Sample records for optical design tools

  1. An integrated modeling and design tool for advanced optical spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1992-01-01

    Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.

  2. CATO: a CAD tool for intelligent design of optical networks and interconnects

    NASA Astrophysics Data System (ADS)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  3. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  4. Polarization modeling and predictions for DKIST part 2: application of the Berreman calculus to spectral polarization fringes of beamsplitters and crystal retarders

    NASA Astrophysics Data System (ADS)

    Harrington, David M.; Snik, Frans; Keller, Christoph U.; Sueoka, Stacey R.; van Harten, Gerard

    2017-10-01

    We outline polarization fringe predictions derived from an application of the Berreman calculus for the Daniel K. Inouye Solar Telescope (DKIST) retarder optics. The DKIST retarder baseline design used six crystals, single-layer antireflection coatings, thick cover windows, and oil between all optical interfaces. This tool estimates polarization fringes and optic Mueller matrices as functions of all optical design choices. The amplitude and period of polarized fringes under design changes, manufacturing errors, tolerances, and several physical factors can now be estimated. This tool compares well with observations of fringes for data collected with the spectropolarimeter for infrared and optical regions at the Dunn Solar Telescope using bicrystalline achromatic retarders as well as laboratory tests. With this tool, we show impacts of design decisions on polarization fringes as impacted by antireflection coatings, oil refractive indices, cover window presence, and part thicknesses. This tool helped DKIST decide to remove retarder cover windows and also recommends reconsideration of coating strategies for DKIST. We anticipate this tool to be essential in designing future retarders for mitigation of polarization and intensity fringe errors in other high spectral resolution astronomical systems.

  5. Optical Design of Telescopes and other Reflective Systems using SLIDERS

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.

    2007-01-01

    Optical design tools are presented to provide automatic generation of reflective optical systems for design studies and educational use. The tools are graphical in nature and use an interactive slider interface with freely available optical design software, OSLO EDU. Operation of the sliders provides input to adjust first-order and other system parameters (e.g. focal length), while appropriate system construction parameters are automatically updated to correct aberrations. Graphical output is also presented in real-time (e.g. a lens drawing) to provide the opportunity for a truly visual approach to optical design. Available systems include two- three- and four-mirror telescopes, relays, and afocal systems, either rotationally symmetric or having just a plane of symmetry. Demonstrations are presented, including a brief discussion of interfacing optical design software to MATLAB, and general research opportunities at NASA.

  6. PREVAIL-EPL alpha tool electron optics subsystem

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.; Dhaliwal, Rajinder S.; Golladay, Steven D.; Doran, Samuel K.; Gordon, Michael S.; Kendall, Rodney A.; Lieberman, Jon E.; Pinckney, David J.; Quickle, Robert J.; Robinson, Christopher F.; Rockrohr, James D.; Stickel, Werner; Tressler, Eileen V.

    2001-08-01

    The IBM/Nikon alliance is continuing pursuit of an EPL stepper alpha tool based on the PREVAIL technology. This paper provides a status report of the alliance activity with particular focus on the Electron Optical Subsystem developed at IBM. We have previously reported on design features of the PREVAIL alpha system. The new state-of-the-art e-beam lithography concepts have since been reduced to practice and turned into functional building blocks of a production level lithography tool. The electron optical alpha tool subsystem has been designed, build, assembled and tested at IBM's Semiconductor Research and Development Center (SRDC) in East Fishkill, New York. After demonstrating subsystem functionality, the electron optical column and all associated control electronics hardware and software have been shipped during January 2001 to Nikon's facility in Kumagaya, Japan, for integration into the Nikon commercial e-beam stepper alpha tool. Early pre-shipment results obtained with this electron optical subsystem are presented.

  7. Concurrent Design used in the Design of Space Instruments

    NASA Technical Reports Server (NTRS)

    Oxnevad, Knut I.

    1998-01-01

    At the Project Design Center at the Jet Propulsion Laboratory, a concurrent design environment is under development for supporting development and analyses of space instruments in the early, conceptual design phases. This environment is being utilized by a Team I, a multidisciplinary group of experts. Team I is providing study and proposal support. To provide the required support, the Team I concurrent design environment features effectively interconnected high-end optics, CAD, and thermal design and analysis tools. Innovative approaches for linking tools, and for transferring files between applications have been implemented. These approaches together with effective sharing of geometry between the optics, CAD, and thermal tools are already showing significant timesavings.

  8. From parabolic-trough to metasurface-concentrator: assessing focusing in the wave-optics limit.

    PubMed

    Hsu, Liyi; Dupré, Matthieu; Ndao, Abdoulaye; Kanté, Boubacar

    2017-04-15

    Metasurfaces are promising tools toward novel designs for flat optics applications. As such, their quality and tolerance to fabrication imperfections need to be evaluated with specific tools. However, most such tools rely on the geometrical optics approximation and are not straightforwardly applicable to metasurfaces. In this Letter, we introduce and evaluate for metasurfaces parameters such as intercept factor and slope error usually defined for solar concentrators in the realm of ray-optics. After proposing definitions valid in physical optics, we put forward an approach to calculate them. As examples, we design three different concentrators based on three specific unit cells and assess them numerically. The concept allows for comparison of the efficiency of the metasurfaces and their sensitivities to fabrication imperfections and will be critical for practical systems implementation.

  9. Interoperability and complementarity of simulation tools for beamline design in the OASYS environment

    NASA Astrophysics Data System (ADS)

    Rebuffi, Luca; Sanchez del Rio, Manuel

    2017-08-01

    In the next years most of the major synchrotron radiation facilities around the world will upgrade to 4th-generation Diffraction Limited Storage Rings using multi-bend-achromat technology. Moreover, several Free Electron Lasers are ready-to-go or in phase of completion. These events represent a huge challenge for the optics physicists responsible of designing and calculating optical systems capable to exploit the revolutionary characteristics of the new photon beams. Reliable and robust beamline design is nowadays based on sophisticated computer simulations only possible by lumping together different simulation tools. The OASYS (OrAnge SYnchrotron Suite) suite drives several simulation tools providing new mechanisms of interoperability and communication within the same software environment. OASYS has been successfully used during the conceptual design of many beamline and optical designs for the ESRF and Elettra- Sincrotrone Trieste upgrades. Some examples are presented showing comparisons and benchmarking of simulations against calculated and experimental data.

  10. Design and manufacturing challenges of optogenetic neural interfaces: a review

    NASA Astrophysics Data System (ADS)

    Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Costa, R. M.; Correia, J. H.

    2017-08-01

    Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. Significance: Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.

  11. Current And Future Directions Of Lens Design Software

    NASA Astrophysics Data System (ADS)

    Gustafson, Darryl E.

    1983-10-01

    The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.

  12. Knowledge-based environment for optical system design

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry

    1991-01-01

    Optical systems are extensively utilized by industry government and military organizations. The conceptual design engineering design fabrication and testing of these systems presently requires significant time typically on the order of 3-5 years. The Knowledge-Based Environment for Optical System Design (KB-OSD) Program has as its principal objectives the development of a methodology and tool(s) that will make a notable reduction in the development time of optical system projects reduce technical risk and overall cost. KB-OSD can be considered as a computer-based optical design associate for system engineers and design engineers. By utilizing artificial intelligence technology coupled with extensive design/evaluation computer application programs and knowledge bases the KB-OSD will provide the user with assistance and guidance to accomplish such activities as (i) develop system level and hardware level requirements from mission requirements (ii) formulate conceptual designs (iii) construct a statement of work for an RFP (iv) develop engineering level designs (v) evaluate an existing design and (vi) explore the sensitivity of a system to changing scenarios. The KB-OSD comprises a variety of computer platforms including a Stardent Titan supercomputer numerous design programs (lens design coating design thermal materials structural atmospherics etc. ) data bases and heuristic knowledge bases. An important element of the KB-OSD Program is the inclusion of the knowledge of individual experts in various areas of optics and optical system engineering. This knowledge is obtained by KB-OSD knowledge engineers performing

  13. MOD Tool (Microwave Optics Design Tool)

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl/Tk, which allows the user to work on a choice of platforms (PC, Mac, or Unix) after downloading the Tcl/Tk binary, which is readily available on the web. The MOD Tool server is written using Expect, and it resides on a Sun workstation. Client/server communications are performed over a socket, where upon a connection from a client to the server, the server spawns a child which is be dedicated to communicating with that client. The server communicates with other machines, such as supercomputers using Expect with the username and password being provided by the user on the client.

  14. Micro-optical fabrication by ultraprecision diamond machining and precision molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Likai; Naples, Neil J.; Roblee, Jeffrey W.; Yi, Allen Y.

    2017-06-01

    Ultraprecision diamond machining and high volume molding for affordable high precision high performance optical elements are becoming a viable process in optical industry for low cost high quality microoptical component manufacturing. In this process, first high precision microoptical molds are fabricated using ultraprecision single point diamond machining followed by high volume production methods such as compression or injection molding. In the last two decades, there have been steady improvements in ultraprecision machine design and performance, particularly with the introduction of both slow tool and fast tool servo. Today optical molds, including freeform surfaces and microlens arrays, are routinely diamond machined to final finish without post machining polishing. For consumers, compression molding or injection molding provide efficient and high quality optics at extremely low cost. In this paper, first ultraprecision machine design and machining processes such as slow tool and fast too servo are described then both compression molding and injection molding of polymer optics are discussed. To implement precision optical manufacturing by molding, numerical modeling can be included in the future as a critical part of the manufacturing process to ensure high product quality.

  15. Study of a direct visualization display tool for space applications

    NASA Astrophysics Data System (ADS)

    Pereira do Carmo, J.; Gordo, P. R.; Martins, M.; Rodrigues, F.; Teodoro, P.

    2017-11-01

    The study of a Direct Visualization Display Tool (DVDT) for space applications is reported. The review of novel technologies for a compact display tool is described. Several applications for this tool have been identified with the support of ESA astronauts and are presented. A baseline design is proposed. It consists mainly of OLEDs as image source; a specially designed optical prism as relay optics; a Personal Digital Assistant (PDA), with data acquisition card, as control unit; and voice control and simplified keyboard as interfaces. Optical analysis and the final estimated performance are reported. The system is able to display information (text, pictures or/and video) with SVGA resolution directly to the astronaut using a Field of View (FOV) of 20x14.5 degrees. The image delivery system is a monocular Head Mounted Display (HMD) that weights less than 100g. The HMD optical system has an eye pupil of 7mm and an eye relief distance of 30mm.

  16. Design of an optical PPM communication link in the presence of component tolerances

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.

    1988-01-01

    A systematic approach is described for estimating the performance of an optical direct detection pulse position modulation (PPM) communication link in the presence of parameter tolerances. This approach was incorporated into the JPL optical link analysis program to provide a useful tool for optical link design. Given a set of system parameters and their tolerance specifications, the program will calculate the nominal performance margin and its standard deviation. Through use of these values, the optical link can be designed to perform adequately even under adverse operating conditions.

  17. OISI dynamic end-to-end modeling tool

    NASA Astrophysics Data System (ADS)

    Kersten, Michael; Weidler, Alexander; Wilhelm, Rainer; Johann, Ulrich A.; Szerdahelyi, Laszlo

    2000-07-01

    The OISI Dynamic end-to-end modeling tool is tailored to end-to-end modeling and dynamic simulation of Earth- and space-based actively controlled optical instruments such as e.g. optical stellar interferometers. `End-to-end modeling' is meant to denote the feature that the overall model comprises besides optical sub-models also structural, sensor, actuator, controller and disturbance sub-models influencing the optical transmission, so that the system- level instrument performance due to disturbances and active optics can be simulated. This tool has been developed to support performance analysis and prediction as well as control loop design and fine-tuning for OISI, Germany's preparatory program for optical/infrared spaceborne interferometry initiated in 1994 by Dornier Satellitensysteme GmbH in Friedrichshafen.

  18. Digital optical computers at the optoelectronic computing systems center

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  19. Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system

    NASA Astrophysics Data System (ADS)

    Kampmann, R.; Sinzinger, S.

    2014-12-01

    In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.

  20. Pressure distribution under flexible polishing tools. I - Conventional aspheric optics

    NASA Astrophysics Data System (ADS)

    Mehta, Pravin K.; Hufnagel, Robert E.

    1990-10-01

    The paper presents a mathematical model, based on Kirchoff's thin flat plate theory, developed to determine polishing pressure distribution for a flexible polishing tool. A two-layered tool in which bending and compressive stiffnesses are equal is developed, which is formulated as a plate on a linearly elastic foundation. An equivalent eigenvalue problem and solution for a free-free plate are created from the plate formulation. For aspheric, anamorphic optical surfaces, the tool misfit is derived; it is defined as the result of movement from the initial perfect fit on the optic to any other position. The Polisher Design (POD) software for circular tools on aspheric optics is introduced. NASTRAN-based finite element analysis results are compared with the POD software, showing high correlation. By employing existing free-free eigenvalues and eigenfunctions, the work may be extended to rectangular polishing tools as well.

  1. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  2. Integrating opto-thermo-mechanical design tools: open engineering's project presentation

    NASA Astrophysics Data System (ADS)

    De Vincenzo, P.; Klapka, Igor

    2017-11-01

    An integrated numerical simulation package dedicated to the analysis of the coupled interactions of optical devices is presented. To reduce human interventions during data transfers, it is based on in-memory communications between the structural analysis software OOFELIE and the optical design application ZEMAX. It allows the automated enhancement of the existing optical design with information related to the deformations of optical surfaces due to thermomechanical solicitations. From the knowledge of these deformations, a grid of points or a decomposition based on Zernike polynomials can be generated for each surface. These data are then applied to the optical design. Finally, indicators can be retrieved from ZEMAX in order to compare the optical performances with those of the system in its nominal configuration.

  3. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    PubMed Central

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-01-01

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be 1310 nm. The theoretical calculated values of threshold sensitivity and dynamic range for this prototype are 0.052 °/h and 101.38 dB (from ±1.164 × 10−5 °/s up to ±78.19 °/s), respectively. The Scale-Factor (SF) non-linearity for this model is 5.404% relative to full scale, this value being obtained from data simulation results. PMID:27128924

  4. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    PubMed

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be 1310 nm. The theoretical calculated values of threshold sensitivity and dynamic range for this prototype are 0.052 °/h and 101.38 dB (from ±1.164 × 10(-5) °/s up to ±78.19 °/s), respectively. The Scale-Factor (SF) non-linearity for this model is 5.404% relative to full scale, this value being obtained from data simulation results.

  5. Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2013-09-01

    Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.

  6. Development and manufacture of visor for helmet-mounted display

    NASA Astrophysics Data System (ADS)

    Krevor, David H.; McNelly, Gregg; Skubon, John; Speirs, Robert

    2004-01-01

    The manufacturing design and process development for the Visor for the JHMCS (Joint Helmet Mounted Cueing System) are discussed. The JHMCS system is a Helmet Mounted Display (HMD) system currently flying on the F-15, F-16 and F/A-18 aircraft. The Visor manufacturing processes are essential to both system performance and economy. The Visor functions both as the system optical combiner and personal protective equipment for the pilot. The Visor material is optical polycarbonate. For a military HMD system, the mechanical and environmental properties of the Visor are as necessary as the optical properties. The visor must meet stringent dimensional requirements to assure adequate system optical performance. Injection molding can provide dimensional fidelity to the requirements, if done properly. Concurrent design of the visor and the tool (i.e., the injection mold) is essential. The concurrent design necessarily considers manufacturing operations and the use environment of the Visor. Computer modeling of the molding process is a necessary input to the mold design. With proper attention to product design and tool development, it is possible to improve upon published standard dimensional tolerances for molded polycarbonate articles.

  7. Computer-Aided Design Package for Designers of Digital Optical Computers

    DTIC Science & Technology

    1991-02-01

    circuit depth and in circuit breadth. It appears, from initial studies by PhD students Gupta and Majidi using the newly modified tools, that a few irregular...Gupta, which is based on an earlier tool developed by Majidi . The tool allows logic gates to have fan-ins and fan-outs that vary, and allows circuits

  8. Design and progress in the fabrication of an EUV micro exposure tool optics for PREUVE

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tanne, Jean-Francois

    2001-12-01

    SAGEM, through its REOSC product line, is participating since November 1999 to PREUVE, the French EUV initiative, and work within this program especially in the field of EUV illumination and projection optics. After a short description of the PREUVE main lines of activity, we will detail our contributions to this program and work progress. This is mainly focused on basic EUV optics fabrication technology in order to ensure the fabrication of the entire optics assembly of an EUV micro exposure tool.

  9. A study of optical design and optimization of laser optics

    NASA Astrophysics Data System (ADS)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  10. Design and analysis of tactile optical sensor for endovascular surgery

    NASA Astrophysics Data System (ADS)

    Qasaimeh, M. A.; Dargahi, J.; Kahrizi, M.; Packirisamy, M.

    2007-06-01

    In this paper, design and Finite Element analysis of a new tactile optical sensor for the measurement of contact-pressure and tissue compliance in endovascular surgeries are presented. Using Micro-Electro-Mechanical-Systems (MEMS) technology, this sensor can be fabricated and integrated with the medical tools for endovascular surgeries such as Catheter tool. The designed sensor is capable of detecting the magnitude of the applied forces, the pressure distribution on contact objects, and also estimating the compliance of the contact tissue. The designed sensor is made of three layers, the upper layer is fabricated from monocrystalline silicon to form silicon membranes, the middle layer which is the supporting element is fabricated from both silicon and silicone rubber as a soft material and the lower layer is a supporting Plexiglas substrate to connect the designed sensor to the optical fibers. Simulation results show that for the given contact forces, the magnitude and the distribution of contacting tissues pressure along with tissue compliance can be determined. This sensor as proposed is a good candidate for batch micromachining, which is yet another commercial advantage for this design. Because of its less expensive cost, the surgeon can use it as a disposal part of the endovascular tools, requiring no re-sterilization and reducing the cost of surgery.

  11. A method which can enhance the optical-centering accuracy

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-min; Zhang, Xue-jun; Dai, Yi-dan; Yu, Tao; Duan, Jia-you; Li, Hua

    2014-09-01

    Optical alignment machining is an effective method to ensure the co-axiality of optical system. The co-axiality accuracy is determined by optical-centering accuracy of single optical unit, which is determined by the rotating accuracy of lathe and the optical-centering judgment accuracy. When the rotating accuracy of 0.2um can be achieved, the leading error can be ignored. An axis-determination tool which is based on the principle of auto-collimation can be used to determine the only position of centerscope is designed. The only position is the position where the optical axis of centerscope is coincided with the rotating axis of the lathe. Also a new optical-centering judgment method is presented. A system which includes the axis-determination tool and the new optical-centering judgment method can enhance the optical-centering accuracy to 0.003mm.

  12. Optical Vector Near-Field Imaging for the Design of Impedance Matched Optical Antennas and Devices

    NASA Astrophysics Data System (ADS)

    Olmon, Robert L.

    Antennas control and confine electromagnetic energy, transforming free-space propagating modes to localized regions. This is not only true for the traditional classical radio antenna, but also for structures that interact resonantly at frequencies throughout the visible regime, that are on the micro- and nanometer size scales. The investigation of these optical antennas has increased dramatically in recent years. They promise to bring the transformative capabilities of radio antennas to the nanoscale in fields such as plasmonics, photonics, spectroscopy, and microscopy. However, designing optical antennas with desired properties is not straightforward due to different material properties and geometric considerations in the optical regime compared to the RF. New antenna characterization tools and techniques must be developed for the optical frequency range. Here, the optical analogue of the vector network analyzer, based on a scattering-type scanning near-field optical microscope, is described and demonstrated for the investigation of the electric and magnetic properties of optical antennas through their electromagnetic vector near-field. Specifically, bringing this microwave frequency tool to the optical regime enables the study of antenna resonant length scaling, optical frequency electromagnetic parameters including current density and impedance, optical antenna coupling to waveguides and nanoloads, local electric field enhancement, and electromagnetic duality of complementary optical antenna geometries.

  13. Advances in the production of freeform optical surfaces

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.; Luniya, Suneet S.

    2007-05-01

    Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.

  14. Hierarchy curriculum for practical skills training in optics and photonics

    NASA Astrophysics Data System (ADS)

    Zheng, XiaoDong; Wang, XiaoPing; Liu, Xu; Liu, XiangDong; Lin, YuanFang

    2017-08-01

    The employers in optical engineering fields hope to recruit students who are capable of applying optical principles to solve engineering problems and have strong laboratory skills. In Zhejiang University, a hierarchy curriculum for practical skill training has been constructed to satisfy this demand. This curriculum includes "Introductive practicum" for freshmen, "Opto-mechanical systems design", "Engineering training", "Electronic system design", "Student research training program (SRTP)", "National University Students' Optical-Science-Technology Competition game", and "Offcampus externship". Without cutting optical theory credit hours, this hierarchy curriculum provides a step-by-step solution to enhance students' practical skills. By following such a hierarchy curriculum, students can smoothly advance from a novice to a qualified professional expert in optics. They will be able to utilize optical engineering tools to design, build, analyze, improve, and test systems, and will be able to work effectively in teams to solve problems in engineering and design.

  15. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 4; Overview and Introduction of Matlab Based Toolkits used to Interface with Optical Design Software

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part four of a series on the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written in Matlab, which interface with optical design software (CodeV, OSLO, and Zemax) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  16. Optical modeling activities for NASA's James Webb Space Telescope (JWST): IV. Overview and introduction of MATLAB based toolkits used to interface with optical design software

    NASA Astrophysics Data System (ADS)

    Howard, Joseph M.

    2007-09-01

    This paper is part four of a series on the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The third paper investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The work here introduces some of the math software tools used to perform the work of the previous three papers of this series. NASA has recently approved these in-house tools for public release as open source, so this presentation also serves as a quick tutorial on their use. The tools are collections of functions written for use in MATLAB to interface with optical design software (CODE V, OSLO, and ZEMAX) using either COM or DDE communication protocol. The functions are discussed, and examples are given.

  17. MOEMS Modeling Using the Geometrical Matrix Toolbox

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2005-01-01

    New technologies such as MicroOptoElectro-Mechanical Systems (MOEMS) require new modeling tools. These tools must simultaneously model the optical, electrical, and mechanical domains and the interactions between these domains. To facilitate rapid prototyping of these new technologies an optical toolbox has been developed for modeling MOEMS devices. The toolbox models are constructed using MATLAB's dynamical simulator, Simulink. Modeling toolboxes will allow users to focus their efforts on system design and analysis as opposed to developing component models. This toolbox was developed to facilitate rapid modeling and design of a MOEMS based laser ultrasonic receiver system.

  18. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  19. VPIsystems industry training program on computer-aided design of fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Richter, Andre; Chan, David K. C.

    2002-05-01

    In industry today, professional Photonic Design Automation (PDA) tools are a necessity to enable fast development cycles for the design of optical components, systems and networks. The training of industrial personnel is of great importance in facilitating the full usability of PDA tools tailored to meet these demands. As the market leader of design and planning tools for system integrators and manufacturers of optical transmission systems and components, VPIsystems offers a set of two-day training courses. Attendees are taught on the design of metro WDM networks, high speed DWDM and ultra long-haul WDM systems, analogue and digital cable access systems, EDFA and Raman amplifiers, as well as active devices and circuits. The course work compromises of: (1) lectures on physical and modeling background topics; (2) creation of typical simulation scenarios and; (3) the analysis of results. This course work is facilitated by guided, hands-on lab exercises using VPIsystems software for a variety of practical design situations. In classes of up to 15, each attendee is allocated a computer, thereby allowing for a thorough and speedy training for the individual in all of the covered topics as well as for any extra-curriculum topics to be covered. Since 1999, more than 750 people have graduated from over 60 training courses. In this paper, details of VPIsystems Industry training program will be presented.

  20. CAD Integration : new optical design possibilities

    NASA Astrophysics Data System (ADS)

    Haumonte, Jean-Baptiste; Venturino, Jean-Claude

    2005-09-01

    The development of optical design and analysis tools in a CAD software can help to optimise the design, size and performance of tomorrow's consumer products. While optics was still held back by software limitations, CAD programs were moving forward in leaps and bounds, improving manufacturing technologies and making it possible to design and produce highly innovative and sophisticated products. The problem was that in the past, 'traditional' optical design programs were only able to simulate spherical and aspherical lenses, meaning that the optical designers were limited to designing systems which were a series of imperfect lenses, each one correcting the last. That is why OPTIS has created the first optical design program to be fully integrated into a CAD program. The technology is available from OPTIS in an integrated SOLIDWORKS or CATIA V5 version. Users of this software can reduce the number of lenses needed in a system. Designers will now have access to complex surfaces such as NURBS meaning they will now be able to define free shape progressive lenses and even improve on optical performances using fewer lenses. This revolutionary technology will allow mechanical designers to work on optical systems and to share information with optical designers for the first time. Previously not possible in a CAD program you may now determine all the optical performances of any optical system, providing first order and third order performances, sequential and non-sequential ray-tracing, wavefront surfaces, point spread function, MTF, spot-diagram, using real optical surfaces and guaranteeing the mechanical precision necessary for an optical system.

  1. Computational Ion Optics Design Evaluations

    NASA Technical Reports Server (NTRS)

    Malone, Shane P.; Soulas, George C.

    2004-01-01

    Ion optics computational models are invaluable tools in the design of ion optics systems. In this study a new computational model developed by an outside vendor for use at the NASA Glenn Research Center (GRC) is presented. This computational model is a gun code that has been modified to model the plasma sheaths both upstream and downstream of the ion optics. The model handles multiple species (e.g. singly and doubly-charged ions) and includes a charge-exchange model to support erosion estimations. The model uses commercially developed solid design and meshing software to allow high flexibility in ion optics geometric configurations. The results from this computational model are applied to the NEXT project to investigate the effects of crossover impingement erosion seen during the 2000-hour wear test.

  2. Subsidence monitoring system for offshore applications: technology scouting and feasibility studies

    NASA Astrophysics Data System (ADS)

    Miandro, R.; Dacome, C.; Mosconi, A.; Roncari, G.

    2015-11-01

    Because of concern about possible impacts of hydrocarbon production activities on coastal-area environments and infrastructures, new hydrocarbon offshore development projects in Italy must submit a monitoring plan to Italian authorities to measure and analyse real-time subsidence evolution. The general geological context, where the main offshore Adriatic fields are located, is represented by young unconsolidated terrigenous sediments. In such geological environments, sea floor subsidence, caused by hydrocarbon extraction, is quite probable. Though many tools are available for subsidence monitoring onshore, few are available for offshore monitoring. To fill the gap ENI (Ente Nazionale Idrocarburi) started a research program, principally in collaboration with three companies, to generate a monitoring system tool to measure seafloor subsidence. The tool, according to ENI design technical-specification, would be a robust long pipeline or cable, with a variable or constant outside diameter (less than or equal to 100 mm) and interval spaced measuring points. The design specifications for the first prototype were: to detect 1 mm altitude variation, to work up to 100 m water depth and investigation length of 3 km. Advanced feasibility studies have been carried out with: Fugro Geoservices B.V. (Netherlands), D'Appolonia (Italy), Agisco (Italy). Five design (using three fundamental measurements concepts and five measurement tools) were explored: cable shape changes measured by cable strain using fiber optics (Fugro); cable inclination measured using tiltmeters (D'Appolonia) and measured using fiber optics (Fugro); and internal cable altitude-dependent pressure changes measured using fiber optics (Fugro) and measured using pressure transducers at discrete intervals along the hydraulic system (Agisco). Each design tool was analysed and a rank ordering of preferences was performed. The third method (measurement of pressure changes), with the solution proposed by Agisco, was deemed most feasible. Agisco is building the first prototype of the tool to be installed in an offshore field in the next few years. This paper describes design of instruments from the three companies to satisfy the design specification.

  3. Optical design and simulation of a new coherence beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.

    2017-08-01

    We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.

  4. Easy-to-use software tools for teaching the basics, design and applications of optical components and systems

    NASA Astrophysics Data System (ADS)

    Gerhard, Christoph; Adams, Geoff

    2015-10-01

    Geometric optics is at the heart of optics teaching. Some of us may remember using pins and string to test the simple lens equation at school. Matters get more complex at undergraduate/postgraduate levels as we are introduced to paraxial rays, real rays, wavefronts, aberration theory and much more. Software is essential for the later stages, and the right software can profitably be used even at school. We present two free PC programs, which have been widely used in optics teaching, and have been further developed in close cooperation with lecturers/professors in order to address the current content of the curricula for optics, photonics and lasers in higher education. PreDesigner is a single thin lens modeller. It illustrates the simple lens law with construction rays and then allows the user to include field size and aperture. Sliders can be used to adjust key values with instant graphical feedback. This tool thus represents a helpful teaching medium for the visualization of basic interrelations in optics. WinLens3DBasic can model multiple thin or thick lenses with real glasses. It shows the system focii, principal planes, nodal points, gives paraxial ray trace values, details the Seidel aberrations, offers real ray tracing and many forms of analysis. It is simple to reverse lenses and model tilts and decenters. This tool therefore provides a good base for learning lens design fundamentals. Much work has been put into offering these features in ways that are easy to use, and offer opportunities to enhance the student's background understanding.

  5. Exploring Focal and Aberration Properties of Electrostatic Lenses through Computer Simulation

    ERIC Educational Resources Information Center

    Sise, Omer; Manura, David J.; Dogan, Mevlut

    2008-01-01

    The interactive nature of computer simulation allows students to develop a deeper understanding of the laws of charged particle optics. Here, the use of commercially available optical design programs is described as a tool to aid in solving charged particle optics problems. We describe simple and practical demonstrations of basic electrostatic…

  6. Particle swarm optimization applied to automatic lens design

    NASA Astrophysics Data System (ADS)

    Qin, Hua

    2011-06-01

    This paper describes a novel application of Particle Swarm Optimization (PSO) technique to lens design. A mathematical model is constructed, and merit functions in an optical system are employed as fitness functions, which combined radiuses of curvature, thicknesses among lens surfaces and refractive indices regarding an optical system. By using this function, the aberration correction is carried out. A design example using PSO is given. Results show that PSO as optical design tools is practical and powerful, and this method is no longer dependent on the lens initial structure and can arbitrarily create search ranges of structural parameters of a lens system, which is an important step towards automatic design with artificial intelligence.

  7. Designing Interactive Learning Systems.

    ERIC Educational Resources Information Center

    Barker, Philip

    1990-01-01

    Describes multimedia, computer-based interactive learning systems that support various forms of individualized study. Highlights include design models; user interfaces; design guidelines; media utilization paradigms, including hypermedia and learner-controlled models; metaphors and myths; authoring tools; optical media; workstations; four case…

  8. Navigation and Elctro-Optic Sensor Integration Technology for Fusion of Imagery and Digital Mapping Products

    DTIC Science & Technology

    1999-08-01

    Electro - Optic Sensor Integration Technology (NEOSIT) software application. The design is highly modular and based on COTS tools to facilitate integration with sensors, navigation and digital data sources already installed on different host

  9. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  10. Manufacturing plastic injection optical molds

    NASA Astrophysics Data System (ADS)

    Bourque, David

    2008-08-01

    ABCO Tool & Die, Inc. is a mold manufacturer specializing in the manufacturing of plastic injection molds for molded optical parts. The purpose of this presentation is to explain the concepts and procedures required to build a mold that produces precision optical parts. Optical molds can produce a variety of molded parts ranging from safety eyewear to sophisticated military lens parts, which must meet precise optical specifications. The manufacturing of these molds begins with the design engineering of precision optical components. The mold design and the related optical inserts are determined based upon the specific optical criteria and optical surface geometry. The mold manufacturing techniques will be based upon the optical surface geometry requirements and specific details. Manufacturing processes used will be specific to prescribed geometrical surface requirements of the molded part. The combined efforts result in a robust optical mold which can produce molded parts that meet the most precise optical specifications.

  11. Development and implementation of a portable grating interferometer system as a standard tool for testing optics at the Advanced Photon Source beamline 1-BM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assoufid, Lahsen; Shi, Xianbo; Marathe, Shashidhara

    We developed a portable X-ray grating interferometer setup as a standard tool for testing optics at the Advanced Photon Source (APS) beamline 1-BM. The interferometer can be operated in phase-stepping, Moiré, or single-grating harmonic imaging mode with 1-D or 2-D gratings. All of the interferometer motions are motorized; hence, it is much easier and quicker to switch between the different modes of operation. A novel aspect of this new instrument is its designed portability. While the setup is designed to be primarily used as a standard tool for testing optics at 1-BM, it could be potentially deployed at other APSmore » beamlines for beam coherence and wavefront characterization or imaging. The design of the interferometer system is described in detail and coherence measurements obtained at the APS 34-ID-E beamline are presented. The coherence was probed in two directions using a 2-D checkerboard, a linear, and a circular grating at X-ray energies of 8 keV, 11 keV, and 18 keV.« less

  12. Ultrasonic grinding of optical materials

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bechtold, Michael; Fess, Edward; Stephan, Thomas; Bechtold, Rob

    2017-10-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, PCA, or Silicon Carbide can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Slow processing speeds, premature tool wear, and poor surface quality are common results of the tough mechanical properties of these materials. Often, as a preparatory stage for polishing, the finish of the ground surface greatly influences the polishing process and the resulting finished product. To overcome these challenges, OptiPro Systems has developed an ultrasonic assisted grinding technology, OptiSonic, which has been designed for the precision optics and ceramics industry. OptiSonic utilizes a custom tool holder designed to produce oscillations, in microns of amplitude, in line with the rotating spindle. A software package, IntelliSonic, is integral to the function of this platform. IntelliSonic can automatically characterize tooling during setup to identify and select the ideal resonant peak which to operate at. Then, while grinding, IntelliSonic continuously adjusts the output frequency for optimal grinding efficiency while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more precise surface. Utilizing a variety of instruments, tests have proven to show a reduction in force between tool and part by up to 50%, while increasing the surface quality and reducing tool wear. This paper will present the challenges associated with these materials and solutions created to overcome them.

  13. An improved Michelson interferometer: smoothing out the rough spots for a more effective teaching tool

    NASA Astrophysics Data System (ADS)

    Eastman, Clarke K.

    2017-08-01

    The Michelson interferometer is a classic tool for demonstrating the wave nature of light, and it is a cornerstone of the optics curriculum. But many students' experiences with this device are higher in frustration than they are in learning. That situation motivated an effort to make aligning the tool less a test of a visual acuity and patience, and more of an introduction to optics phenomena and optical engineering. Key improvements included an added beam-splitter to accommodate multiple observers, a modified telescope to quickly and reliably obtain parallel mirrors, and a series of increasing spectral-width light sources to obtain equal path lengths. This greatly improved students' chances of success, as defined by achieving "white light fringes". When presenting these new features to the students, high importance is placed on understanding why alignment was so difficult with the original design, and why the changes made alignment easier. By exposing the rationale behind the improvements, students can observe the process of problem-solving in an optical engineering scenario. Equally important is the demonstration that solutions can be devised or adapted based on the parts at hand, and that implementations only achieve a highly "polished' state after several design iterations.

  14. Structural considerations for fabrication and mounting of the AXAF HRMA optics

    NASA Technical Reports Server (NTRS)

    Cohen, Lester M.; Cernoch, Larry; Mathews, Gary; Stallcup, Michael

    1990-01-01

    A methodology is described which minimizes optics distortion in the fabrication, metrology, and launch configuration phases. The significance of finite element modeling and breadboard testing is described with respect to performance analyses of support structures and material effects in NASA's AXAF X-ray optics. The paper outlines the requirements for AXAF performance, optical fabrication, metrology, and glass support fixtures, as well as the specifications for mirror sensitivity and the high-resolution mirror assembly. Analytical modeling of the tools is shown to coincide with grinding and polishing experiments, and is useful for designing large-area polishing and grinding tools. Metrological subcomponents that have undergone initial testing show evidence of meeting force requirements.

  15. Development and Implementation of a Generic Analysis Template for Structural-Thermal-Optical-Performance Modeling

    NASA Technical Reports Server (NTRS)

    Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad

    2016-01-01

    Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.

  16. Development and implementation of a generic analysis template for structural-thermal-optical-performance modeling

    NASA Astrophysics Data System (ADS)

    Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad

    2016-09-01

    Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.

  17. Reliability improvement methods for sapphire fiber temperature sensors

    NASA Astrophysics Data System (ADS)

    Schietinger, C.; Adams, B.

    1991-08-01

    Mechanical, optical, electrical, and software design improvements can be brought to bear in the enhancement of fiber-optic sapphire-fiber temperature measurement tool reliability in harsh environments. The optical fiber thermometry (OFT) equipment discussed is used in numerous process industries and generally involves a sapphire sensor, an optical transmission cable, and a microprocessor-based signal analyzer. OFT technology incorporating sensors for corrosive environments, hybrid sensors, and two-wavelength measurements, are discussed.

  18. Designing and specifying aspheres for manufacturability

    NASA Astrophysics Data System (ADS)

    Kumler, Jay

    2005-08-01

    New technologies for the fabrication of aspheres have increased opportunities for using aspheres in a wider range of optical systems. If manufacturability is considered early in the optical design process, the short and long term costs of the aspheric surface can be greatly reduced without sacrificing performance. The optical designer must learn how to select optimum materials for aspheres. Using non-staining glasses, higher index glass types, and softer glass types can help reduce production costs. If the optical designer understands what range of aspheric surfaces can be manufactured, they can constrain the aspheric surface during optimization. The steepness of the aspheric departure (the slope of the aspheric departure) often has a larger impact on manufacturing difficulty than the amplitude of the asphere or the steepness of the base radius. Tolerancing can increase the difficulty without measurably improving optical performance. Finally, the asphere can be designed for ease of metrology. Understanding the options that are available for aspheric metrology will allow the engineer to control tooling and fixturing that is required for testing.

  19. Determination and Control of Optical and X-Ray Wave Fronts

    NASA Technical Reports Server (NTRS)

    Kim, Young K.

    1997-01-01

    A successful design of a space-based or ground optical system requires an iterative procedure which includes the kinematics and dynamics of the system in operating environment, control synthesis and verification. To facilitate the task of designing optical wave front control systems being developed at NASA/MSFC, a multi-discipline dynamics and control tool has been developed by utilizing TREETOPS, a multi-body dynamics and control simulation, NASTRAN and MATLAB. Dynamics and control models of STABLE and ARIS were developed for TREETOPS simulation, and their simulation results are documented in this report.

  20. Small Business Innovation Research (SBIR) Program, FY 1994. Program Solicitation 94.1, Closing Date: 14 January 1994

    DTIC Science & Technology

    1994-01-01

    is to design and develop a diode laser and ssociated driver circuitry with i•eh peak power, high pulse repetition frequency (PRF), and good beam...Computer modeling tools shall be used to design and optimize breadboard model of a multi-terminal high speed ring bus for flight critical applications... design , fabricate, and test a fiber optic interface device which will improve coupling of high energy, pulsed lasers into commercial fiber optics at a

  1. Integrated modeling: a look back

    NASA Astrophysics Data System (ADS)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  2. Wide-Field Imaging System and Rapid Direction of Optical Zoom (WOZ)

    DTIC Science & Technology

    2011-03-25

    COMSOL Multiphysics, and ZEMAX optical design. The multiphysics design tool is nearing completion. We have demonstrated the ability to create a model in...and mechanical modeling to calculate the deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via...MatLab. From ZEMAX , various analyses can be conducted to determine important parameters such as focal point, aberrations, and wavefront distortion

  3. Defense Small Business Innovation Research Program (SBIR), Volume 4, Defense Agencies Abstracts of Phase 1 Awards 1991

    DTIC Science & Technology

    1991-01-01

    EXPERIENCE IN DEVELOPING INTEGRATED OPTICAL DEVICES, NONLINEAR MAGNETIC-OPTIC MATERIALS, HIGH FREQUENCY MODULATORS, COMPUTER-AIDED MODELING AND SOPHISTICATED... HIGH -LEVEL PRESENTATION AND DISTRIBUTED CONTROL MODELS FOR INTEGRATING HETEROGENEOUS MECHANICAL ENGINEERING APPLICATIONS AND TOOLS. THE DESIGN IS FOCUSED...STATISTICALLY ACCURATE WORST CASE DEVICE MODELS FOR CIRCUIT SIMULATION. PRESENT METHODS OF WORST CASE DEVICE DESIGN ARE AD HOC AND DO NOT ALLOW THE

  4. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

    PubMed Central

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava

    2015-01-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  5. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  6. Study on manufacturing method of optical surface with high precision in angle and surface

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Li, Xin; Yu, Ze; Zhao, Bin; Zhang, Xuebin; Sun, Lipeng; Tong, Yi

    2016-10-01

    This paper studied a manufacturing processing of optical surface with high precision in angel and surface. By theoretical analysis of the relationships between the angel precision and surface, the measurement conversion of the technical indicators, optical-cement method application, the optical-cement tooling design, the experiment has been finished successfully, the processing method has been verified, which can be also used in the manufacturing of the optical surface with similar high precision in angle and surface.

  7. Direct write fabrication of waveguides and interconnects for optical printed wiring boards

    NASA Astrophysics Data System (ADS)

    Dingeldein, Joseph C.

    Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 μm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.

  8. Data handling and representation of freeform surfaces

    NASA Astrophysics Data System (ADS)

    Steinkopf, Ralf; Dick, Lars; Kopf, Tino; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona

    2011-10-01

    Freeform surfaces enable innovative optics. They are not limited by axis symmetry and hence they are almost free in design. They are used to reduce the installation space and enhance the performance of optical elements. State of the art optical design tools are computing with powerful algorithms to simulate freeform surfaces. Even new mathematical approaches are under development /1/. In consequence, new optical designs /2/ are pushing the development of manufacturing processes consequently and novel types of datasets have to proceed through the process chain /3/. The complexity of these data is the huge challenge for the data handling. Because of the asymmetrical and 3-dimensional surfaces of freeforms, large data volumes have to be created, trimmed, extended and fitted. All these processes must be performed without losing the accuracy of the original design data. Additionally, manifold types of geometries results in different kinds of mathematical representations of freeform surfaces and furthermore the used CAD/CAM tools are dealing with a set of spatial transport formats. These are all reasons why manufacture-oriented approaches for the freeform data handling are not yet sufficiently developed. This paper suggests a classification of freeform surfaces based on the manufacturing methods which are offered by diamond machining. The different manufacturing technologies, ranging from servo-turning to shaping, require a differentiated approach for the data handling process. The usage of analytical descriptions in form of splines and polynomials as well as the application of discrete descriptions like point clouds is shown in relation to the previously made classification. Advantages and disadvantages of freeform representations are discussed. Aspects of the data handling in between different process steps are pointed out and suitable exchange formats for freeform data are proposed. The described approach offers the possibility for efficient data handling from optical design to systems in novel optics.

  9. Optical simulations of organic light-emitting diodes through a combination of rigorous electromagnetic solvers and Monte Carlo ray-tracing methods

    NASA Astrophysics Data System (ADS)

    Bahl, Mayank; Zhou, Gui-Rong; Heller, Evan; Cassarly, William; Jiang, Mingming; Scarmozzino, Rob; Gregory, G. Groot

    2014-09-01

    Over the last two decades there has been extensive research done to improve the design of Organic Light Emitting Diodes (OLEDs) so as to enhance light extraction efficiency, improve beam shaping, and allow color tuning through techniques such as the use of patterned substrates, photonic crystal (PCs) gratings, back reflectors, surface texture, and phosphor down-conversion. Computational simulation has been an important tool for examining these increasingly complex designs. It has provided insights for improving OLED performance as a result of its ability to explore limitations, predict solutions, and demonstrate theoretical results. Depending upon the focus of the design and scale of the problem, simulations are carried out using rigorous electromagnetic (EM) wave optics based techniques, such as finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA), or through ray optics based technique such as Monte Carlo ray-tracing. The former are typically used for modeling nanostructures on the OLED die, and the latter for modeling encapsulating structures, die placement, back-reflection, and phosphor down-conversion. This paper presents the use of a mixed-level simulation approach which unifies the use of EM wave-level and ray-level tools. This approach uses rigorous EM wave based tools to characterize the nanostructured die and generate both a Bidirectional Scattering Distribution function (BSDF) and a far-field angular intensity distribution. These characteristics are then incorporated into the ray-tracing simulator to obtain the overall performance. Such mixed-level approach allows for comprehensive modeling of the optical characteristic of OLEDs and can potentially lead to more accurate performance than that from individual modeling tools alone.

  10. Optical splitter design for telecommunication access networks with triple-play services

    NASA Astrophysics Data System (ADS)

    Agalliu, Rajdi; Burtscher, Catalina; Lucki, Michal; Seyringer, Dana

    2018-01-01

    In this paper, we present various designs of optical splitters for access networks, such as GPON and XG-PON by ITU-T with triple-play services (ie data, voice and video). The presented designs exhibit a step forward, compared to the solutions recommended by the ITU, in terms of performance in transmission systems using WDM. The quality of performance is represented by the bit error rate and the Q-factor. Besides the standard splitter design, we propose a new length-optimized splitter design with a smaller waveguide core, providing some reduction of non-uniformity of the power split between the output waveguides. The achieved splitting parameters are incorporated in the simulations of passive optical networks. For this purpose, the OptSim tool employing Time Domain Split Step method was used.

  11. Layout pattern analysis using the Voronoi diagram of line segments

    NASA Astrophysics Data System (ADS)

    Dey, Sandeep Kumar; Cheilaris, Panagiotis; Gabrani, Maria; Papadopoulou, Evanthia

    2016-01-01

    Early identification of problematic patterns in very large scale integration (VLSI) designs is of great value as the lithographic simulation tools face significant timing challenges. To reduce the processing time, such a tool selects only a fraction of possible patterns which have a probable area of failure, with the risk of missing some problematic patterns. We introduce a fast method to automatically extract patterns based on their structure and context, using the Voronoi diagram of line-segments as derived from the edges of VLSI design shapes. Designers put line segments around the problematic locations in patterns called "gauges," along which the critical distance is measured. The gauge center is the midpoint of a gauge. We first use the Voronoi diagram of VLSI shapes to identify possible problematic locations, represented as gauge centers. Then we use the derived locations to extract windows containing the problematic patterns from the design layout. The problematic locations are prioritized by the shape and proximity information of the design polygons. We perform experiments for pattern selection in a portion of a 22-nm random logic design layout. The design layout had 38,584 design polygons (consisting of 199,946 line segments) on layer Mx, and 7079 markers generated by an optical rule checker (ORC) tool. The optical rules specify requirements for printing circuits with minimum dimension. Markers are the locations of some optical rule violations in the layout. We verify our approach by comparing the coverage of our extracted patterns to the ORC-generated markers. We further derive a similarity measure between patterns and between layouts. The similarity measure helps to identify a set of representative gauges that reduces the number of patterns for analysis.

  12. Benchmarking of software tools for optical proximity correction

    NASA Astrophysics Data System (ADS)

    Jungmann, Angelika; Thiele, Joerg; Friedrich, Christoph M.; Pforr, Rainer; Maurer, Wilhelm

    1998-06-01

    The point when optical proximity correction (OPC) will become a routine procedure for every design is not far away. For such a daily use the requirements for an OPC tool go far beyond the principal functionality of OPC that was proven by a number of approaches and is documented well in literature. In this paper we first discuss the requirements for a productive OPC tool. Against these requirements a benchmarking was performed with three different OPC tools available on market (OPRX from TVT, OPTISSIMO from aiss and PROTEUS from TMA). Each of these tools uses a different approach to perform the correction (rules, simulation or model). To assess the accuracy of the correction, a test chip was fabricated, which contains corrections done by each software tool. The advantages and weakness of the several solutions are discussed.

