Science.gov

Sample records for optical devices ldrd

  1. Chiral multichromic single crystals for optical devices (LDRD 99406).

    SciTech Connect

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  2. MEMS Adaptive Optics Devices: LDRD No. 02-1385 Summary Report

    SciTech Connect

    DAGEL, DARYL J.; ALLEN, JAMES J.

    2002-12-01

    The primary goal of this portion of the LDRD is to develop a vertical programmable diffraction grating that can be fabricated with Sandia's Ultra-planar Multi-level MEMS Technology, the SUMMiT V{trademark} process. This grating is targeted for use in a chemical detection system dubbed the Polychromator. A secondary goal is to design diffraction grating structures with additional degrees of freedom (DOF). Gratings with 2.5 microns of vertical stroke have been realized. In addition, rotational DOF grating structures have been successfully actuated, and a structure has been developed that minimizes residual stress effects.

  3. Final report on LDRD project : advanced optical trigger systems.

    SciTech Connect

    Roose, Lars D.; Hadley, G. Ronald; Mar, Alan; Serkland, Darwin Keith; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas M.; Peake, Gregory Merwin; Loubriel, Guillermo Manuel; Montano, Victoria A.

    2008-09-01

    are difficult to scale and manufacture with the required uniformity. As a promising alternative to multiple discrete edge-emitting lasers, a single wafer of vertical-cavity surface-emitting lasers (VCSELs) can be lithographically patterned to achieve the desired layout of parallel line-shaped emitters, in which adjacent lasers utilize identical semiconductor material and thereby achieve a degree of intrinsic optical uniformity. Under this LDRD project, we have fabricated arrays of uncoupled circular-aperture VCSELs to approximate a line-shaped illumination pattern, achieving optical fill factors ranging from 2% to 30%. We have applied these VCSEL arrays to demonstrate single and dual parallel line-filament triggering of PCSS devices. Moreover, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices using VCSEL arrays. We have found that reliable triggering of multiple filaments requires matching of the turn-on time of adjacent VCSEL line-shaped-arrays to within approximately 1 ns. Additionally, we discovered that reliable triggering of PCSS devices at low voltages requires more optical power than we obtained with our first generation of VCSEL arrays. A second generation of higher-power VCSEL arrays was designed and fabricated at the end of this LDRD project, and testing with PCSS devices is currently underway (as of September 2008).

  4. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

    SciTech Connect

    Kurtz, Steven Ross; Hargett, Terry W.; Serkland, Darwin Keith; Waldrip, Karen Elizabeth; Modine, Normand Arthur; Klem, John Frederick; Jones, Eric Daniel; Cich, Michael Joseph; Allerman, Andrew Alan; Peake, Gregory Merwin

    2003-12-01

    The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.

  5. Diffractive Optics in the Infrared (DiOptIR) LDRD 67109 final report.

    SciTech Connect

    Alford, Charles Fred; Vawter, Gregory Allen; Wendt, Joel Robert; Kemme, Shanalyn A.; Samora, Sally; Carter, Tony Ray; Peters, David William; Shields, Eric A.

    2005-10-01

    This diffractive optical element (DOE) LDRD is divided into two tasks. In Task 1, we develop two new DOE technologies: (1) a broad wavelength band effective anti-reflection (AR) structure and (2) a design tool to encode dispersion and polarization information into a unique diffraction pattern. In Task 2, we model, design, and fabricate a subwavelength polarization splitter. The first technology is an anti-reflective (AR) layer that may be etched into the DOE surface. For many wavelengths of interest, transmissive silicon DOEs are ideal. However, a significant portion of light (30% from each surface) is lost due to Fresnel reflection. To address this issue, we investigate a subwavelength, surface relief structure that acts as an effective AR coating. The second DOE component technology in Task 1 is a design tool to determine the optimal DOE surface relief structure that can encode the light's degree of dispersion and polarization into a unique spatial pattern. Many signals of interest have unique spatial, temporal, spectral, and polarization signatures. The ability to disperse the signal into a unique diffraction pattern would result in improved signal detection sensitivity with a simultaneous reduction in false alarm. Task 2 of this LDRD project is to investigate the modeling, design, and fabrication of subwavelength birefringent devices for polarimetric spectral sensing and imaging applications. Polarimetric spectral sensing measures the spectrum of the light and polarization state of light at each wavelength simultaneously. The capability to obtain both polarization and spectral information can help develop target/object signature and identify the target/object for several applications in NP&MC and national security.

