounding influence of local meteorology obscures the magnitude of any aerosol impact on CF, and so also the impact of aerosol on other cloud properties. For example, both AOD and CF are strongly influenced by relative humidity, which can generate a correlation between them. Previous studies have used reanalysis data to account for confounding meteorological variables. This requires knowledge of the relevant meteorological variables and is limited by the accuracy of the reanalysis data. Recent work has shown that by using the cloud droplet number concentration (CDNC) to mediate the AOD-CF relationship, the impact of relative humidity can be significantly reduced. This method removes the limitations imposed by the finite accuracy of reanalysis data. In this work we investigate the impact of the CDNC mediation on the AOD-CF relationship and on the relationship between AOD and other cloud properties in global atmospheric models. By comparing pre-industrial and present day runs, we investigate the success of the CDNC mediated AOD-CF relationship to predict the change in CF from the pre-industrial to the present day using only observations of the present day relationships between clouds and aerosol properties. This helps to determine whether the satellite-derived relationship provides a constraint on the aerosol indirect forcing due to changes in CF.

  14. Determination of thermal equilibrium in a sealed cell based on optical depth

    NASA Astrophysics Data System (ADS)

    Zou, Sheng; Zhang, Hong; Chen, Xi-yuan; Shan, Guang-cun; Quan, Wei

    2017-01-01

    An effective method based on optical depth (OD) is presented to measure thermal equilibrium in a cell. First, the principle of determining the temperature distribution in the cell by using the OD is demonstrated. Subsequently, relevant experiments are carried out. Original experimental results showed that some gradients of OD distributions in the cell at different wavelengths and variations of the OD increased slowly along the direction of motion of the beam at a fixed wavelength. At a wavelength of 766.6839 nm, which is about 7 GHz blue shifted with respect to the potassium resonance, the average value of the OD was about 0.764 and the maximal and the minimum inhomogeneity biases among all location points were about 6.07% and 0.56%, respectively. As for the corresponding wavelengths of 766.67785 nm and 766.73004 nm, some deviations from previous results, which were caused by different absorptions of the alkali-metal atoms at different frequencies of the laser beam, were observed. The nonuniform OD values along the direction of motion of the beam reflected an inhomogeneous distribution of the temperature in the cell, which may have been caused by layout of the oven. When the layout of the oven was modified, comparative experiments comparable to these with the previous layout of the oven demonstrated that the uniformity of the temperature distribution in the cell was improved and that thermal equilibrium time was shorter by about 10 minutes. This method played an important role in determining the thermal equilibrium time in the cell.

  15. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  16. Climatology of aerosol optical depth in North-Central Oklahoma: 1992-2008

    SciTech Connect

    Michalsky, J.; Schwartz, S.; Denn, F.; Flynn, C.; Hodges, G.; Kiedron, P.; Koontz, A.; Schlemmer, J., and Schwartz, S. E

    2010-04-01

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloud-screening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun's elevation is greater than 9.25{sup o}. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  17. Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008

    SciTech Connect

    Michalsky, Joseph; Denn, Frederick; Flynn, Connor; Hodges, Gary; Kiedron, Piotr; Koontz, Annette; Schlemmer, James; Schwartz, Stephen E.

    2010-04-13

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloudscreening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun’s elevation is greater than 9.25°. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  18. Validation of MODIS and VIIRS derived aerosol optical depth over complex coastal waters

    NASA Astrophysics Data System (ADS)

    Bilal, Muhammad; Nazeer, Majid; Nichol, Janet E.

    2017-04-01

    In this study, the Simplified Aerosol Retrieval Algorithm (SARA) was applied to both MODIS and Visible Infrared Imaging Radiometer Suits (VIIRS) images to retrieve aerosol optical depth (AOD) over water for blue, green and red wavelengths at 500 m (MODISSARA) and 750 m (VIIRSSARA) resolutions, respectively. Retrievals were compared with the Terra-MODIS Dark Target (DT) AOD at 3 km resolution (MODIS3K) and the VIIRS Environmental Data Record (VIIRSEDR) AOD at 6 km resolution. Validation was conducted using 86 Microtops II Sun photometer AOD measurements collected over different classes of water quality (low to high sediment levels) for seven days (6, 8, 9, 13, and 15, 16 and 17 October 2014) between 10:00 to 15:00 local time. Thirty-eight to fifty percent and 44-54% of the MODIS3K and the VIIRSEDR AOD retrievals respectively, fall within the expected error (EE) with root mean square error from 0.12 to 0.14 and mean absolute error from 0.10 to 0.11. The MODISSARA and the VIIRSSARA AOD retrievals are well correlated with the ground-based measurements (R: MODISSARA = 0.86-0.89 and VIIRSSARA = 0.85-0.94), with a larger number of retrievals falling within the EE MODISSARA = 73-77% and VIIRSSARA = 71-82%) than MODIS3K and VIIRSEDR. The results indicate that the SARA algorithm is more robust than MODIS3K and VIIRSEDR global AOD products, and can retrieve accurate AOD over low to highly sedimented water surfaces, similar to good AOD retrievals over land.

  19. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina

    NASA Astrophysics Data System (ADS)

    An, Lin; Shen, Tueng T.; Wang, Ruikang K.

    2011-10-01

    This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm2 with single scan and 7 × 8 mm2 for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm2 with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration.

  20. Deriving High Resolution UV Aerosol Optical Depth over East Asia using CAI-OMI Joint Retrieval

    NASA Astrophysics Data System (ADS)

    Go, S.; Kim, J.; KIM, M.; Lee, S.

    2015-12-01

    Monitoring aerosols using near UV spectral region have been successfully performed over decades by Ozong Monitoring Instruments (OMI) with benefit of strong aerosol signal over continuous dark surface reflectance, both land and ocean. However, because of big foot print of OMI, the cloud contamination error was a big issue in the UV aerosol algorithm. In the present study, high resolution UV aerosol optical depth (AOD) over East Asia was derived by collaborating the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI) and OMI together. AOD of 0.1 degree grid resolution was retrieved using CAI band 1 (380nm) by bring OMI lv.2 aerosol type, single scattering albedo, and aerosol layer peak height in 1 degree grid resolution. Collocation of the two dataset within the 0.5 degree grid with time difference of OMI and CAI less than 5 minute was selected. Selected region becomes wider as it goes to the higher latitude. Also, calculated degradation factor of 1.57 was applied to CAI band1 (380nm) by comparing normalized radiance and Lambertian Equivalent Reflectivity (LER) of both sensors. The calculated degradation factor was reasonable over dark scene, but inconsistent over cirrus cloud and bright area. Then, surface reflectance was developed by compositing CAI LER minimum data over three month period, since the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. To retrieve AOD, look up table (LUT) was generated using radiative transfer model VLIDORT NGST. Finally, the retrieved AOD was validated with AERONET ground based measurement data during the Dragon-NE Asia campaign in 2012.

  1. Calibrating bimetallic grayscale photomasks to photoresist response for precise micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Qarehbaghi, Reza; Roche, Santiago

    2014-03-01

    Microfabricating high resolution micro-optics structures requires shape control to <1/8th wavelength (~60nm) in both vertical and horizontal surface precision. Grayscale bimetallic photomasks are bi-layer thermal resists consisting of two thin layers of Bi-on-Indium or Tin-on-Indium. A focused laser spot creates a thermal metal oxide with a controllably transparency set by the beam power of optical density from ~3OD (unexposed) to <0.22OD (fully exposed). A directwrite raster-scan photomask laser system with a CW Argon-ion laser at 514nm for the bimetallic writing and 457nm line for measuring the OD change used a feedback-controlled Gaussian beam to achieve 256-level grayscale masks. Setting the graylevels required to achieve uniform vertical steps in the photoresist requires adjustment in transparency based on the exact response curves of a given resist/development process. An initial model is developed using the classic resist threshold dose exposure D0 and dose to clear Dc creating a power law relation between the required exposure dose for each thickness step and the mask transparency. However real resists behave differently than the simple model near the threshold requiring careful calibrating of mask graylevel transparencies with the photoresist response curve for a given resist/development process. Test structures ranging from steps to ramps and complex patterns were examined via both SEM and profilometry from the resulting bimetallic grayscale masks. Secondary corrections modify the needed bimetallic OD due to the exposure source spectrum differences from the 457nm measurement. This enhances the patterning of micro-optic and 3D MEMS structures.

