NASA Astrophysics Data System (ADS)
Vincent, D. A.; Nielsen, K. E.; Durkee, P. A.; Reid, J. S.
2005-12-01
The advancement and proliferation of high-resolution commercial imaging satellites presents a new opportunity for overland aerosol characterization. Current aerosol optical depth retrieval methods typically fail over areas with high surface reflectance, such as urban areas and deserts, since the upwelling radiance due to scattering by aerosols is small compared to the radiance resulting from surface reflection. The method proposed here uses shadows cast on the surface to exploit the differences between radiance from the adjacent shaded and unshaded areas of the scene. Shaded areas of the scene are primarily illuminated by diffuse irradiance that is scattered downward from the atmosphere, while unshaded areas are illuminated by both diffuse and direct solar irradiance. The first-order difference between the shaded and unshaded areas is the direct component. Given uniform surface reflectance for the shaded and unshaded areas, the difference in reflected radiance measured by a satellite sensor is related to the direct transmission of solar radiation and inversely proportional to total optical depth. Using an iterative approach, surface reflectance and mean aerosol reflectance can be partitioned to refine the retrieved total optical depth. Aerosol optical depth can then be determined from its contribution to the total atmospheric optical depth (following correction for molecular Rayleigh scattering). Intitial results based on QuickBird imagery and AERONET data collected during the United Arab Emirates Unified Aerosol Experiment (UAE2) indicate that aerosol optical depth retrievals are possible in the visible and near-infrared region with an accuracy of ~0.04.
NASA Astrophysics Data System (ADS)
Vant-Hull, Brian; Li, Zhanqing; Taubman, Brett F.; Levy, Robert; Marufu, Lackson; Chang, Fu-Lung; Doddridge, Bruce G.; Dickerson, Russell R.
2005-05-01
In July 2002 Canadian forest fires produced a major smoke episode that blanketed the east coast of the United States. Properties of the smoke aerosol were measured in situ from aircraft, complementing operational Aerosol Robotic Network (AERONET), and Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2-16% lower than those directly measured by AERONET. The use of in situ-derived optical properties resulted in optical depths 22-43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and top of atmosphere. Comparisons to surface (Surface Radiation Budget Network (SURFRAD) and ISIS) and to satellite (Clouds and Earth Radiant Energy System CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET-derived optical properties produced better fits to optical depth measurements, while in situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.
NASA Astrophysics Data System (ADS)
vant-Hull, B.; Li, Z.; Taubman, B.; Marufu, L.; Levy, R.; Chang, F.; Doddridge, B.; Dickerson, R.
2004-12-01
In July 2002 Canadian forest fires produced a major smoke episode that blanketed the U.S. East Coast. Properties of the smoke aerosol were measured in-situ from aircraft, complementing operational AERONET and MODIS remote sensed aerosol retrievals. This study compares single scattering albedo and phase function derived from the in-situ measurements and AERONET retrievals in order to evaluate their consistency for application to satellite retrievals of optical depth and radiative forcing. These optical properties were combined with MODIS reflectance observations to calculate optical depth. The use of AERONET optical properties yielded optical depths 2% to 16% lower than those directly measured by AERONET. The use of in-situ derived optical properties resulted in optical depths 22% to 43% higher than AERONET measurements. These higher optical depths are attributed primarily to the higher absorption measured in-situ, which is roughly twice that retrieved by AERONET. The resulting satellite retrieved optical depths were in turn used to calculate integrated radiative forcing at both the surface and TOA. Comparisons to surface (SurfRad and ISIS) and to satellite (CERES) broadband radiometer measurements demonstrate that the use of optical properties derived from the aircraft measurements provided a better broadband forcing estimate (21% error) than those derived from AERONET (33% error). Thus AERONET derived optical properties produced better fits to optical depth measurements, while in-situ properties resulted in better fits to forcing measurements. These apparent inconsistencies underline the significant challenges facing the aerosol community in achieving column closure between narrow and broadband measurements and calculations.
NASA Astrophysics Data System (ADS)
Bukharin, Mikhail A.; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.
2016-05-01
In the investigation we demonstrated technique of direct femtosecond laser writing of tracks with induced refractive index at record low depth under surface of lithium niobate (3-15 μm). It was shown that with the help of proposed technique one can be written claddings of near surface optical waveguides that plays a key role in fabrication of fast electro-optical modulators with low operating voltage. Fundamental problem resolved in the investigation consists in suppression of negative factors impeding femtosecond inscription of waveguides at low depths. To prevent optical breakdown of crystal surface we used high numerical aperture objectives for focusing of light. It was shown, that advanced heat accumulation regime of femtosecond inscription is inapplicable for writing of near-surface waveguides, and near the surface waveguides should be written in non-thermal regime in contrast to widespread femtosecond writing at depths of tens micrometers. Inscribed waveguides were examined for optical losses and polarization properties. It was experimentally shown, that femtosecond written near surface waveguides have such advantages over widely used proton exchanged and Ti-diffusion waveguides as lower optical losses (down to 0.3 dB/cm) and maintaining of all polarization states of propagation light, which is crucial for development of electro-optical modulators for broadband and ultrashort laser emission. Novelty of the results consists in technique of femtosecond inscription of waveguides at record low depths under the surface of crystals. As compared to previous investigations in the field (structures at depths near 50 um with buried electrodes), the obtained waveguides could be used with simple closely adjacent on-surface electrodes.
NASA Astrophysics Data System (ADS)
Vincendon, M.; Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B.
2007-03-01
We have analyzed five EPF sequences acquired by OMEGA/Mars Express in the near-IR over ice-free and ice-covered surfaces to retrieve simultaneously the Lambert albedo of the surface and the optical depth of aerosols.
Structured illumination assisted microdeflectometry with optical depth scanning capability
Lu, Sheng-Huei; Hua, Hong
2018-01-01
Microdeflectometry is a powerful noncontact tool for measuring nanometer defects on a freeform surface. However, it requires a time-consuming process to take measurements at different depths for an extended depth of field (EDOF) and lacks surface information for integrating the measured gradient data to height. We propose an optical depth scanning technique to speed up the measurement process and introduce the structured illumination technique to efficiently determine the focused data among 3D observation and provide surface orientations for reconstructing an unknown surface shape. We demonstrated 3D measurements with an equivalent surface height sensitivity of 7.21 nm and an EDOF of at least 250 μm, which is 15 times that of the diffraction limited depth range. PMID:27607986
Aerosol Optical Depth Determinations for BOREAS
NASA Technical Reports Server (NTRS)
Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)
1994-01-01
Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10:30 local time and cleared fully by 11:30. Heavy smoke characterized the rest of the IFC in both study areas.
NASA Technical Reports Server (NTRS)
Kent, G. S.; Mccormick, M. P.; Wang, P.-H.
1994-01-01
The stratospheric aerosol measurement 2, stratospheric aerosol and gas experiment (SAGE) 1, and SAGE 2 series of solar occultation satellite instruments were designed for the study of stratospheric aerosols and gases and have been extensively validated in the stratosphere. They are also capable, under cloud-free conditions, of measuring the extinction due to aerosols in the troposphere. Such tropospheric extinction measurements have yet to be validated by appropriate lidar and in situ techniques. In this paper published atmospheric aerosol optical depth measurements, made from high-altitude observatories during volcanically quiet periods, have been compared with optical depths calculated from local SAGE 1 and SAGE 2 extinction profiles. Surface measurements from three such observatories have been used, one located in Hawaii and two within the continental United States. Data have been intercompared on a seasonal basis at wave-lenths between 0.5 and 1.0 micron and found to agree within the range of measurement errors and expected atmospheric variation. The mean rms difference between the optical depths for corresponding satellite and surface measured data sets is 29%, and the mean ratio of the optical depths is 1.09.
Front lighted optical tooling method and apparatus
Stone, William J.
1985-06-18
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.
Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations
NASA Technical Reports Server (NTRS)
Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee
2011-01-01
The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.
NASA Technical Reports Server (NTRS)
Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.
2010-01-01
CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmermans, Eddy Marcel Elvire; Nisoli, Cristiano; Mozyrsky, Dima
Light radiated from a hot, opaque thermal emitter originates mostly from near the surface at which the object becomes opaque (the surface of last scattering). To be specific, we define the “optical surface” as the surface at which the optical depth, as observed from a detector, takes on the value of 1. The optical depth along a line of sight depends on the wavelength dependent. Accumulating light in different spectral bands, spectral detector then records light from different surfaces, a structure that we can picture somewhat like the layers of an onion. The theoretical framework that predicts the emitted spectralmore » signal is radioactive transfer.« less
Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi
2015-01-01
We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Jung, Yeonjin; Lee, Yun Gon
2016-07-01
Radiative transfer model simulations were used to investigate the erythemal ultraviolet (EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors (CFEUV) for UV-A [CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from -5.0% to 25.0% for aerosols, and from -9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions (i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%-4.1% per 0.1 albedo change, depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.
Validation of MODIS Aerosol Optical Depth Retrieval Over Land
NASA Technical Reports Server (NTRS)
Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)
2001-01-01
Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.
Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT.
Kim, Young Kook; Ha, Ahnul; Lee, Won June; Jeoung, Jin Wook; Park, Ki Ho
2017-12-01
To introduce the measurement method of optic disc cup surface depth using spectral-domain optical coherence tomography (SD-OCT) and then evaluate the rates of cup surface depression at 3 different stages of glaucoma. We retrospectively identified 52 eyes with preperimetric glaucoma, 56 with mild-or-moderate glaucoma and 50 with severe glaucoma and followed them for at least 48 months. Eyes were imaged using SD-OCT (Cirrus HD-OCT) at 12-month intervals. The mean cup surface depth was calculated using the following formula: Cup volume/(disc area×average cup-to-disc ratio)-200 μm. The rates of mean cup surface depression (μm/y) were significantly greater in mild-or-moderate glaucoma (-7.96±1.03) than in preperimetric (-3.11±0.61) and severe glaucoma (-0.70±0.12; all P<0.001). The percentile rates of mean cup surface depression (%/y) were significantly greater than those of average of retinal nerve fiber layer (RNFL) thinning (%/y) in preperimetric glaucoma (-1.64±0.12 vs. -1.11±0.07; P<0.001) and mild-or-moderate glaucoma (-4.20±0.33 vs. -3.14±0.19; P<0.001); and conversely, in severe glaucoma, mean cup surface depth changed slower than did average RNFL thickness (-0.64±0.06 vs. -0.75±0.08%/y; P<0.001). In early-to-moderate glaucoma, the cup surface depth changed faster than did the RNFL thickness. These results signify the possibility that SD-OCT-based estimation of cup surface depth might be useful for monitoring of glaucoma development and progression.
Comparison of the optical depth of total ozone and atmospheric aerosols in Poprad-Gánovce, Slovakia
NASA Astrophysics Data System (ADS)
Hrabčák, Peter
2018-06-01
The amount of ultraviolet solar radiation reaching the Earth's surface is significantly affected by atmospheric ozone along with aerosols. The present paper is focused on a comparison of the total ozone and atmospheric aerosol optical depth in the area of Poprad-Gánovce, which is situated at the altitude of 706 m a. s. l. in the vicinity of the highest mountain in the Carpathian mountains. The direct solar ultraviolet radiation has been measured here continuously since August 1993 using a Brewer MKIV ozone spectrophotometer. These measurements have been used to calculate the total amount of atmospheric ozone and, subsequently, its optical depth. They have also been used to determine the atmospheric aerosol optical depth (AOD) using the Langley plot method. Results obtained by this method were verified by means of comparison with a method that is part of the Brewer operating software, as well as with measurements made by a Cimel sun photometer. Diffuse radiation, the stray-light effect and polarization corrections were applied to calculate the AOD using the Langley plot method. In this paper, two factors that substantially attenuate the flow of direct ultraviolet solar radiation to the Earth's surface are compared. The paper presents results for 23 years of measurements, namely from 1994 to 2016. Values of optical depth were determined for the wavelengths of 306.3, 310, 313.5, 316.8 and 320 nm. A statistically significant decrease in the total optical depth of the atmosphere was observed with all examined wavelengths. Its root cause is the statistically significant decline in the optical depth of aerosols.
NASA Astrophysics Data System (ADS)
Seppä, Jeremias; Niemelä, Karri; Lassila, Antti
2018-05-01
The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm × 2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.
Subsurface damage in some single crystalline optical materials.
Randi, Joseph A; Lambropoulos, John C; Jacobs, Stephen D
2005-04-20
We present a nondestructive method for estimating the depth of subsurface damage (SSD) in some single crystalline optical materials (silicon, lithium niobate, calcium fluoride, magnesium fluoride, and sapphire); the method is established by correlating surface microroughness measurements, specifically, the peak-to-valley (p-v) microroughness, to the depth of SSD found by a novel destructive method. Previous methods for directly determining the depth of SSD may be insufficient when applied to single crystals that are very soft or very hard. Our novel destructive technique uses magnetorheological finishing to polish spots onto a ground surface. We find that p-v surface microroughness, appropriately scaled, gives an upper bound to SSD. Our data suggest that SSD in the single crystalline optical materials included in our study (deterministically microground, lapped, and sawed) is always less than 1.4 times the p-v surface microroughness found by white-light interferometry. We also discuss another way of estimating SSD based on the abrasive size used.
USDA-ARS?s Scientific Manuscript database
Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...
A combination of in-situ PM2.5, sunphotometers, upward pointing lidar and satellite aerosol optical depth (AOD) instruments have been employed to better understand variability in the correlation between AOD and PM2.5 at the surface. Previous studies have shown good correlation be...
Triton - Scattering models and surface/atmosphere constraints
NASA Technical Reports Server (NTRS)
Thompson, W. Reid
1989-01-01
Modeling of Triton's spectrum indicates a bright scattering layer of optical depth tau about 3 overlying an optically deep layer of CH4 with high absorption and little scattering. UV absorption in the spectrum indicates tau about 0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p = 0.62 + 0.18 or - 0.12 radius r = 1480 + or - 180 km, and temperature T = 48 + or - 6 K. With scattering optical depths of 0.3-3 and about 1-10 mb of N2, a Mars-like atmospheric density and surface visibility pertain.
Research of detection depth for graphene-based optical sensor
NASA Astrophysics Data System (ADS)
Yang, Yong; Sun, Jialve; Liu, Lu; Zhu, Siwei; Yuan, Xiaocong
2018-03-01
Graphene-based optical sensors have been developed for research into the biological intercellular refractive index (RI) because they offer greater detection depths than those provided by the surface plasmon resonance technique. In this Letter, we propose an experimental approach for measurement of the detection depth in a graphene-based optical sensor system that uses transparent polydimethylsiloxane layers with different thicknesses. The experimental results show that detection depths of 2.5 μm and 3 μm can be achieved at wavelengths of 532 nm and 633 nm, respectively. These results prove that graphene-based optical sensors can realize long-range RI detection and are thus promising for use as tools in the biological cell detection field. Additionally, we analyze the factors that influence the detection depth and provide a feasible approach for detection depth control based on adjustment of the wavelength and the angle of incidence. We believe that this approach will be useful in RI tomography applications.
Validation of TOMS Aerosol Products using AERONET Observations
NASA Technical Reports Server (NTRS)
Bhartia, P. K.; Torres, O.; Sinyuk, A.; Holben, B.
2002-01-01
The Total Ozone Mapping Spectrometer (TOMS) aerosol algorithm uses measurements of radiances at two near UV channels in the range 331-380 nm to derive aerosol optical depth and single scattering albedo. Because of the low near UV surface albedo of all terrestrial surfaces (between 0.02 and 0.08), the TOMS algorithm has the capability of retrieving aerosol properties over the oceans and the continents. The Aerosol Robotic Network (AERONET) routinely derives spectral aerosol optical depth and single scattering albedo at a large number of sites around the globe. We have performed comparisons of both aerosol optical depth and single scattering albedo derived from TOMS and AERONET. In general, the TOMS aerosol products agree well with the ground-based observations, Results of this validation will be discussed.
Heating of solid targets with laser pulses
NASA Technical Reports Server (NTRS)
Bechtel, J. H.
1975-01-01
Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.
Comment on Rayleigh-Scattering Calculations for the Terrestrial Atmosphere
NASA Astrophysics Data System (ADS)
On, Ois-Marie
1998-01-01
It is shown that, for a given surface pressure, the atmospheric vertical temperature profile has a negligible influence on the Rayleigh optical depth. This contradicts the Bucholtz recommendation for the use of values that vary with air mass type. The influence of atmospheric water vapor amount on the Rayleigh optical depth is also investigated.
NASA Astrophysics Data System (ADS)
Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu
2017-09-01
Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.
Modeling Martian Dust Using Mars-GRAM
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.
2010-01-01
Engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: TES Mapping Years 1 and 2, with Mars-GRAM data coming from MGCM model results driven by observed TES dust optical depth TES Mapping Year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES).
NASA Technical Reports Server (NTRS)
Doug, Xiquan; Mace, Gerald G.; Minnis, Patrick; Young, David F.
2001-01-01
To study Arctic stratus cloud properties and their effect on the surface radiation balance during the spring transition season, analyses are performed using data taken during three cloudy and two clear days in May 1998 as part of the First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE). Radiative transfer models are used in conjunction with surface- and satellite-based measurements to retrieve the layer-averaged microphysical and shortwave radiative properties. The surface-retrieved cloud properties in Cases 1 and 2 agree well with the in situ and satellite retrievals. Discrepancies in Case 3 are due to spatial mismatches between the aircraft and the surface measurements in a highly variable cloud field. Also, the vertical structure in the cloud layer is not fully characterized by the aircraft measurements. Satellite data are critical for understanding some of the observed discrepancies. The satellite-derived particle sizes agree well with the coincident surface retrievals and with the aircraft data when they were collocated. Optical depths derived from visible-channel data over snow backgrounds were overestimated in all three cases, suggesting that methods currently used in satellite cloud climatologies derive optical depths that are too large. Use of a near-infrared channel with a solar infrared channel to simultaneously derive optical depth and particle size appears to alleviate this overestimation problem. Further study of the optical depth retrieval is needed. The surface-based radiometer data reveal that the Arctic stratus clouds produce a net warming of 20 W m(exp -2) in the surface layer during the transition season suggesting that these clouds may accelerate the spring time melting of the ice pack. This surface warming contrasts with the net cooling at the top of the atmosphere (TOA) during the same period. All analysis of the complete FIRE ACE data sets will be valuable for understanding the role of clouds during the entire melting and refreezing process that occurs annually in the Arctic.
Optical signatures of deep level defects in Ga2O3
NASA Astrophysics Data System (ADS)
Gao, Hantian; Muralidharan, Shreyas; Pronin, Nicholas; Karim, Md Rezaul; White, Susan M.; Asel, Thaddeus; Foster, Geoffrey; Krishnamoorthy, Sriram; Rajan, Siddharth; Cao, Lei R.; Higashiwaki, Masataka; von Wenckstern, Holger; Grundmann, Marius; Zhao, Hongping; Look, David C.; Brillson, Leonard J.
2018-06-01
We used depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to measure the effects of near-surface plasma processing and neutron irradiation on native point defects in β-Ga2O3. The near-surface sensitivity and depth resolution of these optical techniques enabled us to identify spectral changes associated with removing or creating these defects, leading to identification of one oxygen vacancy-related and two gallium vacancy-related energy levels in the β-Ga2O3 bandgap. The combined near-surface detection and processing of Ga2O3 suggests an avenue for identifying the physical nature and reducing the density of native point defects in this and other semiconductors.
Sub-surface mechanical damage distributions during grinding of fused silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, T I; Wong, L L; Miller, P E
2005-11-28
The distribution and characteristics of surface cracking (i.e. sub-surface damage or SSD) formed during standard grinding processes has been investigated on fused silica glass. The SSD distributions of the ground surfaces were determined by: (1) creating a shallow (18-108 {micro}m) wedge/taper on the surface by magneto-rheological finishing; (2) exposing the SSD by HF acid etching; and (3) performing image analysis of the observed cracks from optical micrographs taken along the surface taper. The observed surface cracks are characterized as near-surface lateral and deeper trailing indent type fractures (i.e., chatter marks). The SSD depth distributions are typically described by a singlemore » exponential distribution followed by an asymptotic cutoff in depth (c{sub max}). The length of the trailing indent is strongly correlated with a given process. Using established fracture indentation relationships, it is shown that only a small fraction of the abrasive particles are being mechanically loaded and causing fracture, and it is likely the larger particles in the abrasive particle size distribution that bear the higher loads. The SSD depth was observed to increase with load and with a small amount of larger contaminant particles. Using a simple brittle fracture model for grinding, the SSD depth distribution has been related to the SSD length distribution to gain insight into ''effective'' size distribution of particles participating in the fracture. Both the average crack length and the surface roughness were found to scale linearly with the maximum SSD depth (c{sub max}). These relationships can serve as useful rules-of-thumb for nondestructively estimating SSD depth and to identify the process that caused the SSD. In certain applications such as high intensity lasers, SSD on the glass optics can serve as a reservoir for minute amounts of impurities that absorb the high intensity laser light and lead to subsequent laser-induced surface damage. Hence a more scientific understanding of SSD formation can provide a means to establish recipes to fabricate SSD-free, laser damage resistant optical surfaces.« less
NASA Astrophysics Data System (ADS)
Hoff, R. M.
2014-12-01
In 2009, the Air and Waste Management Association invited their annual critical review on the topic of measurement of surface particulate air pollution from satellites (Hoff and Christopher, 2009). At that time, over thirty publications had addressed the relationship between aerosol optical depth measured from satellites and the emissions, transport, and exposure at the surface from man-made haze, dust, and smoke. I will revisit the conclusions reached in that critical review, which we subtitled "Have we reached the promised land". Five years later and dozens of subsequent publications later on this topic, have we really advanced the state of the science in relating optical properties to surface measurements or are we just generating more data? The VIIRS imager and the upcoming GOES-R imager have the potential to provide higher spatial and temporal observations of aerosol optical depth from space. But to address the need for quantitatively improving estimates of exposure at the surface, is this enough or do we need to combine observing systems to address the real physics of the problem? Hoff, R. M. and S. A. Christopher, 2009. The 34th AWMA Critical Review: Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? J. Air & Waste Manage. Assoc. 59, 645-675, DOI:10.3155/1047-3289.59.6.645.
NASA Astrophysics Data System (ADS)
Fabritius, T.; Alarousu, E.; Prykäri, T.; Hast, J.; Myllylä, Risto
2006-02-01
Due to the highly light scattering nature of paper, the imaging depth of optical methods such as optical coherence tomography (OCT) is limited. In this work, we study the effect of refractive index matching on improving the imaging depth of OCT in paper. To this end, four different refractive index matching liquids (ethanol, 1-pentanol, glycerol and benzyl alcohol) with a refraction index between 1.359 and 1.538 were used in experiments. Low coherent light transmission was studied in commercial copy paper sheets, and the results indicate that benzyl alcohol offers the best improvement in imaging depth, while also being sufficiently stable for the intended purpose. Constructed cross-sectional images demonstrate visually that the imaging depth of OCT is considerably improved by optical clearing. Both surfaces of paper sheets can be detected along with information about the sheet's inner structure.
SURPHEX (tm): New dry photopolymers for replication of surface relief diffractive optics
NASA Technical Reports Server (NTRS)
Shvartsman, Felix P.
1993-01-01
High efficiency, deep groove, surface relief Diffractive Optical Elements (DOE) with various optical functions can be recorded in a photoresist using conventional interferometric holographic and computer generated photolithographic recording techniques. While photoresist recording media are satisfactory for recording individual surface relief DOE, a reliable and precise method is needed to replicate these diffractive microstructures to maintain the high aspect ratio in each replicated DOE. The term 'high aspect ratio' means that the depth of a groove is substantially greater, i.e. 2, 3, or more times greater, than the width of the groove. A new family of dry photopolymers SURPHEX was developed recently at Du Pont to replicate such highly efficient, deep groove DOE's. SURPHEX photopolymers are being utilized in Du Pont's proprietary Dry Photopolymer Embossing (DPE) technology to replicate with very high degree of precision almost any type of surface relief DOE. Surfaces relief microstructures with width/depth aspect ratio of 1:20 (0.1 micron/2.0 micron) were faithfully replicated by DPE technology. Several types of plastic and glass/quartz optical substrates can be used for economical replication of DOE.
Three-dimensional digital mapping of the optic nerve head cupping in glaucoma
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Ramirez, Manuel; Morales, Jose
1992-08-01
Visualization of the optic nerve head cupping is clinically achieved by stereoscopic viewing of a fundus image pair of the suspected eye. A novel algorithm for three-dimensional digital surface representation of the optic nerve head, using fusion of stereo depth map with a linearly stretched intensity image of a stereo fundus image pair, is presented. Prior to depth map acquisition, a number of preprocessing tasks including feature extraction, registration by cepstral analysis, and correction for intensity variations are performed. The depth map is obtained by using a coarse to fine strategy for obtaining disparities between corresponding areas. The required matching techniques to obtain the translational differences in every step, uses cepstral analysis and correlation-like scanning technique in the spatial domain for the finest details. The quantitative and precise representation of the optic nerve head surface topography following this algorithm is not computationally intensive and should provide more useful information than just qualitative stereoscopic viewing of the fundus as one of the diagnostic criteria for diagnosis of glaucoma.
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.
2003-01-01
Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).
Feng, Zexin; Froese, Brittany D; Huang, Chih-Yu; Ma, Donglin; Liang, Rongguang
2015-07-10
We consider here creation of an unconventional flattop beam with a large depth of field by employing double freeform optical surfaces. The output beam is designed with continuous variations from the flattop to almost zero near the edges to resist the influence of diffraction on its propagation. We solve this challenging problem by naturally incorporating an optimal transport map computation scheme for unconventional boundary conditions with a simultaneous point-by-point double surface construction procedure. We demonstrate experimentally the generation of a long-range propagated triangular beam through a plano-freeform lens pair fabricated by a diamond-tuning machine.
Atmospheric Science Data Center
2015-11-24
... Parameters: Clouds Irradiance Latent Heat Flux Liquid Water Content Precipitation Rate Sea Surface ... Solar Transmittance Specific Humidity Surface Stress System Optical Depth Temperature Wind Direction Wind Speed ...
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.
2008-01-01
Engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL)1. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: a) TES Mapping Years 1 and 2, with Mars-GRAM data coming from MGCM model results driven by observed TES dust optical depth; and b) TES Mapping Year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Mars-GRAM 2005 has been validated2 against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES)
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.
Bowen, Jennifer C; Clark, Catherine D; Keller, Jason K; De Bruyn, Warren J
2017-01-15
Chromophoric dissolved organic matter (CDOM) optical properties were measured in surface and pore waters as a function of depth and distance from an oil well in a southern California salt marsh. Higher fluorescence and absorbances in pore vs. surface waters suggest soil pore water is a reservoir of CDOM in the marsh. Protein-like fluorophores in pore waters at distinct depths corresponded to variations in sulfate depletion and Fe(II) concentrations from anaerobic microbial activity. These variations were supported by fluorescence indexes and are consistent with differences in optical molecular weight and aromaticity indicators. Fluorescence indices were consistent with autochthonous material of aquatic origin in surface waters, with more terrestrial, humified allochthonous material in deeper pore waters. CDOM optical properties were consistent with significantly enhanced microbial activity in regions closest to the oil well, along with a three-dimensional excitation/emission matrix fluorescence spectrum peak attributable to oil, suggesting anaerobic microbial degradation of oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium
NASA Astrophysics Data System (ADS)
Mkoko, Z.; Abou-El-Hossein, K.
2015-08-01
Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.
Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W
2013-09-01
Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.
Soil Water Measurement Using Actively Heated Fiber Optics at Field Scale.
Vidana Gamage, Duminda N; Biswas, Asim; Strachan, Ian B; Adamchuk, Viacheslav I
2018-04-06
Several studies have demonstrated the potential of actively heated fiber optics (AHFO) to measure soil water content (SWC) at high spatial and temporal resolutions. This study tested the feasibility of the AHFO technique to measure soil water in the surface soil of a crop grown field over a growing season using an in-situ calibration approach. Heat pulses of five minutes duration were applied at a rate of 7.28 W m -1 along eighteen fiber optic cable transects installed at three depths (0.05, 0.10 and 0.20 m) at six-hour intervals. Cumulative temperature increase (T cum ) during heat pulses was calculated at locations along the cable. While predicting commercial sensor measurements, the AHFO showed root mean square errors (RMSE) of 2.8, 3.7 and 3.7% for 0.05, 0.10 and 0.20 m depths, respectively. Further, the coefficients of determination (R²) for depth specific relationships were 0.87 (0.05 m depth), 0.46 (0.10 m depth), 0.86 (0.20 m depth) and 0.66 (all depths combined). This study showed a great potential of the AHFO technique to measure soil water at high spatial resolutions (<1 m) and to monitor soil water dynamics of surface soil in a crop grown field over a cropping season with a reasonable compromise between accuracy and practicality.
Depth Profilometry via Multiplexed Optical High-Coherence Interferometry
Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.
2015-01-01
Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289
Depth profilometry via multiplexed optical high-coherence interferometry.
Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R
2015-01-01
Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry.
Investigating smoke's influence on primary production throughout the Amazon
NASA Astrophysics Data System (ADS)
Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.
2007-12-01
Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).
Atmospheric Optical Properties and Spectral Analysis of Desert Aerosols
NASA Astrophysics Data System (ADS)
Yvgeni, D.; Karnieli, A.; Kaufman, Y. J.; Andreae, M. O.; Holben, B. N.; Maenhaut, W.
2002-05-01
Scientific background Aerosols can interact directly with solar and terrestrial radiation by scattering as well as absorption. In addition, they can indirectly alter the planetary albedo by modifying the properties of clouds. Objectives Investigations have been devoted to two main areas: (1) Aerosol climatology situation in the Negev desert, investigations of physical and chemical characteristics of aerosols, and study of the local and long-range transport trajectory of polluted air masses over the Negev desert; and (2) An estimation of the optical properties throughout the atmospheric column by surface measurements via performance of spectral and statistical analysis of the data received from two measurement systems. Results and conclusions Analyzed data from the Sede Boker site, in the Negev Desert of Israel, shows an increase in aerosol optical depth during the summer seasons and a decrease during winter. One of the possible reasons for this characteristic is an increase of the precipitable water (reaches 3.0-3.5 cm) due to a constant wind stream from the Mediterranean Sea in same time. The highest probability distribution of the aerosol optical depth is in the range of 0.15-0.20; and of the Angstrom parameter is in range of 0.83 - 1.07. During dust storm events, the scattering coefficient range at 670 nm and 440 nm wavelengths were inverted. It was discovered that the dust particles in this case had non-spherical character. Comparison between optical depth, measured through all atmospheric column, and scattering coefficient from surface measurements provides correlation coefficient (r) equal to 0.64. The Angstrom parameter, calculated via optical depth and via scattering coefficient, provides a correlation coefficient of 0.66. Thus we can obtain an estimate of the influence of the surface aerosol situation on column optical properties. The combined analysis of dust cloud altitude and optical depth as a function of the time indicates long-term transport and settling of the aerosol, thus this analysis allowed to get a qualitative relation with trajectories and transport models. An additional finding is that except for the dust storms, the aerosol optical properties defined by fine particles, i.e. product of urban pollution. Possible explanations for this situation are the pollution sources in the Israeli Mediterranean coast, where population and industrial centers are concentrated, and long-range transport of polluted air masses from the European region.
NASA Astrophysics Data System (ADS)
Shiraishi, Masahiko; Kubodera, Shoichi; Watanabe, Kazuhiro
2017-05-01
We have evaluated inner surface roughness of inline/picoliter fiber optic spectrometer fabricated by an NUV femtosecond laser drilling. A microhole fabricated by the femtosecond laser without breaking off works as inline/picoliter fiber optic spectrometer. The attractive feature of the spectrometer is very small sensing volume which has several tens of picoliter. A second harmonic 400 nm femtosecond laser with 350 fs pulse duration launched onto the glass fiber optic. A high aspect ratio of the microhole was fabricated after 1000 pulse shots, but there was inner surface roughness. Although the repetition rate was changed 10 to 1000 Hz in order to control the inner surface roughness, the inner surface roughness was occurred in each case. It was confirmed that ablated fused silica particles deposited on the inner surface of microhole. The depth of microhole was deepened with 1 kHz of repetition rate and number of 1000 shots. In comparison to 10 Hz, the depth of microhole was increased by approximately 80%. It was assumed that heat accumulation effect enlarged the length of drilling. In order to minimize inner surface roughness, the best method is to use low number laser shots. After 100 pulse shots with 30 μJ of pulse energy, an optical inner surface quality of microhole was acquired. The optical inner surface quality of microhole was verified by measuring the transmittance of 94% of infrared light emission launched from superluminescent diode in the case of 100 pulse shots with 20 μJ. The transmittance decreased to 52% changing the microhole fabricated by 30 μJ with 100 laser shots because of increasing interaction area between the microhole and propagating light.
Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark
2016-01-01
Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.
Balch, William M; Bowler, Bruce C; Drapeau, David T; Lubelczyk, Laura C; Lyczkowski, Emily
2018-01-01
Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m -3 ) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained-variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone.
Bowler, Bruce C.; Drapeau, David T.; Lubelczyk, Laura C.; Lyczkowski, Emily
2018-01-01
Abstract Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m−3) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained‐variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone. PMID:29576683
NASA Technical Reports Server (NTRS)
Mace, Gerald G.; Benson, Sally; Sonntag, Karen L.; Kato, Seiji; Min, Qilong; Minnis, Patrick; Twohy, Cynthia H.; Poellot, Michael; Dong, Xiquan; Long, Charles;
2006-01-01
It has been hypothesized that continuous ground-based remote sensing measurements from active and passive remote sensors combined with regular soundings of the atmospheric thermodynamic structure can be combined to describe the effects of clouds on the clear sky radiation fluxes. We critically test that hypothesis in this paper and a companion paper (Part II). Using data collected at the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site sponsored by the U.S. Department of Energy, we explore an analysis methodology that results in the characterization of the physical state of the atmospheric profile at time resolutions of five minutes and vertical resolutions of 90 m. The description includes thermodynamics and water vapor profile information derived by merging radiosonde soundings with ground-based data, and continues through specification of the cloud layer occurrence and microphysical and radiative properties derived from retrieval algorithms and parameterizations. The description of the atmospheric physical state includes a calculation of the infrared and clear and cloudy sky solar flux profiles. Validation of the methodology is provided by comparing the calculated fluxes with top of atmosphere (TOA) and surface flux measurements and by comparing the total column optical depths to independently derived estimates. We find over a 1-year period of comparison in overcast uniform skies, that the calculations are strongly correlated to measurements with biases in the flux quantities at the surface and TOA of less than 10% and median fractional errors ranging from 20% to as low as 2%. In the optical depth comparison for uniform overcast skies during the year 2000 where the optical depth varies over 3 orders of magnitude we find a mean positive bias of 46% with a median bias of less than 10% and a 0.89 correlation coefficient. The slope of the linear regression line for the optical depth comparison is 0.86 with a normal deviation of 20% about this line. In addition to a case study where we examine the cloud radiative effects at the TOA, surface and atmosphere by a middle latitude synoptic-scale cyclone, we examine the cloud top pressure and optical depth retrievals of ISCCP and LBTM over a period of 1 year. Using overcast period from the year 2000, we find that the satellite algorithms tend to bias cloud tops into the middle troposphere and underestimate optical depth in high optical depth events (greater than 100) by as much as a factor of 2.
Mars-GRAM 2010: Improving the Precision of Mars-GRAM
NASA Technical Reports Server (NTRS)
Justh, H. L.; Justus, C. G.; Ramey, H. S.
2011-01-01
It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3, is less than realistic. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from TES. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: (1) TES mapping year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from NASA Ames Mars General Circulation Model (MGCM) results driven by selected values of globally-uniform dust optical depth, or (2) TES mapping years 1 and 2, with Mars-GRAM data coming from MGCM results driven by observed TES dust optical depth. From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames MGCM. Above 80 km, Mars-GRAM is based on the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This choice of data has led to discrepancies that have become apparent during recent sensitivity studies for MapYear=0 and large optical depths. Unrealistic energy absorption by time-invariant atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage change in density at all altitudes. Consequently, the final result of a change in surface pressure is an imprecise atmospheric density at all altitudes.
Tian, Peifang; Devor, Anna; Sakadžić, Sava; Dale, Anders M.; Boas, David A.
2011-01-01
Absorption or fluorescence-based two-dimensional (2-D) optical imaging is widely employed in functional brain imaging. The image is a weighted sum of the real signal from the tissue at different depths. This weighting function is defined as “depth sensitivity.” Characterizing depth sensitivity and spatial resolution is important to better interpret the functional imaging data. However, due to light scattering and absorption in biological tissues, our knowledge of these is incomplete. We use Monte Carlo simulations to carry out a systematic study of spatial resolution and depth sensitivity for 2-D optical imaging methods with configurations typically encountered in functional brain imaging. We found the following: (i) the spatial resolution is <200 μm for NA ≤0.2 or focal plane depth ≤300 μm. (ii) More than 97% of the signal comes from the top 500 μm of the tissue. (iii) For activated columns with lateral size larger than spatial resolution, changing numerical aperature (NA) and focal plane depth does not affect depth sensitivity. (iv) For either smaller columns or large columns covered by surface vessels, increasing NA and∕or focal plane depth may improve depth sensitivity at deeper layers. Our results provide valuable guidance for the optimization of optical imaging systems and data interpretation. PMID:21280912
Acousto-optical Transducer with Surface Plasmons
NASA Astrophysics Data System (ADS)
Kolomenskii, A. A.; Surovic, E.; Schuessler, H. A.
2018-04-01
The surface plasmon resonance (SPR) is a sensitive technique for the detection of changes in dielectric parameters in close proximity to a metal film supporting surface plasmon waves. Here we study the application of the SPR effect to an efficient conversion of an acoustic signal into an optical one. Such a transducer potentially has a large bandwidth and good sensitivity. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and, thus, modulates the dielectric properties in the proximity of the gold film. This modulation, in turn, modifies the light reflection under surface plasmon resonance conditions. We simulate characteristics of this acousto-optical transducer with surface plasmons and provide sets of parameters at the optical wavelength of 800 nm and 633 nm for its realization.
2006-06-01
angle Imaging SpectroRadiometer MODIS Moderate Resolution Imaging Spectroradiometer NGA National Geospatial Intelligence Agency POI Principles of...and µ , the cosine of the viewing zenith angle and the effect of the variation of each of these variables on total optical depth. Extraterrestrial ...Eq. (34). Additionally, solar zenith angle also plays a role in the third term on the RHS of Eq. (34) by modifying extraterrestrial spectral solar
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria
2018-03-01
Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.
NASA Astrophysics Data System (ADS)
Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi
2018-05-01
The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.
Depth-sensitive optical spectroscopy for layered tissue measurements (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Wei; Yu, Xiaojun; Liu, Quan; Liu, Linbo; Ong, Yi Hong
2017-02-01
Disease diagnosis based on the visual inspection of the pathological presentations or symptoms on the epithelial tissue such as the skin are subjective and highly depend on the experience of the doctors. Vital diagnostic information for the accurate identification of diseases is usually located underneath the surface and its depth distribution is known to be related to disease progression. Although optical spectroscopic measurements are fast and non-invasive, the accurate retrieval of the depth-specific diagnostic information is complicated by the heterogeneous nature of epithelial tissues. The optical signal measured from a tissue is often the result of averaging from a large tissue volume that mixes information from the region of interest and the surrounding tissue region, especially from the overlaying layers. Our group has developed a series of techniques for depth sensitive optical measurements from such layered tissues. We will first review the earlier development of composite fiber-optic probe, in which the source-detector separation and the angles of source and detector fibers are varied to achieve depth sensitive measurements. Then the more recent development of non-contact axicon lens based probes for depth sensitive fluorescence measurements and the corresponding numerical methods for optimization will be introduced. Finally, the most recently developed snapshot axicon lens based probe that can measure Raman spectra from five different depths at the same time will be discussed. Results from tissue phantoms, ex vivo pork samples and in vivo fingernail measurements will be presented, which indicates the great potential of depth sensitive optical spectroscopy for clinical tissue diagnosis.
NASA Technical Reports Server (NTRS)
Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim
2014-01-01
Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0.41tAERONET + 0.16 to tMI [new algorithm] = 0.70tAERONET + 0.01.
Subsidence from an artificial permafrost warming experiment.
NASA Astrophysics Data System (ADS)
Gelvin, A.; Wagner, A. M.; Lindsey, N.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.; Saari, S.; Ajo Franklin, J. B.
2017-12-01
Using fiber optic sensing technologies (seismic, strain, and temperature) we installed a geophysical detection system to predict thaw subsidence in Fairbanks, Alaska, United States. Approximately 5 km of fiber optic was buried in shallow trenches (20 cm depth), in an area with discontinuous permafrost, where the top of the permafrost is approximately 4 - 4.5m below the surface. The thaw subsidence was enforced by 122 60-Watt vertical heaters installed over a 140 m2 area where seismic, strain, and temperature were continuously monitored throughout the length of the fiber. Several vertical thermistor strings were also recording ground temperatures to a depth of 10 m in parallel to the fiber optic to verify the measurements collected from the fiber optic cable. GPS, Electronic Distance Measurement (EDM) Traditional and LiDAR (Light and Detection and Ranging) scanning were used to investigate the surface subsidence. The heaters were operating for approximately a three month period starting in August, 2016. During the heating process the soil temperatures at the heater element increased from 3.5 to 45 °C at a depth of 3 - 4 m. It took approximately 7 months for the temperature at the heater elements to recover to their initial temperature. The depth to the permafrost table was deepened by about 1 m during the heating process. By the end of the active heating, the surface had subsided approximately 8 cm in the heating section where permafrost was closest to the surface. This was conclusively confirmed with GPS, EDM, and LiDAR. An additional LiDAR survey was performed about seven months after the heaters were turned off (in May 2017). A total subsidence of approximately 20 cm was measured by the end of the passive heating process. This project successfully demonstrates that this is a viable approach for simulating both deep permafrost thaw and the resulting surface subsidence.
Triangulation-based 3D surveying borescope
NASA Astrophysics Data System (ADS)
Pulwer, S.; Steglich, P.; Villringer, C.; Bauer, J.; Burger, M.; Franz, M.; Grieshober, K.; Wirth, F.; Blondeau, J.; Rautenberg, J.; Mouti, S.; Schrader, S.
2016-04-01
In this work, a measurement concept based on triangulation was developed for borescopic 3D-surveying of surface defects. The integration of such measurement system into a borescope environment requires excellent space utilization. The triangulation angle, the projected pattern, the numerical apertures of the optical system, and the viewing angle were calculated using partial coherence imaging and geometric optical raytracing methods. Additionally, optical aberrations and defocus were considered by the integration of Zernike polynomial coefficients. The measurement system is able to measure objects with a size of 50 μm in all dimensions with an accuracy of +/- 5 μm. To manage the issue of a low depth of field while using an optical high resolution system, a wavelength dependent aperture was integrated. Thereby, we are able to control depth of field and resolution of the optical system and can use the borescope in measurement mode with high resolution and low depth of field or in inspection mode with low resolution and higher depth of field. First measurements of a demonstrator system are in good agreement with our simulations.
Optical depth measurements by shadow-band radiometers and their uncertainties.
Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A
2007-11-20
Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.
NASA Astrophysics Data System (ADS)
Kim, H. W.; Yeom, J. M.; Woo, S. H.
2017-12-01
Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With the cloud optical depth of CALIPSO, the cloud masking result can be more improved since we can figure out how deep cloud is. To validate the cloud mask and the correlation result, the atmospheric retrieval will be computed to compare the difference between TOA reflectance and the simulated surface reflectance.
Optical coherence tomography to evaluate variance in the extent of carious lesions in depth.
Park, Kyung-Jin; Schneider, Hartmut; Ziebolz, Dirk; Krause, Felix; Haak, Rainer
2018-05-03
Evaluation of variance in the extent of carious lesions in depth at smooth surfaces within the same ICDAS code group using optical coherence tomography (OCT) in vitro and in vivo. (1) Verification/validation of OCT to assess non-cavitated caries: 13 human molars with ICDAS code 2 at smooth surfaces were imaged using OCT and light microscopy. Regions of interest (ROI) were categorized according to the depth of carious lesions. Agreement between histology and OCT was determined by unweighted Cohen's Kappa and Wilcoxon test. (2) Assessment of 133 smooth surfaces using ICDAS and OCT in vitro, 49 surfaces in vivo. ROI were categorized according to the caries extent (ICDAS: codes 0-4, OCT: scoring based on lesion depth). A frequency distribution of the OCT scores for each ICDAS code was determined. (1) Histology and OCT agreed moderately (κ = 0.54, p ≤ 0.001) with no significant difference between both methods (p = 0.25). The lesions (76.9% (10 of 13)) _were equally scored. (2) In vitro, OCT revealed caries in 42% of ROI clinically assessed as sound. OCT detected dentin-caries in 40% of ROIs visually assessed as enamel-caries. In vivo, large differences between ICDAS and OCT were observed. Carious lesions of ICDAS codes 1 and 2 vary largely in their extent in depth.
Surface profiling interferometer
Takacs, Peter Z.; Qian, Shi-Nan
1989-01-01
The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.
Geochemical and spectral characterization of naturally altered rock surfaces
NASA Technical Reports Server (NTRS)
Chang, L. L. Y.; Sommer, S. E.; Buckingham, W. F.
1981-01-01
The possibility of using the visible-near infrared region for compositional analysis of remotely sensed rock surfaces is studied. This would allow mapping rock type both on the Earth's surface and on other planetary surfaces. Reflectance spectroscopy, economic geology, optical depth determination, and X-ray diffraction mineralogy are discussed.
Hernández-Montes, Maria del Socorro; Pérez-López, Carlos; Santoyo, Fernando Mendoza
2007-01-01
3-D pulsed digital holography is a noninvasive optical method used to measure the depth position of breast tumor tissue immersed in a semisolid gel model. A master gel without inhomogeneities is set to resonate at an 810 Hz frequency; then, an identically prepared gel with an inhomogeneity is interrogated with the same resonant frequency in the original setup. Comparatively, and using only an out-of-plane sensitive setup, gel surface displacement can be measured, evidencing an internal inhomogeneity. However, the depth position cannot be measured accurately, since the out-of-plane component has the contribution of in-plane surface displacements. With the information gathered, three sensitivity vectors can be obtained to separate contributions from x, y, and z vibration displacement components, individual displacement maps for the three orthogonal axes can be built, and the inhomogeneity's depth position can be accurately measured. Then, the displacement normal to the gel surface is used to find the depth profile and its cross section. Results from the optical data obtained are compared and correlated to the inhomogeneity's physically measured position. Depth position is found with an error smaller than 1%. The inhomogeneity and its position within the gel can be accurately found, making the method a promising noninvasive alternative to study mammary tumors.