  13. Error Propagation Analysis in the SAE Architecture Analysis and Design Language (AADL) and the EDICT Tool Framework

    NASA Technical Reports Server (NTRS)

    LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.

    2011-01-01

    This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.

  14. Design requirements for a stand alone EUV interferometer

    NASA Astrophysics Data System (ADS)

    Michallon, Ph.; Constancias, C.; Lagrange, A.; Dalzotto, B.

    2008-03-01

    EUV lithography is expected to be inserted for the 32/22 nm nodes with possible extension below. EUV resist availability remains one of the main issues to be resolved. There is an urgent need to provide suitable tools to accelerate resist development and to achieve resolution, LER and sensitivity specifications simultaneously. An interferometer lithography tool offers advantages regarding conventional EUV exposure tool. It allows the evaluation of resists, free from the deficiencies of optics and mask which are limiting the achieved resolution. Traditionally, a dedicated beam line from a synchrotron, with limited access, is used as a light source in EUV interference lithography. This paper identifies the technology locks to develop a stand alone EUV interferometer using a compact EUV source. It will describe the theoretical solutions adopted and especially look at the feasibility according to available technologies. EUV sources available on the market have been evaluated in terms of power level, source size, spatial coherency, dose uniformity, accuracy, stability and reproducibility. According to the EUV source characteristics, several optic designs were studied (simple or double gratings). For each of these solutions, the source and collimation optic specifications have been determined. To reduce the exposure time, a new grating technology will also be presented allowing to significantly increasing the transmission system efficiency. The optical grating designs were studied to allow multi-pitch resolution print on the same exposure without any focus adjustment. Finally micro mechanical system supporting the gratings was studied integrating the issues due to vacuum environment, alignment capability, motion precision, automation and metrology to ensure the needed placement control between gratings and wafer. A similar study was carried out for the collimation-optics mechanical support which depends on the source characteristics.

  15. Using integrated models to minimize environmentally induced wavefront error in optomechanical design and analysis

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate design goal of an optical system subjected to dynamic loads is to minimize system level wavefront error (WFE). In random response analysis, system WFE is difficult to predict from finite element results due to the loss of phase information. In the past, the use of ystem WFE was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for determining system level WFE using a linear optics model is presented. An error estimate is included in the analysis output based on fitting errors of mode shapes. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  16. Individual Component Map of Rotatory Strength (ICM-RS) and Rotatory Strength Density (RSD) plots as analysis tools of circular dicroism spectra of complex systems.

    PubMed

    Chang, Le; Baseggio, Oscar; Sementa, Luca; Cheng, Daojian; Fronzoni, Giovanna; Toffoli, Daniele; Aprà, Edoardo; Stener, Mauro; Fortunelli, Alessandro

    2018-06-13

    We introduce Individual Component Maps of Rotatory Strength (ICM-RS) and Rotatory Strength Density (RSD) plots as analysis tools of chiro-optical linear response spectra deriving from time-dependent density functional theory (TDDFT) simulations. ICM-RS and RSD allow one to visualize the origin of chiro-optical response in momentum or real space, including signed contributions and therefore highlighting cancellation terms that are ubiquitous in chirality phenomena, and should be especially useful in analyzing the spectra of complex systems. As test cases, we use ICM-RS and RSD to analyze circular dichroism spectra of selected (Ag-Au)30(SR)18 monolayer-protected metal nanoclusters, showing the potential of the proposed tools to derive insight and understanding, and eventually rational design, in chiro-optical studies of complex systems.

  17. Computational manufacturing as a bridge between design and production.

    PubMed

    Tikhonravov, Alexander V; Trubetskov, Michael K

    2005-11-10

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  18. Computational manufacturing as a bridge between design and production

    NASA Astrophysics Data System (ADS)

    Tikhonravov, Alexander V.; Trubetskov, Michael K.

    2005-11-01

    Computational manufacturing of optical coatings is a research area that can be placed between theoretical designing and practical manufacturing in the same way that computational physics can be placed between theoretical and experimental physics. Investigations in this area have been performed for more than 30 years under the name of computer simulation of manufacturing and monitoring processes. Our goal is to attract attention to the increasing importance of computational manufacturing at the current state of the art in the design and manufacture of optical coatings and to demonstrate possible applications of this research tool.

  19. Fundamental Limits:. Developing New Tools for a Better Understanding of Second-Order Molecular Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen

    The generalized Thomas-Kuhn sum rules are used to characterize the nonlinear optical response of organic chromophores in terms of fundamental parameters that can be measured experimentally. The nonlinear optical performance of organic molecules is evaluated from the combination of hyper-Rayleigh scattering measurements and the analysis in terms of the fundamental limits. Different strategies for the enhancement of nonlinear optical behavior at the molecular and supramolecular level are evaluated and new paradigms for the design of more efficient nonlinear optical molecules are proposed and investigated.

  20. Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: A first principles study

    NASA Astrophysics Data System (ADS)

    Sharma, Deepa; Jaggi, Neena

    2017-07-01

    This paper presents a first principles study on the effect of co-doping on various optical spectra of a zigzag single-walled carbon nanotube (SWCNT). Optical spectra of a pristine SWCNT, SWCNT co-doped with Aluminum (Al) & Phosphorus (P) and another one co-doped with Al, P and Nitrogen (N) have been calculated using density functional theory (DFT).The theory has been implemented using the Cambridge sequential total energy package (CASTEP) code available as a userfriendly module with the software 'Material Studio'. Polarized and unpolarized light as well as light through polycrystalline media have been considered. The dependence of various spectra on the status of incident light presents a clear evidence of anisotropicity in the optical properties. Analysis of the simulated spectra involves calculation and comparison of different optical properties like dielectric function, reflectivity, refractive index, conductivity and loss function for the pristine and co-doped SWCNTs. Noticeable variations are observed in the optical properties on simultaneously doping the SWCNT with Al and P and then further introducing N atom into the structure so that it can be concluded that co-doping (simultaneous doping with different combinations of dopants) can be evolved as a novel and effective tool for tailoring the optical properties of SWCNTs as per the requirements while designing an optical device. It will prove to be highly significant for effective designing of SWCNT based sensitive optical devices for a variety of technological applications.

  1. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2003-12-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  2. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2004-01-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  3. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities

    PubMed Central

    Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.

    2008-01-01

    Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components. PMID:18607511

  4. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.; Squirrell, Jayne M.; Eliceiri, Kevin W.; White, John G.

    2003-01-01

    Experimental laser microbeam techniques have become established tools for studying living specimens. A steerable, focused laser beam may be used for a variety of experimental manipulations such as laser microsurgery, optical trapping, localized photolysis of caged bioactive probes, and patterned photobleaching. Typically, purpose-designed experimental systems have been constructed for each of these applications. In order to assess the consequences of such experimental optical interventions, long-term, microscopic observation of the specimen is often required. Multiphoton excitation, because of its ability to obtain high-contrast images from deep within a specimen with minimal phototoxic effects, is a preferred technique for in vivo imaging. An optical workstation is described that combines the functionality of an experimental optical microbeam apparatus with a sensitive multiphoton imaging system designed for use with living specimens. Design considerations are discussed and examples of ongoing biological applications are presented. The integrated optical workstation concept offers advantages in terms of flexibility and versatility relative to systems implemented with separate imaging and experimental components.

  5. System analysis tools for an ELT at ESO

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Koch, Franz

    2006-06-01

    Engineering of complex, large scale systems like the ELT designs currently investigated and developed in Europe and Northern America require powerful and sophisticated tools within specific technical disciplines such as mechanics, optics and control engineering. However, even analyzing a certain component of the telescope like the telescope structure necessitates a system approach to evaluate the structural effects onto the optical performance. This paper shows several software tools developed by the European Southern Observatory (ESO) which focus onto the system approach in the analyses: Using modal results of a finite element analysis the SMI-toolbox allows an easy generation of structural models with different sizes and levels of accuracy for the control design and closed-loop simulations. The optical modeling code BeamWarrior was developed by ESO and Astrium GmbH, Germany) especially for integrated modeling and interfering with a structural model. Within BeamWarrior displacements and deformations can be applied in an arbitrary coordinate system, and hence also in the global coordinates of the FE model avoiding error prone transformations. In addition to this, a sparse state space model object was developed for Matlab to gain in computational efficiency and reduced memory requirements due to the sparsity pattern of both the structural models and the control architecture. As one result these tools allow building an integrated model in order to reliably simulate interactions, cross-coupling effects, system responses, and to evaluate global performance. In order to evaluate disturbance effects on the optical performance in openloop more efficiently, an optical evaluation toolbox was built in the FE software ANSYS which performs Zernike decomposition and best-fit computation of the deformations directly in the FE analysis.

  6. Quantitative optical imaging and sensing by joint design of point spread functions and estimation algorithms

    NASA Astrophysics Data System (ADS)

    Quirin, Sean Albert

    The joint application of tailored optical Point Spread Functions (PSF) and estimation methods is an important tool for designing quantitative imaging and sensing solutions. By enhancing the information transfer encoded by the optical waves into an image, matched post-processing algorithms are able to complete tasks with improved performance relative to conventional designs. In this thesis, new engineered PSF solutions with image processing algorithms are introduced and demonstrated for quantitative imaging using information-efficient signal processing tools and/or optical-efficient experimental implementations. The use of a 3D engineered PSF, the Double-Helix (DH-PSF), is applied as one solution for three-dimensional, super-resolution fluorescence microscopy. The DH-PSF is a tailored PSF which was engineered to have enhanced information transfer for the task of localizing point sources in three dimensions. Both an information- and optical-efficient implementation of the DH-PSF microscope are demonstrated here for the first time. This microscope is applied to image single-molecules and micro-tubules located within a biological sample. A joint imaging/axial-ranging modality is demonstrated for application to quantifying sources of extended transverse and axial extent. The proposed implementation has improved optical-efficiency relative to prior designs due to the use of serialized cycling through select engineered PSFs. This system is demonstrated for passive-ranging, extended Depth-of-Field imaging and digital refocusing of random objects under broadband illumination. Although the serialized engineered PSF solution is an improvement over prior designs for the joint imaging/passive-ranging modality, it requires the use of multiple PSFs---a potentially significant constraint. Therefore an alternative design is proposed, the Single-Helix PSF, where only one engineered PSF is necessary and the chromatic behavior of objects under broadband illumination provides the necessary information transfer. The matched estimation algorithms are introduced along with an optically-efficient experimental system to image and passively estimate the distance to a test object. An engineered PSF solution is proposed for improving the sensitivity of optical wave-front sensing using a Shack-Hartmann Wave-front Sensor (SHWFS). The performance limits of the classical SHWFS design are evaluated and the engineered PSF system design is demonstrated to enhance performance. This system is fabricated and the mechanism for additional information transfer is identified.

  7. "METHOD": A tool for mechanical, electrical, thermal, and optical characterization of single lens module design

    NASA Astrophysics Data System (ADS)

    Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu

    2015-09-01

    The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.

  8. A compact eyetracked optical see-through head-mounted display

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Gao, Chunyu

    2012-03-01

    An eye-tracked head-mounted display (ET-HMD) system is able to display virtual images as a classical HMD does, while additionally tracking the gaze direction of the user. There is ample evidence that a fully-integrated ETHMD system offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. For instance eyetracking capability in HMDs adds a very valuable tool and objective metric for scientists to quantitatively assess user interaction with 3D environments and investigate the effectiveness of various 3D visualization technologies for various specific tasks including training, education, and augmented cognition tasks. In this paper, we present an innovative optical approach to the design of an optical see-through ET-HMD system based on freeform optical technology and an innovative optical scheme that uniquely combines the display optics with the eye imaging optics. A preliminary design of the described ET-HMD system will be presented.

  9. A Simple Tool for the Design and Analysis of Multiple-Reflector Antennas in a Multi-Disciplinary Environment

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.; Borgioli, Andrea

    2000-01-01

    The process of designing and analyzing a multiple-reflector system has traditionally been time-intensive, requiring large amounts of both computational and human time. At many frequencies, a discrete approximation of the radiation integral may be used to model the system. The code which implements this physical optics (PO) algorithm was developed at the Jet Propulsion Laboratory. It analyzes systems of antennas in pairs, and for each pair, the analysis can be computationally time-consuming. Additionally, the antennas must be described using a local coordinate system for each antenna, which makes it difficult to integrate the design into a multi-disciplinary framework in which there is traditionally one global coordinate system, even before considering deforming the antenna as prescribed by external structural and/or thermal factors. Finally, setting up the code to correctly analyze all the antenna pairs in the system can take a fair amount of time, and introduces possible human error. The use of parallel computing to reduce the computational time required for the analysis of a given pair of antennas has been previously discussed. This paper focuses on the other problems mentioned above. It will present a methodology and examples of use of an automated tool that performs the analysis of a complete multiple-reflector system in an integrated multi-disciplinary environment (including CAD modeling, and structural and thermal analysis) at the click of a button. This tool, named MOD Tool (Millimeter-wave Optics Design Tool), has been designed and implemented as a distributed tool, with a client that runs almost identically on Unix, Mac, and Windows platforms, and a server that runs primarily on a Unix workstation and can interact with parallel supercomputers with simple instruction from the user interacting with the client.

  10. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    NASA Astrophysics Data System (ADS)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  11. Modelling the transport of optical photons in scintillation detectors for diagnostic and radiotherapy imaging

    NASA Astrophysics Data System (ADS)

    Roncali, Emilie; Mosleh-Shirazi, Mohammad Amin; Badano, Aldo

    2017-10-01

    Computational modelling of radiation transport can enhance the understanding of the relative importance of individual processes involved in imaging systems. Modelling is a powerful tool for improving detector designs in ways that are impractical or impossible to achieve through experimental measurements. Modelling of light transport in scintillation detectors used in radiology and radiotherapy imaging that rely on the detection of visible light plays an increasingly important role in detector design. Historically, researchers have invested heavily in modelling the transport of ionizing radiation while light transport is often ignored or coarsely modelled. Due to the complexity of existing light transport simulation tools and the breadth of custom codes developed by users, light transport studies are seldom fully exploited and have not reached their full potential. This topical review aims at providing an overview of the methods employed in freely available and other described optical Monte Carlo packages and analytical models and discussing their respective advantages and limitations. In particular, applications of optical transport modelling in nuclear medicine, diagnostic and radiotherapy imaging are described. A discussion on the evolution of these modelling tools into future developments and applications is presented. The authors declare equal leadership and contribution regarding this review.

  12. Optics of high-performance electron microscopes*

    PubMed Central

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933

  13. Near-Infrared Neuroimaging with NinPy

    PubMed Central

    Strangman, Gary E.; Zhang, Quan; Zeffiro, Thomas

    2009-01-01

    There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling, and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain function, (ii) the key computational requirements to support NIN experiments, (iii) our collection of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html. PMID:19543449

  14. Electrodynamic multiple-scattering method for the simulation of optical trapping atop periodic metamaterials

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-07-01

    We present a new theoretical tool for simulating optical trapping of nanoparticles in the presence of an arbitrary metamaterial design. The method is based on rigorously solving Maxwell's equations for the metamaterial via a hybrid discrete-dipole approximation/multiple-scattering technique and direct calculation of the optical force exerted on the nanoparticle by means of the Maxwell stress tensor. We apply the method to the case of a spherical polystyrene probe trapped within the optical landscape created by illuminating of a plasmonic metamaterial consisting of periodically arranged tapered metallic nanopyramids. The developed technique is ideally suited for general optomechanical calculations involving metamaterial designs and can compete with purely numerical methods such as finite-difference or finite-element schemes.

  15. Making software get along: integrating optical and mechanical design programs

    NASA Astrophysics Data System (ADS)

    Shackelford, Christie J.; Chinnock, Randal B.

    2001-03-01

    As modern optomechanical engineers, we have the good fortune of having very sophisticated software programs available to us. The current optical design, mechanical design, industrial design, and CAM programs are very powerful tools with some very desirable features. However, no one program can do everything necessary to complete an entire optomechanical system design. Each program has a unique set of features and benefits, and typically two or mo re will be used during the product development process. At a minimum, an optical design program and a mechanical CAD package will be employed. As we strive for efficient, cost-effective, and rapid progress in our development projects, we must use these programs to their full advantage, while keeping redundant tasks to a minimum. Together, these programs offer the promise of a `seamless' flow of data from concept all the way to the download of part designs directly to the machine shop for fabrication. In reality, transferring data from one software package to the next is often frustrating. Overcoming these problems takes some know-how, a bit of creativity, and a lot of persistence. This paper describes a complex optomechanical development effort in which a variety of software tools were used from the concept stage to prototyping. It will describe what software was used for each major design task, how we learned to use them together to best advantage, and how we overcame the frustrations of software that didn't get along.

  16. Testing vision with angular and radial multifocal designs using Adaptive Optics.

    PubMed

    Vinas, Maria; Dorronsoro, Carlos; Gonzalez, Veronica; Cortes, Daniel; Radhakrishnan, Aiswaryah; Marcos, Susana

    2017-03-01

    Multifocal vision corrections are increasingly used solutions for presbyopia. In the current study we have evaluated, optically and psychophysically, the quality provided by multizone radial and angular segmented phase designs. Optical and relative visual quality were evaluated using 8 subjects, testing 6 phase designs. Optical quality was evaluated by means of Visual Strehl-based-metrics (VS). The relative visual quality across designs was obtained through a psychophysical paradigm in which images viewed through 210 pairs of phase patterns were perceptually judged. A custom-developed Adaptive Optics (AO) system, including a Hartmann-Shack sensor and an electromagnetic deformable mirror, to measure and correct the eye's aberrations, and a phase-only reflective Spatial Light Modulator, to simulate the phase designs, was developed for this study. The multizone segmented phase designs had 2-4 zones of progressive power (0 to +3D) in either radial or angular distributions. The response of an "ideal observer" purely responding on optical grounds to the same psychophysical test performed on subjects was calculated from the VS curves, and compared with the relative visual quality results. Optical and psychophysical pattern-comparison tests showed that while 2-zone segmented designs (angular & radial) provided better performance for far and near vision, 3- and 4-zone segmented angular designs performed better for intermediate vision. AO-correction of natural aberrations of the subjects modified the response for the different subjects but general trends remained. The differences in perceived quality across the different multifocal patterns are, in a large extent, explained by optical factors. AO is an excellent tool to simulate multifocal refractions before they are manufactured or delivered to the patient, and to assess the effects of the native optics to their performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Optical Storage System For Small Software Package Distribution

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Paul J.

    1985-04-01

    This paper describes an optical mass storage system being developed for extremely low cost distribution of small software packages. The structure of the media, design of the optical playback system, and some aspects of mastering and media production are discussed. This read only system is designed solely for the purpose of down loading code in a spooling fashion from the media to the host machine. The media is configured as a plastic card with dimensions 85 mm x 12 mm x 2mm. Each data region on a card is a rectangle 1.33 mm x 59.4 mm which carries up to 64 KB of user data. Cost estimates for production are 0.06 per card for the media and 38.00 for the playback device. The mastering process for the production tooling uses photolithography techniques and can provide production tooling within a few hours of software release. The playback mechanism is rugged and small, and does not require the use of any electromechanical servos.

  18. A compact holographic optical tweezers instrument

    NASA Astrophysics Data System (ADS)

    Gibson, G. M.; Bowman, R. W.; Linnenberger, A.; Dienerowitz, M.; Phillips, D. B.; Carberry, D. M.; Miles, M. J.; Padgett, M. J.

    2012-11-01

    Holographic optical tweezers have found many applications including the construction of complex micron-scale 3D structures and the control of tools and probes for position, force, and viscosity measurement. We have developed a compact, stable, holographic optical tweezers instrument which can be easily transported and is compatible with a wide range of microscopy techniques, making it a valuable tool for collaborative research. The instrument measures approximately 30×30×35 cm and is designed around a custom inverted microscope, incorporating a fibre laser operating at 1070 nm. We designed the control software to be easily accessible for the non-specialist, and have further improved its ease of use with a multi-touch iPad interface. A high-speed camera allows multiple trapped objects to be tracked simultaneously. We demonstrate that the compact instrument is stable to 0.5 nm for a 10 s measurement time by plotting the Allan variance of the measured position of a trapped 2 μm silica bead. We also present a range of objects that have been successfully manipulated.

  19. Modeling And Simulation Of Bar Code Scanners Using Computer Aided Design Software

    NASA Astrophysics Data System (ADS)

    Hellekson, Ron; Campbell, Scott

    1988-06-01

    Many optical systems have demanding requirements to package the system in a small 3 dimensional space. The use of computer graphic tools can be a tremendous aid to the designer in analyzing the optical problems created by smaller and less costly systems. The Spectra Physics grocery store bar code scanner employs an especially complex 3 dimensional scan pattern to read bar code labels. By using a specially written program which interfaces with a computer aided design system, we have simulated many of the functions of this complex optical system. In this paper we will illustrate how a recent version of the scanner has been designed. We will discuss the use of computer graphics in the design process including interactive tweaking of the scan pattern, analysis of collected light, analysis of the scan pattern density, and analysis of the manufacturing tolerances used to build the scanner.

  20. GeoCARB design maturity and geostationary heritage

    NASA Astrophysics Data System (ADS)

    Sawyer, Kevin; Clark, Charles; Katz, Noah; Kumar, Jack; Nast, Ted; Palmer, Alice

    2013-09-01

    Our companion paper `Progress in development of Tropospheric Infrared Mapping Spectrometers (TIMS): geostationary greenhouse gas (GHG) application' describes geoCARB performance and science. Here we describe a geoCARB instrument design study leading to near PDR maturity. It is based on heritage geostationary (AIA and HMI on SDO, SBIRS GEO-1 and upcoming GLM on GOES-R as examples) and other (IRIS and NIRcam) flight instrumentation. Heritage work includes experience and well developed specifications for near a-thermal carbon fiber honeycomb composite optical benches and optical element mounting design forms that utilize a "family" of mounts for nearly any type of optical element. The geoCARB approach utilizes composite optical benches and bipod flexures to kinematically mount optics. Tooling for alignment and staking of all elements is integral to the design and is "removed before flight" for mass minimization. GeoCARB requires a cryogenic region for focal planes and spectrometers but front end optics and main structure are designed to run much warmer. A star tracker is used for geoCARB posteriori geolocation including pseudo-diurnal thermal distortion characterization. It is kinematically mounted by low conductance thermal isolators directly on to the low expansion high stiffness composite bench that defines the master optical surfaces including the scanning mirrors. The thermal load from the camera heads is routed away from the bench heat pipes. Use of kinematic mounting is advantageous for low thermal conduction designs. Honeycomb composites enable the design's low thermal mechanical distortions.

  1. Free-form illumination optics

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Chaves, Julio; Hernández, Maikel

    2016-04-01

    In many illumination problems, the beam pattern needed and/or some geometrical constraints lead to very asymmetric design conditions. These asymmetries have been solved in the past by means of arrangements of rotationally symmetric or linear lamps aimed in different directions whose patterns overlap to provide the asymmetric prescriptions or by splitting one single lamp into several sections, each one providing a part of the pattern. The development of new design methods yielding smooth continuous free-form optical surfaces to solve these challenging design problems, combined with the proper CAD modeling tools plus the development of multiple axes diamond turn machines, give birth to a new generation of optics. These are able to offer the performance and other advanced features, such as efficiency, compactness, or aesthetical advantages, and can be manufactured at low cost by injection molding. This paper presents two examples of devices with free-form optical surfaces, a camera flash, and a car headlamp.

  2. Electron beam throughput from raster to imaging

    NASA Astrophysics Data System (ADS)

    Zywno, Marek

    2016-12-01

    Two architectures of electron beam tools are presented: single beam MEBES Exara designed and built by Etec Systems for mask writing, and the Reflected E-Beam Lithography tool (REBL), designed and built by KLA-Tencor under a DARPA Agreement No. HR0011-07-9-0007. Both tools have implemented technologies not used before to achieve their goals. The MEBES X, renamed Exara for marketing purposes, used an air bearing stage running in vacuum to achieve smooth continuous scanning. The REBL used 2 dimensional imaging to distribute charge to a 4k pixel swath to achieve writing times on the order of 1 wafer per hour, scalable to throughput approaching optical projection tools. Three stage architectures were designed for continuous scanning of wafers: linear maglev, rotary maglev, and dual linear maglev.

  3. Pressure distribution under flexible polishing tools. II - Cylindrical (conical) optics

    NASA Astrophysics Data System (ADS)

    Mehta, Pravin K.

    1990-10-01

    A previously developed eigenvalue model is extended to determine polishing pressure distribution by rectangular tools with unequal stiffness in two directions on cylindrical optics. Tool misfit is divided into two simplified one-dimensional problems and one simplified two-dimensional problem. Tools with nonuniform cross-sections are treated with a new one-dimensional eigenvalue algorithm, permitting evaluation of tool designs where the edge is more flexible than the interior. This maintains edge pressure variations within acceptable parameters. Finite element modeling is employed to resolve upper bounds, which handle pressure changes in the two-dimensional misfit element. Paraboloids and hyperboloids from the NASA AXAF system are treated with the AXAFPOD software for this method, and are verified with NASTRAN finite element analyses. The maximum deviation from the one-dimensional azimuthal pressure variation is predicted to be 10 percent and 20 percent for paraboloids and hyperboloids, respectively.

  4. JWST Integrated Science Instrument Module Alignment Optimization Tool

    NASA Technical Reports Server (NTRS)

    Bos, Brent

    2013-01-01

    During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. In order to understand how to manipulate the ISIM's degrees of freedom properly and to prepare for the ISIM flight model testing, a series of optical-mechanical analyses have been completed to develop and identify the best approaches for bringing a non-compliant ISIM element into compliance. In order for JWST to meet its observatory-level optical requirements and ambitious science goals, the ISIM element has to meet approximately 150 separate optical requirements. Successfully achieving many of those optical requirements depends on the proper alignment of the ISIM element with respect to the OTE. To verify that the ISIM element will meet its optical requirements, a series of cryogenic vacuum tests will be conducted with an OTE Simulator (OSIM). An optical Ray Trace and Geometry Model tool was developed to help solve the multi-dimensional alignment problem. The tool allows the user to determine how best to adjust the alignment of the JWST ISIM with respect to the ideal telescope interfaces so that the approximately 150 ISIM optical performance requirements can be satisfied. This capability has not existed previously.

  5. Large optics for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baisden, P.

    2015-01-12

    The National Ignition Facility (NIF) laser with its 192 independent laser beams is not only the world’s largest laser, it is also the largest optical system ever built. With its 192 independent laser beams, the NIF requires a total of 7648 large-aperture (meter-sized) optics. One of the many challenges in designing and building NIF has been to carry out the research and development on optical materials, optics design, and optics manufacturing and metrology technologies needed to achieve NIF’s high output energies and precision beam quality. This paper describes the multiyear, multi-supplier, development effort that was undertaken to develop the advancedmore » optical materials, coatings, fabrication technologies, and associated process improvements necessary to manufacture the wide range of NIF optics. The optics include neodymium-doped phosphate glass laser amplifiers; fused silica lenses, windows, and phase plates; mirrors and polarizers with multi-layer, high-reflectivity dielectric coatings deposited on BK7 substrates; and potassium di-hydrogen phosphate crystal optics for fast optical switches, frequency conversion, and polarization rotation. Also included is a discussion of optical specifications and custom metrology and quality-assurance tools designed, built, and fielded at supplier sites to verify compliance with the stringent NIF specifications. In addition, a brief description of the ongoing program to improve the operational lifetime (i.e., damage resistance) of optics exposed to high fluence in the 351-nm (3ω) is provided.« less

  6. Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan-Chieh; Hsu, Ming-Ying; Peng, Wei-Jei; Hsu, Wei-Yao

    2017-10-01

    Recently, freeform surface widely using to the optical system; because it is have advance of optical image and freedom available to improve the optical performance. For freeform optical fabrication by integrating freeform optical design, precision freeform manufacture, metrology freeform optics and freeform compensate method, to modify the form deviation of surface, due to production process of freeform lens ,compared and provides more flexibilities and better performance. This paper focuses on the fabrication and correction of the free-form surface. In this study, optical freeform surface using multi-axis ultra-precision manufacturing could be upgrading the quality of freeform. It is a machine equipped with a positioning C-axis and has the CXZ machining function which is also called slow tool servo (STS) function. The freeform compensate method of Zernike polynomials results successfully verified; it is correction the form deviation of freeform surface. Finally, the freeform surface are measured experimentally by Ultrahigh Accurate 3D Profilometer (UA3P), compensate the freeform form error with Zernike polynomial fitting to improve the form accuracy of freeform.

  7. New directions in photonics simulation: Lanczos recursion and finite-difference time-domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkins, R.J.; McLeod, R.R.; Kallman, J.S.

    1992-06-01

    Computational Integrated Photonics (CIP) is the area of computational physics that treats the propagation of light in optical fibers and in integrated optical circuits. The purpose of integrated photonics simulation is to develop the computational tools that will support the design of photonic and optoelectronic integrated devices. CIP has, in general, two thrusts: (1) predictive models of photonic device behavior that can be used reliably to enhance significantly the speed with which designs axe optimized for development applications, and (2) to further our ability to describe the linear and nonlinear processes that occur - and can be exploited - inmore » real photonic devices. Experimental integrated optics has been around for over a decade with much of the work during this period. centered on proof-of-principle devices that could be described using simple analytic and numerical models. Recent advances in material growths, photolithography, and device complexity have conspired to reduce significantly the number of devices that can be designed with simple models and to increase dramatically the interest in CIP. In the area of device design, CIP is viewed as critical to understanding device behavior and to optimization. In the area of propagation physics, CIP is an important tool in the study of nonlinear processes in integrated optical devices and fibers. In this talk I will discuss two of the new directions we have been investigating in CIP: Lanczos recursion and finite-difference time-domain.« less

  8. Simulation of 20-channel, 50-GHz, Si3N4-based arrayed waveguide grating applying three different photonics tools

    NASA Astrophysics Data System (ADS)

    Gajdošová, Lenka; Seyringer, Dana

    2017-02-01

    We present the design and simulation of 20-channel, 50-GHz Si3N4 based AWG using three different commercial photonics tools, namely PHASAR from Optiwave Systems Inc., APSS from Apollo Photonics Inc. and RSoft from Synopsys Inc. For this purpose we created identical waveguide structures and identical AWG layouts in these tools and performed BPM simulations. For the simulations the same calculation conditions were used. These AWGs were designed for TM-polarized light with an AWG central wavelength of 850 nm. The output of all simulations, the transmission characteristics, were used to calculate the transmission parameters defining the optical properties of the simulated AWGs. These parameters were summarized and compared with each other. The results feature very good correlation between the tools and are comparable to the designed parameters in AWG-Parameters tool.

  9. Strehl ratio: a tool for optimizing optical nulls and singularities.

    PubMed

    Hénault, François

    2015-07-01

    In this paper a set of radial and azimuthal phase functions are reviewed that have a null Strehl ratio, which is equivalent to generating a central extinction in the image plane of an optical system. The study is conducted in the framework of Fraunhofer scalar diffraction, and is oriented toward practical cases where optical nulls or singularities are produced by deformable mirrors or phase plates. The identified solutions reveal unexpected links with the zeros of type-J Bessel functions of integer order. They include linear azimuthal phase ramps giving birth to an optical vortex, azimuthally modulated phase functions, and circular phase gratings (CPGs). It is found in particular that the CPG radiometric efficiency could be significantly improved by the null Strehl ratio condition. Simple design rules for rescaling and combining the different phase functions are also defined. Finally, the described analytical solutions could also serve as starting points for an automated searching software tool.

  10. Open-Source 3D-Printable Optics Equipment

    PubMed Central

    Zhang, Chenlong; Anzalone, Nicholas C.; Faria, Rodrigo P.; Pearce, Joshua M.

    2013-01-01

    Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing) to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods. PMID:23544104

  11. Open-source 3D-printable optics equipment.

    PubMed

    Zhang, Chenlong; Anzalone, Nicholas C; Faria, Rodrigo P; Pearce, Joshua M

    2013-01-01

    Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing) to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods.

  12. Bridging the Gap between RF and Optical Patch Antenna Analysis via the Cavity Model.

    PubMed

    Unal, G S; Aksun, M I

    2015-11-02

    Although optical antennas with a variety of shapes and for a variety of applications have been proposed and studied, they are still in their infancy compared to their radio frequency (rf) counterparts. Optical antennas have mainly utilized the geometrical attributes of rf antennas rather than the analysis tools that have been the source of intuition for antenna engineers in rf. This study intends to narrow the gap of experience and intuition in the design of optical patch antennas by introducing an easy-to-understand and easy-to-implement analysis tool in rf, namely, the cavity model, into the optical regime. The importance of this approach is not only its simplicity in understanding and implementation but also its applicability to a broad class of patch antennas and, more importantly, its ability to provide the intuition needed to predict the outcome without going through the trial-and-error simulations with no or little intuitive guidance by the user.

  13. Optics in gait analysis and anthropometry

    NASA Astrophysics Data System (ADS)

    Silva Moreno, Alejandra Alicia

    2013-11-01

    Since antiquity, human gait has been studied to understand human movement, the kind of gait, in some cases, can cause musculoskeletal disorders or other health problems; in addition, also from antiquity, anthropometry has been important for the design of human items such as workspaces, tools, garments, among others. Nowadays, thanks to the development of optics and electronics, more accurate studies of gait and anthropometry can be developed. This work will describe the most important parameters for gait analysis, anthropometry and the optical systems used.

  14. Automated and comprehensive link engineering supporting branched, ring, and mesh network topologies

    NASA Astrophysics Data System (ADS)

    Farina, J.; Khomchenko, D.; Yevseyenko, D.; Meester, J.; Richter, A.

    2016-02-01

    Link design, while relatively easy in the past, can become quite cumbersome with complex channel plans and equipment configurations. The task of designing optical transport systems and selecting equipment is often performed by an applications or sales engineer using simple tools, such as custom Excel spreadsheets. Eventually, every individual has their own version of the spreadsheet as well as their own methodology for building the network. This approach becomes unmanageable very quickly and leads to mistakes, bending of the engineering rules and installations that do not perform as expected. We demonstrate a comprehensive planning environment, which offers an efficient approach to unify, control and expedite the design process by controlling libraries of equipment and engineering methodologies, automating the process and providing the analysis tools necessary to predict system performance throughout the system and for all channels. In addition to the placement of EDFAs and DCEs, performance analysis metrics are provided at every step of the way. Metrics that can be tracked include power, CD and OSNR, SPM, XPM, FWM and SBS. Automated routine steps assist in design aspects such as equalization, padding and gain setting for EDFAs, the placement of ROADMs and transceivers, and creating regeneration points. DWDM networks consisting of a large number of nodes and repeater huts, interconnected in linear, branched, mesh and ring network topologies, can be designed much faster when compared with conventional design methods. Using flexible templates for all major optical components, our technology-agnostic planning approach supports the constant advances in optical communications.

  15. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  16. Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.

    2009-01-01

    Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.

  17. High-Power Microwave Transmission and Mode Conversion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, Ronald J.

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less

  18. Invited Article: A review of haptic optical tweezers for an interactive microworld exploration

    NASA Astrophysics Data System (ADS)

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.

  19. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  20. CAD-supported university course on photonics and fiber optic communications

    NASA Astrophysics Data System (ADS)

    Chan, David K. C.; Richter, Andre

    2002-05-01

    The highly competitive global photonics industry has created a significant demand for professional Photonic Design Automation (PDA) tools and personnel trained to use them effectively. In such a dynamic field, CAD-supported courses built around widely used industrial PDA tools provide many advantages, especially when offered through tertiary education institutions (which are ideally suited to producing the future workforce of the Photonics industry). An objective of VPIsystems' University program is to develop tertiary level courses based on VPIsystems' WDM transmission and component modeling software tools. Advantages offered by such courses include: visualizing and aiding the understanding of complex physical problems encountered in the design of fiber-optic communication systems; virtual laboratory exercises that can accurately reproduce the behavior of real systems and components without the prohibitive infrastructure and maintenance costs of real laboratories; flexibility in studying interrelated physical effects individually or in combination to facilitate learning; provide expertise and practical insights in areas, including industry-focused topics, that are not generally covered in traditional tertiary courses; provide exposure to, currently, the most widely used PDA tools in the industry. In this paper, details of VPIsystems' University program and its CAD-supported Photonics courses will be presented.

  1. Optical coherence microscope for invariant high resolution in vivo skin imaging

    NASA Astrophysics Data System (ADS)

    Murali, S.; Lee, K. S.; Meemon, P.; Rolland, J. P.

    2008-02-01

    A non-invasive, reliable and affordable imaging system with the capability of detecting skin pathologies such as skin cancer would be a valuable tool to use for pre-screening and diagnostic applications. Optical Coherence Microscopy (OCM) is emerging as a building block for in vivo optical diagnosis, where high numerical aperture optics is introduced in the sample arm to achieve high lateral resolution. While high numerical aperture optics enables realizing high lateral resolution at the focus point, dynamic focusing is required to maintain the target lateral resolution throughout the depth of the sample being imaged. In this paper, we demonstrate the ability to dynamically focus in real-time with no moving parts to a depth of up to 2mm in skin-equivalent tissue in order to achieve 3.5μm lateral resolution throughout an 8 cubic millimeter sample. The built-in dynamic focusing ability is provided by an addressable liquid lens embedded in custom-designed optics which was designed for a broadband laser source of 120 nm bandwidth centered at around 800nm. The imaging probe was designed to be low-cost and portable. Design evaluation and tolerance analysis results show that the probe is robust to manufacturing errors and produces consistent high performance throughout the imaging volume.

  2. Enhancement of coupling ratios in SOI based asymmetrical optical directional couplers

    NASA Astrophysics Data System (ADS)

    Pendam, Nagaraju; Vardhani, Chunduru Parvatha

    2017-11-01

    A novel design of slab structured asymmetrical optical directional coupler with S-bend waveguides on silicon-on-insulator (SOI) platform has been designed by using R-Soft CAD tool. Beam propagation method (BPM) is used for light propagation analysis. The simulation results of asymmetrical optical directional couplers are reported. We find that the asymmetrical directional coupler has lower coupling ratios and higher extinction ratios with waveguide parameters such as width, wavelength, waveguide spacing, and coupling length. Simulation results designate that the coupling efficiency for transverse electric (TE) and transverse magnetic (TM) modes can reach about more than 95% and extinction ratio about 6 dB when the coupling length is 6 mm for both the polarization modes and insertion loss is 17 dB with same coupling length 6 mm at central wavelength 1550 nm.

  3. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    PubMed

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  4. Fabrication of dense wavelength division multiplexing filters with large useful area

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng

    2006-08-01

    Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.

  5. Optical Design and Optimization of Translational Reflective Adaptive Optics Ophthalmoscopes

    NASA Astrophysics Data System (ADS)

    Sulai, Yusufu N. B.

    The retina serves as the primary detector for the biological camera that is the eye. It is composed of numerous classes of neurons and support cells that work together to capture and process an image formed by the eye's optics, which is then transmitted to the brain. Loss of sight due to retinal or neuro-ophthalmic disease can prove devastating to one's quality of life, and the ability to examine the retina in vivo is invaluable in the early detection and monitoring of such diseases. Adaptive optics (AO) ophthalmoscopy is a promising diagnostic tool in early stages of development, still facing significant challenges before it can become a clinical tool. The work in this thesis is a collection of projects with the overarching goal of broadening the scope and applicability of this technology. We begin by providing an optical design approach for AO ophthalmoscopes that reduces the aberrations that degrade the performance of the AO correction. Next, we demonstrate how to further improve image resolution through the use of amplitude pupil apodization and non-common path aberration correction. This is followed by the development of a viewfinder which provides a larger field of view for retinal navigation. Finally, we conclude with the development of an innovative non-confocal light detection scheme which improves the non-invasive visualization of retinal vasculature and reveals the cone photoreceptor inner segments in healthy and diseased eyes.

  6. Ultra-low noise combs in the palm of your hand

    NASA Astrophysics Data System (ADS)

    Schibli, Thomas R.

    Mode-locked lasers are attractive tools for precision measurements and for photonic microwave generation. The technology around these lasers has rapidly evolved, and with the invention of optical frequency combs, fs-technology has become a ubiquitous tool science and engineering. At first, most of these combs were generated by bulky and delicate Kerr-Lens mode-locked Ti:sapphire systems, but have now been mostly replaced by the much more robust and compact fiber lasers. However, the move from table-top solid-state lasers to the fully self-contained fiber systems came with a price: the optical phase noise performance degraded due to design constraints. While this is of no concern for most spectroscopic applications, it poses a challenge for applications that require excellent short-term phase noise performance, such as, for example, required for photonic microwave generation. While much of this has been improved by ingenious laser designs, it remains a challenge to obtain ultra-low phase-noise combs from high-repetition-rate fiber lasers. Here we present a new approach consisting of a monolithic cavity design, in which the laser light is fully confined inside an optical material. Thanks to this monolithic design, these solid-state lasers are inherently robust against environmental perturbations, such as acoustics, vibrations, air pressure and humidity. Opposed to the omnipresent mode-locked fiber lasers, these monolithic lasers exhibit very low round-trip loss, dispersion and nonlinearities. As a result, they produce highly stable pulse trains, with free-running relative line-widths of the order of a few Hz in the optical domain, despite their moderately high fundamental repetition rates of 1 GHz. The compact design further simplifies integration into complex systems, and eliminates the need for an optics bench or a vibration isolated platform. These lasers produce less than 0.2 W of heat, and are fully turn-key. This work was supported by the DARPA PULSE program with a Grant from AMRDEC and by the NSF Early Career Award.

  7. X-ray optics simulation and beamline design for the APS upgrade

    NASA Astrophysics Data System (ADS)

    Shi, Xianbo; Reininger, Ruben; Harder, Ross; Haeffner, Dean

    2017-08-01

    The upgrade of the Advanced Photon Source (APS) to a Multi-Bend Achromat (MBA) will increase the brightness of the APS by between two and three orders of magnitude. The APS upgrade (APS-U) project includes a list of feature beamlines that will take full advantage of the new machine. Many of the existing beamlines will be also upgraded to profit from this significant machine enhancement. Optics simulations are essential in the design and optimization of these new and existing beamlines. In this contribution, the simulation tools used and developed at APS, ranging from analytical to numerical methods, are summarized. Three general optical layouts are compared in terms of their coherence control and focusing capabilities. The concept of zoom optics, where two sets of focusing elements (e.g., CRLs and KB mirrors) are used to provide variable beam sizes at a fixed focal plane, is optimized analytically. The effects of figure errors on the vertical spot size and on the local coherence along the vertical direction of the optimized design are investigated.

  8. Advances in bioluminescence imaging: new probes from old recipes.

    PubMed

    Yao, Zi; Zhang, Brendan S; Prescher, Jennifer A

    2018-06-04

    Bioluminescent probes are powerful tools for visualizing biology in live tissues and whole animals. Recent years have seen a surge in the number of new luciferases, luciferins, and related tools available for bioluminescence imaging. Many were crafted using classic methods of optical probe design and engineering. Here we highlight recent advances in bioluminescent tool discovery and development, along with applications of the probes in cells, tissues, and organisms. Collectively, these tools are improving in vivo imaging capabilities and bolstering new research directions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Core Vessel Insert Handling Robot for the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Van B; Dayton, Michael J

    2011-01-01

    The Spallation Neutron Source provides the world's most intense pulsed neutron beams for scientific research and industrial development. Its eighteen neutron beam lines will eventually support up to twenty-four simultaneous experiments. Each beam line consists of various optical components which guide the neutrons to a particular instrument. The optical components nearest the neutron moderators are the core vessel inserts. Located approximately 9 m below the high bay floor, these inserts are bolted to the core vessel chamber and are part of the vacuum boundary. They are in a highly radioactive environment and must periodically be replaced. During initial SNS construction,more » four of the beam lines received Core Vessel Insert plugs rather than functional inserts. Remote replacement of the first Core Vessel Insert plug was recently completed using several pieces of custom-designed tooling, including a highly complicated Core Vessel Insert Robot. The design of this tool are discussed.« less

  10. A report on the ST ScI optical disk workstation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The STScI optical disk project was designed to explore the options, opportunities and problems presented by the optical disk technology, and to see if optical disks are a viable, and inexpensive, means of storing the large amount of data which are found in astronomical digital imagery. A separate workstation was purchased on which the development can be done and serves as an astronomical image processing computer, incorporating the optical disks into the solution of standard image processing tasks. It is indicated that small workstations can be powerful tools for image processing, and that astronomical image processing may be more conveniently and cost-effectively performed on microcomputers than on the mainframe and super-minicomputers. The optical disks provide unique capabilities in data storage.

  11. A scalable, self-analyzing digital locking system for use on quantum optics experiments.

    PubMed

    Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T

    2011-07-01

    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.

  12. Wide-field Imaging System and Rapid Direction of Optical Zoom (WOZ)

    DTIC Science & Technology

    2010-12-24

    The modeling tools are based on interaction between three commercial software packages: SolidWorks, COMSOL Multiphysics, and ZEMAX optical design...deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via MatLab. From ZEMAX , various analyses can...results to extract from ZEMAX to support the optimization remains to be determined. Figure 1 shows the deformation calculated using a model of an

  13. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers

    PubMed Central

    Vahdati, Nader; Lawand, Lydia

    2017-01-01

    Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs) for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI) change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber’s modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR) while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature. PMID:28956847

  14. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers.

    PubMed

    Al Handawi, Khalil; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2017-09-28

    Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs) for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI) change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber's modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR) while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.

  15. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  16. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  17. Fiber optic video monitoring system for remote CT/MR scanners clinically accepted

    NASA Astrophysics Data System (ADS)

    Tecotzky, Raymond H.; Bazzill, Todd M.; Eldredge, Sandra L.; Tagawa, James; Sayre, James W.

    1992-07-01

    With the proliferation of CT travel to distant scanners to review images before their patients can be released. We designed a fiber-optic broadband video system to transmit images from seven scanner consoles to fourteen remote monitoring stations in real time. This system has been used clinically by radiologists for over one years. We designed and conducted a user survey to categorize the levels of system use by section (Chest, GI, GU, Bone, Neuro, Peds, etc.), to measure operational utilization and acceptance of the system into the clinical environment, to clarify the system''s importance as a clinical tool for saving radiologists travel-time to distant CT the system''s performance and limitations as a diagnostic tool. The study was administered directly to radiologists using a printed survey form. The results of the survey''s compiled data show a high percentage of system usage by a wide spectrum of radiologists. Clearly, this system has been accepted into the clinical environment as a highly valued diagnostic tool in terms of time savings and functional flexibility.

  18. Demonstration of theoretical and experimental simulations in fiber optics course

    NASA Astrophysics Data System (ADS)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  19. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.

    PubMed

    Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E

    2017-12-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.

  20. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation

    PubMed Central

    Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.