  6. 4-wave mixing for phase-matching free nonlinear optics in quantum cascade structures : LDRD 08-0346 final report.

    SciTech Connect

    Chow, Weng Wah; Wanke, Michael Clement; Allen, Dan G.; Yang, Zhenshan; Waldmueller, Ines

    2010-10-01

    Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.

  7. Final Report on LDRD Project: High-Bandwidth Optical Data Interconnects for Satellite Applications

    SciTech Connect

    SERKLAND, DARWIN K.; GEIB, KENT M.; BLANSETT, ETHAN L.; KARPEN, GARY D.; PEAKE, GREGORY M.; HARGETT, TERRY; MONTANO, VICTORIA; SULLIVAN, CHARLES T.; ALLERMAN, ANDREW A.; RIENSTRA, JEFFREY L.

    2003-04-01

    This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.

  8. Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.

    SciTech Connect

    Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-04-01

    The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.

  9. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    SciTech Connect

    Hyde, R

    2003-02-10

    differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter

  10. Optical devices

    DOEpatents

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-07-13

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  11. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  12. Optical devices: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Technological developments in the field of optics devices which have potential utility outside the aerospace community are described. Optical instrumentation, light generation and transmission, and laser techniques are among the topics covered. Patent information is given.

  13. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  14. Fiber optic monitoring device

    SciTech Connect

    Samborsky, J.K.

    1992-12-31

    This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  15. Optical thin film devices

    NASA Astrophysics Data System (ADS)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  16. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  17. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  18. LDRD final report on Si nanocrystal as device prototype for spintronics applications.

    SciTech Connect

    Carroll, Malcolm S.; Verley, Jason C.; Pan, Wei; Banks, James Clifford; Brewer, Luke N.; Sheng, Josephine Juin-Jye; Barton, Daniel Lee; Dunn, Roberto G.

    2006-11-01

    The silicon microelectronics industry is the technological driver of modern society. The whole industry is built upon one major invention--the solid-state transistor. It has become clear that the conventional transistor technology is approaching its limitations. Recent years have seen the advent of magnetoelectronics and spintronics with combined magnetism and solid state electronics via spin-dependent transport process. In these novel devices, both charge and spin degree freedoms can be manipulated by external means. This leads to novel electronic functionalities that will greatly enhance the speed of information processing and memory storage density. The challenge lying ahead is to understand the new device physics, and control magnetic phenomena at nanometer length scales and in reduced dimensions. To meet this goal, we proposed the silicon nanocrystal system, because: (1) It is compatible with existing silicon fabrication technologies; (2) It has shown strong quantum confinement effects, which can modify the electric and optical properties through directly modifying the band structure; and (3) the spin-orbital coupling in silicon is very small, and for isotopic pure {sup 28}Si, the nuclear spin is zero. These will help to reduce the spin-decoherence channels. In the past fiscal year, we have studied the growth mechanism of silicon-nanocrystals embedded in silicon dioxide, their photoluminescence properties, and the Si-nanocrystal's magnetic properties in the presence of Mn-ion doping. Our results may demonstrate the first evidence of possible ferromagnetic orders in Mn-ion implanted silicon nanocrystals, which can lead to ultra-fast information process and ultra-dense magnetic memory applications.

  19. Superlattice optical device

    DOEpatents

    Biefeld, R.M.; Fritz, I.J.; Gourley, P.L.; Osbourn, G.C.

    A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.

  20. Superlattice optical device

    DOEpatents

    Biefeld, Robert M.; Fritz, Ian J.; Gourley, Paul L.; Osbourn, Gordon C.

    1986-01-01

    A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.

  1. Functional biomimetic optical devices

    NASA Astrophysics Data System (ADS)

    Naik, Rajesh R.; Brott, Lawrence L.; Kirkpatrick, Sean M.; Stone, Morley O.

    2001-11-01

    The diversity of biological sensing and biocatalysis is astounding. A considerable effort has been directed at not only understanding the mechanism of these biological processes, but also how this activity can be maintained or duplicated in an artificial environment. We will present work on the formation of functional optical devices that convert biological responses into optical signals through changes in diffraction efficiency and reflection angle. By incorporating biomolecules into monomer systems that can be cured using a two-photon polymerization mechanism, greater spatial resolution and increased biological viability can be achieved. The polymer can be nanopatterned using ultrafast nonlinear holography to create a functional BioMEMS device. Additionally, we will discuss the characterization of the biomolecules and the processing of the gratings that incorporate these functional proteins. This approach is a first step towards the development of a hybrid organic-inorganic composite device.