Designs for optimizing depth of focus and spot size for UV laser ablation
NASA Astrophysics Data System (ADS)
Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long
2010-11-01
The proposed optical systems are designed for extending the depths of foci (DOF) of UV lasers, which can be exploited in the laser-ablation technologies, such as laser machining and lithography. The designed systems are commonly constructed by an optical module that has at least one aspherical surface. Two configurations of optical module, lens-only and lens-reflector, are presented with the designs of 2-lens and 1-lens-1-reflector demonstrated by commercially optical software. Compared with conventional DOF-enhanced systems, which required the chromatic aberration lenses and the light sources with multiple wavelengths, the proposed designs are adapted to the single-wavelength systems, leading to more economical and efficient systems.
The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubin D.; Vogelmann A.
2011-10-13
The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved frommore » irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.« less
Chemical method for producing smooth surfaces on silicon wafers
Yu, Conrad
2003-01-01
An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).
Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.
Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto
2008-04-01
Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N 2 :H 2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe 4 N, and Fe 3 N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.
James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun
2014-07-01
The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).
NASA Astrophysics Data System (ADS)
Augustine, John A.; Cornwall, Christopher R.; Hodges, Gary B.; Long, Charles N.; Medina, Carlos I.; Deluisi, John J.
2003-02-01
Over the past decade, networks of Multifilter Rotating Shadowband Radiometers (MFRSR) and automated sun photometers have been established in the United States to monitor aerosol properties. The MFRSR alternately measures diffuse and global irradiance in six narrow spectral bands and a broadband channel of the solar spectrum, from which the direct normal component for each may be inferred. Its 500-nm channel mimics sun photometer measurements and thus is a source of aerosol optical depth information. Automatic data reduction methods are needed because of the high volume of data produced by the MFRSR. In addition, these instruments are often not calibrated for absolute irradiance and must be periodically calibrated for optical depth analysis using the Langley method. This process involves extrapolation to the signal the MFRSR would measure at the top of the atmosphere (I0). Here, an automated clear-sky identification algorithm is used to screen MFRSR 500-nm measurements for suitable calibration data. The clear-sky MFRSR measurements are subsequently used to construct a set of calibration Langley plots from which a mean I0 is computed. This calibration I0 may be subsequently applied to any MFRSR 500-nm measurement within the calibration period to retrieve aerosol optical depth. This method is tested on a 2-month MFRSR dataset from the Table Mountain NOAA Surface Radiation Budget Network (SURFRAD) station near Boulder, Colorado. The resultant I0 is applied to two Asian dust-related high air pollution episodes that occurred within the calibration period on 13 and 17 April 2001. Computed aerosol optical depths for 17 April range from approximately 0.30 to 0.40, and those for 13 April vary from background levels to >0.30. Errors in these retrievals were estimated to range from ±0.01 to ±0.05, depending on the solar zenith angle. The calculations are compared with independent MFRSR-based aerosol optical depth retrievals at the Pawnee National Grasslands, 85 km to the northeast of Table Mountain, and to sun-photometer-derived aerosol optical depths at the National Renewable Energy Laboratory in Golden, Colorado, 50 km to the south. Both the Table Mountain and Golden stations are situated within a few kilometers of the Front Range of the Rocky Mountains, whereas the Pawnee station is on the eastern plains of Colorado. Time series of aerosol optical depth from Pawnee and Table Mountain stations compare well for 13 April when, according to the Naval Aerosol Analysis and Prediction System, an upper-level Asian dust plume enveloped most of Colorado. Aerosol optical depths at the Golden station for that event are generally greater than those at Table Mountain and Pawnee, possibly because of the proximity of Golden to Denver's urban aerosol plume. The dust over Colorado was primarily surface based on 17 April. On that day, aerosol optical depths at Table Mountain and Golden are similar but are 2 times the magnitude of those at Pawnee. This difference is attributed to meteorological conditions that favored air stagnation in the planetary boundary layer along the Front Range, and a west-to-east gradient in aerosol concentration. The magnitude and timing of the aerosol optical depth measurements at Table Mountain for these events are found to be consistent with independent measurements made at NASA Aerosol Robotic Network (AERONET) stations at Missoula, Montana, and at Bondville, Illinois.
NASA Astrophysics Data System (ADS)
Deparis, Olivier; Kazansky, Peter G.; Podlipensky, Alexander; Abdolvand, Amin; Seifert, Gerhard; Graener, Heinrich
2006-08-01
The recently discovered poling-assisted bleaching of glass with embedded silver nanoparticles has renewed the interest in thermal poling as a simple, reliable, and low-cost technique for controlling locally the surface-plasmon-resonant optical properties of metal-doped nanocomposite glasses. In the present study, the emphasis is put on the influence of the volume filling factor of metallic clusters on poling-assisted bleaching. Soda-lime silicate glass samples containing spherical silver nanoparticles with a decreasing filling factor across the depth were subject to thermal poling experiments with various poling temperatures, voltages, and times. Optical extinction spectra were measured from ultraviolet to near-infrared ranges and the surface-plasmon-resonant extinction due to silver nanoparticles (around 410nm) was modeled by the Maxwell Garnett [Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904); 205, 237 (1906)] effective medium theory which was adapted in order to take into account the filling factor depth profile. A method was proposed for the retrieval of the filling factor depth profile from optical extinction spectra recorded in fresh and chemically etched samples. A stretched exponential depth profile turned out to be necessary in order to model samples having a high filling factor near the surface. Based on the fact that the electric-field-assisted dissolution of embedded metallic nanoparticles proceeded progressively from the top surface, a bleaching front was defined that moved forward in depth as time elapsed. The position of the bleaching front was determined after each poling experiment by fitting the measured extinction spectrum to the theoretical one. In samples with higher peak value and steeper gradient of the filling factor, the bleaching front reached more rapidly a steady-state depth as poling time increased. Also it increased less strongly with increasing poling voltage. These results were in agreement with the physics of the dissolution process. Finally, clear evidence of injection of hydrogenated ionic species from the atmosphere into the sample during poling was obtained from the growth of the infrared extinction peak associated with OH radicals.
PAH 8μm Emission as a Diagnostic of HII Region Optical Depth
NASA Astrophysics Data System (ADS)
Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.
2017-01-01
PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.
Blur and the perception of depth at occlusions.
Zannoli, Marina; Love, Gordon D; Narain, Rahul; Banks, Martin S
2016-01-01
The depth ordering of two surfaces, one occluding the other, can in principle be determined from the correlation between the occlusion border's blur and the blur of the two surfaces. If the border is blurred, the blurrier surface is nearer; if the border is sharp, the sharper surface is nearer. Previous research has found that observers do not use this informative cue. We reexamined this finding. Using a multiplane display, we confirmed the previous finding: Our observers did not accurately judge depth order when the blur was rendered and the stimulus presented on one plane. We then presented the same simulated scenes on multiple planes, each at a different focal distance, so the blur was created by the optics of the eye. Performance was now much better, which shows that depth order can be reliably determined from blur information but only when the optical effects are similar to those in natural viewing. We asked what the critical differences were in the single- and multiplane cases. We found that chromatic aberration provides useful information but accommodative microfluctuations do not. In addition, we examined how image formation is affected by occlusions and observed some interesting phenomena that allow the eye to see around and through occluding objects and may allow observers to estimate depth in da Vinci stereopsis, where one eye's view is blocked. Finally, we evaluated how accurately different rendering and displaying techniques reproduce the retinal images that occur in real occlusions. We discuss implications for computer graphics.
Common-path low-coherence interferometry fiber-optic sensor guided microincision
NASA Astrophysics Data System (ADS)
Zhang, Kang; Kang, Jin U.
2011-09-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.
NASA Astrophysics Data System (ADS)
Choi, Woo June; Wang, Ruikang K.
2015-10-01
We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.
Radiative Forcing by Contrails
NASA Technical Reports Server (NTRS)
Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.
1999-01-01
A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.
Optical depth localization of nitrogen-vacancy centers in diamond with nanometer accuracy.
Häußler, Andreas J; Heller, Pascal; McGuinness, Liam P; Naydenov, Boris; Jelezko, Fedor
2014-12-01
Precise positioning of nitrogen-vacancy (NV) centers is crucial for their application in sensing and quantum information. Here we present a new purely optical technique enabling determination of the NV position with nanometer resolution. We use a confocal microscope to determine the position of individual emitters along the optical axis. Using two separate detection channels, it is possible to simultaneously measure reflected light from the diamond surface and fluorescent light from the NV center and statistically evaluate both signals. An accuracy of 2.6 nm for shallow NV centers was achieved and is consistent with other techniques for depth determination.
Retrieval of aerosol optical depth over bare soil surfaces using time series of MODIS imagery
NASA Astrophysics Data System (ADS)
Yuan, Zhengwu; Yuan, Ranyin; Zhong, Bo
2014-11-01
Aerosol Optical Depth (AOD) is one of the key parameters which can not only reflect the characterization of atmospheric turbidity, but also identify the climate effects of aerosol. The current MODIS aerosol estimation algorithm over land is based on the "dark-target" approach which works only over densely vegetated surfaces. For non-densely vegetated surfaces (such as snow/ice, desert, and bare soil surfaces), this method will be failed. In this study, we develop an algorithm to derive AOD over the bare soil surfaces. Firstly, this method uses the time series of MODIS imagery to detect the " clearest" observations during the non-growing season in multiple years for each pixel. Secondly, the "clearest" observations after suitable atmospheric correction are used to fit the bare soil's bidirectional reflectance distribution function (BRDF) using Kernel model. As long as the bare soil's BRDF is established, the surface reflectance of "hazy" observations can be simulated. Eventually, the AOD over the bare soil surfaces are derived. Preliminary validation results by comparing with the ground measurements from AERONET at Xianghe sites show a good agreement.
Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process.
Jin, Jonghan; Kim, Jae Wan; Kang, Chu-Shik; Kim, Jong-Ahn; Lee, Sunghun
2012-02-27
We have proposed and demonstrated a novel method to measure depths of through silicon vias (TSVs) at high speed. TSVs are fine and deep holes fabricated in silicon wafers for 3D semiconductors; they are used for electrical connections between vertically stacked wafers. Because the high-aspect ratio hole of the TSV makes it difficult for light to reach the bottom surface, conventional optical methods using visible lights cannot determine the depth value. By adopting an optical comb of a femtosecond pulse laser in the infra-red range as a light source, the depths of TSVs having aspect ratio of about 7 were measured. This measurement was done at high speed based on spectral resolved interferometry. The proposed method is expected to be an alternative method for depth inspection of TSVs.
Spectral evidence of size dependent space weathering processes on asteroid surfaces
NASA Technical Reports Server (NTRS)
Gaffey, M. J.; Bell, J. F.; Brown, R. H.; Burbine, T. H.; Piatek, J. L.; Reed, K. L.; Chaky, D. A.
1993-01-01
Most compositional characterizations of the minor planets are derived from analysis of visible and near-infrared reflectance spectra. However, such spectra are derived from light which has only interacted with a very thin surface layer. Although regolith processes are assumed to mix all near-surface lithologic units into this layer, it has been proposed that space weathering processes can alter this surface layer to obscure the spectral signature of the bedrock lithology. It has been proposed that these spectral alteration processes are much less pronounced on asteroid surfaces than on the lunar surface, but the possibility of major spectral alteration of asteroidal optical surfaces has been invoked to reconcile S-asteroids with ordinary chondrites. The reflectance spectra of a large subset of the S-asteroid population have been analyzed in a systematic investigation of the mineralogical diversity within the S-class. In this sample, absorption band depth is a strong function of asteroid diameter. The S-asteroid band depths are relatively constant for objects larger than 100 km and increase linearly by factor of two toward smaller sizes (approximately 40 km). Although the S-asteroid surface materials includes a diverse variety of silicate assemblages, ranging from dunites to basalts, all compositional subtypes of the S-asteroids conform to this trend. The A-, R-, and V-type asteroids which are primarily silicate assemblages (as opposed to the metal-silicate mixtures of most S-asteroids) follow a parallel but displaced trend. Some sort of textural or regolith equilibrium appears to have been attained in the optical surfaces of asteroids larger than about 100 km diameter but not on bodies below this size. The relationships between absorption band depth, spectral slope, surface albedo and body size provide an intriguing insight into the nature of the optical surfaces of the S-asteroids and space weathering on these objects.
NASA Astrophysics Data System (ADS)
Gupta, Banshi D.; Kant, Ravi
2018-05-01
Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.
Front lighted optical tooling method and apparatus
Stone, W.J.
1983-06-30
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.
Solar radiation on Mars: Update 1991
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
Detailed information on solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data are presented from which the daily variation of the global, direct beam and diffuse insolation on Mars are calculated. Given the optical depth of the Mars atmosphere, the global radiation is calculated from the normalized net flux function based on multiple wavelength and multiple scattering of the solar radiation. The direct beam was derived from the optical depth using Beer's law, and the diffuse component was obtained from the difference of the global and the direct beam radiation. The optical depths of the Mars atmosphere were derived from images taken of the Sun with a special diode on the cameras used on the two Viking Landers.
Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons
Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong
2015-01-01
Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm−2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon–phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth. PMID:26514372
NASA Astrophysics Data System (ADS)
Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.
2008-03-01
Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.
Aging and visual 3-D shape recognition from motion.
Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Hoyng, Stevie C; Shain, Lindsey M; Pedersen, Lauren E; Kinnard, Jonathan D; Higginbotham, Alexia J; Gilliam, Ashley N
2017-11-01
Two experiments were conducted to evaluate the ability of younger and older adults to recognize 3-D object shape from patterns of optical motion. In Experiment 1, participants were required to identify dotted surfaces that rotated in depth (i.e., surface structure portrayed using the kinetic depth effect). The task difficulty was manipulated by limiting the surface point lifetimes within the stimulus apparent motion sequences. In Experiment 2, the participants identified solid, naturally shaped objects (replicas of bell peppers, Capsicum annuum) that were defined by occlusion boundary contours, patterns of specular highlights, or combined optical patterns containing both boundary contours and specular highlights. Significant and adverse effects of increased age were found in both experiments. Despite the fact that previous research has found that increases in age do not reduce solid shape discrimination, our current results indicated that the same conclusion does not hold for shape identification. We demonstrated that aging results in a reduction in the ability to visually recognize 3-D shape independent of how the 3-D structure is defined (motions of isolated points, deformations of smooth optical fields containing specular highlights, etc.).
Features of optical surfaces of multifocal diffractive-refractive eye lenses
NASA Astrophysics Data System (ADS)
Lenkova, G. A.
2017-09-01
This paper considers shape features of the surface structures of multifocal intraocular lenses (IOLs), which, unlike bifocal IOLs, generate additional foci or extends the depth of focus, which not only corrects near and far vision but also provides good vision at intermediate distances. Expansion of the field of clear vision is achieved due to the effects of diffraction, interference, and refraction (change in the radius of curvature of the lens surface). The optical characteristics of the most famous multifocal IOLs (trifocal and quadrafocal lenses and lenses with extended focal area) are given.
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, S. W.
1991-01-01
An analysis of emission-phase-function (EPF) observations from the Viking Orbiter Infrared Thermal Mapper (IRTM) yields a wide variety of results regarding dust and cloud scattering in the Mars atmosphere and atmospheric-corrected albedos for the surface of Mars. A multiple scattering radiative transfer model incorporating a bidirectional phase function for the surface and atmospheric scattering by dust and clouds is used to derive surface albedos and dust and ice optical properties and optical depths for these various conditions on Mars.
High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation.
Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Wang, Yongzhong; Chen, Rong
2013-03-01
An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers' optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers' spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.
NASA Technical Reports Server (NTRS)
Ricks, Douglas W.
1993-01-01
There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.
2000-01-01
The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitai, M S; Semchishen, A V; Semchishen, V A
The optical quality of the eye cornea surface after performing the laser vision correction essentially depends on the characteristic roughness scale (CRS) of the ablated surface, which is mainly determined by the absorption coefficient of the cornea at the laser wavelength. Thus, in the case of using an excimer ArF laser (λ = 193 nm) the absorption coefficient is equal to 39000 cm{sup -1}, the darkening by the dissociation products takes place, and the depth of the roughness relief can be as large as 0.23 mm. Under irradiation with the Er : YAG laser (λ = 2940 nm) the clearingmore » is observed due to the rupture of hydrogen bonds in water, and the relief depth exceeds 1 μm. It is shown that the process of reepithelization that occurs after performing the laser vision correction leads to the improvement of the optical quality of the cornea surface. (interaction of laser radiation with matter)« less
NASA Astrophysics Data System (ADS)
Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.
2013-03-01
The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).
Common-path low-coherence interferometry fiber-optic sensor guided microincision
Zhang, Kang; Kang, Jin U.
2011-01-01
We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than ±5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations. PMID:21950912
A bio-optical model for integration into ecosystem models for the Ligurian Sea
NASA Astrophysics Data System (ADS)
Bengil, Fethi; McKee, David; Beşiktepe, Sükrü T.; Sanjuan Calzado, Violeta; Trees, Charles
2016-12-01
A bio-optical model has been developed for the Ligurian Sea which encompasses both deep, oceanic Case 1 waters and shallow, coastal Case 2 waters. The model builds on earlier Case 1 models for the region and uses field data collected on the BP09 research cruise to establish new relationships for non-biogenic particles and CDOM. The bio-optical model reproduces in situ IOPs accurately and is used to parameterize radiative transfer simulations which demonstrate its utility for modeling underwater light levels and above surface remote sensing reflectance. Prediction of euphotic depth is found to be accurate to within ∼3.2 m (RMSE). Previously published light field models work well for deep oceanic parts of the Ligurian Sea that fit the Case 1 classification. However, they are found to significantly over-estimate euphotic depth in optically complex coastal waters where the influence of non-biogenic materials is strongest. For these coastal waters, the combination of the bio-optical model proposed here and full radiative transfer simulations provides significantly more accurate predictions of euphotic depth.
Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX
Kepshire, Dax; Davis, Scott C.; Dehghani, Hamid; Paulsen, Keith D.; Pogue, Brian W.
2009-01-01
Optical imaging of fluorescent objects embedded in a tissue simulating medium was characterized using non-contact based approaches to fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical tomography (FDOT). Using Protoporphyrin IX as a fluorescent agent, experiments were performed on tissue phantoms comprised of typical in-vivo tumor to normal tissue contrast ratios, ranging from 3.5:1 up to 10:1. It was found that tomographic imaging was able to recover interior inclusions with high contrast relative to the background; however, simple planar fluorescence imaging provided a superior contrast to noise ratio. Overall, FRI performed optimally when the object was located on or close to the surface and, perhaps most importantly, FDOT was able to recover specific depth information about the location of embedded regions. The results indicate that an optimal system for localizing embedded fluorescent regions should combine fluorescence reflectance imaging for high sensitivity and sub-surface tomography for depth detection, thereby allowing more accurate localization in all three directions within the tissue. PMID:18545571
Optical probe for porosity defect detection on inner diameter surfaces of machined bores
NASA Astrophysics Data System (ADS)
Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.
2010-12-01
We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.
NASA Technical Reports Server (NTRS)
Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.;
2012-01-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used
NASA Astrophysics Data System (ADS)
Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.
2011-12-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (∼0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.
NASA Astrophysics Data System (ADS)
Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; Quinn, P. K.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S.; Radionov, V. F.
2012-02-01
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004-0.005), even for strong winds over 10 m s-1. The relationships show significant scatter (correlation coefficients typically in the range 0.3-0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used.
NASA Astrophysics Data System (ADS)
Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam
2015-03-01
By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.
Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model
NASA Astrophysics Data System (ADS)
Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei
2009-10-01
The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.
Climatology analysis of cirrus cloud in ARM site: South Great Plain
NASA Astrophysics Data System (ADS)
Olayinka, K.
2017-12-01
Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)
Aerosol Optical Depth Distribution in Extratropical Cyclones over the Northern Hemisphere Oceans
NASA Technical Reports Server (NTRS)
Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.
2016-01-01
Using Moderate Resolution Imaging Spectroradiometer and an extratropical cyclone database,the climatological distribution of aerosol optical depth (AOD) in extratropical cyclones is explored based solely on observations. Cyclone-centered composites of aerosol optical depth are constructed for the Northern Hemisphere mid-latitude ocean regions, and their seasonal variations are examined. These composites are found to be qualitatively stable when the impact of clouds and surface insolation or brightness is tested. The larger AODs occur in spring and summer and are preferentially found in the warm frontal and in the post-cold frontal regions in all seasons. The fine mode aerosols dominate the cold sector AODs, but the coarse mode aerosols display large AODs in the warm sector. These differences between the aerosol modes are related to the varying source regions of the aerosols and could potentially have different impacts on cloud and precipitation within the cyclones.
Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A
2013-10-10
The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the τd measurements for surfaces similar to the playa of RRV, Nevada, will be better than 0.1% for 10 s averages. For other types of surfaces such as low-reflectivity snow and ice surfaces, the precision and bias errors will be within 0.23% and 0.1%, respectively. Including thin clouds with optical depths up to 1, the SNR of the τd measurements with 0.1 s integration period for surfaces similar to the playa of RRV, Nevada, will be greater than 94 and 65 for sideline positions placed +3 and +10 pm, respectively, from the CO(2) line center at 1571.112 nm. The CO(2) column bias errors introduced by the thin clouds are ≤0.1% for cloud optical depth ≤0.4, but they could reach ∼0.5% for more optically thick clouds with optical depths up to 1. When the cloud and surface altitudes and scattering amplitudes are obtained from matched filter analysis, the cloud bias errors can be further reduced. These results indicate that the IM-CW LAS instrument approach when implemented in a dawn/dusk orbit can make accurate CO(2) column measurements from space with preferential weighting across the mid to lower troposphere in support of a future ASCENDS mission.
Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging
Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; ...
2014-11-26
To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us tomore » measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.« less
Wang, Jue; Maier, Robert L
2006-08-01
The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.
Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia
NASA Astrophysics Data System (ADS)
Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.
2014-02-01
Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.
Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing
NASA Technical Reports Server (NTRS)
Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.
2007-01-01
The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating.
Monitoring of tissue modification with optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhang, Wei; Luo, Qingming; Yao, Lei; Cheng, Haiying; Zeng, Shaoqun
2002-04-01
An experimental monitoring of tissue modification of in vitro and in vivo rabbit dura mater with administration of osmotical agents, 40% glucose solution and glycerol, using optical coherence tomography was presented. The preliminary results of experimental study of influence of osmotical liquids (glucose solutions, glycerol) of rabbit dura mater were reported. The significant decreasing of the light from surface and increasing of the light from the deep of dura mater under action of osmotical solutions and the increasing of OCT imaging depth were demonstrated. Experiments showed that administration of osmolytes to dura mater allowed for effective and temporary control of its optical characteristics, which made dura mater more transparent, increased the ability of light penetrating the tissue, and consequently improved the optical imaging depth. It is a significant study, which can improve penetration of optical imaging of cerebral function and acquire more information of the deep brain tissue.
Importance of solar subsurface heating in ocean general circulation models
NASA Astrophysics Data System (ADS)
Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.
2001-12-01
The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.
Continuous optical monitoring of a near-shore sea-water column
NASA Astrophysics Data System (ADS)
Bensky, T. J.; Neff, B.
2006-12-01
Cal Poly San Luis Obispo runs the Central Coast Marine Sciences Center, south-facing, 1-km-long pier in San Luis Bay, on the west coast of California, midway between Los Angeles and San Fransisco. The facility is secure and dedicated to marine science research. We have constructed an automated optical profiling system that collects sunlight samples, in half-foot increments, from a 30 foot vertical column of sea-water below the pier. Our implementation lowers a high quality, optically pure fiber cable into the water at 30 minute intervals. Light collected by the submersed fiber aperture is routed to the pier surface where it is spectrally analyzed using an Ocean Optics HR2000 spectrometer. The spectrometer instantly yields the spectrum of the light collected at a given depth. The "spectrum" here is light intensity as a function of wavelength between 200 and 1100 nm in increments of 0.1 nm. Each dive of the instrument takes approximately 80 seconds, lowers the fiber from the surface to a depth of 30 feet, and yields approximately 60 spectra, each one taken at a such successively larger depth. A computer logs each spectra as a function of depth. From such data, we are able to extract total downward photon flux, quantify ocean color, and compute attenuation coefficients. The system is entirely autonomous, includes an integrated data-browser, and can be checked-on, or even controlled over the Internet, using a web-browser. Linux runs the computer, data is logged directly to a mySQL database for easy extraction, and a PHP-script ties the system together. Current work involves studying light-energy deposition trends and effects of surface action on downward photon flux. This work has been funded by the Office of Naval Research (ONR) and the California Central Coast Research Park Initiative (C3RP).
NASA Astrophysics Data System (ADS)
Vaillancourt, R. D.; Lance, V. P.; Hargreaves, B. R.; Marra, J. F.
2016-02-01
We report a general increase in the dominance of eukaryotes phytoplankton between the surface and the deep chlorophyll maximum (DCM) depths in the western North Atlantic Ocean along a transect between Bermuda (BATS) and the New England continental shelf sea during the summer 2007 & 2008. At each of 40 stations HPLC pigment concentrations were determined from 6 -10 depths from the surface to near or below the base of the euphotic zone. The community composition was determined using CHEMTAX (Mackey et al. 1996) using marker pigment ratios for varying light regimes published in Higgins et al (2011) and from our own monocultures. Cluster analysis was used to partition the dataset into five distinct regional groups to reduce the pigment ratio variability in CHEMTAX runs. Within each regional group the data were again clustered depth-wise into five to seven overlapping optical depth (OD) bins, and each OD bin was analyzed using a pigment ratio matrix ideal for that light depth range. This analysis revealed the likely presence of nine pigment classes: pelagophytes, diatoms, dinoflagellates, Synechococcus sp., Prochlorococcs sp., cryptophytes, chlorophytes, prasinophytes, and haptophytes. Partial verification of CHEMTAX results was obtained using flow cytometry cell counts coincident with samples from the BATS stations that show reasonable (according to published values) Chl a/cell values for surface and deep populations. At most locations and depths, the eukaryote haptophyte group dominated the phytoplankton biomass. In the upper optical depth the proportion of phytoplankton biomass contributed by prokaryotes was 39 (± 23)%. Deeper, between OD 1 and 2, this proportion decreased to 33 (± 17)%, between ODs 2 and 4.6 to 25 (± 15)%, and below OD 4.6, to 21 (± 17)%. Some geographic variation was observed, with the trend most pronounced in oligotrophic ocean waters and weaker in continental shelf waters.
NASA Technical Reports Server (NTRS)
Abdou, Wedad A.; Diner, David J.; Martonchik, John V.; Bruegge, Carol J.; Kahn, Ralph A.; Gaitley, Barbara J.; Crean, Kathleen A.; Remer, Lorraine A.; Holben, Brent
2005-01-01
The Multiangle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), launched on 18 December 1999 aboard the Terra spacecraft, are making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical depths and particle properties are independently retrieved from these radiances using methodologies and algorithms that make use of the instruments corresponding designs. This paper compares instantaneous optical depths retrieved from simultaneous and collocated radiances measured by the two instruments at locations containing sites within the Aerosol Robotic Network (AERONET). A set of 318 MISR and MODIS images, obtained during the months of March, June, and September 2002 at 62 AERONET sites, were used in this study. The results show that over land, MODIS aerosol optical depths at 470 and 660 nm are larger than those retrieved from MISR by about 35% and 10% on average, respectively, when all land surface types are included in the regression. The differences decrease when coastal and desert areas are excluded. For optical depths retrieved over ocean, MISR is on average about 0.1 and 0.05 higher than MODIS in the 470 and 660 nm bands, respectively. Part of this difference is due to radiometric calibration and is reduced to about 0.01 and 0.03 when recently derived band-to-band adjustments in the MISR radiometry are incorporated. Comparisons with AERONET data show similar patterns.
Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves
NASA Astrophysics Data System (ADS)
Morishima, Ryuji; Turner, Neal J.; Spilker, Linda
2017-10-01
We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takino, Hideo; Shibata, Norio; Itoh, Hiroshi
2006-08-10
We have developed plasma chemical vaporization machining by using a microelectrode for the fabrication of small complex-shaped optical surfaces. In this method, a0.5 mm diameter pipe microelectrode, from which processing gas is drawn in, generates a small localized plasma that is scanned over a work piece under numerical computer control to shape a desired surface. A12 mmx12 mm nonaxisymmetric mirror with a maximum depth of approximately 3 {mu}m was successfully fabricated with a peak-to-valley shape accuracy of 0.04 {mu}m in an area excluding the edges of the mirror. The average surface roughness was 0.58 nm, which is smooth enough formore » optical use.« less
Climate changes associated with nuclear war
NASA Technical Reports Server (NTRS)
Toon, O. B.
1986-01-01
Nuclear war, featuring explosion of half the world arsenal of nuclear weapons, would cause urban and forest fires that would inject 20-650 megatons of smoke into the atmosphere. The Northern Hemisphere optical depth would increase to between 0.5-14. All models indicate an increase in optical depths, a large net radiation gain in the smoke layer, and an antigreenhouse effect at the surface. Significant global cooling would proceed, transforming the global climate to a large degree toward that of an airless world. Persisting deficiencies in the models are identified, noting research areas which would improve the accuracies of the predictions.
NASA Technical Reports Server (NTRS)
2004-01-01
This graph shows the predicted daily change in the atmospheric temperature one meter above the surface of Mars at Gusev Crater, the Mars Exploration Rover Spirit's landing site. The blue curve denotes predicted values for sol 1 (the first day of Spirit's mission) and the yellow for sol 100 (100 days into the mission). The light blue symbols represent temperatures for a total atmospheric dust abundance of 0.7 visible optical depth units, and the darker blue symbols for a total atmospheric dust abundance of 1.0 visible optical depth units. Scientists use this data to ensure that Spirit stays within the right temperature range.
SW radiative effect of aerosol in GRAPES_GFS
NASA Astrophysics Data System (ADS)
Chen, Qiying
2017-04-01
The aerosol particles can scatter and absorb solar radiation, and so change the shortwave radiation absorbed by the atmosphere, reached the surface and that reflected back to outer space at TOA. Since this process doesn't interact with other processes, it is called direct radiation effect. The clear sky downward SW and net SW fluxes at the surface in GRAPES_GFS of China Meteorological Administration are overestimated in Northern multitudes and Tropics. The main source of these errors is the absence of aerosol SW effect in GRAPES_GFS. The climatic aerosol mass concentration data, which include 13 kinds of aerosol and their 14 SW bands optical properties are considered in GRAPES_GFS. The calculated total optical depth, single scatter albedo and asymmetry factor are used as the input to radiation scheme. Compared with the satellite observation from MISER, the calculated total optical depth is in good consistent. The seasonal experiments show that, the summer averaged clear sky radiation fluxes at the surface are improved after including the SW effect of aerosol. The biases in the clear sky downward SW and net SW fluxes at the surface in Northern multitudes and Tropic reduced obviously. Furthermore, the weather forecast experiments also show that the skill scores in Northern hemisphere and East Asia also become better.
NASA Astrophysics Data System (ADS)
Vlasov, R. A.; Gadomskii, O. H.; Gadomskaia, I. V.; Samartsev, V. V.
1986-06-01
The method of integrodifferential equations related to the optical Bloch equations is used to study the nonlinear reflection (or refraction) of a scanning laser beam at the surface of a resonant medium excited by traveling and standing surface electromagnetic waves at resonant frequency. The effect of the phase memory of surface atoms on the pulsed action of fields with space-time resolution is taken into account. The reversal of the scanning beam from the excited surface with phase conjugation of the wave front is considered. In addition, the spectrum of the nonlinear surface polaritons is analyzed as a function of the area of the exciting pulse and the penetration depth of polaritons in the resonant optical medium.
Inspection and characterization of flexo-printing plates
NASA Astrophysics Data System (ADS)
Hahlweg, Cornelius; Pescoller, Lukas; Zhao, Wenjing
2013-09-01
In continuation of last year's paper on distorting optics for inspection of 2 1/2D surfaces with convex or elevated elements - like braille paper and other special printing products - the present paper is dedicated to the quality control and characterization of flexo-printing plates. The need for high optical resolution contradicts the need for depth of field. A rugged optical system for gathering a series of microscopic images at various planes of focus is discussed.
Study of surfaces using near infrared optical fiber spectrometry
NASA Technical Reports Server (NTRS)
Workman, G. L.; Arendale, W. A.; Hughes, C.
1995-01-01
The measurement and control of cleanliness for critical surfaces during manufacturing and in service provides a unique challenge for fulfillment of environmentally benign operations. Of particular interest has been work performed in maintaining quality in the production of bondline surfaces in propulsion systems and the identification of possible contaminants. This work requires an in-depth study of the possible sources of contamination, methodologies to identify contaminants, discrimination between contaminants and chemical species caused by environment, and the effect of particular contaminants on the bondline integrity of the critical surfaces. This presentation will provide an introduction to the use of optical fiber spectrometry in a nondestructive measurement system for process monitoring and how it can be used to help clarify issues concerning surface chemistry. Correlation of the Near Infrared (NIR) spectroscopic results with Optical Stimulated Electron Emission (OSEE) and ellipsometry will also be presented.
Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo
NASA Astrophysics Data System (ADS)
Genina, E. A.; Ksenofontova, N. S.; Bashkatov, A. N.; Terentyuk, G. S.; Tuchin, V. V.
2017-06-01
We present the results of a comparative analysis of optical immersion clearing of skin in laboratory animals in vivo with and without preliminary ablation of epidermis. Laser ablation is implemented using a setup based on a pulsed erbium laser (λ = 2940 nm). The size of the damaged region amounted to 6 × 6 mm, the depth being smaller than 50 μm. As an optical clearing agent (OCA), use is made of polyethylene glycol (PEG-300). Based on optical coherence tomography, we use the single scattering model to estimate the scattering coefficient in the process of optical clearing in 2 regions at depths of 50-170 μm and 150-400 μm. The results show that skin surface ablation leads to the local oedema of the affected region that increases the scattering coefficient. However, the intense evaporation of water from the ablation zone facilitates the optical clearing at the expense of tissue dehydration, particularly in the upper layers. The assessment of the optical clearing efficiency shows that the efficiency exceeding 30% can be achieved at a depth from 50 to 170 μm in 120 min after ablation, as well as after the same ablation with subsequent application of PEG-300, which increases the efficiency of the immersion method by almost 1.8 times. At a depth from 150 to 400 μm, dehydration of upper layers cannot completely compensate for an increase in light scattering by dermis after epidermis ablation. The additional effect of OCA enhances the optical clearing of skin at the expense of improving the refractive index matching between dermis components, but the maximal efficiency of optical clearing in 120 min does not exceed 6%.
Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha
2008-01-01
Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559
Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha
2008-07-01
Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.
Hemodynamic monitoring in different cortical layers with a single fiber optical system
NASA Astrophysics Data System (ADS)
Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya
2018-02-01
Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.
Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations
NASA Technical Reports Server (NTRS)
Ahn, Changwoo; Torres, Omar; Jethva, Hiren
2014-01-01
The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.
What Level 2 Products are available?
Atmospheric Science Data Center
2014-12-08
The Aerosol data (MIL2ASAE) contains aerosol optical depth, aerosol compositional model, ancillary meteorological data, and related parameters on a 17.6 km grid. The Land Surface data (MIL2ASLS) includes bihemispherical and...
NASA Astrophysics Data System (ADS)
Karatutlu, Ali; Istengir, Sumeyra; Cosgun, Sedat; Seker, Isa; Unal, Bayram
2017-11-01
In this research paper, light emitting porous silicon (Lep-Si) samples were fabricated by a surfactant-mediated chemical stain etching solution in order to form homogenous luminescent nanostructures at room temperature. As an industrially important solvent, decalin (decahydronaphtalene) was used as a surfactant in the HF/HNO3 solutions in order to control the etching process. Morphological, surface and optical properties of the Lep-Si samples were examined using atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL) spectroscopy, and laser scanning confocal microscopy (LSCM) techniques. These characterization techniques were correlated with the various etching times including depth dependent luminescence profiles for the first time. We report the optimum conditions for production of the most efficient Lep-Si using decalin (decahydronaphtalene) and possible structural origins of light emission using the depth dependent luminescence measurements.
Ferroelectric domain building blocks for photonic and nonlinear optical microstructures in LiNbO3
NASA Astrophysics Data System (ADS)
Zisis, G.; Ying, C. Y. J.; Soergel, E.; Mailis, S.
2014-03-01
The ability to manipulate the size and depth of poling inhibited domains, which are produced by UV laser irradiation of the +z face of lithium niobate crystals followed by electric field poling, is demonstrated. It is shown that complex domain structures, much wider than the irradiating laser spot, can be obtained by partially overlapping the subsequent UV laser irradiated tracks. The result of this stitching process is one uniform domain without any remaining trace of its constituent components thus increasing dramatically the utility of this method for the fabrication of surface microstructures as well as periodic and aperiodic domain lattices for nonlinear optical and surface acoustic wave applications. Finally, the impact of multi exposure on the domain characteristics is also investigated indicating that some control over the domain depth can be attained.
NASA Astrophysics Data System (ADS)
Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf
2018-01-01
In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.
Form control in atmospheric pressure plasma processing of ground fused silica
NASA Astrophysics Data System (ADS)
Li, Duo; Wang, Bo; Xin, Qiang; Jin, Huiliang; Wang, Jun; Dong, Wenxia
2014-08-01
Atmospheric Pressure Plasma Processing (APPP) using inductively coupled plasma has demonstrated that it can achieve comparable removal rate on the optical surface of fused silica under the atmosphere pressure and has the advantage of inducing no sub-surface damage for its non-contact and chemical etching mechanism. APPP technology is a cost effective way, compared with traditional mechanical polishing, magnetorheological finishing and ion beam figuring. Thus, due to these advantages, this technology is being tested to fabricate large aperture optics of fused silica to help shorten the polishing time in optics fabrication chain. Now our group proposes to use inductively coupled plasma processing technology to fabricate ground surface of fused silica directly after the grinding stage. In this paper, form control method and several processing parameters are investigated to evaluate the removal efficiency and the surface quality, including the robustness of removal function, velocity control mode and tool path strategy. However, because of the high heat flux of inductively coupled plasma, the removal depth with time can be non-linear and the ground surface evolvement will be affected. The heat polishing phenomenon is founded. The value of surface roughness is reduced greatly, which is very helpful to reduce the time of follow-up mechanical polishing. Finally, conformal and deterministic polishing experiments are analyzed and discussed. The form error is less 3%, before and after the APPP, when 10μm depth of uniform removal is achieved on a 60×60mm ground fused silica. Also, a basin feature is fabricated to demonstrate the figuring capability and stability. Thus, APPP is a promising technology in processing the large aperture optics.
He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut
2016-12-26
There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.
Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Dongxiao; Qian, Zhenhai
2018-05-01
An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.
MRF, ELSM and STED: tools to study defects in fused silica optics
NASA Astrophysics Data System (ADS)
Catrin, R.; Taroux, D.; Cormont, P.; Maunier, C.; Neauport, J.
2013-11-01
The MegaJoule laser being constructed at the CEA near Bordeaux (France) is designed to focus more than 1 MJ of energy at 351 nm, on a millimetre scale target in the centre of an experiment chamber. The final optic assembly of this system operating at a wavelength of 351 nm is made up of large fused silica optics, working in transmission, that are used to convey and focus the laser beam. Under high fluences (i.e. more than 5 J/cm2 for 3 ns pulses), the limited lifetime of final optical assembly is a major concern for fusion scale laser facilities. Previous works have shown that surface finishing processes applied to manufacture these optical components can leave subsurface cracks (SSD), pollution or similar defects that act as initiators of the laser damage. In this work, we used epi-fluorescent light scanning microscopy (ELSM) and Stimulated Emission Depletion (STED) in confocal mode with fluorescent dye tagging to get a better knowledge of size and depth of these subsurface cracks. Magnetorheological fluid finishing technique (MRF) was also used as a tool to remove these cracks and thus assess depths measured by confocal microscopy. Subsurface cracks with a width of about 120 nm are observed up to ten micrometers below the surface.
NASA Astrophysics Data System (ADS)
Ramshesh, Venkat K.; Knisley, Stephen B.
2006-03-01
Cardiac optical mapping currently provides 2-D maps of transmembrane voltage-sensitive fluorescence localized near the tissue surface. Methods for interrogation at different depths are required for studies of arrhythmias and the effects of defibrillation shocks in 3-D cardiac tissue. We model the effects of coloading with a dye that absorbs excitation or fluorescence light on the radius and depth of the interrogated region with specific illumination and collection techniques. Results indicate radii and depths of interrogation are larger for transillumination versus epi-illumination, an effect that is more pronounced for broad-field excitation versus laser scanner. Coloading with a fluorescence absorber lessens interrogated depth for epi-illumination and increases it for transillumination, which is confirmed with measurements using transillumination of heart tissue slices. Coloading with an absorber of excitation light consistently decreases the interrogated depths. Transillumination and coloading also decrease the intensities of collected fluorescence. Thus, localization can be modified with wavelength-specific absorbers at the expense of a reduction in fluorescence intensity.
There’s plenty of light at the bottom: statistics of photon penetration depth in random media
Martelli, Fabrizio; Binzoni, Tiziano; Pifferi, Antonio; Spinelli, Lorenzo; Farina, Andrea; Torricelli, Alessandro
2016-01-01
We propose a comprehensive statistical approach describing the penetration depth of light in random media. The presented theory exploits the concept of probability density function f(z|ρ, t) for the maximum depth reached by the photons that are eventually re-emitted from the surface of the medium at distance ρ and time t. Analytical formulas for f, for the mean maximum depth 〈zmax〉 and for the mean average depth reached by the detected photons at the surface of a diffusive slab are derived within the framework of the diffusion approximation to the radiative transfer equation, both in the time domain and the continuous wave domain. Validation of the theory by means of comparisons with Monte Carlo simulations is also presented. The results are of interest for many research fields such as biomedical optics, advanced microscopy and disordered photonics. PMID:27256988
Synergistic surface current mapping by spaceborne stereo imaging and coastal HF radar
NASA Astrophysics Data System (ADS)
Matthews, John Philip; Yoshikawa, Yutaka
2012-09-01
Well validated optical and radar methods of surface current measurement at high spatial resolution (nominally <100 m) from space can greatly advance our ability to monitor earth's oceans, coastal zones, lakes and rivers. With interest growing in optical along-track stereo techniques for surface current and wave motion determinations, questions of how to interpret such data and how to relate them to measurements made by better validated techniques arise. Here we make the first systematic appraisal of surface currents derived from along-track stereo Sun glitter (ATSSG) imagery through comparisons with simultaneous synoptic flows observed by coastal HF radars working at frequencies of 13.9 and 24.5 MHz, which return averaged currents within surface layers of roughly 1 m and 2 m depth respectively. At our Tsushima Strait (Japan) test site, we found that these two techniques provided largely compatible surface current patterns, with the main difference apparent in current strength. Within the northwest (southern) comparison region, the magnitudes of the ATSSG current vectors derived for 13 August 2006 were on average 22% (40%) higher than the corresponding vectors for the 1-m (2-m) depth radar. These results reflect near-surface vertical current structure, differences in the flow components sensed by the two techniques and disparities in instrumental performance. The vertical profile constructed here from ATSSG, HF radar and ADCP data is the first to resolve downwind drift in the upper 2 m of the open ocean. The profile e-folding depth suggests Stokes drift from waves of 10-m wavelength visible in the images.
Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere
NASA Technical Reports Server (NTRS)
Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.
2003-01-01
We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).
Fiber Optic Thermal Health Monitoring of Composites
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.
2010-01-01
A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.
Fiber Optic Thermographic Detection of Flaws in Composites
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.
2009-01-01
Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.
NASA Astrophysics Data System (ADS)
Refaat, T. F.; Singh, U. N.; Petros, M.; Yu, J.; Remus, R.; Ismail, S.
2017-12-01
An airborne Integrated Path Differential Absorption (IPDA) lidar has been developed and validated at NASA Langley Research Center for atmospheric carbon dioxide column measurements. The instrument consists of a tunable, high-energy 2-μm double pulse laser transmitter and 0.4 m telescope receiver coupled to an InGaAs pin detection system. The instrument was validated for carbon dioxide (CO2) measurements from ground and airborne platforms, using a movable lidar trailer and the NASA B-200 aircraft. Airborne validation was conducted over the ocean by comparing the IPDA CO2 optical depth measurement to optical depth model derived using NOAA airborne CO2 air-sampling. Another airborne validation was conducted over land vegetation by comparing the IPDA measurement to a model derived using on-board in-situ measurements using an absolute, non-dispersive infrared gas analyzer (LiCor 840A). IPDA range measurements were also compared to rangefinder and Global Positioning System (GPS) records during ground and airborne validation, respectively. Range measurements from the ground indicated a 0.93 m IPDA range measurement uncertainty, which is limited by the transmitted laser pulse and detection system properties. This uncertainty increased to 2.80 and 7.40 m over ocean and land, due to fluctuations in ocean surface and ground elevations, respectively. IPDA CO2 differential optical depth measurements agree with both models. Consistent CO2 optical depth biases were well correlated with the digitizer full scale input range settings. CO2 optical depth measurements over ocean from 3.1 and 6.1 km altitudes indicated 0.95% and 0.83% uncertainty, respectively, using 10 second (100 shots) averaging. Using the same averaging 0.40% uncertainty was observed over land, from 3.4 km altitude, due to higher surface reflectivity, which increases the return signal power and enhances the signal-to-noise ratio. However, less uncertainty is observed at higher altitudes due to reduced signal shot noise, indicating that detection system noise-equivalent-power dominates the error. These results show that the IPDA technique is well suited for space-based platforms, which includes larger column content integration that enhances the measurement sensitivity.
NASA Technical Reports Server (NTRS)
Comstock, Robert L.; Bills, Bruce G.
2004-01-01
Salt flats are aptly named: they are composed largely of salt, and are maintained as nearly equipotential surfaces via frequent flooding. The salar de Uyuni, on the Altiplano in southwestern Bolivia, is the largest salt flat on Earth, with an area of 9,800 sq km. Except for a few bedrock islands, it has less than 40 cm of relief. The upper-most salt unit averages 5 m thick and contains 50 cu km of nearly pure halite. It includes most of the salt that was in solution in paleolake Minchin, which attained a maximum area of 60,000 sq km and a maximum depth of 150 m, roughly 15 kyr ago. Despite approx. 10 m of differential isostatic rebound since deposition, the salar surface has been actively maintained as an extraordinarily flat and smooth surface by annual flooding during the rainy season. We have used the strong optical absorption properties of water in the visible band to map spatial variations in water depth during a time when the salar was flooded. As water depth increases, the initially pure white surface appears both darker and bluer. We utilized MISR images taken during the interval from April to November 2001. The red and infra-red bands (672 and 867 nm wavelength) were most useful since the water depth is small and the absorption at those wavelengths is quite strong. Nadir pointed MISR images have 275 m spatial resolution. To aid in our evaluation of water depth variations over the saiar surface, we utilized two sources of direct topographic measurements: several ICESAT altimetry tracks cross the area, and a 40x50 km GPS grid was surveyed to calibrate ICESAT. A difficulty in using these data types is that both give salt surface elevations relative to the ellipsoid, whereas the water surface will, in the absence of wind or tidal disturbances, follow an equipotential surface. Geoid height is not known to the required accuracy of a few cm in the central Andes. As a result, before comparing optical absorption from MISR to salt surface topography from GPS or ICESAT, we removed the longest wavelengths from both.
Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling
NASA Technical Reports Server (NTRS)
Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.
1999-01-01
Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seethala, C.; Pandithurai, G.; Fast, Jerome D.
We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 tomore » 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of particulate mass and composition are needed to fully evaluate whether the aerosol precursor emissions are adequate when simulating radiative forcing in the region.« less
NASA Astrophysics Data System (ADS)
Pires, Layla; Demidov, Valentin; Vitkin, I. Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C.
2016-08-01
Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ˜90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ˜300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ˜750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.
Twyman effect mechanics in grinding and microgrinding.
Lambropoulos, J C; Xu, S; Fang, T; Golini, D
1996-10-01
In the Twyman effect (1905), when one side of a thin plate with both sides polished is ground, the plate bends: The ground side becomes convex and is in a state of compressive residual stress, described in terms of force per unit length (Newtons per meter) induced by grinding, the stress (Newtons per square meter) induced by grinding, and the depth of the compressive layer (micrometers). We describe and correlate experiments on optical glasses from the literature in conditions of loose abrasive grinding (lapping at fixed nominal pressure, with abrasives 4-400 μm in size) and deterministic microgrinding experiments (at a fixed infeed rate) conducted at the Center for Optics Manufacturing with bound diamond abrasive tools (with a diamond size of 3-40 μm, embedded in metallic bond) and loose abrasive microgrinding (abrasives of less than 3 μm in size). In brittle grinding conditions, the grinding force and the depth of the compressive layer correlate well with glass mechanical properties describing the fracture process, such as indentation crack size. The maximum surface residual compressive stress decreases, and the depth of the compressive layer increases with increasing abrasive size. In lapping conditions the depth of the abrasive grain penetration into the glass surface scales with the surface roughness, and both are determined primarily by glass hardness and secondarily by Young's modulus for various abrasive sizes and coolants. In the limit of small abrasive size (ductile-mode grinding), the maximum surface compressive stress achieved is near the yield stress of the glass, in agreement with finite-element simulations of indentation in elastic-plastic solids.
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Krotkov, Nickolay; Herman, Jay; McClain, Charles; Arrigo, Kevin; Robinson, Wayne
1999-01-01
The global stratospheric ozone-layer depletion results In an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the SeaWIFS satellite ocean-color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the Case I water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the RT (radiative transfer) quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. The sensitivity study of the underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling the absolute levels of the UVB (280-320nm) and DNA-weighted irradiance underwater are: solar-zenith angle, cloud transmittance, water optical properties, and total ozone. Weekly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly-mean SeaWiFS chlorophyll and diffuse attenuation coefficient products, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The final products include global maps of weekly-average UVB irradiance and DNA-weighted daily exposures at 3m and 10m, and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.
Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.
Gao, M; Huang, X; Yang, P; Kattawar, G W
2013-08-20
The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.
Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe
2018-04-10
InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.
Local Time Variation of Water Ice Clouds on Mars as Observed by TES During Aerobraking.
NASA Astrophysics Data System (ADS)
AlJanaahi, A. A.; AlShamsi, M. R.; Smith, M. D.; Altunaiji, E. S.; Edwards, C. S.
2016-12-01
The large elliptical orbit during Mars Global Surveyor aerobraking enabled sampling the martian atmosphere over many local times. The Thermal Emission Spectrometer (TES) aerobraking spectra were taken between Mars Year 23, Ls=180° and Mars Year 24, Ls=30°. These early data from before the main "mapping" part of the mission have been mostly overlooked, and relatively little analysis has been done with them. These datasets have not been used before to study local time variation. Radiative transfer modeling is used to fit the spectra to retrieve surface and atmospheric temperature, and dust and water ice optical depths. Retrievals show significant and systematic variation in water ice cloud optical depth as a function of local time. Cloud optical depth is higher in the early morning (before 9:00) and in the evening (after 17:00) for all seasons observed (Ls=180°-30°). Clouds form consistently in the Tyrrhena region and in the area around Tharsis.
First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Lemmon, Mark T.; Spanovich, Nicole; Banfield, Don; Budney, Charles J.; Clancy, R. Todd; Ghosh, Amitabha; Landis, Geoffrey A.; Smith, Peter;
2004-01-01
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Aongus; Collins, Robert J.; Krichel, Nils J.
2009-11-10
We describe a scanning time-of-flight system which uses the time-correlated single-photon counting technique to produce three-dimensional depth images of distant, noncooperative surfaces when these targets are illuminated by a kHz to MHz repetition rate pulsed laser source. The data for the scene are acquired using a scanning optical system and an individual single-photon detector. Depth images have been successfully acquired with centimeter xyz resolution, in daylight conditions, for low-signature targets in field trials at distances of up to 325 m using an output illumination with an average optical power of less than 50 {mu}W.
NASA Astrophysics Data System (ADS)
Røstad, Anders; Kaartvedt, Stein; Aksnes, Dag L.
2016-07-01
We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than 10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.
First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES.
Smith, Michael D; Wolff, Michael J; Lemmon, Mark T; Spanovich, Nicole; Banfield, Don; Budney, Charles J; Clancy, R Todd; Ghosh, Amitabha; Landis, Geoffrey A; Smith, Peter; Whitney, Barbara; Christensen, Philip R; Squyres, Steven W
2004-12-03
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
Cloud and aerosol optical depths
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Ackerman, Thomas P.; Colburn, D. C.; Wrigley, R. C.; Spanner, M. A.; Livingston, J. M.
1988-01-01
An airborne Sun photometer was used to measure optical depths in clear atmospheres between the appearances of broken stratus clouds, and the optical depths in the vicinity of smokes. Results show that (human) activities can alter the chemical and optical properties of background atmospheres to affect their spectral optical depths. Effects of water vapor adsorption on aerosol optical depths are apparent, based on data of the water vapor absorption band centered around 940 nm. Smoke optical depths show increases above the background atmosphere by up to two orders of magnitude. When the total optical depths measured through clouds were corrected for molecular scattering and gaseous absorption by subtracting the total optical depths measured through the background atmosphere, the resultant values are lower than those of the background aerosol at short wavelengths. The spectral dependence of these cloud optical depths is neutral, however, in contrast to that of the background aerosol or the molecular atmosphere.
Desert Dust Layers Over Polluted Marine Boundary Layers: ACE-2 Measurements and ACE-Asia Plans
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Schmid, B.; Livingston, J. M.; Redemann, J.; Bergstrom, R. W.; Condon, Estelle P. (Technical Monitor)
2000-01-01
Aerosols in ACE-Asia are expected to have some commonalties with those in ACE-2, along with important differences. Among the commonalities are occurrences of desert dust layers over polluted marine boundary layers. Differences include the nature of the dust (yellowish in the East Asia desert outflow, vs. reddish-brown in the Sahara Outflow measured in ACE-2) and the composition of boundary-layer aerosols (e.g., more absorbing, soot and organic aerosol in-the Asian plume, caused by coal and biomass burning, with limited controls). In this paper we present ACE-2 measurements and analyses as a guide to our plans for ACE-2 Asia. The measurements include: (1) Vertical profiles of aerosol optical depth and extinction (380-1558 nm), and of water vapor column and concentration, from the surface through the elevated desert dust, measured by the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14); (2) Comparisons of airborne and shipborne sunphotometer optical depths to satellite-retrieved values, with and without desert dust; (3) Comparisons between airborne Sunphotometer optical depth and extinction spectra and those derived from coincident airborne in situ measurements of aerosol size distribution, scattering and absorption; (4) Comparisons between size distributions measured in situ and retrieved from sunphotometer optical depth spectra; (5) Comparisons between aerosol single scattering albedo values obtained by several techniques, using various combinations of measurements of backscatter, extinction, size distribution, scattering, absorption, and radiative flux. We show how analyses of these data can be used to address questions important to ACE-Asia, such as: (1) How do dust and other absorbing aerosols affect the accuracy of satellite optical depth retrievals? How important are asphericity effects? (2) How important are supermicron dust and seasalt aerosols to overall aerosol optical depth and radiative forcing? How well are these aerosols sampled by aircraft inlets and instruments? (3) How consistent are suborbital in situ and remote measurements of aerosols, among themselves and with satellite retrievals? What are the main reasons for observed inconsistencies?
Three-dimensional optical topography of brain activity in infants watching videos of human movement
NASA Astrophysics Data System (ADS)
Correia, Teresa; Lloyd-Fox, Sarah; Everdell, Nick; Blasi, Anna; Elwell, Clare; Hebden, Jeremy C.; Gibson, Adam
2012-03-01
We present 3D optical topography images reconstructed from data obtained previously while infants observed videos of adults making natural movements of their eyes and hands. The optical topography probe was placed over the temporal cortex, which in adults is responsible for cognitive processing of similar stimuli. Increases in oxyhaemoglobin were measured and reconstructed using a multispectral imaging algorithm with spatially variant regularization to optimize depth discrimination. The 3D optical topography images suggest that similar brain regions are activated in infants and adults. Images were presented showing the distribution of activation in a plane parallel to the surface, as well as changes in activation with depth. The time-course of activation was followed in the pixel which demonstrated the largest change, showing that changes could be measured with high temporal resolution. These results suggest that infants a few months old have regions which are specialized for reacting to human activity, and that these subtle changes can be effectively analysed using 3D optical topography.
Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto
2016-06-01
We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.
A new approach to correct for absorbing aerosols in OMI UV
NASA Astrophysics Data System (ADS)
Arola, A.; Kazadzis, S.; Lindfors, A.; Krotkov, N.; Kujanpää, J.; Tamminen, J.; Bais, A.; di Sarra, A.; Villaplana, J. M.; Brogniez, C.; Siani, A. M.; Janouch, M.; Weihs, P.; Webb, A.; Koskela, T.; Kouremeti, N.; Meloni, D.; Buchard, V.; Auriol, F.; Ialongo, I.; Staneck, M.; Simic, S.; Smedley, A.; Kinne, S.
2009-11-01
Several validation studies of surface UV irradiance based on the Ozone Monitoring Instrument (OMI) satellite data have shown a high correlation with ground-based measurements but a positive bias in many locations. The main part of the bias can be attributed to the boundary layer aerosol absorption that is not accounted for in the current satellite UV algorithms. To correct for this shortfall, a post-correction procedure was applied, based on global climatological fields of aerosol absorption optical depth. These fields were obtained by using global aerosol optical depth and aerosol single scattering albedo data assembled by combining global aerosol model data and ground-based aerosol measurements from AERONET. The resulting improvements in the satellite-based surface UV irradiance were evaluated by comparing satellite and ground-based spectral irradiances at various European UV monitoring sites. The results generally showed a significantly reduced bias by 5-20%, a lower variability, and an unchanged, high correlation coefficient.
High dynamic grayscale lithography with an LED-based micro-image stepper
NASA Astrophysics Data System (ADS)
Eckstein, Hans-Christoph; Zeitner, Uwe D.; Leitel, Robert; Stumpf, Marko; Schleicher, Philipp; Bräuer, Andreas; Tünnermann, Andreas
2016-03-01
We developed a novel LED projection based direct write grayscale lithography system for the generation of optical surface profiles such as micro-lenses, diffractive elements, diffusors, and micro freeforms. The image formation is realized by a LCoS micro-display which is illuminated by a 405 nm UV High Power LED. The image on the display can be demagnified from factors 5x to 100x with an exchangeable lens. By controlling exposure time and LED power, the presented technique enables a highly dynamic dosage control for the exposure of h-line sensitive photo resist. In addition, the LCoS micro-display allows for an intensity control within the micro-image which is particularly advantageous to eliminate surface profile errors from stitching and limited homogeneity from LED illumination. Together with an accurate calibration of the resist response this leads to a superior low surface error of realized profiles below <0.2% RMS. The micro-display is mounted on a 3-axis (XYθ) stage for precise alignment. The substrate is brought into position with an air bearing stage which addresses an area of 500 × 500 mm2 with a positioning accuracy of <100 nm. As the exposure setup performs controlled motion in the z-direction the system to maintain the focal distance and lithographic patterning on non-planar surfaces to some extent. The exposure concept allows a high structure depth of more than 100 μm and a spatial resolution below 1 μm as well as the possibility of very steep sidewalls with angles larger than >80°. Another benefit of the approach is a patterning speed up to 100 cm2/h, which allows fabricating large-scale optics and microstructures in an acceptable time. We present the setup and show examples of micro-structures to demonstrate the performance of the system, namely a refractive freeform array, where the RMS surface deviation does not exceed 0.2% of the total structure depth of 75 μm. Furthermore, we show that this exposure tool is suitable to generate diffractive optical elements as well as freeform optics and arrays with a high aspect ratio and structure depth showing a superior optical performance. Lastly we demonstrate a multi-level diffraction grating on a curved substrate.
Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal
NASA Astrophysics Data System (ADS)
Chen, Ming-Jun; Cheng, Jian; Li, Ming-Quan; Xiao, Yong
2012-06-01
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μm. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.
Long-term data sets of all-sky and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction, and aerosol optical depth (AOD) were analyzed together with surface concentrations from several networks (e.g., Surface Radiation Budget Network (SURFRAD), Clean Air Status an...
Corneal epithelium, visual acuity, and laser refractive keratectomy
NASA Astrophysics Data System (ADS)
Simon, Gabriel; Parel, Jean-Marie A.; Kervick, Gerard N.; Rol, Pascal O.; Hanna, Khalil; Thompson, Keith P.
1991-06-01
Photorefractive keratectomy (PRK) using an argon fluoride excimer laser for photoablation of the cornea shows potential for the precise correction of refractive errors in patients. Usually, the epithelium is mechanically removed, and Bowman's layer and stromal tissue are photoablated to precomputed depths and shapes that are based on known ablation rates for these tissues. After four day's time, the epithelium has regrown. Assuming the epithelium to be preoperatively uniform in thickness across the central optical zone, and assuming that it regrows to the same thickness, a theoretical precision of +/- 0.05 diopters is achievable with PRK. Keratometric measurements of the epithelium and of Bowman's layer were made at the 2.0 and 3.6 mm optical zones on 10 fresh cadaver eyes (<21 hours postmortem). In the eyes studied, the epithelium thickness was found to vary across the central optical zone, accounting for the measured refractive differences of 0.5 to 1.8 diopters. Bowman's layer was found to be more prolated than the epithelial surface (ratios: 1.005 compared to 1.033). In addition, the surface of Bowman's layer had a larger degree of astigmatism. Other studies have shown that the epithelium regrowth is a function of the newly exposed corneal topography as the wing cells compensate for irregularities in Bowman's surface. As the preoperative topography of the epithelium cannot be used as a reference surface when computing photoablation depth, intraoperative keratometry of Bowman's surface becomes a necessity in PRK.
NASA Astrophysics Data System (ADS)
Stenchikov, G. L.; Osipov, S.
2016-12-01
This study focuses on the Middle East regional climate response to the dust aerosol radiative forcing. MODIS and SEVIRI satellite observations show extremely high (exceeding 1) dust optical depths over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. The radiative forcing of dust at the sea surface exceeds 120 Wm-2. The effect of this forcing to the Red Sea thermal regime and circulations is not well quantified yet. Therefore here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.5-0.7K cooling of the Red Sea surface waters, and weakens the overturning circulation in the Red Sea. The salinity distribution, fresh water and heat budgets are significantly perturbed. This indicates that dust plays an important role in formation of the Red Sea energy balance and circulation regimes, and has to be thoroughly accounted for in the future modeling studies.
Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces
NASA Astrophysics Data System (ADS)
Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer
2018-01-01
Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.
Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces
NASA Astrophysics Data System (ADS)
Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer
2018-03-01
Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.
NASA Astrophysics Data System (ADS)
Jerousek, R. G.; Colwell, J. E.; Hedman, M. M.; Marouf, E. A.; French, R. G.; Esposito, L. W.; Nicholson, P. D.
2017-12-01
The parameters of a simple power-law particle size distribution can be inferred from measurements of optical depth at multiple wavelengths (Marouf et al. 1982, 1983, Zebker et al. 1985) where the number of particles of radius between a and a+da is given by n(a)da = n0(a/a0)-qda with amin ≤ a ≤ amax. In the C ring and Cassini division where the surface mass density is low, the Toomre critical wavelength for gravitational collapse is comparable to the radii of the largest particles ( 1 m) and the effects of viewing geometry on measured normal optical depth can be ignored. In these regions, we fit optical depths measured by the Visual and Infrared Mapping Spectrometer (VIMS) at λ = 2.9μm, the Ultraviolet Imaging Spectrograph (UVIS) at λ = 0.15μm, and by the Radio Science Subsystem (RSS) at X band (λ = 3.6cm) and Ka band (λ = 9.4mm) to power-law derived optical depths and constrain the power-law parameters at 10km radial resolution. In the A and B rings where the Toomre critical wavelength is much larger than the radii of the largest particles, self-gravity wakes (ephemeral elongated particle aggregates canted to the direction of orbital motion by Keplerian shear) form. Occultations of these ring regions that occur at different viewing geometries measure different normal optical depths. We model and remove the geometric effects on the ring normal optical depth using the self-gravity wake model of Colwell et al. (2006, 2007) and fit wake model derived optical depths to power-law determined optical depths to constrain the parameters of the power-law particle size distribution. We find average values of amin 5 mm in the background C ring, the C ring plateaus, and in the Cassini Division. In the A and B ring and outside the strong density waves triggered by resonances with Janus and Mimas, we find amin 9 mm except in the trans-Encke region were the minimum particle radius drops to 5 mm and again to about 3.5 mm in the trans-Keeler region near the A ring outer edge. amax ranges from one to several meters throughout the main rings, and a positive correlation between amax and the measured optical depth except in the C ring plateaus. Over the various ring regions, average amin and q are consistent with determinations from previous studies by Harbison et al. (2013), Becker et al. (2016), Jerousek et al. (2016), and Marouf et al. (2008a) with average q 2.9-3.1.
Relating Cirrus Cloud Properties to Observed Fluxes: A Critical Assessment.
NASA Astrophysics Data System (ADS)
Vogelmann, A. M.; Ackerman, T. P.
1995-12-01
The accuracy needed in cirrus cloud scattering and microphysical properties is quantified such that the radiative effect on climate can he determined. Our ability to compute and observe these properties to within needed accuracies is assessed, with the greatest attention given to those properties that most affect the fluxes.Model calculations indicate that computing net longwave fluxes at the surface to within ±5% requires that cloud temperature be known to within as little as ±3 K in cold climates for extinction optical depths greater than two. Such accuracy could be more difficult to obtain than that needed in the values of scattering parameters. For a baseline case (defined in text), computing net shortwave fluxes at the surface to within ±5% requires accuracies in cloud ice water content that, when the optical depth is greater than 1.25, are beyond the accuracies of current measurements. Similarly, surface shortwave flux computations require accuracies in the asymmetry parameter that are beyond our current abilities when the optical depth is greater than four. Unless simplifications are discovered, the scattering properties needed to compute cirrus cloud fluxes cannot be obtained explicitly with existing scattering algorithms because the range of crystal sizes is too great and crystal shapes are too varied to be treated computationally. Thus, bulk cirrus scattering properties might be better obtained by inverting cirrus cloud fluxes and radiances. Finally, typical aircraft broadband flux measurements are not sufficiently accurate to provide a convincing validation of calculations. In light of these findings we recommend a reexamination of the methodology used in field programs such as FIRE and suggest a complementary approach.
Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves
NASA Astrophysics Data System (ADS)
Morishima, Ryuji; Turner, Neal; Spilker, Linda
2017-10-01
We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees of surface roughness inferred from the thermal phase curves are generally less than those from the phase curves in visible light. This is probably explained by different roughness scales seen in thermal and visible light or by dilution of thermal phase curve steepnesses due to particle motion.
NASA Astrophysics Data System (ADS)
Razani, Marjan; Soudagar, Yasaman; Yu, Karen; Galbraith, Christopher M.; Webster, Paul J. L.; Van Vlack, Cole; Sun, Cuiru; Mariampillai, Adrian; Leung, Michael K. K.; Standish, Beau; Kiehl, Tim-Rasmus; Fraser, James M.; Yang, Victor X. D.
2013-03-01
Precision depth control of bone resection is necessary for safe surgical procedures in the spine. In this paper, we compare the control and quality of cutting bovine tail bone, as an ex vivo model of laminectomy and bony resection simulating spinal surgery, planned with micro-CT data and executed using two approaches: (a) mechanical milling guided by optical topographical imaging (OTI) and (b) optical milling using closed-loop inline coherent imaging (ICI) to monitor and control the incision depth of a high-power 1070 nm fiber laser in situ. OTI provides the in situ topology of the 2-dimensional surface of the bone orientation in the mechanical mill which is registered with the treatment plan derived from the micro-CT data. The coregistration allows the plan to be programmed into the mill which is then used as a benchmark of current surgical techniques. For laser cutting, 3D optical land marking with coaxial camera vision and the ICI system is used to coregister the treatment plan. The unstable, carbonization-mediated ablation behaviour of 1070 nm light and the unknown initial geometry of bone leads to unpredictable ablation which substantially limits the depth accuracy of open-loop cutting. However, even with such a non-ideal cutting laser, we demonstrate that ICI provides in situ high-speed feedback that automatically and accurately limits the laser's cut depth to effectively create an all-optical analogue to the mechanical mill.
Internal-illumination photoacoustic computed tomography
NASA Astrophysics Data System (ADS)
Li, Mucong; Lan, Bangxin; Liu, Wei; Xia, Jun; Yao, Junjie
2018-03-01
We report a photoacoustic computed tomography (PACT) system using a customized optical fiber with a cylindrical diffuser to internally illuminate deep targets. The traditional external light illumination in PACT usually limits the penetration depth to a few centimeters from the tissue surface, mainly due to strong optical attenuation along the light propagation path from the outside in. By contrast, internal light illumination, with external ultrasound detection, can potentially detect much deeper targets. Different from previous internal illumination PACT implementations using forward-looking optical fibers, our internal-illumination PACT system uses a customized optical fiber with a 3-cm-long conoid needle diffuser attached to the fiber tip, which can homogeneously illuminate the surrounding space and substantially enlarge the field of view. We characterized the internal illumination distribution and PACT system performance. We performed tissue phantom and in vivo animal studies to further demonstrate the superior imaging depth using internal illumination over external illumination. We imaged a 7.5-cm-deep leaf target embedded in optically scattering medium and the beating heart of a mouse overlaid with 3.7-cm-thick chicken tissue. Our results have collectively demonstrated that the internal light illumination combined with external ultrasound detection might be a useful strategy to improve the penetration depth of PACT in imaging deep organs of large animals and humans.
Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu
2018-04-01
Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.
Application of an optical interferometer for measuring the surface contour of micro-components
NASA Astrophysics Data System (ADS)
Wang, S. H.; Tay, C. J.
2006-04-01
The application of an optical interferometric system using a Mireau objective to measure the surface profile of micro-components is described. The proposed system produces a uniform monochromatic illumination over the test area and introduces an interference fringe pattern localized near the test surface. Both the interference fringes and the 2D image of the test surface can be focused by an infinity microscope system consisting of a Mireau objective and a tube lens. A piezoelectric transducer (PZT) attached to the Mireau objective can move precisely along the optical axis of the objective. This enables the implementation of phase-shifting interferometry without changing the focus of a CCD sensor as the combination of the Mireau objective and the tube lens provides a depth of focus which is deep in comparison to the phase-shifting step. Experimental results from surface profilometry of the protrusion/undercut of a polished fibre within an optical connector and of the curved surface of a micromirror demonstrate that features in the order of nanometres are measurable. Measurements on standard blocks also show that the accuracy of the proposed system is comparable to an existing commercial white-light interferometer and a stylus profilometer.
NASA Astrophysics Data System (ADS)
Alberts, L. Russell; Martinez-Nogues, Vanesa; Baker Cook, Richard; Maul, Christian; Bills, Paul; Racasan, R.; Stolz, Martin; Wood, Robert J. K.
2018-03-01
Simulation of wear in artificial joint implants is critical for evaluating implant designs and materials. Traditional protocols employ the gravimetric method to determine the loss of material by measuring the weight of the implant components before and after various test intervals and after the completed test. However, the gravimetric method cannot identify the location, area coverage or maximum depth of the wear and it has difficulties with proportionally small weight changes in relatively heavy implants. In this study, we compare the gravimetric method with two geometric surface methods; an optical light method (RedLux) and a coordinate measuring method (CMM). We tested ten Adept hips in a simulator for 2 million cycles (MC). Gravimetric and optical methods were performed at 0.33, 0.66, 1.00, 1.33 and 2 MC. CMM measurements were done before and after the test. A high correlation was found between the gravimetric and optical methods for both heads (R 2 = 0.997) and for cups (R 2 = 0.96). Both geometric methods (optical and CMM) measured more volume loss than the gravimetric method (for the heads, p = 0.004 (optical) and p = 0.08 (CMM); for the cups p = 0.01 (optical) and p = 0.003 (CMM)). Two cups recorded negative wear at 2 MC by the gravimetric method but none did by either the optical method or by CMM. The geometric methods were prone to confounding factors such as surface deformation and the gravimetric method could be confounded by protein absorption and backside wear. Both of the geometric methods were able to show the location, area covered and depth of the wear on the bearing surfaces, and track their changes during the test run; providing significant advantages to solely using the gravimetric method.
NASA Astrophysics Data System (ADS)
Cordero-Llana, L.; Selmes, N.; Murray, T.; Scharrer, K.; Booth, A. D.
2012-12-01
Large volumes of water are necessary to propagate cracks to the glacial bed via hydrofractures. Hydrological models have shown that lakes above a critical volume can supply the necessary water for this process, so the ability to measure water depth in lakes remotely is important to study these processes. Previously, water depth has been derived from the optical properties of water using data from high resolution optical satellite images, as such ASTER, (Advanced Spaceborne Thermal Emission and Reflection Radiometer), IKONOS and LANDSAT. These studies used water-reflectance models based on the Bouguer-Lambert-Beer law and lack any estimation of model uncertainties. We propose an optimized model based on Sneed and Hamilton's (2007) approach to estimate water depths in supraglacial lakes and undertake a robust analysis of the errors for the first time. We used atmospherically-corrected data from ASTER and MODIS data as an input to the water-reflectance model. Three physical parameters are needed: namely bed albedo, water attenuation coefficient and reflectance of optically-deep water. These parameters were derived for each wavelength using standard calibrations. As a reference dataset, we obtained lake geometries using ICESat measurements over empty lakes. Differences between modeled and reference depths are used in a minimization model to obtain parameters for the water-reflectance model, yielding optimized lake depth estimates. Our key contribution is the development of a Monte Carlo simulation to run the water-reflectance model, which allows us to quantify the uncertainties in water depth and hence water volume. This robust statistical analysis provides better understanding of the sensitivity of the water-reflectance model to the choice of input parameters, which should contribute to the understanding of the influence of surface-derived melt-water on ice sheet dynamics. Sneed, W.A. and Hamilton, G.S., 2007: Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophysical Research Letters, 34, 1-4.
Hemispherical Field-of-View Above-Water Surface Imager for Submarines
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Kovalik, Joseph M.; Farr, William H.; Dannecker, John D.
2012-01-01
A document discusses solutions to the problem of submarines having to rise above water to detect airplanes in the general vicinity. Two solutions are provided, in which a sensor is located just under the water surface, and at a few to tens of meter depth under the water surface. The first option is a Fish Eye Lens (FEL) digital-camera combination, situated just under the water surface that will have near-full- hemisphere (360 azimuth and 90 elevation) field of view for detecting objects on the water surface. This sensor can provide a three-dimensional picture of the airspace both in the marine and in the land environment. The FEL is coupled to a camera and can continuously look at the entire sky above it. The camera can have an Active Pixel Sensor (APS) focal plane array that allows logic circuitry to be built directly in the sensor. The logic circuitry allows data processing to occur on the sensor head without the need for any other external electronics. In the second option, a single-photon sensitive (photon counting) detector-array is used at depth, without the need for any optics in front of it, since at this location, optical signals are scattered and arrive at a wide (tens of degrees) range of angles. Beam scattering through clouds and seawater effectively negates optical imaging at depths below a few meters under cloudy or turbulent conditions. Under those conditions, maximum collection efficiency can be achieved by using a non-imaging photon-counting detector behind narrowband filters. In either case, signals from these sensors may be fused and correlated or decorrelated with other sensor data to get an accurate picture of the object(s) above the submarine. These devices can complement traditional submarine periscopes that have a limited field of view in the elevation direction. Also, these techniques circumvent the need for exposing the entire submarine or its periscopes to the outside environment.
How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2010-01-01
Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.
Multi-modality endoscopic imaging for the detection of colorectal cancer
NASA Astrophysics Data System (ADS)
Wall, Richard Andrew
Optical coherence tomography (OCT) is an imaging method that is considered the optical analog to ultrasound, using the technique of optical interferometry to construct two-dimensional depth-resolved images of tissue microstructure. With a resolution on the order of 10 um and a penetration depth of 1-2 mm in highly scattering tissue, fiber optics-coupled OCT is an ideal modality for the inspection of the mouse colon with its miniaturization capabilities. In the present study, the complementary modalities laser-induced fluorescence (LIF), which offers information on the biochemical makeup of the tissue, and surface magnifying chromoendoscopy, which offers high contrast surface visualization, are combined with OCT in endoscopic imaging systems for the greater specificity and sensitivity in the differentiation between normal and neoplastic tissue, and for the visualization of biomarkers which are indicative of early events in colorectal carcinogenesis. Oblique incidence reflectometry (OIR) also offers advantages, allowing the calculation of bulk tissue optical properties for use as a diagnostic tool. The study was broken up into three specific sections. First, a dual-modality OCTLIF imaging system was designed, capable of focusing light over 325-1300 nm using a reflective distal optics design. A dual-modality fluorescence-based SMC-OCT system was then designed and constructed, capable of resolving the stained mucosal crypt structure of the in vivo mouse colon. The SMC-OCT instrument's OIR capabilities were then modeled, as a modified version of the probe was used measure tissue scattering and absorption coefficients.
Method and Apparatus for Creating a Topography at a Surface
Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.
2008-11-11
Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.
Visualization of the 3-D topography of the optic nerve head through a passive stereo vision model
NASA Astrophysics Data System (ADS)
Ramirez, Juan M.; Mitra, Sunanda; Morales, Jose
1999-01-01
This paper describes a system for surface recovery and visualization of the 3D topography of the optic nerve head, as support of early diagnosis and follow up to glaucoma. In stereo vision, depth information is obtained from triangulation of corresponding points in a pair of stereo images. In this paper, the use of the cepstrum transformation as a disparity measurement technique between corresponding windows of different block sizes is described. This measurement process is embedded within a coarse-to-fine depth-from-stereo algorithm, providing an initial range map with the depth information encoded as gray levels. These sparse depth data are processed through a cubic B-spline interpolation technique in order to obtain a smoother representation. This methodology is being especially refined to be used with medical images for clinical evaluation of some eye diseases such as open angle glaucoma, and is currently under testing for clinical evaluation and analysis of reproducibility and accuracy.
Obsidian hydration profiles measured by sputter-induced optical emission.
Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W
1978-07-28
The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.
NOVAM Evaluation Utilizing Electro-Optics and Meteorological Data from KEY-90
1993-09-01
from TNO lidar ............................ 53 22. A segment of time history of the aircraft altitude determined from the NRL data for 14 July 1990...54 23. A time history of the optical depth between the NRL aircraft and the ocean surface on 14...of two sets of lidar shots taken at different times and places on 14 July 1990 ..................... 55 25. A time history of the boundary-layer
Yusof, Fasihah Hanum; Ung, Ngie Min; Wong, Jeannie Hsiu Ding; Jong, Wei Loong; Ath, Vannyat; Phua, Vincent Chee Ee; Heng, Siew Ping; Ng, Kwan Hoong
2015-01-01
This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments. PMID:26052690
Larson, Nels R. [Pacific Northwest Laboratory (PNNL), Richland, WA (USA); Michalsky, Joseph J. [Atmospheric Sciences Research Center, Albany, NY (USA); LeBaron, Brock A. [Utah Bureau of Air Quality, Salt Lake City, Utah (USA)
2012-01-01
Surface measurements of solar irradiance of the atmosphere were made by a multipurpose computer-controlled scanning photometer at the Rattlesnake Mountain Observatory in eastern Washington. The observatory is located at 46.4° N, 119.6° W at an elevation of 1088 m above mean sea level. The photometer measures the attenuation of direct solar radiation for different wavelengths using 12 filters. Five of these filters (i.e., at 428 nm, 486 nm, 535 nm, 785 nm, and 1010 nm, with respective half-power widths of 2, 2, 3, 18, and 28 nm) are suitable for monitoring variations in the total optical depth of the atmosphere.
ERIC Educational Resources Information Center
Physics Education, 1989
1989-01-01
Described are the purposes, laboratory set-ups, and procedures of four classroom experiments: ultrasound speedometer; vibrating-bar depth gauge; folding three-dimensional model of equipotential surfaces; and a simple optical system for the reconstruction of images from computer-generated holograms. Diagrams and pictures are provided. (YP)
NASA Astrophysics Data System (ADS)
Engelen, L.; Creëlle, S.; Schindfessel, L.; De Mulder, T.
2018-03-01
This paper presents a low-cost and easy-to-implement image-based reconstruction technique for laboratory experiments, which results in a temporal description of the water surface topography. The distortion due to refraction of a known pattern, located below the water surface, is used to fit a low parameter surface model that describes the time-dependent and three-dimensional surface variation. Instead of finding the optimal water depth for characteristic points on the surface, the deformation of the entire pattern is compared to its original shape. This avoids the need for feature tracking adopted in similar techniques, which improves the robustness to suboptimal optical conditions and small-scale, high-frequency surface perturbations. Experimental validation, by comparison with water depth measurements using a level gauge and pressure sensor, proves sub-millimetre accuracy for smooth and steady surface shapes. Although such accuracy cannot be achieved in case of highly dynamic surface phenomena, the low-frequency and large-scale free surface oscillations can still be measured with a temporal and spatial resolution mostly limited by the available optical set-up. The technique is initially intended for periodic surface phenomena, but the results presented in this paper indicate that also irregular surface shapes can robustly be reconstructed. Therefore, the presented technique is a promising tool for other research applications that require non-intrusive, low-cost surface measurements while maintaining visual access to the water below the surface. The latter ensures that the suggested surface reconstruction is compatible with simultaneous image-based velocity measurements, enabling a detailed study of the flow.
Solar radiation on Mars: Stationary photovoltaic array
NASA Technical Reports Server (NTRS)
Appelbaum, J.; Sherman, I.; Landis, G. A.
1993-01-01
Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.
Surface microroughness of ion-beam etched optical surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savvides, N.
2005-03-01
Ion-beam etching (IBE) and ion-beam figuring techniques using low-energy ion-beam sources have been applied for more than ten years in the fabrication and finishing of extremely smooth high-performance optics. We used optical interferometric techniques and atomic force microscopy to study the evolution of the surface root-mean-square (rms) microroughness, Rq, as a function of depth of a material removed (0-3000 nm) by a broad ion-beam source (Ar{sup +} ions of energy 600 eV and ion current density of 1 mA cm{sup -2}). Highly polished samples of fused silica and Zerodur (Rq{approx}3.5 A) showed a small decrease in microroughness (to 2.5 A)more » after 3000-nm IBE removal while an ultrapolished single-crystal sapphire sample (Rq{approx}1 A rms) retained its very low microroughness during IBE. Power spectral density functions over the spatial frequency interval of measurement (f=5x10{sup -3}-25 {mu}m{sup -1}) indicate that the IBE surfaces have minimal subsurface damage and low optical scatter.« less
Micromachined edge illuminated optically transparent automotive light guide panels
NASA Astrophysics Data System (ADS)
Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas
2012-03-01
Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.
NASA Astrophysics Data System (ADS)
Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae
2017-04-01
In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and investigated the effects of the BAOD assumption. The satellite-based BAOD was significantly higher than the ground-based value over urban area, and thus, resulted in the underestimation of surface reflectance and the overestimation of AOD. The error analysis of the MI AOD also showed sensitivity to cloud contamination, clearly. Therefore, improvements of cloud masking process in the developed single channel MI algorithm as well as the modification of the surface reflectance estimation will be required for the future study.
Interaction between aerosol and the planetary boundary layer depth at sites in the US and China
NASA Astrophysics Data System (ADS)
Sawyer, V. R.
2015-12-01
The depth of the planetary boundary layer (PBL) defines a changing volume into which pollutants from the surface can disperse, which affects weather, surface air quality and radiative forcing in the lower troposphere. Model simulations have also shown that aerosol within the PBL heats the layer at the expense of the surface, changing the stability profile and therefore also the development of the PBL itself: aerosol radiative forcing within the PBL suppresses surface convection and causes shallower PBLs. However, the effect has been difficult to detect in observations. The most intensive radiosonde measurements have a temporal resolution too coarse to detect the full diurnal variability of the PBL, but remote sensing such as lidar can fill in the gaps. Using a method that combines two common PBL detection algorithms (wavelet covariance and iterative curve-fitting) PBL depth retrievals from micropulse lidar (MPL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared to MPL-derived PBL depths from a multiyear lidar deployment at the Hefei Radiation Observatory (HeRO). With aerosol optical depth (AOD) measurements from both sites, it can be shown that a weak inverse relationship exists between AOD and daytime PBL depth. This relationship is stronger at the more polluted HeRO site than at SGP. Figure: Mean daily AOD vs. mean daily PBL depth, with the Nadaraya-Watson estimator overlaid on the kernel density estimate. Left, SGP; right, HeRO.
Antarctic Ultraviolet Radiation Climatology from Total Ozone Mapping Spectrometer Data
NASA Technical Reports Server (NTRS)
Lubin, Dan
2004-01-01
This project has successfully produced a climatology of local noon spectral surface irradiance covering the Antarctic continent and the Southern Ocean, the spectral interval 290-700 nm (UV-A, UV-B, and photosynthetically active radiation, PAR), and the entire sunlit part of the year for November 1979-December 1999. Total Ozone Mapping Spectrometer (TOMS) data were used to specify column ozone abundance and UV-A (360- or 380-nm) reflectivity, and passive microwave (MW) sea ice concentrations were used to specify the surface albedo over the Southern Ocean. For this latter task, sea ice concentration retrievals from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and its successor, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) were identified with ultraviolet/visible-wavelength albedos based on an empirical TOMS/MW parameterization developed for this purpose (Lubin and Morrow, 2001). The satellite retrievals of surface albedo and UV-A reflectivity were used in a delta-Eddington radiative transfer model to estimate cloud effective optical depth. These optical depth estimates were then used along with the total ozone and surface albedo to calculate the downwelling spectral UV and PAR irradiance at the surface. These spectral irradiance maps were produced for every usable day of TOMS data between 1979-1999 (every other day early in the TOMS program, daily later on).
NASA Astrophysics Data System (ADS)
Zawadzka, Olga; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Nemuc, Anca; Stebel, Kerstin
2018-04-01
During an exceptionally warm September of 2016, the unique, stable weather conditions over Poland allowed for an extensive testing of the new algorithm developed to improve the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth (AOD) retrieval. The development was conducted in the frame of the ESA-ESRIN SAMIRA project. The new AOD algorithm aims at providing the aerosol optical depth maps over the territory of Poland with a high temporal resolution of 15 minutes. It was tested on the data set obtained between 11-16 September 2016, during which a day of relatively clean atmospheric background related to an Arctic airmass inflow was surrounded by a few days with well increased aerosol load of different origin. On the clean reference day, for estimating surface reflectance the AOD forecast available on-line via the Copernicus Atmosphere Monitoring Service (CAMS) was used. The obtained AOD maps were validated against AODs available within the Poland-AOD and AERONET networks, and with AOD values obtained from the PollyXT-UW lidar. of the University of Warsaw (UW).
Multi-year global climatic effects of atmospheric dust from large bolide impacts
NASA Technical Reports Server (NTRS)
Thompson, Starley L.
1988-01-01
The global climatic effects of dust generated by the impact of a 10 km-diameter bolide was simulated using a one-dimensional (vertical only) globally-averaged climate model by Pollack et al. The goal of the simulation is to examine the regional climate effects, including the possibility of coastal refugia, generated by a global dust cloud in a model having realistic geographic resolution. The climate model assumes the instantaneous appearance of a global stratospheric dust cloud with initial optical depth of 10,000. The time history of optical depth decreases according to the detailed calculations of Pollack et al., reaching an optical depth of unity at day 160, and subsequently decreasing with an e-folding time of 1 year. The simulation is carried out for three years in order to examine the atmospheric effects and recovery over several seasons. The simulation does not include any effects of NOx, CO2, or wildfire smoke injections that may accompany the creation of the dust cloud. The global distribution of surface temperature changes, freezing events, precipitation and soil moisture effects and sea ice increases will be discussed.
Influence of pitting defects on quality of high power laser light field
NASA Astrophysics Data System (ADS)
Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong
2018-01-01
With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.
NASA Astrophysics Data System (ADS)
Fontaine, Arjun K.; Kirchner, Matthew S.; Caldwell, John H.; Weir, Richard F.; Gibson, Emily A.
2018-02-01
Two-photon microscopy is a powerful tool of current scientific research, allowing optical visualization of structures below the surface of tissues. This is of particular value in neuroscience, where optically accessing regions within the brain is critical for the continued advancement in understanding of neural circuits. However, two-photon imaging at significant depths have typically used Ti:Sapphire based amplifiers that are prohibitively expensive and bulky. In this study, we demonstrate deep tissue two-photon imaging using a compact, inexpensive, turnkey operated Ytterbium fiber laser (Y-Fi, KM Labs). The laser is based on all-normal dispersion (ANDi) that provides short pulse durations and high pulse energies. Depth measurements obtained in ex vivo mouse cortex exceed those obtainable with standard two-photon microscopes using Ti:Sapphire lasers. In addition to demonstrating the capability of deep-tissue imaging in the brain, we investigated imaging depth in highly-scattering white matter with measurements in sciatic nerve showing limited optical penetration of heavily myelinated nerve tissue relative to grey matter.
NASA Technical Reports Server (NTRS)
Santee, M.; Crisp, D.
1992-01-01
The temperature structure and dust loading of the Martian atmosphere are investigated using thermal emission spectra recorded in 1972 by the Mariner 9 infrared interferometer spectrometer (IRIS). The analysis focuses on a subset of data consisting of approximately 2400 spectra obtained near the end of the southern summer season (L(sub s) equal to 343 deg to 348 deg), after the global dust storm had largely abated and airborne dust amounts were subsiding to background values. Simultaneous retrieval of the vertical distribution of both atmospheric temperature and dust optical depth is accomplished through an iterative procedure which is performed on each individual spectrum. The atmospheric transmittances are calculated using a Voigt quasi-random band model, which includes absorption by CO2 and dust, but neglects the effects of multiple scattering. Vertical profiles of temperature and dust optical depth are obtained using modified algorithms. These profiles are used to construct global maps of temperature and dust optical depth as functions of latitude (+/- 90 deg), altitude (approximately 0-50 km), and local time of day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Terentyuk, G S; Khlebtsov, B N
2012-06-30
The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and themore » optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.« less
Fiber Optic Thermal Detection of Composite Delaminations
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.
2011-01-01
A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.
An optical conveyor for molecules.
Weinert, Franz M; Braun, Dieter
2009-12-01
Trapping single ions under vacuum allows for precise spectroscopy in atomic physics. The confinement of biological molecules in bulk water is hindered by the lack of comparably strong forces. Molecules have been immobilized to surfaces, however often with detrimental effects on their function. Here, we optically trap molecules by creating the microscale analogue of a conveyor belt: a bidirectional flow is combined with a perpendicular thermophoretic molecule drift. Arranged in a toroidal geometry, the conveyor accumulates a hundredfold excess of 5-base DNA within seconds. The concentrations of the trapped DNA scale exponentially with length, reaching trapping potential depths of 14 kT for 50 bases. The mechanism does not require microfluidics, electrodes, or surface modifications. As a result, the trap can be dynamically relocated. The optical conveyor can be used to enhance diffusion-limited surface reactions, redirect cellular signaling, observe individual biomolecules over a prolonged time, or approach single-molecule chemistry in bulk water.
Ship-borne measurements of aerosol optical depth over remote oceans and its dependence on wind speed
NASA Astrophysics Data System (ADS)
Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P. L.; Quinn, P.; Sciare, J.; Gulev, S. K.; Piketh, S.; Losno, R.; Kinne, S. A.; Radionov, V. F.
2011-12-01
Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. Sea-salt aerosol production, being a major source of aerosol over remote oceans, depends on surface wind speed. Recently in a number of publications the effect of wind speed on aerosol optical depth (AOD) has been presented utilizing coastal, island-based and satellite-based AOD measurements. However, the influence of wind speed on the columnar optical depth is still poorly understood, because not all factors and precursors influencing AOD dependence can be accounted for. The Maritime Aerosol Network (a component of AERONET) data archive provides an excellent opportunity to analyze in depth a relationship between ship-based AOD measurements and wind speed. We considered only data presumably not influenced by urban/industrial continental sources, dust outbreaks, biomass burning, or glaciers and pack ice. Additional restrictions imposed on the data set were acceptance of only points taken not closer than two degrees from the nearest landmass. We present analyses on the effect of surface (deck-level) wind speed (acquired onboard, modeled by NCEP, measured from satellite) on AOD and its spectral dependence. Latitudinal comparison of measured onboard and modeled wind speeds showed relatively small bias, which was higher at high latitudes. Instantaneous AOD measurements and daily means yielded similar relationships with various wind speed subsets (instantaneous ship-based and NCEP, averaged over previous 24 hours, steady, satellite retrieved). We compared regression statistics of optical parameters versus wind speed presented in various papers and based on various satellite and sunphotometer measurements. Overall, despite certain scatter, the current work and a majority of publications showed consistent patterns, with the AOD versus wind speed (range 2-16 m/s) dependence close to linear.