    2017-01-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505

  1. Low cost paths to binary optics

    NASA Technical Reports Server (NTRS)

    Nelson, Arthur; Domash, Lawrence

    1993-01-01

    Application of binary optics has been limited to a few major laboratories because of the limited availability of fabrication facilities such as e-beam machines and the lack of standardized design software. Foster-Miller has attempted to identify low cost approaches to medium-resolution binary optics using readily available computer and fabrication tools, primarily for the use of students and experimenters in optical computing. An early version of our system, MacBEEP, made use of an optimized laser film recorder from the commercial typesetting industry with 10 micron resolution. This report is an update on our current efforts to design and build a second generation MacBEEP, which aims at 1 micron resolution and multiple phase levels. Trails included a low cost scanning electron microscope in microlithography mode, and alternative laser inscribers or photomask generators. Our current software approach is based on Mathematica and PostScript compatibility.

  2. Integrated Modeling Tools for Thermal Analysis and Applications

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Needels, Laura; Papalexandris, Miltiadis

    1999-01-01

    Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.

  3. Photothermal camera port accessory for microscopic thermal diffusivity imaging

    NASA Astrophysics Data System (ADS)

    Escola, Facundo Zaldívar; Kunik, Darío; Mingolo, Nelly; Martínez, Oscar Eduardo

    2016-06-01

    The design of a scanning photothermal accessory is presented, which can be attached to the camera port of commercial microscopes to measure thermal diffusivity maps with micrometer resolution. The device is based on the thermal expansion recovery technique, which measures the defocusing of a probe beam due to the curvature induced by the local heat delivered by a focused pump beam. The beam delivery and collecting optics are built using optical fiber technology, resulting in a robust optical system that provides collinear pump and probe beams without any alignment adjustment necessary. The quasiconfocal configuration for the signal collection using the same optical fiber sets very restrictive conditions on the positioning and alignment of the optical components of the scanning unit, and a detailed discussion of the design equations is presented. The alignment procedure is carefully described, resulting in a system so robust and stable that no further alignment is necessary for the day-to-day use, becoming a tool that can be used for routine quality control, operated by a trained technician.

  4. Quasi-optical analysis of a far-infrared spatio-spectral space interferometer concept

    NASA Astrophysics Data System (ADS)

    Bracken, C.; O'Sullivan, C.; Murphy, J. A.; Donohoe, A.; Savini, G.; Lightfoot, J.; Juanola-Parramon, R.; Fisica Consortium

    2016-07-01

    FISICA (Far-Infrared Space Interferometer Critical Assessment) was a three year study of a far-infrared spatio-spectral double-Fourier interferometer concept. One of the aims of the FISICA study was to set-out a baseline optical design for such a system, and to use a model of the system to simulate realistic telescope beams for use with an end-to-end instrument simulator. This paper describes a two-telescope (and hub) baseline optical design that fulfils the requirements of the FISICA science case, while minimising the optical mass of the system. A number of different modelling techniques were required for the analysis: fast approximate simulation tools such as ray tracing and Gaussian beam methods were employed for initial analysis, with GRASP physical optics used for higher accuracy in the final analysis. Results are shown for the predicted far-field patterns of the telescope primary mirrors under illumination by smooth walled rectangular feed horns. Far-field patterns for both on-axis and off-axis detectors are presented and discussed.

  5. Tools for controlling protein interactions with light

    PubMed Central

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  6. Optimization and throughput estimation of optical ground networks for LEO-downlinks, GEO-feeder links and GEO-relays

    NASA Astrophysics Data System (ADS)

    Fuchs, Christian; Poulenard, Sylvain; Perlot, Nicolas; Riedi, Jerome; Perdigues, Josep

    2017-02-01

    Optical satellite communications play an increasingly important role in a number of space applications. However, if the system concept includes optical links to the surface of the Earth, the limited availability due to clouds and other atmospheric impacts need to be considered to give a reliable estimate of the system performance. An OGS network is required for increasing the availability to acceptable figures. In order to realistically estimate the performance and achievable throughput in various scenarios, a simulation tool has been developed under ESA contract. The tool is based on a database of 5 years of cloud data with global coverage and can thus easily simulate different optical ground station network topologies for LEO- and GEO-to-ground links. Further parameters, like e.g. limited availability due to sun blinding and atmospheric turbulence, are considered as well. This paper gives an overview about the simulation tool, the cloud database, as well as the modelling behind the simulation scheme. Several scenarios have been investigated: LEO-to-ground links, GEO feeder links, and GEO relay links. The key results of the optical ground station network optimization and throughput estimations will be presented. The implications of key technical parameters, as e.g. memory size aboard the satellite, will be discussed. Finally, potential system designs for LEO- and GEO-systems will be presented.

  7. Photonic Resins: Designing Optical Appearance via Block Copolymer Self-Assembly.

    PubMed

    Song, Dong-Po; Jacucci, Gianni; Dundar, Feyza; Naik, Aditi; Fei, Hua-Feng; Vignolini, Silvia; Watkins, James J

    2018-03-27

    Despite a huge variety of methodologies having been proposed to produce photonic structures by self-assembly, the lack of an effective fabrication approach has hindered their practical uses. These approaches are typically limited by the poor control in both optical and mechanical properties. Here we report photonic thermosetting polymeric resins obtained through brush block copolymer (BBCP) self-assembly. We demonstrate that the control of the interplay between order and disorder in the obtained photonic structure offers a powerful tool box for designing the optical appearance of the polymer resins in terms of reflected wavelength and scattering properties. The obtained materials exhibit excellent mechanical properties with hardness up to 172 MPa and Young's modulus over 2.9 GPa, indicating great potential for practical uses as photonic coatings on a variety of surfaces.

  8. Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed

  9. NIF optical materials and fabrication technologies: an overview

    NASA Astrophysics Data System (ADS)

    Campbell, John H.; Hawley-Fedder, Ruth A.; Stolz, Christopher J.; Menapace, Joseph A.; Borden, Michael R.; Whitman, Pamela K.; Yu, June; Runkel, Michael J.; Riley, Michael O.; Feit, Michael D.; Hackel, Richard P.

    2004-05-01

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  10. Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter.

    PubMed

    Jung, Yongmin; Brambilla, Gilberto; Richardson, David J

    2008-09-15

    We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.

  11. Hybrid computational and experimental approach for the study and optimization of mechanical components

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1998-05-01

    Increased demands on the performance and efficiency of mechanical components impose challenges on their engineering design and optimization, especially when new and more demanding applications must be developed in relatively short periods of time while satisfying design objectives, as well as cost and manufacturability. In addition, reliability and durability must be taken into consideration. As a consequence, effective quantitative methodologies, computational and experimental, should be applied in the study and optimization of mechanical components. Computational investigations enable parametric studies and the determination of critical engineering design conditions, while experimental investigations, especially those using optical techniques, provide qualitative and quantitative information on the actual response of the structure of interest to the applied load and boundary conditions. We discuss a hybrid experimental and computational approach for investigation and optimization of mechanical components. The approach is based on analytical, computational, and experimental resolutions methodologies in the form of computational, noninvasive optical techniques, and fringe prediction analysis tools. Practical application of the hybrid approach is illustrated with representative examples that demonstrate the viability of the approach as an effective engineering tool for analysis and optimization.

  12. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  13. Simulation of DKIST solar adaptive optics system

    NASA Astrophysics Data System (ADS)

    Marino, Jose; Carlisle, Elizabeth; Schmidt, Dirk

    2016-07-01

    Solar adaptive optics (AO) simulations are a valuable tool to guide the design and optimization process of current and future solar AO and multi-conjugate AO (MCAO) systems. Solar AO and MCAO systems rely on extended object cross-correlating Shack-Hartmann wavefront sensors to measure the wavefront. Accurate solar AO simulations require computationally intensive operations, which have until recently presented a prohibitive computational cost. We present an update on the status of a solar AO and MCAO simulation tool being developed at the National Solar Observatory. The simulation tool is a multi-threaded application written in the C++ language that takes advantage of current large multi-core CPU computer systems and fast ethernet connections to provide accurate full simulation of solar AO and MCAO systems. It interfaces with KAOS, a state of the art solar AO control software developed by the Kiepenheuer-Institut fuer Sonnenphysik, that provides reliable AO control. We report on the latest results produced by the solar AO simulation tool.

  14. Optical levitation of a mirror for reaching the standard quantum limit.

    PubMed

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2017-06-12

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-Pérot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.

  15. Optical levitation of a mirror for reaching the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Michimura, Yuta; Kuwahara, Yuya; Ushiba, Takafumi; Matsumoto, Nobuyuki; Ando, Masaki

    2017-06-01

    We propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-P{\\'e}rot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology. The cavity geometry and the levitated mirror parameters are designed to ensure that the Brownian vibration of the mirror surface is smaller than the SQL. Our scheme provides a promising tool for testing macroscopic quantum mechanics.

  16. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  17. A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation

    NASA Astrophysics Data System (ADS)

    Wang, Haichao; Yue, Weirui; Song, Qiang; Liu, Jingdan; Situ, Guohai

    2017-02-01

    The Gerchberg-Saxton (GS) algorithm is widely used in various disciplines of modern sciences and technologies where phase retrieval is required. However, this legendary algorithm most likely stagnates after a few iterations. Many efforts have been taken to improve this situation. Here we propose to introduce the strategy of gradient descent and weighting technique to the GS algorithm, and demonstrate it using two examples: design of a diffractive optical element (DOE) to achieve off-axis illumination in lithographic tools, and design of a computer generated hologram (CGH) for holographic display. Both numerical simulation and optical experiments are carried out for demonstration.

  18. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm

    NASA Astrophysics Data System (ADS)

    Menapace, J. A.; Ehrmann, P. R.; Bickel, R. C.

    2009-10-01

    Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical for surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.

  19. Ion projection lithography: November 2000 status and sub-70-nm prospects

    NASA Astrophysics Data System (ADS)

    Kaesmaier, Rainer; Wolter, Andreas; Loeschner, Hans; Schunck, Stefan

    2000-10-01

    Among all next generation lithography (NGL) options Ion Projection Lithography (IPL) offers the smallest (particle) wavelength of 5x10- 5nm (l00keV Helium ions). Thus, 4x reduction ion-optics has diffraction limits <3nm even when using a numerical aperture as low as NAequals10-5. As part of the European MEDEA IPL project headed by Infineon Technologies wide field ion-optics have been designed by IMS- Vienna with predicted resolution of 50nm within a 12.5mm exposure field. The ion-optics part of the PDT tool (PDT-IOS) has been realized and assembled. In parallel to the PDT-IOS effort, at Leica Jena a test bench for a vertical vacuum 300mm-wafer stage has been realized. Operation of magnetic bearing supported stage movement has already been demonstrated. As ASML vacuum compatible optical wafer alignment system, with 3nm(3(sigma) ) precision demonstrated in air, has been integrated to this wafer test bench system recently. Parallel to the IPL tool development, Infineon Technologies Mask House and the Institute for Microelectronics Stuttgart are intensively working on the development of IPL stencil masks with success in producing 150mm and 200mm stencil masks as reported elsewhere. This paper is focused on information about the status of the PDT-IOS tool.

  20. Economics In Optical Design, Analysis, And Production

    NASA Astrophysics Data System (ADS)

    Willey, Ronald R.

    1983-10-01

    There are indications that we are entering an era wherein economics will play an increasing role in the optical design and production process. Economics has always been a factor in the competition between commercial ventures in the product arena. Now, we may begin to see competition between different technologies for the scarce resources of the society, including money. A proper design approach begins with a thorough examination and refinement of the requirements from the top down. The interrelationships of the various components must be properly understood and balanced. The specifications must be clear, complete, and realistic. Improper or incomplete system design can cause an extensive waste of resources. The detail optical design to meet the performance requirements has sometimes been the only part of the process that the designer has considered his own responsibility. The final optimization should also consider economic related factors: the cost of tolerances, the available tools test plates, materials, and test equipment. In the preliminary design stage, he should have decided which alignment and test methods are most appropriate to the system. The distribution of tolerances in an optical/mechanical system is a frequently neglected opportunity to reduce cost. We have reported previously on our work in this area, and expand further on it in the context of this paper. The designer now has an opportunity to generate better designs at a lower cost that are more economical to produce. The watchword for the 1980's may become the one found in the assembly automation industry: "more, better, for less".

  1. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.

    PubMed

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-16

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  2. Connected component analysis of review-SEM images for sub-10nm node process verification

    NASA Astrophysics Data System (ADS)

    Halder, Sandip; Leray, Philippe; Sah, Kaushik; Cross, Andrew; Parisi, Paolo

    2017-03-01

    Analysis of hotspots is becoming more and more critical as we scale from node to node. To define true process windows at sub-14 nm technology nodes, often defect inspections are being included to weed out design weak spots (often referred to as hotspots). Defect inspection sub 28 nm nodes is a two pass process. Defect locations identified by optical inspection tools need to be reviewed by review-SEM's to understand exactly which feature is failing in the region flagged by the optical tool. The images grabbed by the review-SEM tool are used for classification but rarely for quantification. The goal of this paper is to see if the thousands of review-SEM images which are existing can be used for quantification and further analysis. More specifically we address the SEM quantification problem with connected component analysis.

  3. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C C

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less

  4. The Design and Analysis of Electrically Large Custom-Shaped Reflector Antennas

    DTIC Science & Technology

    2013-06-01

    GEO) satellite data are imported into STK and plotted to visualize the regions of the sky that the spherical reflector must have line of sight for...Magnetic Conductor PO Physical Optics STK Systems Tool Kit TE Transverse Electric xvii Acronym Definition TLE Two Line Element TM Transverse Magnetic...study for the spherical reflector, Systems Tool Kit ( STK ) software from Analytical Graphics Inc. (AGI) is used. In completing the cross-shaped

  5. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many konts to make possible high speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flow fields/plumes; the Optical Plume Anomaly Detection (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDIFIS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Additionally, efforts are being advanced to hardware encode components of the EDIFIS in order to address real-time operational requirements for health monitoring and management. This paper addresses the OPAD with its tool suite, and discusses what is considered a natural progression: a concept for migrating OPAD towards detection of high energy particles, including neutrons and gamma rays. The integration of these tools and capabilities will provide NASA with a systematic approach to monitor space vehicle internal and external environment.

  6. Detecting Submicron Pattern Defects On Optical Photomasks Using An Enhanced El-3 Electron-Beam Lithography Tool

    NASA Astrophysics Data System (ADS)

    Simpson, R. A.; Davis, D. E.

    1982-09-01

    This paper describes techniques to detect submicron pattern defects on optical photomasks with an enhanced direct-write, electron-beam lithographic tool. EL-3 is a third generation, shaped spot, electron-beam lithography tool developed by IBM to fabricate semiconductor devices and masks. This tool is being upgraded to provide 100% inspection of optical photomasks for submicron pattern defects, which are subsequently repaired. Fixed-size overlapped spots are stepped over the mask patterns while a signal derived from the back-scattered electrons is monitored to detect pattern defects. Inspection does not require pattern recognition because the inspection scan patterns are derived from the original design data. The inspection spot is square and larger than the minimum defect to be detected, to improve throughput. A new registration technique provides the beam-to-pattern overlay required to locate submicron defects. The 'guard banding" of inspection shapes prevents mask and system tolerances from producing false alarms that would occur should the spots be mispositioned such that they only partially covered a shape being inspected. A rescanning technique eliminates noise-related false alarms and significantly improves throughput. Data is accumulated during inspection and processed offline, as required for defect repair. EL-3 will detect 0.5 um pattern defects at throughputs compatible with mask manufacturing.

  7. NASA Tech Briefs, July 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Airport Remote Tower Sensor Systems; Implantable Wireless MEMS Sensors for Medical Uses; Embedded Sensors for Measuring Surface Regression; Coordinating an Autonomous Earth-Observing Sensorweb; Range-Measuring Video Sensors; Stability Enhancement of Polymeric Sensing Films Using Fillers; Sensors for Using Times of Flight to Measure Flow Velocities; Receiver Would Control Phasing of a Phased-Array Antenna; Modern Design of Resonant Edge-Slot Array Antennas; Carbon-Nanotube Schottky Diodes; Simplified Optics and Controls for Laser Communications; Coherent Detection of High-Rate Optical PPM Signals; Multichannel Phase and Power Detector; Using Satellite Data in Weather Forecasting: I; Using Dissimilarity Metrics to Identify Interesting Designs; X-Windows PVT Widget Class; Shuttle Data Center File-Processing Tool in Java; Statistical Evaluation of Utilization of the ISS; Nanotube Dispersions Made With Charged Surfactant; Aerogels for Thermal Insulation of Thermoelectric Devices; Low-Density, Creep-Resistant Single-Crystal Superalloys; Excitations for Rapidly Estimating Flight-Control Parameters; Estimation of Stability and Control Derivatives of an F-15; Tool for Coupling a Torque Wrench to a Round Cable Connector; Ultrasonically Actuated Tools for Abrading Rock Surfaces; Active Struts With Variable Spring Stiffness and Damping; Multiaxis, Lightweight, Computer-Controlled Exercise System; Dehydrating and Sterilizing Wastes Using Supercritical CO2; Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium; Ice-Borehole Probe; Alpha-Voltaic Sources Using Diamond as Conversion Medium; White-Light Whispering-Gallery-Mode Optical Resonators; Controlling Attitude of a Solar-Sail Spacecraft Using Vanes; and Wire-Mesh-Based Sorber for Removing Contaminants from Air.

  8. Derivative matrices of a skew ray for spherical boundary surfaces and their applications in system analysis and design.

    PubMed

    Lin, Psang Dain

    2014-05-10

    In a previous paper [Appl. Opt.52, 4151 (2013)], we presented the first- and second-order derivatives of a ray for a flat boundary surface to design prisms. In this paper, that scheme is extended to determine the Jacobian and Hessian matrices of a skew ray as it is reflected/refracted at a spherical boundary surface. The validity of the proposed approach as an analysis and design tool is demonstrated using an axis-symmetrical system for illustration purpose. It is found that these two matrices can provide the search direction used by existing gradient-based schemes to minimize the merit function during the optimization stage of the optical system design process. It is also possible to make the optical system designs more automatic, if the image defects can be extracted from the Jacobian and Hessian matrices of a skew ray.

  9. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing.

    PubMed

    Schwaerzle, M; Elmlinger, P; Paul, O; Ruther, P

    2014-01-01

    This paper reports on the design, simulation, fabrication and characterization of a tool for optogenetic experiments based on a light emitting diode (LED). A minimized silicon (Si) interface houses the LED and aligns it to an optical fiber. With a Si housing size of 550×500×380 μm(3) and an electrical interconnection of the LED by a highly flexible polyimide (PI) ribbon cable is the system very variable. PI cables and Si housings are fabricated using established microsystem technologies. A 270×220×50 μm(3) bare LED chip is flip-chip-bonded onto the PI cable. The Si housing is adhesively attached to the PI cable, thereby hosting the LED in a recess. An opposite recess guides the optical fiber with a diameter of 125 μm. An aperture in-between restricts the emitted LED light to the fiber core. The optical fiber is adhesively fixed into the Si housing recess. An optical output intensity at the fiber end facet of 1.71 mW/mm(2) was achieved at a duty cycle of 10 % and a driving current of 30 mA.

  10. Photonic Resins: Designing Optical Appearance via Block Copolymer Self-Assembly

    PubMed Central

    2018-01-01

    Despite a huge variety of methodologies having been proposed to produce photonic structures by self-assembly, the lack of an effective fabrication approach has hindered their practical uses. These approaches are typically limited by the poor control in both optical and mechanical properties. Here we report photonic thermosetting polymeric resins obtained through brush block copolymer (BBCP) self-assembly. We demonstrate that the control of the interplay between order and disorder in the obtained photonic structure offers a powerful tool box for designing the optical appearance of the polymer resins in terms of reflected wavelength and scattering properties. The obtained materials exhibit excellent mechanical properties with hardness up to 172 MPa and Young’s modulus over 2.9 GPa, indicating great potential for practical uses as photonic coatings on a variety of surfaces. PMID:29681653

  11. ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror

    NASA Astrophysics Data System (ADS)

    Yang, De-Hua; Shao, Liang

    2008-09-01

    The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.

  12. Conceptual design for a user-friendly adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissinger, H.D.; Olivier, S.; Max, C.

    1996-03-08

    In this paper, we present a conceptual design for a general-purpose adaptive optics system, usable with all Cassegrain facility instruments on the 3 meter Shane telescope at the University of California`s Lick Observatory located on Mt. Hamilton near San Jose, California. The overall design goal for this system is to take the sodium-layer laser guide star adaptive optics technology out of the demonstration stage and to build a user-friendly astronomical tool. The emphasis will be on ease of calibration, improved stability and operational simplicity in order to allow the system to be run routinely by observatory staff. A prototype adaptivemore » optics system and a 20 watt sodium-layer laser guide star system have already been built at Lawrence Livermore National Laboratory for use at Lick Observatory. The design presented in this paper is for a next- generation adaptive optics system that extends the capabilities of the prototype system into the visible with more degrees of freedom. When coupled with a laser guide star system that is upgraded to a power matching the new adaptive optics system, the combined system will produce diffraction-limited images for near-IR cameras. Atmospheric correction at wavelengths of 0.6-1 mm will significantly increase the throughput of the most heavily used facility instrument at Lick, the Kast Spectrograph, and will allow it to operate with smaller slit widths and deeper limiting magnitudes. 8 refs., 2 figs.« less

  13. Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems

    NASA Astrophysics Data System (ADS)

    Menapace, Joseph A.

    2010-11-01

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm2 at 1053 nm), visible (>18 J/cm2 at 527 nm), and ultraviolet (>10 J/cm2 at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture largeaperture damage resistant optics.

  14. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chainmore » or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.« less

  15. Study on combined polishing process of aspherical aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Deng, Jinqiu; Peng, Xiaoqiang; Hu, Hao; Ge, Kunpeng

    2017-10-01

    The aluminum mirrors are widely used as important optical components in some vital fields such as astronomical instruments or military installations due to the unique advantages of aluminum alloy. In order to simplify the structure of optical system and improve the performance at the same time, it's a tendency that the optics will be designed to aspherical or other freeform shapes. However, the traditional techniques are falling to have adequate abilities to deal with the increasing demands of aluminum optics. For example, the tool marks leaved on the surface from single point diamond turning (SPDT) has obvious adverse effects to optical system. The deterministic and sub-aperture polishing process has showed the potential to fabricate complex shapes over the few years. But it's still recognized as a problem to polish bare aluminum directly because of its soft surface and active chemical characteristics. Therefore, a combination of magnetorheological finishing (MRF) and small tool polishing (STP) is applied to obtain high performance aluminum optics in this paper. A paraboloid aluminum mirror was polished with this proposed method, and the results showed that the surface texture of the sample is restrained from rms 0.409λ (λ=632.8nm) to rms 0.025λ, and the surface roughness is improved from average Ra 6 7nm to Ra 3 4nm.

  16. COMBINE*: An integrated opto-mechanical tool for laser performance modeling

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Di Nicola, J. M.

    2015-02-01

    Accurate modeling of thermal, mechanical and optical processes is important for achieving reliable, high-performance high energy lasers such as those at the National Ignition Facility [1] (NIF). The need for this capability is even more critical for high average power, high repetition rate applications. Modeling the effects of stresses and temperature fields on optical properties allows for optimal design of optical components and more generally of the architecture of the laser system itself. Stresses change the indices of refractions and induce inhomogeneities and anisotropy. We present a modern, integrated analysis tool that efficiently produces reliable results that are used in our laser propagation tools such as VBL [5]. COMBINE is built on and supplants the existing legacy tools developed for the previous generations of lasers at LLNL but also uses commercially available mechanical finite element codes ANSYS or COMSOL (including computational fluid dynamics). The COMBINE code computes birefringence and wave front distortions due to mechanical stresses on lenses and slabs of arbitrary geometry. The stresses calculated typically originate from mounting support, vacuum load, gravity, heat absorption and/or attending cooling. Of particular importance are the depolarization and detuning effects of nonlinear crystals due to thermal loading. Results are given in the form of Jones matrices, depolarization maps and wave front distributions. An incremental evaluation of Jones matrices and ray propagation in a 3D mesh with a stress and temperature field is performed. Wavefront and depolarization maps are available at the optical aperture and at slices within the optical element. The suite is validated, user friendly, supported, documented and amenable to collaborative development. * COMBINE stands for Code for Opto-Mechanical Birefringence Integrated Numerical Evaluations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in themore » photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an encrypting/scrambling algorithm based on a study of candidate encryption algorithms. We found that a low gate count, cascadable encryption algorithm is most feasible given device and processing constraints. The modeling and simulation of optical designs using these components is proceeding in parallel with efforts to perfect the physical devices and their interconnect. We have applied these techniques to the development of a 'toy' algorithm that may pave the way for more robust optical algorithms. These design/modeling/simulation techniques are now ready to be applied to larger optical designs in advance of our ability to implement such systems in hardware.« less

  18. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be convenientlymore » extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.« less

  19. Imprinting continuously varying topographical structure onto large-aperture optical surfaces using magnetorheological finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Davis, P J; Dixit, S

    2007-03-07

    Over the past four years we have advanced Magnetorheological Finishing (MRF) techniques and tools to imprint complex continuously varying topographical structures onto large-aperture (430 x 430 mm) optical surfaces. These optics, known as continuous phase plates (CPPs), are important for high-power laser applications requiring precise manipulation and control of beam-shape, energy distribution, and wavefront profile. MRF's unique deterministic-sub-aperture polishing characteristics make it possible to imprint complex topographical information onto optical surfaces at spatial scale-lengths approaching 1 mm and surface peak-to-valleys as high as 22 {micro}m. During this discussion, we will present the evolution of the MRF imprinting technology and themore » MRF tools designed to manufacture large-aperture 430 x 430 mm CPPs. Our results will show how the MRF removal function impacts and limits imprint fidelity and what must be done to arrive at a high-quality surface. We also present several examples of this imprinting technology for fabrication of phase correction plates and CPPs for use in high-power laser applications.« less

  20. Image projection optical system for measuring pattern electroretinograms

    NASA Astrophysics Data System (ADS)

    Starkey, Douglas E.; Taboada, John; Peters, Daniel

    1994-06-01

    The use of the pattern-electroretinogram (PERG) as a noninvasive diagnostic tool for the early detection of glaucoma has been supported by a number of recent studies. We have developed a unique device which uses a laser interferometer to generate a sinusoidal fringe pattern that is presented to the eye in Maxwellian view for the purpose of producing a PERG response. The projection system stimulates a large visual field and is designed to bypass the optics of the eye in order to measure the true retinal response to a temporally alternating fringe pattern. The contrast, spatial frequency, total power output, orientation, alternating temporal frequency, and field location of the fringe pattern presented to the eye can all be varied by the device. It is critical for these parameters to be variable so that optimal settings may be determined for the normal state and any deviation from it, i.e. early or preclinical glaucoma. Several interferometer designs and optical projection systems were studied in order to design a compact system which provided the desired variable pattern stimulus to the eye. This paper will present a description of the clinical research instrument and its performance with the primary emphasis on the optical system design as it relates to the fringe pattern generation and other optical parameters. Examples of its use in the study of glaucoma diagnosis will also be presented.

  1. Optical performance assessment under environmental and mechanical perturbations in large, deployable telescopes

    NASA Astrophysics Data System (ADS)

    Folley, Christopher; Bronowicki, Allen

    2005-09-01

    Prediction of optical performance for large, deployable telescopes under environmental conditions and mechanical disturbances is a crucial part of the design verification process of such instruments for all phases of design and operation: ground testing, commissioning, and on-orbit operation. A Structural-Thermal-Optical-Performance (STOP) analysis methodology is often created that integrates the output of one analysis with the input of another. The integration of thermal environment predictions with structural models is relatively well understood, while the integration of structural deformation results into optical analysis/design software is less straightforward. A Matlab toolbox has been created that effectively integrates the predictions of mechanical deformations on optical elements generated by, for example, finite element analysis, and computes optical path differences for the distorted prescription. The engine of the toolbox is the real ray-tracing algorithm that allows the optical surfaces to be defined in a single, global coordinate system thereby allowing automatic alignment of the mechanical coordinate system with the optical coordinate system. Therefore, the physical location of the optical surfaces is identical in the optical prescription and the finite element model. The application of rigid body displacements to optical surfaces, however, is more general than for use solely in STOP analysis, such as the analysis of misalignments during the commissioning process. Furthermore, all the functionality of Matlab is available for optimization and control. Since this is a new tool for use on flight programs, it has been verified against CODE V. The toolbox' functionality, to date, is described, verification results are presented, and, as an example of its utility, results of a thermal distortion analysis are presented using the James Webb Space Telescope (JWST) prescription.

  2. Method of holding optical elements without deformation during their fabrication

    DOEpatents

    Hed, P.P.

    1997-04-29

    An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element is disclosed. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool. 16 figs.

  3. Method of holding optical elements without deformation during their fabrication

    DOEpatents

    Hed, P. Paul

    1997-01-01

    An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool.

  4. On the collaborative design and simulation of space camera: stop structural/thermal/optical) analysis

    NASA Astrophysics Data System (ADS)

    Duan, Pengfei; Lei, Wenping

    2017-11-01

    A number of disciplines (mechanics, structures, thermal, and optics) are needed to design and build Space Camera. Separate design models are normally constructed by each discipline CAD/CAE tools. Design and analysis is conducted largely in parallel subject to requirements that have been levied on each discipline, and technical interaction between the different disciplines is limited and infrequent. As a result a unified view of the Space Camera design across discipline boundaries is not directly possible in the approach above, and generating one would require a large manual, and error-prone process. A collaborative environment that is built on abstract model and performance template allows engineering data and CAD/CAE results to be shared across above discipline boundaries within a common interface, so that it can help to attain speedy multivariate design and directly evaluate optical performance under environment loadings. A small interdisciplinary engineering team from Beijing Institute of Space Mechanics and Electricity has recently conducted a Structural/Thermal/Optical (STOP) analysis of a space camera with this collaborative environment. STOP analysis evaluates the changes in image quality that arise from the structural deformations when the thermal environment of the camera changes throughout its orbit. STOP analyses were conducted for four different test conditions applied during final thermal vacuum (TVAC) testing of the payload on the ground. The STOP Simulation Process begins with importing an integrated CAD model of the camera geometry into the collaborative environment, within which 1. Independent thermal and structural meshes are generated. 2. The thermal mesh and relevant engineering data for material properties and thermal boundary conditions are then used to compute temperature distributions at nodal points in both the thermal and structures mesh through Thermal Desktop, a COTS thermal design and analysis code. 3. Thermally induced structural deformations of the camera are then evaluated in Nastran, an industry standard code for structural design and analysis. 4. Thermal and structural results are next imported into SigFit, another COTS tool that computes deformation and best fit rigid body displacements for the optical surfaces. 5. SigFit creates a modified optical prescription that is imported into CODE V for evaluation of optical performance impacts. The integrated STOP analysis was validated using TVAC test data. For the four different TVAC tests, the relative errors between simulation and test data of measuring points temperatures were almost around 5%, while in some test conditions, they were even much lower to 1%. As to image quality MTF, relative error between simulation and test was 8.3% in the worst condition, others were all below 5%. Through the validation, it has been approved that the collaborative design and simulation environment can achieved the integrated STOP analysis of Space Camera efficiently. And further, the collaborative environment allows an interdisciplinary analysis that formerly might take several months to perform to be completed in two or three weeks, which is very adaptive to scheme demonstration of projects in earlier stages.

  5. Transformation optics beyond the manipulation of light trajectories.

    PubMed

    Ginis, Vincent; Tassin, Philippe

    2015-08-28

    Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Transformation optics beyond the manipulation of light trajectories

    PubMed Central

    Ginis, Vincent; Tassin, Philippe

    2015-01-01

    Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces—a quadratic function of the fields—follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. PMID:26217057

  7. Design and performance evaluation of the imaging payload for a remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Abolghasemi, Mojtaba; Abbasi-Moghadam, Dariush

    2012-11-01

    In this paper an analysis method and corresponding analytical tools for design of the experimental imaging payload (IMPL) of a remote sensing satellite (SINA-1) are presented. We begin with top-level customer system performance requirements and constraints and derive the critical system and component parameters, then analyze imaging payload performance until a preliminary design that meets customer requirements. We consider system parameters and components composing the image chain for imaging payload system which includes aperture, focal length, field of view, image plane dimensions, pixel dimensions, detection quantum efficiency, and optical filter requirements. The performance analysis is accomplished by calculating the imaging payload's SNR (signal-to-noise ratio), and imaging resolution. The noise components include photon noise due to signal scene and atmospheric background, cold shield, out-of-band optical filter leakage and electronic noise. System resolution is simulated through cascaded modulation transfer functions (MTFs) and includes effects due to optics, image sampling, and system motion. Calculations results for the SINA-1 satellite are also presented.

  8. Optical Strategies for Studying Metastatic Mechanisms, Tumor Cell Detection and Treatment of Prostate Cancer

    DTIC Science & Technology

    2005-10-01

    increase in VEGF- A levels following PDT treatment (Figure 7) of orthotopic prostate tumors. Task 2: Design of optical monitoring tools to detect circulating...in intracellular VEGF- A (Figure 5, B) at 0,5 J/cm 2 (1.6 fold). Surprisingly we did not measure any significant increase in intracellular VEGF- A ... levels at the lower dose (0,25 J/cm 2). VEGF-A is known to be regulated at the transcriptional and post-transcriptional levels. We therefore used primers

  9. Optofluidics of plants

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Vasdekis, Andreas E.; Choi, Jae-Woo

    2016-05-01

    Optofluidics is a tool for synthesizing optical systems, making use of the interaction of light with fluids. In this paper we explore optofluidic mechanisms that have evolved in plants where sunlight and fluidic control combine to define most of the functionality of the plan. We hope that the presentation of how plants function, from an optofluidics point of view, will open a window for the optics community to the vast literature of plant physiology and provide inspiration for new ideas for the design of bio-mimetic optofluidic devices.

  10. An extensive coronagraphic simulation applied to LBT

    NASA Astrophysics Data System (ADS)

    Vassallo, D.; Carolo, E.; Farinato, J.; Bergomi, M.; Bonavita, M.; Carlotti, A.; D'Orazi, V.; Greggio, D.; Magrin, D.; Mesa, D.; Pinna, E.; Puglisi, A.; Stangalini, M.; Verinaud, C.; Viotto, V.

    2016-08-01

    In this article we report the results of a comprehensive simulation program aimed at investigating coronagraphic capabilities of SHARK-NIR, a camera selected to proceed to the final design phase at Large Binocular Telescope. For the purpose, we developed a dedicated simulation tool based on physical optics propagation. The code propagates wavefronts through SHARK optical train in an end-to-end fashion and can implement any kind of coronagraph. Detection limits can be finally computed, exploring a wide range of Strehl values and observing conditions.

  11. Measuring the Optical Properties of Astrophysical Dust Analogues: Instrumentation and Methods

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Benford, D. J.; Cataldo, G.; Dwek, E.; Henry, R.; Kinzer, R. E., Jr.; Nuth, J.; Silverberg, R.; Wheeler, C.; Wollack, E.

    2011-01-01

    Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new infrared facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-infrared through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

  12. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect.

    PubMed

    Qiao, Peng-Fei; Mou, Shin; Chuang, Shun Lien

    2012-01-30

    The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi's golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.

  13. Dispersed Fringe Sensing Analysis - DFSA

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.

    2012-01-01

    Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems.

  14. Phase Retrieval System for Assessing Diamond Turning and Optical Surface Defects

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Maldonado, Alex; Bolcar, Matthew

    2011-01-01

    An optical design is presented for a measurement system used to assess the impact of surface errors originating from diamond turning artifacts. Diamond turning artifacts are common by-products of optical surface shaping using the diamond turning process (a diamond-tipped cutting tool used in a lathe configuration). Assessing and evaluating the errors imparted by diamond turning (including other surface errors attributed to optical manufacturing techniques) can be problematic and generally requires the use of an optical interferometer. Commercial interferometers can be expensive when compared to the simple optical setup developed here, which is used in combination with an image-based sensing technique (phase retrieval). Phase retrieval is a general term used in optics to describe the estimation of optical imperfections or aberrations. This turnkey system uses only image-based data and has minimal hardware requirements. The system is straightforward to set up, easy to align, and can provide nanometer accuracy on the measurement of optical surface defects.

  15. Development and biological applications of optical tweezers and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Chang'an

    Optical tweezers is a three-dimensional manipulation tool that employs a gradient force that originates from the single highly focused laser beam. Raman spectroscopy is a molecular analytical tool that can give a highly unique "fingerprint" for each substance by measuring the unique vibrations of its molecules. The combination of these two optical techniques offers a new tool for the manipulation and identification of single biological cells and microscopic particles. In this thesis, we designed and implemented a Laser-Tweezers-Raman-Spectroscopy (LTRS) system, also called the Raman-tweezers, for the simultaneous capture and analysis of both biological particles and non-biological particles. We show that microparticles can be conveniently captured at the focus of a laser beam and the Raman spectra of trapped particles can be acquired with high quality. The LTRS system overcomes the intrinsic Brownian motion and cell motility of microparticles in solution and provides a promising tool for in situ identifying suspicious agents. In order to increase the signal to noise ratio, several schemes were employed in LTRS system to reduce the blank noise and the fluorescence signal coming from analytes and the surrounding background. These techniques include near-infrared excitation, optical levitation, confocal microscopy, and frequency-shifted Raman difference. The LTRS system has been applied for the study in cell biology at the single cell level. With the built Raman-tweezers system, we studied the dynamic physiological processes of single living cells, including cell cycle, the transcription and translation of recombinant protein in transgenic yeast cells and the T cell activation. We also studied cell damage and associated biochemical processes in optical traps, UV radiations, and evaluated heating by near-infrared Raman spectroscopy. These studies show that the Raman-tweezers system is feasible to provide rapid and reliable diagnosis of cellular disorders and can be used as a valuable tool to study cellular processes within single living cells or intracellular organelles and may aid research in molecular and cellular biology.

  16. Supersymmetric Transformations in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Macho, Andrés; Llorente, Roberto; García-Meca, Carlos

    2018-01-01

    Supersymmetry (SUSY) has recently emerged as a tool to design unique optical structures with degenerate spectra. Here, we study several fundamental aspects and variants of one-dimensional SUSY in axially symmetric optical media, including their basic spectral features and the conditions for degeneracy breaking. Surprisingly, we find that the SUSY degeneracy theorem is partially (totally) violated in optical systems connected by isospectral (broken) SUSY transformations due to a degradation of the paraxial approximation. In addition, we show that isospectral constructions provide a dimension-independent design control over the group delay in SUSY fibers. Moreover, we find that the studied unbroken and isospectral SUSY transformations allow us to generate refractive-index superpartners with an extremely large phase-matching bandwidth spanning the S +C +L optical bands. These singular features define a class of optical fibers with a number of potential applications. To illustrate this, we numerically demonstrate the possibility of building photonic lanterns supporting broadband heterogeneous supermodes with large effective area, a broadband all-fiber true-mode (de)multiplexer requiring no mode conversion, and different mode-filtering, mode-conversion, and pulse-shaping devices. Finally, we discuss the possibility of extrapolating our results to acoustics and quantum mechanics.

  17. Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy.

    PubMed

    Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M

    2018-03-01

    Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.

  18. New teaching methods in use at UC Irvine's optical engineering and instrument design programs

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.; Rowe, T. Scott; Jo, Joshua; Dimas, David

    2012-10-01

    New teaching methods reach geographically dispersed students with advances in Distance Education. Capabilities include a new "Hybrid" teaching method with an instructor in a classroom and a live WebEx simulcast for remote students. Our Distance Education Geometric and Physical Optics courses include Hands-On Optics experiments. Low cost laboratory kits have been developed and YouTube type video recordings of the instructor using these tools guide the students through their labs. A weekly "Office Hour" has been developed using WebEx and a Live Webcam the instructor uses to display his live writings from his notebook for answering students' questions.

  19. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  20. Design and development of an injection-molded demultiplexer for optical communication systems in the visible range.

    PubMed

    Höll, S; Haupt, M; Fischer, U H P

    2013-06-20

    Optical simulation software based on the ray-tracing method offers easy and fast results in imaging optics. This method can also be applied in other fields of light propagation. For short distance communications, polymer optical fibers (POFs) are gradually gaining importance. This kind of fiber offers a larger core diameter, e.g., the step index POF features a core diameter of 980 μm. Consequently, POFs have a large number of modes (>3 million modes) in the visible range, and ray tracing could be used to simulate the propagation of light. This simulation method is applicable not only for the fiber itself but also for the key components of a complete POF network, e.g., couplers or other key elements of the transmission line. In this paper a demultiplexer designed and developed by means of ray tracing is presented. Compared to the classical optical design, requirements for optimal design differ particularly with regard to minimizing the insertion loss (IL). The basis of the presented key element is a WDM device using a Rowland spectrometer setup. In this approach the input fiber carries multiple wavelengths, which will be divided into multiple output fibers that transmit only one wavelength. To adapt the basic setup to POF, the guidance of light in this element has to be changed fundamentally. Here, a monolithic approach is presented with a blazed grating using an aspheric mirror to minimize most of the aberrations. In the simulations the POF is represented by an area light source, while the grating is analyzed for different orders and the highest possible efficiency. In general, the element should be designed in a way that it can be produced with a mass production technology like injection molding in order to offer a reasonable price. However, designing the elements with regard to injection molding leads to some inherent challenges. The microstructure of an optical grating and the thick-walled 3D molded parts both result in high demands on the injection molding process. This also requires complex machining of the molding tool. Therefore, different experiments are done to optimize the process parameter, find the best molding material, and find a suitable machining method for the molding tool. The paper will describe the development of the demultiplexer by means of ray-tracing simulations step by step. Also, the process steps and the realized solutions for the injection molding are described.

  1. Analysis and Design of Novel Nanophotonic Structures

    NASA Astrophysics Data System (ADS)

    Shugayev, Roman

    Nanophotonic devices hold promise to revolutionize the fields of optical communications, quantum computing and bioimaging. Designing viable solutions to these pressing problems require developing accurate models of the relevant systems. While a great deal of work has been performed in terms of developing individual models with varying levels of fidelity, some of these more complex systems still require improved links between scales to allow for accurate design and optimization within a reasonable amount of computing time. For instance, color centers in nanocrystals appear to be a promising platform for room-temperature scalable quantum information science, but questions still remain about the optimal structures to control single-photon emitter rates, coupling fidelity, and suitable scaling architectures. In this work, a method for efficient optical access and readout of nanocrystal states via magnetic transitions was demonstrated. Separately novel Mie resonant devices that guarantee on-demand enhancement of emission from the single vacancy sources were shown. To improve addressability of the crystal-based impurities, a new approach for realization of single photon electro-optical devices is also proposed in this work. Furthermore, this work on color centers in nanocrystals has been shown to be sensitive to the local refractive index environment. This allows this system to be adapted to biomedical applications, such as sensitive, minimally invasive cancer detection. In this work, a novel scheme for propagation loss-free sensing of local refractive index using nanocrystal probes with broken symmetry is carefully investigated. In conclusion, this thesis develops several novel simulation and optimization techniques that combine existing nanophotonic modeling tools into a unique multi-scale modeling tool. It has been successfully applied to nanophotonically-tuned color vacancy centers. Potential applications span optical communications, quantum information processing, and biomedical sensing.

  2. Fast and accurate modeling of stray light in optical systems

    NASA Astrophysics Data System (ADS)

    Perrin, Jean-Claude

    2017-11-01

    The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.

  3. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  4. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer.

    PubMed

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ∼2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.

  5. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Ehrmann, P R; Bickel, R C

    2009-11-05

    Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical formore » surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.« less

  6. Fiber optic combiner and duplicator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The investigation of the possible development of two optical devices, one to take two images as inputs and to present their arithmetic sum as a single output, the other to take one image as input and present two identical images as outputs is described. Significant engineering time was invested in establishing precision fiber optics drawing capabilities, real time monitoring of the fiber size and exact measuring of fiber optics ribbons. Various assembly procedures and tooling designs were investigated and prototype models were built and evaluated that established technical assurance that the device was feasible and could be fabricated. Although the interleaver specification in its entirety was not achieved, the techniques developed in the course of the program improved the quality of images transmitted by fiber optic arrays by at least an order of magnitude. These techniques are already being applied to the manufacture of precise fiber optic components.

  7. The optical antenna system design research on earth integrative network laser link in the future

    NASA Astrophysics Data System (ADS)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain reference value in engineering. It can provide effective technical support to realize interconnection of earth integrated laser link information network in the future.

  8. Three-Point Gear/Lead Screw Positioning

    NASA Technical Reports Server (NTRS)

    Calco, Frank S.

    1993-01-01

    Triple-ganged-lead-screw positioning mechanism drives movable plate toward or away from fixed plate and keeps plates parallel to each other. Designed for use in tuning microwave resonant cavity. Other potential applications include adjustable bed plates and cantilever tail stocks in machine tools, adjustable platforms for optical equipment, and lifting platforms.

  9. Terahertz otoscope and potential for diagnosing otitis media

    PubMed Central

    Ji, Young Bin; Moon, In-Seok; Bark, Hyeon Sang; Kim, Sang Hoon; Park, Dong Woo; Noh, Sam Kyu; Huh, Yong-Min; Suh, Jin-Seok; Oh, Seung Jae; Jeon, Tae-In

    2016-01-01

    We designed and fabricated a novel terahertz (THz) otoscope to help physicians to diagnose otitis media (OM) with both THz diagnostics and conventional optical diagnostics. We verified the potential of this tool for diagnosing OM using mouse skin tissue and a human tympanic membrane samples prior to clinical application. PMID:27446647

  10. Optical metrology for testing an all-composite 2-meter diameter mirror

    NASA Technical Reports Server (NTRS)

    Catanzaro, B.; Thomas, James A.; Small, D.; Johnston, R.; Barber, D.; Connell, S.; Whitmore, S.; Cohen, E.

    2001-01-01

    The Herschel Space Observatory (formerly known as FIRST) consists of a 3.5 m space telescope designed for use in the long IR and sub-milimeter wavebands. To demonstrate the viability of a carbon fiber composite telescope for this application, Composite Optics Incorporated (COI) manufactured a fast (f/1), large (2 m), lightweight (10.1 kg/m squared) demonstration mirror. A key challenge in demonstrating the performance of this novel mirror was to characterize the surface accuracy at cryogenic (70 K) temperatures. A wide variety of optical metrology techniques were investigated and a brief survey of empirical test results and limitations of the various techniques will be presented in this paper. Two complementary infrared (IR)techniques operating at a wavelength of 10.6 microns were chosen for further development: (1) IR Twyman-Green Phase Shifting Interferometry (IR PSI) and (2) IR Shack-Hartmann (IR SH) Wavefront Sensing. Innovative design modifications made to an existing IR PSI to achieve high-resolution, scannable, infrared measurements of the composite mirror are described. The modified interferometer was capable of measuring surface gradients larger than 350 microradians. The design and results of measurements made with a custom-built IR SH Wavefrong Sensor operating at 10.6 microns are also presented. A compact experimental setup permitting simultaneous operation of both the IR PSI and IR SH tools is shown. The advantages and the limitations of the two key IR metrology tools are discussed.