  2. Deterministic ion beam material adding technology for high-precision optical surfaces.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2013-02-20

    Although ion beam figuring (IBF) provides a highly deterministic method for the precision figuring of optical components, several problems still need to be addressed, such as the limited correcting capability for mid-to-high spatial frequency surface errors and low machining efficiency for pit defects on surfaces. We propose a figuring method named deterministic ion beam material adding (IBA) technology to solve those problems in IBF. The current deterministic optical figuring mechanism, which is dedicated to removing local protuberances on optical surfaces, is enriched and developed by the IBA technology. Compared with IBF, this method can realize the uniform convergence of surface errors, where the particle transferring effect generated in the IBA process can effectively correct the mid-to-high spatial frequency errors. In addition, IBA can rapidly correct the pit defects on the surface and greatly improve the machining efficiency of the figuring process. The verification experiments are accomplished on our experimental installation to validate the feasibility of the IBA method. First, a fused silica sample with a rectangular pit defect is figured by using IBA. Through two iterations within only 47.5 min, this highly steep pit is effectively corrected, and the surface error is improved from the original 24.69 nm root mean square (RMS) to the final 3.68 nm RMS. Then another experiment is carried out to demonstrate the correcting capability of IBA for mid-to-high spatial frequency surface errors, and the final results indicate that the surface accuracy and surface quality can be simultaneously improved.

  3. Rattlesnake Mountain Observator (46.4{degrees}N, 119.6{degrees}W) multispectral optical depth measurements, 1979--1994

    SciTech Connect

    Daniels, R.C.

    1995-09-22

    Surface measurements of solar irradiance of the atmosphere were made by a multipurpose computer-controlled scanning photometer at the Rattlesnake Mountain Observatory. The observatory is located at 46.4{degrees}N, 119.6{degrees}W at an elevation of 1088 m above mean sea level. The photometer measures the attenuation of direct solar radiation for different wavelengths using 12 filters. Five of these filters (ie., at 428 nm, 486 nm, 535 nm, 785 nm, and 1010 nm, with respective half-power widths of 2, 2, 3, 18, and 28 nm) are suitable for monitoring variations in the total optical depth of the atmosphere. Total optical depths for the five wavelength bands were derived from solar irradiance measurements taken at the observatory from August 5, 1979, to September 2, 1994; these total optical depth data are distributed with this numeric data package (NDP). To determine the contribution of atmospheric aerosols to the total optical depths, the effects of Rayleigh scattering and ozone absorption were subtracted (other molecular scattering was minimal for the five filters) to obtain total column aerosol optical depths. The total aerosol optical depths were further decomposed into tropospheric and stratospheric components by calculating a robustly smoothed mean background optical depth (tropospheric component) for each wavelength using data obtained during periods of low stratospheric aerosol loading. By subtracting the smoothed background tropospheric aerosol optical depths from the total aerosol optical depths, residual aerosol optical depths were obtained. These residuals are good estimates of the stratospheric aerosol optical depth at each wavelength and may be used to monitor the long-term effects of volcanic eruptions on the atmosphere. These data are available as an NDP from the Carbon Dioxide Information Analysis Center (CDIAC), and the NDP consists of this document and a set of computerized data files.

  4. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey Patrick

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, made possible largely by the development of narrow-linewidth lasers and techniques for trapping and cooling at ultracold temperatures. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. These possibilities are all consequences of the richness of molecular structure, which is governed by physics substantially different from that characterizing atomic structure. This same richness of structure, however, increases the complexity of any molecular experiment manyfold over its atomic counterpart, magnifying the difficulty of everything from trapping and cooling to the comparison of theory with experiment. This thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. Our molecules are produced via photoassociation of ultracold strontium atoms followed by spontaneous decay to a stable ground state. We describe a thorough set of measurements characterizing the rovibrational structure of very weakly bound (and therefore very large) 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. The physical intuition gained in these experiments applies generally to weakly bound diatomic molecules, and suggests extensive applications in precision measurement and metrology. In addition, we present a detailed analysis of the thermally broadened spectroscopic lineshape of molecules in a non-magic optical lattice trap, showing how such lineshapes can be used to directly determine the temperature of atoms or molecules in situ, addressing a long-standing problem in ultracold physics

  5. Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2014-02-01

    Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.

  6. Retrieval of optical depth and particle size distribution of tropospheric and stratospheric aerosols by means of sun photometry

    SciTech Connect

    Schmid, B.; Maetzler, C.; Kaempfer, N.; Heimo, A.

    1997-01-01

    Aerosol optical depth measurements by means of ground-based Sun photometry were made in Bern, Switzerland during two and a half years primarily to provide quantitative corrections for atmospheric effects in remotely sensed data in the visible and near-infrared spectral region. An investigation of the spatial variability of tropospheric aerosol was accomplished in the summer of 1994 in the Swiss Central Plain, a region often covered by a thick aerosol layer. Intercomparisons are made with two Sun photometers operated by the Swiss Meteorological Institute in Payerne and Davos. By means of an inversion technique, columnar particle size distributions were derived from the aerosol optical depth spectra. Effective radius, columnar surface area, and columnar mass were computed from the inversion results. Most of the spectra measured in Bern exhibit an Angstroem-law dependence. Consequently, the inverted size distributions are very close to power-law distributions. Data collected during a four month calibration campaign in fall 1993 at a high-mountain station in the Swiss Alps allowed the authors to study optical properties of stratospheric aerosol. The extinction spectra measured have shown to be still strongly influenced by remaining aerosol of the June 1991 volcanic eruptions of Mount Pinatubo. Inverted particle size distributions can be characterized by a broad monodisperse peak with a mode radius around 0.25 {micro}m. Both aerosol optical depths and effective radii had not yet returned to pre-eruption values. Comparison of retrieved aerosol optical depth, columnar surface area and mass, with the values derived from lidar observations performed in Garmisch-Partenkirchen, Southern-Germany, yielded good agreement.

  7. Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents

    PubMed Central

    Ding, Yimin; Wang, Jing; Fan, Zhichao; Wei, Dan; Shi, Rui; Luo, Qingming; Zhu, Dan; Wei, Xunbin

    2013-01-01

    The in vivo flow cytometry (IVFC) has shown a great potential for detecting circulating tumor cells quantitatively in the bloodstream. However, the detection depth suffers from the strong light scattering of tissue. In this study, an innovative ear skin optical clearing agent (ESOCA) is employed to improve the signal quality of the IVFC. Our results show that compared with commonly used glycerol, topical application of ESOCA can enhance the transmittance of rat ear significantly in vivo. The labeled red blood cells can be detected by the IVFC with higher signal quality and greater detection depth. This study is very helpful for potential tumor metastasis studies by the IVFC in deep tissues. PMID:24298412

  8. Optical depth distribution of optically thin clouds and surface elevation variability derived from CALIPSO lidar measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoyan; Lin, Bing; Obland, Michael D.; Campbell, Joel

    2016-12-01

    Atmospheric carbon dioxide (CO2) is one of the major greenhouse gases in the Earth's climate system. The CO2 concentration in the atmosphere has been significantly increased over the last 150 years, due mainly to anthropogenic activities. Comprehensive measurements of global atmospheric CO2 distributions are urgently needed to develop a more complete understanding of CO2 sources and sinks. Because of the importance of the atmospheric CO2 measurements, satellite missions with passive sensors such as GOSAT and OCO-2 have been launched, and those with active sensors like Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) using an integrated path differential absorption (IPDA) lidar are being studied. The required accuracy and precision for the column-integrated CO2 mixing ratios (XCO2) is high, within 1.0 ppm or approximately 0.26%, which calls for unbiased CO2 measurements and accurate determinations of the path length. The presence of clouds and aerosols can make the measurement complicated, especially for passive instruments. The heterogeneity generated by the surface elevation changes within the field of view of the sensors and the grid boxes of averaged values of atmospheric CO2 would also cause significant uncertainties in XCO2 estimates if the path length is not accurately known. Thus, it is required to study the cloud and aerosol distributions as well as the surface elevation variability in assessing the performance of the CO2 measurements from both active and passive instruments. The CALIPSO lidar has acquired nearly 10 years of global measurement data. It provides a great opportunity to study the global distribution of clouds and aerosols as well as the statistics of the surface elevation variations. In this study we have analyzed multiple years of the CALIPSO Level 2 data to derive the global occurrence of aerosols and optically thin clouds. The results show that clear sky does not occur as frequently as expected. The global average

  9. A High-Precision, Optical Polarimeter to Measure Inclinations of High Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane; Matthews, K.; Kulkarni, S. R.

    2007-12-01

    While most astrophysical objects require many parameters in order to be fully described, black holes are unique in that only three parameters are required: mass, spin, and charge. Of these, mass and spin are enough to describe the black hole's gravitational field and event horizon location. Therefore, theory and observation may jointly pursue one or two quantities to uncover the progenitor star's history. Constraints on black hole mass exist for high mass X-ray binaries, such as Cygnus X-1, which is thought to consist of a 40 ± 10 solar mass O9.7Iab star and a 13.5-29 solar mass black hole (Ziolkowski 2005). While the constraints on the mass of the compact object are tight enough to declare that it is a black hole, they are sufficiently loose as to prohibit precise modeling of the progenitor star's mass. We have built an optical polarimeter for the Hale 5-m telescope at Mt. Palomar to provide an independent method for determining black hole mass. Degree of polarization will vary for an edge-on system, while position angle of net polarization will vary for a face-on system. Therefore, by monitoring the linear polarimetric variability of the binary, inclination can be estimated. Coupled with the known mass function of the binary from radial velocity work (Gies et al. 2003), inclination estimates constrain the mass of the black hole. Our polarimeter, POLISH (POLarimeter for Inclination Studies of High mass x-ray binaries), has achieved linear polarimetric precision of less than 10 parts per million on bright, unpolarized standard stars. We will also present results for polarized standard stars and Cygnus X-1 itself. This instrument has been funded by an endowment from the Moore Foundation.