NASA Astrophysics Data System (ADS)
Yue, Qing
Cirrus clouds have a unique influence on the climate system through their effects on the radiation budget of the earth and the atmosphere. To better understand the radiative effect of cirrus clouds, the microphysical and radiative properties of these clouds, especially tropical thin cirrus clouds, are studied based on both insitu cirrus measurements and satellite remote sensing observations. We perform a correlation analysis involving ice water content (IWC) and mean effective diameter (De) for applications to radiative transfer calculations and climate models using insitu measurements obtained from numerous field campaigns in the tropics, midlatitude, and Arctic regions. In conjunction with the study of cirrus clouds, we develop a high-resolution spectral infrared radiative transfer model for thin cirrus cloudy atmosphere, which is employed to retrieve De and cirrus optical depth from the Atmospheric Infrared Sounder (AIRS) infrared spectra. Numerical simulations show that cirrus cloudy radiances in the 800-1130 cm-1 thermal infrared window are sufficiently sensitive to variations in cirrus optical depth, and ice crystal size and habit. A number of nighttime thin cirrus scenes over the Atmospheric Radiation Measurement (ARM) program's Tropical Western Pacific sites have been selected from AIRS datasets for this study. The radiative transfer model is applied to these selected cases to determine cirrus optical depth, De and habit factors. Solar and infrared radiative forcings and heating rates produced by thin cirrus in the tropical atmosphere have been calculated using the retrieved cirrus optical and microphysical properties along with a modified Fu and Liou broadband radiative transfer scheme to analyze their dependence on cirrus cloud properties. Generally, larger TOA warming and smaller surface warming are associated with higher cirrus clouds. To cross-check the validity of our model, the collocated and coincident surface radiation measurements taken by ARM pyrgeometers have been compared with the calculated surface fluxes. Using the method developed in this study, regional radiation budget analyses can be carried out in the future study to quantitatively understand the role of thin cirrus clouds on solar and thermal infrared radiative forcings at the top of the atmosphere, the tropopause, and the surface.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
NASA Astrophysics Data System (ADS)
Estapa, M. L.
2016-02-01
Autonomous, bio-optical profiling floats are poised to broaden the number and spatiotemporal resolution of observations of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical profiling floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). Profiles were collected at approximately 2-day resolution, and drift-phase PC flux observations were collected at subdaily resolution at a rotating cycle of observation depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with observations at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short profile cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-observed surface properties.
A new method for assessing surface solar irradiance: Heliosat-4
NASA Astrophysics Data System (ADS)
Qu, Z.; Oumbe, A.; Blanc, P.; Lefèvre, M.; Wald, L.; Schroedter-Homscheidt, M.; Gesell, G.
2012-04-01
Downwelling shortwave irradiance at surface (SSI) is more and more often assessed by means of satellite-derived estimates of optical properties of the atmosphere. Performances are judged satisfactory for the time being but there is an increasing need for the assessment of the direct and diffuse components of the SSI. MINES ParisTech and the German Aerospace Center (DLR) are currently developing the Heliosat-4 method to assess the SSI and its components in a more accurate way than current practices. This method is composed by two parts: a clear sky module based on the radiative transfer model libRadtran, and a cloud-ground module using two-stream and delta-Eddington approximations for clouds and a database of ground albedo. Advanced products derived from geostationary satellites and recent Earth Observation missions are the inputs of the Heliosat-4 method. Such products are: cloud optical depth, cloud phase, cloud type and cloud coverage from APOLLO of DLR, aerosol optical depth, aerosol type, water vapor in clear-sky, ozone from MACC products (FP7), and ground albedo from MODIS of NASA. In this communication, we briefly present Heliosat-4 and focus on its performances. The results of Heliosat-4 for the period 2004-2010 will be compared to the measurements made in five stations within the Baseline Surface Radiation Network. Extensive statistic analysis as well as case studies are performed in order to better understand Heliosat-4 and have an in-depth view of the performance of Heliosat-4, to understand its advantages comparing to existing methods and to identify its defaults for future improvements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218793 (MACC project) and no. 283576 (MACC-II project).
Subsurface damage in precision ground ULE(R) and Zerodur(R) surfaces.
Tonnellier, X; Morantz, P; Shore, P; Baldwin, A; Evans, R; Walker, D D
2007-09-17
The total process cycle time for large ULE((R)) and Zerodur((R))optics can be improved using a precise and rapid grinding process, with low levels of surface waviness and subsurface damage. In this paper, the amounts of defects beneath ULE((R)) and Zerodur((R) )surfaces ground using a selected grinding mode were compared. The grinding response was characterised by measuring: surface roughness, surface profile and subsurface damage. The observed subsurface damage can be separated into two distinct depth zones, which are: 'process' and 'machine dynamics' related.
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.
Pacheco, Clara J; Bruno, Antonio C
2013-08-29
A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range.
Pacheco, Clara J.; Bruno, Antonio C.
2013-01-01
A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range. PMID:23995095
Grover, Ginni; DeLuca, Keith; Quirin, Sean; DeLuca, Jennifer; Piestun, Rafael
2012-01-01
Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics and reconstruction processes using double-helix point spread functions (DH-PSF) provides high resolution three-dimensional (3D) imaging over a long depth-of-field. We demonstrate for the first time a method integrating a Fisher information efficient DH-PSF design, a surface relief optical phase mask, and an optimal 3D localization estimator. 3D super-resolution imaging using photo-switchable dyes reveals the 3D microtubule network in mammalian cells with localization precision approaching the information theoretical limit over a depth of 1.2 µm. PMID:23187521
Cooling of the North Atlantic by Saharan Dust
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.
2007-01-01
Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Qingliang; Guo Zhouyi; Wei Huajiang
2011-10-31
Depth-resolved monitoring with differentiation and quantification of glucose diffusion in healthy and abnormal esophagus tissues has been studied in vitro. Experiments have been performed using human normal esophagus and esophageal squamous cell carcinoma (ESCC) tissues by the optical coherence tomography (OCT). The images have been continuously acquired for 120 min in the experiments, and the depth-resolved and average permeability coefficients of the 40 % glucose solution have been calculated by the OCT amplitude (OCTA) method. We demonstrate the capability of the OCT technique for depth-resolved monitoring, differentiation, and quantifying of glucose diffusion in normal esophagus and ESCC tissues. It ismore » found that the permeability coefficients of the 40 % glucose solution are not uniform throughout the normal esophagus and ESCC tissues and increase from (3.30 {+-} 0.09) Multiplication-Sign 10{sup -6} and (1.57 {+-} 0.05) Multiplication-Sign 10{sup -5} cm s{sup -1} at the mucous membrane of normal esophagus and ESCC tissues to (1.82 {+-} 0.04) Multiplication-Sign 10{sup -5} and (3.53 {+-} 0.09) Multiplication-Sign 10{sup -5} cm s{sup -1} at the submucous layer approximately 742 {mu}m away from the epithelial surface of normal esophagus and ESCC tissues, respectively. (optical coherence tomography)« less
Ueno, Tomoka; Shimada, Yasushi; Matin, Khairul; Zhou, Yuan; Wada, Ikumi; Sadr, Alireza; Sumi, Yasunori; Tagami, Junji
2016-01-01
Abstract. The aim of this study was to evaluate the signal intensity and signal attenuation of swept source optical coherence tomography (SS-OCT) for dental caries in relation to the variation of mineral density. SS-OCT observation was performed on the enamel and dentin artificial demineralization and on natural caries. The artificial caries model on enamel and dentin surfaces was created using Streptococcus mutans biofilms incubated in an oral biofilm reactor. The lesions were centrally cross sectioned and SS-OCT scans were obtained in two directions to construct a three-dimensional data set, from the lesion surface (sagittal scan) and parallel to the lesion surface (horizontal scan). The integrated signal up to 200 μm in depth (IS200) and the attenuation coefficient (μ) of the enamel and dentin lesions were calculated from the SS-OCT signal in horizontal scans at five locations of lesion depth. The values were compared with the mineral density obtained from transverse microradiography. Both enamel and dentin demineralization showed significantly higher IS200 and μ than the sound tooth substrate from the sagittal scan. Enamel demineralization showed significantly higher IS200 than sound enamel, even with low levels of demineralization. In demineralized dentin, the μ from the horizontal scan consistently trended downward compared to the sound dentin. PMID:27704033
Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Heilmann, Martin; Yang, Jianfeng; Dai, Xi; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin
2016-11-23
Using advanced two-photon excitation confocal microscopy, associated with time-resolved spectroscopy, we characterize InGaN/GaN multiple quantum wells on nanorod heterostructures and demonstrate the passivation effect of a KOH treatment. High-quality InGaN/GaN nanorods were fabricated using nanosphere lithography as a candidate material for light-emitting diode devices. The depth- and time-resolved characterization at the nanoscale provides detailed carrier dynamic analysis helpful for understanding the optical properties. The nanoscale spatially resolved images of InGaN quantum well and defects were acquired simultaneously. We demonstrate that nanorod etching improves light extraction efficiency, and a proper KOH treatment has been found to reduce the surface defects efficiently and enhance the luminescence. The optical characterization techniques provide depth-resolved and time-resolved carrier dynamics with nanoscale spatially resolved mapping, which is crucial for a comprehensive and thorough understanding of nanostructured materials and provides novel insight into the improvement of materials fabrication and applications.
NASA Technical Reports Server (NTRS)
Lewis, Jasper; DeYoung, Russell; Ferrare, Richard; Chu, D. Allen
2010-01-01
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM(sub 2.5) concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM(sub 2.5) in the winter can exceed summer PM(sub 2.5) by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM(sub 2.5) measurements at the surface. Measurements of the boundary layer height from lidar instruments provide valuable information need to understand the relationship between satellite measurements of optical depth and in-situ measurements of PM(sub 2.5).
Retrieval and Validation of Aerosol Optical Depth by using the GF-1 Remote Sensing Data
NASA Astrophysics Data System (ADS)
Zhang, L.; Xu, S.; Wang, L.; Cai, K.; Ge, Q.
2017-05-01
Based on the characteristics of GF-1 remote sensing data, the method and data processing procedure to retrieve the Aerosol Optical Depth (AOD) are developed in this study. The surface contribution over dense vegetation and urban bright target areas are respectively removed by using the dark target and deep blue algorithms. Our method is applied for the three serious polluted Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions. The retrieved AOD are validated by ground-based AERONET data from Beijing, Hangzhou, Hong Kong sites. Our results show that, 1) the heavy aerosol loadings are usually distributed in high industrial emission and dense populated cities, with the AOD value near 1. 2) There is a good agreement between satellite-retrievals and in-site observations, with the coefficient factors of 0.71 (BTH), 0.55 (YRD) and 0.54(PRD). 3) The GF-1 retrieval uncertainties are mainly from the impact of cloud contamination, high surface reflectance and assumed aerosol model.
NASA Astrophysics Data System (ADS)
Zeng, Xiaofan; Zhao, Na; Ma, Yue
2018-02-01
Surface solar radiation, as a major component of energy balance, is an important driving condition for nutrient and energy cycle in the Earth system. The spatial distribution of total solar radiation at 10 km×10 km resolution in China was simulated with Aerosol Optical Depth (AOD) data from remote sensing and observing sunshine hours data from ground meteorological stations based on Geographic Information System (GIS). The results showed that the solar radiation was significantly different in the country, and affected by both sunshine hours and AOD. Sunshine hours are higher in the Northwest than that in the Northeast, but solar radiation is lower because of the higher AOD, especially in autumn and winter. It was suggested that the calculation accuracy of solar radiation was limited if just based on sunshine hours, and AOD can be considered as the influencing factor which would help to improve the simulation accuracy of the total solar radiation and realize the solar radiation distributed simulation.
NASA Technical Reports Server (NTRS)
Uttal, Taneil; Frisch, Shelby; Wang, Xuan-Ji; Key, Jeff; Schweiger, Axel; Sun-Mack, Sunny; Minnis, Patrick
2005-01-01
A one year comparison is made of mean monthly values of cloud fraction and cloud optical depth over Barrow, Alaska (71 deg 19.378 min North, 156 deg 36.934 min West) between 35 GHz radar-based retrievals, the TOVS Pathfinder Path-P product, the AVHRR APP-X product, and a MODIS based cloud retrieval product from the CERES-Team. The data sets represent largely disparate spatial and temporal scales, however, in this paper, the focus is to provide a preliminary analysis of how the mean monthly values derived from these different data sets compare, and determine how they can best be used separately, and in combination to provide reliable estimates of long-term trends of changing cloud properties. The radar and satellite data sets described here incorporate Arctic specific modifications that account for cloud detection challenges specific to the Arctic environment. The year 2000 was chosen for this initial comparison because the cloud radar data was particularly continuous and reliable that year, and all of the satellite retrievals of interest were also available for the year 2000. Cloud fraction was chosen as a comparison variable as accurate detection of cloud is the primary product that is necessary for any other cloud property retrievals. Cloud optical depth was additionally selected as it is likely the single cloud property that is most closely correlated to cloud influences on surface radiation budgets.
Use of fractional laser microablation of skin for improvement of its immersion clearing
NASA Astrophysics Data System (ADS)
Kolesnikova, Ekaterina A.; Kolesnikov, Aleksandr S.; Genina, Elina A.; Dolotov, Leonid E.; Tuchina, Darya K.; Bashkatov, Alexey N.; Tuchin, Valery V.
2013-02-01
We are proposing a new method for enhancement of optical clearing agent delivery into the skin using fractional laser microablation of the skin surface. The Palomar Lux2940 erbium laser with the wavelength 2940 nm and pulse duration of 5 ms was used as a light source. Two regimes of laser action were used in the experiments: the first one realized microablation of skin upper layer and the second one created microchannels in skin. As optical clearing agents mineral oil and PEG-300 were used. In vivo studies were carried out with white outbred rats. Both parameters: the permeability coefficient of the agents in the tissue and the optical probing depth were measured using the OCT system at a wavelength of 930 nm. The following values of the permeability coefficient of the skin with microablation were obtained: (3.41+/-0.46)×10-5 cm/s and (2.35+/-0.30)×10-5 cm/s for mineral oil and PEG-300, respectively, at the use of the surface microablation and (3.32+/-0.09)×10-5 cm/s and (3.61+/-0.34)×10-5 cm/s for mineral oil and PEG-300, respectively, at the use of the microporation. The results have shown that the joint application of mineral oil with microablation in the first regime promotes maximal (nearly 2-folds) increasing of optical probing depth in 30 min. Obtained data can be used for development of optical diagnostic methods of skin diseases.
Djaker, Nadia; Wulfman, Claudine; Sadoun, Michaël; Lamy de la Chapelle, Marc
2013-01-01
Subsurface hydrothermal degradation of yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) is presented. Evaluation of low temperature degradation (LTD) phase transformation induced by aging in 3Y-TZP is experimentally studied by Raman confocal microspectroscopy. A non-linear distribution of monoclinic volume fraction is determined in depth by using different pinhole sizes. A theoretical simulation is proposed based on the convolution of the excitation intensity profile and the Beer-Lambert law (optical properties of zirconia) to compare between experiment and theory. The calculated theoretical degradation curves matche closely to the experimental ones. Surface transformation (V0) and transformation factor in depth (T) are obtained by comparing simulation and experience for each sample with nondestructive optical sectioning. PMID:23667788
NASA Astrophysics Data System (ADS)
Sosunov, A. V.; Ponomarev, R. S.; Yur'ev, V. A.; Volyntsev, A. B.
2017-01-01
This paper shows that the near-surface layer of a lithium niobate single layer 15 μm in depth is essentially different from the rest of the volume of the material from the standpoint of composition, structure, and mechanical properties. The pointed out differences are due to the effect of cutting, polishing, and smoothing of the lithium niobate plates, which increase the density of point defects and dislocations. The increasing density of the structural defects leads to uncontrollable changes in the conditions of the formations of waveguides and the drifting of characteristics of integrated optical circuits. The results obtained are very important for the manufacture of lithium niobate based integrated optical circuits.
Self-spectral calibration for spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhang, Xianling; Gao, Wanrong; Bian, Haiyi; Chen, Chaoliang; Liao, Jiuling
2013-06-01
A different real-time self-wavelength calibration method for spectral domain optical coherence tomography is presented in which interference spectra measured from two arbitrary points on the tissue surface are used for calibration. The method takes advantages of two favorable conditions of optical coherence tomography (OCT) signal. First, the signal back-scattered from the tissue surface is generally much stronger than that from positions in the tissue interior, so the spectral component of the surface interference could be extracted from the measured spectrum. Second, the tissue surface is not a plane and a phase difference exists between the light reflected from two different points on the surface. Compared with the zero-crossing automatic method, the introduced method has the advantage of removing the error due to dispersion mismatch or the common phase error. The method is tested experimentally to demonstrate the improved signal-to-noise ratio, higher axial resolution, and slower sensitivity degradation with depth when compared to the use of the zero-crossing method and applied to two-dimensional cross-sectional images of human finger skin.
Smoke optical depths - Magnitude, variability, and wavelength dependence
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.
1988-01-01
An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; LaGory, Kirk E.
2016-02-01
Low-velocity channel-margin habitats serve as important nursery habitats for the endangered Colorado pikeminnow (Ptychocheilus lucius) in the middle Green River between Jensen and Ouray, Utah. These habitats, known as backwaters, are associated with emergent sand bars, and are shaped and reformed annually by peak flows. A recent synthesis of information on backwater characteristics and the factors that influence inter-annual variability in those backwaters (Grippo et al. 2015) evaluated detailed survey information collected annually since 2003 on a relatively small sample of backwaters, as well as reach-wide evaluations of backwater surface area from aerial and satellite imagery. An approach is neededmore » to bridge the gap between these detailed surveys, which estimate surface area, volume, and depth, and the reach-wide assessment of surface area to enable an assessment of the amount of habitat that meets the minimum depth requirements for suitable habitat.« less
Some constraints on a greenhouse atmosphere for Triton
NASA Technical Reports Server (NTRS)
Nolan, Michael C.; Lunine, Jonathan I.
1988-01-01
The possibility that a thick atmosphere exists around Neptune's satellite Triton is examined. The IR optical depth in the gray atmosphere approximation is computed for a range of possible surface compositions, albedos, and gravities. It is found that a self-sustaining optically-thick atmosphere is possible if molecular nitrogen and/or hydrogen are present. It is suggested that bimodal behavior of Triton's atmosphere is possible as seasonal effects and volatile distribution alter the distribution of thermal emission.
Demonstration of a plenoptic microscope based on laser optical feedback imaging.
Glastre, Wilfried; Hugon, Olivier; Jacquin, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric
2013-03-25
A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.
Norman, J Farley; Wiesemann, Elizabeth Y
2007-01-01
Younger and older observers' ability to perceive local surface orientation from optical patterns of shading and specular highlights was investigated in two experiments. On each trial, the observers viewed a randomly generated, smoothly curved 3-D object and manipulated an adjustable gauge figure until its orientation matched that of a specific local region on the object's surface (cf. Koenderink, van Doom, & Kappers, 1992). The performance of both age groups was facilitated by the presence of binocular disparity (Experiment 1) and object rotation in depth (Experiment 2). Observers in both age groups were able to judge the surface tilt component of orientation more precisely than the slant component. Significant, but modest, effects of age were found in Experiment 1, but not in Experiment 2. The ability to perceive local surface orientation appears to be relatively well preserved with increasing age, at least through the age of 80.
Orbital SAR and Ground-Penetrating Radar for Mars: Complementary Tools in the Search for Water
NASA Technical Reports Server (NTRS)
Campbell, B. A.; Grant, J. A.
2000-01-01
The physical structure and compositional variability of the upper martian crust is poorly understood. Optical and infrared measurements probe at most the top few cm of the surface layer and indicate the presence of layered volcanics and sediments, but it is likely that permafrost, hydrothermal deposits, and transient liquid water pockets occur at depths of meters to kilometers within the crust. An orbital synthetic aperture radar (SAR) can provide constraints on surface roughness, the depth of fine-grained aeolian or volcanic deposits, and the presence of strongly absorbing near-surface deposits such as carbonates. This information is crucial to the successful landing and operation of any rover designed to search for subsurface water. A rover-based ground-penetrating radar (GPR) can reveal layering in the upper crust, the presence of erosional or other subsurface horizons, depth to a permafrost layer, and direct detection of near-surface transient liquid water. We detail here the radar design parameters likely to provide the best information for Mars, based on experience with SAR and GPR in analogous terrestrial or planetary environments.
NASA Astrophysics Data System (ADS)
Ginzburg, N. S.; Malkin, A. M.; Sergeev, A. S.; Fil'chenkov, S. E.; Zaslavsky, V. Yu.
2018-04-01
In the frame of the quasi-optical approach we solve the diffraction problem and describe surface modes confined at a metallic plate with a shallow grating of finite length. We prove that such planar grating can form a highly selective surface-wave Bragg resonator. For a given material conductivity and grating length, we find the optimum corrugation depth that provides the maximum value of Q factor. These results are applicable for developing resonators for terahertz frequency bands.
NASA Technical Reports Server (NTRS)
Mahesh, Ashwin; Spinhirne, James D.; Duda, David P.; Eloranta, Edwin W.; Starr, David O'C (Technical Monitor)
2001-01-01
The altimetry bias in GLAS (Geoscience Laser Altimeter System) or other laser altimeters resulting from atmospheric multiple scattering is studied in relationship to current knowledge of cloud properties over the Antarctic Plateau. Estimates of seasonal and interannual changes in the bias are presented. Results show the bias in altitude from multiple scattering in clouds would be a significant error source without correction. The selective use of low optical depth clouds or cloudfree observations, as well as improved analysis of the return pulse such as by the Gaussian method used here, are necessary to minimize the surface altitude errors. The magnitude of the bias is affected by variations in cloud height, cloud effective particle size and optical depth. Interannual variations in these properties as well as in cloud cover fraction could lead to significant year-to-year variations in the altitude bias. Although cloud-free observations reduce biases in surface elevation measurements from space, over Antarctica these may often include near-surface blowing snow, also a source of scattering-induced delay. With careful selection and analysis of data, laser altimetry specifications can be met.
Clinical monitoring of early caries lesions using cross polarization optical coherence tomography
NASA Astrophysics Data System (ADS)
Fried, Daniel; Staninec, Michal; Darling, Cynthia L.; Chan, Kenneth H.; Pelzner, Roger B.
New methods are needed for the nondestructive measurement of tooth demineralization and remineralization and to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role, since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm. It is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results from two clinical studies underway to measure the effect of fluoride intervention on early lesions. CP-OCT was used to monitor early lesions on enamel and root surfaces before and after intervention with fluoride varnish. The lesion depth and internal structure were resolved for all the lesions examined and some lesions had well defined surface zones of lower reflectivity that may be indicative of arrested lesions. Changes were also noted in the structure of some of the lesions after fluoride intervention.
Effects of Cross-Shelf Physical Forcing on Satellite Bio-Optical Properties
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Teague, W. J.; Mitchell, D. A.; Goode, W. A.; Gould, R. W.; Arnone, R. A.
2005-05-01
Our goal is to determine the effects of cross-shelf physical forcing on the optical properties in the northern Gulf of Mexico using in situ optical profiles and surface ocean color satellite images from SeaWiFS. The Naval Research Laboratory at Stennis Space Center is conducting an extensive monitoring program in the Northeast Gulf of Mexico west of the Desoto Canyon. During the Slope to Shelf Energetics and Exchange Dynamics (SEED) project, 14 bottom mounted Acoustic Doppler Current Profilers (ADCP's) were deployed from May-December 2004 along the shelf break at depths ranging from 60 to 1000 meters to improve understanding of cross-shelf exchange processes. Analysis of the May current data indicate abnormal events, including 30 cm/s off-shelf currents throughout the water column and a 3° Celsius elevation in bottom temperature. Coincident optical profiles were collected in May (absorption, scattering coefficients) and are compared with currents and physical properties (temperature, salinity). Similar subsurface abnormalities with stronger currents occurred in September during the passing of Hurricane Ivan over the mooring sites. We will show a time series of near-surface current speeds and their effect on the surface-satellite optical properties over the entire SEED sampling exercise.
Improved evaluation of optical depth components from Langley plot data
NASA Technical Reports Server (NTRS)
Biggar, S. F.; Gellman, D. I.; Slater, P. N.
1990-01-01
A simple, iterative procedure to determine the optical depth components of the extinction optical depth measured by a solar radiometer is presented. Simulated data show that the iterative procedure improves the determination of the exponent of a Junge law particle size distribution. The determination of the optical depth due to aerosol scattering is improved as compared to a method which uses only two points from the extinction data. The iterative method was used to determine spectral optical depth components for June 11-13, 1988 during the MAC III experiment.
Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity.
Lemmon, M T; Wolff, M J; Smith, M D; Clancy, R T; Banfield, D; Landis, G A; Ghosh, A; Smith, P H; Spanovich, N; Whitney, B; Whelley, P; Greeley, R; Thompson, S; Bell, J F; Squyres, S W
2004-12-03
A visible atmospheric optical depth of 0.9 was measured by the Spirit rover at Gusev crater and by the Opportunity rover at Meridiani Planum. Optical depth decreased by about 0.6 to 0.7% per sol through both 90-sol primary missions. The vertical distribution of atmospheric dust at Gusev crater was consistent with uniform mixing, with a measured scale height of 11.56 +/- 0.62 kilometers. The dust's cross section weighted mean radius was 1.47 +/- 0.21 micrometers (mm) at Gusev and 1.52 +/- 0.18 mm at Meridiani. Comparison of visible optical depths with 9-mm optical depths shows a visible-to-infrared optical depth ratio of 2.0 +/- 0.2 for comparison with previous monitoring of infrared optical depths.
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Arnone, R.; Casey, B.; Weidemann, A.; Gray, D.; Shulman, I.; Mahoney, K.; Giddings, T.; Shirron, J.
2009-05-01
Current United States Navy Mine-Counter-Measure (MCM) operations primarily use electro-optical identification (EOID) sensors to identify underwater targets after detection via acoustic sensors. These EOID sensors which are based on laser underwater imaging by design work best in "clear" waters and are limited in coastal waters especially with strong optical layers. Optical properties and in particular scattering and absorption play an important role on systems performance. Surface optical properties alone from satellite are not adequate to determine how well a system will perform at depth due to the existence of optical layers. The spatial and temporal characteristics of the 3d optical variability of the coastal waters along with strength and location of subsurface optical layers maximize chances of identifying underwater targets by exploiting optimum sensor deployment. Advanced methods have been developed to fuse the optical measurements from gliders, optical properties from "surface" satellite snapshot and 3-D ocean circulation models to extend the two-dimensional (2-D) surface satellite optical image into a three-dimensional (3-D) optical volume with subsurface optical layers. Modifications were made to an EOID performance model to integrate a 3-D optical volume covering an entire region of interest as input and derive system performance field. These enhancements extend present capability based on glider optics and EOID sensor models to estimate the system's "image quality". This only yields system performance information for a single glider profile location in a very large operational region. Finally, we define the uncertainty of the system performance by coupling the EOID performance model with the 3-D optical volume uncertainties. Knowing the ensemble spread of EOID performance field provides a new and unique capability for tactical decision makers and Navy Operations.
Biological response to coastal upwelling and dust deposition in the area off Northwest Africa
NASA Astrophysics Data System (ADS)
Ohde, T.; Siegel, H.
2010-05-01
Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll- a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll- a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll- a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll- a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll- a was caused by Saharan dust input and not by coastal upwelling processes. Time lags of <8 days, 8 days, and 16 days were determined. An increase in surface chlorophyll- a concentration of up to 2.4 mg m -3 after dust storms in which the dust component of the aerosol optical depth was up to 0.9 was observed.
Stereoscopic optical viewing system
Tallman, C.S.
1986-05-02
An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.
Stereoscopic optical viewing system
Tallman, Clifford S.
1987-01-01
An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.
Deformation mechanics of deep surface flaw cracks
NASA Technical Reports Server (NTRS)
Francis, P. H.; Nagy, A.; Beissner, R. E.
1972-01-01
A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas.
NASA Astrophysics Data System (ADS)
Sayde, Chadi; Buelga, Javier Benitez; Rodriguez-Sinobas, Leonor; El Khoury, Laureine; English, Marshall; van de Giesen, Nick; Selker, John S.
2014-09-01
The Actively Heated Fiber Optic (AHFO) method is shown to be capable of measuring soil water content several times per hour at 0.25 m spacing along cables of multiple kilometers in length. AHFO is based on distributed temperature sensing (DTS) observation of the heating and cooling of a buried fiber-optic cable resulting from an electrical impulse of energy delivered from the steel cable jacket. The results presented were collected from 750 m of cable buried in three 240 m colocated transects at 30, 60, and 90 cm depths in an agricultural field under center pivot irrigation. The calibration curve relating soil water content to the thermal response of the soil to a heat pulse of 10 W m-1 for 1 min duration was developed in the lab. This calibration was found applicable to the 30 and 60 cm depth cables, while the 90 cm depth cable illustrated the challenges presented by soil heterogeneity for this technique. This method was used to map with high resolution the variability of soil water content and fluxes induced by the nonuniformity of water application at the surface.
Volume holographic reflection endoscope for in-vivo ovarian cancer clinical studies
NASA Astrophysics Data System (ADS)
Howlett, I. D.; Gordon, M.; Brownlee, J. W.; Barton, J. K.; Kostuk, R. K.
2014-03-01
We present the design for an endoscopic system capable of imaging tissues of the ovary at two selected imaging depths simultaneously. The method utilizes a multiplexed volume hologram to select wavefronts from different depths within the tissue. It is the first demonstration of an endoscopic volume holographic imaging system. The endoscope uses both gradient index (GRIN) optical components and off the shelf singlet lenses to relay an image from the distal tip to the proximal end. The endoscope has a minimum diameter of 3.75 mm. The system length is 30 cm which is connected to a handle that includes the holographic components and optics that relay the image to a camera. Preliminary evaluation of the endoscope was performed with tissue phantoms and calibrated targets, which shows lateral resolution ≍ 4 μm at an operating wavelength of 660 nm. The hologram is recorded in phenanthraquinone doped poly methacrylate and is designed to produce images from two tissue depths. One image is obtained at the tissue surface and the second 70 μm below the surface. This method requires no mechanical scanning and acquires an image at the camera frame rate. The preliminary ex-vivo results show good correlation with histology sections of the same tissue sections.
Wang, Xu; Zhang, Xuejun
2009-02-10
This paper is based on a microinteraction principle of fabricating a RB-SiC material with a fixed abrasive. The influence of the depth formed on a RB-SiC workpiece by a diamond abrasive on the material removal rate and the surface roughness of an optical component are quantitatively discussed. A mathematical model of the material removal rate and the simulation results of the surface roughness are achieved. In spite of some small difference between the experimental results and the theoretical anticipation, which is predictable, the actual removal rate matches the theoretical prediction very well. The fixed abrasive technology's characteristic of easy prediction is of great significance in the optical fabrication industry, so this brand-new fixed abrasive technology has wide application possibilities.
High-speed optical 3D sensing and its applications
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihiro
2016-12-01
This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.
Extreme Universe Space Observatory (EUSO) Optics Module
NASA Technical Reports Server (NTRS)
Young, Roy; Christl, Mark
2008-01-01
A demonstration part will be manufactured in Japan on one of the large Toshiba machines with a diameter of 2.5 meters. This will be a flat PMMA disk that is cut between 0.5 and 1.25 meters radius. The cut should demonstrate manufacturing the most difficult parts of the 2.5 meter Fresnel pattern and the blazed grating on the diffractive surface. Optical simulations, validated with the subscale prototype, will be used to determine the limits on manufacturing errors (tolerances) that will result in optics that meet EUSO s requirements. There will be limits on surface roughness (or errors at high spatial frequency); radial and azimuthal slope errors (at lower spatial frequencies) and plunge cut depth errors in the blazed grating. The demonstration part will be measured to determine whether it was made within the allowable tolerances.
Various on-chip sensors with microfluidics for biological applications.
Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W
2014-09-12
In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1990-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the FIRE Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4-km visible (0.65 micro-m) and 8-km infrared window (11.5 micro-m) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 0.62 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance, extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface- based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature were ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperatures and cloud thicknesses from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. The parameterization of visible reflectance in terms of cloud optical depth and clear-sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous AVHRR data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloudy pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study of cirrus cloud scattering processes and remote sensing techniques.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.
1996-01-01
Cirrus cloud radiative and physical characteristics are determined using a combination of ground based, aircraft, and satellite measurements taken as part of the First ISCCP Region Experiment (FIRE) cirrus intensive field observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center and top heights and the corresponding temperatures. Coincident GOES-4 4-km visible (0.65 micrometer) and 8-km infrared window (11.5 micrometer) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 062 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance , extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface-based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature wer ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperature and cloud thickness from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice particles at temperatures below 230 K. the parameterization of visible reflectance in terms of cloud optical depth and clear sky reflectance shows promise as a simplified method for interpreting visible satellite data reflected from cirrus clouds. Large uncertainties in the optical parameters due to cloud reflectance anisotropy and shading were found by analyzing data for various solar zenith angles and for simultaneous advanced very high resolution radiometer (AVHRR) data. Inhomogeneities in the cloud fields result in uneven cloud shading that apparently causes the occurrence of anomalously dark, cloud pixels in the GOES data. These shading effects complicate the interpretation of the satellite data. The results highlight the need for additional study or cirrus cloud scattering processes and remote sensing techniques.
Uncertainty in cloud optical depth estimates made from satellite radiance measurements
NASA Technical Reports Server (NTRS)
Pincus, Robert; Szczodrak, Malgorzata; Gu, Jiujing; Austin, Philip
1995-01-01
The uncertainty in optical depths retrieved from satellite measurements of visible wavelength radiance at the top of the atmosphere is quantified. Techniques are briefly reviewed for the estimation of optical depth from measurements of radiance, and it is noted that these estimates are always more uncertain at greater optical depths and larger solar zenith angles. The lack of radiometric calibration for visible wavelength imagers on operational satellites dominates the uncertainty retrievals of optical depth. This is true for both single-pixel retrievals and for statistics calculated from a population of individual retrievals. For individual estimates or small samples, sensor discretization can also be significant, but the sensitivity of the retrieval to the specification of the model atmosphere is less important. The relative uncertainty in calibration affects the accuracy with which optical depth distributions measured by different sensors may be quantitatively compared, while the absolute calibration uncertainty, acting through the nonlinear mapping of radiance to optical depth, limits the degree to which distributions measured by the same sensor may be distinguished.
Optical absorption of suspended graphene based metal plasmonic grating in the visible range
NASA Astrophysics Data System (ADS)
Han, Y. X.; Chen, B. B.; Yang, J. B.; He, X.; Huang, J.; Zhang, J. J.; Zhang, Z. J.
2018-05-01
We employ finite-difference time-domain ( FDTD) method and Raman spectroscopy to study the properties of graphene, which is suspended on a gold/SiO2/Si grating structure with different trench depth of SiO2 layer. The absorption enhancement of suspended graphene and plasmonic resonance of metal grating are investigated in the visible range using 2D FDTD method. Moreover, it is found that the intensity of the Raman features depends very sensitively on the trench depth of SiO2 layer. Raman enhancement in our experiments is attributed to the enhanced optical absorption of graphene by near-field coupling based metal plasmonic grating. The enhanced absorption of suspended graphene modulated by localized surface plasmon resonance (LSPR) offers a potential application for opto-electromechanical devices.
Detecting Super-Thin Clouds With Polarized Light
NASA Technical Reports Server (NTRS)
Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.
2014-01-01
We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.
Assessing embryo development using swept source optical coherence tomography
NASA Astrophysics Data System (ADS)
Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D.; Podoleanu, A.
2018-03-01
A detailed assessment of embryo development would assist biologists with selecting the most suitable embryos for transfer leading to higher pregnancy rates. Currently, only low resolution microscopy is employed to perform this assessment. Although this method delivers some information on the embryo surface morphology, no specific details are shown related to its inner structure. Using a Master-Slave Swept-Source Optical Coherence Tomography (SS-OCT), images of bovine embryos from day 7 after fertilization were collected from different depths. The dynamic changes inside the embryos were examined, in detail and in real-time from several depths. To prove our ability to characterize the morphology, a single embryo was imaged over 26 hours. The embryo was deprived of its life support environment, leading to its death. Over this period, clear morphological changes were observed.
Detecting Super-Thin Clouds with Polarized Sunlight
NASA Technical Reports Server (NTRS)
Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.
2014-01-01
We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.
NASA Technical Reports Server (NTRS)
Williams, A. C.; Elsner, R. F.; Weisskopf, M. C.; Darbro, W.
1984-01-01
It is shown in this work how to obtain the probabilities of photons escaping from a cold electron plasma environment after having undergone an arbitrary number of scatterings. This is done by retaining the exact differential cross section for Thomson scattering as opposed to using its polarization and angle averaged form. The results are given in the form of recursion relations. The geometry used is the semi-infinite plane-parallel geometry witlh a photon source located on a plane at an arbitrary optical depth below the surface. Analytical expressions are given for the probabilities which are accurate over a wide range of initial optical depth. These results can be used to model compact X-ray galactic sources which are surrounded by an electron-rich plasma.
Neutral ion sources in precision manufacturing
NASA Technical Reports Server (NTRS)
Fawcett, Steven C.; Drueding, Thomas W.
1994-01-01
Ion figuring of optical components is a relatively new technology that can alleviate some of the problems associated with traditional contact polishing. Because the technique is non contacting, edge distortions and rib structure print through do not occur. This initial investigation was aimed at determining the effect of ion figuring on surface roughness of previously polished or ductile ground ceramic optical samples. This is the first step in research directed toward the combination of a pre-finishing process (ductile grinding or polishing) with ion figuring to produce finished ceramic mirrors. The second phase of the project is focusing on the development of mathematical algorithms that will deconvolve the ion beam profile from the surface figure errors so that these errors can be successfully removed from the optical components. In the initial phase of the project, multiple, chemical vapor deposited silicon carbide (CVD SiC) samples were polished or ductile ground to specular or near-specular roughness. These samples were then characterized to determine topographic surface information. The surface evaluation consisted of stylus profilometry, interferometry, and optical and scanning electron microscopy. The surfaces, were ion machined to depths from 0-5 microns. The finished surfaces were characterized to evaluate the effects of the ion machining process with respect to the previous processing methods and the pre-existing subsurface damage. The development of the control algorithms for figuring optical components has been completed. These algorithms have been validated with simulations and future experiments have been planned to verify the methods. This paper will present the results of the initial surface finish experiments and the control algorithms simulations.
Surface relief model for photopolymers without cover plating.
Gallego, S; Márquez, A; Ortuño, M; Francés, J; Marini, S; Beléndez, A; Pascual, I
2011-05-23
Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information to characterize and understand the material behaviour. In this paper we present a 3-dimensional model based on direct measurements of parameters to predict the relief structures generated on the material. This model is successfully applied to different photopolymers with different values of monomer diffusion. The importance of monomer diffusion in depth is also discussed.
Satellite Estimates of Surface Short-wave Fluxes: Issues of Implementation
NASA Technical Reports Server (NTRS)
Wang, H.; Pinker, Rachel; Minnis, Patrick
2006-01-01
Surface solar radiation reaching the Earth's surface is the primary forcing function of the land surface energy and water cycle. Therefore, there is a need for information on this parameter, preferably, at global scale. Satellite based estimates are now available at accuracies that meet the demands of many scientific objectives. Selection of an approach to estimate such fluxes requires consideration of trade-offs between the use of multi-spectral observations of cloud optical properties that are more difficult to implement at large scales, and methods that are simplified but easier to implement. In this study, an evaluation of such trade-offs will be performed. The University of Maryland Surface Radiation Model (UMD/SRB) has been used to reprocess five years of GOES-8 satellite observations over the United States to ensure updated calibration and improved cloud detection over snow. The UMD/SRB model was subsequently modified to allow input of information on aerosol and cloud optical depth with information from independent satellite sources. Specifically, the cloud properties from the Atmospheric Radiation Measurement (ARM) Satellite Data Analysis Program (Minnis et al., 1995) are used to drive the modified version of the model to estimate surface short-wave fluxes over the Southern Great Plain ARM sites for a twelve month period. The auxiliary data needed as model inputs such as aerosol optical depth, spectral surface albedo, water vapor and total column ozone amount were kept the same for both versions of the model. The estimated shortwave fluxes are evaluated against ground observations at the ARM Central Facility and four satellite ARM sites. During summer, the estimated fluxes based on cloud properties derived from the multi-spectral approach were in better agreement with ground measurements than those derived from the UMD/SRB model. However, in winter, the fluxes derived with the UMD/SRB model were in better agreement with ground observations than those estimated from cloud properties provided by the ARM Satellite Data Analysis Program. During the transition periods, the results were comparable.
NASA Astrophysics Data System (ADS)
Chen, Chuan-Jie; Li, Shou-Zhe; Zhang, Jialiang; Liu, Dongping
2018-01-01
A pulse-modulated argon surface wave plasma generated at atmospheric pressure is characterized by means of temporally resolved optical emission spectroscopy (OES). The temporal evolution of the gas temperature, the electron temperature and density, the radiative species of atomic Ar, and the molecular band of OH(A) and N2(C) are investigated experimentally by altering the instantaneous power, pulse repetitive frequency, and duty ratio. We focused on the physical phenomena occurring at the onset of the time-on period and after the power interruption at the start of the time-off period. Meanwhile, the results are discussed qualitatively for an in-depth insight of its dynamic evolution.
Dong, Zhichao; Cheng, Haobo
2016-11-10
Fixed-abrasive grinding by cup wheels plays an important role in the production of precision optics. During cup wheel grinding, we strive for a large removal rate while maintaining fine integrity on the surface and subsurface layers (academically recognized as surface roughness and subsurface damage, respectively). This study develops a theoretical model used to predict the trend of subsurface damage of optics (with respect to various grinding parameters) in fixed-abrasive grinding by cup wheels. It is derived from the maximum undeformed chip thickness model, and it successfully correlates the pivotal parameters of cup wheel grinding with the subsurface damage depth. The efficiency of this model is then demonstrated by a set of experiments performed on a cup wheel grinding machine. In these experiments, the characteristics of subsurface damage are inspected by a wedge-polishing plus microscopic inspection method, revealing that the subsurface damage induced in cup wheel grinding is composed of craterlike morphologies and slender cracks, with depth ranging from ∼6.2 to ∼13.2 μm under the specified grinding parameters. With the help of the proposed model, an optimized grinding strategy is suggested for realizing fine subsurface integrity as well as high removal rate, which can alleviate the workload of subsequent lapping and polishing.
Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films
NASA Astrophysics Data System (ADS)
Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong
2016-07-01
Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40-50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics.
The lunar environment and its effect on optical astronomy
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey
1992-01-01
The Moon's geologic environment features: (1) gravity field one-sixth that of Earth; (2) sidereal rotation period of 27.3 days; (3) surface with greater curvature than Earth's surface (a chord along a 10 km baseline would have a bulge of 7.2 m); (4) seismically and tidally stable platform on which to make astronomical observations (most moonquakes have magnitudes of 1 to 2 on the Richter scale, within the earth's seismic noise, resulting in ground motions only 1 nm); (5) tenuous atmosphere (the total mass at night is only 10(exp 4) kg) that has an optical depth of 10(exp -6) and does not cause wind induced stresses and vibrations on structures; (6) large diurnal temperature variation (100 to 385 K in equatorial regions), which telescopes must be designed to withstand; (7) weak magnetic field, ranging from 3 to 330 x 10(exp -9) T, compared to 3 x 10(exp -5) T on Earth at the equator; (8) surface exposed to radiation, the most dangerous of which are high energy (1 to 100 Mev) particles resulting from solar flares; (9) high flux of micrometeorites which are not slowed down from their cosmic velocities because of the lack of air (data indicate that microcraters greater than 10 microns across will form at the rate of 3000/sq m/yr); (10) regolith 2 to 30 m thick which blankets the entire lunar surface (this layer is fine-grained (average grain sizes range from 40 to 268 microns), has a low density (800 to 1000 kg/cu m in the upper few mm, rising to 1500 to 1800 kg/cu m at depths of 10 to 20 cm), is porous (35 to 45 pct), cohesive (0.1 to 1.0 kN/sq m), and has a low thermal diffusivity (0.7 to 1.0 x 110-8 sq m/sec); about 29 pct of the regolith is less than 20 micron in size (this dust could pose a hazard to optical telescopes); (11) rubbly upper several hundred meters in which intact bedrock is uncommon, especially in the lunar highlands; and (12) craters with diameter-to-depth ratios of 5 if fresh and less than km across (larger and eroded craters have diameter-to-depth ratios greater than 5).
The lunar environment and its effect on optical astronomy
NASA Astrophysics Data System (ADS)
Taylor, G. Jeffrey
1992-11-01
The Moon's geologic environment features: (1) gravity field one-sixth that of Earth; (2) sidereal rotation period of 27.3 days; (3) surface with greater curvature than Earth's surface (a chord along a 10 km baseline would have a bulge of 7.2 m); (4) seismically and tidally stable platform on which to make astronomical observations (most moonquakes have magnitudes of 1 to 2 on the Richter scale, within the earth's seismic noise, resulting in ground motions only 1 nm); (5) tenuous atmosphere (the total mass at night is only 104 kg) that has an optical depth of 10-6 and does not cause wind induced stresses and vibrations on structures; (6) large diurnal temperature variation (100 to 385 K in equatorial regions), which telescopes must be designed to withstand; (7) weak magnetic field, ranging from 3 to 330 x 10-9 T, compared to 3 x 10-5 T on Earth at the equator; (8) surface exposed to radiation, the most dangerous of which are high energy (1 to 100 Mev) particles resulting from solar flares; (9) high flux of micrometeorites which are not slowed down from their cosmic velocities because of the lack of air (data indicate that microcraters greater than 10 microns across will form at the rate of 3000/sq m/yr); (10) regolith 2 to 30 m thick which blankets the entire lunar surface (this layer is fine-grained (average grain sizes range from 40 to 268 microns), has a low density (800 to 1000 kg/cu m in the upper few mm, rising to 1500 to 1800 kg/cu m at depths of 10 to 20 cm), is porous (35 to 45 pct), cohesive (0.1 to 1.0 kN/sq m), and has a low thermal diffusivity (0.7 to 1.0 x 110-8 sq m/sec); about 29 pct of the regolith is less than 20 micron in size (this dust could pose a hazard to optical telescopes); (11) rubbly upper several hundred meters in which intact bedrock is uncommon, especially in the lunar highlands; and (12) craters with diameter-to-depth ratios of 5 if fresh and less than km across (larger and eroded craters have diameter-to-depth ratios greater than 5).
Estimation of polymer-surface interfacial interaction strength by a contact AFM technique.
Dvir, H; Jopp, J; Gottlieb, M
2006-12-01
Atomic force microscopy (AFM) measurements were employed to assess polymer-surface interfacial interaction strength. The main feature of the measurement is the use of contact-mode AFM as a tool to scratch off the polymer monolayer adsorbed on the solid surface. Tapping-mode AFM was used to determine the depth of the scraped recess. Independent determination of the layer thickness obtained from optical phase interference microscopy (OPIM) confirmed the depth of the AFM scratch. The force required for the complete removal of the polymer layer with no apparent damage to the substrate surface was determined. Polypropylene (PP), low-density polyethylene (PE), and PP-grafted-maleic anhydride (PP-g-ma) were scraped off silane-treated glass slabs, and the strength of surface interaction of the polymer layer was determined. In all cases it was determined that the magnitude of surface interaction force is of the order of van der Waals (VDW) interactions. The interaction strength is influenced either by polymer ability to wet the surface (hydrophobic or hydrophilic interactions) or by hydrogen bonding between the polymer and the surface treatment.
Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance
NASA Technical Reports Server (NTRS)
Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi
2006-01-01
An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.
NASA Astrophysics Data System (ADS)
Greensill, Colin V.; Walsh, Kerry B.