  11. Polarization entangled cluster state generation in a lithium niobate chip

    NASA Astrophysics Data System (ADS)

    Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.

    2016-10-01

    We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.

  12. Complex modulation using tandem polarization modulators

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hall, Trevor

    2017-11-01

    A novel photonic technique for implementing frequency up-conversion or complex modulation is proposed. The proposed circuit consists of a sandwich of a quarter-wave plate between two polarization modulators, driven, respectively, by an in-phase and quadrature-phase signals. The operation of the circuit is modelled using a transmission matrix method. The theoretical prediction is then validated by simulation using an industry-standard software tool. The intrinsic conversion efficiency of the architecture is improved by 6 dB over a functionally equivalent design based on dual parallel Mach-Zehnder modulators. Non-ideal scenarios such as imperfect alignment of the optical components and power imbalances and phase errors in the electric drive signals are also analysed. As light travels, along one physical path, the proposed design can be implemented using discrete components with greater control of relative optical path length differences. The circuit can further be integrated in any material platform that offers electro-optic polarization modulators.

  13. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot.

    PubMed

    Koshelev, Alexander; Munechika, Keiko; Cabrini, Stefano

    2017-11-01

    In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.

  14. Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)

    PubMed Central

    Grover, Ginni; DeLuca, Keith; Quirin, Sean; DeLuca, Jennifer; Piestun, Rafael

    2012-01-01

    Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics and reconstruction processes using double-helix point spread functions (DH-PSF) provides high resolution three-dimensional (3D) imaging over a long depth-of-field. We demonstrate for the first time a method integrating a Fisher information efficient DH-PSF design, a surface relief optical phase mask, and an optimal 3D localization estimator. 3D super-resolution imaging using photo-switchable dyes reveals the 3D microtubule network in mammalian cells with localization precision approaching the information theoretical limit over a depth of 1.2 µm. PMID:23187521

  15. Plasma Diagnostics: Use and Justification in an Industrial Environment

    NASA Astrophysics Data System (ADS)

    Loewenhardt, Peter

    1998-10-01

    The usefulness and importance of plasma diagnostics have played a major role in the development of plasma processing tools in the semiconductor industry. As can be seen through marketing materials from semiconductor equipment manufacturers, results from plasma diagnostic equipment can be a powerful tool in selling the technological leadership of tool design. Some diagnostics have long been used for simple process control such as optical emission for endpoint determination, but in recent years more sophisticated and involved diagnostic tools have been utilized in chamber and plasma source development and optimization. It is now common to find an assortment of tools at semiconductor equipment companies such as Langmuir probes, mass spectrometers, spatial optical emission probes, impedance, ion energy and ion flux probes. An outline of how the importance of plasma diagnostics has grown at an equipment manufacturer over the last decade will be given, with examples of significant and useful results obtained. Examples will include the development and optimization of an inductive plasma source, trends and hardware effects on ion energy distributions, mass spectrometry influences on process development and investigations of plasma-wall interactions. Plasma diagnostic focus, in-house development and proliferation in an environment where financial justification requirements are both strong and necessary will be discussed.

  16. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    PubMed

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  17. Heterogeneous 3D optrode with variable spatial resolution for optogenetic stimulation and electrophysiological recording.

    PubMed

    Ayub, Suleman; Barz, Falk; Paul, Oliver; Ruther, Patrick

    2016-08-01

    We report on the concept, development, and geometrical, optical as well as electrical characterization of the first three-dimensional (3D) optrode. This new device allows to optically interact with neuronal cells and simultaneously record their response with a high spatial resolution. Our design is based on a single-shank optical stimulation component and a multi-shank recording probe stacked together in a delicate assembly process. The electrical connection of both components is ensured by using flexible polyimide (PI) ribbon cables. The highly accurate relative positioning and precise alignment of the optical and electrical components in 3D with an optical output power at 460 nm well above 5 mW/mm2 and an all-electrical interface makes this device a promising tool for optogenetic experiments in neuroscientific research.

  18. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  19. The Adaptive Optics Summer School Laboratory Activities

    NASA Astrophysics Data System (ADS)

    Ammons, S. M.; Severson, S.; Armstrong, J. D.; Crossfield, I.; Do, T.; Fitzgerald, M.; Harrington, D.; Hickenbotham, A.; Hunter, J.; Johnson, J.; Johnson, L.; Li, K.; Lu, J.; Maness, H.; Morzinski, K.; Norton, A.; Putnam, N.; Roorda, A.; Rossi, E.; Yelda, S.

    2010-12-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO systems as a research tool. The activities are divided into three stations: Vision Science, Fourier Optics, and the AO Demonstrator. We briefly overview these activities, which are described fully in other articles in these conference proceedings (Putnam et al., Do et al., and Harrington et al., respectively). We devote attention to the unique challenges encountered in the design of these activities, including the marriage of inquiry-like investigation techniques with complex content and the need to tune depth to a graduate- and PhD-level audience. According to before-after surveys conducted in 2008, the vast majority of participants found that all activities were valuable to their careers, although direct experience with integrated, functional AO systems was particularly beneficial.

  20. Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials

    NASA Astrophysics Data System (ADS)

    Gray, Tomoko O.

    Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.

  1. MRF, ELSM and STED: tools to study defects in fused silica optics

    NASA Astrophysics Data System (ADS)

    Catrin, R.; Taroux, D.; Cormont, P.; Maunier, C.; Neauport, J.

    2013-11-01

    The MegaJoule laser being constructed at the CEA near Bordeaux (France) is designed to focus more than 1 MJ of energy at 351 nm, on a millimetre scale target in the centre of an experiment chamber. The final optic assembly of this system operating at a wavelength of 351 nm is made up of large fused silica optics, working in transmission, that are used to convey and focus the laser beam. Under high fluences (i.e. more than 5 J/cm2 for 3 ns pulses), the limited lifetime of final optical assembly is a major concern for fusion scale laser facilities. Previous works have shown that surface finishing processes applied to manufacture these optical components can leave subsurface cracks (SSD), pollution or similar defects that act as initiators of the laser damage. In this work, we used epi-fluorescent light scanning microscopy (ELSM) and Stimulated Emission Depletion (STED) in confocal mode with fluorescent dye tagging to get a better knowledge of size and depth of these subsurface cracks. Magnetorheological fluid finishing technique (MRF) was also used as a tool to remove these cracks and thus assess depths measured by confocal microscopy. Subsurface cracks with a width of about 120 nm are observed up to ten micrometers below the surface.

  2. Free-form machining for micro-imaging systems

    NASA Astrophysics Data System (ADS)

    Barkman, Michael L.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.

    2008-02-01

    While mechanical ruling and single point diamond turning has been a mainstay of optical fabrication for many years, many types of micro-optical devices and structures are not conducive to simple diamond turning or ruling, such as, for example, microlens arrays, and optical surfaces with non-radial symmetry. More recent developments in machining technology have enabled significant expansion of fabrication capabilities. Modern machine tools can generate complex three-dimensional structures with optical quality surface finish, and fabricate structures across a dynamic range of dimensions not achievable with lithographic techniques. In particular, five-axis free-form micromachining offers a great deal of promise for realization of essentially arbitrary surface structures, including surfaces not realizable through binary or analog lithographic techniques. Furthermore, these machines can generate geometric features with optical finish on scales ranging from centimeters to micrometers with accuracies of 10s of nanometers. In this paper, we discuss techniques and applications of free-form surface machining of micro-optical elements. Aspects of diamond machine tool design to realize desired surface geometries in specific materials are discussed. Examples are presented, including fabrication of aspheric lens arrays in germanium for compact infrared imaging systems. Using special custom kinematic mounting equipment and the additional axes of the machine, the lenses were turned with surface finish better than 2 nm RMS and center to center positioning accuracy of +/-0.5 μm.

  3. Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design

    NASA Astrophysics Data System (ADS)

    Carranza, Aparicio

    An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.

  4. Semi-automatic engineering and tailoring of high-efficiency Bragg-reflection waveguide samples for quantum photonic applications

    NASA Astrophysics Data System (ADS)

    Pressl, B.; Laiho, K.; Chen, H.; Günthner, T.; Schlager, A.; Auchter, S.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.

    2018-04-01

    Semiconductor alloys of aluminum gallium arsenide (AlGaAs) exhibit strong second-order optical nonlinearities. This makes them prime candidates for the integration of devices for classical nonlinear optical frequency conversion or photon-pair production, for example, through the parametric down-conversion (PDC) process. Within this material system, Bragg-reflection waveguides (BRW) are a promising platform, but the specifics of the fabrication process and the peculiar optical properties of the alloys require careful engineering. Previously, BRW samples have been mostly derived analytically from design equations using a fixed set of aluminum concentrations. This approach limits the variety and flexibility of the device design. Here, we present a comprehensive guide to the design and analysis of advanced BRW samples and show how to automatize these tasks. Then, nonlinear optimization techniques are employed to tailor the BRW epitaxial structure towards a specific design goal. As a demonstration of our approach, we search for the optimal effective nonlinearity and mode overlap which indicate an improved conversion efficiency or PDC pair production rate. However, the methodology itself is much more versatile as any parameter related to the optical properties of the waveguide, for example the phasematching wavelength or modal dispersion, may be incorporated as design goals. Further, we use the developed tools to gain a reliable insight in the fabrication tolerances and challenges of real-world sample imperfections. One such example is the common thickness gradient along the wafer, which strongly influences the photon-pair rate and spectral properties of the PDC process. Detailed models and a better understanding of the optical properties of a realistic BRW structure are not only useful for investigating current samples, but also provide important feedback for the design and fabrication of potential future turn-key devices.

  5. Optical surface contouring for non-destructive inspection of turbomachinery

    NASA Astrophysics Data System (ADS)

    Modarress, Dariush; Schaack, David F.

    1994-03-01

    Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.

  6. Optical surface contouring for non-destructive inspection of turbomachinery

    NASA Technical Reports Server (NTRS)

    Modarress, Dariush; Schaack, David F.

    1994-01-01

    Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.

  7. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice

    PubMed Central

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-01-01

    Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli. PMID:24253232

  8. Contamination Effects on EUV Optics

    NASA Technical Reports Server (NTRS)

    Tveekrem, J.

    1999-01-01

    During ground-based assembly and upon exposure to the space environment, optical surfaces accumulate both particles and molecular condensibles, inevitably resulting in degradation of optical instrument performance. Currently, this performance degradation (and the resulting end-of-life instrument performance) cannot be predicted with sufficient accuracy using existing software tools. Optical design codes exist to calculate instrument performance, but these codes generally assume uncontaminated optical surfaces. Contamination models exist which predict approximate end-of-life contamination levels, but the optical effects of these contamination levels can not be quantified without detailed information about the optical constants and scattering properties of the contaminant. The problem is particularly pronounced in the extreme ultraviolet (EUV, 300-1,200 A) and far (FUV, 1,200-2,000 A) regimes due to a lack of data and a lack of knowledge of the detailed physical and chemical processes involved. Yet it is in precisely these wavelength regimes that accurate predictions are most important, because EUV/FUV instruments are extremely sensitive to contamination.

  9. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-11-01

    Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli.

  10. Optics Toolbox: An Intelligent Relational Database System For Optical Designers

    NASA Astrophysics Data System (ADS)

    Weller, Scott W.; Hopkins, Robert E.

    1986-12-01

    Optical designers were among the first to use the computer as an engineering tool. Powerful programs have been written to do ray-trace analysis, third-order layout, and optimization. However, newer computing techniques such as database management and expert systems have not been adopted by the optical design community. For the purpose of this discussion we will define a relational database system as a database which allows the user to specify his requirements using logical relations. For example, to search for all lenses in a lens database with a F/number less than two, and a half field of view near 28 degrees, you might enter the following: FNO < 2.0 and FOV of 28 degrees ± 5% Again for the purpose of this discussion, we will define an expert system as a program which contains expert knowledge, can ask intelligent questions, and can form conclusions based on the answers given and the knowledge which it contains. Most expert systems store this knowledge in the form of rules-of-thumb, which are written in an English-like language, and which are easily modified by the user. An example rule is: IF require microscope objective in air and require NA > 0.9 THEN suggest the use of an oil immersion objective The heart of the expert system is the rule interpreter, sometimes called an inference engine, which reads the rules and forms conclusions based on them. The use of a relational database system containing lens prototypes seems to be a viable prospect. However, it is not clear that expert systems have a place in optical design. In domains such as medical diagnosis and petrology, expert systems are flourishing. These domains are quite different from optical design, however, because optical design is a creative process, and the rules are difficult to write down. We do think that an expert system is feasible in the area of first order layout, which is sufficiently diagnostic in nature to permit useful rules to be written. This first-order expert would emulate an expert designer as he interacted with a customer for the first time: asking the right questions, forming conclusions, and making suggestions. With these objectives in mind, we have developed the Optics Toolbox. Optics Toolbox is actually two programs in one: it is a powerful relational database system with twenty-one search parameters, four search modes, and multi-database support, as well as a first-order optical design expert system with a rule interpreter which has full access to the relational database. The system schematic is shown in Figure 1.

  11. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  12. Development of the ASTRI heliostat

    NASA Astrophysics Data System (ADS)

    Coventry, Joe; Arjomandi, Maziar; Barry, John; Blanco, Manuel; Burgess, Greg; Campbell, Jonathan; Connor, Phil; Emes, Matthew; Fairman, Philip; Farrant, David; Ghanadi, Farzin; Grigoriev, Victor; Hall, Colin; Koltun, Paul; Lewis, David; Martin, Scott; Nathan, Graham; Pye, John; Qiu, Ang; Stuart, Wayne; Tang, Youhong; Venn, Felix; Yu, Jeremy

    2016-05-01

    The Australian Solar Thermal Research Initiative (ASTRI) aims to develop a high optical quality heliostat with target cost - manufactured, installed and operational - of 90 AUD/m2. Three different heliostat design concepts are described, each with features identified during a prior scoping study as having the potential to contribute to cost reduction compared to the current state-of-the-art. The three concepts which are being developed will be down-selected to a single concept for testing in late 2016. The heliostat concept development work is supported by technology development streams, developing novel sandwich panel mirror facet structures, analysing and testing wind loads on heliostats in both stow and operation positions, and developing new heliostat field layouts and software tools for optical analysis of heliostats design concepts.

  13. Design automation for integrated nonlinear logic circuits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Van Vaerenbergh, Thomas; Pelc, Jason; Santori, Charles; Bose, Ranojoy; Kielpinski, Dave; Beausoleil, Raymond G.

    2016-05-01

    A key enabler of the IT revolution of the late 20th century was the development of electronic design automation (EDA) tools allowing engineers to manage the complexity of electronic circuits with transistor counts now reaching into the billions. Recently, we have been developing large-scale nonlinear photonic integrated logic circuits for next generation all-optical information processing. At this time a sufficiently powerful EDA-style software tool chain to design this type of complex circuits does not yet exist. Here we describe a hierarchical approach to automating the design and validation of photonic integrated circuits, which can scale to several orders of magnitude higher complexity than the state of the art. Most photonic integrated circuits developed today consist of a small number of components, and only limited hierarchy. For example, a simple photonic transceiver may contain on the order of 10 building-block components, consisting of grating couplers for photonic I/O, modulators, and signal splitters/combiners. Because this is relatively easy to lay out by hand (or simple script) existing photonic design tools have relatively little automation in comparison to electronics tools. But demonstrating all-optical logic will require significantly more complex photonic circuits containing up to 1,000 components, hence becoming infeasible to design manually. Our design framework is based off Python-based software from Luceda Photonics which provides an environment to describe components, simulate their behavior, and export design files (GDS) to foundries for fabrication. At a fundamental level, a photonic component is described as a parametric cell (PCell) similarly to electronics design. PCells are described by geometric characteristics of their layout. A critical part of the design framework is the implementation of PCells as Python objects. PCell objects can then use inheritance to simplify design, and hierarchical designs can be made by creating composite PCells (modules) which consist of primitive building-block PCells (components). To automatically produce layouts, we built on a construct provided by Luceda called a PlaceAndAutoRoute cell: we create a module component by supplying a list of child cells, and a list of the desired connections between the cells (e.g. the out0 port of a microring is connected to a grating coupler). This functionality allowed us to write algorithms to automatically lay out the components: for instance, by laying out the first component and walking through the list of connections to check to see if the next component is already placed or not. The placement and orientation of the new component is determined by minimizing the length of a connecting waveguide. Our photonic circuits also utilize electrical signals to tune the photonic elements (setting propagation phases or microring resonant frequencies via thermo-optical tuning): the algorithm also routes the contacts for the metal heaters to contact pads at the edge of the circuit being designed where it can be contacted by electrical probes. We are currently validating a test run fabricated over the summer, and will use detailed characterization results to prepare our final design cycle in which we aim to demonstrate complex operational logic circuits containing ~50-100 nonlinear resonators.

  14. Portable Optical Epidural Needle-A CMOS-Based System Solution and Its Circuit Design

    PubMed Central

    Gong, Cihun-Siyong Alex; Lin, Shih-Pin; Mandell, M. Susan; Tsou, Mei-Yung; Chang, Yin; Ting, Chien-Kun

    2014-01-01

    Epidural anesthesia is a common anesthesia method yet up to 10% of procedures fail to provide adequate analgesia. This is usually due to misinterpreting the tactile information derived from the advancing needle through the complex tissue planes. Incorrect placement also can cause dural puncture and neural injury. We developed an optic system capable of reliably identifying tissue planes surrounding the epidural space. However the new technology was too large and cumbersome for practical clinical use. We present a miniaturized version of our optic system using chip technology (first generation CMOS-based system) for logic functions. The new system was connected to an alarm that was triggered once the optic properties of the epidural were identified. The aims of this study were to test our miniaturized system in a porcine model and describe the technology to build this new clinical tool. Our system was tested in a porcine model and identified the epidural space in the lumbar, low and high thoracic regions of the spine. The new technology identified the epidural space in all but 1 of 46 attempts. Experimental results from our fabricated integrated circuit and animal study show the new tool has future clinical potential. PMID:25162150

  15. UltraForm Finishing (UFF) a 5-axis computer controlled precision optical component grinding and polishing system

    NASA Astrophysics Data System (ADS)

    Bechtold, Michael; Mohring, David; Fess, Edward

    2007-05-01

    OptiPro Systems has developed a new finishing process for the manufacturing of precision optical components. UltraForm Finishing (UFF) has evolved from a tire shaped tool with polishing material on its periphery, to its newest design, which incorporates a precision rubber wheel wrapped with a band of polishing material passing over it. Through our research we have developed a user friendly graphical interface giving the optician a deterministic path for finishing precision optical components. Complex UFF Algorithms combine the removal function and desired depth of removal into a motion controlled tool path which minimizes surface roughness and form errors. The UFF process includes 5 axes of computer controlled motion, (3 linear and 2 rotary) which provide the flexibility for finishing a variety of shapes including spheres, aspheres, and freeform optics. The long arm extension, along with a range of diameters for the "UltraWheel" provides a unique solution for the finishing of steep concave shapes such as ogives and domes. The UltraForm process utilizes, fixed and loose abrasives, in combination with our proprietary "UltraBelts" made of a range of materials such as polyurethane, felt, resin, diamond and others.

  16. Checking-up of optical graduated rules by laser interferometry

    NASA Astrophysics Data System (ADS)

    Miron, Nicolae P.; Sporea, Dan G.

    1996-05-01

    The main aspects related to the operating principle, design, and implementation of high-productivity equipment for checking-up the graduation accuracy of optical graduated rules used as a length reference in optical measuring instruments for precision machine tools are presented. The graduation error checking-up is done with a Michelson interferometer as a length transducer. The instrument operation is managed by a computer, which controls the equipment, data acquisition, and processing. The evaluation is performed for rule lengths from 100 to 3000 mm, with a checking-up error less than 2 micrometers/m. The checking-up time is about 15 min for a 1000-mm rule, with averaging over four measurements.

  17. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, Marshall Clint; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many fronts to make possible high-speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flowfields/plumes. The Optical Plume Anomaly Detector (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDiFiS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Capabilities for real-time processing are being advanced on several fronts, including an effort to hardware encode components of the EDiFiS for health monitoring and management. This paper addresses the OPAD with its tool suites, and discusses what is considered a natural progression: a concept for taking OPAD to the next logical level of high energy physics, incorporating fermion and boson particle analyses in measurement of neutron flux.

  18. Multi-modality endoscopic imaging for the detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Wall, Richard Andrew

    Optical coherence tomography (OCT) is an imaging method that is considered the optical analog to ultrasound, using the technique of optical interferometry to construct two-dimensional depth-resolved images of tissue microstructure. With a resolution on the order of 10 um and a penetration depth of 1-2 mm in highly scattering tissue, fiber optics-coupled OCT is an ideal modality for the inspection of the mouse colon with its miniaturization capabilities. In the present study, the complementary modalities laser-induced fluorescence (LIF), which offers information on the biochemical makeup of the tissue, and surface magnifying chromoendoscopy, which offers high contrast surface visualization, are combined with OCT in endoscopic imaging systems for the greater specificity and sensitivity in the differentiation between normal and neoplastic tissue, and for the visualization of biomarkers which are indicative of early events in colorectal carcinogenesis. Oblique incidence reflectometry (OIR) also offers advantages, allowing the calculation of bulk tissue optical properties for use as a diagnostic tool. The study was broken up into three specific sections. First, a dual-modality OCTLIF imaging system was designed, capable of focusing light over 325-1300 nm using a reflective distal optics design. A dual-modality fluorescence-based SMC-OCT system was then designed and constructed, capable of resolving the stained mucosal crypt structure of the in vivo mouse colon. The SMC-OCT instrument's OIR capabilities were then modeled, as a modified version of the probe was used measure tissue scattering and absorption coefficients.

  19. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    NASA Astrophysics Data System (ADS)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  20. Optical systems integrated modeling

    NASA Technical Reports Server (NTRS)

    Shannon, Robert R.; Laskin, Robert A.; Brewer, SI; Burrows, Chris; Epps, Harlan; Illingworth, Garth; Korsch, Dietrich; Levine, B. Martin; Mahajan, Vini; Rimmer, Chuck

    1992-01-01

    An integrated modeling capability that provides the tools by which entire optical systems and instruments can be simulated and optimized is a key technology development, applicable to all mission classes, especially astrophysics. Many of the future missions require optical systems that are physically much larger than anything flown before and yet must retain the characteristic sub-micron diffraction limited wavefront accuracy of their smaller precursors. It is no longer feasible to follow the path of 'cut and test' development; the sheer scale of these systems precludes many of the older techniques that rely upon ground evaluation of full size engineering units. The ability to accurately model (by computer) and optimize the entire flight system's integrated structural, thermal, and dynamic characteristics is essential. Two distinct integrated modeling capabilities are required. These are an initial design capability and a detailed design and optimization system. The content of an initial design package is shown. It would be a modular, workstation based code which allows preliminary integrated system analysis and trade studies to be carried out quickly by a single engineer or a small design team. A simple concept for a detailed design and optimization system is shown. This is a linkage of interface architecture that allows efficient interchange of information between existing large specialized optical, control, thermal, and structural design codes. The computing environment would be a network of large mainframe machines and its users would be project level design teams. More advanced concepts for detailed design systems would support interaction between modules and automated optimization of the entire system. Technology assessment and development plans for integrated package for initial design, interface development for detailed optimization, validation, and modeling research are presented.

  1. Cluster tool solution for fabrication and qualification of advanced photomasks

    NASA Astrophysics Data System (ADS)

    Schaetz, Thomas; Hartmann, Hans; Peter, Kai; Lalanne, Frederic P.; Maurin, Olivier; Baracchi, Emanuele; Miramond, Corinne; Brueck, Hans-Juergen; Scheuring, Gerd; Engel, Thomas; Eran, Yair; Sommer, Karl

    2000-07-01

    The reduction of wavelength in optical lithography, phase shift technology and optical proximity correction (OPC), requires a rapid increase in cost effective qualification of photomasks. The knowledge about CD variation, loss of pattern fidelity especially for OPC pattern and mask defects concerning the impact on wafer level is becoming a key issue for mask quality assessment. As part of the European Community supported ESPRIT projection 'Q-CAP', a new cluster concept has been developed, which allows the combination of hardware tools as well as software tools via network communication. It is designed to be open for any tool manufacturer and mask hose. The bi-directional network access allows the exchange of all relevant mask data including grayscale images, measurement results, lithography parameters, defect coordinates, layout data, process data etc. and its storage to a SQL database. The system uses SEMI format descriptions as well as standard network hardware and software components for the client server communication. Each tool is used mainly to perform its specific application without using expensive time to perform optional analysis, but the availability of the database allows each component to share the full data ste gathered by all components. Therefore, the cluster can be considered as one single virtual tool. The paper shows the advantage of the cluster approach, the benefits of the tools linked together already, and a vision of a mask house in the near future.

  2. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  3. Steric engineering of metal-halide perovskites with tunable optical band gaps

    NASA Astrophysics Data System (ADS)

    Filip, Marina R.; Eperon, Giles E.; Snaith, Henry J.; Giustino, Feliciano

    2014-12-01

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  4. The design, construction and testing of the optics for a 147-cm-aperture telescope

    NASA Technical Reports Server (NTRS)

    Buchroeder, R. A.; Elmore, L. H.; Shack, R. V.; Slater, P. N.

    1972-01-01

    Geodetic optics research for the Air Force Cambridge Research Laboratories (AFCRL) is described. The work consisted mainly of the fabrication of the optical components for a telescope with a 152-cm-diam (60-in.) primary mirror masked down to 147-cm-diam for use by the AFCRL for a lunar ranging experiment. Among the achievements of this contract were the following: completion of the primary and secondary mirrors for a high-quality 147-cm-diam telescope system in eight months from the start of edging the primary; manufacture and testing of a unique center mount for the primary according to an AFCRL design that allowed for a thin-edged and therefore less-massive mirror; and development of a quantitative analysis of the wire test for calculating the departure of the mirror figure from the design figure quickly and accurately after each polishing step. This analysis method in conjunction with a knowledge of polishing rates for given weights and diameters of tools, mirror, and polishing materials should considerably reduce the polishing time required for future large mirrors.

  5. Latest results on solarization of optical glasses with pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Petzold, Uwe

    2017-02-01

    Femtosecond lasers are more and more used for material processing and lithography. Femtosecond laser help to generate three dimensional structures in photoresists without using masks in micro lithography. This technology is of growing importance for the field of backend lithography or advanced packaging. Optical glasses used for beam shaping and inspection tools need to withstand high laser pulse energies. Femtosecond laser radiation in the near UV wavelength range generates solarization effects in optical glasses. In this paper results are shown of femtosecond laser solarization experiments on a broad range of optical glasses from SCHOTT. The measurements have been performed by the Laser Zentrum Hannover in Germany. The results and their impact are discussed in comparison to traditional HOK-4 and UVA-B solarization measurements of the same materials. The target is to provide material selection guidance to the optical designer of beam shaping lens systems.

  6. The design of electron and ion guns, beams, and collectors

    NASA Astrophysics Data System (ADS)

    Becker, Reinard; Herrmannsfeldt, William B.

    2004-01-01

    The well known `SLAC Electron Trajectory Program' (EGUN) has been ported to PCs and has been developed into a family of programs for the design and the optimization of particle optics devices including electron and ion guns, beam transport sections and collectors. We will discuss the application of these tools for the design and the optimization of the essential parts of EBIS/T devices. The discussion will include conditions in which restrictions in the reliability of simulations may occur due to the mathematical modeling and how to overcome them.

  7. Development of feature extraction analysis for a multi-functional optical profiling device applied to field engineering applications

    NASA Astrophysics Data System (ADS)

    Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.

    2015-05-01

    In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.

  8. Optical inspection of NGL masks

    NASA Astrophysics Data System (ADS)

    Pettibone, Donald W.; Stokowski, Stanley E.

    2004-12-01

    For the last five years KLA-Tencor and our joint venture partners have pursued a research program studying the ability of optical inspection tools to meet the inspection needs of possible NGL lithographies. The NGL technologies that we have studied include SCALPEL, PREVAIL, EUV lithography, and Step and Flash Imprint Lithography. We will discuss the sensitivity of the inspection tools and mask design factors that affect tool sensitivity. Most of the work has been directed towards EUV mask inspection and how to optimize the mask to facilitate inspection. Our partners have succeeded in making high contrast EUV masks ranging in contrast from 70% to 98%. Die to die and die to database inspection of EUV masks have been achieved with a sensitivity that is comparable to what can be achieved with conventional photomasks, approximately 80nm defect sensitivity. We have inspected SCALPEL masks successfully. We have found a limitation of optical inspection when applied to PREVAIL stencil masks. We have run inspections on SFIL masks in die to die, reflected light, in an effort to provide feedback to improve the masks. We have used a UV inspection system to inspect both unpatterned EUV substrates (no coatings) and blanks (with EUV multilayer coatings). These inspection results have proven useful in driving down the substrate and blank defect levels.

  9. Optical assessment of tumor resection margins in the breast

    PubMed Central

    Brown, J. Quincy; Bydlon, Torre M.; Richards, Lisa M.; Yu, Bing; Kennedy, Stephanie A.; Geradts, Joseph; Wilke, Lee G.; Junker, Marlee; Gallagher, Jennifer; Barry, William; Ramanujam, Nimmi

    2011-01-01

    Breast conserving surgery, in which the breast tumor and surrounding normal tissue are removed, is the primary mode of treatment for invasive and in situ carcinomas of the breast, conditions that affect nearly 200,000 women annually. Of these nearly 200,000 patients who undergo this surgical procedure, between 20–70% of them may undergo additional surgeries to remove tumor that was left behind in the first surgery, due to the lack of intra-operative tools which can detect whether the boundaries of the excised specimens are free from residual cancer. Optical techniques have many attractive attributes which may make them useful tools for intra-operative assessment of breast tumor resection margins. In this manuscript, we discuss clinical design criteria for intra-operative breast tumor margin assessment, and review optical techniques appied to this problem. In addition, we report on the development and clinical testing of quantitative diffuse reflectance imaging (Q-DRI) as a potential solution to this clinical need. Q-DRI is a spectral imaging tool which has been applied to 56 resection margins in 48 patients at Duke University Medical Center. Clear sources of contrast between cancerous and cancer-free resection margins were identified with the device, and resulted in an overall accuracy of 75% in detecting positive margins. PMID:21544237

  10. Linear Covariance Analysis for a Lunar Lander

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael

    2017-01-01

    A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.

  11. Inspection of imprint lithography patterns for semiconductor and patterned media

    NASA Astrophysics Data System (ADS)

    Resnick, Douglas J.; Haase, Gaddi; Singh, Lovejeet; Curran, David; Schmid, Gerard M.; Luo, Kang; Brooks, Cindy; Selinidis, Kosta; Fretwell, John; Sreenivasan, S. V.

    2010-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This work summarizes the results of defect inspections of semiconductor masks, wafers and hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical and e-beam based automated inspection tools. For the semiconductor market, a test mask was designed which included dense features (with half pitches ranging between 32 nm and 48 nm) containing an extensive array of programmed defects. For this work, both e-beam inspection and optical inspection were used to detect both random defects and the programmed defects. Analytical SEMs were then used to review the defects detected by the inspection. Defect trends over the course of many wafers were observed with another test mask using a KLA-T 2132 optical inspection tool. The primary source of defects over 2000 imprints were particle related. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity, scattered light, phase shift, etc. Defects that have been identified in this manner are further characterized according to the morphology

  12. Java Tool Framework for Automation of Hardware Commissioning and Maintenance Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, J C; Fisher, J M; Gordon, J B

    2007-10-02

    The National Ignition Facility (NIF) is a 192-beam laser system designed to study high energy density physics. Each beam line contains a variety of line replaceable units (LRUs) that contain optics, stepping motors, sensors and other devices to control and diagnose the laser. During commissioning and subsequent maintenance of the laser, LRUs undergo a qualification process using the Integrated Computer Control System (ICCS) to verify and calibrate the equipment. The commissioning processes are both repetitive and tedious when we use remote manual computer controls, making them ideal candidates for software automation. Maintenance and Commissioning Tool (MCT) software was developed tomore » improve the efficiency of the qualification process. The tools are implemented in Java, leveraging ICCS services and CORBA to communicate with the control devices. The framework provides easy-to-use mechanisms for handling configuration data, task execution, task progress reporting, and generation of commissioning test reports. The tool framework design and application examples will be discussed.« less

  13. Influence of material and haptic design on the mechanical stability of intraocular lenses by means of finite-element modeling.

    PubMed

    Remón, Laura; Siedlecki, Damian; Cabeza-Gil, Iulen; Calvo, Begoña

    2018-03-01

    Intraocular lenses (IOLs) are used in the cataract treatment for surgical replacement of the opacified crystalline lens. Before being implanted they have to pass the strict quality control to guarantee a good biomechanical stability inside the capsular bag, avoiding the rotation, and to provide a good optical quality. The goal of this study was to investigate the influence of the material and haptic design on the behavior of the IOLs under dynamic compression condition. For this purpose, the strain-stress characteristics of the hydrophobic and hydrophilic materials were estimated experimentally. Next, these data were used as the input for a finite-element model (FEM) to analyze the stability of different IOL haptic designs, according to the procedure described by the ISO standards. Finally, the simulations of the effect of IOL tilt and decentration on the optical performance were performed in an eye model using a ray-tracing software. The results suggest the major importance of the haptic design rather than the material on the postoperative behavior of an IOL. FEM appears to be a powerful tool for numerical studies of the biomechanical properties of IOLs and it allows one to help in the design phase to the manufacturers. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Transforming guided waves with metamaterial waveguide cores

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  15. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    NASA Astrophysics Data System (ADS)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  16. Enhacement of intrafield overlay using a design based metrology system

    NASA Astrophysics Data System (ADS)

    Jo, Gyoyeon; Ji, Sunkeun; Kim, Shinyoung; Kang, Hyunwoo; Park, Minwoo; Kim, Sangwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Maruyama, Kotaro; Park, Byungjun

    2016-03-01

    As the scales of the semiconductor devices continue to shrink, accurate measurement and control of the overlay have been emphasized for securing more overlay margin. Conventional overlay analysis methods are based on the optical measurement of the overlay mark. However, the overlay data obtained from these optical methods cannot represent the exact misregistration between two layers at the circuit level. The overlay mismatch may arise from the size or pitch difference between the overlay mark and the real pattern. Pattern distortion, caused by CMP or etching, could be a source of the overlay mismatch as well. Another issue is the overlay variation in the real circuit pattern which varies depending on its location. The optical overlay measurement methods, such as IBO and DBO that use overlay mark on the scribeline, are not capable of defining the exact overlay values of the real circuit. Therefore, the overlay values of the real circuit need to be extracted to integrate the semiconductor device properly. The circuit level overlay measurement using CDSEM is time-consuming in extracting enough data to indicate overall trend of the chip. However DBM tool is able to derive sufficient data to display overlay tendency of the real circuit region with high repeatability. An E-beam based DBM(Design Based Metrology) tool can be an alternative overlay measurement method. In this paper, we are going to certify that the overlay values extracted from optical measurement cannot represent the circuit level overlay values. We will also demonstrate the possibility to correct misregistration between two layers using the overlay data obtained from the DBM system.

  17. In situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomography.

    PubMed

    Molenaar, Sam D; Sleutels, Tom; Pereira, Joao; Iorio, Matteo; Borsje, Casper; Zamudio, Julian A; Fabregat-Santiago, Francisco; Buisman, Cees J N; Ter Heijne, Annemiek

    2018-04-25

    Detailed studies of microbial growth in bioelectrochemical systems (BESs) are required for their suitable design and operation. Here, we report the use of optical coherence tomography (OCT) as a tool for in situ and noninvasive quantification of biofilm growth on electrodes (bioanodes). An experimental platform is designed and described in which transparent electrodes are used to allow real-time, 3D biofilm imaging. The accuracy and precision of the developed method is assessed by relating the OCT results to well-established standards for biofilm quantification (chemical oxygen demand (COD) and total N content) and show high correspondence to these standards. Biofilm thickness observed by OCT ranged between 3 and 90 μm for experimental durations ranging from 1 to 24 days. This translated to growth yields between 38 and 42 mgCODbiomass  gCODacetate -1 at an anode potential of -0.35 V versus Ag/AgCl. Time-lapse observations of an experimental run performed in duplicate show high reproducibility in obtained microbial growth yield by the developed method. As such, we identify OCT as a powerful tool for conducting in-depth characterizations of microbial growth dynamics in BESs. Additionally, the presented platform allows concomitant application of this method with various optical and electrochemical techniques. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  19. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  20. Advanced optical manufacturing and testing; Proceedings of the Meeting, San Diego, CA, July 9-11, 1990

    NASA Astrophysics Data System (ADS)

    Sanger, Gregory M.; Reid, Paul B.; Baker, Lionel R.

    1990-11-01

    Consideration is given to advanced optical fabrication, profilometry and thin films, and metrology. Particular attention is given to automation for optics manufacturing, 3D contouring on a numerically controlled grinder, laser-scanning lens configurations, a noncontact precision measurement system, novel noncontact profiler design for measuring synchrotron radiation mirrors, laser-diode technologies for in-process metrology, measurements of X-ray reflectivities of Au-coatings at several energies, platinum coating of an X-ray mirror for SR lithography, a Hilbert transform algorithm for fringe-pattern analysis, structural error sources during fabrication of the AXAF optical elements, an in-process mirror figure qualification procedure for large deformable mirrors, interferometric evaluation of lenslet arrays for 2D phase-locked laser diode sources, and manufacturing and metrology tooling for the solar-A soft X-ray telescope.

  1. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  2. Planning the National Agricultural Library's Multimedia CD-ROM "Ornamental Horticulture."

    ERIC Educational Resources Information Center

    Mason, Pamela R.

    1991-01-01

    Discussion of issues involved in planning a multimedia CD-ROM product explains the selection of authoring tools, the design of a user interface, expert systems, text conversion and capture (including scanning and optical character recognition), and problems associated with image files. The use of audio is also discussed, and a 14-item glossary is…

  3. Machining approach of freeform optics on infrared materials via ultra-precision turning.

    PubMed

    Li, Zexiao; Fang, Fengzhou; Chen, Jinjin; Zhang, Xiaodong

    2017-02-06

    Optical freeform surfaces are of great advantage in excellent optical performance and integrated alignment features. It has wide applications in illumination, imaging and non-imaging, etc. Machining freeform surfaces on infrared (IR) materials with ultra-precision finish is difficult due to its brittle nature. Fast tool servo (FTS) assisted diamond turning is a powerful technique for the realization of freeform optics on brittle materials due to its features of high spindle speed and high cutting speed. However it has difficulties with large slope angles and large rise-and-falls in the sagittal direction. In order to overcome this defect, the balance of the machining quality on the freeform surface and the brittle nature in IR materials should be realized. This paper presents the design of a near-rotational freeform surface (NRFS) with a low non-rotational degree (NRD) to constraint the variation of traditional freeform optics to solve this issue. In NRFS, the separation of the surface results in a rotational part and a residual part denoted as a non-rotational surface (NRS). Machining NRFS on germanium is operated by FTS diamond turning. Characteristics of the surface indicate that the optical finish of the freeform surface has been achieved. The modulation transfer function (MTF) of the freeform optics shows a good agreement to the design expectation. Images of the final optical system confirm that the fabricating strategy is of high efficiency and high quality. Challenges and prospects are discussed to provide guidance of future work.

  4. Optimization of turning process through the analytic flank wear modelling

    NASA Astrophysics Data System (ADS)

    Del Prete, A.; Franchi, R.; De Lorenzis, D.

    2018-05-01

    In the present work, the approach used for the optimization of the process capabilities for Oil&Gas components machining will be described. These components are machined by turning of stainless steel castings workpieces. For this purpose, a proper Design Of Experiments (DOE) plan has been designed and executed: as output of the experimentation, data about tool wear have been collected. The DOE has been designed starting from the cutting speed and feed values recommended by the tools manufacturer; the depth of cut parameter has been maintained as a constant. Wear data has been obtained by means the observation of the tool flank wear under an optical microscope: the data acquisition has been carried out at regular intervals of working times. Through a statistical data and regression analysis, analytical models of the flank wear and the tool life have been obtained. The optimization approach used is a multi-objective optimization, which minimizes the production time and the number of cutting tools used, under the constraint on a defined flank wear level. The technique used to solve the optimization problem is a Multi Objective Particle Swarm Optimization (MOPS). The optimization results, validated by the execution of a further experimental campaign, highlighted the reliability of the work and confirmed the usability of the optimized process parameters and the potential benefit for the company.

  5. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components' optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  6. The ultrahigh precision form measurement of small, steep-sided aspheric moulds, incorporating novel hardware and software developments; Technical Digest

    NASA Astrophysics Data System (ADS)

    Mills, M. W.; Hutchinson, Matthew J.

    2005-05-01

    A variety of consumer applications, eg cellphone camera lenses, optical storage devices, digital cameras, etc, are driving the demand for small, high aspheric departure rotationally-symmetric moulded optics, manufactured both in polymer and glass materials. The mould tools for such components are manufactured by ultra-high precision techniques such as single point diamond turning and ultra-precision grinding, and must be accurate to <1/10μm levels for form, and exhibit nanometric surface finish quality. The aspheric forms of such components" optical surfaces exhibit high departure from best-fit sphere towards their outer edge, which renders this outer region especially critical for optical performance. The high slope of these components at the clear aperture has caused some restrictions on the use of profilometry in the measurement of form across their full diameter. Taylor Hobson designs and manufactures a range of ultra-precision profilometers for use in such industries as aspheric optics fabrication. In order to address the issues described, a new measurement system, Taylor Hobson Form Talysurf PGI 1250, has been developed, which contains new Aspheric Data Fusion Software, as well as Asphero-Diffractive Analysis Software, allowing the entire diametric profile to be analysed to the desired level of accuracy. This development removes the previous limitation of maximum slope for this type of measurement, thus enabling better quality control of high slope, high aspheric departure optics. Measurement data from the Form Talysurf PGI 1250 can be fed back directly to the machine tool, in order to optimize the form of the optical mould.

  7. Designing strategies and tools for teacher training: The role of critical details, examples in optics

    NASA Astrophysics Data System (ADS)

    Viennot, Laurence; Chauvet, Françoise; Colin, Philippe; Rebmann, Gérard

    2005-01-01

    Within the overall STTIS (Science Teacher Training in an Information Society) framework, this paper focuses on transformations of innovative teaching of optics, following a recommended change of approach to optics in the French curriculum. The empirical investigation of how teachers responded to this change, the main results of which are briefly presented here, identified a crucial aspect of the problem. This is the importance of critical detail'': that is, the fact that the linkage between certain critical details of practice and the fundamental rationale of a teaching sequence is often not easily understood by teachers, even those who are strongly motivated. The paper then discusses the development of guidelines for the design of training materials based on these research findings, which show how teachers typically tend to transform innovations when putting them into practice. We describe the rationale behind and structure of some teacher training materials intended to facilitate awareness and mastery in this respect.

  8. Spontaneous generation of frequency combs in QD lasers

    NASA Astrophysics Data System (ADS)

    Columbo, Lorenzo Luigi; Bardella, Paolo; Gioannini, Mariangela

    2018-02-01

    We report a systematic analysis of the phenomenon of self-generation of optical frequency combs in single section Fabry-Perot Quantum Dot lasers using a Time Domain Travelling Wave model. We show that the carriers grating due to the standing wave pattern (spatial hole burning) peculiar of Quantum Dots laser and the Four Wave Mixing are the key ingredients to explain spontaneous Optical Frequency Combs in these devices. Our results well agree with recent experimental evidences reported in semiconductor lasers based on Quantum Dots and Quantum Dashes active material and pave the way to the development of a simulation tool for the design of these comb laser sources for innovative applications in the field of high-data rate optical communications.

  9. Processing and error compensation of diffractive optical element

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlong; Wang, Zhibin; Zhang, Feng; Qin, Hui; Li, Junqi; Mai, Yuying

    2014-09-01

    Diffractive optical element (DOE) shows high diffraction efficiency and good dispersion performance, which makes the optical system becoming light-weight and more miniature. In this paper, the design, processing, testing, compensation of DOE are discussed, especially the analyzing of compensation technology which based on the analyzing the DOE measurement date from Taylor Hobson PGI 1250. In this method, the relationship between shadowing effect with diamond tool and processing accuracy are analyzed. According to verification processing on the Taylor Hobson NANOFORM 250 lathe, the results indicate that the PV reaches 0.539 micron, the surface roughness reaches 4nm, the step position error is smaller than λ /10 and the step height error is less than 0.23 micron after compensation processing one time.

  10. Development and application of noninvasive technology for study of combustion in a combustion chamber of gas turbine engine

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.

    2015-05-01

    The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.

  11. SFR test fixture for hemispherical and hyperhemispherical camera systems

    NASA Astrophysics Data System (ADS)

    Tamkin, John M.

    2017-08-01

    Optical testing of camera systems in volume production environments can often require expensive tooling and test fixturing. Wide field (fish-eye, hemispheric and hyperhemispheric) optical systems create unique challenges because of the inherent distortion, and difficulty in controlling reflections from front-lit high resolution test targets over the hemisphere. We present a unique design for a test fixture that uses low-cost manufacturing methods and equipment such as 3D printing and an Arduino processor to control back-lit multi-color (VIS/NIR) targets and sources. Special care with LED drive electronics is required to accommodate both global and rolling shutter sensors.

  12. Broadband metasurfaces enabling arbitrarily large delay-bandwidth products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginis, Vincent; Tassin, Philippe; Koschny, Thomas

    2016-01-19

    Metasurfaces allow for advanced manipulation of optical signals by imposing phase discontinuities across flat interfaces. Unfortunately, these phase shifts remain restricted to values between 0 and 2π, limiting the delay-bandwidth product of such sheets. Here, we develop an analytical tool to design metasurfaces that mimic three-dimensional materials of arbitrary thickness. In this way, we demonstrate how large phase discontinuities can be realized by combining several subwavelength Lorentzian resonances in the unit cell of the surface. Finally, our methods open up the temporal response of metasurfaces and may lead to the construction of metasurfaces with a plethora of new optical functions.