  10. Perception of scene-relative object movement: Optic flow parsing and the contribution of monocular depth cues.

    PubMed

    Warren, Paul A; Rushton, Simon K

    2009-05-01

    We have recently suggested that the brain uses its sensitivity to optic flow in order to parse retinal motion into components arising due to self and object movement (e.g. Rushton, S. K., & Warren, P. A. (2005). Moving observers, 3D relative motion and the detection of object movement. Current Biology, 15, R542-R543). Here, we explore whether stereo disparity is necessary for flow parsing or whether other sources of depth information, which could theoretically constrain flow-field interpretation, are sufficient. Stationary observers viewed large field of view stimuli containing textured cubes, moving in a manner that was consistent with a complex observer movement through a stationary scene. Observers made speeded responses to report the perceived direction of movement of a probe object presented at different depths in the scene. Across conditions we varied the presence or absence of different binocular and monocular cues to depth order. In line with previous studies, results consistent with flow parsing (in terms of both perceived direction and response time) were found in the condition in which motion parallax and stereoscopic disparity were present. Observers were poorer at judging object movement when depth order was specified by parallax alone. However, as more monocular depth cues were added to the stimulus the results approached those found when the scene contained stereoscopic cues. We conclude that both monocular and binocular static depth information contribute to flow parsing. These findings are discussed in the context of potential architectures for a model of the flow parsing mechanism.

  11. Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head.

    PubMed

    Tian, Fenghua; Liu, Hanli

    2014-01-15

    One of the main challenges in functional diffuse optical tomography (DOT) is to accurately recover the depth of brain activation, which is even more essential when differentiating true brain signals from task-evoked artifacts in the scalp. Recently, we developed a depth-compensated algorithm (DCA) to minimize the depth localization error in DOT. However, the semi-infinite model that was used in DCA deviated significantly from the realistic human head anatomy. In the present work, we incorporated depth-compensated DOT (DC-DOT) with a standard anatomical atlas of human head. Computer simulations and human measurements of sensorimotor activation were conducted to examine and prove the depth specificity and quantification accuracy of brain atlas-based DC-DOT. In addition, node-wise statistical analysis based on the general linear model (GLM) was also implemented and performed in this study, showing the robustness of DC-DOT that can accurately identify brain activation at the correct depth for functional brain imaging, even when co-existing with superficial artifacts.

  12. Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe A.; Kurtz, Ben; Murray, Keenan; Hinkelman, Laura M.; Sengupta, Manajit; Xie, Yu; Kleissl, Jan

    2016-08-01

    A method for retrieving cloud optical depth (τc) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red-blue ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red-blue ratio (RBR) of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλτc, θ0, ϑs, ϑz, and RBRτc, θ0, ϑs, ϑz are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeasϑs, ϑz, in addition to RBRmeasϑs, ϑz, to obtain a unique solution for τc. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τc values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τc RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI have an RMSE of 2.2, which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.

  13. Improved MODIS Dark Target aerosol optical depth algorithm over land: angular effect correction

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-11-01

    Aerosol optical depth (AOD) product retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) measurements has greatly benefited scientific research in climate change and air quality due to its high quality and large coverage over the globe. However, the current product (e.g., Collection 6) over land needs to be further improved. The is because AOD retrieval still suffers large uncertainty from the surface reflectance (e.g., anisotropic reflection) although the impacts of the surface reflectance have been largely reduced using the Dark Target (DT) algorithm. It has been shown that the AOD retrieval over dark surface can be improved by considering surface bidirectional distribution reflectance function (BRDF) effects in previous study. However, the relationship of the surface reflectance between visible and shortwave infrared band that applied in the previous study can lead to an angular dependence of the AOD retrieval. This has at least two reasons. The relationship based on the assumption of isotropic reflection or Lambertian surface is not suitable for the surface bidirectional reflectance factor (BRF). However, although the relationship varies with the surface cover type by considering the vegetation index NDVISWIR, this index itself has a directional effect and affects the estimation of the surface reflection, and it can lead to some errors in the AOD retrieval. To improve this situation, we derived a new relationship for the spectral surface BRF in this study, using 3 years of data from AERONET-based Surface Reflectance Validation Network (ASRVN). To test the performance of the new algorithm, two case studies were used: 2 years of data from North America and 4 months of data from the global land. The results show that the angular effects of the AOD retrieval are largely reduced in most cases, including fewer occurrences of negative retrievals. Particularly, for the global land case, the AOD retrieval was improved by the new algorithm compared to the

  14. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  15. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ma, Y. M.; You, C.; Zhu, Z. K.

    2015-06-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported over the main body of the TP across the northeastern edge rather than the southern edge. This is may be because the altitude is much lower at the northeastern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A natural boundary seems to extend to an altitude of 6-8 km a.s.l., which may act as a dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP, especially in spring and summer. This boundary appears around 33-35° N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that this natural boundary extending to upper troposphere is consistent with the spatial pattern of aerosol loading. The whole TP blocks the atmospheric aerosols transported from surrounding regions, and the extreme high mountains on the TP also cause an obstruction to the transport of aerosols. The aerosol distribution patterns are primarily driven by atmospheric

  16. Consistency of Global Modis Aerosol Optical Depths over Ocean on Terra and Aqua Ceres SSF Datasets

    NASA Technical Reports Server (NTRS)

    Ignatov, Alexander; Minnis, Patrick; Miller, Walter F.; Wielicki, Bruce A.; Remer, Lorraine

    2006-01-01

    Aerosol retrievals over ocean from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side-by-side. The primary M product is generated by sub-setting and remapping the multi-spectral (0.47-2.1 micrometer) MODIS produced oceanic aerosol (MOD04/MYD04 for Terra/Aqua) onto CERES footprints. M*D04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary AVHRR-like A product is generated in only two MODIS bands 1 and 6 (on Aqua, bands 1 and 7). The A processing uses the CERES cloud screening algorithm, and NOAA/NESDIS glint identification, and single-channel aerosol retrieval algorithms. The M and A products have been documented elsewhere and preliminarily compared using 2 weeks of global Terra CERES SSF Edition 1A data in which the M product was based on MOD04 collection 3. In this study, the comparisons between the M and A aerosol optical depths (AOD) in MODIS band 1 (0.64 micrometers), tau(sub 1M) and tau(sub 1A) are re-examined using 9 days of global CERES SSF Terra Edition 2A and Aqua Edition 1B data from 13 - 21 October 2002, and extended to include cross-platform comparisons. The M and A products on the new CERES SSF release are generated using the same aerosol algorithms as before, but with different preprocessing and sampling procedures, lending themselves to a simple sensitivity check to non-aerosol factors. Both tau(sub 1M) and tau(sub 1A) generally compare well across platforms. However, the M product shows some differences, which increase with ambient cloud amount and towards the solar side of the orbit. Three types of comparisons conducted in this study - cross-platform, cross-product, and cross-release confirm the previously made observation that the major area for

  17. Assessment of OMI Near-UV Aerosol Optical Depth over Land

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    This is the first comprehensive assessment of the aerosol optical depth (AOD) product retrieved from the near-UV observations by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. The OMI-retrieved AOD by the ultraviolet (UV) aerosol algorithm (OMAERUV version 1.4.2) was evaluated using collocated Aerosol Robotic Network (AERONET) level 2.0 direct Sun AOD measurements over 8 years (2005-2012). A time series analysis of collocated satellite and ground-based AOD observations over 8 years shows no discernible drift in OMI's calibration. A rigorous validation analysis over 4 years (2005-2008) was carried out at 44 globally distributed AERONET land sites. The chosen locations are representative of major aerosol types such as smoke from biomass burning or wildfires, desert mineral dust, and urban/industrial pollutants. Correlation coefficient (p) values of 0.75 or better were obtained at 50 percent of the sites with about 33 percent of the sites in the analysis reporting regression line slope values larger than 0.70 but always less than unity. The combined AERONET-OMAERUV analysis of the 44 sites yielded a p of 0.81, slope of 0.79, Y intercept of 0.10, and 65 percent OMAERUV AOD falling within the expected uncertainty range (largest of 30 percent or 0.1) at 440 nanometers. The most accurate OMAERUV retrievals are reported over northern Africa locations where the predominant aerosol type is desert dust and cloud presence is less frequent. Reliable retrievals were documented at many sites characterized by urban-type aerosols with low to moderate AOD values, concentrated in the boundary layer. These results confirm that the near-ultraviolet observations are sensitive to the entire aerosol column. A simultaneous comparison of OMAERUV, Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue, and Multiangle Imaging Spectroradiometer (MISR) AOD retrievals to AERONET measurements was also carried out to evaluate the OMAERUV accuracy in relation to those of

  18. Temporal variability of MODIS aerosol optical depth and chemical characterization of airborne particulates in Varanasi, India.