2000-12-01
Near infrared spectroscopy can be employed in the non-invasive assessment of intact fruit for eating quality attributes such as soluble solid content (SSC). Rapid sorting is dependent on a suitable non-contact geometry of fruit, light source and detector assembly, optimized for a given fruit commodity. An optical system was designed with reference to distribution of SSC and light penetration into rockmelon fruit. SSC of mesocarp tissue was not significantly different over the greater part of the proximal-distal axis of the fruit, particularly in the vicinity of the fruit equator. There was also no consistent variation in SSC of mesocarp tissue with respect to radial position of sampling. Mesocarp SSC was higher (~3% w/v) closer to the seed cavity. The optical sampling system was therefore designed to assess an equatorial position on the fruit. Light penetrating a rockmelon fruit was empirically assessed to be diffuse at a depth of <15 mm from the fruit surface. Signal decreased in an exponential proportionality with depth into the fruit, but was still detectable at depths in excess of the seed cavity of rockmelons. A partial transmittance optical design was employed, with a collimated light source interrupted by a central light stop, and a detector viewing the shadowed region of the sample. This system did not physically contact the sample. It was compared to a system with a light excluding `contacting' shroud between the detector and the fruit surface. The performance of calibrations generated using the non-contact configuration was not significantly different than for the configuration requiring contact.
Experimental Constraints On Transparency of The 1052;1040;rtian Atmosphere Out of Dust Storm
NASA Astrophysics Data System (ADS)
Korablev, O.; Moroz, V. I.; Rodin, A. V.
In the absence of a dust storm so-called permanent dust haze with = 0.2 in the atmo- sphere of Mars determines its thermal structure, as it has been shown by Gierasch and Goody [1972 JAS 29, 400] and is confirmed by modern Mars GCMs that include dust cycle. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it. Presently, these are the data of thermal IR instruments, benefiting from being insensitive to condensa- tional clouds: TES/MGS and IRTM/Viking. In calm atmospheric conditions (aphelion season) a typical value of 9-µm optical depth 9 of 0.05-0.15 is observed by these instruments [Smith et al. 2000, 2001 JGR 105, 9539; JGR 106, 23929; Martin and Richardson 1993 JGR 98, 10941]. In order to quantify the typical optical depth of the permanent dust haze, we will discuss, among others, the following two questions: 1) How to agree the above values and reliable measurements from the surface (VL, Pathfinder) which give the typical optical depth (out of dust storms) of = 0.5 from one side, and some ground-based observations (in UV-visible range) that frequently reveal < 0.02 on the other side. 2) What is the relationship between 9 and the visi- ble optical depth? Comparison of IRTM and VL measurements (the only simultaneous observations available so far) suggest vis/9 = 2.5, that contradict to vis/9 = 0.9 that follow from IRIS/Mariner 9 mineralogy model, which is confirmed by recent re- analysis of IRIS data.
Independent Pixel and Two Dimensional Estimates of LANDSAT-Derived Cloud Field Albedo
NASA Technical Reports Server (NTRS)
Chambers, L. H.; Wielicki, Bruce A.; Evans, K. F.
1996-01-01
A theoretical study has been conducted on the effects of cloud horizontal inhomogeneity on cloud albedo bias. A two-dimensional (2D) version of the Spherical Harmonic Discrete Ordinate Method (SHDOM) is used to estimate the albedo bias of the plane parallel (PP-IPA) and independent pixel (IPA-2D) approximations for a wide range of 2D cloud fields obtained from LANDSAT. They include single layer trade cumulus, open and closed cell broken stratocumulus, and solid stratocumulus boundary layer cloud fields over ocean. Findings are presented on a variety of averaging scales and are summarized as a function of cloud fraction, mean cloud optical depth, cloud aspect ratio, standard deviation of optical depth, and the gamma function parameter Y (a measure of the width of the optical depth distribution). Biases are found to be small for small cloud fraction or mean optical depth, where the cloud fields under study behave linearly. They are large (up to 0.20 for PP-IPA bias, -0.12 for IPA-2D bias) for large v. On a scene average basis PP-IPA bias can reach 0.30, while IPA-2D bias reaches its largest magnitude at -0.07. Biases due to horizontal transport (IPA-2D) are much smaller than PP-IPA biases but account for 20% RMS of the bias overall. Limitations of this work include the particular cloud field set used, assumptions of conservative scattering, constant cloud droplet size, no gas absorption or surface reflectance, and restriction to 2D radiative transport. The LANDSAT data used may also be affected by radiative smoothing.
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1994-01-01
Based on a geometric optics model and the assumption of an isotropic Gaussian surface slope distribution, the component of ocean surface microwave emissivity variation due to large-scale surface roughness is parameterized for the frequencies and approximate viewing angle of the Special Sensor Microwave/Imager. Independent geophysical variables in the parameterization are the effective (microwave frequency dependent) slope variance and the sea surface temperature. Using the same physical model, the change in the effective zenith angle of reflected sky radiation arising from large-scale roughness is also parameterized. Independent geophysical variables in this parameterization are the effective slope variance and the atmospheric optical depth at the frequency in question. Both of the above model-based parameterizations are intended for use in conjunction with empirical parameterizations relating effective slope variance and foam coverage to near-surface wind speed. These empirical parameterizations are the subject of a separate paper.
Su, Rong; Kirillin, Mikhail; Chang, Ernest W.; Sergeeva, Ekaterina; Yun, Seok H.; Mattsson, Lars
2014-01-01
Optical coherence tomography (OCT) is a promising tool for detecting micro channels, metal prints, defects and delaminations embedded in alumina and zirconia ceramic layers at hundreds of micrometers beneath surfaces. The effect of surface roughness and scattering of probing radiation within sample on OCT inspection is analyzed from the experimental and simulated OCT images of the ceramic samples with varying surface roughnesses and operating wavelengths. By Monte Carlo simulations of the OCT images in the mid-IR the optimal operating wavelength is found to be 4 µm for the alumina samples and 2 µm for the zirconia samples for achieving sufficient probing depth of about 1 mm. The effects of rough surfaces and dispersion on the detection of the embedded boundaries are discussed. Two types of image artefacts are found in OCT images due to multiple reflections between neighboring boundaries and inhomogeneity of refractive index. PMID:24977838
Quantitative retrieval of aerosol optical thickness from FY-2 VISSR data
NASA Astrophysics Data System (ADS)
Bai, Linyan; Xue, Yong; Cao, Chunxiang; Feng, Jianzhong; Zhang, Hao; Guang, Jie; Wang, Ying; Li, Yingjie; Mei, Linlu; Ai, Jianwen
2010-11-01
Atmospheric aerosol, as particulate matter suspended in the air, exists in a variety of forms such as dust, fume and mist. It deeply affects climate and land surface environment in both regional and global scales, and furthermore, lead to be hugely much influence on human health. For the sake of effectively monitoring it, many atmospheric aerosol observation networks are set up and provide associated informational services in the wide world, as well-known Aerosol robotic network (AERONET), Canadian Sunphotometer Network (AeroCan) and so forth. Given large-scale atmospheric aerosol monitoring, that satellite remote sensing data are used to inverse aerosol optical depth is one of available and effective approaches. Nowadays, special types of instruments aboard running satellites are applied to obtain related remote sensing data of retrieving atmospheric aerosol. However, atmospheric aerosol real-timely or near real-timely monitoring hasn't been accomplished. Nevertheless, retrievals, using Fengyun-2 VISSR data, are carried out and the above problem resolved to certain extent, especially over China. In this paper, the authors have developed a new retrieving model/mode to retrieve aerosol optical depth, using Fengyun-2 satellite data that were obtained by the VISSR aboard FY-2C and FY-2D. A series of the aerosol optical depth distribution maps with high time resolution were able to obtained, is helpful for understanding the forming mechanism, transport, influence and controlling approach of atmospheric aerosol.
Dust aerosols above the south polar cap of Mars as seen by OMEGA
NASA Astrophysics Data System (ADS)
Vincendon, M.; Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B.; Jouglet, D.; Omega Team
2008-08-01
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO 2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.
Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew
2016-06-17
In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400-800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.
Kumar, Amarendra; Kashyap, Kunal; Hou, Max T.; Yeh, J. Andrew
2016-01-01
In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained. PMID:27322276
NASA Astrophysics Data System (ADS)
Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian
2017-12-01
We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.
Simulating Dust Regional Impact on the Middle East Climate and the Red Sea
NASA Astrophysics Data System (ADS)
Osipov, Sergey; Stenchikov, Georgiy
2017-04-01
Dust is one of the most abundant aerosols, however, currently only a few regional climate downscalings account for dust. This study focuses on the Middle East and the Red Sea regional climate response to the dust aerosol radiative forcing. The Red Sea is located between North Africa and Arabian Peninsula, which are first and third largest source regions of dust, respectively. MODIS and SEVIRI satellite observations show extremely high dust optical depths in the region, especially over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. Modeled atmospheric radiative forcing at the surface, top of the atmosphere and absorption in the atmospheric column indicate that dust significantly perturbs radiative balance. Top of the atmosphere modeled forcing is validated against independently derived GERB satellite product. Due to strong radiative forcing at the sea surface (daily mean forcing during summer reaches -32 Wm-2 and 10 Wm-2 in SW and LW, respectively), using uncoupled ocean model with prescribed atmospheric boundary conditions would result in an unrealistic ocean response. Therefore, here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea thermal regime and circulation. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix, and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.3-0.5 K cooling of the Red Sea surface waters, and weakens the overturning circulation in the Red Sea. The salinity distribution, freshwater, and heat budgets are significantly perturbed. This indicates that dust plays an important role in the formation of the Red Sea energy balance and circulation regimes, and has to be thoroughly accounted for in future modeling studies.
A Study of Tropical thin Cirrus Clouds with Supervised Learning
NASA Astrophysics Data System (ADS)
Rodier, S. D.; Hu, Y.; Vaughan, M. A.
2007-12-01
ABSTRACT Accurate knowledge of the temporal frequency and spatial extent of optically thin cirrus is crucial to climate feedback analysis. Current global warming theory asserts that when the atmospheric concentration of CO2 increases, the outgoing longwave radiation at non-window wavelengths is reduced. If the Earth's net radiative balance is to remain stable, ground temperatures must rise in response, thereby increasing thermal emission to space. Current models do not account for subsequent changes in cloud cover, because this aspect of the climate feedback system is so poorly understood. One possible response of the cloud-climate feedback process is an increase in the global occurrence of thin cirrus clouds, driven by the increase in longwave cooling in the upper troposphere that results from higher CO2 concentrations. Exacerbating the difficulty of assessing the situation is the fact that passive remote sensing instruments cannot reliably detect cirrus clouds with optical depths less than ~0.3, because these clouds do not reflect enough sunlight to create a sufficient contrast with the Earth's surface. Now, however, the presence of thin cirrus can for the first time be accurately detected and systematically monitored by the combination of active and passive sensors onboard the CALIPSO satellite. Nevertheless, the data record is still quite limited, as CALIPSO has been in orbit for only 16 months. We have therefore initiated a multi-platform data fusion study to establish a methodology for extending the limited set of CALIPSO measurements to the existing 30-year record of passive remote sensing data, and thus improve our understanding of cloud feedback mechanisms. Using nighttime data from the first 10 days in April 2007 as a training set, we applied a general regression neural network (GRNN) to collocated samples of sea surface temperature (SST) reported by AMSR, brightness temperatures (BT) from the CALIPSO imaging infrared radiometer (IIR), and optical depths (OD) derived from the CALIPSO lidar measurements. The result is an accurate mapping of the optical depths derived from the active sensors to the brightness temperatures computed from the passive sensor measurements. Applying the trained network to this combination of passive sensor parameters, optical depths as small as 0.1 can be reliably retrieved. The relative uncertainties in the retrieval are reasonable, and can be improved significantly by use of a much larger training set.
1974-06-15
Inclusion Damage in the Failure of lO.ö^m Optics 3. DISCUSSION i 1 2 3 16 22 27 28 39 42 59 68 74 85 94 ill "--■ p«nm# upi» w >, ami ...Rockwell, T. S. Colbert During this quarter our research effort included the application of acoustic surface wave techniques to measure the depth
77 FR 61748 - Notice of Availability of Government-Owned Inventions; Available for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... DEPARTMENT OF DEFENSE Department of the Navy Notice of Availability of Government-Owned Inventions; Available for Licensing AGENCY: Department of the Navy, DoD. ACTION: Notice. SUMMARY: The inventions listed... BREATHING//Patent No. 7,813,529: OPTICAL 3-D SURFACE TOMOGRAPHY USING DEPTH FROM FOCUS OF PARTIALLY...
Asian Dust Weather Categorization with Satellite and Surface Observations
NASA Technical Reports Server (NTRS)
Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen
2011-01-01
This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.
Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015
NASA Astrophysics Data System (ADS)
Liu, M.; Lin, J.
2016-12-01
Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.
NASA Astrophysics Data System (ADS)
Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko
2006-03-01
A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.
Dependence of Surface Contrast on Emission Angle in Cassini ISS 938-nm Images of Titan
NASA Technical Reports Server (NTRS)
Fussner, S.; McEwen, A.; Perry, J.; Turtle, E.; Dawson, D.; Porco, C.; West, R.
2005-01-01
Titan, the largest of Saturn s moons, is one of the most difficult solid surfaces in the Solar System to study. It is shrouded in a thick atmosphere with fine haze particles extending up to 500 km. [1] The atmosphere itself is rich in methane, which allows clear viewing of the surface only through narrow "windows" in the methane spectrum. Even in these methane windows, the haze absorbs and scatters light, blurring surface features and reducing the contrast of images. The haze optical depth is high at visible wavelengths, and decreases at longer (infrared) wavelengths. [2
Fractional laser microablation of skin aimed at enhancing its permeability for nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Dolotov, L E; Bashkatov, A N
2011-05-31
A new method for delivering nanoparticles into the skin using the fractional laser microablation of its surface and the ultrasonic treatment is proposed. As a result of in vitro and in vivo studies, it is shown that the 290-nm laser pulses with the energy from 0.5 to 3.0 J provide the penetration of nanoparticles of titanium dioxide with the diameter {approx}100 nm from the skin surface to the depth, varying from 150 to 400 {mu}m. Histological testing of the skin areas, subjected to the treatment, shows that the particles stay in the dermis at the depth up to 400 {mu}mmore » no less than for three weeks. (optical technologies in biophysics and medicine)« less
NASA Astrophysics Data System (ADS)
Marinelli, Valerio; Cremonese, Edoardo; Diémoz, Henri; Siani, Anna Maria
2017-04-01
The European Space Agency (ESA) is spending notable effort to put in operation a new generation of advanced Earth-observation satellites, the Sentinel constellation. In particular, the Sentinel-2 host an instrumental payload mainly consisting in a MultiSpectral Instrument (MSI) imaging sensor, capable of acquiring high-resolution imagery of the Earth surface and atmospheric reflectance at selected spectral bands, hence providing complementary measurements to ground-based radiometric stations. The latter can provide reference data for validating the estimates from spaceborne instruments such as Sentinel-2A (operating since October 2015), whose aerosol optical thickness (AOT) values, can be obtained from correcting SWIR (2190 nm) reflectance with an improved dense dark vegetation (DDV) algorithm. In the Northwestern European Alps (Saint-Christophe, 45.74°N, 7.36°E) a Prede POM-02 sun/sky aerosol photometer has been operating for several years within the EuroSkyRad network by the Environmental Protection Agency of Aosta Valley (ARPA Valle d'Aosta), gathering direct sun and diffuse sky radiance for retrieving columnar aerosol optical properties. This aerosol optical depth (AOD) dataset represents an optimal ground-truth for the corresponding Sentinel-2 estimates obtained with the Sen2cor processor in the challenging environment of the Alps (complex topography, snow-covered surfaces). We show the deviations between the two measurement series and propose some corrections to enhance the overall accuracy of satellite estimates.
Toward Magnetorheological Finishing of Magnetic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-10-24
Magnetorheological finishing (MRF) is a precision finishing process traditionally limited to processing only nonmagnetic materials, e.g., optical glasses, ceramics, polymers, and metals. Here we demonstrate that MRF can be used for material removal from magnetic material surfaces. Our approach is to place an MRF spot on machined surfaces of magnetic WC-Co materials. The resulting surface roughness is comparable to that produced on nonmagnetic materials. This spotting technique may be used to evaluate the depth of subsurface damage, or deformed layer, induced by earlier manufacturing steps, such as grinding and lapping.
Micro-optical system based 3D imaging for full HD depth image capturing
NASA Astrophysics Data System (ADS)
Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan
2012-03-01
20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.
Optoacoustic imaging of tissue blanching during photodynamic therapy of esophageal cancer
NASA Astrophysics Data System (ADS)
Jacques, Steven L.; Viator, John A.; Paltauf, Guenther
2000-05-01
Esophageal cancer patients often present a highly inflamed esophagus at the time of treatment by photodynamic therapy. Immediately after treatment, the inflamed vessels have been shut down and the esophagus presents a white surface. Optoacoustic imaging via an optical fiber device can provide a depth profile of the blanching of inflammation. Such a profile may be an indicator of the depth of treatment achieved by the PDT. Our progress toward developing this diagnostic for use in our clinical PDT treatments of esophageal cancer patients is presented.
Optical-fiber-based Mueller optical coherence tomography.
Jiao, Shuliang; Yu, Wurong; Stoica, George; Wang, Lihong V
2003-07-15
An optical-fiber-based multichannel polarization-sensitive Mueller optical coherence tomography (OCT) system was built to acquire the Jones or Mueller matrix of a scattering medium, such as biological tissue. For the first time to our knowledge, fiber-based polarization-sensitive OCT was dynamically calibrated to eliminate the polarization distortion caused by the single-mode optical fiber in the sample arm, thereby overcoming a key technical impediment to the application of optical fibers in this technology. The round-trip Jones matrix of the sampling fiber was acquired from the reflecting surface of the sample for each depth scan (A scan) with our OCT system. A new rigorous algorithm was then used to retrieve the calibrated polarization properties of the sample. This algorithm was validated with experimental data. The skin of a rat was imaged with this fiber-based system.
NASA Astrophysics Data System (ADS)
Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Mathewson, Kyle E.; Fabiani, Monica; Gratton, Gabriele
2016-03-01
Diffuse optical tomography (DOT) provides data about brain function using surface recordings. Despite recent advancements, an unbiased method for estimating the depth of absorption changes and for providing an accurate three-dimensional (3-D) reconstruction remains elusive. DOT involves solving an ill-posed inverse problem, requiring additional criteria for finding unique solutions. The most commonly used criterion is energy minimization (energy constraint). However, as measurements are taken from only one side of the medium (the scalp) and sensitivity is greater at shallow depths, the energy constraint leads to solutions that tend to be small and superficial. To correct for this bias, we combine the energy constraint with another criterion, minimization of spatial derivatives (Laplacian constraint, also used in low resolution electromagnetic tomography, LORETA). Used in isolation, the Laplacian constraint leads to solutions that tend to be large and deep. Using simulated, phantom, and actual brain activation data, we show that combining these two criteria results in accurate (error <2 mm) absorption depth estimates, while maintaining a two-point spatial resolution of <24 mm up to a depth of 30 mm. This indicates that accurate 3-D reconstruction of brain activity up to 30 mm from the scalp can be obtained with DOT.
Kaszewska, Ewa A; Sylwestrzak, Marcin; Marczak, Jan; Skrzeczanowski, Wojciech; Iwanicka, Magdalena; Szmit-Naud, Elżbieta; Anglos, Demetrios; Targowski, Piotr
2013-08-01
A detailed feasibility study on the combined use of laser-induced breakdown spectroscopy with optical coherence tomography (LIBS/OCT), aiming at a realistic depth-resolved elemental analysis of multilayer stratigraphies in paintings, is presented. Merging a high spectral resolution LIBS system with a high spatial resolution spectral OCT instrument significantly enhances the quality and accuracy of stratigraphic analysis. First, OCT mapping is employed prior to LIBS analysis in order to assist the selection of specific areas of interest on the painting surface to be examined in detail. Then, intertwined with LIBS, the OCT instrument is used as a precise profilometer for the online determination of the depth of the ablation crater formed by individual laser pulses during LIBS depth-profile analysis. This approach is novel and enables (i) the precise in-depth scaling of elemental concentration profiles, and (ii) the recognition of layer boundaries by estimating the corresponding differences in material ablation rate. Additionally, the latter is supported, within the transparency of the object, by analysis of the OCT cross-sectional views. The potential of this method is illustrated by presenting results on the detailed analysis of the structure of an historic painting on canvas performed to aid planned restoration of the artwork.
NASA Astrophysics Data System (ADS)
Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir
2017-11-01
Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.
Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements
NASA Technical Reports Server (NTRS)
Hu,Yongxiang
2009-01-01
CALIPSO's main mission objective is studying the climate impact of clouds and aerosols in the atmosphere. CALIPSO also collects information about other components of the Earth's ecosystem, such as oceans and land. This paper introduces the physics concepts and presents preliminary results for the valueadded CALIPSO Earth system science products. These include ocean surface wind speeds, column atmospheric optical depths, ocean subsurface backscatter, land surface elevations, atmospheric temperature profiles, and A-train data fusion products.
Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2015-01-01
A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography ([Formula: see text]) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In [Formula: see text], the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer-Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to [Formula: see text] in SS-OCT. A correlation between [Formula: see text] and SS-OCT was found regarding lesion depth ([Formula: see text], [Formula: see text]) and also surface layer thickness ([Formula: see text], [Formula: see text]). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution [Formula: see text] without the use of x-ray.
Espigares, Jorge; Sadr, Alireza; Hamba, Hidenori; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2015-01-01
Abstract. A technology to characterize early enamel lesions is needed in dentistry. Optical coherence tomography (OCT) is a noninvasive method that provides high-resolution cross-sectional images. The aim of this study is to compare OCT with microfocus x-ray computed tomography (μCT) for assessment of natural enamel lesions in vitro. Ten human teeth with visible white spot-like changes on the enamel smooth surface and no cavitation (ICDAS code 2) were subjected to imaging by μCT (SMX-100CT, Shimadzu) and 1300-nm swept-source OCT (Dental SS-OCT, Panasonic Health Care). In μCT, the lesions appeared as radiolucent dark areas, while in SS-OCT, they appeared as areas of increased signal intensity beneath the surface. An SS-OCT attenuation coefficient based on Beer–Lambert law could discriminate lesions from sound enamel. Lesion depth ranged from 175 to 606 μm in SS-OCT. A correlation between μCT and SS-OCT was found regarding lesion depth (R=0.81, p<0.001) and also surface layer thickness (R=0.76, p<0.005). The images obtained clinically in real time using the dental SS-OCT system are suitable for the assessment of natural subsurface lesions and their surface layer, providing comparable images to a laboratory high-resolution μCT without the use of x-ray. PMID:26158079
Use of gas-phase ethanol to mitigate extreme UV/water oxidation of extreme UV optics
NASA Astrophysics Data System (ADS)
Klebanoff, L. E.; Malinowski, M. E.; Clift, W. M.; Steinhaus, C.; Grunow, P.
2004-03-01
A technique is described that uses a gas-phase species to mitigate the oxidation of a Mo/Si multilayer optic caused by either extreme UV (EUV) or electron-induced dissociation of adsorbed water vapor. It is found that introduction of ethanol (EtOH) into a water-rich gas-phase environment inhibits oxidation of the outermost Si layer of the Mo/Si EUV reflective coating. Auger electron spectroscopy, sputter Auger depth profiling, EUV reflectivity, and photocurrent measurements are presented that reveal the EUV/water- and electron/water-derived optic oxidation can be suppressed at the water partial pressures used in the tests (~2×10-7-2×10-5 Torr). The ethanol appears to function differently in two time regimes. At early times, ethanol decomposes on the optic surface, providing reactive carbon atoms that scavenge reactive oxygen atoms before they can oxidize the outermost Si layer. At later times, the reactive carbon atoms form a thin (~5 Å), possibly self-limited, graphitic layer that inhibits water adsorption on the optic surface. .
Siddiqui, Meena; Vakoc, Benjamin J.
2012-01-01
Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into the clinical applications. Here, we introduce optical-domain subsampling as a method for imaging at high-speeds and over extended depth ranges but with a lower acquisition bandwidth than that required using conventional approaches. Optically subsampled laser sources utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited frequency window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical-domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts from this bandwidth-limited window. We highlight key principles behind optical-domain subsampled imaging, and demonstrate this principle experimentally using a polygon-filter based swept-source laser that includes an intra-cavity Fabry-Perot (FP) etalon. PMID:23038343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalsky, J.; Harrison, L.
1995-04-26
The authors goal in the ARM program is the improvement of radiation models used in GCMs, especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. They are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that they combined with surface and upper air data from the Albany airport as a test data set for ARM modelers. They have also developed algorithmsmore » to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifolter rotating shadowband radiometer (MFRSR). However, the major objective of the program has been the development of two spectral versions of the rotating shadowband radiometer. The MFRSR, has become a workhose at the CART site in Oklahoma and Kansas, and it is widely deployed in other climate programs. They have spent most of their effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, they have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral irradiance. Using the surface albedo and the global irradiance, they have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, they have calculated effective liquid cloud particle radii. In each case the authors have attempted to validate the approach using independent measurements or retrievals of the parameters under investigation. With the exception of the ozone intercomparison, the corroborative measurements have been made at the SGP CART site. This report highlights these results.« less
Recent increase in aerosol loading over the Australian arid zone
NASA Astrophysics Data System (ADS)
Mitchell, R. M.; Campbell, S. K.; Qin, Y.
2009-10-01
Collocated sun photometer and nephelometer measurements at Tinga Tingana in the Australian Outback over the decade 1997-2007 show a significant increase in aerosol loading following the onset of severe drought conditions in 2002. The mean mid-visible scattering coefficient obtained from nephelometer measurements over the period 2003-2007 is approximately double that recorded over the preceding 5 yr, with consistent trends in the column aerosol optical depth derived from the sun photometer. This increase is confined to the season of dust activity, particularly September to March. In contrast, background aerosol levels during May, June and July remained stable. The enhanced aerosol loadings during the latter 5 yr of the study period can be understood as a combination of dune destabilisation through loss of ephemeral vegetation and surface crust, and the changing supply of fluvial sediments to ephemeral lakes and floodplains within the Lake Eyre Basin. Major dust outbreaks are generally highly localised, although significant dust activity was observed at Tinga Tingana on 50% of days when a major event occurred elsewhere in the Lake Eyre Basin, suggesting frequent basin-wide dust mobilisation. Combined analysis of aerosol optical depth and scattering coefficient shows weak correlation between the surface and column aerosol (R2=0.24). The aerosol scale height is broadly distributed with a mode typically between 2-3 km, with clearly defined seasonal variation. Climatological analysis reveals bimodal structure in the annual cycle of aerosol optical depth, with a summer peak related to maximal dust activity, and a spring peak related to lofted fine-mode aerosol. There is evidence for an increase in near-surface aerosol during the period 2003-2007 relative to 1997-2002, consistent with an increase in dust activity. This accords with an independent finding of increasing aerosol loading over the Australian region as a whole, suggesting that rising dust activity over the Lake Eyre Basin may be a significant contributor to changes in the aerosol budget of the continent.
Backscatter particle image velocimetry via optical time-of-flight sectioning
Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick; ...
2018-01-11
Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less
Backscatter particle image velocimetry via optical time-of-flight sectioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle Patrick
Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow.more » Thus, scattering noise from outside the measurement volume is eliminated. In conclusion, this PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.« less
Feasibility of solar power for Mars
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Landis, Geoffrey A.
1991-01-01
NASA, through Project Pathfinder, has put in place an advanced technology program to address future needs of manned space exploration. Included in the missions under study is the establishment of outposts on the surface of Mars. The Surface Power program in Pathfinder is aimed at providing photovoltaic array technology for such an application (as well as for the lunar surface). Another important application is for unmanned precursor missions, such as the photovoltaic-power aircraft, which will scout landing sites and investigate Mars geology for a 1 to 2 year mission without landing on the surface. Effective design and utilization of solar energy depend to a large extent on adequate knowledge of solar radiation characteristics in the region of solar energy system operation. The two major climatic components needed for photovoltaic system designs are the distributions of solar insolation and ambient temperature. These distributions for the Martian climate are given at the two Viking lander locations but can also be used, to the first approximation, for other latitudes. One of the most important results is that there is a large diffuse component of the insolation, even at high optical depth, so that solar energy system operation is still possible. If the power system is to continue to generate power even on high optical opacity days, it is thus important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. In absence of long term insolation and temperature data for Mars, the data presented can be used until updated data are available. The ambient temperature data are given as measured directly by the temperature sensor; the insolation data are calculated from optical depth measurements of the atmosphere.
Depth-of-interaction estimates in pixelated scintillator sensors using Monte Carlo techniques
NASA Astrophysics Data System (ADS)
Sharma, Diksha; Sze, Christina; Bhandari, Harish; Nagarkar, Vivek; Badano, Aldo
2017-01-01
Image quality in thick scintillator detectors can be improved by minimizing parallax errors through depth-of-interaction (DOI) estimation. A novel sensor for low-energy single photon imaging having a thick, transparent, crystalline pixelated micro-columnar CsI:Tl scintillator structure has been described, with possible future application in small-animal single photon emission computed tomography (SPECT) imaging when using thicker structures under development. In order to understand the fundamental limits of this new structure, we introduce cartesianDETECT2, an open-source optical transport package that uses Monte Carlo methods to obtain estimates of DOI for improving spatial resolution of nuclear imaging applications. Optical photon paths are calculated as a function of varying simulation parameters such as columnar surface roughness, bulk, and top-surface absorption. We use scanning electron microscope images to estimate appropriate surface roughness coefficients. Simulation results are analyzed to model and establish patterns between DOI and photon scattering. The effect of varying starting locations of optical photons on the spatial response is studied. Bulk and top-surface absorption fractions were varied to investigate their effect on spatial response as a function of DOI. We investigated the accuracy of our DOI estimation model for a particular screen with various training and testing sets, and for all cases the percent error between the estimated and actual DOI over the majority of the detector thickness was ±5% with a maximum error of up to ±10% at deeper DOIs. In addition, we found that cartesianDETECT2 is computationally five times more efficient than MANTIS. Findings indicate that DOI estimates can be extracted from a double-Gaussian model of the detector response. We observed that our model predicts DOI in pixelated scintillator detectors reasonably well.
Realization of arbitrarily long focus-depth optical vortices with spiral area-varying zone plates
NASA Astrophysics Data System (ADS)
Zheng, Chenglong; Zang, Huaping; Du, Yanli; Tian, Yongzhi; Ji, Ziwen; Zhang, Jing; Fan, Quanping; Wang, Chuanke; Cao, Leifeng; Liang, Erjun
2018-05-01
We provide a methodology to realize an optical vortex with arbitrarily long focus-depth. With a technique of varying each zone area of a phase spiral zone plate one can obtain optics capable of generating ultra-long focus-depth optical vortex from a plane wave. The focal property of such optics was analysed using the Fresnel diffraction theory, and an experimental demonstration was performed to verify its effectiveness. Such optics may bring new opportunity and benefits for optical vortex application such as optical manipulation and lithography.
Various On-Chip Sensors with Microfluidics for Biological Applications
Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W.
2014-01-01
In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip. PMID:25222033
NASA Astrophysics Data System (ADS)
Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.
1987-08-01
A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.
Direct Aerosol Forcing Uncertainty
Mccomiskey, Allison
2008-01-15
Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.
Ex vivo imaging of early dental caries within the interproximal space
NASA Astrophysics Data System (ADS)
Choo-Smith, Lin-P'ing; Hewko, Mark D.; Dufour, Marc L.; Fulton, Crystal; Qiu, Pingli; Gauthier, Bruno; Padioleau, Christian; Bisaillon, Charles-Etienne; Dong, Cecilia; Cleghorn, Blaine M.; Lamouche, Guy; Sowa, Michael G.
2009-02-01
Optical coherence tomography (OCT) is emerging as a technology that can potentially be used for the detection and monitoring of early dental enamel caries since it can provide high-resolution depth imaging of early lesions. To date, most caries detection optical technologies are well suited for examining caries at facial, lingual, incisal and occlusal surfaces. The approximal surfaces between adjacent teeth are difficult to examine due to lack of visual access and limited space for these new caries detection tools. Using a catheter-style probe developed at the NRC-Industrial Materials Institute, the probe was inserted into the interproximal space to examine the approximal surfaces with OCT imaging at 1310 nm. The probe was rotated continuously and translated axially to generate depth images in a spiral fashion. The probe was used in a mock tooth arch model consisting of extracted human teeth mounted with dental rope wax in their anatomically correct positions. With this ex vivo model, the probe provided images of the approximal surfaces revealing morphological structural details, regions of calculus, and especially regions of early dental caries (white spot lesions). Results were compared with those obtained from OCT imaging of individual samples where the approximal surfaces of extracted teeth are accessible on a lab-bench. Issues regarding access, regions of interest, and factors to be considered in an in vivo setting will be discussed. Future studies are aimed at using the probe in vivo with patient volunteers.
Terai, C. R.; Klein, S. A.; Zelinka, M. D.
2016-08-26
The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terai, C. R.; Klein, S. A.; Zelinka, M. D.
The increase in cloud optical depth with warming at middle and high latitudes is a robust cloud feedback response found across all climate models. This study builds on results that suggest the optical depth response to temperature is timescale invariant for low-level clouds. The timescale invariance allows one to use satellite observations to constrain the models' optical depth feedbacks. Three passive-sensor satellite retrievals are compared against simulations from eight models from the Atmosphere Model Intercomparison Project (AMIP) of the 5th Coupled Model Intercomparison Project (CMIP5). This study confirms that the low-cloud optical depth response is timescale invariant in the AMIPmore » simulations, generally at latitudes higher than 40°. Compared to satellite estimates, most models overestimate the increase in optical depth with warming at the monthly and interannual timescales. Many models also do not capture the increase in optical depth with estimated inversion strength that is found in all three satellite observations and in previous studies. The discrepancy between models and satellites exists in both hemispheres and in most months of the year. A simple replacement of the models' optical depth sensitivities with the satellites' sensitivities reduces the negative shortwave cloud feedback by at least 50% in the 40°–70°S latitude band and by at least 65% in the 40°–70°N latitude band. Furthermore, based on this analysis of satellite observations, we conclude that the low-cloud optical depth feedback at middle and high latitudes is likely too negative in climate models.« less
Determining the influential depth for surface reflectance of sediment by BRDF measurements.
Zhang, H; Voss, K; Reid, R
2003-10-20
We measure the Bi-directional reflectance distribution function (BRDF) of ooid sand layers with three particle size distributions (0.5-1mm, 0.25-0.5mm and 0.125-0.25mm) and layer thicknesses on a reflecting mirror to determine the influential depth in the optical region at wavelengths of 658 nm (red), 570 nm (green) and 457 nm (blue). The hemispherical reflectance (albedo) was used as an indicator of BRDF changes between different layers. Measurements are carried out on both dry and water wetted grains. The results indicate that for both dry and wet and all size distributions, the influential depth is at most 2mm.
Optimized method for manufacturing large aspheric surfaces
NASA Astrophysics Data System (ADS)
Zhou, Xusheng; Li, Shengyi; Dai, Yifan; Xie, Xuhui
2007-12-01
Aspheric optics are being used more and more widely in modern optical systems, due to their ability of correcting aberrations, enhancing image quality, enlarging the field of view and extending the range of effect, while reducing the weight and volume of the system. With optical technology development, we have more pressing requirement to large-aperture and high-precision aspheric surfaces. The original computer controlled optical surfacing (CCOS) technique cannot meet the challenge of precision and machining efficiency. This problem has been thought highly of by researchers. Aiming at the problem of original polishing process, an optimized method for manufacturing large aspheric surfaces is put forward. Subsurface damage (SSD), full aperture errors and full band of frequency errors are all in control of this method. Lesser SSD depth can be gained by using little hardness tool and small abrasive grains in grinding process. For full aperture errors control, edge effects can be controlled by using smaller tools and amendment model with material removal function. For full band of frequency errors control, low frequency errors can be corrected with the optimized material removal function, while medium-high frequency errors by using uniform removing principle. With this optimized method, the accuracy of a K9 glass paraboloid mirror can reach rms 0.055 waves (where a wave is 0.6328μm) in a short time. The results show that the optimized method can guide large aspheric surface manufacturing effectively.
High photoreactivity in a non-fluorescent photocleavable ligands on gold
NASA Astrophysics Data System (ADS)
Robinson, Hans D.; Daengngam, Chalongrat; Stoianov, Stefan V.; Thorpe, Steven B.; Guo, Xi; Santos, Webster L.; Morris, John R.
2014-03-01
We report on the photo-patterning of a gold surface functionalized with a self-assembled monolayer of an o-nitrobenzyl-based photocleavable ligand bound to the gold surface with a thiol anchor. We find that the dose of UV light required to induce the photoreaction on gold is very similar to the dose in an alcohol solution, even though many optical phenomena are strongly suppressed on metal surfaces. We attribute this finding to a combination of the large skin depth in gold at UV wavelengths, the high speed of the photoreaction, and the spatially indirect nature of the lowest excited singlet. Any photoreactive compound where the quantum efficiency of fluorescence is sufficiently low, preferably no larger than about 10-5 in the case of gold surfaces, will show a similarly high photoreactivity in metal-surface monolayers. The implications of this result for optically driven self-assembly in plasmonic systems will be discussed. This work was supported by a grant from the National Science Foundation (DMR-106753).
Global Summary MGS TES Data and Mars-Gram Validation
NASA Technical Reports Server (NTRS)
Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)
2002-01-01
Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Arizona Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topograph$ from Mars Global Surveyor Mars Orbiting Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with a global summary data set of Mars Global Surveyor Thermal Emission Spectrometer (TES) data. TES averages and standard deviations were assembled from binned TES data which covered surface to approx. 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). TES data were binned in 10-by-10 degree latitude-longitude bins (i.e. 36 longitude bins by 19 latitude bins), 12 seasonal bins (based on 30 degree increments of Ls angle). Bin averages and standard deviations were assembled at 23 data levels (temperature at 21 pressure levels, plus surface temperature and surface pressure). Two time-of day bins were used: local time near 2 or 14 hours local time). Two dust optical depth bins wereused: infrared optical depth either less than or greater than 0.25 (which corresponds to visible optical depth either less than or greater than about 0.5). For interests in aerocapture and precision entry and landing, comparisons focused on atmospheric density. TES densities versus height were computed from TES temperature versus pressure, using assumptions of perfect gas law and hydrostatics. Mars-GRAM validation studies used density ratio (TES/Mars-GRAM) evaluated at data bin center points in space and time. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (> 45 deg N), or at most altitudes in the southern hemisphere at Ls approx. 90 and 180deg). Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of approx. 65-10.5% (varying with height) for all data, or approx. 5-12%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 hours and 7.1% for local time 14 hours. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about the same as the standard deviation of TES data about the TES mean value at a given position and season.
Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics
NASA Astrophysics Data System (ADS)
Becker, M.; Allen, E. M.; Hutchinson, A.
2014-12-01
Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls into question the relevance of simple wetting models for predicting percolation behavior in infiltration basins.
NASA Astrophysics Data System (ADS)
Toon, Owen B.; Bardeen, Charles; Garcia, Rolando
2016-10-01
About 66 million years ago, an asteroid about 10 km in diameter struck the Yucatan Peninsula creating the Chicxulub crater. The crater has been dated and found to be coincident with the Cretaceous-Paleogene (K-Pg) mass extinction event, one of six great mass extinctions in the last 600 million years. This event precipitated one of the largest episodes of rapid climate change in Earth's history, yet no modern three-dimensional climate calculations have simulated the event. Similarly, while there is an ongoing effort to detect asteroids that might hit Earth and to develop methods to stop them, there have been no modern calculations of the sizes of asteroids whose impacts on land would cause devastating effects on Earth. Here, we provide the information needed to initialize such calculations for the K-Pg impactor and for a 1 km diameter impactor. There is considerable controversy about the details of the events that followed the Chicxulub impact. We proceed through the data record in the order of confidence that a climatically important material was present in the atmosphere. The climatic importance is roughly proportional to the optical depth of the material. Spherules with diameters of several hundred microns are found globally in an abundance that would have produced an atmospheric layer with an optical depth around 20, yet their large sizes would only allow them to stay airborne for a few days. They were likely important for triggering global wildfires. Soot, probably from global or near-global wildfires, is found globally in an abundance that would have produced an optical depth near 100, which would effectively prevent sunlight from reaching the surface. Nanometer-sized iron particles are also present globally. Theory suggests these particles might be remnants of the vaporized asteroid and target that initially remained as vapor rather than condensing on the hundred-micron spherules when they entered the atmosphere. If present in the greatest abundance allowed by theory, their optical depth would have exceeded 1000. Clastics may be present globally, but only the quartz fraction can be quantified since shock features can identify it. However, it is very difficult to determine the total abundance of clastics. We reconcile previous widely disparate estimates and suggest the clastics may have had an optical depth near 100. Sulfur is predicted to originate about equally from the impactor and from the Yucatan surface materials. By mass, sulfur is less than 10 % of the observed mass of the spheres and estimated mass of nanoparticles. Since the sulfur probably reacted on the surfaces of the soot, nanoparticles, clastics, and spheres, it is likely a minor component of the climate forcing; however, detailed studies of the conversion of sulfur gases to particles are needed to determine if sulfuric acid aerosols dominated in late stages of the evolution of the atmospheric debris. Numerous gases, including CO2, SO2 (or SO3), H2O, CO2, Cl, Br, and I, were likely injected into the upper atmosphere by the impact or the immediate effects of the impact such as fires across the planet. Their abundance might have increased relative to current ambient values by a significant fraction for CO2, and by factors of 100 to 1000 for the other gases. For the 1 km impactor, nanoparticles might have had an optical depth of 1.5 if the impact occurred on land. If the impactor struck a densely forested region, soot from the forest fires might have had an optical depth of 0.1. Only S and I would be expected to be perturbed significantly relative to ambient gas-phase values. One kilometer asteroids impacting the ocean may inject seawater into the stratosphere as well as halogens that are dissolved in the seawater. For each of the materials mentioned, we provide initial abundances and injection altitudes. For particles, we suggest initial size distributions and optical constants. We also suggest new observations that could be made to narrow the uncertainties about the particles and gases generated by large impacts.
NASA Technical Reports Server (NTRS)
Russell, P. B.; Livingston, J. M.; Pueschel, R. F.; Bauman, J. J.; Pollack, J. B.; Brooks, S. L.; Hamill, P.; Thomason, L. W.; Stowe, L. L.; Deshler, T.;
2000-01-01
We assemble data on the Pinatubo aerosol from space, air, and ground measurements, develop a composite picture, and assess the consistency and uncertainties of measurement and retrieval techniques. Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements agree with theoretical calculations in showing a dominant composition of H2SO4-H20 mixture, with H2SO4 weight fraction of 65-80% for most stratospheric temperatures and humidities. Important exceptions are (1) volcanic ash, present at all heights initially and just above the tropopause until at least March 1992, and (2) much smaller H2SO4 fractions at the low temperatures of high-latitude winters and the tropical tropopause. Laboratory spectroscopy and calculations yield wavelength- and temperature-dependent refractive indices for the H2SO4-H20 droplets. These permit derivation of particle size information from measured optical depth spectra, for comparison to impactor and optical-counter measurements. All three techniques paint a generally consistent picture of the evolution of R(sub eff), the effective radius. In the first month after the eruption, although particle numbers increased greatly, R(sub eff) outside the tropical core was similar to preeruption values of approx. 0.1 to 0.2 microns, because numbers of both small (r < 0.2 microns) and large (r > 0.6 microns) particles increased. In the next 3-6 months, extracore R(sub eff) increased to approx. 0.5 microns, reflecting particle growth through condensation and coagulation. Most data show that R(sub eff) continued to increase for about 1 year after the eruption. R(sub eff) values up to 0.6 - 0.8 microns or more are consistent with 0.38 - 1 micron optical depth spectra in middle to late 1992 and even later. However, in this period, values from in situ measurements are somewhat less. The difference might reflect in situ undersampling of the very few largest particles, insensitivity of optical depth spectra to the smallest particles, or the inability of flat spectra to place an upper limit on particle size. Optical depth spectra extending to wavelengths lambda > 1 micron are required to better constrain R(sub eff), especially for R(sub eff) > 0.4 microns. Extinction spectra computed from in situ size distributions are consistent with optical depth measurements; both show initial spectra with lambda(sub max) <= 0.42 microns, thereafter increasing to 0.78 <= lambda(sub max) <= 1 micron. Not until 1993 do spectra begin to show a clear return to the preeruption signature of lambda(sub max) <= 0.42 microns. The twin signatures of large R(sub eff) (> 0.3 microns) and relatively flat extinction spectra (0.4 - 1 microns) are among the longest-lived indicators of Pinatubo volcanic influence. They persist for years after the peaks in number, mass, surface area, and optical depth at all wavelengths <= 1 microns. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between global maps of 0.5- and 1.0-micron optical depth derived from the Advanced Very High Resolution Radiometer (AVHRR) and Stratospheric Aerosol and Gas Experiment (SAGE) satellite sensors. However, there are important differences between the AVHRR and SAGE midvisible optical thickness products. We discuss possible reasons for these differences and how they might be resolved.
Aerosol spectral optical depths - Jet fuel and forest fire smokes
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Livingston, J. M.
1990-01-01
The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.
Du, Chixin; Shen, Meixiao; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua
2012-01-01
Purpose To measure by ultra-long scan depth optical coherence tomography (UL-OCT) dimensional changes in the anterior segment of human eyes during accommodation. Design Evaluation of diagnostic test or technology. Participants Forty-one right eyes of healthy subjects with a mean age of 34 years (range, 22–41 years) and a mean refraction of −2.5±2.6 diopters (D) were imaged in two repeated measurements at minimal and maximal accommodation. Methods A specially adapted designed UL-OCT instrument was used to image from the front surface of the cornea to the back surface of the crystalline lens. Custom software corrected the optical distortion of the images and yielded the biometric measurements. The coefficient of repeatability (COR) and the intraclass correlation coefficient (ICC) were calculated to evaluate the repeatability and reliability. Main Outcome Measures Anterior segment parameters and associated repeatability and reliability upon accommodation. The dimensional results included central corneal thickness (CCT), anterior chamber depth and width (ACD, ACW), pupil diameter (PD), lens thickness (LT), anterior segment length (ASL=ACD+LT), lens central position (LCP=ACD+1/2LT) and horizontal radii of the lens anterior and posterior surface curvatures (LAC, LPC). Results Repeated measurements of each variable within each accommodative state did not differ significantly (P>0.05). The CORs and ICCs for CCT, ACW, ACD, LT, LCP, and ASL were excellent (1.2% to 3.59% and 0.998 to 0.877, respectively). They were higher for PD (18.90% to 21.63% and 0.880 to 0.874, respectively), and moderate for LAC and LPC (34.86% to 42.72% and 0.669 to 0.251, respectively) in the two accommodative states. Compared to minimal accommodation, PD, ACD, LAC, LPC, and LCP decreased and LT and ASL increased significantly at maximal accommodation (P<0.05), while CCT and ACW did not change (P>0.05). Conclusions UL-OCT measured changes in anterior segment dimensions during accommodation with good repeatability and reliability. During accommodation, the back surface of the lens became steeper as the lens moved forward. PMID:22902211
NASA Technical Reports Server (NTRS)
Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.