  13. A Real-Time Tool Positioning Sensor for Machine-Tools

    PubMed Central

    Ruiz, Antonio Ramon Jimenez; Rosas, Jorge Guevara; Granja, Fernando Seco; Honorato, Jose Carlos Prieto; Taboada, Jose Juan Esteve; Serrano, Vicente Mico; Jimenez, Teresa Molina

    2009-01-01

    In machining, natural oscillations, and elastic, gravitational or temperature deformations, are still a problem to guarantee the quality of fabricated parts. In this paper we present an optical measurement system designed to track and localize in 3D a reference retro-reflector close to the machine-tool's drill. The complete system and its components are described in detail. Several tests, some static (including impacts and rotations) and others dynamic (by executing linear and circular trajectories), were performed on two different machine tools. It has been integrated, for the first time, a laser tracking system into the position control loop of a machine-tool. Results indicate that oscillations and deformations close to the tool can be estimated with micrometric resolution and a bandwidth from 0 to more than 100 Hz. Therefore this sensor opens the possibility for on-line compensation of oscillations and deformations. PMID:22408472

  14. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  15. Ghost analysis visualization techniques for complex systems: examples from the NIF Final Optics Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, G K; Hendrix, J L; Rowe, J

    1998-06-26

    The stray light or "ghost" analysis of the National Ignition Facility's (NIP) Final Optics Assembly (FOA) has proved to be one of the most complex ghost analyses ever attempted. The NIF FOA consists of a bundle of four beam lines that: 1) provides the vacuum seal to the target chamber, 2) converts 1ω to 3ω light, 3) focuses the light on the target, 4) separates a fraction of the 3ω beam for energy diagnostics, 5) separates the three wavelengths to diffract unwanted 1ω & 2ω light away from the target, 6) provides spatial beam smoothing, and 7) provides a debrismore » barrier between the target chamber and the switchyard mirrors. The three wavelengths of light and seven optical elements with three diffractive optic surfaces generate three million ghosts through 4 th order. Approximately 24,000 of these ghosts have peak fluence exceeding 1 J/cm 2. The shear number of ghost paths requires a visualization method that allows overlapping ghosts on optics and mechanical components to be summed and then mapped to the optical and mechanical component surfaces in 3D space. This paper addresses the following aspects of the NIF Final Optics Ghost analysis: 1) materials issues for stray light mitigation, 2) limitations of current software tools (especially in modeling diffractive optics), 3) computer resource limitations affecting automated coherent raytracing, 4) folding the stray light analysis into the opto-mechanical design process, 5) analysis and visualization tools from simple hand calculations to specialized stray light analysis computer codes, and 6) attempts at visualizing these ghosts using a CAD model and another using a high end data visualization software approach.« less

  16. Initial system design method for non-rotationally symmetric systems based on Gaussian brackets and Nodal aberration theory.

    PubMed

    Zhong, Yi; Gross, Herbert

    2017-05-01

    Freeform surfaces play important roles in improving the imaging performance of off-axis optical systems. However, for some systems with high requirements in specifications, the structure of the freeform surfaces could be very complicated and the number of freeform surfaces could be large. That brings challenges in fabrication and increases the cost. Therefore, to achieve a good initial system with minimum aberrations and reasonable structure before implementing freeform surfaces is essential for optical designers. The already existing initial system design methods are limited to certain types of systems. A universal tool or method to achieve a good initial system efficiently is very important. In this paper, based on the Nodal aberration theory and the system design method using Gaussian Brackets, the initial system design method is extended from rotationally symmetric systems to general non-rotationally symmetric systems. The design steps are introduced and on this basis, two off-axis three-mirror systems are pre-designed using spherical shape surfaces. The primary aberrations are minimized using the nonlinear least-squares solver. This work provides insight and guidance for initial system design of off-axis mirror systems.

  17. Sentinel-2 data exploitation with ESA's Sentinel-2 Toolbox

    NASA Astrophysics Data System (ADS)

    Gascon, Ferran; Ramoino, Fabrizzio; deanos, Yves-louis

    2017-04-01

    The Sentinel-2 Toolbox is a project kicked off by ESA in early 2014, under the umbrella of the ESA SEOM programme with the aim to provide a tool for visualizing, analysing, and processing the Sentinel-2 datasets. The toolbox is an extension of the SeNtinel Application Platform (SNAP), a project resulting from the effort of the developers of the Sentinel-1, Sentinel-2 and Sentinel-3 toolbox to provide a single common application framework suited for the mixed exploitation of SAR, high resolution optical and medium resolution optical datasets. All three development teams collaborate to drive the evolution of the common SNAP framework in a developer forum. In this triplet, the Sentinel-2 toolbox is dedicated to enhance SNAP support for high resolution optical imagery. It is a multi-mission toolbox, already providing support for Sentinel-2, RapidEye, Deimos, SPOT 1 to SPOT 5 datasets. In terms of processing algorithms, SNAP provides tools specific to the Sentinel-2 mission : • An atmospheric correction module, Sen2Cor, is integrated into the toolbox, and provides scene classification, atmospheric correction, cirrus detection and correction. The output L2A products can be opened seamlessly in the toolbox. • A multitemporal synthesis processor (L3) • A biophysical products processor (L2B) • A water processor • A deforestation detector • OTB tools integration • SNAP Engine for Cloud Exploitation along with a set of more generic tools for high resolution optical data exploitation. Together with the generic functionalities of SNAP this provides an ideal environment for designing multi-missions processing chains and producing value-added products from raw datasets. The use of SNAP is manifold and the desktop tools provides a rich application for interactive visualization, analysis and processing of data. But all tools available from SNAP can be accessed via command-line through the Graph Processing Framework (GPT), the kernel of the SNAP processing engine. This makes it a perfect candidate for driving the processing of data on servers for bulk processing.

  18. The Durham Adaptive Optics Simulation Platform (DASP): Current status

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Bharmal, N. A.; Jenkins, D.; Morris, T. J.; Osborn, J.; Peng, J.; Staykov, L.

    2018-01-01

    The Durham Adaptive Optics Simulation Platform (DASP) is a Monte-Carlo modelling tool used for the simulation of astronomical and solar adaptive optics systems. In recent years, this tool has been used to predict the expected performance of the forthcoming extremely large telescope adaptive optics systems, and has seen the addition of several modules with new features, including Fresnel optics propagation and extended object wavefront sensing. Here, we provide an overview of the features of DASP and the situations in which it can be used. Additionally, the user tools for configuration and control are described.

  19. Drilling of optical glass with electroplated diamond tools

    NASA Astrophysics Data System (ADS)

    Wang, A. J.; Luan, C. G.; Yu, A. B.

    2010-10-01

    K9 optical glass drilling experiments were carried out. Bright nickel electroplated diamond tools with small slots and under heat treatment in different temperature were fabricated. Scan electro microscope was applied to analyze the wear of electroplated diamond tool. The material removal rate and grinding ratio were calculated. Machining quality was observed. Bond coating hardness was measured. The experimental results show that coolant is needed for the drilling processes of optical glasses. Heat treatment temperature of diamond tool has influence on wearability of diamond tool and grinding ratio. There were two wear types of electroplated diamond tool, diamond grit wear and bond wear. With the machining processes, wear of diamond grits included fracture, blunt and pull-out, and electroplated bond was gradually worn out. High material removal rates could be obtained by using diamond tool with suitable slot numbers. Bright nickel coating bond presents smallest grains and has better mechanical properties. Bright nickel electroplated diamond tool with slot structure and heat treatment under 200°C was suitable for optical glass drilling.

  20. Rapid constructions of microstructures for optical fiber sensors using a commercial CO2 laser system.

    PubMed

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-06-27

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO₂ laser system which help exposing the optical fiber core to the measurand. The direct-write CO₂ laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO₂ laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures.

  1. Rapid Constructions of Microstructures for Optical Fiber Sensors Using a Commercial CO2 Laser System

    PubMed Central

    Irawan, Rudi; Chuan, Tjin Swee; Meng, Tay Chia; Ming, Tan Khay

    2008-01-01

    Exposing an optical fiber core to the measurand surrounding the fiber is often used to enhance the sensitivity of an optical fiber sensor. This paper reports on the rapid fabrication of microstructures in an optical fiber using a CO2 laser system which help exposing the optical fiber core to the measurand. The direct-write CO2 laser system used is originally designed for engraving the polymeric material. Fabrications of microstructures such as in-fiber microhole, D-shaped fiber, in-fiber microchannel, side-sliced fiber and tapered fiber were attempted. The microstructures in the fibers were examined using a SEM and an optical microscope. Quality of microstructures shown by the SEM images and promising results from fluorescence sensor tests using in-fiber microchannels of 100μm width, 210μm depth and 10mm length show the prospect of this method for use in optical fiber sensor development. The direct-write CO2 laser system is a flexible and fast machining tool for fabricating microstructures in an optical fiber, and can possibly be a replacement of the time consuming chemical etching and polishing methods used for microstructure fabrications of optical the fiber sensors reported in other literatures. PMID:19662114

  2. Spinoff 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Burnishing Techniques Strengthen Hip Implants; Signal Processing Methods Monitor Cranial Pressure; Ultraviolet-Blocking Lenses Protect, Enhance Vision; Hyperspectral Systems Increase Imaging Capabilities; Programs Model the Future of Air Traffic Management; Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise; Personal Aircraft Point to the Future of Transportation; Ducted Fan Designs Lead to Potential New Vehicles; Winglets Save Billions of Dollars in Fuel Costs; Sensor Systems Collect Critical Aerodynamics Data; Coatings Extend Life of Engines and Infrastructure; Radiometers Optimize Local Weather Prediction; Energy-Efficient Systems Eliminate Icing Danger for UAVs; Rocket-Powered Parachutes Rescue Entire Planes; Technologies Advance UAVs for Science, Military; Inflatable Antennas Support Emergency Communication; Smart Sensors Assess Structural Health; Hand-Held Devices Detect Explosives and Chemical Agents; Terahertz Tools Advance Imaging for Security, Industry; LED Systems Target Plant Growth; Aerogels Insulate Against Extreme Temperatures; Image Sensors Enhance Camera Technologies; Lightweight Material Patches Allow for Quick Repairs; Nanomaterials Transform Hairstyling Tools; Do-It-Yourself Additives Recharge Auto Air Conditioning; Systems Analyze Water Quality in Real Time; Compact Radiometers Expand Climate Knowledge; Energy Servers Deliver Clean, Affordable Power; Solutions Remediate Contaminated Groundwater; Bacteria Provide Cleanup of Oil Spills, Wastewater; Reflective Coatings Protect People and Animals; Innovative Techniques Simplify Vibration Analysis; Modeling Tools Predict Flow in Fluid Dynamics; Verification Tools Secure Online Shopping, Banking; Toolsets Maintain Health of Complex Systems; Framework Resources Multiply Computing Power; Tools Automate Spacecraft Testing, Operation; GPS Software Packages Deliver Positioning Solutions; Solid-State Recorders Enhance Scientific Data Collection; Computer Models Simulate Fine Particle Dispersion; Composite Sandwich Technologies Lighten Components; Cameras Reveal Elements in the Short Wave Infrared; Deformable Mirrors Correct Optical Distortions; Stitching Techniques Advance Optics Manufacturing; Compact, Robust Chips Integrate Optical Functions; Fuel Cell Stations Automate Processes, Catalyst Testing; Onboard Systems Record Unique Videos of Space Missions; Space Research Results Purify Semiconductor Materials; and Toolkits Control Motion of Complex Robotics.

  3. Real-Time Optical Monitoring of Flow Kinetics and Gas Phase Reactions Under High-Pressure OMCVD Conditions

    NASA Technical Reports Server (NTRS)

    Dietz, N.; McCall, S.; Bachmann, K. J.

    2001-01-01

    This contribution addresses the real-time optical characterization of gas flow and gas phase reactions as they play a crucial role for chemical vapor phase depositions utilizing elevated and high pressure chemical vapor deposition (HPCVD) conditions. The objectives of these experiments are to validate on the basis of results on real-time optical diagnostics process models simulation codes, and provide input parameter sets needed for analysis and control of chemical vapor deposition at elevated pressures. Access to microgravity is required to retain high pressure conditions of laminar flow, which is essential for successful acquisition and interpretation of the optical data. In this contribution, we describe the design and construction of the HPCVD system, which include access ports for various optical methods of real-time process monitoring and to analyze the initial stages of heteroepitaxy and steady-state growth in the different pressure ranges. To analyze the onset of turbulence, provisions are made for implementation of experimental methods for in-situ characterization of the nature of flow. This knowledge will be the basis for the design definition of experiments under microgravity, where gas flow conditions, gas phase and surface chemistry, might be analyzed by remote controlled real-time diagnostics tools, developed in this research project.

  4. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers.

    PubMed

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-03-03

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO 3 -WO 3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO 3 -WO 3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10 -3 and 10 -1  S·cm -1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording.

  5. Optical and electrical characterizations of multifunctional silver phosphate glass and polymer-based optical fibers

    PubMed Central

    Rioux, Maxime; Ledemi, Yannick; Morency, Steeve; de Lima Filho, Elton Soares; Messaddeq, Younès

    2017-01-01

    In recent years, the fabrication of multifunctional fibers has expanded for multiple applications that require the transmission of both light and electricity. Fibers featuring these two properties are usually composed either of a single material that supports the different characteristics or of a combination of different materials. In this work, we fabricated (i) novel single-core step-index optical fibers made of electrically conductive AgI-AgPO3-WO3 glass and (ii) novel multimaterial fibers with different designs made of AgI-AgPO3-WO3 glass and optically transparent polycarbonate and poly (methyl methacrylate) polymers. The multifunctional fibers produced show light transmission over a wide range of wavelengths from 500 to 1000 nm for the single-core fibers and from 400 to 1000 nm for the multimaterial fibers. Furthermore, these fibers showed excellent electrical conductivity with values ranging between 10−3 and 10−1 S·cm−1 at room temperature within the range of AC frequencies from 1 Hz to 1 MHz. Multimodal taper-tipped fibre microprobes were then fabricated and were characterized. This advanced design could provide promising tools for in vivo electrophysiological experiments that require light delivery through an optical core in addition to neuronal activity recording. PMID:28256608

  6. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, Brian J.

    2003-01-01

    Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics (MCAO) systems, pyramid wavefront sensors (PWFS's), and laser guide star (LGS) spot elongation. MCAO systems need to be designed in consideration of various constraints, including deformable mirror size and correction height. The y,{bar y} method of first-order optical design is a graphical technique that uses a plot with marginal and chief ray heights as coordinates; the optical system is represented as a segmented line. This method ismore » shown to be a powerful tool in designing MCAO systems. From these analyses, important conclusions about configurations are derived. PWFS's, which offer an alternative to Shack-Hartmann (SH) wavefront sensors (WFS's), are envisioned as the workhorse of layer-oriented adaptive optics. Current approaches use a 4-faceted glass pyramid to create a WFS analogous to a quad-cell SH WFS. PWFS's and SH WFS's are compared and some newly-considered similarities and PWFS advantages are presented. Techniques to extend PWFS's are offered: First, PWFS's can be extended to more pixels in the image by tiling pyramids contiguously. Second, pyramids, which are difficult to manufacture, can be replaced by less expensive lenslet arrays. An approach is outlined to convert existing SH WFS's to PWFS's for easy evaluation of PWFS's. Also, a demonstration of PWFS's in sensing varying amounts of an aberration is presented. For ELT's, the finite altitude and finite thickness of LGS's means that the LGS will appear elongated from the viewpoint of subapertures not directly under the telescope. Two techniques for dealing with LGS spot elongation in SH WFS's are presented. One method assumes that the laser will be pulsed and uses a segmented micro-electromechanical system (MEMS) to track the LGS light subaperture by subaperture as the light is returned from the upward-propagating laser pulse. A second method can be used if the laser is not pulsed. A lenslet array is described which creates ''pixels'' which are aligned with the axes of the elongated spot of each subaperture, without requiring special charge-coupled devices (CCD's).« less

  7. Integrated modeling environment for systems-level performance analysis of the Next-Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry

    1998-08-01

    All current concepts for the NGST are innovative designs which present unique systems-level challenges. The goals are to outperform existing observatories at a fraction of the current price/performance ratio. Standard practices for developing systems error budgets, such as the 'root-sum-of- squares' error tree, are insufficient for designs of this complexity. Simulation and optimization are the tools needed for this project; in particular tools that integrate controls, optics, thermal and structural analysis, and design optimization. This paper describes such an environment which allows sub-system performance specifications to be analyzed parametrically, and includes optimizing metrics that capture the science requirements. The resulting systems-level design trades are greatly facilitated, and significant cost savings can be realized. This modeling environment, built around a tightly integrated combination of commercial off-the-shelf and in-house- developed codes, provides the foundation for linear and non- linear analysis on both the time and frequency-domains, statistical analysis, and design optimization. It features an interactive user interface and integrated graphics that allow highly-effective, real-time work to be done by multidisciplinary design teams. For the NGST, it has been applied to issues such as pointing control, dynamic isolation of spacecraft disturbances, wavefront sensing and control, on-orbit thermal stability of the optics, and development of systems-level error budgets. In this paper, results are presented from parametric trade studies that assess requirements for pointing control, structural dynamics, reaction wheel dynamic disturbances, and vibration isolation. These studies attempt to define requirements bounds such that the resulting design is optimized at the systems level, without attempting to optimize each subsystem individually. The performance metrics are defined in terms of image quality, specifically centroiding error and RMS wavefront error, which directly links to science requirements.

  8. Design of high-capacity fiber-optic transport systems

    NASA Astrophysics Data System (ADS)

    Liao, Zhi Ming

    2001-08-01

    We study the design of fiber-optic transport systems and the behavior of fiber amplifiers/lasers with the aim of achieving higher capacities with larger amplifier spacing. Solitons are natural candidates for transmitting short pulses for high-capacity fiber-optic networks because of its innate ability to use two of fiber's main defects, fiber dispersion and fiber nonlinearity to balance each other. In order for solitons to retain its dynamic nature, amplifiers must be placed periodically to restore powers to compensate for fiber loss. Variational analysis is used to study the long-term stability of a periodical- amplifier system. A new regime of operation is identified which allows the use of a much longer amplifier spacing. If optical fibers are the blood vessels of an optical communication system, then the optical amplifier based on erbium-doped fiber is the heart. Optical communication systems can avoid the use of costly electrical regenerators to maintain system performance by being able to optically amplify the weakened signals. The length of amplifier spacing is largely determined by the gain excursion experienced by the solitons. We propose, model, and demonstrate a distributed erbium-doped fiber amplifier which can drastically reduce the amount of gain excursion experienced by the solitons, therefore allowing a much longer amplifier spacing and superior stability. Dispersion management techniques have become extremely valuable tools in the design of fiber-optic communication systems. We have studied in depth the advantage of different arnplification schemes (lumped and distributed) for various dispersion compensation techniques. We measure the system performance through the Q factor to evaluate the added advantage of effective noise figure and smaller gain excursion. An erbium-doped fiber laser has been constructed and characterized in an effort to develop a test bed to study transmission systems. The presence of mode-partition noise in an erbium-doped fiber laser was experimentally demonstrated. A numerical model has been developed using the Langevin rate equations and its predictions are in qualitative agreement with experimental data.

  9. Refractive collimation beam shaper design and sensitivity analysis using a free-form profile construction method.

    PubMed

    Tsai, Chung-Yu

    2017-07-01

    A refractive laser beam shaper comprising two free-form profiles is presented. The profiles are designed using a free-form profile construction method such that each incident ray is directed in a certain user-specified direction or to a particular point on the target surface so as to achieve the required illumination distribution of the output beam. The validity of the proposed design method is demonstrated by means of ZEMAX simulations. The method is mathematically straightforward and easily implemented in computer code. It thus provides a convenient tool for the design and sensitivity analysis of laser beam shapers and similar optical components.

  10. Compact optical multipass matrix system design based on slicer mirrors.

    PubMed

    Guo, Yin; Sun, Liqun

    2018-02-10

    High path-to-volume ratio (PVR) and low-aberration-output beams are the two main criteria to assess the performance of multipass absorption cells. However, no substantial progress has been reported for large-numerical-aperture-coupled multipass cells, which is due to the accumulated aberrations caused by a large number of off-axis reflections. Based on Chernin's design, in this study, we modified Chernin's four-objective multipass matrix cell by using slicer mirrors to eliminate alignment difficulty and decrease the system volume. A generalized design routine based on user requirements is also proposed. Based on the automatic modeling tool package (Pyzdde) connected with Zemax and boundary conditions of the parameters selection proposed, a low-aberration-output beam and a high PVR are easily obtained compared with other multipass cells schemes. In one demo design, 108 passes (5×7 matrix spots) in a base length of 300 mm are presented. The PVR and peak-to-valley value wavefront errors are 67.5 m/L and 0.92 μm, respectively. Finally, a tolerance analysis of this optical multipass system is also presented. This work may provide better broadband optical absorption cells in terms of response time and a better detection sensitivity in versatile applications.

  11. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials.

    PubMed

    Ma, Wei; Cheng, Feng; Liu, Yongmin

    2018-06-11

    Deep-learning framework has significantly impelled the development of modern machine learning technology by continuously pushing the limit of traditional recognition and processing of images, speech, and videos. In the meantime, it starts to penetrate other disciplines, such as biology, genetics, materials science, and physics. Here, we report a deep-learning-based model, comprising two bidirectional neural networks assembled by a partial stacking strategy, to automatically design and optimize three-dimensional chiral metamaterials with strong chiroptical responses at predesignated wavelengths. The model can help to discover the intricate, nonintuitive relationship between a metamaterial structure and its optical responses from a number of training examples, which circumvents the time-consuming, case-by-case numerical simulations in conventional metamaterial designs. This approach not only realizes the forward prediction of optical performance much more accurately and efficiently but also enables one to inversely retrieve designs from given requirements. Our results demonstrate that such a data-driven model can be applied as a very powerful tool in studying complicated light-matter interactions and accelerating the on-demand design of nanophotonic devices, systems, and architectures for real world applications.

  12. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  13. Laser induced fluorescence as a diagnostic tool integrated into a scanning fiber endoscope for mouse imaging

    NASA Astrophysics Data System (ADS)

    Brown, Christopher M.; Maggio-Price, Lillian; Seibel, Eric J.

    2007-02-01

    Scanning fiber endoscope (SFE) technology has shown promise as a minimally invasive optical imaging tool. To date, it is capable of capturing full-color 500-line images, at 15 Hz frame rate in vivo, as a 1.6 mm diameter endoscope. The SFE uses a singlemode optical fiber actuated at mechanical resonance to scan a light spot over tissue while backscattered or fluorescent light at each pixel is detected in time series using several multimode optical fibers. We are extending the capability of the SFE from a RGB reflectance imaging device to a diagnostic tool by imaging laser induced fluorescence (LIF) in tissue, allowing for correlation of endogenous fluorescence to tissue state. Design of the SFE for diagnostic imaging is guided by a comparison of single point spectra acquired from an inflammatory bowel disease (IBD) model to tissue histology evaluated by a pathologist. LIF spectra were acquired by illuminating tissue with a 405 nm light source and detecting intrinsic fluorescence with a multimode optical fiber. The IBD model used in this study was mdr1a-/- mice, where IBD was modulated by infection with Helicobacter bilis. IBD lesions in the mouse model ranged from mild to marked hyperplasia and dysplasia, from the distal colon to the cecum. A principle components analysis (PCA) was conducted on single point spectra of control and IBD tissue. PCA allowed for differentiation between healthy and dysplastic tissue, indicating that emission wavelengths from 620 - 650 nm were best able to differentiate diseased tissue and inflammation from normal healthy tissue.

  14. The CEBAF Element Database and Related Operational Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larrieu, Theodore; Slominski, Christopher; Keesee, Marie

    The newly commissioned 12GeV CEBAF accelerator relies on a flexible, scalable and comprehensive database to define the accelerator. This database delivers the configuration for CEBAF operational tools, including hardware checkout, the downloadable optics model, control screens, and much more. The presentation will describe the flexible design of the CEBAF Element Database (CED), its features and assorted use case examples.

  15. The design and construction of a cost-efficient confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Rajwa, Bartlomiej; Jones, James T.; Robinson, J. Paul

    2007-03-01

    The optical dissection ability of confocal microscopy makes it a powerful tool for biological materials. However, the cost and complexity of confocal scanning laser microscopy hinders its wide application in education. We describe the construction of a simplified confocal scanning laser microscope and demonstrate three-dimensional projection based on cost-efficient commercial hardware, together with available open source software.

  16. New solutions to realize complex optical systems by a combination of diffractive and refractive optical components

    NASA Astrophysics Data System (ADS)

    Brunner, Robert; Steiner, Reinhard; Dobschal, Hans-Juergen; Martin, Dietrich; Burkhardt, Matthias; Helgert, Michael

    2003-11-01

    Diffractive optical elements (DOEs) have a great potential in the complete or partial substitution of refractive or reflective optical elements in imaging systems. The greater design flexibility compared to an all-refractive/reflective solution allows a more convenient realization of the optical systems and additionally opens up new possibilities for optimizing the performance or compactness. To demonstrate the opportunities of the hybrid optical concept we discuss different imaging systems for various applications. We present the lens design of a hybrid microscope objective which is especially applicable for wafer inspection technologies. Meeting the requirements for such a system used in the deep-UV regime (248 nm) is very challenging. The short wavelength limits the material selection and demands cement free optical groups. The additional requirement of an autofocus system, working at a wavelength in the near infrared region, is fulfilled by the special combination of two selected and adjusted DOEs. Furthermore, we discuss the opportunities of the hybrid concept c of a slit lamp used for ophthalmologic examinations. The DOEs are the basic elements of this hybrid concept. We demonstrate that holographic lithography is an appropriate technology to realize a wide variety of elements with different profile geometries. We address in particular the additional possibilities of an UV-laser system as an exposure tool. Additionally to the high spatial frequencies, the 266 nm exposure wavelength allows the use of novel photo resists with advantageous development behavior.

  17. Mobile fiber-optic sensor for detection of oral and cervical cancer in the developing world.

    PubMed

    Yu, Bing; Nagarajan, Vivek Krishna; Ferris, Daron G

    2015-01-01

    Oral and cervical cancers are a growing global health problem that disproportionately impacts women and men living in the developing world. The high death rate in developing countries is largely due to the fact that these countries do not have the appropriate medical infrastructure and resources to support the organized screening and diagnostic programs that are available in the developed world. Diffuse reflectance spectroscopy (DRS) with a fiber-optic probe can noninvasively quantify the optical properties of epithelial tissues and has shown the potential as a cost-effective, easy-to-use, and sensitive tool for diagnosis of early precancerous changes in the cervix and oral cavity. However, current fiber-optic DRS systems have not been designed to be robust and reliable for use in developing countries. They are subject to various sources of systematic or random errors, arising from the uncontrolled probe-tissue interface and lack of real-time calibration, use bulky and expensive optical components, and require extensive training. This chapter describes a portable DRS device that is specifically designed for detection of oral and cervical cancers in resource-poor settings. The device uses an innovative smart fiber-optic probe to eliminate operator bias, state-of-the-art photonics components to reduce size and power consumption, and automated software to reduce the need of operator training. The size and cost of the smart fiber-optic DRS system may be further reduced by incorporating a smartphone based spectrometer.

  18. Space environmental effects on spacecraft: LEO materials selection guide, part 1

    NASA Astrophysics Data System (ADS)

    Silverman, Edward M.

    1995-08-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.

  19. Detecting the spatial chirp signals by fractional Fourier lens with transformation materials

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hu, J.

    2018-02-01

    Fractional Fourier transform (FrFT) is the general form of the Fourier transform and is an important tool in signal processing. As one typical application of FrFT, detecting the chirp rate (CR, or known as the rate of frequency change) of a chirp signal is important in many optical measurements. The optical FrFT that based on graded index lens fails to detect the high CR chirp because the short wave propagation distance of the impulse in the lens will weaken the paraxial approximation condition. With the help of transformation optics, the improved FrFT lens is proposed to adjust the high CR as well as the impulse location of the given input chirp signal. The designed transformation materials can implement the effect of space compression, making the input chirp signal is equivalent to have lower CR, therefore the system can satisfy the paraxial approximation better. As a result, this lens can improve the detection precision for the high CR. The numerical simulations verified the design. The proposed device may have both theoretical and practical values, and the design demonstrates the ability and flexibility of TO in spatial signal processing.

  20. Space environmental effects on spacecraft: LEO materials selection guide, part 1

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M.

    1995-01-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 1 covers spacecraft design considerations for the space environment; advanced composites; polymers; adhesives; metals; ceramics; protective coatings; and lubricants, greases, and seals.

  1. Progress in molecular imaging in endoscopy and endomicroscopy for cancer imaging

    PubMed Central

    Khondee, Supang; Wang, Thomas D.

    2014-01-01

    Imaging is an essential tool for effective cancer management. Endoscopes are important medical instruments for performing in vivo imaging in hollow organs. Early detection of cancer can be achieved with surveillance using endoscopy, and has been shown to reduce mortality and to improve outcomes. Recently, great advancements have been made in endoscopic instruments, including new developments in optical designs, light sources, optical fibers, miniature scanners, and multimodal systems, allowing for improved resolution, greater tissue penetration, and multispectral imaging. In addition, progress has been made in the development of highly-specific optical probes, allowing for improved specificity for molecular targets. Integration of these new endoscopic instruments with molecular probes provides a unique opportunity for significantly improving patient outcomes and has potential to further improve early detection, image guided therapy, targeted therapy, and personalized medicine. This work summarizes current and evolving endoscopic technologies, and provides an overview of various promising optical molecular probes. PMID:23502247

  2. Dental caries detection by optical spectroscopy: a polarized Raman approach with fibre-optic coupling

    NASA Astrophysics Data System (ADS)

    Ko, A. C.-T.; Choo-Smith, L.-P.; Werner, J.; Hewko, M.; Sowa, M. G.; Dong, C.; Cleghorn, B.

    2006-09-01

    Incipient dental caries lesions appear as white spots on the tooth surface; however, accurate detection of early approximal lesions is difficult due to limited sensitivity of dental radiography and other traditional diagnostic tools. A new fibre-optic coupled spectroscopic method based on polarized Raman spectroscopy (P-RS) with near-IR laser excitation is introduced which provides contrast for detecting and characterizing incipient caries. Changes in polarized Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Demineralization-induced morphological/orientational alteration of enamel crystallites is believed to be responsible for the reduction of Raman polarization anisotropy observed in the polarized Raman spectra of caries lesions. Supporting evidence obtained by polarized Raman spectral imaging is presented. A specially designed fibre-optic coupled setup for simultaneous measurement of parallel- and cross-polarized tooth Raman spectra is demonstrated in this study.

  3. OSCAR a Matlab based optical FFT code

    NASA Astrophysics Data System (ADS)

    Degallaix, Jérôme

    2010-05-01

    Optical simulation softwares are essential tools for designing and commissioning laser interferometers. This article aims to introduce OSCAR, a Matlab based FFT code, to the experimentalist community. OSCAR (Optical Simulation Containing Ansys Results) is used to simulate the steady state electric fields in optical cavities with realistic mirrors. The main advantage of OSCAR over other similar packages is the simplicity of its code requiring only a short time to master. As a result, even for a beginner, it is relatively easy to modify OSCAR to suit other specific purposes. OSCAR includes an extensive manual and numerous detailed examples such as simulating thermal aberration, calculating cavity eigen modes and diffraction loss, simulating flat beam cavities and three mirror ring cavities. An example is also provided about how to run OSCAR on the GPU of modern graphic cards instead of the CPU, making the simulation up to 20 times faster.

  4. Triaxial fiber optic magnetic field sensor for MRI applications

    NASA Astrophysics Data System (ADS)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  5. Native amorphous nanoheterogeneity in gallium germanosilicates as a tool for driving Ga2O3 nanocrystal formation in glass for optical devices.

    PubMed

    Sigaev, Vladimir N; Golubev, Nikita V; Ignat'eva, Elena S; Champagnon, Bernard; Vouagner, Dominique; Nardou, Eric; Lorenzi, Roberto; Paleari, Alberto

    2013-01-07

    Nanoparticles in amorphous oxides are a powerful tool for embedding a wide range of functions in optical glasses, which are still the best solutions in several applications in the ever growing field of photonics. However, the control of the nanoparticle size inside the host material is often a challenging task, even more challenging when detrimental effects on light transmittance have to be avoided. Here we show how the process of phase separation and subsequent nanocrystallization of a Ga-oxide phase can be controlled in germanosilicates - prototypal systems in optical telecommunications - starting from a Ga-modified glass composition designed to favour uniform liquid-liquid phase separation in the melt. Small angle neutron scattering data demonstrate that nanosized structuring occurs in the amorphous as-quenched glass and gives rise to initially smaller nanoparticles, by heating, as in a secondary phase separation. By further heating, the nanophase evolves with an increase of nanoparticle gyration radius, from a few nm to a saturation value of about 10 nm, through an initial growing process followed by an Ostwald ripening mechanism. Nanoparticles finally crystallize, as indicated by transmission electron microscopy and X-ray diffraction, as γ-Ga(2)O(3)- a metastable gallium oxide polymorph. Infrared reflectance and photoluminescence, together with the optical absorption of Ni ions used as a probe, give an indication of the underlying interrelated processes of the structural change in the glass and in the segregated phase. As a result, our data give for the first time a rationale for designing Ga-modified germanosilicates at the nanoscale, with the perspective of a detailed nanostructuring control.

  6. Application of telecom planar lightwave circuits for homeland security sensing

    NASA Astrophysics Data System (ADS)

    Veldhuis, Gert J.; Elders, Job; van Weerden, Harm; Amersfoort, Martin

    2004-03-01

    Over the past decade, a massive effort has been made in the development of planar lightwave circuits (PLCs) for application in optical telecommunications. Major advances have been made, on both the technological and functional performance front. Highly sophisticated software tools that are used to tailor designs to required functional performance support these developments. In addition extensive know-how in the field of packaging, testing, and failure mode and effects analysis (FMEA) has been built up in the struggle for meeting the stringent Telcordia requirements that apply to telecom products. As an example, silica-on-silicon is now a mature technology available at several industrial foundries around the world, where, on the performance front, the arrayed-waveguide grating (AWG) has evolved into an off-the-shelf product. The field of optical chemical-biological (CB) sensors for homeland security application can greatly benefit from the advances as described above. In this paper we discuss the currently available technologies, device concepts, and modeling tools that have emerged from the telecommunications arena and that can effectively be applied to the field of homeland security. Using this profound telecom knowledge base, standard telecom components can readily be tailored for detecting CB agents. Designs for telecom components aim at complete isolation from the environment to exclude impact of environmental parameters on optical performance. For sensing applications, the optical path must be exposed to the measurand, in this area additional development is required beyond what has already been achieved in telecom development. We have tackled this problem, and are now in a position to apply standard telecom components for CB sensing. As an example, the application of an AWG as a refractometer is demonstrated, and its performance evaluated.

  7. Designing and building a permanent magnet Zeeman slower for calcium atoms using a 3D printer

    NASA Astrophysics Data System (ADS)

    Parsagian, Alexandria; Kleinert, Michaela

    2015-10-01

    We present the design of a Zeeman slower for calcium atoms using permanent magnets instead of more traditional electromagnets and the novel technique of 3D printing to create a very robust and flexible structure for these magnets. Zeeman slowers are ideal tools to slow atoms from several hundreds of meters per second to just a few tens of meters per second. These slower atoms can then easily be trapped in a magneto-optical trap, making Zeeman slowers a very valuable tool in many cold atom labs. The use of permanent magnets and 3D printing results in a highly stable and robust slower that is suitable for undergraduate laboratories. In our design, we arranged 28 magnet pairs, 2.0 cm apart along the axis of the slower and at varying radial distances from the axis. We determined the radial position of the magnets by simulating the combined field of all magnet pairs using Mathematica and comparing it to the ideal theoretical field for a Zeeman slower. Finally, we designed a stable, robust, compact, and easy-to-align mounting structure for the magnets in Google Sketchup, which we then printed using a commercially available 3D printer by Solidoodle. The resulting magnetic field is well suited to slow calcium atoms from the 770 m/s rms velocity at a temperature of 950 K, down to the capture velocity of the magneto-optical trap.

  8. Optical HMI with biomechanical energy harvesters integrated in textile supports

    NASA Astrophysics Data System (ADS)

    De Pasquale, G.; Kim, SG; De Pasquale, D.

    2015-12-01

    This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%.

  9. Space environmental effects on spacecraft: LEO materials selection guide, part 2

    NASA Astrophysics Data System (ADS)

    Silverman, Edward M.

    1995-08-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.

  10. Space environmental effects on spacecraft: LEO materials selection guide, part 2

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M.

    1995-01-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.

  11. Design of an optical system for interrogation of implanted luminescent sensors and verification with silicone skin phantoms.

    PubMed

    Long, Ruiqi; McShane, Mike

    2012-09-01

    Implantable luminescent sensors are being developed for on-demand monitoring of blood glucose levels. For these sensors to be deployed in vivo, a matched external hardware system is needed. In this paper, we designed a compact, low-cost optical system with highly efficient photon delivery and collection using advanced optical modeling software. Compared to interrogation with a fiber bundle, the new system was predicted to improve interrogation efficiency by a factor of 200 for native sensors; an improvement of 37 times was predicted for sensors implanted at a depth of 1 mm in a skin-simulating phantom. A physical prototype was tested using silicone-based skin phantoms developed specifically to mimic the scattering and absorbing properties of human skin. The experimental evaluations revealed that the prototype device performed in agreement with expectations from simulation results, resulting in an overall improvement of over 2000 times. This efficient system enables use of a low-cost commercial spectrometer for recording sensor emission, which was not possible using only fiber optic delivery and collection, and will be used as a tool for in vivo studies with animal models or human subjects.

  12. Optical performance analysis of plenoptic camera systems

    NASA Astrophysics Data System (ADS)

    Langguth, Christin; Oberdörster, Alexander; Brückner, Andreas; Wippermann, Frank; Bräuer, Andreas

    2014-09-01

    Adding an array of microlenses in front of the sensor transforms the capabilities of a conventional camera to capture both spatial and angular information within a single shot. This plenoptic camera is capable of obtaining depth information and providing it for a multitude of applications, e.g. artificial re-focusing of photographs. Without the need of active illumination it represents a compact and fast optical 3D acquisition technique with reduced effort in system alignment. Since the extent of the aperture limits the range of detected angles, the observed parallax is reduced compared to common stereo imaging systems, which results in a decreased depth resolution. Besides, the gain of angular information implies a degraded spatial resolution. This trade-off requires a careful choice of the optical system parameters. We present a comprehensive assessment of possible degrees of freedom in the design of plenoptic systems. Utilizing a custom-built simulation tool, the optical performance is quantified with respect to particular starting conditions. Furthermore, a plenoptic camera prototype is demonstrated in order to verify the predicted optical characteristics.

  13. Software-centric View on OVMS for LBT

    NASA Astrophysics Data System (ADS)

    Trowitzsch, J.; Borelli, J.; Pott, J.; Kürster, M.

    2012-09-01

    The performance of infrared interferometry (IF) and adaptive optics (AO) strongly depends on the mitigation and correction of telescope vibrations. Therefore, at the Large Binocular Telescope (LBT) the OVMS, the Optical Path Difference and Vibration Monitoring System, is being installed. It is meant to ensure suitable conditions for adaptive optics and interferometry. The vibration information is collected from accelerometers that are distributed over the optical elements of the LBT. The collected vibration measurements are converted into tip-tilt and optical path difference data. That data is utilized in the control strategies of the LBT adaptive secondary mirrors and the beam combining interferometers, LINC-NIRVANA and LBTI. Within the OVMS the software part is responsibility of the LINC-NIRVANA team at MPIA Heidelberg. It comprises the software for the real-time data acquisition from the accelerometers as well as the related telemetry interface and the vibration monitoring quick look tools. The basic design ideas, implementation details and special features are explained here.

  14. FEM analysis of bonding process used for minimization of deformation of optical surface under Metis coronagraph mirrors manufacturing

    NASA Astrophysics Data System (ADS)

    Procháska, F.; Vít, T.; Matoušek, O.; Melich, R.

    2016-11-01

    High demands on the final surfaces micro-roughness as well as great shape accuracy have to be achieved under the manufacturing process of the precise mirrors for Metis orbital coronagraph. It is challenging engineering task with respect to lightweight design of the mirrors and resulting objectionable optical surface shape stability. Manufacturing of such optical elements is usually affected by number of various effects. Most of them are caused by instability of temperature field. It is necessary to explore, comprehend and consequently minimize all thermo - mechanical processes which take place during mirror cementing, grinding and polishing processes to minimize the optical surface deformation. Application of FEM simulation was proved as a useful tool to help to solve this task. FEM simulations were used to develop and virtually compare different mirror holders to minimize the residual stress generated by temperature changes and to suppress the shape deformation of the optical surface below the critical limit of about 100 nm.

  15. An ALuc-Based Molecular Tension Probe for Sensing Intramolecular Protein-Protein Interactions.

    PubMed

    Kim, Sung-Bae; Nishihara, Ryo; Suzuki, Koji

    2016-01-01

    Optical imaging of protein-protein interactions (PPIs) facilitates comprehensive elucidation of intracellular molecular events. The present protocol demonstrates an optical measure for visualizing molecular tension triggered by any PPI in mammalian cells. A unique design of single-chain probes was fabricated, in which a full-length artificial luciferase (ALuc(®)) was sandwiched between two model proteins of interest, e.g., FKBP and FRB. A molecular tension probe comprising ALuc23 greatly enhances the bioluminescence in response to varying concentrations of rapamycin, and named "tension probe (TP)." The basic probe design can be further modified towards eliminating the C-terminal end of ALuc and was found to improve signal-to-background ratios, named "combinational probe." TPs may become an important addition to the tool box of bioassays in the determination of protein dynamics of interest in mammalian cells.

  16. Parametric bicubic spline and CAD tools for complex targets shape modelling in physical optics radar cross section prediction

    NASA Astrophysics Data System (ADS)

    Delogu, A.; Furini, F.

    1991-09-01

    Increasing interest in radar cross section (RCS) reduction is placing new demands on theoretical, computation, and graphic techniques for calculating scattering properties of complex targets. In particular, computer codes capable of predicting the RCS of an entire aircraft at high frequency and of achieving RCS control with modest structural changes, are becoming of paramount importance in stealth design. A computer code, evaluating the RCS of arbitrary shaped metallic objects that are computer aided design (CAD) generated, and its validation with measurements carried out using ALENIA RCS test facilities are presented. The code, based on the physical optics method, is characterized by an efficient integration algorithm with error control, in order to contain the computer time within acceptable limits, and by an accurate parametric representation of the target surface in terms of bicubic splines.

  17. "Reliability Of Fiber Optic Lans"

    NASA Astrophysics Data System (ADS)

    Code n, Michael; Scholl, Frederick; Hatfield, W. Bryan

    1987-02-01

    Fiber optic Local Area Network Systems are being used to interconnect increasing numbers of nodes. These nodes may include office computer peripherals and terminals, PBX switches, process control equipment and sensors, automated machine tools and robots, and military telemetry and communications equipment. The extensive shared base of capital resources in each system requires that the fiber optic LAN meet stringent reliability and maintainability requirements. These requirements are met by proper system design and by suitable manufacturing and quality procedures at all levels of a vertically integrated manufacturing operation. We will describe the reliability and maintainability of Codenoll's passive star based systems. These include LAN systems compatible with Ethernet (IEEE 802.3) and MAP (IEEE 802.4), and software compatible with IBM Token Ring (IEEE 802.5). No single point of failure exists in this system architecture.

  18. Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system.

    PubMed

    Hugot, Emmanuel; Ferrari, Marc; El Hadi, Kacem; Vola, Pascal; Gimenez, Jean Luc; Lemaitre, Gérard R; Rabou, Patrick; Dohlen, Kjetil; Puget, Pascal; Beuzit, Jean Luc; Hubin, Norbert

    2009-05-20

    The manufacturing of toric mirrors for the Very Large Telescope-Spectro-Polarimetric High-Contrast Exoplanet Research instrument (SPHERE) is based on Active Optics and stress polishing. This figuring technique allows minimizing mid and high spatial frequency errors on an aspherical surface by using spherical polishing with full size tools. In order to reach the tight precision required, the manufacturing error budget is described to optimize each parameter. Analytical calculations based on elasticity theory and finite element analysis lead to the mechanical design of the Zerodur blank to be warped during the stress polishing phase. Results on the larger (366 mm diameter) toric mirror are evaluated by interferometry. We obtain, as expected, a toric surface within specification at low, middle, and high spatial frequencies ranges.

  19. Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA

    NASA Astrophysics Data System (ADS)

    Trappe, N.; Bracken, C.; Doherty, S.; Gao, J. R.; Glowacka, D.; Goldie, D.; Griffin, D.; Hijmering, R.; Jackson, B.; Khosropanah, P.; Mauskopf, P.; Morozov, D.; Murphy, A.; O'Sullivan, C.; Ridder, M.; Withington, S.

    2012-09-01

    The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.

  20. Natural light illumination system.

    PubMed

    Whang, Allen Jong-Woei; Chen, Yi-Yung; Yang, Shu-Hua; Pan, Po-Hsuan; Chou, Kao-Hsu; Lee, Yu-Chi; Lee, Zong-Yi; Chen, Chi-An; Chen, Cheng-Nan

    2010-12-10

    In recent years, green energy has undergone a lot of development and has been the subject of many applications. Many research studies have focused on illumination with sunlight as a means of saving energy and creating healthy lighting. Natural light illumination systems have collecting, transmitting, and lighting elements. Today, most daylight collectors use dynamic concentrators; these include Sun tracking systems. However, this design is too expensive to be cost effective. To create a low-cost collector that can be easily installed on a large building, we have designed a static concentrator, which is prismatic and cascadable, to collect sunlight for indoor illumination. The transmission component uses a large number of optical fibers. Because optical fibers are expensive, this means that most of the cost for the system will be related to transmission. In this paper, we also use a prismatic structure to design an optical coupler for coupling n to 1. With the n-to-1 coupler, the number of optical fibers necessary can be greatly reduced. Although this new natural light illumination system can effectively guide collected sunlight and send it to the basement or to other indoor places for healthy lighting, previously there has been no way to manage the collected sunlight when lighting was not desired. To solve this problem, we have designed an optical switch and a beam splitter to control and separate the transmitted light. When replacing traditional sources, the lighting should have similar characteristics, such as intensity distribution and geometric parameters, to those of traditional artificial sources. We have designed, simulated, and optimized an illumination lightpipe with a dot pattern to redistribute the collected sunlight from the natural light illumination system such that it equals the qualities of a traditional lighting system. We also provide an active lighting module that provides lighting from the natural light illumination system or LED auxiliary sources, depending on circumstances. The system is controlled by a light detector. We used optical simulation tools to design and simulate the efficiency of the active module. Finally, we used the natural light illumination system to provide natural illumination for a traffic tunnel. This system will provide a great number of benefits for the people who use it.

  1. NASA Tech Briefs, October 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Insect-Inspired Optical-Flow Navigation Sensors; Chemical Sensors Based on Optical Ring Resonators; A Broad-Band Phase-Contrast Wave-Front Sensor; Progress in Insect-Inspired Optical Navigation Sensors; Portable Airborne Laser System Measures Forest-Canopy Height; Deployable Wide-Aperture Array Antennas; Faster Evolution of More Multifunctional Logic Circuits; Video-Camera-Based Position-Measuring System; N-Type delta Doping of High-Purity Silicon Imaging Arrays; Avionics System Architecture Tool; Updated Chemical Kinetics and Sensitivity Analysis Code; Predicting Flutter and Forced Response in Turbomachinery; Upgrades of Two Computer Codes for Analysis of Turbomachinery; Program Facilitates CMMI Appraisals; Grid Visualization Tool; Program Computes Sound Pressures at Rocket Launches; Solar-System Ephemeris Toolbox; Data-Acquisition Software for PSP/TSP Wind-Tunnel Cameras; Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating; Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts; Making Activated Carbon for Storing Gas; System Regulates the Water Contents of Fuel-Cell Streams; Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig; Modifications of Fabrication of Vibratory Microgyroscopes; Chamber for Growing and Observing Fungi; Electroporation System for Sterilizing Water; Thermoelectric Air/Soil Energy-Harvesting Device; Flexible Metal-Fabric Radiators; Actuated Hybrid Mirror Telescope; Optical Design of an Optical Communications Terminal; Algorithm for Identifying Erroneous Rain-Gauge Readings; Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads; Lightweight Thermal Insulation for a Liquid-Oxygen Tank; Stellar Gyroscope for Determining Attitude of a Spacecraft; and Lifting Mechanism for the Mars Explorer Rover.