    PubMed

    Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, T

    2015-01-01

    Temporal variation of airborne particulate mass concentration was measured in terms of toxic organics, metals and water-soluble ionic components to identify compositional variation of particulates in Varanasi. Information-related fine particulate mass loading and its compositional variation in middle Indo-Gangetic plain were unique and pioneering as no such scientific literature was available. One-year ground monitoring data was further compared to Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 retrieved aerosol optical depth (AOD) to identify trends in seasonal variation. Observed AOD exhibits spatiotemporal heterogeneity during the entire monitoring period reflecting monsoonal low and summer and winter high. Ground-level particulate mass loading was measured, and annual mean concentration of PM2.5 (100.0 ± 29.6 μg/m(3)) and PM10 (176.1 ± 85.0 μg/m(3)) was found to exceed the annual permissible limit (PM10: 80 %; PM2.5: 84 %) and pose a risk of developing cardiovascular and respiratory diseases. Average PM2.5/PM10 ratio of 0.59 ± 0.18 also indicates contribution of finer particulates to major variability of PM10. Particulate sample was further processed for trace metals, viz. Ca, Fe, Zn, Cu, Pb, Co, Mn, Ni, Cr, Na, K and Cd. Metals originated mostly from soil/earth crust, road dust and re-suspended dust, viz. Ca, Fe, Na and Mg were found to constitute major fractions of particulates (PM2.5: 4.6 %; PM10: 9.7 %). Water-soluble ionic constituents accounted for approximately 27 % (PM10: 26.9 %; PM2.5: 27.5 %) of the particulate mass loading, while sulphate (8.0-9.5 %) was found as most dominant species followed by ammonium (6.0-8.2 %) and nitrate (5.5-7.0 %). The concentration of toxic organics representing both aliphatic and aromatic organics was determined by organic solvent extraction process. Annual mean toxic organic concentration was found to be 27.5 ± 12.3 μg/m(3) (n = 104) which constitutes significant proportion of

  19. Trends in aerosol optical depth in the Russian Arctic and their links with synoptic climatology.

    PubMed

    Shahgedanova, Maria; Lamakin, Mikhail

    2005-04-01

    Temporal and spatial variability of aerosol optical depth (AOD) are examined using observations of direct solar radiation in the Eurasian Arctic for 1940-1990. AOD is estimated using empirical methods for 14 stations located between 66.2 degrees N and 80.6 degrees N, from the Kara Sea to the Chukchi Sea. While AOD exhibits a well-known springtime maximum and summertime minimum at all stations, atmospheric turbidity is higher in spring in the western (Kara-Laptev) part of the Eurasian Arctic. Between June and August, the eastern (East Siberian-Chukchi) sector experiences higher transparency than the western part. A statistically significant positive trend in AOD was observed in the Kara-Laptev sector between the late 1950s and the early 1980s predominantly in spring when pollution-derived aerosol dominates the Arctic atmosphere but not in the eastern sector. Although all stations are remote, those with positive trends are located closer to the anthropogenic sources of air pollution. By contrast, a widespread decline in AOD was observed between 1982 and 1990 in the eastern Arctic in spring but was limited to two sites in the western Arctic. These results suggest that the post-1982 decline in anthropogenic emissions in Europe and the former Soviet Union has had a limited effect on aerosol load in the Arctic. The post-1982 negative trends in AOD in summer, when marine aerosol is present in the atmosphere, were more common in the west. The relationships between AOD and atmospheric circulation are examined using a synoptic climatology approach. In spring, AOD depends primarily on the strength and direction of air flow. Thus strong westerly and northerly flows result in low AOD values in the East Siberian-Chukchi sector. By contrast, strong southerly flow associated with the passage of depressions results in high AOD in the Kara-Laptev sector and trajectory analysis points to the contribution of industrial regions of the sub-Arctic. In summer, low pressure gradient or

  20. The contribution of different aerosol sources to the Aerosol Optical Depth in Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Wenig, Mark; Zhou, Wen; Diehl, Thomas; Chan, Ka-Lok; Wang, Lingna

    2014-02-01

    The contribution of major aerosol components emitted from local and remote regions to Hong Kong's Aerosol Optical Depth (AOD) in 2007 is quantitatively determined using the chemical transport model GOCART (Global Ozone Chemistry Aerosol Radiation and Transport). Of the major aerosol components, sulphur has the largest influence (68%) on Hong Kong, followed by organic carbon (OC, 13%) and dust (11%), and the influences of black carbon (BC, 5%) and sea salt (3%) are the lowest. The highest AOD is seen in September 2007 and is composed mainly of sulphur aerosols (85%). The high AOD values in March and April 2007 are caused by sulphur and OC. OC has a relative contribution of 39% in March and 30% in April. The anthropogenic sulphur, BC, and OC emitted from every continent, as well as from China and South China, are considered respectively. In summer, South China's contribution of sulphur aerosols from anthropogenic SO2 emissions to the total sulphur AOD in Hong Kong is more than 20%. In other seasons, sulphur aerosols from anthropogenic SO2 emissions in Rest China (all of China except South China) accounts for more than 25%. Anthropogenic BC from South China accounts for more than 20% of total BC AOD in Hong Kong in summer. The contribution of anthropogenic BC from Rest China exceeds 40% in autumn and winter. Anthropogenic BC from Rest Asia (all of Asia except China) accounts for more than 30% in summer and autumn. The contribution of anthropogenic OC from Rest China is more than 35% in autumn and winter. The contribution of anthropogenic OC from Rest Asia exceeds 20% in summer. Gobi dust accounts for more than 40% of the total dust AOD in winter, and its impact appears mainly in the Atmospheric Boundary Layer (ABL), where it is responsible for 50% of the dust concentration. The contribution of Sahara dust to the dust AOD in spring exceeds 35%, and its contribution to the dust concentration in the free atmosphere (40%) is larger than that in the ABL (10%). More than 35

  1. Sub-40 fs, 1060-nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-12-01

    Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a >100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key performance limitation related to nonlinear optical microscopy (NLOM) technology while providing a low-barrier-to-access alternative to Ti:sapphire sources that could help accelerate the movement of NLOM into clinical practice.

  2. Statistics Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused by Three-Dimensional Radiative Effects

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2000-01-01

    This paper presents a simple approach to estimate the uncertainties that arise in satellite retrievals of cloud optical depth when the retrievals use one-dimensional radiative transfer theory for heterogeneous clouds that have variations in all three dimensions. For the first time, preliminary error bounds are set to estimate the uncertainty of cloud optical depth retrievals. These estimates can help us better understand the nature of uncertainties that three-dimensional effects can introduce into retrievals of this important product of the MODIS instrument. The probability distribution of resulting retrieval errors is examined through theoretical simulations of shortwave cloud reflection for a wide variety of cloud fields. The results are used to illustrate how retrieval uncertainties change with observable and known parameters, such as solar elevation or cloud brightness. Furthermore, the results indicate that a tendency observed in an earlier study, clouds appearing thicker for oblique sun, is indeed caused by three-dimensional radiative effects.

  3. Statistics of aerosol extinction coefficient profiles and optical depth using lidar measurement over Lanzhou, China since 2005-2008

    NASA Astrophysics Data System (ADS)

    Cao, X.; Wang, Z.; Tian, P.; Wang, J.; Zhang, L.; Quan, X.

    2013-06-01

    The aerosol extinction coefficient profiles and optical depth over Lanzhou in China were observed under no precipitation and dust free condition using the micropulse lidar CE370-2 from September 2005 to July 2008. The statistics of the variations of monthly average aerosol optical depth (AOD) and daily average AOD, frequency distribution of daily average AOD, and the seasonal variation of aerosol vertical distribution were analyzed based on the observation data. The results showed that the daily average AOD of Main Observatory and City Observatory was 87.8% and 78.2% ranged below 0.4 respectively with similar frequency distribution patterns. The AOD in autumn and winter were larger than that in spring and summer, and AOD in suburb was in certain extent smaller than that in city of Lanzhou. Aerosol existed in the layer below 4km, and its extinction coefficient decreased with increasing of height.

  4. Effects of Optical Combiner and IPD Change for Convergence on Near-Field Depth Perception in an Optical See-Through HMD.

    PubMed

    Lee, Sangyoon; Hu, Xinda; Hua, Hong

    2016-05-01

    Many error sources have been explored in regards to the depth perception problem in augmented reality environments using optical see-through head-mounted displays (OST-HMDs). Nonetheless, two error sources are commonly neglected: the ray-shift phenomenon and the change in interpupillary distance (IPD). The first source of error arises from the difference in refraction for virtual and see-through optical paths caused by an optical combiner, which is required of OST-HMDs. The second occurs from the change in the viewer's IPD due to eye convergence. In this paper, we analyze the effects of these two error sources on near-field depth perception and propose methods to compensate for these two types of errors. Furthermore, we investigate their effectiveness through an experiment comparing the conditions with and without our error compensation methods applied. In our experiment, participants estimated the egocentric depth of a virtual and a physical object located at seven different near-field distances (40∼200 cm) using a perceptual matching task. Although the experimental results showed different patterns depending on the target distance, the results demonstrated that the near-field depth perception error can be effectively reduced to a very small level (at most 1 percent error) by compensating for the two mentioned error sources.