2004-01-01
Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.
[A snow depth inversion method for the HJ-1B satellite data].
Dong, Ting-Xu; Jiang, Hong-Bo; Chen, Chao; Qin, Qi-Ming
2011-10-01
The importance of the snow is self-evident, while the harms caused by the snow have also received more and more attention. At present, the retrieval of snow depth mainly focused on the use of microwave remote sensing data or a small amount of optical remote sensing data, such as the meteorological data or the MODIS data. The small satellites for environment and disaster monitoring of China are quite different form the meteorological data and MODIS data, both in the spectral resolution or spatial resolution. In this paper, aimed at the HJ-1B data, snow spectral of different underlying surfaces and depths were surveyed. The correlation between snow cover index and snow depth was also analyzed to establish the model for the snow depth retrieval using the HJ-1B data. The validation results showed that it can meet the requirements of real-time monitoring the snow depth on the condition of conventional snow depth.
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, Steven W.
1991-01-01
The present analysis of emission-phase function (EPF) observations from the IR thermal mapper aboard the Viking Orbiter encompasses polar latitudes, and Viking Lander sites, and spans a wide range of solar longitudes. A multiple scattering radiative transfer model which incorporates a bidirectional phase function for the surface and atmospheric scattering by dust and clouds yields surface albedos and dust and ice optical properties and optical depths for the variety of Mars conditions. It is possible to fit all analyzed EPF sequences corresponding to dust scattering with an albedo of 0.92, rather than the 0.86 given by Pollack et al. on the bases of Viking Lander observations.
Surface truth measurements of optical properties of the waters in the northern Gulf of California
NASA Technical Reports Server (NTRS)
Austin, R. W.
1972-01-01
Gemini and Apollo flight photographs of the southwestern United States and northwestern Mexico, and especially of the Colorado River delta and the northwestern Gulf of California, are considered. The clearly discernible water coloration in the imagery led to the suggestion that remote sensing techniques may be usefully applied in such areas to determine bathymetric information. Measurements of the optical properties of the water in this region obtained in March 1971 showed that generally low transmissivities prevailed and at no station did the beam transmittance for the total water column exceed 2.5 x 10 to the -8th power. It was concluded that any correlation between water depth and spectral radiance at the surface must result from secondarily related phenomena.
NASA Astrophysics Data System (ADS)
Craig, J. D.; Strutton, P. G.; Evans, W.
2008-12-01
A database of chlorophyll fluorescence, particulate backscatter and beam attenuation was constructed from 17 cruises spanning the equatorial Pacific between August 2005 and February 2008. These optical measurements serve at least two important purposes. First, they can be used to document changes in phytoplankton abundance and physiology in a globally significant ecosystem. Second, they represent an important validation database for satellite observations that form the core of emerging primary productivity models. The data consist of CTD profiles from the surface to 1000m at least every degree of latitude between 8N and 8S, from near the Galapagos to beyond the date line. The optical data were calibrated with in situ samples of chlorophyll and particulate organic carbon (POC) from 4 of the 17 cruises. Chlorophyll concentration was derived from a multiple linear regression of chlorophyll fluorescence, time of day and depth, to account for photoinhibition of the fluorescence signal near the surface during the day. POC was derived from both particulate backscatter and beam attenuation. The optical data were then used to produce maps and latitude-depth sections of chlorophyll and POC for cruises where no in situ samples exist. In the eastern and central equatorial Pacific, phytoplankton chlorophyll to carbon ratios decreased by 30 to 50 percent during the weak El Nino conditions of 2006-2007. This change was due mostly to a decrease in chlorophyll, while POC remained relatively constant. In the western Pacific, the decrease in chl:C was absent, but an increase occurred in early 2008 when the system recovered from El Nino. Changes in chl:C, mostly indicative of photoadaptation, were also observed with depth and latitude as upwelled waters from the equator move poleward. Satellite-based maps of chlorophyll, phytoplankton C and chl:C were also produced and compared with the in situ optical measurements, with mostly good agreement.
International Space Station External Contamination Status
NASA Technical Reports Server (NTRS)
Mikatarian, Ron; Soares, Carlos
2000-01-01
PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.
Mechanism of nanosecond laser drilling process of 4H-SiC for through substrate vias
NASA Astrophysics Data System (ADS)
Kim, Byunggi; Iida, Ryoichi; Doan, Duc Hong; Fushinobu, Kazuyoshi
2017-06-01
Role of optical parameters on nanosecond laser drilling of 4H-SiC was experimentally studied. Using ns pulsed Nd:YAG laser, parametric studies on effects of wavelength (1064 nm or 532 nm), beam profile (Gaussian or Bessel), and ambient condition (air or water) were conducted. The wavelengths which have large optical penetration depth were selected as wavefront has to propagate through materials to generate Bessel beam. The experimental results showed that carbonization of SiC surface accelerates thermal ablation of the materials with fluence under the lattice melting threshold. Especially, pattern of side lobes with small fluence was formed by irradiation of Bessel beam. The pattern disturbed penetration of wavefronts through materials. Implementation of water environment was not effective to suppress carbonization and had slight effect on improvement of drilling quality. For this reason, deep drilling with small entrance was not achieved using Bessel beam. Irradiation of 1064 nm Gaussian beam with large fluence led to formation of critical amount of re-solidified silicon due to the large optical penetration depth. Carbonization and silicon formation had a significant effect on unique fluence dependence of drilling depth. Absorption mechanism was studied as well to discuss effect of wavelength on processing characteristics.
Characterization of Surface Reflectance Variation Effects on Remote Sensing
NASA Technical Reports Server (NTRS)
Pearce, W. A.
1984-01-01
The use of Monte Carlo radiative transfer codes to simulate the effects on remote sensing in visible and infrared wavelengths of variables which affect classification is examined. These variables include detector viewing angle, atmospheric aerosol size distribution, aerosol vertical and horizontal distribution (e.g., finite clouds), the form of the bidirectional ground reflectance function, and horizontal variability of reflectance type and reflectivity (albedo). These simulations are used to characterize the sensitivity of observables (intensity and polarization) to variations in the underlying physical parameters both to improve algorithms for the removal of atmospheric effects and to identify techniques which can improve classification accuracy. It was necessary to revise and validate the simulation codes (CTRANS, ARTRAN, and the Mie scattering code) to improve efficiency and accommodate a new operational environment, and to build the basic software tools for acquisition and off-line manipulation of simulation results. Initial calculations compare cases in which increasing amounts of aerosol are shifted into the stratosphere, maintaining a constant optical depth. In the case of moderate aerosol optical depth, the effect on the spread function is to scale it linearly as would be expected from a single scattering model. Varying the viewing angle appears to provide the same qualitative effect as modifying the vertical optical depth (for Lambertian ground reflectance).
Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei
2016-08-20
Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, B; Smith, C; La Riviere, P
2016-06-15
Purpose: To evaluate the resolution and sensitivity of XIL imaging using a surface radiance simulation based on optical diffusion and maximum likelihood expectation maximization (MLEM) image reconstruction. XIL imaging seeks to determine the distribution of luminescent nanophosphors, which could be used as nanodosimeters or radiosensitizers. Methods: The XIL simulation generated a homogeneous slab with optical properties similar to tissue. X-ray activated nanophosphors were placed at 1.0 cm depth in the tissue in concentrations of 10{sup −4} g/mL in two volumes of 10 mm{sup 3} with varying separations between each other. An analytical optical diffusion model determined the surface radiance frommore » the photon distributions generated at depth in the tissue by the nanophosphors. The simulation then determined the detected luminescent signal collected with a f/1.0 aperture lens and back-illuminated EMCCD camera. The surface radiance was deconvolved using a MLEM algorithm to estimate the nanophosphors distribution and the resolution. To account for both Poisson and Gaussian noise, a shifted Poisson imaging model was used in the deconvolution. The deconvolved distributions were fitted to a Gaussian after radial averaging to measure the full width at half maximum (FWHM) and the peak to peak distance between distributions was measured to determine the resolving power. Results: Simulated surface radiances for doses from 1mGy to 100 cGy were computed. Each image was deconvolved using 1000 iterations. At 1mGy, deconvolution reduced the FWHM of the nanophosphors distribution by 65% and had a resolving power is 3.84 mm. Decreasing the dose from 100 cGy to 1 mGy increased the FWHM by 22% but allowed for a dose reduction of a factor of 1000. Conclusion: Deconvolving the detected surface radiance allows for dose reduction while maintaining the resolution of the nanophosphors. It proves to be a useful technique in overcoming the resolution limitations of diffuse optical imaging in tissue. C. S. acknowledges support from the NIH National Institute of General Medical Sciences (Award number R25GM109439, Project Title: University of Chicago Initiative for Maximizing Student Development, IMSD). B. Q. and P. L. acknowledge support from NIH grant R01EB017293.« less
Kinch, Kjartan M; Bell, James F; Goetz, Walter; Johnson, Jeffrey R; Joseph, Jonathan; Madsen, Morten Bo; Sohl-Dickstein, Jascha
2015-05-01
The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two-layer scattering model, and we present a dust reflectance spectrum derived from long-term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance-calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.
Bell, James F.; Goetz, Walter; Johnson, Jeffrey R.; Joseph, Jonathan; Madsen, Morten Bo; Sohl‐Dickstein, Jascha
2015-01-01
Abstract The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two‐layer scattering model, and we present a dust reflectance spectrum derived from long‐term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance‐calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history. PMID:27981072
The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets
NASA Astrophysics Data System (ADS)
Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.
2017-06-01
Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s, the optical thickness b cloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.
Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions
NASA Astrophysics Data System (ADS)
Robbins, Constance M.; Raghavan, Guruprasad; Antaki, James F.; Kainerstorfer, Jana M.
2017-12-01
In breast cancer diagnosis and therapy monitoring, there is a need for frequent, noninvasive disease progression evaluation. Breast tumors differ from healthy tissue in mechanical stiffness as well as optical properties, which allows optical methods to detect and monitor breast lesions noninvasively. Spatial frequency-domain imaging (SFDI) is a reflectance-based diffuse optical method that can yield two-dimensional images of absolute optical properties of tissue with an inexpensive and portable system, although depth penetration is limited. Since the absorption coefficient of breast tissue is relatively low and the tissue is quite flexible, there is an opportunity for compression of tissue to bring stiff, palpable breast lesions within the detection range of SFDI. Sixteen breast tissue-mimicking phantoms were fabricated containing stiffer, more highly absorbing tumor-mimicking inclusions of varying absorption contrast and depth. These phantoms were imaged with an SFDI system at five levels of compression. An increase in absorption contrast was observed with compression, and reliable detection of each inclusion was achieved when compression was sufficient to bring the inclusion center within ˜12 mm of the phantom surface. At highest compression level, contrasts achieved with this system were comparable to those measured with single source-detector near-infrared spectroscopy.
NASA Astrophysics Data System (ADS)
Arunachalam, M. S.; Puli, Anil; Anuradha, B.
2016-07-01
In the present work continuous extraction of convective cloud optical information and reflectivity (MAX(Z) in dBZ) using online retrieval technique for time series data production from Doppler Weather Radar (DWR) located at Indian Meteorological Department, Chennai has been developed in MATLAB. Reflectivity measurements for different locations within the DWR range of 250 Km radii of circular disc area can be retrieved using this technique. It gives both time series reflectivity of point location and also Range Time Intensity (RTI) maps of reflectivity for the corresponding location. The Graphical User Interface (GUI) developed for the cloud reflectivity is user friendly; it also provides the convective cloud optical information such as cloud base height (CBH), cloud top height (CTH) and cloud optical depth (COD). This technique is also applicable for retrieving other DWR products such as Plan Position Indicator (Z, in dBZ), Plan Position Indicator (Z, in dBZ)-Close Range, Volume Velocity Processing (V, in knots), Plan Position Indicator (V, in m/s), Surface Rainfall Intensity (SRI, mm/hr), Precipitation Accumulation (PAC) 24 hrs at 0300UTC. Keywords: Reflectivity, cloud top height, cloud base, cloud optical depth
On differential photometric reconstruction for unknown, isotropic BRDFs.
Chandraker, Manmohan; Bai, Jiamin; Ramamoorthi, Ravi
2013-12-01
This paper presents a comprehensive theory of photometric surface reconstruction from image derivatives in the presence of a general, unknown isotropic BRDF. We derive precise topological classes up to which the surface may be determined and specify exact priors for a full geometric reconstruction. These results are the culmination of a series of fundamental observations. First, we exploit the linearity of chain rule differentiation to discover photometric invariants that relate image derivatives to the surface geometry, regardless of the form of isotropic BRDF. For the problem of shape-from-shading, we show that a reconstruction may be performed up to isocontours of constant magnitude of the gradient. For the problem of photometric stereo, we show that just two measurements of spatial and temporal image derivatives, from unknown light directions on a circle, suffice to recover surface information from the photometric invariant. Surprisingly, the form of the invariant bears a striking resemblance to optical flow; however, it does not suffer from the aperture problem. This photometric flow is shown to determine the surface up to isocontours of constant magnitude of the surface gradient, as well as isocontours of constant depth. Further, we prove that specification of the surface normal at a single point completely determines the surface depth from these isocontours. In addition, we propose practical algorithms that require additional initial or boundary information, but recover depth from lower order derivatives. Our theoretical results are illustrated with several examples on synthetic and real data.
Stratospheric aerosol optical depths, 1850-1990
NASA Technical Reports Server (NTRS)
Sato, Makiko; Hansen, James E.; Mccormick, M. Patrick; Pollack, James B.
1993-01-01
A global stratospheric aerosol database employed for climate simulations is described. For the period 1883-1990, aerosol optical depths are estimated from optical extinction data, whose quality increases with time over that period. For the period 1850-1882, aerosol optical depths are more crudely estimated from volcanological evidence for the volume of ejecta from major known volcanoes. The data set is available over Internet.
NASA Astrophysics Data System (ADS)
Nimnuan, P.; Janjai, S.; Nunez, M.; Pratummasoot, N.; Buntoung, S.; Charuchittipan, D.; Chanyatham, T.; Chantraket, P.; Tantiplubthong, N.
2017-08-01
This paper presents an algorithm for deriving the effective droplet radius and optical depth of liquid water clouds using ground-based measurements, aircraft observations and an adiabatic model of cloud liquid water. The algorithm derives cloud effective radius and cloud optical depth over a tropical site at Omkoi (17.80°N, 98.43°E), Thailand. Monthly averages of cloud optical depth are highest in April (54.5), which is the month with the lowest average cloud effective radius (4.2 μm), both occurring before the start of the rainy season and at the end of the high contamination period. By contrast, the monsoon period extending from May to October brings higher cloud effective radius and lower cloud optical depth to the region on average. At the diurnal scale there is a gradual increase in average cloud optical depth and decrease in cloud effective radius as the day progresses.
Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F
2004-11-01
We present an analysis for polarization-sensitive optical coherence tomography that facilitates the unrestricted use of fiber and fiber-optic components throughout an interferometer and yields sample birefringence, diattenuation, and relative optic axis orientation. We use a novel Jones matrix approach that compares the polarization states of light reflected from the sample surface with those reflected from within a biological sample for pairs of depth scans. The incident polarization alternated between two states that are perpendicular in a Poincaré sphere representation to ensure proper detection of tissue birefringence regardless of optical fiber contributions. The method was validated by comparing the calculated diattenuation of a polarizing sheet, chicken tendon, and muscle with that obtained by independent measurement. The relative importance of diattenuation versus birefringence to angular displacement of Stokes vectors on a Poincaré sphere was quantified.
Adaptive optics improves multiphoton super-resolution imaging
NASA Astrophysics Data System (ADS)
Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari
2018-02-01
Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.
Near-infrared image-guided laser ablation of artificial caries lesions.
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2007-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO(2) laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm(2) bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO(2) laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.
Near-infrared image-guided laser ablation of artificial caries lesions
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2012-01-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two–dimensional NIR images of demineralized tooth surfaces can be used to guide CO2 laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO2 laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:22866210
Near-infrared image-guided laser ablation of artificial caries lesions
NASA Astrophysics Data System (ADS)
Tao, You-Chen; Fan, Kenneth; Fried, Daniel
2007-02-01
Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO II laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 x 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO II laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO II laser ablation system for the selective removal of dental caries.
NASA Astrophysics Data System (ADS)
Korposh, Sergiy; Kodaira, Suguru; Selyanchyn, Roman; Ledezma, Francisco H.; James, Stephen W.; Lee, Seung-Woo
2018-05-01
Highly sensitive fiber-optic ammonia gas sensors were fabricated via layer-by-layer deposition of poly(diallyldimethylammonium chloride) (PDDA) and tetrakis(4-sulfophenyl)porphine (TSPP) onto the surface of the core of a hard-clad multimode fiber that was stripped of its polymer cladding. The effects of film thickness, length of sensing area, and depth of evanescent wave penetration were investigated to clearly understand the sensor performance. The sensitivity of the fiber-optic sensor to ammonia was linear in the concentration range of 0.5-50 ppm and the response and recovery times were less than 3 min, with a limit of detection of 0.5 ppm, when a ten-cycle PDDA/TSPP film was assembled on the surface of the core along a 1 cm-long stripped section of the fiber. The sensor's response towards ammonia was also checked under different relative humidity conditions and a simple statistical data treatment approach, principal component analysis, demonstrated the feasibility of ammonia sensing in environmental relative humidity ranging from dry 7% to highly saturated 80%. Penetration depths of the evanescent wave for the optimal sensor configuration were estimated to be 30 and 33 nm at wavelengths of 420 and 706 nm, which are in a good agreement with the thickness of the 10-cycle deposited film (ca. 30 nm).
Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets
Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.
2007-01-01
The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.
First Retrieval of Surface Lambert Albedos From Mars Reconnaissance Orbiter CRISM Data
NASA Astrophysics Data System (ADS)
McGuire, P. C.; Arvidson, R. E.; Murchie, S. L.; Wolff, M. J.; Smith, M. D.; Martin, T. Z.; Milliken, R. E.; Mustard, J. F.; Pelkey, S. M.; Lichtenberg, K. A.; Cavender, P. J.; Humm, D. C.; Titus, T. N.; Malaret, E. R.
2006-12-01
We have developed a pipeline-processing software system to convert radiance-on-sensor for each of 72 out of 544 CRISM spectral bands used in global mapping to the corresponding surface Lambert albedo, accounting for atmospheric, thermal, and photoclinometric effects. We will present and interpret first results from this software system for the retrieval of Lambert albedos from CRISM data. For the multispectral mapping modes, these pipeline-processed 72 spectral bands constitute all of the available bands, for wavelengths from 0.362-3.920 μm, at 100-200 m/pixel spatial resolution, and ~ 0.006\\spaceμm spectral resolution. For the hyperspectral targeted modes, these pipeline-processed 72 spectral bands are only a selection of all of the 544 spectral bands, but at a resolution of 15-38 m/pixel. The pipeline processing for both types of observing modes (multispectral and hyperspectral) will use climatology, based on data from MGS/TES, in order to estimate ice- and dust-aerosol optical depths, prior to the atmospheric correction with lookup tables based upon radiative-transport calculations via DISORT. There is one DISORT atmospheric-correction lookup table for converting radiance-on-sensor to Lambert albedo for each of the 72 spectral bands. The measurements of the Emission Phase Function (EPF) during targeting will not be employed in this pipeline processing system. We are developing a separate system for extracting more accurate aerosol optical depths and surface scattering properties. This separate system will use direct calls (instead of lookup tables) to the DISORT code for all 544 bands, and it will use the EPF data directly, bootstrapping from the climatology data for the aerosol optical depths. The pipeline processing will thermally correct the albedos for the spectral bands above ~ 2.6 μm, by a choice between 4 different techniques for determining surface temperature: 1) climatology, 2) empirical estimation of the albedo at 3.9 μm from the measured albedo at 2.5 μm, 3) a physical thermal model (PTM) based upon maps of thermal inertia from TES and coarse-resolution surface slopes (SS) from MOLA, and 4) a photoclinometric extension to the PTM that uses CRISM albedos at 0.41 μm to compute the SS at CRISM spatial resolution. For the thermal correction, we expect that each of these 4 different techniques will be valuable for some fraction of the observations.
A coupled subsurface-boundary layer model of water on Mars
NASA Astrophysics Data System (ADS)
Zent, A. P.; Haberle, R. M.; Houben, H. C.; Jakosky, B. M.
1993-02-01
A 1D numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the PBL is employed to explore the mechanisms of H2O exchange and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum: radiation, sensible heat flux, and advection for heat. It is suggested that in most cases, the flux through the Martian surface reverses twice in the course of each sol. The effects of surface albedo, thermal inertia, solar declination, atmospheric optical depth, and regolith pore structure are explored. It is proposed that higher thermal inertia forces more H2O into the atmosphere because the regolith is warmer at depth.
NASA Astrophysics Data System (ADS)
Chasmer, L.; Flade, L.; Virk, R.; Montgomery, J. S.; Hopkinson, C.; Thompson, D. K.; Petrone, R. M.; Devito, K.
2017-12-01
Landscape changes in the hydrological characteristics of wetlands in some parts of the Boreal region of Canada are occurring as a result of climate-induced feedbacks and anthropogenic disturbance. Wetlands are largely resilient to wildfire, however, natural, climatic and anthropogenic disturbances can change surface water regimes and predispose wetlands to greater depth of peat burn. Over broad areas, peat loss contributes to significant pollution emissions, which can affect community health. In this study, we a) quantify depth of peat burn and relationships to antecedent conditions (species type, topography, surficial geology) within three classified wetlands found in the Boreal Plains ecoregion of western Canada; and b) examine the impacts of wildfire on post-fire ground surface energy balance to determine how peat loss might affect local hydro-climatology and surface water feedbacks. High-resolution optical imagery, pre- and post-burn multi-spectral Light Detection And Ranging (LiDAR), airborne thermal infrared imagery, and field validation data products are integrated to identify multiple complex interactions within the study wetlands. LiDAR-derived depth of peat burn is within 1 cm (average) compared with measured (RMSE = 9 cm over the control surface), demonstrating the utility of LiDAR with high point return density. Depth of burn also correlates strongly with variations in Normalised Burn Ratio (NBR) determined for ground surfaces only. Antecedent conditions including topographic position, soil moisture, soil type and wetland species also have complex interactions with depth of peat loss within wetlands observed in other studies. However, while field measurements are important for validation and understanding eco-hydrological processes, results from remote sensing are spatially continuous. Temporal LiDAR data illustrate the full range of variability in depth of burn and wetland characteristics following fire. Finally, measurements of instantaneous surface temperature indicate that the temperatures of burned wetlands are significantly warmer by up to 10oC compared to non-burned wetlands, altering locally variable sensible vs. latent energy exchanges and implications for further post-fire evaporative losses.
NASA Astrophysics Data System (ADS)
Gobbi, G. P.; Angelini, F.; Bonasoni, P.; Verza, G. P.; Marinoni, A.; Barnaba, F.
2010-11-01
In spite of being located at the heart of the highest mountain range in the world, the Himalayan Nepal Climate Observatory (5079 m a.s.l.) at the Ev-K2-CNR Pyramid is shown to be affected by the advection of pollution aerosols from the populated regions of southern Nepal and the Indo-Gangetic plains. Such an impact is observed along most of the period April 2006-March 2007 addressed here, with a minimum in the monsoon season. Backtrajectory-analysis indicates long-range transport episodes occurring in this year to originate mainly in the west Asian deserts. At this high altitude site, the measured aerosol optical depth is observed to be about one order of magnitude lower than the one measured at Ghandi College (60 m a.s.l.), in the Indo-Gangetic basin. As for Ghandi College, and in agreement with the in situ ground observations at the Pyramid, the fine mode aerosol optical depth maximizes during winter and minimizes in the monsoon season. Conversely, total optical depth maximizes during the monsoon due to the occurrence of elevated, coarse particle layers. Possible origins of these particles are wind erosion from the surrounding peaks and hydrated/cloud-processed aerosols. Assessment of the aerosol radiative forcing is then expected to be hampered by the presence of these high altitude particle layers, which impede an effective, continuous measurement of anthropogenic aerosol radiative properties from sky radiance inversions and/or ground measurements alone. Even though the retrieved absorption coefficients of pollution aerosols were rather large (single scattering albedo of the order of 0.6-0.9 were observed in the month of April 2006), the corresponding low optical depths (~0.03 at 500 nm) are expected to limit the relevant radiative forcing. Still, the high specific forcing of this aerosol and its capability of altering snow surface albedo provide good reasons for continuous monitoring.
Pt thermal atomic layer deposition for silicon x-ray micropore optics.
Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa
2018-04-20
We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10 nm and Pt ∼20 nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2 nm rms to 2.2±0.2 nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.
NASA Astrophysics Data System (ADS)
Vandemark, Douglas; Feng, Hui; Greenslade, Margaret E.
2016-05-01
Estimating the variation in the spectral transmission and scattering of optical and near-IR radiation near the sea surface under a range of conditions should be feasible using historical data collected off the coast of New Hampshire USA and along the coastline in the Gulf of Maine. Presented here are long-term offshore aerosol optical depth measurements collected using an AERONET sun photometer from 2007-2011 and near-surface wind and (3 m) horizontal visibility measurements collected using surface meteorological buoys from 2001-present. Future analysis of these data can address their correlation with near-surface meteorological and sea state conditions and to exploit an intensive but limited subset of historical aerosol particle measurements collected here both during a large research ship surveys (ICARTT) as well as with a dedicated aerosol measurement station in summer 2005. Refractive index variation and relevant altitude-dependent differences in meteorological scalars are also investigated using unique offshore long-term measurements at 3 and 32 m above sea level. Overall project results should provide new information for assessment against several existing models for aerosol extinction in marine environments.
Matsumoto, Naoya; Konno, Alu; Inoue, Takashi; Okazaki, Shigetoshi
2018-06-18
In this paper, excitation light wavefront modulation is performed considering the curved sample surface shape to demonstrate high-quality deep observation using two-photon excitation microscopy (TPM) with a dry objective lens. A large spherical aberration typically occurs when the refractive index (RI) interface between air and the sample is a plane perpendicular to the optical axis. Moreover, the curved sample surface shape and the RI mismatch cause various aberrations, including spherical ones. Consequently, the fluorescence intensity and resolution of the obtained image are degraded in the deep regions. To improve them, we designed a pre-distortion wavefront for correcting the aberration caused by the curved sample surface shape by using a novel, simple optical path length difference calculation method. The excitation light wavefront is modulated to the pre-distortion wavefront by a spatial light modulator incorporated in the TPM system before passing through the interface, where the RI mismatch occurs. Thus, the excitation light is condensed without aberrations. Blood vessels were thereby observed up to an optical depth of 2,000 μm in a cleared mouse brain by using a dry objective lens.
Martian aeolian features and deposits - Comparisons with general circulation model results
NASA Astrophysics Data System (ADS)
Greeley, R.; Skypeck, A.; Pollack, J. B.
1993-02-01
The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.
Application of a laser Doppler vibrometer for air-water to subsurface signature detection
NASA Astrophysics Data System (ADS)
Land, Phillip; Roeder, James; Robinson, Dennis; Majumdar, Arun
2015-05-01
There is much interest in detecting a target and optical communications from an airborne platform to a platform submerged under water. Accurate detection and communications between underwater and aerial platforms would increase the capabilities of surface, subsurface, and air, manned and unmanned vehicles engaged in oversea and undersea activities. The technique introduced in this paper involves a Laser Doppler Vibrometer (LDV) for acousto-optic sensing for detecting acoustic information propagated towards the water surface from a submerged platform inside a 12 gallon water tank. The LDV probes and penetrates the water surface from an aerial platform to detect air-water surface interface vibrations caused by an amplifier to a speaker generating a signal generated from underneath the water surface (varied water depth from 1" to 8"), ranging between 50Hz to 5kHz. As a comparison tool, a hydrophone was used simultaneously inside the water tank for recording the acoustic signature of the signal generated between 50Hz to 5kHz. For a signal generated by a submerged platform, the LDV can detect the signal. The LDV detects the signal via surface perturbations caused by the impinging acoustic pressure field; proving a technique of transmitting/sending information/messages from a submerged platform acoustically to the surface of the water and optically receiving the information/message using the LDV, via the Doppler Effect, allowing the LDV to become a high sensitivity optical-acoustic device. The technique developed has much potential usage in commercial oceanography applications. The present work is focused on the reception of acoustic information from an object located underwater.
NASA Astrophysics Data System (ADS)
Loubat, Anaïs; Eypert, Céline; Mollica, Fabien; Bouttemy, Muriel; Naghavi, Negar; Lincot, Daniel; Etcheberry, Arnaud
2017-11-01
CIGS (Cu(In1-x,Gax)Se2) based devices are very efficient for photovoltaic conversion. A non-destructive optical study of CIGS is an important challenge as for evaluation of the material quality, and for device modeling. Spectroscopic Ellipsometry (SE) is well adapted for a quantitative characterization only if the handicaps of the roughness limitation, the oxidized surface, or the compositional gradient are minimized. For this SE study, ungraded and thin CIGS samples are prepared with GGI (x) ratio (=[Ga]/([Ga] + [In])) ranging from 0.15 to 0.60. Thanks to chemical engineering based on acidic bromine solution etching and/or HCl de-oxidation, the SE experiments are performed on flattened surfaces, and also, on as grown de-oxidized samples. Using assumptions based on XPS, AFM and SEM complementary characterizations, we give proof of oxide free flattening surfaces and chemical homogeneity in depth. Using these observations, the SE data are modeled on the basis of a three layer model using an Adachi/Tauc-Lorentz formula for the CIGS dispersion. The optical gap values are determined in good agreement with the x ratio measured by the other characterization techniques. SE is able to well estimate the thickness and roughness variations on each sample. Furthermore, the CIGS optical constant extracted on such reference flat surfaces are then applied to the as grown-de-oxidized surfaces, enabling to describe the SE data obtained on rougher surfaces. A complete consistency of the proposed model is shown as well as the capability of SE to be sensitive to the chemistry of the surface.
Electrowetting Variable Optics for Visible and Infrared Applications
NASA Astrophysics Data System (ADS)
Watson, Alexander Maxwell
Miniaturized variable optical devices are important for the fields of medical technology, optical communication, and consumer imaging devices. Areas ranging from endoscopy and optogenetics to atomic clocks and imaging all benefit from versatile optical systems. These applications all require precise and rapid control of imaging focal depth and lateral scanning. Electrowetting variable optics is one emergent technology that has the capability to provide focus tuning, beam steering, and even phase modulation in a small and robust package which requires no moving parts. Furthermore, electrowetting based devices there are attractive due to their transmissive nature, polarization insensitivity, low insertion loss, low electrical power requirements, and high optical quality. These features mean that electrowetting adaptive optical components are an attractive solution, compared with MEMS and liquid crystal optical components. Electrowetting is a technique that enables control of the shape of a liquid droplet with applied voltage. A conductive droplet on a dielectric surface alters its contact angle due to charges that build up between an underlying electrode and the surface of the droplet. This effect can be used to tune the curvature and tilt of liquids within cavities. The liquid boundary creates a high quality surface to use for lensing or steering applications. This thesis will focus on the development of electrowetting based lenses and prisms and applications in imaging for both visible and infrared wavelengths. Within this dissertation is the first demonstration of electrowetting lenses for phase control, as well as the investigation of non-aqueous electrowetting lens liquids for electrowetting lenses operation in the infrared. Key considerations that affect the performance and reliability are dielectric material and thickness, liquid selection and source of ionic conduction. The optical devices presented herein utilize judicious selection of dielectric material and electrowetting liquids to enable low voltage variable optics and demonstrate applications in microscopy and microendoscopy.
Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.
2009-01-01
A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.
Electrical and material properties of hydrothermally grown single crystal (111) UO2
NASA Astrophysics Data System (ADS)
Dugan, Christina L.; Peterson, George Glenn; Mock, Alyssa; Young, Christopher; Mann, J. Matthew; Nastasi, Michael; Schubert, Mathias; Wang, Lu; Mei, Wai-Ning; Tanabe, Iori; Dowben, Peter A.; Petrosky, James
2018-04-01
The semiconductor and optical properties of UO2 are investigated. The very long drift carrier lifetimes, obtained from current-voltage I( V) and capacitance-voltage C( V) measurements, along with the well-defined optical properties provide little evidence of an abundance of material defects away from the surface region. Schottky barrier formation may be possible, but very much dependent on the choice of contact and surface stoichiometry and we find that Ohmic contacts are in fact favored. Depth resolved photoemission provided evidence of a chemical shift at the surface. Density functional theory, with the Heyd-Scuseria-Ernzerhof (HSE) functional, indicates a band gap of a 2.19 eV and an anti-ferromagnetic ground state. Ellipsometry measurements indicates at UO2 is relatively isotropic with a band gap of approximately 2.0 eV band gap, consistent with theoretical expectations.
Atmospheric Effect on Remote Sensing of the Earth's Surface
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J. (Principal Investigator)
1985-01-01
Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for understanding and correcting for the atmospheric effect on remote sensing of surface properties. In the present work the theory is generalized and tested successfully against laboratory and field measurements. There is still a need to generalize the RT approximation for off-nadir directions and to take into account anisotropic reflectance at the surface. The reflectance at the surface. The adjacency effect results in a significant modification of spectral signatures of the surface, and therefore results in modification of classifications, of separability of field classes, and of spatial resolution. For example, the 30 m resolution of the Thematic Mapper is reduced to 100 m by a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in general depends on these parameter, not just adjacency effects, but they are not known well enough for making accurate atmospheric corrections. It is important to establish methods for estimating these parameters in order to develop correction methods for atmospheric effects. Such estimations can be based on climatological data, which are not available yet, correlations between the optical parameters and meteorological data, and the same satellite measurements of radiances that are used for estimating surface properties. Knowledge about the atmospheric parameters important for remote sensing is being enlarged with current measurements of them.
Modelling of influence of spherical aberration coefficients on depth of focus of optical systems
NASA Astrophysics Data System (ADS)
Pokorný, Petr; Šmejkal, Filip; Kulmon, Pavel; Mikš, Antonín.; Novák, Jiří; Novák, Pavel
2017-06-01
This contribution describes how to model the influence of spherical aberration coefficients on the depth of focus of optical systems. Analytical formulas for the calculation of beam's caustics are presented. The conditions for aberration coefficients are derived for two cases when we require that either the Strehl definition or the gyration radius should be the identical in two symmetrically placed planes with respect to the paraxial image plane. One can calculate the maximum depth of focus and the minimum diameter of the circle of confusion of the optical system corresponding to chosen conditions. This contribution helps to understand how spherical aberration may affect the depth of focus and how to design such an optical system with the required depth of focus. One can perform computer modelling and design of the optical system and its spherical aberration in order to achieve the required depth of focus.
NASA Astrophysics Data System (ADS)
Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.
2015-12-01
Determining the presence, persistence, optical properties and variation in height and slope of surface water beneath the dense canopies of flooded forests and mangrove stands could contribute to studies of the acquisition of water and nutrients by plant roots. NASA's airborne Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) provides unique capabilities that can identify below-canopy surface water, measure its height with respect to vegetation constituents with sub-decimeter precision and quantify its slope. It also provides information on canopy structure and closure, the water column extinction profile as a proxy for turbidity and water depth, with the penetration depth constrained by turbidity. It achieves this by using four laser beams operating at two wavelengths with measurements of water surface elevation at 1064 nm (near infrared) and water column properties at 532 nm (green), analogous to a bathymetric lidar. Importantly the instrument adds a polarimetry function, like some atmospheric lidars, which measures the amount of depolarization determined by the degree to which the plane-parallel transmitted laser pulse energy is converted to the perpendicular state. The degree of depolarization is sensitive to the number of photon multiple-scattering events. For the water surface, which is specular consisting only of single-scattering events, the near-infrared received signal retains the parallel polarization state. Absence of the perpendicular signal uniquely identifies surface water. Penetration of green light and the depth profile of photons converted to the perpendicular state compared to those in the parallel state is a measure of water-column multiple scattering, providing a relative measure of turbidity. The amount of photons reflected from the canopy versus the water provides a wavelength-dependent measure of canopy closure. By rapidly firing laser pulses (11,400 pulses per second) with a narrow width (1 nsec) and detecting single photons with 8 cm ranging precision, the surface altimetry data is acquired with very high spatial and vertical resolution. Examples of these capabilities will be shown using data collected in 2011 along and across the flow axis of the Florida Everglades Shark River Slough, targeting the slough's Long Term Ecology Research (LTER) field sites.
NASA Astrophysics Data System (ADS)
Burvall, Anna; Goncharov, Alexander; Dainty, Chris
2005-09-01
The axicon is an optical element which creates a narrow focal line along the optical axis, unlike the single focal point produced by a lens. The long and precisely defined axicon focal line is used e.g. in alignment, or to extend the depth of focus of existing methods such as optical coherence tomography or light sectioning. Axicons are generally manufactured as refractive cones or diffractive circular gratings. They are also made as lens systems or doublet lenses, which are easier to produce. We present a design in the form of a reflective-refractive single-element device with annular aperture. This very compact system has only two surfaces, which can be spherical or aspheric depending on the quality required of the focal line. Both surfaces have reflective coatings at specific zones, providing an annular beam suitable for generating extended focal lines. One draw-back of a normal axicon is its sensitivity to the angle of illumination. Even for relatively small angles, astigmatism will broaden the focus and give it an asteroid shape. For our design, with spherical surfaces concentric about the center of the entrance pupil, the focal line remains unchanged in off-axis illumination.
VLA+WSRT HI Imaging of Two "Almost Dark" Galaxies
NASA Astrophysics Data System (ADS)
Ball, Catie; Singer, Quinton; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph
2017-01-01
We present sensitive HI imaging of the "Almost Dark" galaxies AGC229385 and AGC229101. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. Deeper ground- and space-based imaging reveals very low surface brightness optical counterparts in both systems. The resulting M_HI/L_B ratios are among the highest ever measured for individual galaxies. Here we combine VLA and WSRT imaging of these two systems, allowing us to preserve surface brightness sensitivity while working at high angular resolution. The resulting maps of HI mass surface density, velocity field, and velocity dispersion are compared to deep optical and ultraviolet imaging. In both systems the highest column density HI gas is clumpy and resolved into multiple components. In the case of AGC229385, the kinematics are inconsistent with a simple rotating disk and may be the result of either an infall episode or an interaction between two HI-rich disks.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.
A submersible digital in-line holographic microscope
NASA Astrophysics Data System (ADS)
Jericho, Manfred; Jericho, Stefan; Kreuzer, Hans Juergen; Garcia, Jeorge; Klages, Peter
Few instruments exist that can image microscopic marine organisms in their natural environment so that their locomotion mechanisms, feeding habits and interactions with surfaces, such as bio-fouling, can be investigated in situ. In conventional optical microscopy under conditions of high magnification, only objects confined to the narrow focal plane can be imaged and processes that involve translation of the object perpendicular to this plane are not accessible. To overcome this severe limitation of optical microscopy, we developed digital in-line holographic microscopy (DIHM) as a high-resolution tool for the tracking of organisms in three dimensions. We describe here the design and performance of a very simple submersible digital in-line holographic microscope (SDIHM) that can image organisms and their motion with micron resolution and that can be deployed from small vessels. Holograms and reconstructed images of several microscopic marine organisms were successfully obtained down to a depth of 20 m. The maximum depth was limited by the length of data transmission cables available at the time and operating depth in excess of 100 m are easily possible for the instrument.
NASA Astrophysics Data System (ADS)
Chong, Sang Hoon; Parthasarathy, Ashwin B.; Kavuri, Venkaiah C.; Moscatelli, Frank A.; Singhal, Sunil; Yodh, Arjun G.
2017-02-01
Surgical resection is the most effective treatment strategy for solid tumors, but complete removal of the tumor is critical for post-surgical recovery/long-term survival and is dependent on correct identification of the tumor margin and accurate excision of microscopic residual tumor in the surgical field. Fluorescence image guided surgery is an emerging technique that has shown promise for intraoperative location of tumors and tumor margins. Current versions of such intraoperative fluorescence imaging, however, are generally limited to 2D near-surface images, i.e., without information about tumor depth. Here we present an intraoperative fluorescence imaging system for 3D volumetric imaging of tumors; the system uses spatial frequency domain diffuse optical tomography with an analytic inversion reconstruction method. The new instrument can derive depth-sensitive 3D tumor images at depths up to 1 cm, and it employs compact epi-imaging and illumination suitable for the operating room, with quasi-real-time image reconstruction for surgical visualization. We present experimental results with FDA-approved Indocynanine Green using an extensive array of tissue phantoms and in a pilot in-vivo study.
X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myllys, M., E-mail: markko.myllys@jyu.fi; Häkkänen, H.; Korppi-Tommola, J.
A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1 μm spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70 nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can bemore » concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.« less
An optical fiber expendable seawater temperature/depth profile sensor
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan
2017-10-01
Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.
NASA Astrophysics Data System (ADS)
Wu, Mingching; Fang, Weileun
2006-02-01
This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.
Wang, Ying; Luo, Guoyu; Liu, Junwei; ...
2017-08-28
Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-xSn xSe in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth.more » Moreover, our experiments yield a surface mobility of 40,000 cm 2 V -1 s -1, which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Luo, Guoyu; Liu, Junwei
Topological crystalline insulators possess metallic surface states protected by crystalline symmetry, which are a versatile platform for exploring topological phenomena and potential applications. However, progress in this field has been hindered by the challenge to probe optical and transport properties of the surface states owing to the presence of bulk carriers. Here, we report infrared reflectance measurements of a topological crystalline insulator, (001)-oriented Pb 1-xSn xSe in zero and high magnetic fields. We demonstrate that the far-infrared conductivity is unexpectedly dominated by the surface states as a result of their unique band structure and the consequent small infrared penetration depth.more » Moreover, our experiments yield a surface mobility of 40,000 cm 2 V -1 s -1, which is one of the highest reported values in topological materials, suggesting the viability of surface-dominated conduction in thin topological crystalline insulator crystals. These findings pave the way for exploring many exotic transport and optical phenomena and applications predicted for topological crystalline insulators.« less
Caudek, Corrado; Fantoni, Carlo; Domini, Fulvio
2011-01-01
We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an “inverse optics” model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the Bayesian theory. The “inverse optics” Bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a “prior” for flatness, the slant estimates become systematically biased as the measurement errors increase. The Bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better measurement of retinal information. PMID:21533197
Application of simple all-sky imagers for the estimation of aerosol optical depth
NASA Astrophysics Data System (ADS)
Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Nikitidou, Efterpi; Salamalikis, Vasileios; Wilbert, Stefan; Prahl, Christoph
2017-06-01
Aerosol optical depth is a key atmospheric constituent for direct normal irradiance calculations at concentrating solar power plants. However, aerosol optical depth is typically not measured at the solar plants for financial reasons. With the recent introduction of all-sky imagers for the nowcasting of direct normal irradiance at the plants a new instrument is available which can be used for the determination of aerosol optical depth at different wavelengths. In this study, we are based on Red, Green and Blue intensities/radiances and calculations of the saturated area around the Sun, both derived from all-sky images taken with a low-cost surveillance camera at the Plataforma Solar de Almeria, Spain. The aerosol optical depth at 440, 500 and 675nm is calculated. The results are compared with collocated aerosol optical measurements and the mean/median difference and standard deviation are less than 0.01 and 0.03 respectively at all wavelengths.
Epifluorescence light collection for multiphoton microscopic endoscopy
NASA Astrophysics Data System (ADS)
Brown, Christopher M.; Rivera, David R.; Xu, Chris; Webb, Watt W.
2011-03-01
Multiphoton microscopic endoscopy (MPM-E) is a promising medical in vivo diagnostic imaging technique because it captures intrinsic fluorescence and second harmonic generation signals to reveal anatomical and histological information about disease states in tissue. However, maximizing light collection from multiphoton endoscopes remains a challenge: weak nonlinear emissions from endogenous structures, miniature optics, large imaging depths, and light scattering in tissue all hamper light collection. The quantity of light that may be collected using a dual-clad fiber system from scattering phantoms that mimic the properties of the in vivo environment is measured. In this experiment, 800nm excitation light from a Ti:Sapphire laser is dispersion compensated and focused through a SM800 optical fiber and lens system into the tissue phantom. Emission light from the phantom passes through the lens system, reflects off the dichroic and is then collected by a second optical fiber actuated by a micromanipulator. The lateral position of the collection fiber varies, measuring the distribution of emitted light 2000μm on either side of the focal point reimaged to the object plane. This spatial collection measurement is performed at depths up to 200μm from the phantom surface. The tissue phantoms are composed of a 15.8 μM fluorescein solution mixed with microspheres, approximating the scattering properties of human bladder and dermis tissue. Results show that commercially available dual-clad optical fibers collect more than 47% of the total emission returning to the object plane from both phantoms. Based on these results, initial MPM-E devices will image the surface of epithelial tissues.
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, William A.; Brada, Mark P.
1995-01-01
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser's wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known "feature masks" of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects.
NASA Technical Reports Server (NTRS)
Eitzen, Zachary A.; Xu, Kuan-Man; Wong, Takmeng
2011-01-01
Simulations of climate change have yet to reach a consensus on the sign and magnitude of the changes in physical properties of marine boundary layer clouds. In this study, the authors analyze how cloud and radiative properties vary with SST anomaly in low-cloud regions, based on five years (March 2000 - February 2005) of Clouds and the Earth s Radiant Energy System (CERES) -- Terra monthly gridded data and matched European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological reanalaysis data. In particular, this study focuses on the changes in cloud radiative effect, cloud fraction, and cloud optical depth with SST anomaly. The major findings are as follows. First, the low-cloud amount (-1.9% to -3.4% /K) and the logarithm of low-cloud optical depth (-0.085 to -0.100/K) tend to decrease while the net cloud radiative effect (3.86 W/m(exp 2)/ K) becomes less negative as SST anomalies increase. These results are broadly consistent with previous observational studies. Second, after the changes in cloud and radiative properties with SST anomaly are separated into dynamic, thermodynamic, and residual components, changes in the dynamic component (taken as the vertical velocity at 700 hPa) have relatively little effect on cloud and radiative properties. However, the estimated inversion strength decreases with increasing SST, accounting for a large portion of the measured decreases in cloud fraction and cloud optical depth. The residual positive change in net cloud radiative effect (1.48 W/m(exp 2)/ K) and small changes in low-cloud amount (-0.81% to 0.22% /K) and decrease in the logarithm of optical depth (-0.035 to -0.046/ K) with SST are interpreted as a positive cloud feedback, with cloud optical depth feedback being the dominant contributor. Last, the magnitudes of the residual changes differ greatly among the six low-cloud regions examined in this study, with the largest positive feedbacks (approximately 4 W/m(exp 2)/ K) in the southeast and northeast Atlantic regions and a slightly negative feedback (-0.2 W/m(exp 2)/ K) in the south-central Pacific region. Because the retrievals of cloud optical depth and/or cloud fraction are difficult in the presence of aerosols, the transport of heavy African continental aerosols may contribute to the large magnitudes of estimated cloud feedback in the two Atlantic regions.
Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos
2010-04-01
An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.
Quick and Easy Measurements of the Inherent Optical Property of Water by Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izadi, Dina; Hajiesmaeilbaigi, Fereshteh
2009-04-19
To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less
NASA Technical Reports Server (NTRS)
Conel, James E.
1990-01-01
Groound-reflectance data on selected targets for calbiration of a Landsat TM image of Wind River Basin, Wyoming, acquired November 21, 1982 were examined. Field-derived calibration relationships together with Landsat radiometric calibration data are used to convert scanner DN values to spectral radiance for the TM bands and (together with a simplified homogeneous atmospheric model) to obtain estimates of single-scattering albedo and optical depth consistent with the derived path radiance and transmission properties of the atmosphere. These estimates are used to study the problems of evaluation of the magnitude of adjacency effects for reference targets, the assumption of isotropic properties, and the aggregate magnitude of multiple reflections between sky and ground. The radiance calibration equations are also used together with preflight measured signal/noise properties of the TM-4 system to estimate the noise-equivalent reflectance recoverable in practice from the system.
Novel hybrid III:V concentrator photovoltaic-thermoelectric receiver designs
NASA Astrophysics Data System (ADS)
Sweet, Tracy K. N.; Rolley, Matthew H.; Prest, Martin J.; Min, Gao
2017-09-01
This paper presents the design, manufacture and electrical characterization of novel hybrid III:V Concentrator Photovoltaic-Thermoelectric receivers. Addition of an encapsulating and spectral homogenizing single active surface secondary optic lens increased the solar cell electrical power output from 7.66mW (ALPHA no cooling) to 18.20mW (KAPPA with TE cooling). The effective optical concentration of the optics, based on short circuit current, was x2.4. A linear irradiance vs maximum power receiver output relationship was observed (R2=0.9978), confirming good optical alignment during manufacture and likewise internal current matching of the series-connected triple-junction cell. An in-depth COMSOL model for simulated evaluation of the synergistic thermally-dependent parameters inherent to hybrid devices was built and experimentally validated.
Smart textile plasmonic fiber dew sensors.
Esmaeilzadeh, Hamid; Rivard, Maxime; Arzi, Ezatollah; Légaré, François; Hassani, Alireza
2015-06-01
We propose a novel Surface Plasmon Resonance (SPR)-based sensor that detects dew formation in optical fiber-based smart textiles. The proposed SPR sensor facilitates the observation of two phenomena: condensation of moisture and evaporation of water molecules in air. This sensor detects dew formation in less than 0.25 s, and determines dew point temperature with an accuracy of 4%. It can be used to monitor water layer depth changes during dew formation and evaporation in the range of a plasmon depth probe, i.e., 250 nm, with a resolution of 7 nm. Further, it facilitates estimation of the relative humidity of a medium over a dynamic range of 30% to 70% by measuring the evaporation time via the plasmon depth probe.
Effects of wet etch processing on laser-induced damage of fused silica surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.
1998-12-22
Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less
The dynamic deformation of a layered viscoelastic medium under surface excitation
NASA Astrophysics Data System (ADS)
Aglyamov, Salavat R.; Wang, Shang; Karpiouk, Andrei B.; Li, Jiasong; Twa, Michael; Emelianov, Stanislav Y.; Larin, Kirill V.
2015-06-01
In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation.
All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod
NASA Astrophysics Data System (ADS)
Xu, Feng; Guillet, Yannick; Ravaine, Serge; Audoin, Bertrand
2018-04-01
A single gold nanorod dropped on the surface of a silica substrate is used as a transient optoacoustic source of gigahertz hypersounds. We demonstrate the all-optical detection of the as-generated acoustic wave front propagating in the silica substrate. For this purpose, time-resolved femtosecond pump-probe experiments are performed in a reflection configuration. The fundamental breathing mode of the nanorod is detected at 23 GHz by interferometry, and the longitudinal acoustic wave radiated in the silica substrate is detected by time-resolved Brillouin scattering. By tuning the optical probe wavelength from 750 to 900 nm, hypersounds with wavelengths of 260-315 nm are detected in the silica substrate, with corresponding acoustic frequencies in the range of 19-23 GHz. To confirm the origin of these hypersounds, we theoretically analyze the influence of the acoustic excitation spectrum on the temporal envelope of the transient reflectivity. This analysis proves that the acoustic wave detected in the silica substrate results from the excitation of the breathing mode of the nanorod. These results pave the way for performing local in-depth elastic nanoscopy.
Role of the boundary layer dynamics effects on an extreme air pollution event in Paris
NASA Astrophysics Data System (ADS)
Dupont, J.-C.; Haeffelin, M.; Badosa, J.; Elias, T.; Favez, O.; Petit, J. E.; Meleux, F.; Sciare, J.; Crenn, V.; Bonne, J. L.
2016-09-01
The physical and chemical aerosol properties are explored here based on ground-based observations in the Paris region to better understand the role of clouds, radiative fluxes and dynamics on aerosol loading during a heavy regional air pollution that occurred in March 2014 over North-Western Europe. This event is primarily characterized by a fine particle mass (PM2.5) increase from 10 to more than 120 μg m-3 and a simultaneous decrease of the horizontal visibility from 40 to 1 km, mainly due to significant formation of ammonium nitrate particles. The aerosol optical depth (AOD) at 550 nm increased steadily from about 0.06 on March 6 to more than 0.9 five days later. The scattering of the solar radiation by polluted particles induced, at the peak of the heavy pollution event, an instantaneous shortwave flux decrease of about 300 W m-2 for direct irradiance and an increase of about 150 W m-2 for diffuse irradiance (only scattering). The mean surface aerosol effect efficiency (effect per unit optical depth) is of about -80 W m-2 with a mean aerosol direct radiative effect of -23 W m-2. The dynamical and radiative processes that can be responsible for the diurnal cycle of PM2.5 in terms of amplitude and timing are investigated. A comparative analysis is performed for 4 consecutive days (between March 11 and 14), showing that the PM2.5 diurnal cycle can be modulated in time and amplitude by local processes such as the boundary layer depth development (ranging from 100 m to 1350 m), surface relative humidity (100%-35%), thermal structure (10 °C-16 °C for day/night amplitude), dynamics (wind speed ranging from 4 m s-1 to 1.5 m s-1) and turbulence (turbulent kinetic energy reaching 2 m2 s-2) near the surface and wind shear along the vertical. Finally, modeled and measured surface PM2.5 loadings are also compared here, notably illustrating the need of accurate boundary layer depth data for efficient air quality forecasts.
Defect Depth Measurement Using White Light Interferometry
NASA Technical Reports Server (NTRS)
Parker, Don; Starr, Stan
2009-01-01
The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.
NASA Technical Reports Server (NTRS)
Heath, Donald F.; Ahmad, Zia
2001-01-01
In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.
Xia, Xiangao
2015-01-01
Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m−2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm−2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available. PMID:26395310
Time-domain diffuse optics: towards next generation devices
NASA Astrophysics Data System (ADS)
Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio
2015-07-01
Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.
Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric
NASA Technical Reports Server (NTRS)
Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)
1997-01-01
Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the range -50 to -190 W sq m per unit inadvisable optical depth. The magnitudes are about 15 to 100 times larger than the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger forcing in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce the actual major radiative forcing events that contribute to any global-average climate effect. Detailed comparisons of calculated and measured forcings for specific events are used for more refined tests of closure.
Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping
2004-09-01
Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.
Response of human corneal fibroblasts on silk film surface patterns.
Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L
2010-06-11
Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.
Performance of Ti-multilayer coated tool during machining of MDN431 alloyed steel
NASA Astrophysics Data System (ADS)
Badiger, Pradeep V.; Desai, Vijay; Ramesh, M. R.
2018-04-01
Turbine forgings and other components are required to be high resistance to corrosion and oxidation because which they are highly alloyed with Ni and Cr. Midhani manufactures one of such material MDN431. It's a hard-to-machine steel with high hardness and strength. PVD coated insert provide an answer to problem with its state of art technique on the WC tool. Machinability studies is carried out on MDN431 steel using uncoated and Ti-multilayer coated WC tool insert using Taguchi optimisation technique. During the present investigation, speed (398-625rpm), feed (0.093-0.175mm/rev), and depth of cut (0.2-0.4mm) varied according to Taguchi L9 orthogonal array, subsequently cutting forces and surface roughness (Ra) were measured. Optimizations of the obtained results are done using Taguchi technique for cutting forces and surface roughness. Using Taguchi technique linear fit model regression analysis carried out for the combination of each input variable. Experimented results are compared and found the developed model is adequate which supported by proof trials. Speed, feed and depth of cut are linearly dependent on the cutting force and surface roughness for uncoated insert whereas Speed and depth of cut feed is inversely dependent in coated insert for both cutting force and surface roughness. Machined surface for coated and uncoated inserts during machining of MDN431 is studied using optical profilometer.
Precipitable water vapor and 212 GHz atmospheric optical depth correlation at El Leoncito site
NASA Astrophysics Data System (ADS)
Cassiano, Marta M.; Cornejo Espinoza, Deysi; Raulin, Jean-Pierre; Giménez de Castro, Carlos G.
2018-03-01
Time series of precipitable water vapor (PWV) and 212 GHz atmospheric optical depth were obtained in CASLEO (Complejo Astronómico El Leoncito), at El Leoncito site, Argentinean Andes, for the period of 2011-2013. The 212 GHz atmospheric optical depth data were derived from measurements by the Solar Submillimeter Telescope (SST) and the PWV data were obtained by the AERONET CASLEO station. The correlation between PWV and 212 GHz optical depth was analyzed for the whole period, when both parameters were simultaneously available. A very significant correlation was observed. Similar correlation was found when data were analyzed year by year. The results indicate that the correlation of PWV versus 212 GHz optical depth could be used as an indirect estimation method for PWV, when direct measurements are not available.
Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging
NASA Astrophysics Data System (ADS)
Wen, Xiang; Jacques, Steven L.; Tuchin, Valery V.; Zhu, Dan
2012-06-01
The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied together could a 15 min treatment achieve a three fold increase in the OCT reflectance from a 300 μm depth and 31% enhancement in image depth Zthreshold.
NASA Astrophysics Data System (ADS)
Turtle, E. P.; Barnes, J. W.; Perry, J.; Barbara, J.; Hayes, A.; Corlies, P.; Kelland, J.; West, R. A.; Del Genio, A. D.; Soderblom, J. M.; McEwen, A. S.; Sotin, C.
2016-12-01
As northern summer approaches, atmospheric circulation models predict storm activity will pick up at Titan's high northern latitudes, as was observed at high southern latitudes upon Cassini's arrival during late southern summer in 2004. Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) teams have been targeting Titan to document changes in weather patterns over the course of the mission, and there is particular interest in following the onset of clouds in the north polar region where Titan's lakes and seas are concentrated. The T120 and T121 flybys of Titan, on 7 June and 25 July 2016, respectively, provided views of high northern latitudes, and each instrument performed a series of observations over more than 24 hours during both flybys. Intriguingly, at first look the ISS and VIMS observations appear strikingly different from each other: in the ISS observations made during each flyby, surface features are apparent and only a few isolated clouds are detected; however, the VIMS observations suggest widespread cloud cover at high northern latitudes during both flybys. Although the instruments achieve different resolutions, that alone cannot explain the differences. The observations were made over the same time periods, so differences in illumination geometry or changes in the clouds themselves are also unlikely to be the cause for the apparent discrepancy; VIMS shows persistent atmospheric features over the entire observation period and ISS consistently detects surface features with just a few localized clouds. Clouds with low optical depth (lower than the optical depth of Titan's atmospheric haze at the same wavelength) might be more easily apparent at the longer wavelengths of the VIMS observations, which extend out to 5 µm (haze optical depth 0.2), compared to the ISS observations at 938 nm (haze optical depth 2). However, the lack of any apparent change in the visibility of lakes and seas in the ISS images compared to previous flybys where no clouds were observed is still difficult to explain. We will present our analyses of the sequences of observations made by ISS and VIMS during T120 and T121, as well as an ongoing ground-based observing campaign (including data from 8 June and 23 July), and the implications for the behavior of Titan's atmosphere leading up to northern summer.
NASA Technical Reports Server (NTRS)
Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert
2007-01-01
The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.
The Ascension Island boundary layer in the remote southeast Atlantic is often smoky
Zuidema, Paquita; Sedlacek III, Arthur J.; Flynn, Connor; ...
2018-03-31
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing aerosols (e.g., brown carbon), most pronounced in June. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly-means of 0.78±0.02 (August), 0.81±0.03 (September) andmore » 0.83±0.03 (October) at the green wavelength. Boundary-layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Also, backtrajectories indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.« less
The Ascension Island boundary layer in the remote southeast Atlantic is often smoky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuidema, Paquita; Sedlacek III, Arthur J.; Flynn, Connor
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing aerosols (e.g., brown carbon), most pronounced in June. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly-means of 0.78±0.02 (August), 0.81±0.03 (September) andmore » 0.83±0.03 (October) at the green wavelength. Boundary-layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Also, backtrajectories indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.« less
NASA Technical Reports Server (NTRS)
Chew, Boo Ning; Campbell, James; Hyer, Edward J.; Salinas, Santo V.; Reid, Jeffrey S.; Welton, Ellsworth J.; Holben, Brent N.; Liew, Soo Chin
2016-01-01
As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 microns (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11%, 10% and 5% in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8%, 6% and 2%. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/deep near-surface layer (SCD; 0-1.35 km). Aerosol extinctions within the SCD layer are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region.
Surface-based observations of volcanic emissions to the stratosphere
NASA Astrophysics Data System (ADS)
Hofmann, Dave; Barnes, John; Dutton, Ellsworth; Deshler, Terry; Jäger, Horst; Keen, Richard; Osborn, Mary
Long-term, surface-based observations of the stratospheric aerosol layer are presented and compared. These include three LIDAR aerosol backscatter measurements, at Mauna Loa Observatory (Hawaii), Langley Research Center (Virginia), and Garmisch-Partenkirchen (Germany); balloonborne in situ particle concentration measurements at Laramie, Wyoming, solar visible transmission measurements at Mauna Loa Observatory; aerosol optical depth measurements at South Pole Station and Mauna Loa Observatory; and lunar eclipse optical depth determinations, which is a globally integrating technique. Surface-based measurements have provided a useful historical record of volcanic effects on the stratospheric aerosol and the agreement between the various techniques is very good. However, some uncertainties exist when the stratosphere is relatively free of volcanic aerosol and some of the techniques are not able to easily resolve the very small amount of aerosol from natural and/or anthropogenic sources. The lunar eclipse data, which go back to the late 1800s, suggest that the Pinatubo eruption in 1991 probably perturbed the stratospheric aerosol layer at least as much as that of Krakatau in 1883. This is an important observation as it is one of the few ways to accurately compare the stratospheric effects of eruptions prior to modern measurements that began in the late 1950s. At the time of this writing (September 2002) the stratosphere appears to be at background with the lowest level of aerosol observed since the layer was discovered in 1959.
Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo
2011-03-15
A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.
Distributed optical fibre sensing for early detection of shallow landslides triggering.
Schenato, Luca; Palmieri, Luca; Camporese, Matteo; Bersan, Silvia; Cola, Simonetta; Pasuto, Alessandro; Galtarossa, Andrea; Salandin, Paolo; Simonini, Paolo
2017-10-31
A distributed optical fibre sensing system is used to measure landslide-induced strains on an optical fibre buried in a large scale physical model of a slope. The fibre sensing cable is deployed at the predefined failure surface and interrogated by means of optical frequency domain reflectometry. The strain evolution is measured with centimetre spatial resolution until the occurrence of the slope failure. Standard legacy sensors measuring soil moisture and pore water pressure are installed at different depths and positions along the slope for comparison and validation. The evolution of the strain field is related to landslide dynamics with unprecedented resolution and insight. In fact, the results of the experiment clearly identify several phases within the evolution of the landslide and show that optical fibres can detect precursory signs of failure well before the collapse, paving the way for the development of more effective early warning systems.
Quantifying the remineralization of artificial caries lesions using PS-OCT
NASA Astrophysics Data System (ADS)
Jones, Robert S.; Fried, Daniel
2006-02-01
New optical imaging methods are needed to determine whether caries lesions (tooth decay) are active and progressing or have become remineralized and arrested and are no longer progressing. The objective of this study was to use Polarization Sensitive Optical Coherence Tomography (PS-OCT) to image the fluoride enhanced remineralization of artificial enamel lesions. Artificial lesions were created by an acetate buffer on smooth enamel surfaces and were exposed for 20 days to a 2 ppm fluoride containing remineralization solution. PS-OCT images revealed the presence of a low scattering surface zone after the artificial lesions were remineralized. These samples displayed intact nondepolarizing surface zones when analyzed with Polarized Light Microscopy (PLM). No statistical difference in lesion depth before and after remineralization was found with both PS-OCT and PLM. The remineralized lesions showed a significant decrease in the overall integrated reflectivity compared with the demineralized lesions. Digital Microradiography confirmed the increase in mineral volume of the remineralized surface zone. This study determined that PS-OCT can image the restoration of the surface zone enamel after fluoride-enhanced remineralization of artificial in vitro dental caries.
Aging and the perception of slant from optical texture, motion parallax, and binocular disparity.
Norman, J Farley; Crabtree, Charles E; Bartholomew, Ashley N; Ferrell, Elizabeth L
2009-01-01
The ability of younger and older observers to perceive surface slant was investigated in four experiments. The surfaces possessed slants of 20 degrees, 35 degrees, 50 degrees, and 65 degrees, relative to the frontoparallel plane. The observers judged the slants using either a palm board (Experiments 1, 3, and 4) or magnitude estimation (Experiment 2). In Experiments 1-3, physically slanted surfaces were used (the surfaces possessed marble, granite, pebble, and circle textures), whereas computer-generated 3-D surfaces (defined by motion parallax and binocular disparity) were utilized in Experiment 4. The results showed that the younger and older observers' performance was essentially identical with regard to accuracy. The younger and older age groups, however, differed in terms of precision in Experiments 1 and 2: The judgments of the older observers were more variable across repeated trials. When taken as a whole, the results demonstrate that older observers (at least through the age of 83 years) can effectively extract information about slant in depth from optical patterns containing texture, motion parallax, or binocular disparity.
NASA Astrophysics Data System (ADS)
Chu, J. E.
2016-12-01
Despite growing evidence of light-absorbing organic aerosols (OAs), OA light absorption has been poorly understood due to difficulties in aerosol light absorption measurements. In this study, we developed an empirical method to quantify OA single scattering albedo (SSA), the ratio of light scattering to extinction, using ground-based Aerosol Robotic Network (AERONET) observation. Our method includes partitioning fine-mode aerosol optical depth (fAOD) to individual aerosol's optical depth (AOD), separating black carbon and OA absorption aerosol optical depths, and finally binding OA SSA and sulfate+nitrate AOD. Our best estimate of OA SSA over tropical biomass burning region is 0.91 at 550nm with a range of 0.82-0.93. It implies the common OA SSA values of 0.96-1.0 in aerosol CTMs and GCMs significantly underrepresent OA light absorption. Model experiments with prescribed OA SSA showed that the enhanced absorption of solar radiation due to light absorbing OA yields global mean radiative forcing is +0.09 Wm-2 at the TOA, +0.21 Wm-2 at the atmosphere, and -0.12 Wm-2 at the surface. Compared to the previous assessment of OA radiative forcing reported in AeroCom II project, our result indicate that OA light absorption causes TOA radiative forcing by OA to change from negative (i.e., cooling effect) to positive (warming effect).
Potential for focused beam orthovoltage therapy
NASA Astrophysics Data System (ADS)
Mahato, Dip N.; MacDonald, C. A.
2010-08-01
Radiation therapy typically employs high energy photon beams because the low absorption coefficient at these energies minimizes skin dose with a conventional, unfocused beam. At orthovoltage energies less than 150 keV, the maximum dose for a single beam occurs very close to the skin surface. However a well-focused beam of low energy x rays can provide much higher flux at the target depth while sparing dose to the skin. The measured focal spot size for the polycapillary optic was 0.2 mm and was found to remain unchanged through 50 mm of phantom thickness. The calculated depth-dose curve was found to peak several centimeters below the surface with 25-40 keV radiation. Modeling indicates that the tumor dose would remain much higher than the skin dose even after scanning to cover a 1 cm3 tumor.
Quantitative light-induced fluorescence technology for quantitative evaluation of tooth wear
NASA Astrophysics Data System (ADS)
Kim, Sang-Kyeom; Lee, Hyung-Suk; Park, Seok-Woo; Lee, Eun-Song; de Josselin de Jong, Elbert; Jung, Hoi-In; Kim, Baek-Il
2017-12-01
Various technologies used to objectively determine enamel thickness or dentin exposure have been suggested. However, most methods have clinical limitations. This study was conducted to confirm the potential of quantitative light-induced fluorescence (QLF) using autofluorescence intensity of occlusal surfaces of worn teeth according to enamel grinding depth in vitro. Sixteen permanent premolars were used. Each tooth was gradationally ground down at the occlusal surface in the apical direction. QLF-digital and swept-source optical coherence tomography images were acquired at each grinding depth (in steps of 100 μm). All QLF images were converted to 8-bit grayscale images to calculate the fluorescence intensity. The maximum brightness (MB) values of the same sound regions in grayscale images before (MB) and phased values after (MB) the grinding process were calculated. Finally, 13 samples were evaluated. MB increased over the grinding depth range with a strong correlation (r=0.994, P<0.001). In conclusion, the fluorescence intensity of the teeth and grinding depth was strongly correlated in the QLF images. Therefore, QLF technology may be a useful noninvasive tool used to monitor the progression of tooth wear and to conveniently estimate enamel thickness.
NASA Astrophysics Data System (ADS)
Dhalla, Al-Hafeez Zahir
Optical coherence tomography (OCT) is a non-invasive optical imaging modality that provides micron-scale resolution of tissue micro-structure over depth ranges of several millimeters. This imaging technique has had a profound effect on the field of ophthalmology, wherein it has become the standard of care for the diagnosis of many retinal pathologies. Applications of OCT in the anterior eye, as well as for imaging of coronary arteries and the gastro-intestinal tract, have also shown promise, but have not yet achieved widespread clinical use. The usable imaging depth of OCT systems is most often limited by one of three factors: optical attenuation, inherent imaging range, or depth-of-focus. The first of these, optical attenuation, stems from the limitation that OCT only detects singly-scattered light. Thus, beyond a certain penetration depth into turbid media, essentially all of the incident light will have been multiply scattered, and can no longer be used for OCT imaging. For many applications (especially retinal imaging), optical attenuation is the most restrictive of the three imaging depth limitations. However, for some applications, especially anterior segment, cardiovascular (catheter-based) and GI (endoscopic) imaging, the usable imaging depth is often not limited by optical attenuation, but rather by the inherent imaging depth of the OCT systems. This inherent imaging depth, which is specific to only Fourier Domain OCT, arises due to two factors: sensitivity fall-off and the complex conjugate ambiguity. Finally, due to the trade-off between lateral resolution and axial depth-of-focus inherent in diffractive optical systems, additional depth limitations sometimes arises in either high lateral resolution or extended depth OCT imaging systems. The depth-of-focus limitation is most apparent in applications such as adaptive optics (AO-) OCT imaging of the retina, and extended depth imaging of the ocular anterior segment. In this dissertation, techniques for extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.
NASA Astrophysics Data System (ADS)
Ebert, Daniel R.
Superhydrophobic surfaces (defined as surfaces having water contact angle greater than 150°) show great promise for use in a rapidly growing number of engineering applications, ranging from biomedical devices to fluid drag reduction in pipelines. In nature, the surfaces of many organisms, such as certain plant leaves, are known to exhibit superhydrophobicity. In some cases, droplet adhesion is very low (droplet rolls away easily), while in other cases adhesion is high (droplet remains adhered when surface is inverted). The recent advent and development of microscopes with resolution down to a few nanometers (such as atomic force microscopes and scanning electron microscopes) has allowed for in-depth understanding of the micro- and nanoscale mechanisms employed by these plant leaves and other natural surfaces to achieve their particular wetting properties. Biomimetics (or "mimicking nature") is therefore a very promising approach for the development of engineering surfaces with desired wetting characteristics. However, research in creating biomimetic surfaces is still in its early stages, and many of the surfaces created thus far are not mechanically robust, which is required for many potential real-world applications. In addition, for applications such as self-cleaning windows and solar panels, optical transparency is required. In this thesis, a set of original studies are presented in which superhydrophobic surfaces were designed based on biomimetics and fabricated using a wide of variety of techniques. The surfaces were characterized with regard to wetting characteristics such as water contact angle and contact angle hysteresis, micro- and nanoscale mechanical durability, and in some cases optical transmittance. Theoretical wetting models served as guides both in the design and in the understanding of experimental results, especially in regard to different wetting regime and regime transition. This work provides important conclusions and valuable insight for identifying materials, techniques, and designs for mechanically durable, optically transparent superhydrophobic surfaces.
Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong
2015-02-01
Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.
NASA Astrophysics Data System (ADS)
Coughlan, Carolyn A.; Chou, Li-Dek; Jing, Joseph C.; Chen, Jason J.; Rangarajan, Swathi; Chang, Theodore H.; Sharma, Giriraj K.; Cho, Kyoungrai; Lee, Donghoon; Goddard, Julie A.; Chen, Zhongping; Wong, Brian J. F.
2016-03-01
Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.
Surface topographical changes measured by phase-locked interferometry
NASA Technical Reports Server (NTRS)
Lauer, J. L.; Fung, S. S.
1984-01-01
An electronic optical laser interferometer capable of resolving depth differences of as low as 30 A and planar displacements of 6000 A was constructed to examine surface profiles of bearing surfaces without physical contact. Topological chemical reactivity was determined by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than virgin ones but that bearing surfaces exposed to lubricants containing an organic chloride reacted much more slowly. The reactivity of stainless steel plates, heated in a nitrogen atmosphere to different temperatures, were examined later at ambient temperature. The change of surface contour as a result of the probe reaction followed Arrhenius-type relation with respect to heat treatment temperature. The contact area of the plate of a ball/plate sliding elastohydrodynamic contact run on trimethylopropane triheptanoate with or without additives was optically profiled periodically. As scuffing was approached, the change of profile within the contact region changed much more rapidly by the acid probe and assumed a constant high value after scuffing. A nonetching metallurgical phase was found in the scuff mark, which was apparently responsible for the high reactivity.
Monitoring Atmospheric Dust Opacity at High Latitudes on Mars by Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Doute, S.; Vincendon, M.; Langevin, Y.; Spiga, A.; Bibring, J.; OMEGA Team
2010-12-01
Micrometer sized mineral particles drifting over Mars surface greatly influence both solar and thermal radiative fluxes in the atmosphere, thus its energy balance and its global circulation. Furthermore any kind of remotely sensed data in the optical domain includes their strong, spatially varying, often annoying contributions. Monitoring the particles as well as identifying the sources and the sinks in relation with surface activity is of paramount importance. Since 2004 and 2006 respectively, the imaging spectrometers OMEGA@MEX and CRISM@MRO perform nadir-looking and EPF observations in the VIS and the NIR for the study of the surface and atmosphere alike. We propose an original method to retrieve the optical depth τ dust of the Martian dust over the targeted scenes at a reference wavelength of one micron. Our method works even if the underlying surface is completely made of minerals (low contrast between surface and atmospheric dust) while being observed at a fixed geometry. Nevertheless it provides the maximum of information when applied to spectra acquired over the same area at different emergence angles. The method is based on a parametrization of the radiative coupling between particles and gas that determines, with local altimetry and the meteorological situation, the absorption band depth of gaseous CO2. The coupling depends on (i) the acquisition geometry (ii) the type, abundance and vertical distribution of particles (iii) the surface albedo As. For each spectro-pixel of an image, comparison of band depths estimated on the one hand from the observed spectrum and on the other hand from a calculated transmission spectrum through the atmospheric gases alone, one can build a precious new observable that directly depends on τ dust. Combining the latter with the radiance factor in the continuum, we evaluate after LUT inversion τ dust and As. After validation on test images, we have applied the present method - associated with a complementary approach proposed by [1] - in order to map dust abundance at high southern latitudes from early to late spring of MY 27 and 28. For that purpose we use a time series of OMEGA images for global coverage associated with a limited number of more spatially focused CRISM observations to determine the scale height of dust vertical distribution. As a result, we obtain de-trended and extended maps that are corrected for changes of optical depth due to varying atmospheric height because of topography. They clearly show dust activity within and around the area covered by the CO2 seasonal deposits. Atmospheric mineral particles are clearly depleted above the latter compared to the surroundings, even if occasional incursions of dusty clouds can occur. We note sudden, strong and spatially localized enhancements of dust opacity that can be traced as they migrate before disappearance. [1] Vincendon et al. JGR 2008
The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.
Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( ηmore » < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.« less
NASA Astrophysics Data System (ADS)
Cardenas, Nelson; Kyrish, Matthew; Taylor, Daniel; Fraelich, Margaret; Lechuga, Oscar; Claytor, Richard; Claytor, Nelson
2015-03-01
Electro-Chemical Polishing is routinely used in the anodizing industry to achieve specular surface finishes of various metals products prior to anodizing. Electro-Chemical polishing functions by leveling the microscopic peaks and valleys of the substrate, thereby increasing specularity and reducing light scattering. The rate of attack is dependent of the physical characteristics (height, depth, and width) of the microscopic structures that constitute the surface finish. To prepare the sample, mechanical polishing such as buffing or grinding is typically required before etching. This type of mechanical polishing produces random microscopic structures at varying depths and widths, thus the electropolishing parameters are determined in an ad hoc basis. Alternatively, single point diamond turning offers excellent repeatability and highly specific control of substrate polishing parameters. While polishing, the diamond tool leaves behind an associated tool mark, which is related to the diamond tool geometry and machining parameters. Machine parameters such as tool cutting depth, speed and step over can be changed in situ, thus providing control of the spatial frequency of the microscopic structures characteristic of the surface topography of the substrate. By combining single point diamond turning with subsequent electro-chemical etching, ultra smooth polishing of both rotationally symmetric and free form mirrors and molds is possible. Additionally, machining parameters can be set to optimize post polishing for increased surface quality and reduced processing times. In this work, we present a study of substrate surface finish based on diamond turning tool mark spatial frequency with subsequent electro-chemical polishing.
MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms
NASA Technical Reports Server (NTRS)
Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory
2011-01-01
To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.
Thermographic observation of heat transport in solid foams
NASA Astrophysics Data System (ADS)
Netzelmann, U.; Abuhamad, M.; Walle, G.
2005-06-01
Heat transport in solid foams was studied by flash lamp heated dynamic thermography. For polyurethane foams, a movement of the peak temperature from the heated surface into the depth could be observed. This could be modelled by assuming a Beer optical absorber with non-adiabatic boundary. For large open pores, individual temperature-time curves were observed in the thermographic image. There is evidence for non-conductive heat transfer in the bulk of mixed-cell foams. In SiSiC ceramic foams, indications for sub-surface defects were detected.
Alkali metal for ultraviolet band-pass filter
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)
1993-01-01
An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.
Measurement of the depth of narrow slotted sections in eddy current reference standards
NASA Astrophysics Data System (ADS)
Kim, Young-Joo; Kim, Young-gil; Ahn, Bongyoung; Yoon, Dong-Jin
2007-02-01
The dimensions of the slots in eddy current (EC) reference standards are too narrow to be measured by general depth measurement methods such as the optical (laser) or stylus methods. However, measurement of the dimensions of the machined slots is a prerequisite to using the blocks as references. The present paper suggests a measurement method for the slotted section using an ultrasonic test. The width and depth of the slots measured in our study are roughly 0.1 mm and 0.5 mm, respectively. The time of flight (TOF) of the ultrasonic wave was measured precisely. The ultrasonic velocity in the material of the EC reference standard was calculated with the measured values of the TOF and its thickness. Reflected waves from the tip of the slot and the bottom surface of the EC standard were successfully classified. Using this method we have successfully determined the depth of the slotted section.
Real-time depth measurement for micro-holes drilled by lasers
NASA Astrophysics Data System (ADS)
Lin, Cheng-Hsiang; Powell, Rock A.; Jiang, Lan; Xiao, Hai; Chen, Shean-Jen; Tsai, Hai-Lung
2010-02-01
An optical system based on the confocal principle has been developed for real-time precision measurements of the depth of micro-holes during the laser drilling process. The capability of the measuring system is theoretically predicted by the Gaussian lens formula and experimentally validated to achieve a sensitivity of 0.5 µm. A nanosecond laser system was used to drill holes, and the hole depths were measured by the proposed measuring system and by the cut-and-polish method. The differences between these two measurements are found to be 5.0% for hole depths on the order of tens of microns and 11.2% for hundreds of microns. The discrepancies are caused mainly by the roughness of the bottom surface of the hole and by the existence of debris in the hole. This system can be easily implemented in a laser workstation for the fabrication of 3D microstructures.
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Mcallum, W. E.; Heidt, M.; Jeske, K.; Lee, J. T.; Demonbrun, D.; Morgan, A.; Potter, J.
1977-01-01
By automatically tracking the sun, a four-channel solar radiometer was used to continuously measure optical depth and atmospheric water vapor. The design of this simple autotracking solar radiometer is presented. A technique for calculating the precipitable water from the ratio of a water band to a nearby nonabsorbing band is discussed. Studies of the temporal variability of precipitable water and atmospheric optical depth at 0.610, 0.8730 and 1.04 microns are presented. There was good correlation between the optical depth measured using the autotracker and visibility determined from National Weather Service Station data. However, much more temporal structure was evident in the autotracker data than in the visibility data. Cirrus clouds caused large changes in optical depth over short time periods. They appear to be the largest deleterious atmospheric effect over agricultural areas that are remote from urban pollution sources.
Laser interferometric measurement of ion electrode shape and charge exchange erosion
NASA Technical Reports Server (NTRS)
Macrae, Gregory S.; Mercer, Carolyn R.
1991-01-01
A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.
Extending the Deep Blue aerosol record from SeaWiFS and MODIS to NPP-VIIRS
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Lee, Jaehwa
2015-01-01
Deep Blue expands AOD coverage to deserts and other bright surfaces. Using multiple similar satellite sensors enables us to obtain a long data record. The Deep Blue family consists of three separate aerosol optical depth (AOD) retrieval algorithms: 1. Bright Land: Surface reflectance database, BRDF correction. AOD retrieved separately at each of 412, 470/490, (650) nm. SSA retrieved for heavy dust events. 2. Dark Land: Spectral/directional surface reflectance relationship. AOD retrieved separately at 470/490 and 650 nm. 3. Water: Surface BRDF including glint, foam, underlight. Multispectral inversion (Not present in MODISdataset) All report the AOD at 550 nm, and Ångström exponent (AE).
Long-term observation of aerosol cloud relationships in the Mid-Atlantic region
NASA Astrophysics Data System (ADS)
Li, S.; Joseph, E.; Min, Q.; Yin, B.
2013-12-01
Long-term ground-based observations of aerosol and cloud properties derived from measurements of Multifilter Rotating Shadow Band Radiometer and microwave radiometer at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University are used to examine the temporal variation of aerosol and cloud properties and moreover aerosol indirect effect on clouds. Through statistical analysis of five years (from 2006 to 2010) of these observations, the proportion of polluted cases is found larger in 2006 and 2007 and the proportion of optically thick clouds cases is also larger in 2006 and 2007 than that in 2008, 2009 and 2010. Both the mean aerosol optical depth (AOD) and cloud optical depth (COD) are observed decreasing from 2006 to 2010 but there is no obvious trend observed on cloud liquid water path (LWP). Because of the limit of AOD retrievals under cloudy conditions surface measurements of fine particle particulate matter 2.5 (PM2.5) were used for assessing aerosol indirect effect. A positive relationship between LWP and cloud droplets effective radius (Re) and a negative relationship between PM2.5 and Re are observed based on a stringent case selection method which is used to reduce the uncertainties from retrieval and meteorological impacts. The total 5 years summer time observations are segregated according to the value of PM2.5. Examination of distributions of COD, cloud condensation nuclei (CCN), cloud droplets effective radius and LWP under polluted and pristine conditions further confirm that the high aerosol loading decreases cloud droplets effective radius and increases cloud optical depth.
Cloud Optical Depth Measured with Ground-Based, Uncooled Infrared Imagers
NASA Technical Reports Server (NTRS)
Shaw, Joseph A.; Nugent, Paul W.; Pust, Nathan J.; Redman, Brian J.; Piazzolla, Sabino
2012-01-01
Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds (optical depth of approximately 4 or less).
Lee, Eun Ji; Choi, Yun Jeong; Kim, Tae-Woo; Hwang, Jeong-Min
2016-01-01
To compare the deep optic nerve head (ONH) structure between normal-tension glaucoma (NTG) and nonarteritic anterior ischemic optic neuropathy (NAION) and also in healthy subjects as a control using enhanced depth imaging (EDI) spectral-domain optical coherence tomography (SD-OCT). This prospective cross-sectional study included 21 NAION patients who had been diagnosed as NAION at least 6 months prior to study entry, and 42 NTG patients and 42 healthy controls who were matched with NAION patients in terms of age, intraocular pressure (IOP), and optic disc area. The retinal nerve fiber layer (RNFL) thickness in the affected sector was also matched between NAION and NTG patients. The ONH was imaged using SD-OCT with the EDI technique. The anterior lamina cribrosa surface depth (LCD) and average prelaminar tissue (PT) thickness were measured in a sector of interest in each eye and compared among the three groups. In the sector-matched comparison, LCD was largest in NTG patients, followed by NAION patients, while PT was thinner in NTG patients than in NAION patients (all P < 0.001). NAION patients had a comparable LCD and a thinner PT relative to normal controls (P = 0.170 and < 0.001, respectively). The deep ONH configuration is strikingly different between NTG and NAION. The differing features provide comparative insight into the pathophysiology of the two diseases, and may be useful for differential diagnosis.
Energetic Ion and Electron Irradiation of the Icy Galilean Satellites
NASA Technical Reports Server (NTRS)
Cooper, John F.; Johnson, Robert E.; Mauk, Barry H.; Garrett, Henry B.; Gehrels, Neil
2001-01-01
Galileo Orbiter measurements of energetic ions (20 keV to 100 MeV) and electrons (20-700 keV) in Jupiter's magnetosphere are used, in conjunction with the JPL electron model (less than 40 MeV), to compute irradiation effects in the surface layers of Europa, Ganymede, and Callisto. Significant elemental modifications are produced on unshielded surfaces to approximately centimeter depths in times of less than or equal to 10(exp 6) years, whereas micrometer depths on Europa are fully processed in approximately 10 years. Most observations of surface composition are limited to optical depths of approximately 1 mm, which are indirect contact with the space environment. Incident flux modeling includes Stormer deflection by the Ganymede dipole magnetic field, likely variable over that satellite's irradiation history. Delivered energy flux of approximately 8 x 10(exp 10) keV/square cm-s at Europa is comparable to total internal heat flux in the same units from tidal and radiogenic sources, while exceeding that for solar UV energies (greater than 6 eV) relevant to ice chemistry. Particle energy fluxes to Ganymede's equator and Callisto are similar at approximately 2-3 x 10(exp 8) keV/square cm-s with 5 x 10(exp 9) at Ganymede's polar cap, the latter being comparable to radiogenic energy input. Rates of change in optical reflectance and molecular composition on Europa, and on Ganymede's polar cap, are strongly driven by energy from irradiation, even in relatively young regions. Irradiation of nonice materials can produce SO2 and CO2, detected on Callisto and Europa, and simple to complex hydrocarbons. Iogenic neutral atoms and meteoroids deliver negligible energy approximately 10(exp 4-5) keV/square cm-s but impacts of the latter are important for burial or removal of irradiation products. Downward transport of radiation produced oxidants and hydrocarbons could deliver significant chemical energy into the satellite interiors for astrobiological evolution in putative sub-surface oceans.
Sun and aureole spectrometer for airborne measurements to derive aerosol optical properties.
Asseng, Hagen; Ruhtz, Thomas; Fischer, Jürgen
2004-04-01
We have designed an airborne spectrometer system for the simultaneous measurement of the direct Sun irradiance and aureole radiance. The instrument is based on diffraction grating spectrometers with linear image sensors. It is robust, lightweight, compact, and reliable, characteristics that are important for airborne applications. The multispectral radiation measurements are used to derive optical properties of tropospheric aerosols. We extract the altitude dependence of the aerosol volume scattering function and of the aerosol optical depth by using flight patterns with descents and ascents ranging from the surface level to the top of the boundary layer. The extinction coefficient and the product of single scattering albedo and phase function of separate layers can be derived from the airborne measurements.
Zhang, Chenxing; Bald, Matthew; Tang, Maolong; Li, Yan; Huang, David
2015-01-01
PURPOSE To evaluate interface quality of different corneal lamellar–cut depths with the femtosecond laser and determine a feasible range of depth for femtosecond laser–assisted lamellar anterior keratoplasty. SETTING Casey Eye Institute, Portland, Oregon, USA. DESIGN Experimental study. METHODS Full lamellar cuts were made on 20 deepithelialized human cadaver corneas using the femtosecond laser. The cut depth was 17% to 21% (100 μm), 31%, 35%, 38% to 40%, and 45% to 48% of the central stromal thickness. Scanning electron microscopy images of cap and bed surfaces were subjectively graded for ridge and roughness using a scale of 1 to 5 (1 = best). The graft–host match was evaluated by photography and optical coherence tomography in a simulated procedure. RESULTS The ridge score was correlated with the cut depth (P = .0078, R = 0.58) and better correlated with the percentage cut depth (P = .00024, R = 0.73). The shallowest cuts had the least ridges (score 1.25). The 31% cut depth produced significantly less ridges (score 2.15) than deeper cuts. The roughness score ranged from 2.19 to 3.08 for various depths. A simulated procedure using a 100 μm host cut and a 177 μm (31%) graft had a smooth interface and flush anterior junction using an inverted side-cut design. CONCLUSIONS The femtosecond laser produced more ridges in deeper lamellar cuts. A depth setting of 31% stromal thickness might produce adequate surface quality for femtosecond laser–assisted lamellar anterior keratoplasty. The inverted side-cut design produced good edge apposition even when the graft was thicker than the host lamellar–cut depth. PMID:25747165
NASA Astrophysics Data System (ADS)
Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.
2017-12-01
Quantifying coupled geochemical and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate geochemical and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated geochemical and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. Geochemical samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. Geochemical data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while geochemical data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance of fracture opening in controlling both saprolite and regolith thickness within this watershed.
NASA Astrophysics Data System (ADS)
König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin
2010-02-01
The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.
Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness
NASA Technical Reports Server (NTRS)
Tegen, Ina; Fung, Inez
1994-01-01
A global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere. The model includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture. Uplift and deposition are parameterized using analyzed winds and rainfall statistics that resolve high-frequency events. Dust transport in the atmosphere is simulated with the tracer transport model of the Goddard Institute for Space Studies. The simulated seasonal variations of dust concentrations show general reasonable agreement with the observed distributions, as do the size distributions at several observing sites. The discrepancies between the simulated and the observed dust concentrations point to regions of significant land surface modification. Monthly distribution of aerosol optical depths are calculated from the distribution of dust particle sizes. The maximum optical depth due to dust is 0.4-0.5 in the seasonal mean. The main uncertainties, about a factor of 3-5, in calculating optical thicknesses arise from the crude resolution of soil particle sizes, from insufficient constraint by the total dust loading in the atmosphere, and from our ignorance about adhesion, agglomeration, uplift, and size distributions of fine dust particles (less than 1 micrometer).
König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J; Elsner, Peter; Kaatz, Martin
2009-07-01
We report on the first clinical study based on optical coherence tomography (OCT) in combination with multiphoton tomography (MPT) and dermoscopy. 47 patients with a variety of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art OCT systems for dermatology including multibeam swept source OCT, (ii) the femtosecond laser multiphoton tomograph, and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface. OCT images reflect modifications of the intratissue refractive index whereas MPT is based on nonlinear excitation of endogenous fluorophores and second harmonic generation. A stack of cross-sectional OCT "wide field" images with a typical field of view of 5 x 2 mm(2) gave fast information on the depth and the volume of the lesion. Multiphoton tomography provided 0.36 x 0.36 mm(2) horizontal/diagonal optical sections within seconds of a particular region of interest with superior submicron resolution down to a tissue depth of 200 mum. The combination of OCT and MPT provides a unique powerful optical imaging modality for early detection of skin cancer and other skin diseases as well as for the evaluation of the efficiency of treatments.
A Verification of Aerosol Optical Depth Retrieval Using the Terra Satellite
2012-06-01
of the signal which can be used to calculate total optical depth (from Vincent 2006).............................................................5... signals isolates the direct transmission component of the signal which can be used to calculate total optical depth (from Vincent 2006). 6 2...fully backscattered condition to fully forward scattered, respectively. Values fro the single scatter albedo and the asymmetry parameter can be
NASA Astrophysics Data System (ADS)
Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.
2015-08-01
Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign than depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.
ERIC Educational Resources Information Center
Ferran, C.; Bosch, S.; Carnicer, A.
2012-01-01
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…
Micromilled optical elements for edge-lit illumination panels
NASA Astrophysics Data System (ADS)
Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Nikumb, Suwas
2013-04-01
Edge-lit light guide panels (LGPs) with micropatterned surfaces represent a new technology for developing small- and medium-sized illumination sources for application such as automotive, residential lighting, and advertising displays. The shape, density, and spatial distribution of the micro-optical structures (MOSs) imprinted on the transparent LGP must be selected to achieve high brightness and uniform luminance over the active surface. We examine how round-tip cylindrical MOSs fabricated by precision micromilling can be used to create patterned surfaces on low-cost transparent polymethyl-methacrylate substrates for high-intensity illumination applications. The impact of varying the number, pitch, spatial distribution, and depth of the optical microstructures on lighting performance is initially investigated using LightTools™ simulation software. To illustrate the microfabrication process, several 100×100×6 mm3 LGP prototypes are constructed and tested. The prototypes include an "optimized" array of MOSs that exhibit near-uniform illumination (approximately 89%) across its active light-emitting surface. Although the average illumination was 7.3% less than the value predicted from numerical simulation, it demonstrates how LGPs can be created using micromilling operations. Customized MOS arrays with a bright rectangular pattern near the center of the panel and a sequence of MOSs that illuminate a predefined logo are also presented.
NASA Astrophysics Data System (ADS)
Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.; Moosmuller, H.; Liming, A.; Echevarria, B.