  2. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  3. Designed supramolecular assemblies for biosensors and photoactive devices. LDRD final report

    SciTech Connect

    Song, X.Z.; Shelnutt, J.A.; Hobbs, J.D.; Cesarano, J.

    1997-02-01

    The objective of this project is the development of a new class of supramolecular assemblies for applications in biosensors and biodevices. The supramolecular assemblies are based on membranes and Langmuir-Blodgett (LB) films composed of naturally-occurring or synthetic lipids, which contain electrically and/or photochemically active components. The LB films are deposited onto electrically-active materials (metal, semiconductors). The active components film components (lipo-porphyrins) at the surface function as molecular recognition sites for sensing proteins and other biomolecules, and the porphyrins and other components (e.g., fullerenes) incorporated into the films serve as photocatalysts and vectorial electron-transport agents. Computer-aided molecular design (CAMD) methods are used to tailor the structure of these film components to optimize function. Molecular modeling is also used to predict the location, orientation, and motion of these molecular components within the films. The result is a variety of extended, self-assembled molecular structures that serve as devices for sensing proteins and biochemicals or as other bioelectronic devices.

  4. Final Report and Documentation for the Optical Backplane/Interconnect for High Speed Communication LDRD

    SciTech Connect

    ROBERTSON, PERRY J.; CHEN, HELEN Y.; BRANDT, JAMES M.; SULLIVAN, CHARLES T.; PIERSON, LYNDON G.; WITZKE, EDWARD L.; GASS, KARL

    2001-03-01

    Current copper backplane technology has reached the technical limits of clock speed and width for systems requiring multiple boards. Currently, bus technology such as VME and PCI (types of buses) will face severe limitations are the bus speed approaches 100 MHz. At this speed, the physical length limit of an unterminated bus is barely three inches. Terminating the bus enables much higher clock rates but at drastically higher power cost. Sandia has developed high bandwidth parallel optical interconnects that can provide over 40 Gbps throughput between circuit boards in a system. Based on Sandia's unique VCSEL (Vertical Cavity Surface Emitting Laser) technology, these devices are compatible with CMOS (Complementary Metal Oxide Semiconductor) chips and have single channel bandwidth in excess of 20 GHz. In this project, we are researching the use of this interconnect scheme as the physical layer of a greater ATM (Asynchronous Transfer Mode) based backplane. There are several advantages to this technology including small board space, lower power and non-contact communication. This technology is also easily expandable to meet future bandwidth requirements in excess of 160 Gbps sometimes referred to as UTOPIA 6. ATM over optical backplane will enable automatic switching of wide high-speed circuits between boards in a system. In the first year we developed integrated VCSELs and receivers, identified fiber ribbon based interconnect scheme and a high level architecture. In the second year, we implemented the physical layer in the form of a PCI computer peripheral card. A description of future work including super computer networking deployment and protocol processing is included.

  5. New optical coupler devices

    NASA Astrophysics Data System (ADS)

    Ramadan, Tarek Abd-Elazim

    2000-06-01

    New optical coupler devices have been designed with both analytical and numerical simulation tools. Using these tools, design rules were derived for both 3dB and full adiabatic couplers. The design rules are in excellent agreement with numerical calculations using the beam propagation method (BPM). It is shown that the length scaling for the 3dB adiabatic couplers compared to full adiabatic couplers makes the former more difficult to design. The design in each case is optimized to obtain an upper limit of performance. A comparison is carried out between two different design geometries to select the optimum adiabatic coupler design which requires the shortest length for a given coupler performance. An improvement in, the fabrication tolerance of the optimum design has yielded a new more-tolerant 3dB adiabatic- coupler, which is distinguished by a coupler region where both waveguide width and separation are tapered. A novel 1 x 4 coupler-multiplexer permutation switch (CMPS) is proposed for applications in wavelength- division-multiplexing (WDM) networks. The CMPS integrates the functions of a 1 x 4 multiplexer followed by a 4 x 4 switch-array in a single compact device. It consists of a single-mode/multimode-waveguide grating-assisted backward-coupler multiplexer followed by a digital optical switch (DOS). Two different InP-based designs of the CMPS, which use InGaAsP/InP multiple-quantum well (MQW) output waveguides, are introduced. In both of these designs, the CMPS channels are unequally spaced which reduces unwanted four-wave mixing. Finally the electro-optic response is measured in single- crystal LiNbO 3 thin films obtained by crystal-ion-slicing (CIS). This technique uses ion implantation of singlecrystal bulk samples followed by selective etching. Post liftoff annealing (PLA) is shown to be a key step in improving the light transmission properties of these films for hybriddevice applications. It is shown that PLA must be used, as opposed to pre- liftoff