  5. Precise control of the optical microfiber tapering process based on monitoring of intermodal interference.

    PubMed

    Yu, Yang; Zhang, Xueliang; Song, Zhangqi; Wang, Jianfei; Meng, Zhou

    2014-12-10

    This paper describes the effective rectification of the estimated diameter of an optical microfiber (OM) during the tapering process. A high-coherence laser is used to monitor the OM-tapering process. The evolution of the intermodal interference between the fundamental mode and the coupled modes can be clearly observed. We analyze the point in time at which the excited mode vanishes and use that to justify the correlative diameter of the fabricated OM for the first time, to the best of our knowledge. By comparing the measured cutoff time of the coupled LP(02) mode and the theoretically predicted value, we can judge whether the theoretical estimation of the OM diameter has been correctly obtained, and we can introduce a modification method with feedback by changing the initial parameters or the manufacturing conditions to ensure OM diameter accuracy. This identification and rectification method is helpful for precise fabrication of OMs with different waist lengths and waist diameters, and it can also be used to check the repeatability of OMs.

  6. Baseline suppression problems for high precision measurements using optical beam profile monitors

    SciTech Connect

    Thieberger, P.; Gassner, D.; Glenn, J.; Minty, M.; Zimmer, C.

    2011-03-28

    The use of fluorescent screens (e.g. YAG screens) and Optical Transition Radiation (OTR) screens for beam profile monitors provides a simple and widely used way to obtain detailed two dimensional intensity maps. What makes this possible is the availability of relatively inexpensive CCD cameras. For high precision measurements many possible error contributions need to be considered that have to do with properties of the fluorescent screens and of the CCDs. Saturation effects, reflections within and outside the screen, non-linearities, radiation damage, etc are often mentioned. Here we concentrate on an error source less commonly described, namely erroneous baseline subtraction, which is particularly important when fitting projected images. We show computer simulations as well as measurement results having remarkable sensitivity of the fitted profile widths to even partial suppression of the profile baseline data, which often arises from large pixel-to-pixel variations at low intensity levels. Such inadvertent baseline data suppression is very easy to miss as it is usually not obvious when inspecting projected profiles. In this report we illustrate this effect and discuss possible algorithms to automate the detection of this problem as well as some possible corrective measures.

  7. Precise tailoring of acoustic velocity in optical fibers by hydrogenation and UV exposure.

    PubMed

    Kong, Fanting; Dong, Liang

    2012-12-03

    Tailoring of acoustic properties in solids has many potential applications in both acoustics, i.e. acoustic gratings and waveguides, and photon-phonon interactions, i.e. stimulated Brillouin scattering (SBS). One immediate application is in the area of SBS suppression in optical fibers. We demonstrate, for the first time, a post-processing technique where hydrogen is diffused in to a fiber core and then locally and permanently bonded to core glass by a subsequent UV exposure. It is discovered that local acoustic velocity can be altered by as much as ~2% this way, with strong potential for much further improvements with an increased hydrogen pressure. It is also found that the large change in acoustic velocity is primarily due to a reduction in bulk modulus, possibly as a result of network bonds being broken up by the addition of OH bonds. It is possible to use this technique to precisely tailor acoustic velocity along a fiber for more optimized SBS suppression in a fiber amplifier. Change in Brillouin Stokes frequency of ~320MHz at 1.064μm was observed.

  8. Precision measurement of the nuclear polarization of laser-cooled, optically pumped 37K

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; Craiciu, I.; Gorelov, A.; Smale, S.; Warner, C. L.; Lawrence, L.; Fenker, B.; Behling, R. S.; Mehlman, M.; Melconian, D.; Gwinner, G.; Anholm, M.; McNeil, J.; Ashery, D.; Cohen, I.

    2016-09-01

    We have spin-polarized laser cooled 37K by direct optical pumping and measured the polarization to < 0 . 1 % accuracy [B. Fenker arXiv:1602.04526]. Our polarization method naturally monitors the polarization of the nuclei as they decay. The atoms absorb circularly polarized light directed along the quantization axis near-resonant with the atomic S1 / 2 to P1 / 2 transition. Once the atoms are polarized, they stop absorbing light, so the ratio between the final P1 / 2 population and its initial maximum probes the degree of polarization. We monitor the P1 / 2 population using UV photons energetic enough to photoionize the P1 / 2 state but not the S1 / 2 state. Since the final P1 / 2 population nearly vanishes, 5% precision on the final/maximum ratio determines the polarization to 0.1%. We eliminate a nonclassical effect, coherent population trapping, which could produce poorly polarized unexcited atoms. We show planned upgrades. Our result for the nuclear vector polarization during our Aβ measurement [B. Fenker, this conference] was 99.13(9)%, not the dominant systematic. Supported by NSERC, D.O.E., Israel Science Foundation. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  9. Speckle imaging of Titan at 2 microns: surface albedo, haze optical depth, and tropospheric clouds 1996-1998

    NASA Astrophysics Data System (ADS)

    Gibbard, S. G.; Macintosh, B.; Gavel, D.; Max, C. E.; de Pater, I.; Roe, H. G.; Ghez, A. M.; Young, E. F.; McKay, C. P.

    2004-06-01

    We present results from 14 nights of observations of Titan in 1996-1998 using near-infrared (centered at 2.1 microns) speckle imaging at the 10-meter W.M. Keck Telescope. The observations have a spatial resolution of 0.06 arcseconds. We detect bright clouds on three days in October 1998, with a brightness about 0.5% of the brightness of Titan. Using a 16-stream radiative transfer model (DISORT) to model the central equatorial longitude of each image, we construct a suite of surface albedo models parameterized by the optical depth of Titan's hydrocarbon haze layer. From this we conclude that Titan's equatorial surface albedo has plausible values in the range of 0-0.20. Titan's minimum haze optical depth cannot be constrained from this modeling, but an upper limit of 0.3 at this wavelength range is found. More accurate determination of Titan's surface albedo and haze optical depth, especially at higher latitudes, will require a model that fully considers the 3-dimensional nature of Titan's atmosphere.

  10. Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography

    PubMed Central

    Poddar, Raju; Cortés, Dennis E.; Werner, John S.; Mannis, Mark J.

    2013-01-01

    Abstract. A high-speed (100 kHz A-scans/s) complex conjugate resolved 1 μm swept source optical coherence tomography (SS-OCT) system using coherence revival of the light source is suitable for dense three-dimensional (3-D) imaging of the anterior segment. The short acquisition time helps to minimize the influence of motion artifacts. The extended depth range of the SS-OCT system allows topographic analysis of clinically relevant images of the entire depth of the anterior segment of the eye. Patients with the type 1 Boston Keratoprosthesis (KPro) require evaluation of the full anterior segment depth. Current commercially available OCT systems are not suitable for this application due to limited acquisition speed, resolution, and axial imaging range. Moreover, most commonly used research grade and some clinical OCT systems implement a commercially available SS (Axsun) that offers only 3.7 mm imaging range (in air) in its standard configuration. We describe implementation of a common swept laser with built-in k-clock to allow phase stable imaging in both low range and high range, 3.7 and 11.5 mm in air, respectively, without the need to build an external MZI k-clock. As a result, 3-D morphology of the KPro position with respect to the surrounding tissue could be investigated in vivo both at high resolution and with large depth range to achieve noninvasive and precise evaluation of success of the surgical procedure. PMID:23912759

  11. Research on precision grinding processing and compensation finishing experiment for mid-large- aperture square aspheric optical element

    NASA Astrophysics Data System (ADS)

    Nie, Fengming; Li, Zhanguo; Wang, Dasen; Zhang, Guangping; Guo, Chengjun; Pei, Ning; Li, Yupeng

    2014-08-01

    This paper analyzes dot-line envelope grinding principle, which is applicable to mid-large- aperture square aspheric optical element, determines the mathematical process control model based on X/Y/C three-axis aspheric grinding machine, We develop the appropriate high-precision aspheric grinding manufacturing and measurement systems software, using the plane grinding wheel to do the grinding experiments and the repeated compensation processing experiment. The experiments show that: high-precision aspheric grinding manufacturing and measurement systems software can be realized axisymmetric aspheric high-precision machining control and measurement; using compensation processing of the X/Y/C three-axis aspheric grinding machine which can effectively improve the precision PV value, surface error from the initial processing of the PV value :12 μm to the compensation processing of the PV value :3 μm .

  12. The relevance of aerosol optical depth to cumulus fraction changes: a five-year climatology at the ACRF SGP site

    NASA Astrophysics Data System (ADS)

    Kassianov, E. I.; Berg, L. K.; Flynn, C.; McFarlane, S.