2014-12-01
The study of aerosol pollution transport and optical properties in the western U.S. is a challenge due to the complex terrain, bright surfaces, presence of anthropogenic and biogenic emissions, secondary organic aerosol formation, and smoke from wild fires. In addition, the complex terrain influences transport phenomena by recirculating mountain air from California to Nevada, where air pollution from the Sierra Nevada Mountains (SNM) is mixed with urban air from the Central Valley in California. Previous studies in Reno hypothesize that elevated aerosol concentrations aloft, above the convective boundary layer height, make air quality monitoring in Reno challenging with MODIS products. Here, we analyze data from August 2013 as a case study for wildfire smoke plumes in California and Nevada. During this time period, northern California was impacted by large wild fires known as the American and Yosemite Rim fires. Thousands of acres burned, generating large quantities of aerosol pollutants that were transported downwind. The aim of the present work is to investigate the fire plume behavior and transport phenomena using ground level PM2.5 concentrations from routine monitoring networks and aerosol optical properties from AERONET, both at multiple locations in California and Nevada. In addition, the accuracy of MODIS (Collection 6) and VIIRS aerosol satellite products will be evaluated. The multispectral photoacoustic instruments and reciprocal nephelometers located in Reno support the estimation of approximated aerosol height. The objectives are to investigate the impact of the vertical distribution of PM concentrations on satellite aerosol optical depth (AOD) retrievals; assess the ability to estimate ground level PM2.5 mass concentrations for wildfire smoke plumes from satellite remote sensing; and investigate the influence of complex terrain on the transport of pollutants, convective boundary layer depth, and aerosol optical height.
NASA Astrophysics Data System (ADS)
Gong, Chongshui; Xin, Jinyuan; Wang, Shigong; Wang, Yuesi; Zhang, Tiejun
2017-11-01
The effect of high anthropogenic aerosols on the aerosol optical and radiative properties was aggravated from west to east in China. The annual mean (from 2004 to 2007) aerosol optical depth (AOD), Ångström exponents (α), absorptive aerosol optical depth (AAOD), and single-scattering albedo (SSA) were from 0.16 to 0.73, from - 0.01 to 1.15, from 0.03 to 0.04, and from 0.78 to 0.94, respectively. In addition, the annual mean of aerosol direct radiative forcing at the top of the atmosphere (TOA) were from - 7.2 to 18.5 W/m2. High anthropogenic aerosol exhibited the effect of heating the atmosphere (ATM) (48-52 W/m2) and cooling the surface (SFC) (- 48 to - 56 W/m2) in eastern China. In Lanzhou where there is more serious pollution of heavy industry, aerosol-induced surface cooling reached - 61 W/m2. The radiative forcing was higher in winter and spring than that in summer and autumn. Aerosol heating effect on the atmosphere was obvious; there was significantly linear correlation between AOD and TOA, SSA and TOA. The slopes of AOD vs TOA were from - 20.8 to - 42.6. The slopes of SSA vs TOA were from - 58 to - 302. The aerosol was cooling the Earth-atmosphere system with AOD or SSA increasing. In the meantime, AAOD (x) exhibited significantly linear correlation with the heating effect in the atmosphere (ATM: y) (y = 1053.7x + 10.5, R2 = 0.85). And the effect of AOD (x) on the SFC (y) cooling was also obvious (y = - 47.1x - 24.5, R2 = 0.56). Therefore, the thermodynamic effects of anthropogenic aerosols on the atmosphere circulation and structure should be taken into consideration in East Asia.
High Spectral Resolution Lidar Data
Eloranta, Ed
2004-12-01
The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.
Role of optics in the accuracy of depth-from-defocus systems: comment.
Blendowske, Ralf
2007-10-01
In their paper "Role of optics in the accuracy of depth-from-defocus systems" [J. Opt. Soc. Am. A24, 967 (2007)] the authors Blayvas, Kimmel, and Rivlin discuss the effect of optics on the depth reconstruction accuracy. To this end they applied an approach in Fourier space. An alternative derivation of their result in the spatial domain, based on geometrical optics, is presented and compared with their outcome. A better agreement with experimental data is achieved if some unclarities are refined.
NASA Astrophysics Data System (ADS)
Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.
2017-06-01
A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.
All-optical photoacoustic imaging and detection of early-stage dental caries
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin; Hughes, David A.; Longbottom, Chris; Kirk, Katherine J.
2015-02-01
Dental caries remain one of the most common oral diseases in the world. Current detection methods, such as dental explorer and X-ray radiography, suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease because of the small size (< 100 microns) of early-stage lesions. We have developed a fine-resolution (480 nm), ultra-broadband (1 GHz), all-optical photoacoustic imaging (AOPAI) system to image and detect early stages of tooth decay. This AOPAI system provides a non-contact, non-invasive and non-ionizing means of detecting early-stage dental caries. Ex-vivo teeth exhibiting early-stage, white-spot lesions were imaged using AOPAI. Experimental scans targeted each early-stage lesion and a reference healthy enamel region. Photoacoustic (PA) signals were generated in the tooth using a 532-nm pulsed laser and the light-induced broadband ultrasound signal was detected at the surface of the tooth with an optical path-stabilized Michelson interferometer operating at 532 nm. The measured time-domain signal was spatially resolved and back-projected to form 2D and 3D maps of the lesion using k-wave reconstruction methods. Experimental data collected from areas of healthy and diseased enamel indicate that the lesion generated a larger PA response compared to healthy enamel. The PA-signal amplitude alone was able to detect a lesion on the surface of the tooth. However, time- reversal reconstructions of the PA scans also quantitatively depicted the depth of the lesion. 3D PA reconstruction of the diseased tooth indicated a sub-surface lesion at a depth of 0.6 mm, in addition to the surface lesion. These results suggest that our AOPAI system is well suited for rapid clinical assessment of early-stage dental caries. An overview of the AOPAI system, fine-resolution PA and histology results of diseased and healthy teeth will be presented.
Clinical Monitoring of Smooth Surface Enamel Lesions Using CP-OCT During Nonsurgical Intervention
Chan, Kenneth H.; Tom, Henry; Lee, Robert C.; Kang, Hobin; Simon, Jacob C.; Staninec, Michal; Darling, Cynthia L.; Pelzner, Roger B.; Fried, Daniel
2017-01-01
Introduction Studies have shown that cross-polarization optical coherence tomography (CP-OCT) can be used to image the internal structure of carious lesions in vivo. The objective of this study was to show that CP-OCT can be used to monitor changes in the internal structure of early active carious lesions on smooth surfaces during non-surgical intervention with fluoride. Methods Lesions on the smooth surfaces of teeth were imaged using CP-OCT on 17 test subjects. Lesion structural changes were monitored during fluoride varnish application at 6-week intervals for 30 weeks. The lesion depth (Ld), integrated reflectivity (ΔR), and surface zone thickness (Sz) were monitored. Results A distinct transparent surface zone that may be indicative of lesion arrestment was visible in CP-OCT images on 62/63 lesions before application of fluoride varnish. The lesion depth and internal structure were resolved for all the lesions. The overall change in the mean values for Ld, ΔR, and Sz for all the lesions was minimal and was not significant during the study (P > 0.05). Only 5/63 lesions manifested a significant increase in Sz during intervention. Conclusion Even though it appears that most of the lesions manifested little change with fluoride varnish application in the 30 weeks of the study, CP-OCT was able to measure the depth and internal structure of all the lesions including the thickness of the important transparent surface zone located at the surface of the lesions, indicating that CP-OCT is ideally suited for monitoring lesion severity in vivo. PMID:26955902
Optical method and apparatus for detection of surface and near-subsurface defects in dense ceramics
Ellingson, W.A.; Brada, M.P.
1995-06-20
A laser is used in a non-destructive manner to detect surface and near-subsurface defects in dense ceramics and particularly in ceramic bodies with complex shapes such as ceramic bearings, turbine blades, races, and the like. The laser`s wavelength is selected based upon the composition of the ceramic sample and the laser can be directed on the sample while the sample is static or in dynamic rotate or translate motion. Light is scattered off surface and subsurface defects using a preselected polarization. The change in polarization angle is used to select the depth and characteristics of surface/subsurface defects. The scattered light is detected by an optical train consisting of a charge coupled device (CCD), or vidicon, television camera which, in turn, is coupled to a video monitor and a computer for digitizing the image. An analyzing polarizer in the optical train allows scattered light at a given polarization angle to be observed for enhancing sensitivity to either surface or near-subsurface defects. Application of digital image processing allows subtraction of digitized images in near real-time providing enhanced sensitivity to subsurface defects. Storing known ``feature masks`` of identified defects in the computer and comparing the detected scatter pattern (Fourier images) with the stored feature masks allows for automatic classification of detected defects. 29 figs.
NASA Technical Reports Server (NTRS)
Clarke, Antony D.; Porter, John N.
1997-01-01
Our research effort is focused on improving our understanding of aerosol properties needed for optical models for remote marine regions. This includes in-situ and vertical column optical closure and involves a redundancy of approaches to measure and model optical properties that must be self consistent. The model is based upon measured in-situ aerosol properties and will be tested and constrained by the vertically measured spectral differential optical depth of the marine boundary layer, MBL. Both measured and modeled column optical properties for the boundary layer, when added to the free-troposphere and stratospheric optical depth, will be used to establish spectral optical depth over the entire atmospheric column for comparison to and validation of satellite derived radiances (AVHRR).
Enhanced blue responses in nanostructured Si solar cells by shallow doping
NASA Astrophysics Data System (ADS)
Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho
2018-03-01
Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.
MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects
NASA Astrophysics Data System (ADS)
Wu, Yerong; de Graaf, Martin; Menenti, Massimo
2016-04-01
Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS measurements in our algorithm. We validated three case studies with AErosol Robotic NETwork (AERONET) AOD, and the results show that the AOD retrieval was improved compared to C6_DT AOD, with the increase of within expected accuracy ±(0.05 + 15%) by ranging from 2.7% to 7.5% for the best quality only (Quality Assurance =3), and from 5.8% to 9.5% for the marginal and better quality (Quality Assurance ≥ 1).
Computational-optical microscopy for 3D biological imaging beyond the diffraction limit
NASA Astrophysics Data System (ADS)
Grover, Ginni
In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are discussed. A method to stabilize it, for extended periods of time, with 3-4 nm precision in 3D is developed. 3D Super-resolution is demonstrated without drift. A PSF correction algorithm is demonstrated to improve characteristics of the DH-PSF in an experiment, where it is implemented with a polarization-insensitive liquid crystal spatial light modulator.
NASA Technical Reports Server (NTRS)
Kahn, Ralph
1999-01-01
Variations in the top-of-atmosphere reflected solar radiation flux, and in the factors that determine its value, are among the most important diagnostic indicators of changes in Earth's energy balance. Data from the MISR (Multi-angle Imaging SpectroRadiometer), MODIS (Moderate-resolution Imaging Spectroradiometer), SAGE-3 (Stratospheric Aerosol and Gas Experiment), and CERES (Clouds and Earth's Radiant Energy System), all of which are spacecraft instruments scheduled for launch in 1999, will each constrain pieces of the RSRF budget. Prior to launch, we are performing studies to determine the sensitivity of these instruments to key factors that influence the cloud-free RSRF: aerosol optical depth, aerosol scattering properties, and surface visible bidirectional reflectance distribution function (BRDF). We are also assessing the ability of the aggregate of instruments to constrain the overall RSRF budget under natural conditions over the globe. Consider the MISR retrieval of aerosols: according to simulations over cloud-free, calm ocean, for pure particles with natural ranges of optical depth, particle size, and indices of refraction, MISR can retrieve column aerosol optical depth for all but the darkest particles, to an uncertainty of at most 0.05 or 20%, whichever is larger, even if the particle properties are poorly known. For one common particle type, soot, constraints on the optical depth over dark ocean are very poor. The simulated measurements also allow us to distinguish spherical from non-spherical particles, to separate two to four compositional groups based on indices of refraction, and to identify three to four distinct size groups between 0. 1 and 2.0 microns characteristic radius at most latitudes. Based on these results, we expect to distinguish air masses containing different aerosol types, routinely and globally, with multiangle remote sensing data. Such results far exceed current satellite aerosol retrieval capabilities, which provide only total optical depth for assumed particle properties; the new information will complement in situ data, which give details about aerosol size and composition locally. In addition, our team is using climatologies that reflect the constraints each instrument is expected to provide, along with ERBE (Earth Radiation Budget Experiment) data and a radiative transfer code, to study overall sensitivity to RSRF, helping us prepare for similar studies with new data from the EOS-era instruments.
Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Gasteau, Damien; Castagnede, Bernard; Zerr, Andreas; Gusev, Vitalyi E.
2015-01-01
The time-domain Brillouin scattering technique, also known as picosecond ultrasonic interferometry, allows monitoring of the propagation of coherent acoustic pulses, having lengths ranging from nanometres to fractions of a micrometre, in samples with dimension of less than a micrometre to tens of micrometres. In this study, we applied this technique to depth-profiling of a polycrystalline aggregate of ice compressed in a diamond anvil cell to megabar pressures. The method allowed examination of the characteristic dimensions of ice texturing in the direction normal to the diamond anvil surfaces with sub-micrometre spatial resolution via time-resolved measurements of the propagation velocity of the acoustic pulses travelling in the compressed sample. The achieved imaging of ice in depth and in one of the lateral directions indicates the feasibility of three-dimensional imaging and quantitative characterisation of the acoustical, optical and acousto-optical properties of transparent polycrystalline aggregates in a diamond anvil cell with tens of nanometres in-depth resolution and a lateral spatial resolution controlled by pump laser pulses focusing, which could approach hundreds of nanometres. PMID:25790808
NASA Technical Reports Server (NTRS)
Chen, Wei-Ting; Kahn, Ralph A.; Nelson, David; Yau, Kevin; Seinfeld, John H.
2008-01-01
The treatment of biomass burning (BB) carbonaceous particles in the Multiangle Imaging SpectroRadiometer (MISR) Standard Aerosol Retrieval Algorithm is assessed, and algorithm refinements are suggested, based on a theoretical sensitivity analysis and comparisons with near-coincident AERONET measurements at representative BB sites. Over the natural ranges of BB aerosol microphysical and optical properties observed in past field campaigns, patterns of retrieved Aerosol Optical Depth (AOD), particle size, and single scattering albedo (SSA) are evaluated. On the basis of the theoretical analysis, assuming total column AOD of 0.2, over a dark, uniform surface, MISR can distinguish two to three groups in each of size and SSA, except when the assumed atmospheric particles are significantly absorbing (mid-visible SSA approx.0.84), or of medium sizes (mean radius approx.0.13 pin); sensitivity to absorbing, medium-large size particles increases considerably when the assumed column AOD is raised to 0.5. MISR Research Aerosol Retrievals confirm the theoretical results, based on coincident AERONET inversions under BB-dominated conditions. When BB is externally mixed with dust in the atmosphere, dust optical model and surface reflection uncertainties, along with spatial variability, contribute to differences between the Research Retrievals and AERONET. These results suggest specific refinements to the MISR Standard Aerosol Algorithm complement of component particles and mixtures. They also highlight the importance for satellite aerosol retrievals of surface reflectance characterization, with accuracies that can be difficult to achieve with coupled surface-aerosol algorithms in some higher AOD situations.
NASA Astrophysics Data System (ADS)
Weber, S. A.; Engel-Cox, J. A.; Hoff, R. M.; Prados, A.; Zhang, H.
2008-12-01
Integrating satellite- and ground-based aerosol optical depth (AOD) observations with surface total fine particulate (PM2.5) and sulfate concentrations allows for a more comprehensive understanding of local- and urban-scale air quality. This study evaluates the utility of integrated databases being developed for NOAA and EPA through the 3D-AQS project by examining the relationship between remotely-sensed AOD and PM2.5 concentrations for each platform for the summer of 2004 and the entire year of 2005. We compare results for the Baltimore, MD/Washington, DC metropolitan air shed, incorporating AOD products from the Terra and GOES-12 satellites, AERONET sunphotometer, and ground-based lidar, and PM2.5 concentrations from five surface monitoring sites. The satellite-derived products include AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR), as well as the GOES Aerosol/Smoke Product (GASP). The vertical profile of lidar backscatter is used to retrieve the planetary boundary layer (PBL) height in an attempt to capture only that fraction of the AOD arising from near surface aerosols. Adjusting the AOD data using platform- and season-specific ratios, calculated using the parameters of the regression equations, for two case studies resulted in a more accurate representation of surface PM2.5 concentrations when compared to a constant ratio that is currently being used in the NOAA IDEA product. This work demonstrates that quantitative relationships between remotely-sensed and in-situ aerosol observations in an integrated database can be computed and applied to improve the use of remotely-sensed observations for estimating surface concentrations.
NASA Astrophysics Data System (ADS)
Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.
2013-12-01
work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.
Evaluation of MODIS aerosol optical depth for semi-arid environments in complex terrain
NASA Astrophysics Data System (ADS)
Holmes, H.; Loria Salazar, S. M.; Panorska, A. K.; Arnott, W. P.; Barnard, J.
2015-12-01
The use of satellite remote sensing to estimate spatially resolved ground level air pollutant concentrations is increasing due to advancements in remote sensing technology and the limited number of surface observations. Satellite retrievals provide global, spatiotemporal air quality information and are used to track plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Ground level PM2.5 concentrations can be estimated using columnar aerosol optical depth (AOD) from MODIS, where the satellite retrieval serves as a spatial surrogate to simulate surface PM2.5 gradients. The spatial statistical models and MODIS AOD retrieval algorithms have been evaluated for the dark, vegetated eastern US, while the semi-arid western US continues to be an understudied region with associated complexity due to heterogeneous emissions, smoke from wildfires, and complex terrain. The objective of this work is to evaluate the uncertainty of MODIS AOD retrievals by comparing with columnar AOD and surface PM2.5 measurements from AERONET and EPA networks. Data is analyzed from multiple stations in California and Nevada for three years where four major wildfires occurred. Results indicate that MODIS retrievals fail to estimate column-integrated aerosol pollution in the summer months. This is further investigated by quantifying the statistical relationships between MODIS AOD, AERONET AOD, and surface PM2.5 concentrations. Data analysis indicates that the distribution of MODIS AOD is significantly (p<0.05) different than AERONET AOD. Further, using the results of distributional and association analysis the impacts of MODIS AOD uncertainties on the spatial gradients are evaluated. Additionally, the relationships between these uncertainties and physical parameters in the retrieval algorithm (e.g., surface reflectance, Ångström Extinction Exponent) are discussed.
Picosecond laser fabrication of nanostructures on ITO film surface assisted by pre-deposited Au film
NASA Astrophysics Data System (ADS)
Yang, H. Z.; Jiang, G. D.; Wang, W. J.; Mei, X. S.; Pan, A. F.; Zhai, Z. Y.
2017-10-01
With greater optical penetration depth and lower ablation threshold fluence, it is difficult to directly fabricate large scales of laser-induced periodic surface structures (LIPSSs) on indium-tin-oxide (ITO) films. This study proposed an approach to obtain optimized LIPSSs by sputtering an Au thin film on the ITO film surface. The concept behind the proposal is that the upper layer of the thin Au film can cause surface energy aggregation, inducing the initial ripple structures. The ripples deepened and become clear with lower energy due to optical trapping. The effective mechanism of Au film was analyzed and verified by a series of experiments. Linear sweep, parallel to the laser polarization direction, was performed using a Nd:VAN laser system with 10-ps Q-switched pulse, at a central wavelength of 532 nm, with a repetition rate of 1 kHz. The complete and clear features of the nanostructures, obtained with the periods of approximately 320 nm, were observed on ITO films with proper laser fluence and scanning speed. The depth of ripples was varying in the range of 15-65 nm with clear and coherent ITO films. The preferred efficiency of fabricating nanostructures and the excellent results were obtained at a scanning speed of 2.5 mm/s and a fluence of 0.189 J/cm2. In this way, the ablation and shedding of ITO films was successfully avoided. Thus, the proposed technique can be considered to be a promising method for the laser machining of special nonmetal films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiscareno, Matthew S.; Hedman, Matthew M.; Burns, Joseph A.
2010-02-15
We have developed a semianalytic method of parameterizing N-body simulations of self-gravity wakes in Saturn's rings, describing their photometric properties by means of only six numbers: three optical depths and three weighting factors. These numbers are obtained by fitting a sum of three Gaussians to the results of a density-estimation procedure that finds the frequencies of various values of local density within a simulated ring patch. Application of our parameterization to a suite of N-body simulations implies that rings dominated by self-gravity wakes appear to be mostly empty space, with more than half of their surface area taken up bymore » local optical depths around 0.01. Such regions will be photometrically inactive for all viewing geometries. While this result might be affected by our use of identically sized particles, we believe the general result that the distribution of local optical depths is trimodal, rather than bimodal as previous authors have assumed, is robust. The implications of this result for the analysis of occultation data are more conceptual than practical, as we find that occultations can only distinguish between bimodal and trimodal models at very low opening angles. Thus, the only adjustment needed in existing analyses of occultation data is that the model parameter {tau}{sub gap} should be interpreted as representing the area-weighted average optical depth within the gaps (or inter-wake regions), keeping in mind the possibility that the optical depth within those inter-wake regions may vary significantly. The most significant consequence of our results applies to the question of why 'propeller' structures observed in the mid-A ring are seen as relative-bright features, even though the most prominent features of simulated propellers are regions of relatively low density. Our parameterization of self-gravity wakes lends preliminary quantitative support to the hypothesis that propellers would be bright if they involve a local and temporary disruption of self-gravity wakes. Even though the overall local density is lower within the propeller-shaped structure surrounding an embedded central moonlet, disruption of the wakes would flood these same regions with more 'photometrically active' material (i.e., material that can contribute to the rings' local optical depth), raising their apparent brightnesses in agreement with observations. We find for a wide range of input parameters that this mechanism indeed can plausibly make propellers brighter than the wake-dominated background, though it is also possible for propellers to blend in with the background or even to remain dark. We suggest that this mechanism be tested by future detailed numerical models.« less
McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina
2015-12-01
This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.
NASA Astrophysics Data System (ADS)
Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.
2017-02-01
Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures. Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Optical imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have also been used to detect neural activity yet these techniques rely on the indirect measurement of changes in blood flow. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, OCT was used to detect non-vascular depth-dependent optical changes in cortical tissue during 4-aminopyridine (4-AP) induced seizure onset. Calculations of localized optical attenuation coefficient (µ) allow for the assessment of depth-resolved volumetric optical changes in seizure induced cortical tissue. By utilizing the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex on the attenuation calculations of cortical tissue in vivo. The results of this study reveal a significant depth-dependent decrease in attenuation coefficient of nonvascular cortical tissue both ex vivo and in vivo. Regions exhibiting decreased attenuation coefficient show significant temporal correlation to regions of increased electrical activity during seizure onset and progression. This study allows for a more thorough and biologically relevant analysis of the optical signature of seizure activity in vivo using OCT.
Albedo of an irradiated plane-parallel atmosphere with finite optical depth
NASA Astrophysics Data System (ADS)
Fukue, Jun
2018-03-01
We analytically derive albedo for a plane-parallel atmosphere with finite optical depth, irradiated by an external source, under the local thermodynamic equilibrium approximation. Albedo is expressed as a function of the photon destruction probability ɛ and optical depth τ, with several parameters such as dilution factors of the external source. In the particular case of the infinite optical depth, albedo A is expressed as A=[1 + (1-W_J/W_H)√{3ɛ}/3]/(1+√{3ɛ}), where WJ and WH are the dilution factors for the mean intensity and Eddington flux, respectively. An example of a model atmosphere is also presented under a gray approximation.
Dust Emission at 8 and 24 μm as Diagnostics of H II Region Radiative Transfer
NASA Astrophysics Data System (ADS)
Oey, M. S.; López-Hernández, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, K. D.; Jameson, K. E.; Li, A.; Madden, S. C.; Meixner, M.; Roman-Duval, J.; Bot, C.; Rubio, M.; Tielens, A. G. G. M.
2017-07-01
We use the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey of the Magellanic Clouds to evaluate the relationship between the 8 μm polycyclic aromatic hydrocarbon (PAH) emission, 24 μm hot dust emission, and H II region radiative transfer. We confirm that in the higher-metallicity Large Magellanic Cloud, PAH destruction is sensitive to optically thin conditions in the nebular Lyman continuum: objects identified as optically thin candidates based on nebular ionization structure show six times lower median 8 μm surface brightness (0.18 mJy arcsec-2) than their optically thick counterparts (1.2 mJy arcsec-2). The 24 μm surface brightness also shows a factor of three offset between the two classes of objects (0.13 versus 0.44 mJy arcsec-2, respectively), which is driven by the association between the very small dust grains and higher density gas found at higher nebular optical depths. In contrast, PAH and dust formation in the low-metallicity Small Magellanic Cloud is strongly inhibited such that we find no variation in either 8 μm or 24 μm emission between our optically thick and thin samples. This is attributable to extremely low PAH and dust production together with high, corrosive UV photon fluxes in this low-metallicity environment. The dust mass surface densities and gas-to-dust ratios determined from dust maps using Herschel HERITAGE survey data support this interpretation.
Hydrodynamic effects in laser cutting of biological tissue phantoms
NASA Astrophysics Data System (ADS)
Zhigarkov, V. S.; Yusupov, V. I.; Tsypina, S. I.; Bagratashvili, V. N.
2017-11-01
We study the thermal and transport processes that occur in the course of incision formation at the surface of a biological tissue phantom under the action of near-IR, moderate-power, continuous-wave laser radiation (λ = 1.94 μm) delivered by means of an optical fibre with an absorbing coating on its exit face. It is shown that in addition to the thermal effect, the laser-induced hydrodynamic effects caused by the explosive boiling of the interstitial water make a large contribution to the phantom destruction mechanism. These effects lead to the tissue rupture accompanied by the ejection of part of the fragmented substance from the site of laser impact and the formation of highly porous structure near the incision surface. We have found that the depth, the width and the relief of the laser incision wall in the case of using the optical fibre moving with a constant velocity, depend on the fibre tilt angle with respect to the phantom surface, as well as the direction of the fibre motion.
Study of SRM Critical Surfaces Using Near Infrared Optical Fiber Spectrometry
NASA Technical Reports Server (NTRS)
Workman, G. L.; Hughes, C.; Arendale, W. A.
1997-01-01
The measurement and control of cleanliness for critical surfaces during manufacturing and in service operations provides a unique challenge in the current thrust for environmentally benign processes. Of particular interest has been work performed in maintaining quality in the production of bondline surfaces in propulsion systems and the identification of possible contaminants which are detrimental to the integrity of the bondline. This work requires an in-depth study of the possible sources of contamination, methodologies to identify contaminants, discrimination between contaminants and chemical species caused by environment, and the effect of particular contaminants on the bondline integrity of the critical surfaces. This paper will provide an introduction to the use of Near Infrared (NIR) optical fiber spectrometry in a nondestructive measurement system for process monitoring and how it can be used to help clarify issues concerning surface chemistry. In a previous conference, experimental results for quantitative measurement of silicone and Conoco HD2 greases, and tape residues on solid rocket motor surfaces were presented. This paper will present data for metal hydroxides and discuss the use of the integrating sphere to minimize the effects of physical properties of the surfaces (such as surface roughness) on the results obtained from the chemometric methods used for quantitative analysis.
Error analysis of 3D-PTV through unsteady interfaces
NASA Astrophysics Data System (ADS)
Akutina, Yulia; Mydlarski, Laurent; Gaskin, Susan; Eiff, Olivier
2018-03-01
The feasibility of stereoscopic flow measurements through an unsteady optical interface is investigated. Position errors produced by a wavy optical surface are determined analytically, as are the optimal viewing angles of the cameras to minimize such errors. Two methods of measuring the resulting velocity errors are proposed. These methods are applied to 3D particle tracking velocimetry (3D-PTV) data obtained through the free surface of a water flow within a cavity adjacent to a shallow channel. The experiments were performed using two sets of conditions, one having no strong surface perturbations, and the other exhibiting surface gravity waves. In the latter case, the amplitude of the gravity waves was 6% of the water depth, resulting in water surface inclinations of about 0.2°. (The water depth is used herein as a relevant length scale, because the measurements are performed in the entire water column. In a more general case, the relevant scale is the maximum distance from the interface to the measurement plane, H, which here is the same as the water depth.) It was found that the contribution of the waves to the overall measurement error is low. The absolute position errors of the system were moderate (1.2% of H). However, given that the velocity is calculated from the relative displacement of a particle between two frames, the errors in the measured water velocities were reasonably small, because the error in the velocity is the relative position error over the average displacement distance. The relative position error was measured to be 0.04% of H, resulting in small velocity errors of 0.3% of the free-stream velocity (equivalent to 1.1% of the average velocity in the domain). It is concluded that even though the absolute positions to which the velocity vectors are assigned is distorted by the unsteady interface, the magnitude of the velocity vectors themselves remains accurate as long as the waves are slowly varying (have low curvature). The stronger the disturbances on the interface are (high amplitude, short wave length), the smaller is the distance from the interface at which the measurements can be performed.
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-01-01
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712
NASA Astrophysics Data System (ADS)
Gannot, Israel; Bonner, Robert F.; Gannot, Gallya; Fox, Philip C.; You, Joon S.; Waynant, Ronald W.; Gandjbakhche, Amir H.
1997-08-01
A series of fluorescent surface images were obtained from physical models of localized fluorophores embedded at various depths and separations in tissue phantoms. Our random walk theory was applied to create an analytical model of multiple flurophores embedded in tissue-like phantom. Using this model, from acquired set of surface images, the location of the fluorophores was reconstructed and compared it to their known 3-D distributions. A good correlation was found, and the ability to resolve fluorophores as a function of depth and separation was determined. In parallel in in-vitro study, specific coloring of sections of minor salivary glands was also demonstrated. These results demonstrate the possibility of using inverse methods to reconstruct unknown locations and concentrations of optical probes specifically bound to infiltrating lymphocytes in minor salivary glands of patients with Sjogren's syndrome.
NASA Astrophysics Data System (ADS)
Enfield, Joey; McGrath, James; Daly, Susan M.; Leahy, Martin
2016-08-01
Changes within the microcirculation can provide an early indication of the onset of a plethora of ailments. Various techniques have thus been developed that enable the study of microcirculatory irregularities. Correlation mapping optical coherence tomography (cmOCT) is a recently proposed technique, which enables mapping of vasculature networks at the capillary level in a noninvasive and noncontact manner. This technique is an extension of conventional optical coherence tomography (OCT) and is therefore likewise limited in the penetration depth of ballistic photons in biological media. Optical clearing has previously been demonstrated to enhance the penetration depth and the imaging capabilities of OCT. In order to enhance the achievable maximum imaging depth, we propose the use of optical clearing in conjunction with the cmOCT technique. We demonstrate in vivo a 13% increase in OCT penetration depth by topical application of a high-concentration fructose solution, thereby enabling the visualization of vessel features at deeper depths within the tissue.
Optical stent inspection of surface texture and coating thickness
NASA Astrophysics Data System (ADS)
Bermudez, Carlos; Laguarta, Ferran; Cadevall, Cristina; Matilla, Aitor; Ibañez, Sergi; Artigas, Roger
2017-02-01
Stent quality control is a critical process. Coronary stents have to be inspected 100% so no defective stent is implanted into a human body. We have developed a high numerical aperture optical stent inspection system able to acquire both 2D and 3D images. Combining a rotational stage, an area camera with line-scan capability and a triple illumination arrangement, unrolled sections of the outer, inner, and sidewalls surfaces are obtained with high resolution. During stent inspection, surface roughness and coating thickness uniformity is of high interest. Due to the non-planar shape of the surface of the stents, the thickness values of the coating need to be corrected with the 3D surface local slopes. A theoretical model and a simulation are proposed, and a measurement with white light interferometry is shown. Confocal and spectroscopic reflectometry showed to be limited in this application due to stent surface roughness. Due to the high numerical aperture of the optical system, only certain parts of the stent are in focus, which is a problem for defect detection, specifically on the sidewalls. In order to obtain fully focused 2D images, an extended depth of field algorithm has been implemented. A comparison between pixel variance and Laplacian filtering is shown. To recover the stack image, two different methods are proposed: maximum projection and weighted intensity. Finally, we also discuss the implementation of the processing algorithms in both the CPU and GPU, targeting real-time 2-Million pixel image acquisition at 50 frames per second.
Influence of carbon dioxide clouds on early martian climate.
Mischna, M A; Kasting, J F; Pavlov, A; Freedman, R
2000-06-01
Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.
Optical properties of dust and the opacity of the Martian atmosphere
NASA Astrophysics Data System (ADS)
Korablev, O.; Moroz, V. I.; Petrova, E. V.; Rodin, A. V.
Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ ≈ 0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05-0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ ≈ 0.5 from one side, and ground-based observations in the UV-visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.
Open questions on optical properties of dust and the opacity of the Martian atmosphere
NASA Astrophysics Data System (ADS)
Korablev, O.; Moroz, V.; Petrova, E.; Rodin, A.
Particulate component of the atmosphere composed by micron-sized products of soil weathering and water ice clouds that strongly affect the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data and measurem ents from the surface (Viking landers, Pathfinder) which give in the quiet seasons the typical optical depth of? 0.5 from one side, and ground-based observations in the UV-visible range that frequently infer <0.2, on the other side. Also the relationship between9 and the visible optical depth is not well established experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.
Solar Radiation on Mars: Tracking Photovoltaic Array
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos
1994-01-01
A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.
NASA Astrophysics Data System (ADS)
Reddy, Patrick J.; Kreiner, Fred W.; Deluisi, John J.; Kim, Young
1990-09-01
Aerosol optical depths and values for the Angstrom exponent, alpha, were retrieved from carefully calibrated sunphotometer measurements which were made during the Global Change Expedition (GCE) of the NOAA ship Mt. Mitchell in July, August, and September 1988. Sunphotometer observations were acquired at wavelengths of 380, 500, 675, and 778 nm. Optical depths and alphas have been segregated into five categories associated with probable air mass source regions determined through back trajectories at the 1000-, 850-, 700-, and 500-mbar levels. The results for the three most distinct air mass types are summarized here. The mean 500- nm aerosol optical depth for North American air is 0.56 (±0.32), the mean for Atlantic air is 0.16 (±0.02), and the mean for Saharan air is 0.39 (±0.12). Alpha for mean GCE aerosol optical depth data for predominantly North American air masses is 1.15 (± 0.11), alpha for Atlantic air is 1.00 (±0.40), and for Saharan air, alpha is 0.37 (±0.18). There is a significant difference between alpha for Saharan air and alpha for North American or Atlantic air. There is also a significant difference between the mean 500-nm optical depth for North American aerosols and Atlantic aerosols.
Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability
NASA Astrophysics Data System (ADS)
Hamdan, Lubna
Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, Peter; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V.; Jeong, Yong; Park, YongKeun
2016-12-01
We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.
Aureole lidar: Design, operation, and comparison with in-situ measurements
NASA Astrophysics Data System (ADS)
Hooper, William P.; Jensen, D. R.
1992-07-01
In 1986, H. Berber and Hooper examined the signals that could be detected by an airborne lidar flying above the marine boundary layer (MBL). One signal (aureole) formed from laser light returned to the receiver after a reflect off the ocean and forward scatter off the aerosol particles appeared to be both detectable and related to the optical depth of the MBL. Now, research has been directed towards developing a practical instrument to measure the aureole and finding an algorithm to use the information. Unlike the lidar backscatter which typically requires a telescope with a narrow field of view (0.5 mrad), the aureole signal occurs over a wide field of view (50 mrad). To accommodate the totally different needs, a standard commercial Cassegrainian telescope was modified to yield a telescope with two focal planes. The secondary mirror was replaced by a lens, whose front surface was half silvered and curved to match the replaced mirror. Light reflecting off the lens focused behind the primary mirror. The back lens surface was curved to allow unreflected light to focus at the natural focus of the primary mirror. This focal plane which is behind the lens has a wide field of view. To calculate an extinction profile, the aureole optical depth estimate is combined with the lidar backscatter profile.
Aureole lidar: Design, operation, and comparison with in-situ measurements
NASA Technical Reports Server (NTRS)
Hooper, William P.; Jensen, D. R.
1992-01-01
In 1986, H. Berber and Hooper examined the signals that could be detected by an airborne lidar flying above the marine boundary layer (MBL). One signal (aureole) formed from laser light returned to the receiver after a reflect off the ocean and forward scatter off the aerosol particles appeared to be both detectable and related to the optical depth of the MBL. Now, research has been directed towards developing a practical instrument to measure the aureole and finding an algorithm to use the information. Unlike the lidar backscatter which typically requires a telescope with a narrow field of view (0.5 mrad), the aureole signal occurs over a wide field of view (50 mrad). To accommodate the totally different needs, a standard commercial Cassegrainian telescope was modified to yield a telescope with two focal planes. The secondary mirror was replaced by a lens, whose front surface was half silvered and curved to match the replaced mirror. Light reflecting off the lens focused behind the primary mirror. The back lens surface was curved to allow unreflected light to focus at the natural focus of the primary mirror. This focal plane which is behind the lens has a wide field of view. To calculate an extinction profile, the aureole optical depth estimate is combined with the lidar backscatter profile.
NASA Technical Reports Server (NTRS)
Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.
2003-01-01
One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.
Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meskhidze, Nicholas; Nenes, Athanasios
Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less
The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor
Observations from June through October, 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Derived mass absorption cross-sections using light absorptioin coefficients at three wavelengths as a function of rBC mass indirectly indicate the presence of other light-absorbing organic aerosols (e.g., brown carbon), most pronounced in June. A filter-based estimate of single-scattering-albedo increases systematically from August to October, also apparent in 2017. Boundary-layermore » aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass-burning season, evolving to smoke predominantly present in the free-troposphere in September-October, typically resting upon the cloud-top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August of 2016, is investigated further. Back trajectories indicate the boundary layer transport was directly westward from the African continent, which is unusual in August.« less
Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction
Meskhidze, Nicholas; Nenes, Athanasios
2010-01-01
Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less
Depth-encoded all-fiber swept source polarization sensitive OCT
Wang, Zhao; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Lee, ByungKun; Choi, WooJhon; Potsaid, Benjamin; Liu, Jonathan; Jayaraman, Vijaysekhar; Cable, Alex; Kraus, Martin F.; Liang, Kaicheng; Hornegger, Joachim; Fujimoto, James G.
2014-01-01
Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design. PMID:25401008
In vivo optical elastography: stress and strain imaging of human skin lesions
NASA Astrophysics Data System (ADS)
Es'haghian, Shaghayegh; Gong, Peijun; Kennedy, Kelsey M.; Wijesinghe, Philip; Sampson, David D.; McLaughlin, Robert A.; Kennedy, Brendan F.
2015-03-01
Probing the mechanical properties of skin at high resolution could aid in the assessment of skin pathologies by, for example, detecting the extent of cancerous skin lesions and assessing pathology in burn scars. Here, we present two elastography techniques based on optical coherence tomography (OCT) to probe the local mechanical properties of skin. The first technique, optical palpation, is a high-resolution tactile imaging technique, which uses a complaint silicone layer positioned on the tissue surface to measure spatially-resolved stress imparted by compressive loading. We assess the performance of optical palpation, using a handheld imaging probe on a skin-mimicking phantom, and demonstrate its use on human skin. The second technique is a strain imaging technique, phase-sensitive compression OCE that maps depth-resolved mechanical variations within skin. We show preliminary results of in vivo phase-sensitive compression OCE on a human skin lesion.
Optical properties of marine stratocumulus clouds modified by ships
NASA Technical Reports Server (NTRS)
King, Michael D.; Radke, Lawrence F.; Hobbs, Peter V.
1993-01-01
Results are presented of an application of the diffusion domain method to multispectral solar radiation measurements obtained deep within a marine stratocumulus cloud layer modified by pollution from ships. In situ airborne measurements of the relative angular distribution of scattered radiation are compared to known asymptotic expressions for the intensity field deep within an optically thick cloud layer. Analytical expressions relating the ratio of the nadir-to-zenith intensities to surface reflectance, similarity parameter, and scaled optical depth beneath the aircraft flight level are used to analyze measurements obtained with the cloud absorption radiometer mounted on the University of Washington's C-131A research aircraft. It is shown that the total optical thickness of the cloud layer increased in the ship tracks, in contrast to the similarity parameter, which decreased. The decrease in absorption was a direct consequence of the reduction in cloud droplet size that occurred within the ship tracks.
Readout signals calculated for near-field optical pickups with land and groove recording.
Saito, K; Kishima, K; Ichimura, I
2000-08-10
Optical disk readout signals with a solid immersion lens (SIL) and the land-groove recording technique are calculated by use of a simplified vector-diffraction theory. In this method the full vector-diffraction theory is applied to calculate the diffracted light from the initial state of the disk, and the light scattered from the recorded marks is regarded as a perturbation. Using this method, we confirmed that the land-groove recording technique is effective as a means of cross-talk reduction even when the numerical aperture is more than 1. However, the top surface of the disk under the SIL must be flat, or the readout signal from marks recorded on a groove decays when the optical depth of the groove is greater than lambda/8.
Antony, Bhavna; Abràmoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.
2011-01-01
The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively. PMID:21833377
The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky
NASA Astrophysics Data System (ADS)
Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor; Springston, Stephen; Delgadillo, Rodrigo; Zhang, Jianhao; Aiken, Allison C.; Koontz, Annette; Muradyan, Paytsar
2018-05-01
Observations from June to October 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. The rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass are approximately double that calculated from black carbon in lab studies. A spectrally-flat absorption angstrom exponent suggests most of the light absorption is from lens-coated black carbon. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly means of 0.78 ± 0.02 (August), 0.81 ± 0.03 (September), and 0.83 ± 0.03 (October) at the green wavelength. Boundary layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August 2016, is investigated further. Backtrajectories that indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.
NASA Technical Reports Server (NTRS)
Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.;
2016-01-01
Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.
NASA Astrophysics Data System (ADS)
Jung, J.; Choi, Y.; Souri, A.; Jeon, W.
2017-12-01
Particle matter(PM) has played a significantly deleterious role in affecting human health and climate. Recently, continuous high concentrations of PM in Korea attracted public attention to this critical issue, and the Korea-United States Air Quality Study(KORUS-AQ) campaign in 2016 was conducted to investigate the causes. For this study, we adjusted the initial conditions in the chemical transport model(CTM) to improve its performance over Korean Peninsula during KORUS-AQ period, using the campaign data to evaluate our model performance. We used the Optimal Interpolation(OI) approach and used hourly surface air quality measurement data from the Air Quality Monitoring Station(AQMS) by NIER and the aerosol optical depth(AOD) measured by a GOCI sensor from the geostationary orbit onboard the Communication Ocean and Meteorological Satellite(COMS). The AOD at 550nm has a 6km spatial resolution and broad coverage over East Asia. After assimilating the surface air quality observation data, the model accuracy significantly improved compared to base model result (without assimilation). It reported very high correlation value (0.98) and considerably decreased mean bias. Especially, it well captured some high peaks which was underpredicted by the base model. To assimilate satellite data, we applied AOD scaling factors to quantify each specie's contribution to total PM concentration and find-mode fraction(FMF) to define vertical distribution. Finally, the improvement showed fairly good agreement.
NASA Technical Reports Server (NTRS)
Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander
2013-01-01
In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.
A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations
NASA Technical Reports Server (NTRS)
Jethva, Hiren; Torres, Omar; Ahn, Changwoo
2016-01-01
Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.
Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knauer, J. P.; Betti, R.; Bradley, D. K.
2000-01-01
The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined bymore » the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.« less
Calibrating damping rates with LEGACY
NASA Astrophysics Data System (ADS)
Houdek, Günter
2017-10-01
Linear damping rates of radial oscillation modes in selected Kepler stars are estimated with the help of a nonadiabatic stability analysis. The convective fluxes are obtained from a nonlocal, time-dependent convection model. The mixing-length parameter is calibrated to the surface-convection-zone depth of a stellar model obtained from fitting adiabatic frequencies to the LEGACY* observations, and two of the three nonlocal convection parameters are calibrated to the corresponding LEGACY* linewidth measurements. The atmospheric structure in the 1D stability analysis adopts a temperature-optical-depth relation derived from 3D hydrodynamical simulations. Results from 3D simulations are also used to calibrate the turbulent pressure and to guide the functional form of the depth-dependence of the anisotropy of the turbulent velocity field in the 1D stability computations.
NASA Astrophysics Data System (ADS)
Weniger, Kirsten K.; Muller, Gerhard J.
2005-03-01
In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.
Groundbased near-IR observations of the surface of Venus
NASA Technical Reports Server (NTRS)
Meadows, V. S.; Crisp, D.; Allen, D. A.
1992-01-01
We present images of the nightside of Venus taken in the near-infrared windows at 1.0, 1.1, 1.18, 1.28, 1.31, and 2.3 microns with the new infrared camera/spectrometer IRIS on the Anglo-Australian Telescope. These data were taken in spectral-mapping mode. This technique involves scanning the telescope perpendicular to the slit, while collecting spectra at successive slit positions across the planet. We produce data cubes with one spectral and two spatial dimensions. Images can be extracted over any wavelength regions. Each image has square pixels of 0.8 inch resolution. We reduced the scattered light from the sunlit crescent in images extracted from each window by subtracting images taken on either side of the window, where the Venus atmosphere is opaque. Unlike the short wavelength windows, which reveal thermal contrasts that originate primarily from the surface and deep atmosphere, the emission in the 2.3 microns window is produced at much higher altitudes (30-40 km). Emission contrasts seen near 2.3 microns are associated with horizontal variations in the cloud optical depths, and have rotation periods of about six days. We detect large contrasts in infrared emission (20-40 percent) across the disc of Venus in the 1.0-, 1.1-, 1.18-, 1.28-, and 1.31-micron images. Contrasts at these wavelengths may be due to a combination of variations in the optical depths of the overlying sulfuric acid clouds and differences in surface emission. Comparison with the 2.3-micron images show that the patterns seen in the 1.28- and 1.31-micron windows are consistent with cloud optical depth variations alone and require no contribution from the surface. However, images at 1.0, 1.1, and 1.8 microns from July 1991 show a dark feature having a contrast that increases with decreasing wavelength. This behavior is contrary to that expected of cloud absorption. Images taken on three successive days in October show another dark feature that is stationary with respect to the surface. These regions of lower emission correspond closely to the high-altitude surface regions of Beta Regio and Aphrodite Terra. The images can potentially reveal the near-infrared emissiveity of the surface of Venus, thereby complementing Magellan radar reflectivity and ground based radio emissivity measurements. The contrast ratio between highlands and plains is much smaller than would be expected for blackbody radiation from the surface along. Unlike at radio wavelengths, where the atmosphere is essentially transparent, at near-infrared wavelengths the atmosphere emits, absorbs, and scatters radiation, and can modify the observed topographically induced contrasts. The additional radiation from the atmosphere reduces the contrast, and further modification would be expected if terrain at different altitudes has different emissivities. A fit to our data therefore requires, and may constrain, a model of the lowest scale height of the atmosphere.