  6. Optical device for straightness measurement

    NASA Astrophysics Data System (ADS)

    Vekteris, Vladas; Jurevicius, Mindaugas; Turla, Vytautas

    2015-11-01

    The present paper describes the research of the optical device for two-dimensional straightness measurement of technological machines. Mathematical study of an optical device, operating on the phase principle and measuring transversal displacements of machine parts in two directions ( X and Y) during their linear longitudinal motion in a machine (alongside the Z axis), is presented. How to estimate the range of travel along the Z axis is analytically shown. At this range, the measurer gives correct measurements of transverse displacement. The necessary distance from the objective focus to the image plane was defined mathematically. The sample results of measuring the displacement of the table of a technological machine by using the optical device are presented in the paper. This optical device for non-contact straightness measurement can be used for measurement straightness in turning, milling, drilling, grinding machines and other technological machines, also in geodesy and cartography, and for moving accuracy testing of mechatronic devices, robotics and others.

  7. COHERENT OPTICAL SURVEILLANCE DEVICES

    DTIC Science & Technology

    AERIAL RECONNAISSANCE, *INFRARED DETECTORS, *LASERS, *OPTICAL EQUIPMENT, *PHASE SHIFT CIRCUITS, DESIGN, HELIUM, INTERFEROMETERS , MATHEMATICAL ANALYSIS, NEON, PHASE DETECTORS, PHOTOMULTIPLIER TUBES, POWER DIVIDERS

  8. Studies of Bistable Optical Devices.

    DTIC Science & Technology

    1982-05-15

    a concept to simultaneously process over 2500 parallel bits in a nanosecond, in a linear array. 3. Studies of bistability in new materials and new...Bistable Optical Devices. 25 IV. Bistability in New Materials .... ............ .. 34 A. Saturable Absorber Dyes ... ........... .. 34 A-1. Experimental...large number of resolvable spots. We have investigated.both new materials and new geo- metries for use in bistable optical devices with a view toward

  9. Electrochromic optical switching device

    SciTech Connect

    Lampert, Carl M.; Visco, Steven J.

    1992-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

  10. Electrochromic optical switching device

    SciTech Connect

    Lampert, C.M.; Visco, S.J.

    1992-08-25

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

  11. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    SciTech Connect

    Coker, Eric Nicholas; Haddad, Raid Edward; Fan, Hongyou; Ta, Anh; Bai, Feng; Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  12. Integrated Optical Circuit Devices

    DTIC Science & Technology

    1975-02-01

    with a carrier frequency exactly at phase match (w ■ OJQ). 68 I I’ I HI III I "I ■ ^^^^^m^r^^ REFLECTION COEFFICIENT...34 Applied Optics, v9, n 11,p 2444-2452, November 1^70 Marcuse , D., "TL Modes of Graded-Index Slab Waveguides," IFFt J of Quantum Electronics v QF

  13. Integrated optic waveguide devices

    NASA Technical Reports Server (NTRS)

    Ramer, O. G.

    1980-01-01

    Integrated optic waveguide circuits with a phase bias and modulator on the same chip were designed, fabricated, and tested for use in a fiber-optic rotation sensor (gyro) under development. Single mode fiber-optic pigtails were permanently coupled to the four ports of the chip. The switch format was based on coherent coupling between waveguides formed in Z-cut LiNbO3. The control of the coupling was achieved by electro-optically varying the phase propagation constants of each guide. Fiber-to-chip interfacing required the development of appropriate fixturing and manipulation techniques to achieve the close tolerance needed for high coupling efficiency between a fiber with an approximately 5 micron m core and a channel guide with a roughly 2 micron m by 5 micron m cross section. Switch and chip performance at 0.85 micron m is discussed as well as potential improvements related to insertion loss reduction, switching voltages, and suppression of Li2O out-diffusion.

  14. Optical storage device

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.