    2007-08-01

    The objective of this study is to investigate, by observational means, the magnitude and sign of the actively discussed relationship between cloud fraction N and aerosol optical depth τa. Collocated and coincident ground-based measurements and Terra/Aqua satellite observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site form the basis of this study. The N-τa relationship occurred in a specific 5-year dataset of fair-weather cumulus (FWC) clouds and mostly non-absorbing aerosols. To reduce possible contamination of the aerosols on the cloud properties estimation (and vice versa), we use independent datasets of τa and N obtained from the Multi-filter Rotating Shadowband Radiometer (MFRSR) measurements and from the ARM Active Remotely Sensed Clouds Locations (ARSCL) value-added product, respectively. Optical depth of the FWC clouds τcld and effective radius of cloud droplets re are obtained from the MODerate resolution Imaging Spectroradiometer (MODIS) data. We found that relationships between cloud properties (N,τcld, re) and aerosol optical depth are time-dependent (morning versus afternoon). Observed time-dependent changes of cloud properties, associated with aerosol loading, control the variability of surface radiative fluxes. In comparison with pristine clouds, the polluted clouds are more transparent in the afternoon due to smaller cloud fraction, smaller optical depth and larger droplets. As a result, the corresponding correlation between the surface radiative flux and τa is positive (warming effect of aerosol). Also we found that relationship between cloud fraction and aerosol optical depth is cloud size dependent. The cloud fraction of large clouds (larger than 1 km) is relatively insensitive to the aerosol amount. In contrast, cloud fraction of small clouds (smaller than 1 km) is strongly positively correlated with τa. This suggests that an ensemble of polluted clouds tends to be

  13. Experimental and numerical analysis of thermal forming processes for precision optics

    NASA Astrophysics Data System (ADS)

    Su, Lijuan

    Glass has been fabricated into different optical elements including aspherical lenses and freeform mirrors. However, aspherical lenses are very difficult to manufacture using traditional methods since they were specially developed for spherical lenses. On the other hand, large size mirrors are also difficult to make especially for high precision applications or if designed with complicated shapes. Recently developed two closely related thermal forming processes, i.e. compression molding and thermal slumping, have emerged as two promising methods for manufacturing aspherical lenses and freeform mirrors efficiently. Compression molding has already been used in industry to fabricate consumer products such as the lenses for digital cameras, while thermal slumping has been aggressively tested to create x-ray mirrors for space-based telescopes as well as solar panels. Although both process showed great potentials, there are a quite few technical challenges that prevent them from being readily implemented in industry for high volume production. This dissertation research seeks a fundamental understanding of the thermal forming processes for both precision glass lenses and freeform mirrors by using a combined experimental, analytical and numerical modeling approach. First, a finite element method (FEM) based methodology was presented to predict the refractive index change of glass material occurred during cooling. The FEM prediction was then validated using experimental results. Second, experiments were also conducted on glass samples with different cooling rates to study the refractive index variation caused by non-uniform cooling. A Shack-Hartmann Sensor (SHS) test setup was built to measure the index variations of thermally treated glass samples. Again, an FEM simulation model was developed to predict the refractive index variation. The prediction was compared with the experimental result, and the effects of different parameters were evaluated. In the last phase of this

  14. Aerosol optical depth over central north Asia based on MODIS-Aqua data

    NASA Astrophysics Data System (ADS)

    Avgousta Foutsi, Athina; Korras Carraca, Marios Bruno; Matsoukas, Christos; Biskos, George

    2016-04-01

    Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. To quantify these effects it is important to determine the aerosol load, and an effective way to do that is by measuring the aerosol optical depth (AOD). The central Asia region (mainly the Caspian and Aral sea basins), the arid and semi-arid regions of Western China as well as Siberia are of great interest due to the significant natural sources of mineral aerosols originating from local deserts and biomass burning from wildfires in boreal forests. What is of particular interest in the region is the phenomenal shrinking and desertification of the Aral Sea that drives an intense salt and dust transport from the exposed sea-bed to the surrounding regions with important implications in regional air quality. Anthropogenic particles are also observed due to fossil-fuel combustion occurring mainly at oil refineries in the Caspian Sea basin. Here we investigate the spatial and temporal variability of the AOD at 550 nm over central Asia, Siberia and western China, in the region located between 35° N - 65° N and 45° E - 110° E. For our analysis we use Level-3 daily MODIS - Aqua Dark Target - Deep Blue combined product, from the latest collection (006), available in a 1°×1° resolution (ca. 100 km × 100 km) over the period 2002-2014. Our results indicate a significant spatial variability of the aerosol load over the study region. The highest AODs are observed over the Aral Sea year-round, with extreme values reaching 2.1 during July. In the rest of our study region a clear seasonal cycle with highest AOD values (up to 1.2 over the Taklamakan Desert) during spring and summer is observed. The arid parts of central north Asia are characterized by larger aerosol loads during spring, lower but still high AOD in summer and much lower values in autumn and spring

  15. Time series model prediction and trend variability of aerosol optical depth over coal mines in India.

    PubMed

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta

    2015-03-01

    A study of the assessment and management of air quality was carried out at 11 coal mines in India. Long-term observations (about 13 years, March 2000-December 2012) and modeling of aerosol loading over coal mines in India are analyzed in the present study. In this respect, the Box-Jenkins popular autoregressive integrated moving average (ARIMA) model was applied to simulate the monthly mean Terra Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD550 nm) over 11 sites in the coal mines region. The ARIMA model was found as the most suitable model with least normalized Bayesian information criterion (BIC) and root mean square error and high value of R (2). Estimation was done with the Ljung-Box test. Finally, a forecast for a 3-year period from January 2013 to December 2015 was calculated which showed that the model forecasted values are following the observed trend quite well over all mining areas in India. The average values of AOD for the next 3 years (2013-2015) at all sites are found to be 0.575 ± 0.13 (Raniganj), 0.452 ± 0.12 (Jharia), 0.339 ± 0.13 (Bokaro), 0.280 ± 0.09 (Bishrampur), 0.353 ± 0.13 (Korba), 0.308 ± 0.08 (Talcher), 0.370 ± 0.11 (Wardha), 0.35 ± 0.10 (Adilabad), 0.325 ± 0.09 (Warangal), 0.467 ± 0.09 (Godavari Valley), and 0.236 ± 0.07 (Cuddapah), respectively. In addition, long-term lowest monthly mean AOD550 values are observed over Bishrampur followed by Cuddapah, Talcher, Warangal, Adilabad, Korba, Wardha, Godavari Valley, Jharia, and Raniganj. Raniganj and Jharia exhibit the highest AOD values due to opencast mines and extensive mining activities as well as a large number of coal fires. Similarly, the highest AOD values are observed during the monsoon season among all four seasons over all the mining sites. Raniganj exhibits the highest AOD value at all seasons and at all sites. In contrast, the lowest seasonal AOD values are observed during the post

  16. The regime of aerosol optical depth over Central Asia based on MODIS Aqua Deep Blue data

    NASA Astrophysics Data System (ADS)

    Floutsi, Athina; KorrasCarraca, Marios; Matsoukas, Christos; Biskos, George

    2015-04-01

    Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. To quantify these effects it is therefore important to determine the aerosol load, and an effective way to do that is by measuring the aerosol optical depth (AOD). In this study we investigate the spatial and temporal variability of the AOD over the climatically sensitive region of Central Asia (36° N - 50° N, 46° E - 75° E), which has significant sources of both natural and anthropogenic particles. The primary source of anthropogenic particles is fossil fuel combustion occurring mainly at oil refineries in the Caspian Sea basin. Natural particles originate mostly from the two deserts in the region (namely Kara-Kum and Kyzyl-Kum), where persistent dust activity is observed. Another source is the Aral Sea region, which due to its phenomenal desertification also drives an intense salt and dust transport from the exposed sea-bed to the surrounding regions. This transport is of particular interest because of health-hazardous materials contained in the Aral Sea sea-bed. For our analysis we use Level-3 daily MODIS - Aqua Dark Target - Deep Blue combined product, from the latest MODIS collection (006), available in 1° x 1° resolution (about 100 km x 100 km) over the period 2002-2014.Our first results indicate a significant spatial variability of the aerosol load over the study region. The data also show a clear seasonal cycle, with large aerosol load being associated with strong dust activity during spring and summer (AOD up to 0.5), and low during autumn and winter (AOD up to 0.4). In spring and summer significant aerosol load is observed in the Garabogazköl basin, Northeast and South-southeast Caspian Sea (offshore North Iran and Azerbaijan), as well as southwest of the Aral Sea. In the later region, the high AOD values can be explained by export of

  17. Comparison of CALIOP and MODIS aerosol optical depths for aerosol types over the ocean

    NASA Astrophysics Data System (ADS)

    Kim, M.; Yoon, S.; Kim, S.; Omar, A. H.