  2. Sub-cell turning to accomplish micron-level alignment of precision assemblies

    NASA Astrophysics Data System (ADS)

    Kumler, James J.; Buss, Christian

    2017-08-01

    Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.

  3. Design and evaluation of a THz time domain imaging system using standard optical design software.

    PubMed

    Brückner, Claudia; Pradarutti, Boris; Müller, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas

    2008-09-20

    A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.

  4. Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Della Monica Ferreira, D.; Shortt, B.; Bavdaz, M.; Bergback Knudsen, E.; Bianucci, G.; Christensen, F.; Civitani, M.; Collon, M.; Conconi, P.; Fransen, S.; Marioni, F.; Massahi, S.; Pareschi, G.; Salmaso, B.; Jegers, A. S.; Tayabaly, K.; Valsecchi, G.; Westergaard, N.; Wille, E.

    2017-09-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m2 effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module's segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment and integration.

  5. Bi-centenary of successes of Fourier theorem: its power and limitations in optical system designs

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2007-09-01

    We celebrate the two hundred years of successful use of the Fourier theorem in optics. However, there is a great enigma associated with the Fourier transform integral. It is one of the most pervasively productive and useful tool of physics and optics because its foundation is based on the superposition of harmonic functions and yet we have never declared it as a principle of physics for valid reasons. And, yet there are a good number of situations where we pretend it to be equivalent to the superposition principle of physics, creating epistemological problems of enormous magnitude. The purpose of the paper is to elucidate the problems while underscoring the successes and the elegance of the Fourier theorem, which are not explicitly discussed in the literature. We will make our point by taking six major engineering fields of optics and show in each case why it works and under what restricted conditions by bringing in the relevant physics principles. The fields are (i) optical signal processing, (ii) Fourier transform spectrometry, (iii) classical spectrometry of pulsed light, (iv) coherence theory, (v) laser mode locking and (vi) pulse broadening. We underscore that mathematical Fourier frequencies, not being physical frequencies, cannot generate real physical effects on our detectors. Appreciation of this fundamental issue will open up ways to be innovative in many new optical instrument designs. We underscore the importance of always validating our design platforms based on valid physics principles (actual processes undergoing in nature) captured by an appropriate hypothesis based on diverse observations. This paper is a comprehensive view of the power and limitations of Fourier Transform by summarizing a series of SPIE conference papers presented during 2003-2007.

  6. Theory and design of nonlinear metamaterials

    NASA Astrophysics Data System (ADS)

    Rose, Alec Daniel

    If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers and oscillators. By applying this set of tools and knowledge to microwave metamaterials, I experimentally confirm several novel nonlinear phenomena. Most notably, I construct a backward wave nonlinear medium from varactor-loaded split ring resonators loaded in a rectangular waveguide, capable of generating second-harmonic opposite to conventional nonlinear materials with a conversion efficiency as high as 1.5%. In addition, I confirm nonlinear magnetoelectric coupling in two dual gap varactor-loaded split ring resonator metamaterials through measurement of the amplitude and phase of the second-harmonic generated in the forward and backward directions from a thin slab. I then use the presence of simultaneous nonlinearities in such metamaterials to observe nonlinear interference, manifest as unidirectional difference frequency generation with contrasts of 6 and 12 dB in the forward and backward directions, respectively. Finally, I apply these principles and intuition to several plasmonic platforms with the goal of achieving similar enhancements and configurations at optical frequencies. Using the example of fluorescence enhancement in optical patch antennas, I develop a semi-classical numerical model for the calculation of field-induced enhancements to both excitation and spontaneous emission rates of an embedded fluorophore, showing qualitative agreement with experimental results, with enhancement factors of more than 30,000. Throughout these series of works, I emphasize the indispensability of effective design and retrieval tools in understanding and optimizing both metamaterials and plasmonic systems. Ultimately, when weighed against the disadvantages in fabrication and optical losses, the results presented here provide a context for the application of nonlinear metamaterials within three distinct areas where a competitive advantage over conventional materials might be obtained: fundamental science demonstrations, linear and nonlinear anisotropy engineering, and extremely compact resonant all-optical devices.

  7. Okayama optical polarimetry and spectroscopy system (OOPS) II. Network-transparent control software.

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Kurakami, T.; Shimizu, Y.; Yutani, M.

    Control system of the OOPS (Okayama Optical Polarimetry and Spectroscopy system) is designed to integrate several instruments whose controllers are distributed over a network; the OOPS instrument, a CCD camera and data acquisition unit, the 91 cm telescope, an autoguider, a weather monitor, and an image display tool SAOimage. With the help of message-based communication, the control processes cooperate with related processes to perform an astronomical observation under supervising control by a scheduler process. A logger process collects status data of all the instruments to distribute them to related processes upon request. Software structure of each process is described.

  8. New plasmonic materials and fabrication tools for near- and mid-infrared sensing and spectroscopy

    NASA Astrophysics Data System (ADS)

    Black, Leo-Jay; Wang, Yudong; Abb, Martina; Boden, Stuart A.; de Groot, C. H.; Arbouet, Arnaud; Muskens, Otto L.

    2015-05-01

    With progress in nanofabrication, new strategies have become available that allow precise control of nanoscale optical fields using metallic nanostructures. Here we review recent progress in the control of optical resonances in metal nanostructures for applications in sensing and spectroscopy. We discuss the use of new techniques, such as helium-ion beam milling, which allow precise sculpting of nanometer-scale gaps; new materials such as metal oxides, which have a response somewhere inbetween that of conventional dielectrics and noble metals; and new designs such as L-shaped gap antennas which allow controlling the polarization state of light through near-field interactions between closely spaced antennas.

  9. Holographic optical metasurfaces: a review of current progress

    NASA Astrophysics Data System (ADS)

    Genevet, Patrice; Capasso, Federico

    2015-02-01

    In this article, we review recent developments in the field of surface electromagnetic wave holography. The holography principle is used as a tool to solve an inverse engineering problem consisting of designing novel plasmonic interfaces to excite either surface waves or free-space beams with any desirable field distributions. Leveraging on the new nanotechnologies to carve subwavelength features within the large diffracting apertures of conventional holograms, it is now possible to create binary holographic interfaces to shape both amplitude phase and polarization of light. The ability of the new generation of ultrathin and compact holographic optical devices to fully address light properties could find widespread applications in photonics.

  10. Micro-optical artificial compound eyes.

    PubMed

    Duparré, J W; Wippermann, F C

    2006-03-01

    Natural compound eyes combine small eye volumes with a large field of view at the cost of comparatively low spatial resolution. For small invertebrates such as flies or moths, compound eyes are the perfectly adapted solution to obtaining sufficient visual information about their environment without overloading their brains with the necessary image processing. However, to date little effort has been made to adopt this principle in optics. Classical imaging always had its archetype in natural single aperture eyes which, for example, human vision is based on. But a high-resolution image is not always required. Often the focus is on very compact, robust and cheap vision systems. The main question is consequently: what is the better approach for extremely miniaturized imaging systems-just scaling of classical lens designs or being inspired by alternative imaging principles evolved by nature in the case of small insects? In this paper, it is shown that such optical systems can be achieved using state-of-the-art micro-optics technology. This enables the generation of highly precise and uniform microlens arrays and their accurate alignment to the subsequent optics-, spacing- and optoelectronics structures. The results are thin, simple and monolithic imaging devices with a high accuracy of photolithography. Two different artificial compound eye concepts for compact vision systems have been investigated in detail: the artificial apposition compound eye and the cluster eye. Novel optical design methods and characterization tools were developed to allow the layout and experimental testing of the planar micro-optical imaging systems, which were fabricated for the first time by micro-optics technology. The artificial apposition compound eye can be considered as a simple imaging optical sensor while the cluster eye is capable of becoming a valid alternative to classical bulk objectives but is much more complex than the first system.

  11. CAESY - COMPUTER AIDED ENGINEERING SYSTEM

    NASA Technical Reports Server (NTRS)

    Wette, M. R.

    1994-01-01

    Many developers of software and algorithms for control system design have recognized that current tools have limits in both flexibility and efficiency. Many forces drive the development of new tools including the desire to make complex system modeling design and analysis easier and the need for quicker turnaround time in analysis and design. Other considerations include the desire to make use of advanced computer architectures to help in control system design, adopt new methodologies in control, and integrate design processes (e.g., structure, control, optics). CAESY was developed to provide a means to evaluate methods for dealing with user needs in computer-aided control system design. It is an interpreter for performing engineering calculations and incorporates features of both Ada and MATLAB. It is designed to be reasonably flexible and powerful. CAESY includes internally defined functions and procedures, as well as user defined ones. Support for matrix calculations is provided in the same manner as MATLAB. However, the development of CAESY is a research project, and while it provides some features which are not found in commercially sold tools, it does not exhibit the robustness that many commercially developed tools provide. CAESY is written in C-language for use on Sun4 series computers running SunOS 4.1.1 and later. The program is designed to optionally use the LAPACK math library. The LAPACK math routines are available through anonymous ftp from research.att.com. CAESY requires 4Mb of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic tape cartridge (QIC-24) in UNIX tar format. CAESY was developed in 1993 and is a copyrighted work with all copyright vested in NASA.

  12. Genetically Encoded Molecular Tension Probe for Tracing Protein-Protein Interactions in Mammalian Cells.

    PubMed

    Kim, Sung Bae; Nishihara, Ryo; Citterio, Daniel; Suzuki, Koji

    2016-02-17

    Optical imaging of protein-protein interactions (PPIs) facilitates comprehensive elucidation of intracellular molecular events. We demonstrate an optical measure for visualizing molecular tension triggered by any PPI in mammalian cells. Twenty-three kinds of candidate designs were fabricated, in which a full-length artificial luciferase (ALuc) was sandwiched between two model proteins of interest, e.g., FKBP and FRB. One of the designs greatly enhanced the bioluminescence in response to varying concentrations of rapamycin. It is confirmed with negative controls that the elevated bioluminescence is solely motivated from the molecular tension. The probe design was further modified toward eliminating the C-terminal end of ALuc and was found to improve signal-to-background ratios, named "a combinational probe". The utilities were elucidated with detailed substrate selectivity, bioluminescence imaging of live cells, and different PPI models. This study expands capabilities of luciferases as a tool for analyses of molecular dynamics and cell signaling in living subjects.

  13. Bridging the Scales from Field to Region with Practical Tools to Couple Time- and Space-Synchronized Data from Flux Towers and Networks with Proximal and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.

    2017-12-01

    Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.

  14. Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Song, Cheol; Liu, Xuan; Kang, Jin U.

    2013-03-01

    A motion-compensated hand-held common-path Fourier-domain optical coherence tomography imaging probe has been developed for image guided intervention during microsurgery. A hand-held prototype instrument was designed and fabricated by integrating an imaging fiber probe inside a stainless steel needle which is attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Graphical user interface, real-time data processing, and visualization based on a CPU-GPU hybrid programming architecture were developed and used in the implantation of this system. To validate the system, free-hand optical coherence tomography images using various samples were obtained. The system can be easily integrated into microsurgical tools and robotics for a wide range of clinical applications. Such tools could offer physicians the freedom to easily image sites of interest with reduced risk and higher image quality.

  15. Phase-shift/transmittance measurements in a micro pattern using MPM193EX

    NASA Astrophysics Data System (ADS)

    Nozawa, Hiroto; Ishida, Takayuki; Kato, Satoru; Sato, Osamu; Miyazaki, Koji; Takehisa, Kiwamu; Awamura, Naoki; Takizawa, Hideo; Kusunose, Hal

    2009-04-01

    A new direct Phase-shift/Transmittance measurement tool "MPM193EX" has been developed to respond to the growing demand for higher precision measurements of finer patterns in ArF Lithography. Specifications of MPM193EX are listed below along with corresponding specifications of the conventional tool MPM193. 1) Phase-shift [3 Sigma]: 0.5 deg. (MPM193) => 0.2 deg. (MPM193EX) 2) Transmittance [3 Sigma]: 0.20 % (MPM193) => 0.04 % (MPM193EX) 3) Minimum measurement pattern width: 7.5 μm (MPM193) => 1.0 μm (MPM193EX) Furthermore, new design optics using an ArF Laser and an objective lens with long working distance allows measurements of masks with pellicles. The new method for improving the measurement repeatability is based on elimination of influence from instantaneous fluctuation in interferometer fringes by scanning two adjacent areas simultaneously. Also, MPM193EX is equipped with high-resolution and stable optics. The newly employed auto-focus system in MPM193EX accurately adjusts, by a new image processing method using high-resolution optics, the focus height that is one of the most important factors for measurements in a micro pattern.

  16. High density plasmas and new diagnostics: An overview (invited).

    PubMed

    Celona, L; Gammino, S; Mascali, D

    2016-02-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.

  17. EUV focus sensor: design and modeling

    NASA Astrophysics Data System (ADS)

    Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander

    2005-05-01

    We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wave-lengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput opti-mizing the signal-to-noise ratio in the measured intensity contrast.

  18. EUV Focus Sensor: Design and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander

    We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using amore » single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wavelengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput optimizing the signal-to-noise ratio in the measured intensity contrast.« less

  19. Applications of X-Ray Micro-Beam for Data Collection.

    PubMed

    Sanishvili, Ruslan; Fischetti, Robert F

    2017-01-01

    Micro-diffraction tools for macromolecular crystallography, first developed at the end of 1990s and now an integral part of many synchrotron beamlines, enable some of the experiments which were not feasible just a decade or so ago. These include data collection from very small samples, just a few micrometers in size; from larger, but severely inhomogeneous samples; and from samples which are optically invisible. Improved micro-diffraction tools led to improved signal-to-noise ratio, to mitigation of radiation damage in some cases, and to better-designed diffraction experiments. Small, micron-scale beams can be attained in different ways and knowing the details of the implementation is important in order to design the diffraction experiment properly. Similarly, precision, reproducibility and stability of the goniometry, and caveats of detection systems need to be taken into account. Lastly, to make micro-diffraction widely applicable, the sophistication, robustness, and user-friendliness of these tools are just as important as the technical capabilities.

  20. Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays

    PubMed Central

    Hsieh, Helen V.; Dantzler, Jeffrey L.; Weigl, Bernhard H.

    2017-01-01

    Immunochromatographic or lateral flow assays (LFAs) are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads), biological reagents (e.g., antibodies, blocking reagents and buffers) and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness. PMID:28555034

  1. Concept and set-up of an IR-gas sensor construction kit

    NASA Astrophysics Data System (ADS)

    Sieber, Ingo; Perner, Gernot; Gengenbach, Ulrich

    2015-10-01

    The paper presents an approach to a cost-efficient modularly built non-dispersive optical IR-gas sensor (NDIR) based on a construction kit. The modularity of the approach offers several advantages: First of all it allows for an adaptation of the performance of the gas sensor to individual specifications by choosing the suitable modular components. The sensitivity of the sensor e.g. can be altered by selecting a source which emits a favorable wavelength spectrum with respect to the absorption spectrum of the gas to be measured or by tuning the measuring distance (ray path inside the medium to be measured). Furthermore the developed approach is very well suited to be used in teaching. Together with students a construction kit on basis of an optical free space system was developed and partly implemented to be further used as a teaching and training aid for bachelor and master students at our institute. The components of the construction kit are interchangeable and freely fixable on a base plate. The components are classified into five groups: sources, reflectors, detectors, gas feed, and analysis cell. Source, detector, and the positions of the components are fundamental to experiment and test different configurations and beam paths. The reflectors are implemented by an aluminum coated adhesive foil, mounted onto a support structure fabricated by additive manufacturing. This approach allows derivation of the reflecting surface geometry from the optical design tool and generating the 3D-printing files by applying related design rules. The rapid fabrication process and the adjustment of the modules on the base plate allow rapid, almost LEGO®-like, experimental assessment of design ideas. Subject of this paper is modeling, design, and optimization of the reflective optical components, as well as of the optical subsystem. The realization of a sample set-up used as a teaching aid and the optical measurement of the beam path in comparison to the simulation results are shown as well.

  2. Characterization of Light Lesion Paradigms and Optical Coherence Tomography as Tools to Study Adult Retina Regeneration in Zebrafish

    PubMed Central

    Weber, Anke; Hochmann, Sarah; Cimalla, Peter; Gärtner, Maria; Kuscha, Veronika; Hans, Stefan; Geffarth, Michaela; Kaslin, Jan; Koch, Edmund; Brand, Michael

    2013-01-01

    Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina. PMID:24303018

  3. Optical Imaging and Control of Neurons

    NASA Astrophysics Data System (ADS)

    Song, Yoon-Kyu

    Although remarkable progress has been made in our understanding of the function, organization, and development of the brain by various approaches of modern science and technology, how the brain performs its marvelous function remains unsolved or incompletely understood. This is mainly attributed to the insufficient capability of currently available research tools and conceptual frameworks to deal with enormous complexity of the brain. Hence, in the last couple of decades, a significant effort has been made to crack the complexity of brain by utilizing research tools from diverse scientific areas. The research tools include the optical neurotechnology which incorporates the exquisite characteristics of optics, such as multi-parallel access and non-invasiveness, in sensing and stimulating the excitable membrane of a neuron, the basic functional unit of the brain. This chapter is aimed to serve as a short introduction to the optical neurotechnology for those who wish to use optical techniques as one of their brain research tools.

  4. 20-W 1952-nm tandem hybrid single and double clad TDFA

    NASA Astrophysics Data System (ADS)

    Romano, Clément; Tench, Robert E.; Delavaux, Jean-Marc

    2018-02-01

    A simple engineering design is important for achieving high Thulium-doped amplifier (TDFA) performance such as good power conversion, low noise figure (NF), scalable output power, high gain, and stable operation over a large dynamic range. In this paper we report the design, performance, and simulation of two stage high-power 1952 nm hybrid single and double clad TDFAs. The first stage of our hybrid amplifier is a single clad design, and the second stage is a double clad design. We demonstrate TDFAs with an output power greater than 20 W with single-frequency narrow linewidth (i.e. MHz) input signals at both 1952 and 2004 nm. An optical 10 dB bandwidth of 80 nm is derived from the ASE spectrum. The power stage is constructed with 10 μm core active fibers showing a maximum optical slope efficiency greater than 50 %. The experimental results lead to a 1 dB agreement with our simulation tool developed for single clad and double clad TDFAs. Overall this hybrid amplifier offers versatile features with the potential of much higher output power.

  5. Engineering hurdles in contact and intraocular lens lathe design: the view ahead

    NASA Astrophysics Data System (ADS)

    Bradley, Norman D.; Keller, John R.; Ball, Gary A.

    1994-05-01

    Current trends in and intraocular lens design suggest ever- increasing demand for aspheric lens geometries - multisurface and/or toric surfaces - in a variety of new materials. As computer numeric controls (CNC) lathes and mills continue to evolve with he ophthalmic market, engineering hurdles present themselves to designers: Can hardware based upon single-point diamond turning accommodate the demands of software-driven designs? What are the limits of CNC resolution and repeatability in high-throughput production? What are the controlling factors in lathed, polish-free surface production? Emerging technologies in the lathed biomedical optics field are discussed along with their limitations, including refined diamond tooling, vibrational control, automation, and advanced motion control systems.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in themore » photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an encrypting/scrambling algorithm based on a study of candidate encryption algorithms. Demonstration circuits show how these logic elements can be used to form NAND, NOR, and XOR functions. This paper also presents functional analysis of a serial, low gate count demonstration algorithm suitable for scrambling/encryption using S-SEED devices.« less

  7. Simulation study of reticle enhancement technology applications for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Schurz, Dan L.; Flack, Warren W.; Karklin, Linard

    2002-03-01

    The acceleration of the International Technology Roadmap for Semiconductors (ITRS) is placing significant pressure on the industry's infrastructure, particularly the lithography equipment. As recently as 1997, there was no optical solution offered past the 130 nm design node. The current roadmap has the 65 nm node (reduced from 70 nm) pulled in one year to 2007. Both 248 nm and 193 nm wavelength lithography tools will be pushed to their practical resolution limits in the near term. Very high numerical aperture (NA) 193 nm exposure tools in conjunction with resolution enhancement techniques (RET) will postpone the requirement for 157 nm lithography in manufacturing. However, ICs produced at 70 nm design rules with manufacturable k 1 values will require that 157 nm wavelength lithography tools incorporate the same RETs utilized in 248nm, and 193 nm tools. These enhancements will include Alternating Phase Shifting Masks (AltPSM) and Optical Proximity Correction (OPC) on F 2 doped quartz reticle substrates. This study investigates simulation results when AltPSM is applied to sub-100 nm test patterns in 157 nm lithography in order to maintain Critical Dimension (CD) control for both nested and isolated geometries. Aerial image simulations are performed for a range of numerical apertures, chrome regulators, gate pitches and gate widths. The relative performance for phase shifted versus binary structures is also compared. Results are demonstrated in terms of aerial image contrast and process window changes. The results clearly show that a combination of high NA and RET is necessary to achieve usable process windows for 70 nm line/space structures. In addition, it is important to consider two-dimensional proximity effects for sub-100 nm gate structures.

  8. RAPTOR-scan: Identifying and Tracking Objects Through Thousands of Sky Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidoff, Sherri; Wozniak, Przemyslaw

    2004-09-28

    The RAPTOR-scan system mines data for optical transients associated with gamma-ray bursts and is used to create a catalog for the RAPTOR telescope system. RAPTOR-scan can detect and track individual astronomical objects across data sets containing millions of observed points.Accurately identifying a real object over many optical images (clustering the individual appearances) is necessary in order to analyze object light curves. To achieve this, RAPTOR telescope observations are sent in real time to a database. Each morning, a program based on the DBSCAN algorithm clusters the observations and labels each one with an object identifier. Once clustering is complete, themore » analysis program may be used to query the database and produce light curves, maps of the sky field, or other informative displays.Although RAPTOR-scan was designed for the RAPTOR optical telescope system, it is a general tool designed to identify objects in a collection of astronomical data and facilitate quick data analysis. RAPTOR-scan will be released as free software under the GNU General Public License.« less

  9. Optics and optics-based technologies education with the benefit of LabVIEW

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Tao, Shiquan

    2015-10-01

    The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.

  10. Tool Releases Optical Elements From Spring Brackets

    NASA Technical Reports Server (NTRS)

    Gum, J. S.

    1984-01-01

    Threaded hooks retract bracket arms holding element. Tool uses three hooks with threaded shanks mounted in ring-shaped holder to pull on tabs to release optical element. One person can easily insert or remove optical element (such as prism or lens) from spring holder or bracket with minimal risk of damage.

  11. Computer Controlled Optical Surfacing With Orbital Tool Motion

    NASA Astrophysics Data System (ADS)

    Jones, Robert A.

    1985-11-01

    Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by hand grinding and polishing, using small laps with orbital tool motion. However, this is a time consuming process unsuitable for large optical elements.

  12. Micromachined edge illuminated optically transparent automotive light guide panels

    NASA Astrophysics Data System (ADS)

    Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas

    2012-03-01

    Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.

  13. FDTD method and models in optical education

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhu, Hao; Du, Jihe

    2017-08-01

    In this paper, finite-difference time-domain (FDTD) method has been proposed as a pedagogical way in optical education. Meanwhile, FDTD solutions, a simulation software based on the FDTD algorithm, has been presented as a new tool which helps abecedarians to build optical models and to analyze optical problems. The core of FDTD algorithm is that the time-dependent Maxwell's equations are discretized to the space and time partial derivatives, and then, to simulate the response of the interaction between the electronic pulse and the ideal conductor or semiconductor. Because the solving of electromagnetic field is in time domain, the memory usage is reduced and the simulation consequence on broadband can be obtained easily. Thus, promoting FDTD algorithm in optical education is available and efficient. FDTD enables us to design, analyze and test modern passive and nonlinear photonic components (such as bio-particles, nanoparticle and so on) for wave propagation, scattering, reflection, diffraction, polarization and nonlinear phenomena. The different FDTD models can help teachers and students solve almost all of the optical problems in optical education. Additionally, the GUI of FDTD solutions is so friendly to abecedarians that learners can master it quickly.

  14. The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter.

    PubMed

    Donnelly, William

    2008-11-01

    To present a commercially available software tool for creating eye models to assist the development of ophthalmic optics and instrumentation, simulate ailments or surgery-induced changes, explore vision research questions, and provide assistance to clinicians in planning treatment or analyzing clinical outcomes. A commercially available eye modeling system was developed, the Advanced Human Eye Model (AHEM). Two mainstream optical software engines, ZEMAX (ZEMAX Development Corp) and ASAP (Breault Research Organization), were used to construct a similar software eye model and compared. The method of using the AHEM is described and various eye modeling scenarios are created. These scenarios consist of retinal imaging of targets and sources; optimization capability; spectacles, contact lens, and intraocular lens insertion and correction; Zernike surface deformation on the cornea; cataract simulation and scattering; a gradient index lens; a binocular mode; a retinal implant; system import/export; and ray path exploration. Similarity of the two different optical software engines showed validity to the mechanism of the AHEM. Metrics and graphical data are generated from the various modeling scenarios particular to their input specifications. The AHEM is a user-friendly commercially available software tool from Breault Research Organization, which can assist the design of ophthalmic optics and instrumentation, simulate ailments or refractive surgery-induced changes, answer vision research questions, or assist clinicians in planning treatment or analyzing clinical outcomes.

  15. Advanced optical imaging platform for CD metrology and defect review on 130-nm to 100-nm node reticles: an overview of preliminary results

    NASA Astrophysics Data System (ADS)

    Hourd, Andrew C.; Grimshaw, Anthony; Scheuring, Gerd; Gittinger, Christian; Brueck, Hans-Juergen; Chen, Shiuh-Bin; Chen, Parkson W.; Hartmann, Hans; Ordynskyy, Volodymyr; Jonckheere, Rik M.; Philipsen, Vicky; Schaetz, Thomas; Sommer, Karl

    2002-08-01

    Critical Dimension fidelity continues to be one of the key driving parameters defining photomask quality and printing performance. The present advanced optical CD metrology systems, operating at i-line, will very soon be challenged as viable tools owing to their restricted resolution and measurement linearity impact on the ability to produce repeatable measurements. Alternative measurement technologies such as CD-SEM and -AFM have started to appear, but are also not without tier concerns in the field of reticle CD metrology. This paper introduces a new optical metrology system (MueTec /) operating at DUV wavelength (248nm), which has been specifically designed to meet the resolution and measurement repeatability requirements of reticle manufacture at the 130nm and 100nm nodes. The system is based upon a specially designed mechanical-optical platform for maximum stability and very advanced optical, illumination, alignment and software systems. The at wavelength operation of this system also makes it an ideal platform for defect printability analysis and review. The system is currently part of a European Commission funded assessment project (IST-2000-28086: McD'OR) to develop a testing strategy to verify the system performance, agree on equipment specifications and demonstrate its capability on advanced production reticles - including long-term reliability. It is the preliminary results from this evaluation that are presented here.

  16. Computer aided manufacturing for complex freeform optics

    NASA Astrophysics Data System (ADS)

    Wolfs, Franciscus; Fess, Ed; Johns, Dustin; LePage, Gabriel; Matthews, Greg

    2017-10-01

    Recently, the desire to use freeform optics has been increasing. Freeform optics can be used to expand the capabilities of optical systems and reduce the number of optics needed in an assembly. The traits that increase optical performance also present challenges in manufacturing. As tolerances on freeform optics become more stringent, it is necessary to continue to improve methods for how the grinding and polishing processes interact with metrology. To create these complex shapes, OptiPro has developed a computer aided manufacturing package called PROSurf. PROSurf generates tool paths required for grinding and polishing freeform optics with multiple axes of motion. It also uses metrology feedback for deterministic corrections. ProSurf handles 2 key aspects of the manufacturing process that most other CAM systems struggle with. The first is having the ability to support several input types (equations, CAD models, point clouds) and still be able to create a uniform high-density surface map useable for generating a smooth tool path. The second is to improve the accuracy of mapping a metrology file to the part surface. To perform this OptiPro is using 3D error maps instead of traditional 2D maps. The metrology error map drives the tool path adjustment applied during processing. For grinding, the error map adjusts the tool position to compensate for repeatable system error. For polishing, the error map drives the relative dwell times of the tool across the part surface. This paper will present the challenges associated with these issues and solutions that we have created.

  17. Working with the superabrasives industry to optimize tooling for grinding brittle materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.S.; Piscotty, M.A.; Blaedel, K.L.

    1996-05-01

    The optics manufacturing industry is undertaking a significant modernization, as computer-numeric-controlled (CNC) equipment is joining or replacing open-loop equipment and hand lapping/polishing on the shop floor. Several prototype CNC lens grinding platforms employing ring tools are undergoing development and demonstration at the Center for Optics Manufacturing in Rochester, NY, and several machine tool companies have CNC product lines aimed at the optics industry. Benefits to using CNC ring tool grinding equipment include: essentially unlimited flexibility in selecting radii of curvature without special radiused tooling, the potential for CIM linkages to CAD workstations, and the cultural shift from craftsmen with undocumentedmore » procedures to CNC machine operators employing computerized routines for process control. In recent years, these developments, have inspired a number of US optics companies to invest in CNC equipment and participate in process development activities involving bound diamond tooling. This modernization process,extends beyond large optics companies that have historically embraced advanced equipment, to also include smaller optical shops where a shift to CNC equipment requires a significant company commitment. This paper addresses our efforts to optimize fine grinding wheels to support the new generation of CNC equipment. We begin with a discussion of how fine grinding fits into the optical production process, and then describe an initiative for improving the linkage between optics industry and the grinding wheel industry. For the purposes of this paper, we define fine wheels to have diamond sizes below 20 micrometers, which includes wheels used for what is sometimes called medium grinding (e.g. 10-20 micrometers diamond) and for fine grinding (e.g. 2-4 micrometers diamond).« less

  18. Optical asymmetric image encryption using gyrator wavelet transform

    NASA Astrophysics Data System (ADS)

    Mehra, Isha; Nishchal, Naveen K.

    2015-11-01

    In this paper, we propose a new optical information processing tool termed as gyrator wavelet transform to secure a fully phase image, based on amplitude- and phase-truncation approach. The gyrator wavelet transform constitutes four basic parameters; gyrator transform order, type and level of mother wavelet, and position of different frequency bands. These parameters are used as encryption keys in addition to the random phase codes to the optical cryptosystem. This tool has also been applied for simultaneous compression and encryption of an image. The system's performance and its sensitivity to the encryption parameters, such as, gyrator transform order, and robustness has also been analyzed. It is expected that this tool will not only update current optical security systems, but may also shed some light on future developments. The computer simulation results demonstrate the abilities of the gyrator wavelet transform as an effective tool, which can be used in various optical information processing applications, including image encryption, and image compression. Also this tool can be applied for securing the color image, multispectral, and three-dimensional images.

  19. ABISM: an interactive image quality assessment tool for adaptive optics instruments

    NASA Astrophysics Data System (ADS)

    Girard, Julien H.; Tourneboeuf, Martin

    2016-07-01

    ABISM (Automatic Background Interactive Strehl Meter) is a interactive tool to evaluate the image quality of astronomical images. It works on seeing-limited point spread functions (PSF) but was developed in particular for diffraction-limited PSF produced by adaptive optics (AO) systems. In the VLT service mode (SM) operations framework, ABISM is designed to help support astronomers or telescope and instruments operators (TIOs) to quickly measure the Strehl ratio (SR) during or right after an observing block (OB) to evaluate whether it meets the requirements/predictions or whether is has to be repeated and will remain in the SM queue. It's a Python-based tool with a graphical user interface (GUI) that can be used with little AO knowledge. The night astronomer (NA) or Telescope and Instrument Operator (TIO) can launch ABISM in one click and the program is able to read keywords from the FITS header to avoid mistakes. A significant effort was also put to make ABISM as robust (and forgiven) with a high rate of repeatability. As a matter of fact, ABISM is able to automatically correct for bad pixels, eliminate stellar neighbours and estimate/fit properly the background, etc.

  20. Computer Simulation Of An In-Process Surface Finish Sensor.

    NASA Astrophysics Data System (ADS)

    Rakels, Jan H.

    1987-01-01

    It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. Furthermore, these optical instruments can be easily retrofitted on existing machine-tools. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been developed which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces during machining. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned and ground surfaces is straightforward, and indeed the calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real machine-tool behaviour into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation. The main aim of this program is to construct an atlas, which maps known machine-tool errors versus optical diffraction patterns. This atlas can then be used for machine-tool condition diagnostics. It has been found that optical monitoring is very sensitive to minor defects. Therefore machine-tool detoriation can be detected before it is detrimental.

  1. Construction of a cost effective optical tweezers for manipulation of birefringent materials using circularly polarized light

    NASA Astrophysics Data System (ADS)

    McMahon, Allison; Sauncy, Toni

    2008-10-01

    Light manipulation is a very powerful tool in physics, biology, and chemistry. There are several physical principles underlying the apparatus known as the ``optical tweezers,'' the term given to using focused light to manipulate and control small objects. By carefully controlling the orientation and position of a focused laser beam, dielectric particles can be effectively trapped and manipulated. We have designed a cost efficient and effective undergraduate optical tweezers apparatus by using standard ``off the shelf'' components and starting with a standard undergraduate laboratory microscope. Images are recorded using a small CCD camera interfaced to a computer and controlled by LabVIEW^TM software. By using wave plates to produce circular polarized light, rotational motion can be induced in small particles of birefringent materials such as calcite and mica.

  2. Towards optogenetic control of spatiotemporal cardiac dynamics

    NASA Astrophysics Data System (ADS)

    Diaz-Maue, Laura; Luther, Stefan; Richter, Claudia

    2018-02-01

    Detailed understanding of mechanisms and instabilities underlying the onset, perpetuation, and control of cardiac arrhythmias is required for the development, further optimization, and translation of clinically applicable defibrillation methods. Recently, the potential use of optogenetic tools using structured illumination to control cardiac arrhythmia has been successfully demonstrated and photostimulation turned out to be a promising experimental tool to investigate the dynamics and mechanisms of multi-site pacing strategies for low-energy defibrillation. In order to study the relation between trigger and control mechanisms of arrhythmic cardiac conditions without external affecting factors like eventually damaging fiber poking, it is important to establish a non-invasive photostimulation method. Hence, we applied a custom-configured digital light processing micromirror array operated by a high-speed FPGA, which guarantees a high frequency control of stimulation patterns. The integration into a highly sophisticated optical experiment setup allows us to record photostimulation effects and to proof the light pulse as origin of cardiac excitation. Experiments with transgenic murine hearts demonstrate the successful induction and termination of cardiac dysrhythmia using light crafting tools. However, the complex spatiotemporal dynamics underlying arrhythmia critically depends on the ratio of the characteristic wavelength of arrhythmia and substrate size. Based on the experimental evidence regarding the feasibility of optical defibrillation in small mammals, the transfer in clinically relevant large animal models would be the next milestone to therapeutic translation. Thus, the presented experimental results of optogenetically modified murine hearts function as originator for ongoing studies involving principle design studies for therapeutic applicable optical defibrillation.

  3. High-accuracy microassembly by intelligent vision systems and smart sensor integration

    NASA Astrophysics Data System (ADS)

    Schilp, Johannes; Harfensteller, Mark; Jacob, Dirk; Schilp, Michael

    2003-10-01

    Innovative production processes and strategies from batch production to high volume scale are playing a decisive role in generating microsystems economically. In particular assembly processes are crucial operations during the production of microsystems. Due to large batch sizes many microsystems can be produced economically by conventional assembly techniques using specialized and highly automated assembly systems. At laboratory stage microsystems are mostly assembled by hand. Between these extremes there is a wide field of small and middle sized batch production wherefore common automated solutions rarely are profitable. For assembly processes at these batch sizes a flexible automated assembly system has been developed at the iwb. It is based on a modular design. Actuators like grippers, dispensers or other process tools can easily be attached due to a special tool changing system. Therefore new joining techniques can easily be implemented. A force-sensor and a vision system are integrated into the tool head. The automated assembly processes are based on different optical sensors and smart actuators like high-accuracy robots or linear-motors. A fiber optic sensor is integrated in the dispensing module to measure contactless the clearance between the dispense needle and the substrate. Robot vision systems using the strategy of optical pattern recognition are also implemented as modules. In combination with relative positioning strategies, an assembly accuracy of the assembly system of less than 3 μm can be realized. A laser system is used for manufacturing processes like soldering.

  4. Multidisciplinary model-based-engineering for laser weapon systems: recent progress

    NASA Astrophysics Data System (ADS)

    Coy, Steve; Panthaki, Malcolm

    2013-09-01

    We are working to develop a comprehensive, integrated software framework and toolset to support model-based engineering (MBE) of laser weapons systems. MBE has been identified by the Office of the Director, Defense Science and Engineering as one of four potentially "game-changing" technologies that could bring about revolutionary advances across the entire DoD research and development and procurement cycle. To be effective, however, MBE requires robust underlying modeling and simulation technologies capable of modeling all the pertinent systems, subsystems, components, effects, and interactions at any level of fidelity that may be required in order to support crucial design decisions at any point in the system development lifecycle. Very often the greatest technical challenges are posed by systems involving interactions that cut across two or more distinct scientific or engineering domains; even in cases where there are excellent tools available for modeling each individual domain, generally none of these domain-specific tools can be used to model the cross-domain interactions. In the case of laser weapons systems R&D these tools need to be able to support modeling of systems involving combined interactions among structures, thermal, and optical effects, including both ray optics and wave optics, controls, atmospheric effects, target interaction, computational fluid dynamics, and spatiotemporal interactions between lasing light and the laser gain medium. To address this problem we are working to extend Comet™, to add the addition modeling and simulation capabilities required for this particular application area. In this paper we will describe our progress to date.

  5. Using Fiber Optic Distributed Acoustic Sensing to Measure Hydromechanics in a Crystalline Rock Aquifer

    NASA Astrophysics Data System (ADS)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2016-12-01

    Measuring hydromechanical behavior in fractured rock is important for hydraulic fracturing and stimulation in petroleum reservoirs, predicting thermal effects in geothermal fields, and monitoring geologic carbon sequestration injection. We present a new method for measuring geomechanical response to fluid pressure in fractures that employs fiber optic Distributed Acoustic Sensing (DAS). DAS was designed to measure acoustic and seismic signals, often in petroleum wells. DAS seismic monitoring has been proposed as a particularly useful tool for performing seismic testing for carbon sequestration and geothermal projects because fiber optic cable is able to withstand high temperatures and pressures. DAS measures seismic vibration in the Hz to kHz frequency range by measuring strain rate in the fiber optic cable. We adapted this technology to measure rock strain in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a low-permeability fractured crystalline bedrock to test the ability of DAS to measure hydromechanical response to periodic pumping and injection. The fiber optic cable was coupled to the borehole wall using a flexible liner designed with an air coupled transducer to measure fluid pressure. Both strain and pressure were measured across a known fracture zone hydraulically connected to the pumping/injection well 30 m away. Periodic strain with amplitudes as small as 50 nm were measured in response to head amplitudes of 2 mm. Clean strain signals were detected at all tested periods of hydraulic oscillation ranging from 2 to 18 minutes. A non-linear relationship was found between opening and closing of the fracture (as measured by cable strain) and fluid pressure in the fracture. The response was also sensitive to the fiber optic cable design. This field test suggests potential for measuring hydraulic connectivity and hydromechanical behavior in fractured formations through cementing fiber optic cable in wellbores outside of well casings.

  6. Optical design of a Michelson wide-field multiple-aperture telescope

    NASA Astrophysics Data System (ADS)

    Cassaing, Frederic; Sorrente, Beatrice; Fleury, Bruno; Laubier, David

    2004-02-01

    Multiple-Aperture Optical Telescopes (MAOTs) are a promising solution for very high resolution imaging. In the Michelson configuration, the instrument is made of sub-telescopes distributed in the pupil and combined by a common telescope via folding periscopes. The phasing conditions of the sub-pupils lead to specific optical constraints in these subsystems. The amplitude of main contributors to the wavefront error (WFE) is given as a function of high level requirements (such as field or resolution) and free parameters, mainly the sub-telescope type, magnification and diameter. It is shown that for the periscopes, the field-to-resolution ratio is the main design driver and can lead to severe specifications. The effect of sub-telescopes aberrations on the global WFE can be minimized by reducing their diameter. An analytical tool for the MAOT design has been derived from this analysis, illustrated and validated in three different cases: LEO or GEO Earth observation and astronomy with extremely large telescopes. The last two cases show that a field larger than 10 000 resolution elements can be covered with a very simple MAOT based on Mersenne paraboloid-paraboloid sub-telescopes. Michelson MAOTs are thus a solution to be considered for high resolution wide-field imaging, from space or ground.

  7. EVALUATION OF OPTICALLY ACQUIRED ZOOPLANKTON SIZE-SPECTRUM DATA AS A POTENTIAL TOOL FOR ASSESSMENT OF CONDITION IN THE GREAT LAKES

    EPA Science Inventory

    An optical zooplankton counter (OPC) potentially provides as assessment tool for zooplankton condition in ecosystems that is rapid, economical, and spatially extensive. We collected zooplankton data with an optical zooplankton counter in 20 near-shore regions of four of the Laure...

  8. Electroforming of optical tooling in high-strength Ni-Co alloy

    NASA Astrophysics Data System (ADS)

    Stein, Berl

    2003-05-01

    Plastic optics are often mass produced by injection, compression or injection-compression molding. Optical quality molds can be directly machined in appropriate materials (tool steels, electroless nickel, aluminum, etc.), but much greater cost efficiency can be achieved with electroformed modl inserts. Traditionally, electroforming of optical quality mold inserts has been carried out in nickel, a material much softer than tool steels which, when hardened to 45 - 50 HRc usually exhibit high wear resistance and long service life (hundreds of thousands of impressions per mold). Because of their low hardness (< 20 HRc), nickel molds can produce only tens of thousands of parts before they are scrapped due to wear or accidental damage. This drawback prevented their wider usage in general plastic and optical mold making. Recently, NiCoForm has developed a proprietary Ni-CO electroforming bath combining the high strength and wear resistance of the alloy with the low stress and high replication fidelity typical of pure nickel electroforming. This paper will outline the approach to electroforming of optical quality tooling in low stress, high strength Ni-Co alloy and present several examples of electroformed NiColoy mold inserts.

  9. Polarization modeling and predictions for DKIST part 3: focal ratio and thermal dependencies of spectral polarization fringes and optic retardance

    NASA Astrophysics Data System (ADS)

    Harrington, David M.; Sueoka, Stacey R.

    2018-01-01

    Data products from high spectral resolution astronomical polarimeters are often limited by fringes. Fringes can skew derived magnetic field properties from spectropolarimetric data. Fringe removal algorithms can also corrupt the data if the fringes and object signals are too similar. For some narrow-band imaging polarimeters, fringes change the calibration retarder properties and dominate the calibration errors. Systems-level engineering tools for polarimetric instrumentation require accurate predictions of fringe amplitudes, periods for transmission, diattenuation, and retardance. The relevant instabilities caused by environmental, thermal, and optical properties can be modeled and mitigation tools developed. We create spectral polarization fringe amplitude and temporal instability predictions by applying the Berreman calculus and simple interferometric calculations to optics in beams of varying F/ number. We then apply the formalism to superachromatic six-crystal retarders in converging beams under beam thermal loading in outdoor environmental conditions for two of the world's largest observatories: the 10-m Keck telescope and the Daniel K. Inouye Solar Telescope (DKIST). DKIST will produce a 300-W optical beam, which has imposed stringent requirements on the large diameter six-crystal retarders, dichroic beamsplitters, and internal optics. DKIST retarders are used in a converging beam with F/ ratios between 8 and 62. The fringe spectral periods, amplitudes, and thermal models of retarder behavior assisted DKIST optical designs and calibration plans with future application to many astronomical spectropolarimeters. The Low Resolution Imaging Spectrograph with polarimetry instrument at Keck also uses six-crystal retarders in a converging F / 13 beam in a Cassegrain focus exposed to summit environmental conditions providing observational verification of our predictions.

  10. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  11. Active optics: off axis aspherics generation for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.

    2017-11-01

    Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism). Applications for future space telescopes and instrumentation are discussed.

  12. [INVITED] Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures

    NASA Astrophysics Data System (ADS)

    Gupta, Banshi D.; Kant, Ravi

    2018-05-01

    Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.

  13. Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.

    PubMed

    Liu, Yichao; Sun, Fei; He, Sailing

    2018-01-11

    In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.

  14. An automated performance budget estimator: a process for use in instrumentation

    NASA Astrophysics Data System (ADS)

    Laporte, Philippe; Schnetler, Hermine; Rees, Phil

    2016-08-01

    Current day astronomy projects continue to increase in size and are increasingly becoming more complex, regardless of the wavelength domain, while risks in terms of safety, cost and operability have to be reduced to ensure an affordable total cost of ownership. All of these drivers have to be considered carefully during the development process of an astronomy project at the same time as there is a big drive to shorten the development life-cycle. From the systems engineering point of view, this evolution is a significant challenge. Big instruments imply management of interfaces within large consortia and dealing with tight design phase schedules which necessitate efficient and rapid interactions between all the stakeholders to firstly ensure that the system is defined correctly and secondly that the designs will meet all the requirements. It is essential that team members respond quickly such that the time available for the design team is maximised. In this context, performance prediction tools can be very helpful during the concept phase of a project to help selecting the best design solution. In the first section of this paper we present the development of such a prediction tool that can be used by the system engineer to determine the overall performance of the system and to evaluate the impact on the science based on the proposed design. This tool can also be used in "what-if" design analysis to assess the impact on the overall performance of the system based on the simulated numbers calculated by the automated system performance prediction tool. Having such a tool available from the beginning of a project can allow firstly for a faster turn-around between the design engineers and the systems engineer and secondly, between the systems engineer and the instrument scientist. Following the first section we described the process for constructing a performance estimator tool, followed by describing three projects in which such a tool has been utilised to illustrate how such a tool have been used in astronomy projects. The three use-cases are; EAGLE, one of the European Extremely Large Telescope (E-ELT) Multi-Object Spectrograph (MOS) instruments that was studied from 2007 to 2009, the Multi-Object Optical and Near-Infrared Spectrograph (MOONS) for the European Southern Observatory's Very Large Telescope (VLT), currently under development and SST-GATE.

  15. Impact of design-parameters on the optical performance of a high-power adaptive mirror

    NASA Astrophysics Data System (ADS)

    Koek, Wouter D.; Nijkerk, David; Smeltink, Jeroen A.; van den Dool, Teun C.; van Zwet, Erwin J.; van Baars, Gregor E.