    1991-01-01

    A new holographic image storage device which uses four-wave mixing in two photorefractive crystals is described. Photorefractive crystals promise information storage densities on the order of 10(exp 9) to 10(exp 12) bits per cubic centimeter at real-time rates. Several studies in recent years have investigated the use of photorefractive crystals for storing holographic image information. However, all of the previous studies have focused on techniques for storing information in a single crystal. The disadvantage of using a single crystal is that the read process is destructive. Researchers have developed techniques for fixing the information in a crystal so that it may be read many times. However, when fixed, the information cannot be readily erased and overwritten with new information. It two photorefractive crystals are used, holographic image information may be stored dynamically. That is, the stored image information may be read out more than once, and it may be easily erased and overwritten with new image information.

  15. Fabrication of Optical Fiber Devices

    NASA Astrophysics Data System (ADS)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  16. Diphenylpolyynes For Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Perry, Joseph W.; Coulter, Daniel R.

    1989-01-01

    Several diphenylpolyyne compounds found to exhibit second-order nonlinear electric susceptibilities and chemical structures conducive to orientation in appropriate chemical environments. These features make new materials suitable for use in optical devices. Diphenylacetylene links give molecules rodlike characteristics making them amenable to orientation by suspension in liquid crystals. New molecules also have inherent liquid-crystalline properties enabling them to be oriented directly.

  17. Optical signal splitting and chirping device modeling

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.

  18. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  19. Fiber optic tracheal detection device

    NASA Astrophysics Data System (ADS)

    Souhan, Brian E.; Nawn, Corinne D.; Shmel, Richard; Watts, Krista L.; Ingold, Kirk A.

    2017-02-01

    Poorly performed airway management procedures can lead to a wide variety of adverse events, such as laryngeal trauma, stenosis, cardiac arrest, hypoxemia, or death as in the case of failed airway management or intubation of the esophagus. Current methods for confirming tracheal placement, such as auscultation, direct visualization or capnography, may be subjective, compromised due to clinical presentation or require additional specialized equipment that is not always readily available during the procedure. Consequently, there exists a need for a non-visual detection mechanism for confirming successful airway placement that can give the provider rapid feedback during the procedure. Based upon our previously presented work characterizing the reflectance spectra of tracheal and esophageal tissue, we developed a fiber-optic prototype to detect the unique spectral characteristics of tracheal tissue. Device performance was tested by its ability to differentiate ex vivo samples of tracheal and esophageal tissue. Pig tissue samples were tested with the larynx, trachea and esophagus intact as well as excised and mounted on cork. The device positively detected tracheal tissue 18 out of 19 trials and 1 false positive out of 19 esophageal trials. Our proof of concept device shows great promise as a potential mechanism for rapid user feedback during airway management procedures to confirm tracheal placement. Ongoing studies will investigate device optimizations of the probe for more refined sensing and in vivo testing.

  20. Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro-Optic Devices

    DTIC Science & Technology

    1992-01-07

    COVERED 4. TITLE AND SUBTITLE Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro - Optic Devices 5a. CONTRACT NUMBER 5b. GRANT...generators, computational devices and the like. 15. SUBJECT TERMS optical devices, electro - optical devices, optical signal processing...THEREOF IN OPTICAL AND ELECTRO - OPTIC DEVICES [75] Inventors: Le*lie H. Sperling, Bethlehem; Clarence J. Murphy, Stroudsburg; Warren A. Rosen

  1. 2007 LDRD ANNUAL REPORT

    SciTech Connect

    French, T

    2008-12-16

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. The LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.

  2. Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.

    SciTech Connect

    Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

    2009-09-01

    Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

  3. Optical Structural Health Monitoring Device

    NASA Technical Reports Server (NTRS)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  4. THz transceiver characterization : LDRD project 139363 final report.

    SciTech Connect

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph; Reno, John Louis; Fuller, Charles T.; Wendt, Joel Robert; Lee, Mark; Grine, Albert D.