    2012-12-01

    The aerosol optical depth (AOD) obtained by vertical integration of the CALIOP (The Cloud-Aerosol Lidar with Orthogonal Polarization) level 2 aerosol extinction coefficient at 532 nm is compared with AOD from MODIS (The Moderate Resolution Imaging Spectroradiometer)-Aqua level 2 product at 550 nm for five aerosol subtypes (clean marine, dust, polluted dust, polluted continental, and biomass burning) identified by CALIOP algorithm over the ocean from June 2006 to December 2010. The mean AOD of MODIS (0.108±0.081) for all collocated dataset is 61% higher than that of CALIOP (0.067±0.074). The difference of AOD between CALIOP and MODIS for five aerosol types and potential reasons for the difference are discussed. (i) Clean marine: For the clean marine, which accounts for 84% of total collocated dataset, the mean AOD of MODIS (0.107±0.066) is almost twice higher than CALIOP (0.056±0.041) having strong latitude dependency related with surface wind speed over the ocean. The difference of AOD increases up to ~0.074 (MODIS AOD minus CALIOP AOD) at 52°S where the surface wind speed is maximum, while the difference is ~0.030 at 32°S where the surface wind speed is minimum. (ii) Dust: The difference of AOD between two sensors for dust (~12.4%) is smallest among five aerosols types but shows regional variation. CALIOP AOD is similar or even slightly higher than MODIS AOD for the dust from Saharan and Arabian deserts, whereas CALIOP AOD for the Asian dust is much less than MODIS AOD. This result suggests that the Asian dust is often mixed with polluted aerosols, thus the lidar ratio for the Asian dust would be higher than current value used in CALIOP algorithm. The difference of AOD for dust also shows distinguishable dependency on the layer mean of particulate depolarization ratio (δ). The lidar ratio for dust should increase as δ increases to reduce the AOD difference between two sensors. (iii) Polluted dust and polluted continental: The differences of AOD for

  18. Long-term and seasonal variability of the aerosol optical depth at Mount Kasprowy Wierch (Poland)

    NASA Astrophysics Data System (ADS)

    Markowicz, Krzysztof M.; Uscka-Kowalkowska, Joanna

    2015-03-01

    This paper presents the results of long-term observations (1964-2003) of direct solar radiation, to determine aerosol optical depth (AOD), made with a Linke-Feussner actinometer at the Tatra Mountain Meteorological Observatory on Mount Kasprowy Wierch (1991 m above sea level, 49.233°N, 19.982°E). To this end, broadband direct solar flux (0.29-2.9 µm) and wideband solar radiation measured with OG530 and RG630 filters are used to estimate the broadband and wideband (0.53-0.63 µm) AOD. The inversion algorithm used is based on the MODTRAN (MODerate resolution atmospheric TRANsmission) radiative transfer model applied to estimate direct flux for aerosol-free atmosphere. Total water vapor content, which accounts for the largest extinction of clear-sky direct flux, was obtained by radio sounding from the Poprad-Ganovce station (33 km from Mount Kasprowy Wierch) and from water vapor pressure measurements at the Observatory. The almost 900 clear-sky observations, performed close to noon time, found a significant long-term reduction of AOD. AOD decadal trends were -0.006 (-8 ± 4% [2σ]) with a 95% confidence interval of ± 0.003 and -0.014 (-13 ± 4% [2σ]) with a 95% confidence interval of ± 0.004 for broadband and wideband, respectively. Similar trends, but for years with negligible contamination of volcanic aerosol, are -0.012 (-16 ± 6% [2σ]) and -0.018 (-17 ± 6% [2σ]) with a 95% confidence interval of ± 0.003 and ± 0.004. However, positive AOD trends (from 0 to 0.04 per decade) were found between 1964 and 1983 and negative AOD trends (from -0.016 to -0.035 per decade) were found between 1984 and 2003. Changes of the AOD trends between both periods are associated with global dimming and brightening phenomenon, which took place in the second half of the twentieth century and at the beginning of the 21st century. The long-term mean broadband and wideband AOD were 0.07 ± 0.01 and 0.11 ± 0.02, respectively. Both quantities show a significant annual cycle, with

  19. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; Omar, A. H.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  20. Aerosol characteristics in north-east India using ARFINET spectral optical depth measurements

    NASA Astrophysics Data System (ADS)

    Pathak, B.; Subba, T.; Dahutia, P.; Bhuyan, P. K.; Moorthy, K. Krishna; Gogoi, M. M.; Babu, S. Suresh; Chutia, L.; Ajay, P.; Biswas, J.; Bharali, C.; Borgohain, A.; Dhar, P.; Guha, A.; De, B. K.; Banik, T.; Chakraborty, M.; Kundu, S. S.; Sudhakar, S.; Singh, S. B.

    2016-01-01

    Four years (2010-2014) of spectral aerosol optical depth (AOD) data from 4 Indian Space Research Organisation's ARFINET (Aerosol Radiative Forcing over India) stations (Shillong, Agartala, Imphal and Dibrugarh) in the North-Eastern Region (NER) of India (lying between 22-30°N and 89-98°E) are synthesized to evolve a regional aerosol representation, for the first time. Results show that the columnar AOD (an indicator of the column abundance of aerosols) is highest at Agartala (0.80 ± 0.24) in the west and lowest at Imphal (0.59 ± 0.23) in the east in the pre-monsoon season due to intense anthropogenic bio-mass burning in this region aided by long-range transport from the high aerosol laden regions of the Indo-Gangetic Plains (IGP), polluted Bangladesh and Bay of Bengal. In addition to local biogenic aerosols and pollutants emitted from brick kilns, oil/gas fields, household bio-fuel/fossil-fuel, vehicles, industries. Aerosol distribution and climatic impacts show a west to east gradient within the NER. For example, the climatological mean AODs are 0.67 ± 0.26, 0.52 ± 0.14, 0.40 ± 0.17 and 0.41 ± 0.23 respectively in Agartala, Shillong, Imphal and Dibrugarh which are geographically located from west to east within the NER. The average aerosol burden in NER ranks second highest with climatological mean AOD 0.49 ± 0.2 next to the Indo-Gangetic Plains where the climatological mean AOD is 0.64 ± 0.2 followed by the South and South-East Asia region. Elevated aerosol layers are observed over the eastern most stations Dibrugarh and Imphal, while at the western stations the concentrations are high near the surface. The climate implications of aerosols are evaluated in terms of aerosol radiative forcing (ARF) and consequent heating of the atmosphere in the region which follows AOD and exhibit high values in pre-monsoon season at all the locations except in Agartala. The highest ARF in the atmosphere occurs in the pre-monsoon season ranging from 48.6 Wm-2 in Agartala

  1. Assesment of aerosol optical depth at UV wavelegths from Microtops II "ozone monitor

    NASA Astrophysics Data System (ADS)

    Gómez-Amo, J. L.; di Sarra, A.; Estellés, V.; Utrillas, M. P.; Martínez-Lozano, J. A.

    2009-04-01

    The aerosol optical depth (AOD) retrieval at ultraviolet spectral region (UV) has been of interest for the last few years, especially due to the important rule that the particles play in the Earth climate modifying the earth-atmosphere energy budget. That is the reason why a great number of methodologies have been developed to obtain AOD, usually by means of instruments aimed to ozone monitoring. Microtops II "ozone meter" is a small hand-held manually operated instrument designed for the measurement of ozone atmospheric columnar content. The instrument operates in five spectral channels centred at 305.5, 312.5, 320.0, 936 and 1020nm wavelengths. The firsts three channels (UV) are used to obtain the ozone content, the 936nm channel is used to water vapour retrieval and the last one permit to obtain the AOD at 1020nm. The aim of this work is to use the UV ozone channels to assess the capability of Microtops II "ozone monitor" to retrieve AOD at 312.5, 305.5 and 320nm. On this way we can improve substantially the performance of Microtops II for the characterization of important components present in the atmosphere using only its own measurements. The methodology used to carry out the AOD retrieval is based on the application of the Beer-Lambert-Bouguer law to the Microtops II UV channels. A very good calibration is needed to apply this kind of methodologies since they show an important dependence on the calibration factors. The AOD is calculated eliminating the ozone contribution (using the ozone content from the combination of 305.5 and 312.5 channels) and the molecular one (Rayleigh). The AOD retrieval has been tested in a 15-days field campaign carried out at Lampedusa Island (35.52°N, 12.63°E, 45m a.s.l.) in the framework of the GAMARF (Ground-based and Airborne Measurments of the Aerosol Radiative Forcing) project. The results obtained during the campaign show, for a background atmospheric situation, AOD values of 0.10 ± 0.03, 0.17 ± 0.03 and 0.05 ± 0.03 at

  2. Aerosol optical depth measurements from a multifilter rotating shadowband radiometer at Girona, NE Spain

    NASA Astrophysics Data System (ADS)

    Calbó, Josep; Sanchez-Romero, Alejandro; González, Josep-Abel; Sanchez-Lorenzo, Arturo