    2017-02-01

    TNO is developing a High Power Adaptive Mirror (HPAM) to be used in the CO2 laser beam path of an Extreme Ultra- Violet (EUV) light source for next-generation lithography. In this paper we report on a developed methodology, and the necessary simulation tools, to assess the performance and associated sensitivities of this deformable mirror. Our analyses show that, given the current limited insight concerning the process window of EUV generation, the HPAM module should have an actuator pitch of <= 4 mm. Furthermore we have modelled the sensitivity of performance with respect to dimpling and actuator noise. For example, for a deformable mirror with an actuator pitch of 4 mm, and if the associated performance impact is to be limited to smaller than 5%, the actuator noise should be smaller than 45 nm (rms). Our tools assist in the detailed design process by assessing the performance impact of various design choices, including for example those that affect the shape and spectral content of the influence function.

  16. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, W.J.

    1983-06-30

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.

  17. Laser dosimetry planning tool for colonoscopic tumor resection

    NASA Astrophysics Data System (ADS)

    Pelayo-Fernández, M. L.; Fanjul-Vélez, F.; Salas-García, I.; Zverev, M.; Arce-Diego, J. L.

    2016-03-01

    Gastrointestinal tumoral pathologies are quite common nowadays. Diseases such as gastric antral vascular ectasia (GAVE) or actinic proctitis may require endoscopic surgery. Argon Plasma Coagulated (APC) or radiofrequency are usually employed. However, they present disadvantages, such as the reduced treated area, magnetic resonance incompatibility, or an uncontrolled ablation depth. Optical surgery could avoid these problems and contribute to a better and controlled treatment result, either ablative or coagulative, in a minimally invasive, non-contact and non-ionizing way. The treatment area could also be increased by adequate optical fiber probe design. In this work laser surgery is analyzed for resection of colonic tumors. A Monte Carlo model is employed to study optical propagation, and an optical ablation approach allows the estimation of the resected volume. The ablation approach is based on plasma-induced ablation, particularly taking into account the freeelectron density generated in the tissue by the pulsed optical source. Several wavelengths, radii and malignant tissue types are considered, either healthy, adenomatous or even coagulated tissues. Optimum source parameters as a function of tumor geometry can be estimated for treatment planning.

  18. Development and Validation of High Precision Thermal, Mechanical, and Optical Models for the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Lindensmith, Chris A.; Briggs, H. Clark; Beregovski, Yuri; Feria, V. Alfonso; Goullioud, Renaud; Gursel, Yekta; Hahn, Inseob; Kinsella, Gary; Orzewalla, Matthew; Phillips, Charles

    2006-01-01

    SIM Planetquest (SIM) is a large optical interferometer for making microarcsecond measurements of the positions of stars, and to detect Earth-sized planets around nearby stars. To achieve this precision, SIM requires stability of optical components to tens of picometers per hour. The combination of SIM s large size (9 meter baseline) and the high stability requirement makes it difficult and costly to measure all aspects of system performance on the ground. To reduce risks, costs and to allow for a design with fewer intermediate testing stages, the SIM project is developing an integrated thermal, mechanical and optical modeling process that will allow predictions of the system performance to be made at the required high precision. This modeling process uses commercial, off-the-shelf tools and has been validated against experimental results at the precision of the SIM performance requirements. This paper presents the description of the model development, some of the models, and their validation in the Thermo-Opto-Mechanical (TOM3) testbed which includes full scale brassboard optical components and the metrology to test them at the SIM performance requirement levels.

  19. Light backscatter fiber optic sensor: a new tool for predicting the stability of pork emulsions containing antioxidative potato protein hydrolysate.

    PubMed

    Nieto, Gema; Xiong, Youling L; Payne, Fred; Castillo, Manuel

    2015-02-01

    The objective of this study was to determine whether light backscatter response from fresh pork meat emulsions is correlated to final product stability indices. A specially designed fiber optic measurement system was used in combination with a miniature fiber optic spectrometer to determine the intensity of light backscatter within the wavelength range 300-1100 nm (UV/VIS/NIR) at different radial distances (2, 2.5 and 3mm) with respect to the light source in pork meat emulsions with two fat levels (15%, 30%) and two levels (0, 2.5%) of the natural antioxidant hydrolyzed potato protein (HPP). Textural parameters (hardness, deformability, cohesiveness and breaking force), cooking loss, TBARS (1, 2, 3, and 7 days of storage at 4 °C) and CIELAB color coordinates of cooked emulsions were measured. The light backscatter was directly correlated with cooking losses, color, breaking force and TBARS. The optical configuration proposed would compensate for the emulsion heterogeneity, maximizing the existing correlation between the optical signal and the emulsion quality metrics.

  20. NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system☆

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O’Donnell, Matthew

    2014-01-01

    Laser-ultrasonics is an attractive and powerful tool for the non-destructive testing and evaluation (NDT&E) of composite materials. Current systems for non-contact detection of ultrasound have relatively low sensitivity compared to contact peizotransducers. They are also expensive, difficult to adjust, and strongly influenced by environmental noise. Moreover, laser-ultrasound (LU) systems typically launch only about 50 firings per second, much slower than the kHz level pulse repetition rate of conventional systems. As demonstrated here, most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive, high repetition rate nanosecond fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe beam detector. In particular, a modified fiber-optic balanced Sagnac interferometer is presented as part of a LU pump–probe system for NDT&E of aircraft composites. The performance of the all-optical system is demonstrated for a number of composite samples with different types and locations of inclusions. PMID:25302156

  1. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  2. Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies

    PubMed Central

    Balzarolo, Manuela; Anderson, Karen; Nichol, Caroline; Rossini, Micol; Vescovo, Loris; Arriga, Nicola; Wohlfahrt, Georg; Calvet, Jean-Christophe; Carrara, Arnaud; Cerasoli, Sofia; Cogliati, Sergio; Daumard, Fabrice; Eklundh, Lars; Elbers, Jan A.; Evrendilek, Fatih; Handcock, Rebecca N.; Kaduk, Joerg; Klumpp, Katja; Longdoz, Bernard; Matteucci, Giorgio; Meroni, Michele; Montagnani, Lenoardo; Ourcival, Jean-Marc; Sánchez-Cañete, Enrique P.; Pontailler, Jean-Yves; Juszczak, Radoslaw; Scholes, Bob; Martín, M. Pilar

    2011-01-01

    This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903—“Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe” that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites. PMID:22164055

  3. Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn

    An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.

  4. Optical coherence tomography in gynecology: a narrative review

    NASA Astrophysics Data System (ADS)

    Kirillin, Mikhail; Motovilova, Tatiana; Shakhova, Natalia

    2017-12-01

    Modern gynecologic practice requires noninvasive diagnostics techniques capable of detecting morphological and functional alterations in tissues of female reproductive organs. Optical coherence tomography (OCT) is a promising tool for providing imaging of biotissues with high resolution at depths up to 2 mm. Design of the customized probes provides wide opportunities for OCT use in gynecology. This paper contains a retrospective insight into the history of OCT employment in gynecology, an overview of the existing gynecologic OCT probes, including those for combination with other diagnostic modalities, and state-of-the-art application of OCT for diagnostics of tumor and nontumor pathologies of female genitalia. Perspectives of OCT both in diagnostics and treatment planning and monitoring in gynecology are overviewed.

  5. Computer Controlled Optical Surfacing With Orbital Tool Motion

    NASA Astrophysics Data System (ADS)

    Jones, Robert A.

    1985-10-01

    Asymmetric aspheric optical surfaces are very difficult to fabricate using classical techniques and laps the same size as the workpiece. Opticians can produce such surfaces by grinding and polishing, using small laps with orbital tool motion. However, hand correction is a time consuming process unsuitable for large optical elements. Itek has developed Computer Controlled Optical Surfacing (CCOS) for fabricating such aspheric optics. Automated equipment moves a nonrotating orbiting tool slowly over the workpiece surface. The process corrects low frequency surface errors by figuring. The velocity of the tool assembly over the workpiece surface is purposely varied. Since the amount of material removal is proportional to the polishing or grinding time, accurate control over material removal is achieved. The removal of middle and high frequency surface errors is accomplished by pad smoothing. For a soft pad material, the pad will compress to fit the workpiece surface producing greater pressure and more removal at the surface high areas. A harder pad will ride on only the high regions resulting in removal only for those locations.

  6. Design and fabrication of a freeform phase plate for high-order ocular aberration correction

    NASA Astrophysics Data System (ADS)

    Yi, Allen Y.; Raasch, Thomas W.

    2005-11-01

    In recent years it has become possible to measure and in some instances to correct the high-order aberrations of human eyes. We have investigated the correction of wavefront error of human eyes by using phase plates designed to compensate for that error. The wavefront aberrations of the four eyes of two subjects were experimentally determined, and compensating phase plates were machined with an ultraprecision diamond-turning machine equipped with four independent axes. A slow-tool servo freeform trajectory was developed for the machine tool path. The machined phase-correction plates were measured and compared with the original design values to validate the process. The position of the phase-plate relative to the pupil is discussed. The practical utility of this mode of aberration correction was investigated with visual acuity testing. The results are consistent with the potential benefit of aberration correction but also underscore the critical positioning requirements of this mode of aberration correction. This process is described in detail from optical measurements, through machining process design and development, to final results.

  7. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1994-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.

  8. Optical design and optimization of parabolic dish solar concentrator with a cavity hybrid receiver

    NASA Astrophysics Data System (ADS)

    Blázquez, R.; Carballo, J.; Silva, M.

    2016-05-01

    One of the main goals of the BIOSTIRLING-4SKA project, funded by the European Commission, is the development of a hybrid Dish-Stirling system based on a hybrid solar-gas receiver, which has been designed by the Swedish company Cleanergy. A ray tracing study, which is part of the design of this parabolic dish system, is presented in this paper. The study pursues the optimization of the concentrator and receiver cavity geometry according to the requirements of flux distribution on the receiver walls set by the designer of the hybrid receiver. The ray-tracing analysis has been performed with the open source software Tonatiuh, a ray-tracing tool specifically oriented to the modeling of solar concentrators.

  9. Theoretical and experimental investigation of design for multioptical-axis freeform progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Xiang, HuaZhong; Chen, JiaBi; Zhu, TianFen; Wei, YeFei; Fu, DongXiang

    2015-11-01

    A freeform progressive addition lens (PAL) provides a good solution to correct presbyopia and prevent juvenile myopia by distributing pupils' optical powers of distance zone, near zone, and intermediate zone and is more widely adopted in the present optometric study. However, there is still a lack of a single-optical-axis system for the design of a PAL. This paper focuses on the research for an approach for designing a freeform PAL. A multioptical-axis system based on real viewing conditions using the eyes is employed for the representation of the freeform surface. We filled small pupils in the intermediate zone as a progressive corridor and the distance- and near-vision portions were defined as the standard spherical surfaces delimited by quadratic curves. Three freeform PALs with a spherical surface as the front side and a freeform surface as the backside were designed. We demonstrate the fabrication and measurement technologies for the PAL surface using computer numerical control machine tools from Schneider Smart and a Visionix VM-2000 Lens Power Mapper. Surface power and astigmatic values were obtained. Preliminary results showed that the approach for the design and fabrication is helpful to advance the design procedure optimization and mass production of PALs in optometry.

  10. Scattering effects of machined optical surfaces

    NASA Astrophysics Data System (ADS)

    Thompson, Anita Kotha

    1998-09-01

    Optical fabrication is one of the most labor-intensive industries in existence. Lensmakers use pitch to affix glass blanks to metal chucks that hold the glass as they grind it with tools that have not changed much in fifty years. Recent demands placed on traditional optical fabrication processes in terms of surface accuracy, smoothnesses, and cost effectiveness has resulted in the exploitation of precision machining technology to develop a new generation of computer numerically controlled (CNC) optical fabrication equipment. This new kind of precision machining process is called deterministic microgrinding. The most conspicuous feature of optical surfaces manufactured by the precision machining processes (such as single-point diamond turning or deterministic microgrinding) is the presence of residual cutting tool marks. These residual tool marks exhibit a highly structured topography of periodic azimuthal or radial deterministic marks in addition to random microroughness. These distinct topographic features give rise to surface scattering effects that can significantly degrade optical performance. In this dissertation project we investigate the scattering behavior of machined optical surfaces and their imaging characteristics. In particular, we will characterize the residual optical fabrication errors and relate the resulting scattering behavior to the tool and machine parameters in order to evaluate and improve the deterministic microgrinding process. Other desired information derived from the investigation of scattering behavior is the optical fabrication tolerances necessary to satisfy specific image quality requirements. Optical fabrication tolerances are a major cost driver for any precision optical manufacturing technology. The derivation and control of the optical fabrication tolerances necessary for different applications and operating wavelength regimes will play a unique and central role in establishing deterministic microgrinding as a preferred and a cost-effective optical fabrication process. Other well understood optical fabrication processes will also be reviewed and a performance comparison with the conventional grinding and polishing technique will be made to determine any inherent advantages in the optical quality of surfaces produced by other techniques.

  11. Measurement technique for in situ characterizing aberrations of projection optics in lithographic tools.

    PubMed

    Wang, Fan; Wang, Xiangzhao; Ma, Mingying

    2006-08-20

    As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner.

  12. Precision alignment and calibration of optical systems using computer generated holograms

    NASA Astrophysics Data System (ADS)

    Coyle, Laura Elizabeth

    As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the calibration is a function of the interferometer error and the aspheric departure of the desired test surface. This calibration is most effective at reducing coma and trefoil from figure error or misalignments of the interferometer components. The enhanced calibration can reduce overall measurement uncertainty or allow the budgeted error contribution from another source to be increased. A single set of sphere measurements can be used to calculate calibration maps for closely related aspheres, including segmented primary mirrors for telescopes. A parametric model is developed and compared to the simulated calibration of a case study interferometer.

  13. Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Dennis L.

    2016-05-01

    This paper discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements.qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts.

  14. Working sketch of an anatomically and optically equivalent physical model eye

    NASA Astrophysics Data System (ADS)

    Bakaraju, Ravi Chandra; Ehrmann, Klaus; Falk, Darrin; Papas, Eric B.; Ho, Arthur

    2009-02-01

    Our aim was to fabricate a bench-top physical model eye that closely replicates anatomical and optical properties of the average human eye, and to calibrate and standardize this model to suit normal viewing conditions and subsequently utilize it to understand the optical performance of corrective lens designs; especially multifocal soft contact lenses. Using available normative data on ocular biometrics and Zemax ray-tracing software as a tool, we modeled 25, 45 and 55 year-old average adult human eyes with discrete accommodation levels and pupil sizes. Specifications for the components were established following manufacturing tolerance analyses. The cornea was lathed from an optical material with refractive index of 1.376 @ 589 nm and the crystalline lenses were made of Boston RGP polymers with refractive indices of 1.423 (45 & 55yr) and 1.429 (25yr) @ 589 nm. These two materials served to model the equivalent crystalline lens of the different age-groups. A camera, the acting retina, was hosted on the motor-base having translatory and rotary functions to facilitate the simulation of different states of ametropia and peripheral refraction respectively. We report on the implementation of the first prototype and present some simulations of the optical performance of certain contact lenses with specific levels of ametropia, to demonstrate the potential use of such a physical model eye. On completion of development, calibration and standardization, optical quality assessment and performance predictions of different ophthalmic lenses can be studied in great detail. Optical performance with corrective lenses may be reliably simulated and predicted by customized combined computational and physical models giving insight into the merits and pitfalls of their designs

  15. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  16. Construction of a Fiber Optic Gradient Hydrophone Using a Michelson Configuration.

    DTIC Science & Technology

    1986-03-27

    Michelson interferometers; * Fabry - Perot interferometers; • Intermode interferometers; • Sagnac interferometers. Of these, the first two categories show the...most promise for hydrophone applications. The Fabry - Perot design is an excellent tool for precision length measurements but is extremely sensitive to...Pa was measured. Using the demodulation technique in Mills, [Ref. 13: pp. 94-95], one can make a comparison to the USRD type G63 stan- dard pressure

  17. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures.

    PubMed

    Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf

    2009-11-18

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  18. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    NASA Astrophysics Data System (ADS)

    Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf

    2009-11-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  19. Optical diagnostics in gas turbine combustors

    NASA Astrophysics Data System (ADS)

    Woodruff, Steven D.

    1999-01-01

    Deregulation of the power industry and increasingly tight emission controls are pushing gas turbine manufacturers to develop engines operating at high pressure for efficiency and lean fuel mixtures to control NOx. This combination also gives rise to combustion instabilities which threaten engine integrity through acoustic pressure oscillations and flashback. High speed imaging and OH emission sensors have been demonstrated to be invaluable tools in characterizing and monitoring unstable combustion processes. Asynchronous imaging technique permit detailed viewing of cyclic flame structure in an acoustic environment which may be modeled or utilized in burner design . The response of the flame front to the acoustic pressure cycle may be tracked with an OH emission monitor using a sapphire light pipe for optical access. The OH optical emission can be correlated to pressure sensor data for better understanding of the acoustical coupling of the flame. Active control f the combustion cycle can be implemented using an OH emission sensor for feedback.

  20. Digital optical tomography system for dynamic breast imaging

    NASA Astrophysics Data System (ADS)

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  1. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    PubMed

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  2. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  3. Design and fabrication of an infrared optical pyrometer ASIC as a diagnostic for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Gordon, Jared

    Optical pyrometry is the sensing of thermal radiation emitted from an object using a photoconductive device to convert photons into electrons, and is an important diagnostic tool in shock physics experiments. Data obtained from an optical pyrometer can be used to generate a blackbody curve of the material prior to and after being shocked by a high speed projectile. The sensing element consists of an InGaAs photodiode array, biasing circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from the noisy dark current into a signal that can eventually be digitized. Once the circuit elements have been defined, more often than not commercial-off-the-shelf (COTS) components are inadequate to satisfy every requirement for the diagnostic, and therefore a custom application specific design has to be considered. This thesis outlines the initial challenges with integrating the photodiode array block with multiple COTS transimpedance amplifiers onto a single chip, and offers a solution to a comparable optical pyrometer that uses the same type of photodiodes in conjunction with a re-designed transimpedance amplifier integrated onto a single chip. The final design includes a thorough analysis of the transimpedance amplifier along with modeling the circuit behavior which entails schematics, simulations, and layout. An alternative circuit is also investigated that incorporates an approach to multiplex the signals from each photodiode onto one data line and not only increases the viable real estate on the chip, but also improves the behavior of the photodiodes as they are subjected to less thermal load. The optical pyrometer application specific integrated circuit (ASIC) for shock physic experiments includes a transimpedance amplifier (TIA) with a 100 kΩ gain operating at bandwidth of 30 MHz, and an input-referred noise RMS current of 50 nA that is capable of driving a 50 Ω load.

  4. Semiconductor Nonlinear Waveguide Devices and Integrated-Mirror Etalons

    NASA Astrophysics Data System (ADS)

    Chuang, Chih-Li.

    This dissertation investigates different III-V semiconductor devices for applications in nonlinear photonics. These include passive and active nonlinear directional couplers, current-controlled optical phase shifter, and integrated -mirror etalons. A novel method to find the propagation constants of an optical waveguide is introduced. The same method is applied, with minor modifications, to find the coupling length of a directional coupler. The method presented provides a tool for the design of optical waveguide devices. The design, fabrication, and performance of a nonlinear directional coupler are presented. This device uses light intensity to control the direction of light coming out. This is achieved through photo-generated-carriers mechanism in the picosecond regime and through the optical Stark effect in the femtosecond regime. A two-transverse -dimensions beam-propagation computation is used to model the switching behavior in the nonlinear directional coupler. It is found that, by considering the pulse degradation effect, the computation agrees well with experiments. The possibility of operating a nonlinear directional coupler with gain is investigated. It is concluded that by injecting current into the nonlinear directional coupler does not provide the advantages hoped for and the modelling using 2-D beam -propagation methods verifies that. Using current injection to change the refractive index of a waveguide, an optical phase shifter is constructed. This device has the merit of delivering large phase shift with almost no intensity modulation. A phase shift as large as 3pi is produced in a waveguide 400 μm in length. Finally, a new structure, grown by the molecular beam epitaxy machine, is described. The structure consists of two quarter-wave stacks and a spacer layer to form an integrated-mirror etalon. The theory, design principles, spectral analyses are discussed with design examples to clarify the ideas. Emphasis is given to the vertical-cavity surface-emitting laser constructed from this structure. Here we demonstrated the cw operation of the VCSEL at room temperature.

  5. Approach for axisymmetrical asphere polishing with full-area tools

    NASA Astrophysics Data System (ADS)

    Novi, Andrea; Melozzi, Mauro

    1999-09-01

    Aspherics up to 500 nm diameter in optical glass or in ceramic substrates have been fabricated using area- compensated polishing tools and conventional optical shop machines. The tool forms are derived starting from the actual shape of the part under figuring. The figure error is measured using an interferometer mounted on-line with the polishing machine. Measurements are taken after each polishing step to compute the new tool form. The process speeds up the fabrication of aspheres and it improves repeatability in the manufacturing of axisymmetrical optics using moderate cost equipment's up to astronomical requirements. In the paper we present some examples of polishing results using the above mentioned approach on different aspherics for space applications.

  6. Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting.

    PubMed

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-09-01

    The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions.

  7. Wide-Field InfraRed Survey Telescope (WFIRST) Slitless Spectrometer: Design, Prototype, and Results

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Content, David; Dominguez, Margaret; Emmett, Thomas; Griesmann, Ulf; Hagopian, John; Kruk, Jeffrey; Marx, Catherine; Pasquale, Bert; Wallace, Thomas; hide

    2016-01-01

    The slitless spectrometer plays an important role in the Wide-Field InfraRed Survey Telescope (WFIRST) mission for the survey of emission-line galaxies. This will be an unprecedented very wide field, HST quality 3D survey of emission line galaxies. The concept of the compound grism as a slitless spectrometer has been presented previously. The presentation briefly discusses the challenges and solutions of the optical design, and recent specification updates, as well as a brief comparison between the prototype and the latest design. However, the emphasis of this paper is the progress of the grism prototype: the fabrication and test of the complicated diffractive optical elements and powered prism, as well as grism assembly alignment and testing. Especially how to use different tools and methods, such as IR phase shift and wavelength shift interferometry, to complete the element and assembly tests. The paper also presents very encouraging results from recent element tests to assembly tests. Finally we briefly touch the path forward plan to test the spectral characteristic, such as spectral resolution and response.

  8. An all-reflective wide-angle flat-field telescope for space

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1984-01-01

    An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.

  9. SHARK-NIR system design analysis overview

    NASA Astrophysics Data System (ADS)

    Viotto, Valentina; Farinato, Jacopo; Greggio, Davide; Vassallo, Daniele; Carolo, Elena; Baruffolo, Andrea; Bergomi, Maria; Carlotti, Alexis; De Pascale, Marco; D'Orazi, Valentina; Fantinel, Daniela; Magrin, Demetrio; Marafatto, Luca; Mohr, Lars; Ragazzoni, Roberto; Salasnich, Bernardo; Verinaud, Christophe

    2016-08-01

    In this paper, we present an overview of the System Design Analysis carried on for SHARK-NIR, the coronagraphic camera designed to take advantage of the outstanding performance that can be obtained with the FLAO facility at the LBT, in the near infrared regime. Born as a fast-track project, the system now foresees both coronagraphic direct imaging and spectroscopic observing mode, together with a first order wavefront correction tool. The analysis we here report includes several trade-offs for the selection of the baseline design, in terms of optical and mechanical engineering, and the choice of the coronagraphic techniques to be implemented, to satisfy both the main scientific drivers and the technical requirements set at the level of the telescope. Further care has been taken on the possible exploitation of the synergy with other LBT instrumentation, like LBTI. A set of system specifications is then flown down from the upper level requirements to finally ensure the fulfillment of the science drivers. The preliminary performance budgets are presented, both in terms of the main optical planes stability and of the image quality, including the contributions of the main error sources in different observing modes.

  10. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  11. Nanomaterials for in vivo imaging of mechanical forces and electrical fields

    NASA Astrophysics Data System (ADS)

    Mehlenbacher, Randy D.; Kolbl, Rea; Lay, Alice; Dionne, Jennifer A.

    2018-02-01

    Cellular signalling is governed in large part by mechanical forces and electromagnetic fields. Mechanical forces play a critical role in cell differentiation, tissue organization and diseases such as cancer and heart disease; electrical fields are essential for intercellular communication, muscle contraction, neural signalling and sensory perception. Therefore, quantifying a biological system's forces and fields is crucial for understanding physiology and disease pathology and for developing medical tools for repair and recovery. This Review highlights advances in sensing mechanical forces and electrical fields in vivo, focusing on optical probes. The emergence of biocompatible optical probes, such as genetically encoded voltage indicators, molecular rotors, fluorescent dyes, semiconducting nanoparticles, plasmonic nanoparticles and lanthanide-doped upconverting nanoparticles, offers exciting opportunities to push the limits of spatial and temporal resolution, stability, multi-modality and stimuli sensitivity in bioimaging. We further discuss the materials design principles behind these probes and compare them across various metrics to facilitate sensor selection. Finally, we examine which advances are necessary to fully unravel the role of mechanical forces and electrical fields in vivo, such as the ability to probe the vectorial nature of forces, the development of combined force and field sensors, and the design of efficient optical actuators.

  12. A fast method for optical simulation of flood maps of light-sharing detector modules.

    PubMed

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W; Peng, Qiyu

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200-600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  13. Employing the conventional edge-lighting technology into ultraviolet-range: a preliminary study by optical simulation

    NASA Astrophysics Data System (ADS)

    Ye, Linchao; Belloni, Paola; Möller, Knut

    2011-10-01

    Within the framework of a project conducted together with an industrial partner, a self-disinfecting operation interface with a glass panel is being developed. The concept of self-disinfection is based on the exploitation of the photocatalytical effect induced by a TiO2-coating on the glass surface under UV(A) light, which would make the touch screen antimicrobial. High-power UV-LEDs instead of conventional UV-lamps have been employed as light source. The main goal and challenge of the optical design is to generate an efficient and preferably homogeneous UV field on the TiO2-coated side while keeping the UV-LEDs concealed, i.e. invisible to the user. Therefore common backlighting systems have been used as reference and modified to meet the concrete requirements. Primary analysis and optical simulations have been performed with the software LightTools®. Several patterns for light redirection (i.e. 3D-spherical texture, 3D-rectangular texture and 2D-circular serigraph) have been investigated, compared and evaluated. Finally the pattern design which both fulfills all the predefined boundary conditions and simultaneously reduces the costs has been chosen.

  14. From optics testing to micro optics testing

    NASA Astrophysics Data System (ADS)

    Brock, Christian; Dorn, Ralf; Pfund, Johannes

    2017-10-01

    Testing micro optics, i.e. lenses with dimensions down to 0.1mm and less, with high precision requires a dedicated design of the testing device, taking into account propagation and wave-optical effects. In this paper, we discuss testing methods based on Shack-Hartmann wavefront technology for functional testing in transmission and for the measurement of surface shape in reflection. As a first example of more conventional optics testing, i.e. optics in the millimeter range, we present the measurement of binoculars in transmission, and discuss the measured wave aberrations and imaging quality. By repeating the measurement at different wavelengths, information on chromatic effects is retrieved. A task that is often tackled using Shack-Hartman wavefront sensors is the alignment of collimation optics in front of a light source. In case of a micro-optical collimation unit with a 1/e² beam diameter of ca. 1mm, we need adapted relay optics for suitable beam expansion and well-defined imaging conditions. In this example, we will discuss the alignment process and effects of the relay optics magnification, as well as typical performance data. Oftentimes, micro optics are fabricated not as single pieces, but as mass optics, e.g. by lithographic processes. Thus, in order to reduce tooling and alignment time, an automated test procedure is necessary. We present an approach for the automated testing of wafer- or tray-based micro optics, and discuss transmission and reflection measurement capabilities. Exemplary performance data is shown for a sample type with 30 microns in diameter, where typical repeatabilities of a few nanometers (rms) are reached.

  15. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules. PMID:23805801

  16. Manufacturing and metrology for IR conformal windows and domes

    NASA Astrophysics Data System (ADS)

    Ferralli, Ian; Blalock, Todd; Brunelle, Matt; Lynch, Timothy; Myer, Brian; Medicus, Kate

    2017-05-01

    Freeform and conformal optics have the potential to dramatically improve optical systems by enabling systems with fewer optical components, reduced aberrations, and improved aerodynamic performance. These optical components differ from standard components in their surface shape, typically a non-symmetric equation based definition, and material properties. Traditional grinding and polishing tools are unable to handle these freeform shapes. Additionally, standard metrology tools cannot measure these surfaces. Desired substrates are typically hard ceramics, including poly-crystalline alumina or aluminum oxynitride. Notwithstanding the challenges that the hardness provides to manufacturing, these crystalline materials can be highly susceptible to grain decoration creating unacceptable scatter in optical systems. In this presentation, we will show progress towards addressing the unique challenges of manufacturing conformal windows and domes. Particular attention is given to our robotic polishing platform. This platform is based on an industrial robot adapted to accept a wide range of tooling and parts. The robot's flexibility has provided us an opportunity to address the unique challenges of conformal windows. Slurries and polishing active layers can easily be changed to adapt to varying materials and address grain decoration. We have the flexibility to change tool size and shape to address the varying sizes and shapes of conformal optics. In addition, the robotic platform can be a base for a deflectometry-based metrology tool to measure surface form error. This system, whose precision is independent of the robot's positioning accuracy, will allow us to measure optics in-situ saving time and reducing part risk. In conclusion, we will show examples of the conformal windows manufactured using our developed processes.

  17. Further investigations on fixed abrasive diamond pellets used for diminishing mid-spatial frequency errors of optical mirrors.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Tam, Hon-Yuen

    2014-01-20

    As further application investigations on fixed abrasive diamond pellets (FADPs), this work exhibits their potential capability for diminishing mid-spatial frequency errors (MSFEs, i.e., periodic small structure) of optical surfaces. Benefitting from its high surficial rigidness, the FADPs tool has a natural smoothing effect to periodic small errors. Compared with the previous design, this proposed new tool employs more compliance to aspherical surfaces due to the pellets being mutually separated and bonded on a steel plate with elastic back of silica rubber adhesive. Moreover, a unicursal Peano-like path is presented for improving MSFEs, which can enhance the multidirectionality and uniformity of the tool's motion. Experiments were conducted to validate the effectiveness of FADPs for diminishing MSFEs. In the lapping of a Φ=420 mm Zerodur paraboloid workpiece, the grinding ripples were quickly diminished (210 min) by both visual inspection and profile metrology, as well as the power spectrum density (PSD) analysis, RMS was reduced from 4.35 to 0.55 μm. In the smoothing of a Φ=101 mm fused silica workpiece, MSFEs were obviously improved from the inspection of surface form maps, interferometric fringe patterns, and PSD analysis. The mid-spatial frequency RMS was diminished from 0.017λ to 0.014λ (λ=632.8 nm).

  18. Automatic SAR/optical cross-matching for GCP monograph generation

    NASA Astrophysics Data System (ADS)

    Nutricato, Raffaele; Morea, Alberto; Nitti, Davide Oscar; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio; Chiaradia, Maria Teresa

    2016-10-01

    Ground Control Points (GCP), automatically extracted from Synthetic Aperture Radar (SAR) images through 3D stereo analysis, can be effectively exploited for an automatic orthorectification of optical imagery if they can be robustly located in the basic optical images. The present study outlines a SAR/Optical cross-matching procedure that allows a robust alignment of radar and optical images, and consequently to derive automatically the corresponding sub-pixel position of the GCPs in the optical image in input, expressed as fractional pixel/line image coordinates. The cross-matching in performed in two subsequent steps, in order to gradually gather a better precision. The first step is based on the Mutual Information (MI) maximization between optical and SAR chips while the last one uses the Normalized Cross-Correlation as similarity metric. This work outlines the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight stereo images with different beams and passes are available. The experimental analysis involves different satellite images, in order to evaluate the performances of the algorithm w.r.t. the optical spatial resolution. An assessment of the performances of the algorithm has been carried out, and errors are computed by measuring the distance between the GCP pixel/line position in the optical image, automatically estimated by the tool, and the "true" position of the GCP, visually identified by an expert user in the optical images.

  19. The numerical simulation tool for the MAORY multiconjugate adaptive optics system

    NASA Astrophysics Data System (ADS)

    Arcidiacono, C.; Schreiber, L.; Bregoli, G.; Diolaiti, E.; Foppiani, I.; Agapito, G.; Puglisi, A.; Xompero, M.; Oberti, S.; Cosentino, G.; Lombini, M.; Butler, R. C.; Ciliegi, P.; Cortecchia, F.; Patti, M.; Esposito, S.; Feautrier, P.

    2016-07-01

    The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is an hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implement the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and use libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.

  20. DEMONSTRATION BULLETIN: RAPID OPTICAL SCREEN TOOL (ROST™) - LORAL CORPORATION

    EPA Science Inventory

    The Loral Rapid Optical Screen Tool (ROST™) is a tunable dye laser system used for the detection of petroleum, semi-volatile, and some volatile organic compounds in soils. The technology is used in conjunction with a cone penetrometer (CP).

  1. Influence of material and haptic design on the mechanical stability of intraocular lenses by means of finite-element modeling

    NASA Astrophysics Data System (ADS)

    Remón, Laura; Siedlecki, Damian; Cabeza-Gil, Iulen; Calvo, Begoña

    2018-03-01

    Intraocular lenses (IOLs) are used in the cataract treatment for surgical replacement of the opacified crystalline lens. Before being implanted they have to pass the strict quality control to guarantee a good biomechanical stability inside the capsular bag, avoiding the rotation, and to provide a good optical quality. The goal of this study was to investigate the influence of the material and haptic design on the behavior of the IOLs under dynamic compression condition. For this purpose, the strain-stress characteristics of the hydrophobic and hydrophilic materials were estimated experimentally. Next, these data were used as the input for a finite-element model (FEM) to analyze the stability of different IOL haptic designs, according to the procedure described by the ISO standards. Finally, the simulations of the effect of IOL tilt and decentration on the optical performance were performed in an eye model using a ray-tracing software. The results suggest the major importance of the haptic design rather than the material on the postoperative behavior of an IOL. FEM appears to be a powerful tool for numerical studies of the biomechanical properties of IOLs and it allows one to help in the design phase to the manufacturers.

  2. Design of smartphone-based spectrometer to assess fresh meat color

    NASA Astrophysics Data System (ADS)

    Jung, Youngkee; Kim, Hyun-Wook; Kim, Yuan H. Brad; Bae, Euiwon

    2017-02-01

    Based on its integrated camera, new optical attachment, and inherent computing power, we propose an instrument design and validation that can potentially provide an objective and accurate method to determine surface meat color change and myoglobin redox forms using a smartphone-based spectrometer. System is designed to be used as a reflection spectrometer which mimics the conventional spectrometry commonly used for meat color assessment. We utilize a 3D printing technique to make an optical cradle which holds all of the optical components for light collection, collimation, dispersion, and a suitable chamber. A light, which reflects a sample, enters a pinhole and is subsequently collimated by a convex lens. A diffraction grating spreads the wavelength over the camera's pixels to display a high resolution of spectrum. Pixel values in the smartphone image are translated to calibrate the wavelength values through three laser pointers which have different wavelength; 405, 532, 650 nm. Using an in-house app, the camera images are converted into a spectrum in the visible wavelength range based on the exterior light source. A controlled experiment simulating the refrigeration and shelving of the meat has been conducted and the results showed the capability to accurately measure the color change in quantitative and spectroscopic manner. We expect that this technology can be adapted to any smartphone and used to conduct a field-deployable color spectrum assay as a more practical application tool for various food sectors.

  3. Generation of single- and two-mode multiphoton states in waveguide QED

    NASA Astrophysics Data System (ADS)

    Paulisch, V.; Kimble, H. J.; Cirac, J. I.; González-Tudela, A.

    2018-05-01

    Single- and two-mode multiphoton states are the cornerstone of many quantum technologies, e.g., metrology. In the optical regime, these states are generally obtained combining heralded single photons with linear optics tools and post-selection, leading to inherent low success probabilities. In a recent paper [A. González-Tudela et al., Phys. Rev. Lett. 118, 213601 (2017), 10.1103/PhysRevLett.118.213601], we design several protocols that harness the long-range atomic interactions induced in waveguide QED to improve fidelities and protocols of single-mode multiphoton emission. Here, we give full details of these protocols, revisit them to simplify some of their requirements, and also extend them to generate two-mode multiphoton states, such as Yurke or NOON states.

  4. Edge detection based on computational ghost imaging with structured illuminations

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  5. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation.

    PubMed

    Savini, Giorgio; Pisano, Giampaolo; Ade, Peter A R

    2006-12-10

    We adopted an existing formalism and modified it to simulate, with high precision, the transmission, reflection, and absorption of multiple-plate birefringent devices as a function of frequency. To validate the model, we use it to compare the measured properties of an achromatic five-plate device with a broadband antireflection coating to expectations derived from the material optical constants and its geometric configuration. The half-wave plate presented here is observed to perform well with a phase shift variation of < 2 degrees from the ideal 180 degrees over a bandwidth of Deltav/v approximately 1 at millimeter wavelengths. This formalism represents a powerful design tool for birefringent polarization modulators and enables its optical properties to be specified with high accuracy.

  6. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  7. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited].

    PubMed

    Soto, Juan M; Rodrigo, José A; Alieva, Tatiana

    2018-01-01

    Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.

  8. The impact of CmapTools utilization towards students' conceptual change on optics topic

    NASA Astrophysics Data System (ADS)

    Rofiuddin, Muhammad Rifqi; Feranie, Selly

    2017-05-01

    Science teachers need to help students identify their prior ideas and modify them based on scientific knowledge. This process is called as conceptual change. One of essential tools to analyze students' conceptual change is by using concept map. Concept Maps are graphical representations of knowledge that are comprised of concepts and the relationships between them. Constructing concept map is implemented by adapting the role of technology to support learning process, as it is suitable with Educational Ministry Regulation No.68 year 2013. Institute for Human and Machine Cognition (IHMC) has developed CmapTools, a client-server software for easily construct and visualize concept maps. This research aims to investigate secondary students' conceptual change after experiencing five-stage conceptual teaching model by utilizing CmapTools in learning Optics. Weak experimental method through one group pretest-posttest design is implemented in this study to collect preliminary and post concept map as qualitative data. Sample was taken purposively of 8th grade students (n= 22) at one of private schools Bandung, West Java. Conceptual change based on comparison of preliminary and post concept map construction is assessed based on rubric of concept map scoring and structure. Results shows significance conceptual change differences at 50.92 % that is elaborated into concept map element such as prepositions and hierarchical level in high category, cross links in medium category and specific examples in low category. All of the results are supported with the students' positive response towards CmapTools utilization that indicates improvement of motivation, interest, and behavior aspect towards Physics lesson.

  9. Low-order aberration coefficients applied to design of telescopes with freeform surfaces

    NASA Astrophysics Data System (ADS)

    Stone, Bryan D.; Howard, Joseph M.

    2017-09-01

    As the number of smallsats and cubesats continues to increase [1], so does the interest in the space optics community to miniaturize reflective optical instrumentation for these smaller platforms. Applications of smallsats are typically for the Earth observing community, but recently opportunities for them are being made available for planetary science, heliophysics and astrophysics concepts [2]. With the smaller satellite platforms come reduced instrument sizes that they accommodate, but the specifications such as field of view and working f/# imposed on the smaller optical systems are often the same, or even more challenging. To meet them, and to "fit in the box", it is necessary to employ additional degrees of freedom to the optical design. An effective strategy to reduce package size is to remove rotational symmetry constraints on the system layout, allowing it to minimize the unused volume by applying rigid body tilts and decenters to mirrors. Requirements for faster systems and wider fields of view can be addressed by allowing optical surfaces to become "freeform" in shape, essentially removing rotational symmetry constraints on the mirrors themselves. This dual approach not only can reduce package size, but also can allow for increased fields of view with improved image quality. Tools were developed in the 1990s to compute low-order coefficients of the imaging properties of asymmetric tilted and decentered systems [3][4]. That approach was then applied to reflective systems with plane symmetry, where the coefficients were used to create closed-form constraints to reduce the number of degrees of freedom of the design space confronting the designer [5][6]. In this paper we describe the geometric interpretation of these coefficients for systems with a plane of symmetry, and discuss some insights that follow for the design of systems without closed-form constraints. We use a common three-mirror design form example to help illustrate these concepts, and incorporate freeform surfaces for each mirror shape. In section II, we evoke the typical form of the wave aberration function taught in most texts on geometrical optics, and then recast it into a general form that no longer assumes rotational symmetry. A freeform surface definition for mirrors is then defined, and the example three-mirror system used throughout this paper is introduced. In section III, the first-order coefficients of the plane symmetric system are discussed, and then the second-order in section IV. In both of these discussions, the example system is perturbed to present the explicit form of the aberration coefficient laid out in section II, and plots are presented using optical design software. Finally, some concluding remarks are given in section V.

  10. Generic trending and analysis system

    NASA Technical Reports Server (NTRS)

    Keehan, Lori; Reese, Jay

    1994-01-01

    The Generic Trending and Analysis System (GTAS) is a generic spacecraft performance monitoring tool developed by NASA Code 511 and Loral Aerosys. It is designed to facilitate quick anomaly resolution and trend analysis. Traditionally, the job of off-line analysis has been performed using hardware and software systems developed for real-time spacecraft contacts; then, the systems were supplemented with a collection of tools developed by Flight Operations Team (FOT) members. Since the number of upcoming missions is increasing, NASA can no longer afford to operate in this manner. GTAS improves control center productivity and effectiveness because it provides a generic solution across multiple missions. Thus, GTAS eliminates the need for each individual mission to develop duplicate capabilities. It also allows for more sophisticated tools to be developed because it draws resources from several projects. In addition, the GTAS software system incorporates commercial off-the-shelf tools software (COTS) packages and reuses components of other NASA-developed systems wherever possible. GTAS has incorporated lessons learned from previous missions by involving the users early in the development process. GTAS users took a proactive role in requirements analysis, design, development, and testing. Because of user involvement, several special tools were designed and are now being developed. GTAS users expressed considerable interest in facilitating data collection for long term trending and analysis. As a result, GTAS provides easy access to large volumes of processed telemetry data directly in the control center. The GTAS archival and retrieval capabilities are supported by the integration of optical disk technology and a COTS relational database management system.

  11. SU-D-213-03: Towards An Optimized 3D Scintillation Dosimetry Tool for Quality Assurance of Dynamic Radiotherapy Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rilling, M; Centre de Recherche sur le Cancer, Hôtel-Dieu de Québec, Quebec City, QC; Département de radio-oncologie, CHU de Québec, Quebec City, QC

    2015-06-15

    Purpose: The purpose of this work is to simulate a multi-focus plenoptic camera used as the measuring device in a real-time three-dimensional scintillation dosimeter. Simulating and optimizing this realistic optical system will bridge the technological gap between concept validation and a clinically viable tool that can provide highly efficient, accurate and precise measurements for dynamic radiotherapy techniques. Methods: The experimental prototype, previously developed for proof of concept purposes, uses an off-the-shelf multi-focus plenoptic camera. With an array of interleaved microlenses of different focal lengths, this camera records spatial and angular information of light emitted by a plastic scintillator volume. Themore » three distinct microlens focal lengths were determined experimentally for use as baseline parameters by measuring image-to-object magnification for different distances in object space. A simulated plenoptic system was implemented using the non-sequential ray tracing software Zemax: this tool allows complete simulation of multiple optical paths by modeling interactions at interfaces such as scatter, diffraction, reflection and refraction. The active sensor was modeled based on the camera manufacturer specifications by a 2048×2048, 5 µm-pixel pitch sensor. Planar light sources, simulating the plastic scintillator volume, were employed for ray tracing simulations. Results: The microlens focal lengths were determined to be 384, 327 and 290 µm. A realistic multi-focus plenoptic system, with independently defined and optimizable specifications, was fully simulated. A f/2.9 and 54 mm-focal length Double Gauss objective was modeled as the system’s main lens. A three-focal length hexagonal microlens array of 250-µm thickness was designed, acting as an image-relay system between the main lens and sensor. Conclusion: Simulation of a fully modeled multi-focus plenoptic camera enables the decoupled optimization of the main lens and microlens specifications. This work leads the way to improving the 3D dosimeter’s achievable resolution, efficiency and build for providing a quality assurance tool fully meeting clinical needs. M.R. is financially supported by a Master’s Canada Graduate Scholarship from the NSERC. This research is also supported by the NSERC Industrial Research Chair in Optical Design.« less

  12. Pretest predictions of surface strain and fluid pressures in mercury targets undergoing thermal shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Kim, S.H.; Haines, J.

    The authors provide a perspective overview of pretest modeling and analysis work related to thermal shock effects in spallation neutron source targets that were designed for conducting thermal shock experiments at the Los Alamos Neutron Science Center (LANSCE). Data to be derived are to be used for benchmarking computational tools as well as to assess the efficacy of optical gauges for monitoring dynamic fluid pressures and phenomena such as the onset of cavitation.

  13. Diffuse Reflectance Mid-Infrared Spectroscopy as a Tool for the Identification of Surface Contamination on Sandblasted Metals

    NASA Technical Reports Server (NTRS)

    Powell, Louis G.; Barber, Tye E.; Neu, John T.; Nerren, Billy H.

    1997-01-01

    The SOC 400 Surface Inspection Machine/Infrared (SIMIR) is a small, ruggedized Fourier transform infrared spectrometer having dedicated diffuse reflectance optics. The SOC 400 was designed for the purpose of detecting (qualitatively and quantitatively) oil stains on the inside surface of solid rocket motor casings in the as-sandblasted and cleaned condition at levels approaching 1 mg. sq ft. The performance of this instrument is described using spectral mapping techniques.

  14. Development of grating-based x-ray Talbot interferometry at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marathe, Shashidhara; Xiao Xianghui; Wojcik, Michael J.

    2012-07-31

    We report on the ongoing effort to develop hard x-ray Talbot interferometry at the Advanced Photon Source (APS), Argonne National Laboratory, USA. We describe the design of the interferometer and preliminary results obtained at 25 keV using a feather and a phantom sample lithographically fabricated of gold. We mention the future developmental goals and applications of this technique as a metrology tool for x-ray optics and beam wavefront characterization.

  15. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  16. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  17. Data format standard for sharing light source measurements

    NASA Astrophysics Data System (ADS)

    Gregory, G. Groot; Ashdown, Ian; Brandenburg, Willi; Chabaud, Dominique; Dross, Oliver; Gangadhara, Sanjay; Garcia, Kevin; Gauvin, Michael; Hansen, Dirk; Haraguchi, Kei; Hasna, Günther; Jiao, Jianzhong; Kelley, Ryan; Koshel, John; Muschaweck, Julius

    2013-09-01

    Optical design requires accurate characterization of light sources for computer aided design (CAD) software. Various methods have been used to model sources, from accurate physical models to measurement of light output. It has become common practice for designers to include measured source data for design simulations. Typically, a measured source will contain rays which sample the output distribution of the source. The ray data must then be exported to various formats suitable for import into optical analysis or design software. Source manufacturers are also making measurements of their products and supplying CAD models along with ray data sets for designers. The increasing availability of data has been beneficial to the design community but has caused a large expansion in storage needs for the source manufacturers since each software program uses a unique format to describe the source distribution. In 2012, the Illuminating Engineering Society (IES) formed a working group to understand the data requirements for ray data and recommend a standard file format. The working group included representatives from software companies supplying the analysis and design tools, source measurement companies providing metrology, source manufacturers creating the data and users from the design community. Within one year the working group proposed a file format which was recently approved by the IES for publication as TM-25. This paper will discuss the process used to define the proposed format, highlight some of the significant decisions leading to the format and list the data to be included in the first version of the standard.