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

  5. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

    SciTech Connect

    MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

  6. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  7. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  8. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  9. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  10. FY06 LDRD Final Report Next-generation x-ray optics: focusing hard x-rays

    SciTech Connect

    Pivovaroff, M; Soufli, R

    2007-03-01

    The original goal of our research was to open up a new class of scientific experiments by increasing the power of newly available x-ray sources by orders of magnitude. This was accomplished by developing a new generation of x-ray optics, based on hard x-ray (10-200 keV) reflective and diffractive focusing elements. The optical systems we envision begin with a core reflective optic, which has the ability to capture and concentrate x-rays across a wide range of energies and angles band, combined with diffractive optics, based on large-scale multilayer structures, that will further enhance the spatial, spectral and temporal resolving power of the system. Enabling technologies developed at LLNL such as precise mounting of thermally formed substrates, smoothing techniques and multilayer films of ultra-high reflectance and precision were crucial in the development and demonstration of our research objectives. Highlights of this phase of the project include: the design and fabrication of a concentrator optic for the Pleiades Thomson X-ray source located at LLNL, smoothing of glass substrates through application of polyimide films, and the design, fabrication and testing of novel volume multilayers structures. Part of our research into substrate smooth led to the development of a new technique (patent pending) to construct high-quality, inexpensive x-ray optics. This innovation resulted in LLNL constructing a x-ray optic for the CERN Axion Solar Telescope (CAST) and allowed LLNL to join the international experiment.

  11. Resonant optical device with a microheater

    DOEpatents

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  12. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  13. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1995-01-01

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.

  14. Electro-optic KTN Devices

    NASA Astrophysics Data System (ADS)

    Yagi, Shogo; Fujiura, Kazuo

    We have grown KTN crystals with optical quality, and developed high-speed beam deflectors and variable focal length lenses based on KTN's large electro-optic effect. Furthermore, by using the KTN beam deflectors, we have developed a swept light source for OCT operable at 200 kHz.

  15. Optics Performance at 1(omega), 2 (omega), and 3 (omega): Final Report on LDRD Project 03-ERD-071

    SciTech Connect

    Honig, J; Adams, J; Carr, C; Demos, S; Feit, M; Mehta, N; Norton, M; Nostrand, M; Rubenchik, A; Spaeth, M

    2006-02-08

    The interaction of intense laser light with dielectric materials is a fundamental applied science problem that is becoming increasingly important with the rapid development of ever more powerful lasers. To better understand the behavior of optical components in large fusion-class laser systems, we are systematically studying the interaction of high-fluence, high-power laser light with high-quality optical components, with particular interest on polishing/finishing and stress-induced defects and surface contamination. We focus on obtaining comparable measurements at three different wavelengths, 1{omega} (1053 nm), 2{omega} (527 nm), and 3{omega} (351 nm).

  16. Millimetre and FIR Broadband Quasi Optical Devices

    NASA Astrophysics Data System (ADS)

    Haynes, V.; Maffei, B.; Melhuish, S. J.; Piccirillo, L.; Pisano, G.; Shakeshaft, D.

    2009-12-01

    We present a set of techniques and materials we are currently developing which enable very broadband and highly effective optical devices in the spectral region from 20 GHz to 20 THz. Many of these devices have already been employed in terrestrial, airborne and space based telescope systems.

  17. Device applications of cryogenic optical refrigeration

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Epstein, Richard I.; Alden, Jay V.; Sheik-Bahae, Mansoor

    2014-02-01

    With the coldest solid-state temperatures (ΔT <185K from 300K) achievable by optical refrigeration, it is now timely to apply this technology to cryogenic devices. Along with thermal management and pump absorption, this work addresses the most key engineering challenge of transferring cooling power to the payload while efficiently rejecting optical waste-heat fluorescence. We discuss our optimized design of such a thermal link, which shows excellent performance in optical rejection and thermal properties.

  18. NITINOL Interconnect Device for Optical Fiber Waveguides

    DTIC Science & Technology

    1981-07-01

    LE EL,~NAVSEA REPORT NO. S27L~kV-NL 4P fNSWNC TR 81-129 1 JULY 1981 0 NITINOL INTERC&INECT DEVICE FOR OPTICAL FIBER WAVEGUIDES FINAL REPORT A...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER NSWC TR 81-129I 1-19 -A )ci , ’ 4 TI TL E (and Sbtitle) S. TYPE OF REPORT & PERIOD COVERED NITINOL ... NITINOL Optical Fibers 20. ABSTRACT (Continue on reverse side if neceeewy and identify by block number) Two different interconnect devices for optical