    2015-04-01

    Aerosols still remain as one of the major uncertainties in estimating the radiative forcing of climate change, especially if compared with the greenhouse gases. As aerosols are noted for their variability in space and time, a lot of effort is devoted to understand their effects on the climate system, both from ground-based networks (e.g. AERONET) and satellite platforms (e.g. MISR and MODIS). The most important of aerosol radiative properties is the aerosol optical depth (AOD), which is a measure of the total aerosol burden in the atmosphere. The spectral dependence of AOD, typically described by the Ångström exponent (AE), is an indicator of the particle size. We have analized 2 years of data (from June 2012 to June 2014) of a multifilter rotating shadowband radiometer (MFR7) installed in Girona, Spain, to obtain the AOD and AE from the five 10 nm bandwidth channels between 415 and 870 nm. AOD for each channel is calculated on minute basis, after performing a calibration based on several close Langley plots. Finally, we remove the data that are contaminated by the presence of clouds in front of the Sun (we consider the assumption that when solar beam passes through clouds exhibits much larger temporal variaiblity compared to passing through aerosol particles), average on daily basis, and calculate AE. We estimate an uncertainty of 0.01-0.02 in the 1-minute AOD values and of 0.5 in AE. The daily values of AOD are relatively low along the year in Girona (annual mean value of 0.14 in 500 nm channel, and a highest value below 0.5), and follow an annual pattern with maximum in summer. The daily averages of AE range within values typical of continental aerosols, despite showing a strong day-to-day variation (annual mean value of 1.25, with highest values below 2.2 and a lowest values greater than 0) and present a maximum value during summer. So, the summer increase in AOD is linked with an increased concentration of fine particles. The estimated AOD for Girona shows

  3. Optical design of the NASA-NSF extreme precision Doppler spectrograph concept "WISDOM"

    NASA Astrophysics Data System (ADS)

    Barnes, Stuart I.; Fżrész, Gábor; Simcoe, Robert A.; Shectman, Stephen A.; Woods, Deborah F.

    2016-08-01

    The WISDOM instrument concept was developed at MIT as part of a NASA-NSF funded study to equip the 3.5m WIYN telescope with an extremely precise radial velocity spectrometer. The spectrograph employs an asymmetric white pupil optical design, where the instrument is split into two nearly identical "Short" (380 to 750 nm) and "Long"" (750 to 1300 nm) wavelength channels. The echelle grating and beam sizes are R3.75/125mm and R6/80mm in the short and long channels respectively. Together with the pupil slicer, and octagonal to rectangular fibre coupling, this permits resolving powers over R = 120k with a 1.2" diameter fibre on the sky. A factor of two reduction in the focal length between the main collimator OAP and the transfer collimator ensures a very compact instrument, with a small white pupil footprint, thereby enabling small cross-dispersing and camera elements. A dichroic is used near the white pupil to split each of the long and short channels into two, so that the final spectrograph has 4 channels; namely "Blue," "Green," "Red" and "NIR." Each of these channels has an anamorphic VPH grism for cross-dispersion, and a fully dioptric all-spherical camera objective. The spectral footprints cover 4k×4k and 6k×6k CCDs with 15 µm pixels in the short "Blue" and "Green" wavelength channels, respectively. A 4k×4k CCD with 15 μm pixels is used in the long "Red" channel, with a HgCdTe 1.7 μm cutoff 4k×4k detector with 10um pixels is to be used in the long "NIR" channel. The white pupil relay includes a Mangin mirror very close to the intermediate focus to correct the white pupil relay Petzval curvature before it is swept into a cylinder by the cross-dispersers. This design decision allows each of the dioptric cameras to be fully optimised and tested independently of the rest of the spectrograph. The baseline design for the cameras also ensures that the highest possible (diffraction limited) image quality is achieved across all wavelengths, while also ensuring

  4. High-Precision Distribution of Highly Stable Optical Pulse Trains with 8.8 × 10−19 instability

    PubMed Central

    Ning, B.; Zhang, S. Y.; Hou, D.; Wu, J. T.; Li, Z. B.; Zhao, J. Y.

    2014-01-01

    The high-precision distribution of optical pulse trains via fibre links has had a considerable impact in many fields. In most published work, the accuracy is still fundamentally limited by unavoidable noise sources, such as thermal and shot noise from conventional photodiodes and thermal noise from mixers. Here, we demonstrate a new high-precision timing distribution system that uses a highly precise phase detector to obviously reduce the effect of these limitations. Instead of using photodiodes and microwave mixers, we use several fibre Sagnac-loop-based optical-microwave phase detectors (OM-PDs) to achieve optical-electrical conversion and phase measurements, thereby suppressing the sources of noise and achieving ultra-high accuracy. The results of a distribution experiment using a 10-km fibre link indicate that our system exhibits a residual instability of 2.0 × 10−15 at1 s and8.8 × 10−19 at 40,000 s and an integrated timing jitter as low as 3.8 fs in a bandwidth of 1 Hz to 100 kHz. This low instability and timing jitter make it possible for our system to be used in the distribution of optical-clock signals or in applications that require extremely accurate frequency/time synchronisation. PMID:24870442

  5. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing

    PubMed Central

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-01-01

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R2-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R2-values up to 0.77) corresponded with the OBRA findings

  6. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.

    PubMed

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-09-30

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA

  7. The "RED Versa NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements"

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Evans, K.; Wiscombe, W.

    2003-01-01

    A new method for retrieving cloud optical depth from ground-based measurements of zenith radiance in the RED and near infrared (MR) spectral regions is introduced. Because zenith radiance does not have a one-to-one relationship with optical depth, it is absolutely impossible to use a monochromatic retrieval. On the other side, algebraic combinations of spectral radiances such as NDCI while largely removing nouniquiness and the radiative effects of cloud inhomogeneity, can result in poor retrievals due to its insensitivity to cloud fraction. Instead, both RED and NIR radiances as points on the 'RED vs. NIR' plane are proposed to be used for retrieval. The proposed retrieval method is applied to Cimel measurements at the Atmospheric Radiation Measurements (ARM) site in Oklahoma. Cimel, a multi-channel sunphotometer, is a part of AERONET - a ground-based network for monitoring aerosol optical properties. The results of retrieval are compared with the ones from Microwave Radiometer (MWR) and Multi-Filter Rotating Shadowband Radiometers (MFRSR) located next to Cimel at the ARM site. In addition, the performance of the retrieval method is assessed using a fractal model of cloud inhomogeneity and broken cloudiness. The preliminary results look very promising both theoretically and from measurements.

  8. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    The time-reversed ultrasonically encoded (TRUE) optical focusing technique is a method that is capable of focusing light deep within a scattering medium. This theoretical study aims to explore the depth limits of the TRUE technique for biological tissues in the context of two primary constraints – the safety limit of the incident light fluence and a limited TRUE’s recording time (assumed to be 1 ms), as dynamic scatterer movements in a living sample can break the time-reversal scattering symmetry. Our numerical simulation indicates that TRUE has the potential to render an optical focus with a peak-to-background ratio of ~2 at a depth of ~103 mm at wavelength of 800 nm in a phantom with tissue scattering characteristics. This study sheds light on the allocation of photon budget in each step of the TRUE technique, the impact of low signal on the phase measurement error, and the eventual impact of the phase measurement error on the strength of the TRUE optical focus. PMID:24663917

  9. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology.

    PubMed

    Siewert, F; Buchheim, J; Zeschke, T; Störmer, M; Falkenberg, G; Sankari, R

    2014-09-01

    To fully exploit the ultimate source properties of the next-generation light sources, such as free-electron lasers (FELs) and diffraction-limited storage rings (DLSRs), the quality requirements for gratings and reflective synchrotron optics, especially mirrors, have significantly increased. These coherence-preserving optical components for high-brightness sources will feature nanoscopic shape accuracies over macroscopic length scales up to 1000 mm. To enable high efficiency in terms of photon flux, such optics will be coated with application-tailored single or multilayer coatings. Advanced thin-film fabrication of today enables the synthesis of layers on the sub-nanometre precision level over a deposition length of up to 1500 mm. Specifically dedicated metrology instrumentation of comparable accuracy has been developed to characterize such optical elements. Second-generation slope-measuring profilers like the nanometre optical component measuring machine (NOM) at the BESSY-II Optics laboratory allow the inspection of up to 1500 mm-long reflective optical components with an accuracy better than 50 nrad r.m.s. Besides measuring the shape on top of the coated mirror, it is of particular interest to characterize the internal material properties of the mirror coating, which is the domain of X-rays. Layer thickness, density and interface roughness of single and multilayer coatings are investigated by means of X-ray reflectometry. In this publication recent achievements in the field of slope measuring metrology are shown and the characterization of different types of mirror coating demonstrated. Furthermore, upcoming challenges to the inspection of ultra-precise optical components designed to be used in future FEL and DLSR beamlines are discussed.

  10. Combining energy and Laplacian regularization to accurately retrieve the depth of brain activity of diffuse optical tomographic data

    NASA Astrophysics Data System (ADS)

    Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele

    2016-03-01

    Diffuse optical tomography (DOT) provides data about brain function using surface recordings. Despite recent advancements, an unbiased method for estimating the depth of absorption changes and for providing an accurate three-dimensional (3-D) reconstruction remains elusive. DOT involves solving an ill-posed inverse problem, requiring additional criteria for finding un