  18. Optical surface analysis: a new technique for the inspection and metrology of optoelectronic films and wafers

    NASA Astrophysics Data System (ADS)

    Bechtler, Laurie; Velidandla, Vamsi

    2003-04-01

    In response to demand for higher volumes and greater product capability, integrated optoelectronic device processing is rapidly increasing in complexity, benefiting from techniques developed for conventional silicon integrated circuit processing. The needs for high product yield and low manufacturing cost are also similar to the silicon wafer processing industry. This paper discusses the design and use of an automated inspection instrument called the Optical Surface Analyzer (OSA) to evaluate two critical production issues in optoelectronic device manufacturing: (1) film thickness uniformity, and (2) defectivity at various process steps. The OSA measurement instrument is better suited to photonics process development than most equipment developed for conventional silicon wafer processing in two important ways: it can handle both transparent and opaque substrates (unlike most inspection and metrology tools), and it is a full-wafer inspection method that captures defects and film variations over the entire substrate surface (unlike most film thickness measurement tools). Measurement examples will be provided in the paper for a variety of films and substrates used for optoelectronics manufacturing.

  19. Review of biomedical Čerenkov luminescence imaging applications

    PubMed Central

    Tanha, Kaveh; Pashazadeh, Ali Mahmoud; Pogue, Brian W

    2015-01-01

    Čerenkov radiation is a fascinating optical signal, which has been exploited for unique diagnostic biological sensing and imaging, with significantly expanded use just in the last half decade. Čerenkov Luminescence Imaging (CLI) has desirable capabilities for niche applications, using specially designed measurement systems that report on radiation distributions, radiotracer and nanoparticle concentrations, and are directly applied to procedures such as medicine assessment, endoscopy, surgery, quality assurance and dosimetry. When compared to the other imaging tools such as PET and SPECT, CLI can have the key advantage of lower cost, higher throughput and lower imaging time. CLI can also provide imaging and dosimetry information from both radioisotopes and linear accelerator irradiation. The relatively short range of optical photon transport in tissue means that direct Čerenkov luminescence imaging is restricted to small animals or near surface human use. Use of Čerenkov-excitation for additional molecular probes, is now emerging as a key tool for biosensing or radiosensitization. This review evaluates these new improvements in CLI for both medical value and biological insight. PMID:26309766

  20. Performance improvements of binary diffractive structures via optimization of the photolithography and dry etch processes

    NASA Astrophysics Data System (ADS)

    Welch, Kevin; Leonard, Jerry; Jones, Richard D.

    2010-08-01

    Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.

  1. Proposal of an innovative benchmark for comparison of the performance of contactless digitizers

    NASA Astrophysics Data System (ADS)

    Iuliano, Luca; Minetola, Paolo; Salmi, Alessandro

    2010-10-01

    Thanks to the improving performances of 3D optical scanners, in terms of accuracy and repeatability, reverse engineering applications have extended from CAD model design or reconstruction to quality control. Today, contactless digitizing devices constitute a good alternative to coordinate measuring machines (CMMs) for the inspection of certain parts. The German guideline VDI/VDE 2634 is the only reference to evaluate whether 3D optical measuring systems comply with the declared or required performance specifications. Nevertheless it is difficult to compare the performance of different scanners referring to such a guideline. An adequate novel benchmark is proposed in this paper: focusing on the inspection of production tools (moulds), the innovative test piece was designed using common geometries and free-form surfaces. The reference part is intended to be employed for the evaluation of the performance of several contactless digitizing devices in computer-aided inspection, considering dimensional and geometrical tolerances as well as other quantitative and qualitative criteria.

  2. The use of optical pyrometers in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.

    1989-07-01

    An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.

  3. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    NASA Astrophysics Data System (ADS)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  4. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory.

    PubMed

    Ma, Mingying; Wang, Xiangzhao; Wang, Fan

    2006-11-10

    The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy.

  5. Firefly: an optical lithographic system for the fabrication of holographic security labels

    NASA Astrophysics Data System (ADS)

    Calderón, Jorge; Rincón, Oscar; Amézquita, Ricardo; Pulido, Iván.; Amézquita, Sebastián.; Bernal, Andrés.; Romero, Luis; Agudelo, Viviana

    2016-03-01

    This paper introduces Firefly, an optical lithography origination system that has been developed to produce holographic masters of high quality. This mask-less lithography system has a resolution of 418 nm half-pitch, and generates holographic masters with the optical characteristics required for security applications of level 1 (visual verification), level 2 (pocket reader verification) and level 3 (forensic verification). The holographic master constitutes the main core of the manufacturing process of security holographic labels used for the authentication of products and documents worldwide. Additionally, the Firefly is equipped with a software tool that allows for the hologram design from graphic formats stored in bitmaps. The software is capable of generating and configuring basic optical effects such as animation and color, as well as effects of high complexity such as Fresnel lenses, engraves and encrypted images, among others. The Firefly technology gathers together optical lithography, digital image processing and the most advanced control systems, making possible a competitive equipment that challenges the best technologies in the industry of holographic generation around the world. In this paper, a general description of the origination system is provided as well as some examples of its capabilities.

  6. Predicting optical and thermal characteristics of transparent single-glazed domed skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouadi, A.; Atif, M.R.

    1999-07-01

    Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less

  7. Pre-polishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffer, Adrienne E.

    2003-05-01

    Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  8. Prepolishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  9. NASA Tech Briefs, March 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The topics include: 1) Spectral Profiler Probe for In Situ Snow Grain Size and Composition Stratigraphy; 2) Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control; 3) In Situ Geochemical Analysis and Age Dating of Rocks Using Laser Ablation-Miniature Mass Spectrometer; 4) Physics Mining of Multi-Source Data Sets; 5) Photogrammetry Tool for Forensic Analysis; 6) Connect Global Positioning System RF Module; 7) Simple Cell Balance Circuit; 8) Miniature EVA Software Defined Radio; 9) Remotely Accessible Testbed for Software Defined Radio Development; 10) System-of-Systems Technology-Portfolio-Analysis Tool; 11) VESGEN Software for Mapping and Quantification of Vascular Regulators; 12) Constructing a Database From Multiple 2D Images for Camera Pose Estimation and Robot Localization; 13) Adaption of G-TAG Software for Validating Touch and Go Asteroid Sample Return Design Methodology; 14) 3D Visualization for Phoenix Mars Lander Science Operations; 15) RxGen General Optical Model Prescription Generator; 16) Carbon Nanotube Bonding Strength Enhancement Using Metal Wicking Process; 17) Multi-Layer Far-Infrared Component Technology; 18) Germanium Lift-Off Masks for Thin Metal Film Patterning; 19) Sealing Materials for Use in Vacuum at High Temperatures; 20) Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded With Electropolymers; 21) Nano Sponges for Drug Delivery and Medicinal Applications; 22) Molecular Technique to Understand Deep Microbial Diversity; 23) Methods and Compositions Based on Culturing Microorganisms in Low Sedimental Fluid Shear Conditions; 24) Secure Peer-to-Peer Networks for Scientific Information Sharing; 25) Multiplexer/Demultiplexer Loading Tool (MDMLT); 26) High-Rate Data-Capture for an Airborne Lidar System; 27) Wavefront Sensing Analysis of Grazing Incidence Optical Systems; 28) Foam-on-Tile Damage Model; 29) Instrument Package Manipulation Through the Generation and Use of an Attenuated-Fluent Gas Fold; 30) Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras; 31) Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem; and 32) Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes.

  10. Optical aptasensors for quantitative detection of small biomolecules: a review.

    PubMed

    Feng, Chunjing; Dai, Shuang; Wang, Lei

    2014-09-15

    Aptasensors are aptamer-based biosensors with excellent recognition capability towards a wide range of targets. Specially, there have been ever-growing interests in the development of aptasensors for the detection of small molecules. This phenomenon is contributed to two reasons. On one hand, small biomolecules play an important role in living organisms with many kinds of biological function, such as antiarrhythmic effect and vasodilator activity of adenosine. On the other hand, the concentration of small molecules can be an indicator for disease diagnosis, for example, the concentration of ATP is closely associated with cell injury and cell viability. As a potential analysis tool in the construction of aptasensors, optical analysis has attracted much more interest of researchers due to its high sensitivity, quick response and simple operation. Besides, it promises the promotion of aptasensors in performance toward a new level. Review the development of optical aptasensors for small biomolecules will give readers an overall understanding of its progress and provide some theoretical guidelines for its future development. Hence, we give a mini-review on the advance of optical aptasensors for small biomolecules. This review focuses on recent achievements in the design of various optical aptasensors for small biomolecules, containing fluorescence aptasensors, colorimetric aptasensors, chemiluminescence aptasensors and other optical aptasensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Optical diffraction interpretation: an alternative to interferometers

    NASA Astrophysics Data System (ADS)

    Bouillet, S.; Audo, F.; Fréville, S.; Eupherte, L.; Rouyer, C.; Daurios, J.

    2015-08-01

    The Laser MégaJoule (LMJ) is a French high power laser project that requires thousands of large optical components. The wavefront performances of all those optics are critical to achieve the desired focal spot shape and to limit the hot spots that could damage the components. Fizeau interferometers and interferometric microscopes are the most commonly used tools to cover the whole range of interesting spatial frequencies. Anyway, in some particular cases like diffractive and/or coated and/or aspheric optics, an interferometric set-up becomes very expensive with the need to build a costly reference component or a specific to-the-wavelength designed interferometer. Despite the increasing spatial resolution of Fizeau interferometers, it may even not be enough, if you are trying to access the highest spatial frequencies of a transmitted wavefront for instance. The method we developed is based upon laser beam diffraction intermediate field measurements and their interpretation with a Fourier analysis and the Talbot effect theory. We demonstrated in previous papers that it is a credible alternative to classical methods. In this paper we go further by analyzing main error sources and discussing main practical difficulties.

  12. Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System †

    PubMed Central

    Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei

    2017-01-01

    Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event. PMID:28556802

  13. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  14. Optical Tip Clearance Measurements as a Tool for Rotating Disk Characterization

    PubMed Central

    García, Iker; Zubia, Joseba; Beloki, Josu; Arrue, Jon; Durana, Gaizka; Aldabaldetreku, Gotzon

    2017-01-01

    An experimental investigation on the vibrational behavior of a rotating disk by means of three optical fiber sensors is presented. The disk, which is a scale model of the real disk of an aircraft engine, was assembled in a wind tunnel in order to simulate real operation conditions. The pressure difference between the upstream and downstream sides of the disk causes an airflow that might force the disk to vibrate. To characterize this vibration, a set of parameters was determined by measuring the tip clearance of the disk: the amplitude, the frequency and the number of nodal diameters in the disk. All this information allowed the design of an upgraded prototype of the disk, whose performance was also characterized by the same method. An optical system was employed for the measurements, in combination with a strain gauge mounted on the disk surface, which served to confirm the results obtained. The data of the strain gauge coincided closely with those provided by the optical fiber sensors, thus demonstrating the suitability of this innovative technique to evaluate the vibrational behavior of rotating disks. PMID:28098845

  15. Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells

    DOE PAGES

    Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari; ...

    2018-05-29

    The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less

  16. Optical Helicity-Manipulated Photocurrents and Photovoltages in Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Mengmeng; Hao, Xiaotao; Saxena, Avadh Behari

    The performance of an organic functional device can be effectively improved through external field manipulation. In this study, we experimentally demonstrate the optical polarization manipulation of the photocurrent or photovoltage in organic solar cells. Through switching the incident light from a linearly polarized light to a circularly polarized one, we find a pronounced change in the photocurrent, which is not observable in normal inorganic cells. There are two competing hypotheses for the primary process underlying the circular polarization-dependent phenomena in organic materials, one involving the inverse Faraday effect (IFE) and the other a direct photon spin–electron spin interaction. By waymore » of ingenious device design and external magnetic field-induced stimuli, it is expected that the organic IFE can be a powerful experimental tool in revealing and elucidating excited-state processes occurring in organic spintronic and optoelectronic devices. Therefore, we believe that our results will potentially lead to the development of new multifunctional organic devices with integrated electronic, optical, and magnetic properties for energy conversion, optical communication, and sensing technologies.« less

  17. Design considerations and validation of the MSTAR absolute metrology system

    NASA Astrophysics Data System (ADS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu

    2004-08-01

    Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  18. Development of accelerated Raman and fluorescent Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Dumont, Alexander P.; Patil, Chetan

    2018-02-01

    Monte Carlo (MC) modeling of photon propagation in turbid media is an essential tool for understanding optical interactions between light and tissue. Insight gathered from outputs of MC models assists in mapping between detected optical signals and bulk tissue optical properties, and as such, has proven useful for inverse calculations of tissue composition and optimization of the design of optical probes. MC models of Raman scattering have previously been implemented without consideration to background autofluorescence, despite its presence in raw measurements. Modeling both Raman and fluorescence profiles at high spectral resolution requires a significant increase in computation, but is more appropriate for investigating issues such as detection limits. We present a new Raman Fluorescence MC model developed atop an existing GPU parallelized MC framework that can run more than 300x times faster than CPU methods. The robust acceleration allows for the efficient production of both Raman and fluorescence outputs from the MC model. In addition, this model can handle arbitrary sample morphologies of excitation and collection geometries to more appropriately mimic experimental settings. We will present the model framework and initial results.

  19. Retargeted human avidin-CAR T cells for adoptive immunotherapy of EGFRvIII expressing gliomas and their evaluation via optical imaging.

    PubMed

    Liu, Kaiyu; Liu, Xujie; Peng, Zhiping; Sun, Haojie; Zhang, Mingzhi; Zhang, Jianning; Liu, Shuang; Hao, Limin; Lu, Guoqiu; Zheng, Kangcheng; Gong, Xikui; Wu, Di; Wang, Fan; Shen, Li

    2015-09-15

    There has been significant progress in the design of chimeric antigen receptors (CAR) for adoptive immunotherapy targeting tumor-associated antigens. However, the challenge of monitoring the therapy in real time has been continually ignored. To address this issue, we developed optical molecular imaging approaches to evaluate a recently reported novel CAR strategy for adoptive immunotherapy against glioma xenografts expressing EGFRvIII. We initially biotinylated a novel anti-EGFRvIII monoclonal antibody (biotin-4G1) to pre-target EGFRvIII+ gliomas and then redirect activated avidin-CAR expressing T cells against the pre-targeted biotin-4G1. By optical imaging study and bio-distribution analysis, we confirmed the specificity of pre-target and target and determined the optimal time for T cells adoptive transfer in vivo. The results showed this therapeutic strategy offered efficient therapy effect to EGFRvIII+ glioma-bearing mice and implied that optical imaging is a highly useful tool in aiding in the instruction of clinical CAR-T cells adoptive transfer in future.

  20. Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System.

    PubMed

    Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei

    2017-05-30

    Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event.

  1. Laser pattern generator challenges in airborne molecular contamination protection

    NASA Astrophysics Data System (ADS)

    Ekberg, Mats; Skotte, Per-Uno; Utterback, Tomas; Paul, Swaraj; Kishkovich, Oleg P.; Hudzik, James S.

    2003-08-01

    The introduction of photomask laser pattern generators presents new challenges to system designers and manufacturers. One of the laser pattern generator's environmental operating challenges is Airborne Molecular Contamination (AMC), which affects both chemically amplified resists (CAResist) and laser optics. Similar challenges in CAResist protection have already been addressed in semiconductor wafer lithography with reasonable solutions and experience gained by all those involved. However, photomask and photomask equipment manufacturers have not previously had a comparable experience, and some photomask AMC issues differ from those seen in semiconductor wafer lithography. Culminating years of AMC experience, the authors discuss specific requirements of Photomask AMC. Air sampling and material of construction analysis were performed to understand these particular AMC challenges and used to develop an appropriate filtration specification for different classes of contaminates. The authors portray the importance of cooperation between tool designers and AMC experts early in the design stage to assure goal attainment to maximize both process stability and machine productivity in advanced mask making. In conclusion, the authors provide valuable recommendations to both laser tool users and other equipment manufacturers.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.

    The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k{sub 1} of 0.52. The illuminator produces 13.4 nmmore » radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.« less

  3. System technology for laser-assisted milling with tool integrated optics

    NASA Astrophysics Data System (ADS)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  4. High resolution optical surface metrology with the slope measuring portable optical test system

    NASA Astrophysics Data System (ADS)

    Maldonado, Alejandro V.

    New optical designs strive to achieve extreme performance, and continually increase the complexity of prescribed optical shapes, which often require wide dynamic range and high resolution. SCOTS, or the Software Configurable Optical Test System, can measure a wide range of optical surfaces with high sensitivity using surface slope. This dissertation introduces a high resolution version of SCOTS called SPOTS, or the Slope measuring Portable Optical Test System. SPOTS improves the metrology of surface features on the order of sub-millimeter to decimeter spatial scales and nanometer to micrometer level height scales. Currently there is no optical surface metrology instrument with the same utility. SCOTS uses a computer controlled display (such as an LCD monitor) and camera to measure surface slopes over the entire surface of a mirror. SPOTS differs in that an additional lens is placed near the surface under test. A small prototype system is discussed in general, providing the support for the design of future SPOTS devices. Then the SCOTS instrument transfer function is addressed, which defines the way the system filters surface heights. Lastly, the calibration and performance of larger SPOTS device is analyzed with example measurements of the 8.4-m diameter aspheric Large Synoptic Survey Telescope's (LSST) primary mirror. In general optical systems have a transfer function, which filters data. In the case of optical imaging systems the instrument transfer function (ITF) follows the modulation transfer function (MTF), which causes a reduction of contrast as a function of increasing spatial frequency due to diffraction. In SCOTS, ITF is shown to decrease the measured height of surface features as their spatial frequency increases, and thus the SCOTS and SPOTS ITF is proportional to their camera system's MTF. Theory and simulations are supported by a SCOTS measurement of a test piece with a set of lithographically written sinusoidal surface topographies. In addition, an example of a simple inverse filtering technique is provided. The success of a small SPOTS proof of concept instrument paved the way for a new larger prototype system, which is intended to measure subaperture regions on large optical mirrors. On large optics, the prototype SPOTS is light weight and it rests on the surface being tested. One advantage of this SPOTS is stability over time in maintaining its calibration. Thus the optician can simply place SPOTS on the mirror, perform a simple alignment, collect measurement data, then pick the system up and repeat at a new location. The entire process takes approximately 5 to 10 minutes, of which 3 minutes is spent collecting data. SPOTS' simplicity of design, light weight, robustness, wide dynamic range, and high sensitivity make it a useful tool for optical shop use during the fabrication and testing process of large and small optics.

  5. Design of a Heliostat for Centro de Investigaciones de Astronomía (CIDA)

    NASA Astrophysics Data System (ADS)

    Dávila, L. E.; Barboza, S. J.; Sánchez, G. A.; Della Prugna, F.; Cova, J.; Provenzano, S. E.; Chacón, R. D.

    2009-05-01

    This paper explains the procedure used in the design of a heliostat to be installed at the headquarters of the Centro de Investigaciones de Astronomía, located in the city of Mérida, Venezuela. The heliostat will be used mainly for educational and public outreach programs, so the design specifications did not require compensation for rotation of the Sun's image at the focal point. The engineering computational tools CAD-CAE were used in order to allow a seamless interaction between the two disciplines involved, Mechanical Engineering and Astronomy. It has also been taken into consideration, as a starting requirement, that all materials be easily available and that all parts, excluding the optics, could be manufactured with the equipment available at the CIDA workshop. These considerations were intended to reduce the cost of the device and to increase the feasibility of construction with limited technological facilities and financial resources. The results obtained by means of the computing tools used were validated through comparison against the analytical calculations. As a result, a robust but low cost heliostat was designed which in the near future will be used to project the Sun's image on a screen for public viewing and student research projects.

  6. MuSim, a Graphical User Interface for Multiple Simulation Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Thomas; Cummings, Mary Anne; Johnson, Rolland

    2016-06-01

    MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X,more » and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today's standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today's technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.« less

  7. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Submillimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation Flying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  8. The Precision Formation Flying Integrated Analysis Tool (PFFIAT)

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lyon, Richard G.; Sears, Edie; Lu, Victor

    2004-01-01

    Several space missions presently in the concept phase (e.g. Stellar Imager, Sub- millimeter Probe of Evolutionary Cosmic Structure, Terrestrial Planet Finder) plan to use multiple spacecraft flying in precise formation to synthesize unprecedently large aperture optical systems. These architectures present challenges to the attitude and position determination and control system; optical performance is directly coupled to spacecraft pointing with typical control requirements being on the scale of milliarcseconds and nanometers. To investigate control strategies, rejection of environmental disturbances, and sensor and actuator requirements, a capability is needed to model both the dynamical and optical behavior of such a distributed telescope system. This paper describes work ongoing at NASA Goddard Space Flight Center toward the integration of a set of optical analysis tools (Optical System Characterization and Analysis Research software, or OSCAR) with the Formation J?lying Test Bed (FFTB). The resulting system is called the Precision Formation Flying Integrated Analysis Tool (PFFIAT), and it provides the capability to simulate closed-loop control of optical systems composed of elements mounted on multiple spacecraft. The attitude and translation spacecraft dynamics are simulated in the FFTB, including effects of the space environment (e.g. solar radiation pressure, differential orbital motion). The resulting optical configuration is then processed by OSCAR to determine an optical image. From this image, wavefront sensing (e.g. phase retrieval) techniques are being developed to derive attitude and position errors. These error signals will be fed back to the spacecraft control systems, completing the control loop. A simple case study is presented to demonstrate the present capabilities of the tool.

  9. Rigidity controllable polishing tool based on magnetorheological effect

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Wan, Yongjian; Shi, Chunyan

    2012-10-01

    A stable and predictable material removal function (MRF) plays a crucial role in computer controlled optical surfacing (CCOS). For physical contact polishing case, the stability of MRF depends on intimate contact between polishing interface and workpiece. Rigid laps maintain this function in polishing spherical surfaces, whose curvature has no variation with the position on the surface. Such rigid laps provide smoothing effect for mid-spatial frequency errors, but can't be used in aspherical surfaces for they will destroy the surface figure. Flexible tools such as magnetorheological fluid or air bonnet conform to the surface [1]. They lack rigidity and provide little natural smoothing effect. We present a rigidity controllable polishing tool that uses a kind of magnetorheological elastomers (MRE) medium [2]. It provides the ability of both conforming to the aspheric surface and maintaining natural smoothing effect. What's more, its rigidity can be controlled by the magnetic field. This paper will present the design, analysis, and stiffness variation mechanism model of such polishing tool [3].

  10. Fibre-optic nonlinear optical microscopy and endoscopy.

    PubMed

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.

  11. Dome flat-field system for 1.3-m Araki Telescope

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Tomohiro; Ikeda, Yuji; Fujishiro, Naofumi; Ichizawa, Shunsuke; Arai, Akira; Isogai, Mizuki; Yonehara, Atsunori; Kawakita, Hideyo

    2012-09-01

    We report the system/optics design and performance of the dome flat-field system for the Araki Telescope, a 1.3- m optical/near-infrared telescope at Koyama Astronomical Observatory in Japan. A variety of instruments are attached to the telescope. The optical imager, which is intended to search for exoplanets, requires an illumination flatness within 1% on the focal plane over the 17-arcmin FOV. Illumination flatness at both the pupil plane and the focal plane of the telescope is essential for calibration of the transmittance of the optical system. We devised an optical design for the flat-field system that satisfies illumination flatness at both the focal and pupil planes using the non-sequential ray tracing software LightTools. We considered far-field illumination pattern of the lamps, scattering surface reflectance distribution of the screen, telescope structure, primary/secondary mirrors, and mirror baffles. We achieved a flat illumination distribution of 0.9% at the focal plane. The systems performance was tested by comparison with a cloud-flat frame, which was derived by imaging cloud cover illuminated by city lights. The calibration data for the dome flat-field system agree well with the cloud-flat frame within 1% for the g' and i' bands of the imager, but the r0 band data does not meet the requirement (less than or equal to 2). Moreover, various instruments require a focal plane illuminance ranging over three orders of magnitude. We used six high-power (60W) halogen lamps; the output power is remotely controlled by a thyristor-driven dimmer and a bypass circuit to an autotransformer.

  12. An image-processing software package: UU and Fig for optical metrology applications

    NASA Astrophysics Data System (ADS)

    Chen, Lujie

    2013-06-01

    Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.

  13. Creating an optical spectroscopy system for use in a primary care clinical setting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eshein, Adam; Nguyen, The-Quyen; Radosevich, Andrew J.; Gould, Bradley; Wu, Wenli; Konda, Vani; Yang, Leslie W.; Koons, Ann; Feder, Seth; Valuckaite, Vesta; Roy, Hemant K.; Backman, Vadim

    2016-03-01

    While there are a plethora of in-vivo spectroscopic techniques that have demonstrated the ability to detect a number of diseases in research trials, very few techniques have successfully become a fully realized clinical technology. This is primarily due to the stringent demands on a clinical device for widespread implementation. Some of these demands include: simple operation requiring minimal or no training, safe for in-vivo patient use, no disruption to normal clinic workflow, tracking of system performance, warning for measurement abnormality, and meeting all FDA guidelines for medical use. Previously, our group developed a fiber optic probe-based optical sensing technique known as low-coherence enhanced backscattering spectroscopy (LEBS) to quantify tissue ultrastructure in-vivo. Now we have developed this technique for the application of prescreening patients for colonoscopy in a primary care (PC) clinical setting. To meet the stringent requirements for a viable medical device used in a PC clinical setting, we developed several novel components including an automated calibration tool, optical contact sensor for signal acquisition, and a contamination sensor to identify measurements which have been affected by debris. The end result is a state-of-the-art medical device that can be realistically used by a PC physician to assess a person's risk for harboring colorectal precancerous lesions. The pilot study of this system shows great promise with excellent stability and accuracy in identifying high-risk patients. While this system has been designed and optimized for our specific application, the system and design concepts are universal to most in-vivo fiber optic based spectroscopic techniques.

  14. Autofluorescence and diffuse reflectance patterns in cervical spectroscopy

    NASA Astrophysics Data System (ADS)

    Marin, Nena Maribel

    Fluorescence and diffuse reflectance spectroscopy are two new optical technologies, which have shown promise to aid in the real time, non-invasive identification of cancers and precancers. Spectral patterns carry a fingerprint of scattering, absorption and fluorescence properties in tissue. Scattering, absorption and fluorescence in tissue are directly affected by biological features that are diagnostically significant, such as nuclear size, micro-vessel density, volume fraction of collagen fibers, tissue oxygenation and cell metabolism. Thus, analysis of spectral patterns can unlock a wealth of information directly related with the onset and progression of disease. Data from a Phase II clinical trial to assess the technical efficacy of fluorescence and diffuse reflectance spectroscopy acquired from 850 women at three clinical locations with two research grade optical devices is calibrated and analyzed. Tools to process and standardize spectra so that data from multiple spectrometers can be combined and analyzed are presented. Methodologies for calibration and quality assurance of optical systems are established to simplify design issues and ensure validity of data for future clinical trials. Empirically based algorithms, using multivariate statistical approaches are applied to spectra and evaluated as a clinical diagnostic tool. Physically based algorithms, using mathematical models of light propagation in tissue are presented. The presented mathematical model combines a diffusion theory in P3 approximation reflectance model and a 2-layer fluorescence model using exponential attenuation and diffusion theory. The resulting adjoint fluorescence and reflectance model extracts twelve optical properties characterizing fluorescence efficiency of cervical epithelium and stroma fluorophores, stromal hemoglobin and collagen absorption, oxygen saturation, and stromal scattering strength and shape. Validations with Monte Carlo simulations show that adjoint model extracted optical properties of the epithelium and the stroma can be estimated accurately. Adjoint model is applied to 926 clinical measurements from 503 patients. Mean values of extracted optical properties have demonstrated to characterize the biological changes associated with dysplastic progression. Finally, penalized logistic regression algorithms are applied to discriminate dysplastic stages in tissue based on extracted optical features. This work provides understandable and interpretable information regarding predictive and generalization ability of optical spectroscopy in neoplastic changes using a minimum subset of optical measurements. Ultimately these methodologies would facilitate the transfer of these optical technologies into clinical practice.

  15. A Graphical User Interface for Parameterizing Biochemical Models of Photosynthesis and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Kornfeld, A.; Van der Tol, C.; Berry, J. A.

    2015-12-01

    Recent advances in optical remote sensing of photosynthesis offer great promise for estimating gross primary productivity (GPP) at leaf, canopy and even global scale. These methods -including solar-induced chlorophyll fluorescence (SIF) emission, fluorescence spectra, and hyperspectral features such as the red edge and the photochemical reflectance index (PRI) - can be used to greatly enhance the predictive power of global circulation models (GCMs) by providing better constraints on GPP. The way to use measured optical data to parameterize existing models such as SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) is not trivial, however. We have therefore extended a biochemical model to include fluorescence and other parameters in a coupled treatment. To help parameterize the model, we then use nonlinear curve-fitting routines to determine the parameter set that enables model results to best fit leaf-level gas exchange and optical data measurements. To make the tool more accessible to all practitioners, we have further designed a graphical user interface (GUI) based front-end to allow researchers to analyze data with a minimum of effort while, at the same time, allowing them to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. Here we discuss the tool and its effectiveness, using recently-gathered leaf-level data.

  16. Considerations on the construction of a Powder Bed Fusion platform for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Andersen, Sebastian Aagaard; Nielsen, Karl-Emil; Pedersen, David Bue; Nielsen, Jakob Skov

    As the demand for moulds and other tools becomes increasingly specific and complex, an additive manufacturing approach to production is making its way to the industry through laser based consolidation of metal powder particles by a method known as powder bed fusion. This paper concerns a variety of design choices facilitating the development of an experimental powder bed fusion machine tool, capable of manufacturing metal parts with strength matching that of conventional manufactured parts and a complexity surpassing that of subtractive processes. To understand the different mechanisms acting within such an experimental machine tool, a fully open and customizable rig is constructed. Emphasizing modularity in the rig, allows alternation of lasers, scanner systems, optical elements, powder deposition, layer height, temperature, atmosphere, and powder type. Through a custom-made software platform, control of the process is achieved, which extends into a graphical user interface, easing adjustment of process parameters and the job file generation.

  17. Integrated MEMS-based variable optical attenuator and 10Gb/s receiver

    NASA Astrophysics Data System (ADS)

    Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James

    2005-03-01

    MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.

  18. Hypermedia and Digital Optical Media Technologies as Applied to a Prototype Geographic and Threat Recognition (GEOTREC) Training and Reference Tool

    DTIC Science & Technology

    1990-03-01

    are linked together so that a user can easily move from one to 5 another." ([Ref. 2], Doc.#1522) Music , audio and other signals can be added to the...videodisc player, starting a video presentation, complete with music , highlighting the benefits of hyper.aedia to the company’s information needs...a Entertainment ; o Travel; & Multi-language applications; o Real estate; 7 " Retail kiosks and information booths; " Landscaping, design and

  19. Design of a MATLAB(registered trademark) Image Comparison and Analysis Tool for Augmentation of the Results of the Ann Arbor Distortion Test

    DTIC Science & Technology

    2016-06-25

    The equipment used in this procedure includes: Ann Arbor distortion tester with 50-line grating reticule, IQeye 720 digital video camera with 12...and import them into MATLAB. In order to digitally capture images of the distortion in an optical sample, an IQeye 720 video camera with a 12... video camera and Ann Arbor distortion tester. Figure 8. Computer interface for capturing images seen by IQeye 720 camera. Once an image was

  20. Chromatic correction for a VIS-SWIR zoom lens using optical glasses

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Williams, Daniel J. L.; McCarthy, Peter; Visconti, Anthony J.; Bentley, Julie L.; Moore, Duncan T.

    2015-09-01

    With the advancement in sensors, hyperspectral imaging in short wave infrared (SWIR 0.9 μm to 1.7 μm) now has wide applications, including night vision, haze-penetrating imaging, etc. Most conventional optical glasses can be material candidates for designing in the SWIR as they transmit up to 2.2 μm. However, since SWIR is in the middle of the glasses' major absorption wavebands in UV and IR, the flint glasses in SWIR are less dispersive than in the visible spectrum. As a result, the glass map in the SWIR is highly compressed, with crowns and flints all clustering together. Thus correcting for chromatic aberration is more challenging in the SWIR, since the Abbé number ratio of the same glass combination is reduced. Conventionally, fluorides, such as CaF2 and BaF2, are widely used in designing SWIR system due to their unique dispersion properties, even though they are notorious for poor manufacturability or even high toxicity. For lens elements in a zoom system, the ray bundle samples different sections of the each lens aperture as the lens zooms. This creates extra uncertainty in correcting chromatic aberrations. This paper focuses on using only commercially available optical glasses to color-correct a 3X dual-band zoom lens system in the VIS-SWIR. The design tools and techniques are detailed in terms of material selections to minimize the chromatic aberrations in such a large spectrum band and all zoom positions. Examples are discussed for designs with different aperture stop locations, which considerably affect the material choices.

  1. Crowdsourcing as a screening tool to detect clinical features of glaucomatous optic neuropathy from digital photography.

    PubMed

    Mitry, Danny; Peto, Tunde; Hayat, Shabina; Blows, Peter; Morgan, James; Khaw, Kay-Tee; Foster, Paul J

    2015-01-01

    Crowdsourcing is the process of simplifying and outsourcing numerous tasks to many untrained individuals. Our aim was to assess the performance and repeatability of crowdsourcing in the classification of normal and glaucomatous discs from optic disc images. Optic disc images (N = 127) with pre-determined disease status were selected by consensus agreement from grading experts from a large cohort study. After reading brief illustrative instructions, we requested that knowledge workers (KWs) from a crowdsourcing platform (Amazon MTurk) classified each image as normal or abnormal. Each image was classified 20 times by different KWs. Two study designs were examined to assess the effect of varying KW experience and both study designs were conducted twice for consistency. Performance was assessed by comparing the sensitivity, specificity and area under the receiver operating characteristic curve (AUC). Overall, 2,540 classifications were received in under 24 hours at minimal cost. The sensitivity ranged between 83-88% across both trials and study designs, however the specificity was poor, ranging between 35-43%. In trial 1, the highest AUC (95%CI) was 0.64(0.62-0.66) and in trial 2 it was 0.63(0.61-0.65). There were no significant differences between study design or trials conducted. Crowdsourcing represents a cost-effective method of image analysis which demonstrates good repeatability and a high sensitivity. Optimisation of variables such as reward schemes, mode of image presentation, expanded response options and incorporation of training modules should be examined to determine their effect on the accuracy and reliability of this technique in retinal image analysis.

  2. Well Monitoring System For EGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normann, Randy; Glowka, Dave; Normann, Charles

    This grant is a collection of projects designed to move aircraft high temperature electronics technology into the geothermal industry. Randy Normann is the lead. He licensed the HT83SNL00 chip from Sandia National Labs. This chip enables aircraft developed electronics for work within a geothermal well logging tool. However, additional elements are needed to achieve commercially successful logging tools. These elements are offered by a strong list of industrial partners on this grant as: Electrochemical Systems Inc. for HT Rechargeable Batteries, Frequency Management Systems for 300C digital clock, Sandia National Labs for experts in high temperature solder, Honeywell Solid-State Electronics Centermore » for reprogrammable high temperature memory. During the course of this project MagiQ Technologies for high temperature fiber optics.« less

  3. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  4. Factors Governing Surface Form Accuracy In Diamond Machined Components

    NASA Astrophysics Data System (ADS)

    Myler, J. K.; Page, D. A.

    1988-10-01

    Manufacturing methods for diamond machined optical surfaces, for application at infrared wavelengths, require that a new set of criteria must be recognised for the specification of surface form. Appropriate surface form parameters are discussed with particular reference to an XY cartesian geometry CNC machine. Methods for reducing surface form errors in diamond machining are discussed for certain areas such as tool wear, tool centring, and the fixturing of the workpiece. Examples of achievable surface form accuracy are presented. Traditionally, optical surfaces have been produced by use of random polishing techniques using polishing compounds and lapping tools. For lens manufacture, the simplest surface which could be created corresponded to a sphere. The sphere is a natural outcome of a random grinding and polishing process. The measurement of the surface form accuracy would most commonly be performed using a contact test gauge plate, polished to a sphere of known radius of curvature. QA would simply be achieved using a diffuse monochromatic source and looking for residual deviations between the polished surface and the test plate. The specifications governing the manufacture of surfaces using these techniques would call for the accuracy to which the generated surface should match the test plate as defined by a spherical deviations from the required curvature and a non spherical astigmatic error. Consequently, optical design software has tolerancing routines which specifically allow the designer to assess the influence of spherical error and astigmatic error on the optical performance. The creation of general aspheric surfaces is not so straightforward using conventional polishing techniques since the surface profile is non spherical and a good approximation to a power series. For infra red applications (X = 8-12p,m) numerically controlled single point diamond turning is an alternative manufacturing technology capable of creating aspheric profiles as well as simple spheres. It is important however to realise that a diamond turning process will possess a new set of criteria which limit the accuracy of the surface profile created corresponding to a completely new set of specifications. The most important factors are:- tool centring accuracy, surface waviness, conical form error, and other rotationally symmetric non spherical errors. The fixturing of the workpiece is very different from that of a conventional lap, since in many cases the diamond machine resembles a conventional lathe geometry where the workpiece rotates at a few thousand R.P.M. Substrates must be held rigidly for rotation at such speeds as compared with more delicate mounting methods for conventional laps. Consequently the workpiece may suffer from other forms of deformation which are non-rotationally symmetric due to mounting stresses (static deformation) and stresses induced at the speed of rotation (dynamic deformation). The magnitude of each of these contributions to overall form error will be a function of the type of machine, the material, substrate, and testing design. The following sections describe each of these effects in more detail based on experience obtained on a Pneumo Precision MSG325 XY CNC machine. Certain in-process measurement techniques have been devised to minimise and quantify each contribution.

  5. Designing an experiment to measure cellular interaction forces

    NASA Astrophysics Data System (ADS)

    McAlinden, Niall; Glass, David G.; Millington, Owain R.; Wright, Amanda J.

    2013-09-01

    Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. The force applied by the laser beam on the trapped object can be accurately determined allowing any external forces acting on the trapped object to be deduced. We aim to design a series of experiments that use an optical trap to measure and quantify the interaction force between immune cells. In order to cause minimum perturbation to the sample we plan to directly trap T cells and remove the need to introduce exogenous beads to the sample. This poses a series of challenges and raises questions that need to be answered in order to design a set of effect end-point experiments. A typical cell is large compared to the beads normally trapped and highly non-uniform - can we reliably trap such objects and prevent them from rolling and re-orientating? In this paper we show how a spatial light modulator can produce a triple-spot trap, as opposed to a single-spot trap, giving complete control over the object's orientation and preventing it from rolling due, for example, to Brownian motion. To use an optical trap as a force transducer to measure an external force you must first have a reliably calibrated system. The optical trapping force is typically measured using either the theory of equipartition and observing the Brownian motion of the trapped object or using an escape force method, e.g. the viscous drag force method. In this paper we examine the relationship between force and displacement, as well as measuring the maximum displacement from equilibrium position before an object falls out of the trap, hence determining the conditions under which the different calibration methods should be applied.

  6. Recent Developments in Microsystems Fabricated by the Liga-Technique

    NASA Technical Reports Server (NTRS)

    Schulz, J.; Bade, K.; El-Kholi, A.; Hein, H.; Mohr, J.

    1995-01-01

    As an example of microsystems fabricated by the LIGA-technique (x-ray lithography, electroplating and molding), three systems are described and characterized: a triaxial acceleration sensor system, a micro-optical switch, and a microsystem for the analysis of pollutants. The fabrication technologies are reviewed with respect to the key components of the three systems: an acceleration sensor, and electrostatic actuator, and a spectrometer made by the LIGA-technique. Aa micro-pump and micro-valve made by using micromachined tools for molding and optical fiber imaging are made possible by combining LIGA and anisotropic etching of silicon in a batch process. These examples show that the combination of technologies and components is the key to complex microsystems. The design of such microsystems will be facilitated is standardized interfaces are available.

  7. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    NASA Astrophysics Data System (ADS)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  8. Towards a standardized method to assess straylight in earth observing optical instruments

    NASA Astrophysics Data System (ADS)

    Caron, J.; Taccola, M.; Bézy, J.-L.

    2017-09-01

    Straylight is a spurious effect that can seriously degrade the radiometric accuracy achieved by Earth observing optical instruments, as a result of the high contrast in the observed Earth radiance scenes and spectra. It is considered critical for several ESA missions such as Sentinel-5, FLEX and potential successors to CarbonSat. Although it is traditionally evaluated by Monte-Carlo simulations performed with commercial softwares (e.g. ASAP, Zemax, LightTools), semi-analytical approximate methods [1,2] have drawn some interest in recent years due to their faster computing time and the greater insight they provide in straylight mechanisms. They cannot replace numerical simulations, but may be more advantageous in contexts where many iterations are needed, for instance during the early phases of an instrument design.

  9. Finite-element modelling of multilayer X-ray optics.

    PubMed

    Cheng, Xianchao; Zhang, Lin

    2017-05-01

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

  10. Finite-element modelling of multilayer X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xianchao; Zhang, Lin

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical sizemore » 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6), which causes low solution accuracy; and the number of elements is still very large (10 6). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.« less

  11. Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century

    NASA Astrophysics Data System (ADS)

    Hilchey, J. D.; Nein, M. E.

    1995-02-01

    A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.

  12. Design of an ultraprecision computerized numerical control chemical mechanical polishing machine and its implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Chupeng; Zhao, Huiying; Zhu, Xueliang; Zhao, Shijie; Jiang, Chunye

    2018-01-01

    The chemical mechanical polishing (CMP) is a key process during the machining route of plane optics. To improve the polishing efficiency and accuracy, a CMP model and machine tool were developed. Based on the Preston equation and the axial run-out error measurement results of the m circles on the tin plate, a CMP model that could simulate the material removal at any point on the workpiece was presented. An analysis of the model indicated that lower axial run-out error led to lower material removal but better polishing efficiency and accuracy. Based on this conclusion, the CMP machine was designed, and the ultraprecision gas hydrostatic guideway and rotary table as well as the Siemens 840Dsl numerical control system were incorporated in the CMP machine. To verify the design principles of machine, a series of detection and machining experiments were conducted. The LK-G5000 laser sensor was employed for detecting the straightness error of the gas hydrostatic guideway and the axial run-out error of the gas hydrostatic rotary table. A 300-mm-diameter optic was chosen for the surface profile machining experiments performed to determine the CMP efficiency and accuracy.

  13. Population-based metaheuristic optimization in neutron optics and shielding design

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Björgvinsdóttir, H.; Zendler, C.; Bentley, P. M.

    2016-11-01

    Population-based metaheuristic algorithms are powerful tools in the design of neutron scattering instruments and the use of these types of algorithms for this purpose is becoming more and more commonplace. Today there exists a wide range of algorithms to choose from when designing an instrument and it is not always initially clear which may provide the best performance. Furthermore, due to the nature of these types of algorithms, the final solution found for a specific design scenario cannot always be guaranteed to be the global optimum. Therefore, to explore the potential benefits and differences between the varieties of these algorithms available, when applied to such design scenarios, we have carried out a detailed study of some commonly used algorithms. For this purpose, we have developed a new general optimization software package which combines a number of common metaheuristic algorithms within a single user interface and is designed specifically with neutronic calculations in mind. The algorithms included in the software are implementations of Particle-Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and a Genetic Algorithm (GA). The software has been used to optimize the design of several problems in neutron optics and shielding, coupled with Monte-Carlo simulations, in order to evaluate the performance of the various algorithms. Generally, the performance of the algorithms depended on the specific scenarios, however it was found that DE provided the best average solutions in all scenarios investigated in this work.

  14. A fast method for optical simulation of flood maps of light-sharing detector modules

    PubMed Central

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2016-01-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials. PMID:27660376

  15. Protein-based flexible whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Yilmaz, Huzeyfe; Pena-Francesch, Abdon; Xu, Linhua; Shreiner, Robert; Jung, Huihun; Huang, Steven H.; Özdemir, Sahin K.; Demirel, Melik C.; Yang, Lan

    2016-02-01

    The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.

  16. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.

    PubMed

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-08-01

    This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.

  17. A fast method for optical simulation of flood maps of light-sharing detector modules

    DOE PAGES

    Shi, Han; Du, Dong; Xu, JianFeng; ...

    2015-09-03

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. Here, we present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We also simulated conventional block detector designs with different slotted light guide patterns using the new approachmore » and compared the outcomes with those from GATE simulations. And while the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.« less

  18. Structure and Optical Bandgap Relationship of π-Conjugated Systems

    PubMed Central

    Botelho, André Leitão; Shin, Yongwoo; Liu, Jiakai; Lin, Xi

    2014-01-01

    In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH) Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any -conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination , a mean error of −0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics. PMID:24497944

  19. Axicons, prisms and integrators: searching for simple laser beam shaping solutions

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    Over the last thirty five years there have been many papers presented at numerous conferences and published within a host of optical journals. What is presented in many cases is either too exotic or technically challenging in practical application terms and it could be said both are testaments to the imagination of engineers and researchers. For many brute force laser processing applications such as paint stripping, large area ablation or general skiving of flex circuits, the opportunity to use a beam shaper that is inexpensive is a welcomed tool. Shaping the laser beam for less demanding applications, provides for a more uniform removal rate and increases the overall quality of the part being processed. It is a well known fact customers like their parts to look good. Many times, complex optical beam shaping techniques are considered because no one is aware of the historical solutions that have been lost to the ages. These complex solutions can range in price from 10,000 to 60,000 and require many months to design and fabricate. This paper will provide an overview of various beam shaping techniques that are both elegant and simple in concept and design. Optical techniques using axicons, prisms and reflective integrators will be discussed in an overview format.

  20. Real time 3D photometry

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, A. A.; Vazquez-Molini, D.; García-Botella, A.; Romo, J.; Serrano, Ana

    2017-09-01

    The photometry and radiometry measurement is a well-developed field. The necessity of measuring optical systems performance involves the use of several techniques like Gonio-photometry. The Gonio photometers are a precise measurement tool that is used in the lighting area like office, luminaire head car lighting, concentrator /collimator measurement and all the designed and fabricated optical systems that works with light. There is one disadvantage in this kind of measurements that obtain the intensity polar curves and the total flux of the optical system. In the industry, there are good Gonio photometers that are precise and reliable but they are very expensive and the measurement time is long. In industry the cost can be of minor importance but measuring time that is around 30 minutes is of major importance due to trained staff cost. We have designed a system to measure photometry in real time; it consists in a curved screen to get a huge measurement angle and a CCD. The system to be measured projects light onto the screen and the CCD records a video of the screen obtaining an image of the projected profile. A complex calibration permits to trace screen data (x,y,z) to intensity polar curve (I,αγ). This intensity is obtained in candels (cd) with an image + processing time below one second.

Top