  19. Metamaterial Waveguide Devices for Integrated Optics.

    PubMed

    Amemiya, Tomohiro; Kanazawa, Toru; Yamasaki, Satoshi; Arai, Shigehisa

    2017-09-05

    We show the feasibility of controlling the magnetic permeability of optical semiconductor devices on InP-based photonic integration platforms. We have achieved the permeability control of GaInAsP/InP semiconductor waveguides by combining the waveguide with a metamaterial consisting of gate-controlled split ring resonators. The split-ring resonators interact magnetically with light travelling in the waveguide and move the effective relative permeability of the waveguide away from 1 at optical frequencies. The variation in permeability can be controlled with the gate voltage. Using this variable-permeability waveguide, we have built an optical modulator consisting of a GaInAsP/InP Mach-Zehnder interferometer for use at an optical communication wavelength of 1.55 μm. The device changes the permeability of its waveguide arm with controlling gate voltage, thereby varying the refractive index of the arm to modulate the intensity of light. For the study of variable-permeability waveguide devices, we also propose a method of extracting separately the permittivity and permeability values of devices from the experimental data of light transmission. Adjusting the permeability of optical semiconductors to the needs of device designers will open the promising field of 'permeability engineering'. Permeability engineering will facilitate the manipulation of light and the management of photons, thereby contributing to the development of novel devices with sophisticated functions for photonic integration.

  20. Metamaterial Waveguide Devices for Integrated Optics

    PubMed Central

    Kanazawa, Toru; Yamasaki, Satoshi; Arai, Shigehisa

    2017-01-01

    We show the feasibility of controlling the magnetic permeability of optical semiconductor devices on InP-based photonic integration platforms. We have achieved the permeability control of GaInAsP/InP semiconductor waveguides by combining the waveguide with a metamaterial consisting of gate-controlled split ring resonators. The split-ring resonators interact magnetically with light travelling in the waveguide and move the effective relative permeability of the waveguide away from 1 at optical frequencies. The variation in permeability can be controlled with the gate voltage. Using this variable-permeability waveguide, we have built an optical modulator consisting of a GaInAsP/InP Mach–Zehnder interferometer for use at an optical communication wavelength of 1.55 μm. The device changes the permeability of its waveguide arm with controlling gate voltage, thereby varying the refractive index of the arm to modulate the intensity of light. For the study of variable-permeability waveguide devices, we also propose a method of extracting separately the permittivity and permeability values of devices from the experimental data of light transmission. Adjusting the permeability of optical semiconductors to the needs of device designers will open the promising field of ‘permeability engineering’. Permeability engineering will facilitate the manipulation of light and the management of photons, thereby contributing to the development of novel devices with sophisticated functions for photonic integration. PMID:28872621

  1. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  2. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  3. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  4. Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS).

    SciTech Connect

    Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun

    2009-09-01

    Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

  5. Physics and Advanced Technologies LDRD Final Report:Adaptive Optics Imaging and Spectroscopy of the Solar System

    SciTech Connect

    Gibbard, S; Max, C; Macintosh, B; Grossman, A

    2004-01-21

    This focus of this project was the investigation of the planets Uranus and Neptune and Saturn's moon Titan using adaptive optics imaging and spectroscopy at the 10-meter W.M. Keck Telescopes. These bodies share a common type of atmosphere, one that is rich in methane and has a hydrocarbon haze layer produced by methane photolysis. Neptune and Uranus have atmospheric features which change on short timescales; we have investigated their altitude, composition, and connection to events occurring deeper in the planets' tropospheres. Titan has a solid surface located under its atmosphere, the composition of which is still quite uncertain. With spectra that sample the vertical structure of the atmosphere and narrowband observations that selectively probe Titan's surface we have determined the surface reflectivity of Titan at near-infrared wavelengths.

  6. Guided-Wave Optic Devices for Integrated Optic Information Processing.

    DTIC Science & Technology

    1984-08-08

    integrating miniature optical components such as laser light sources, modulators, switches, deflectors , lenses, prisms, and detectors in a common substrate...ZnO composite waveguides, and 2 . Planar Guided-Wave Magneto- Optic Bragg Diffraction and Devices in YIG-GGG Waveguides. Some very significant progress... optical wavelength. We have recently obtained further theoretical results. ( 2 ) For example, as shown in Fig. l(a) and 1(b), the topographical

  7. Optically transduced MEMS gyro device

    DOEpatents

    Nielson, Gregory N; Bogart, Gregory R; Langlois, Eric; Okandan, Murat

    2014-05-20

    A bulk micromachined vibratory gyro in which a proof mass has a bulk substrate thickness for a large mass and high inertial sensitivity. In embodiments, optical displacement transduction is with multi-layer sub-wavelength gratings for high sensitivity and low cross-talk with non-optical drive elements. In embodiments, the vibratory gyro includes a plurality of multi-layer sub-wavelength gratings and a plurality of drive electrodes to measure motion of the proof mass induced by drive forces and/or moments and induced by the Coriolis Effect when the gyro experiences a rotation. In embodiments, phase is varied across the plurality gratings and a multi-layer grating having the best performance is selected from the plurality.

  8. Adaptive Optics Views of the Hubble Deep Fields Final report on LLNL LDRD Project 03-ERD-002

    SciTech Connect

    Max, C E; Gavel, D; Pennington, D; Gibbard, S; van Dam, M; Larkin, J; Koo, D; Raschke, L; Melbourne, J

    2007-02-17

    We used laser guide star adaptive optics at the Lick and Keck Observatories to study active galactic nuclei and galaxies, with emphasis on those in the early Universe. The goals were to observe large galaxies like our own Milky Way in the process of their initial assembly from sub-components, to identify central active galactic nuclei due to accreting black holes in galaxy cores, and to measure rates of star formation and evolution in galaxies. In the distant universe our focus was on the GOODS and GEMS fields (regions in the Northern and Southern sky that include the Hubble Deep Fields) as well as the Extended Groth Strip and COSMOS fields. Each of these parts of the sky has been intensively studied at multiple wavelengths by the Hubble Space Telescope, the Chandra X-Ray Observatory, the XMM Space Telescope, the Spitzer Space Telescope, and several ground-based telescopes including the Very Large Array radio interferometer, in order to gain an unbiased view of a significant statistical sample of galaxies in the early universe.

  9. Plasma channel optical pumping device and method

    DOEpatents

    Judd, O.P.

    1983-06-28

    A device and method are disclosed for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device. 5 figs.

  10. Photonic crystal cavities and integrated optical devices

    NASA Astrophysics Data System (ADS)

    Gan, Lin; Li, ZhiYuan

    2015-11-01

    This paper gives a brief introduction to our recent works on photonic crystal (PhC) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of PhC cavities are first presented. Based on the theoretical basis, two relevant quantities, the cavity mode volume and the quality factor are discussed. Then the methods of fabrication and characterization of silicon PhC slab cavities are introduced. Several types of PhC cavities are presented, such as the usual L3 missing-hole cavity, the new concept waveguide-like parallel-hetero cavity, and the low-index nanobeam cavity. The advantages and disadvantages of each type of cavity are discussed. This will help the readers to decide which type of PhC cavities to use in particular applications. Furthermore, several integrated optical devices based on PhC cavities, such as optical filters, channel-drop filters, optical switches, and optical logic gates are described in both the working principle and operation characteristics. These devices designed and realized in our group demonstrate the wide range of applications of PhC cavities and offer possible solutions to some integrated optical problems.

  11. DIMENSION MEASURING OPTICAL SIGHTING DEVICE

    DOEpatents

    Kerr, G.E.

    1959-08-01

    A sighting device to check the uniformity of thickness of a lining applied to a container is presented. The sighting devlce comprises two tubular members having their ends in threaded connection with one another and a lens lying within the outer end of one of the tubular members. A ground glass inscribed with two concentric circles is located at the outer end of the other tubular section so that the image of the circular junctures, with and without the lining at the closed end of the container, can be focused on the proper circle inscribed in the ground glass so as to determine whether the lining has uniformity and whether there are thin spots.

  12. LDRD FY2004 Annual Report

    SciTech Connect

    Kotta, P. R.; Kline, K. M.

    2005-02-28

    The Laboratory Directed Research and Development (LDRD) Program is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and the National Nuclear Security Administration in national security, homeland security, energy security, environmental management, bioscience and healthcare technology, and breakthroughs in fundamental science and technology. The LDRD Program was authorized by Congress in 1991 and is administered by the Laboratory Science and Technology Office. The accomplishments described in this Annual Report demonstrate how the LDRD portfolio is strongly aligned with these missions and contributes to the Laboratory’s success in meeting its goals. The LDRD budget of $69.8 million for FY2004 sponsored 220 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific and technical quality and mission relevance. Each year, the number of meritorious proposals far exceeds the funding available, making the selection a challenging one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the Nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory’s multidisciplinary team approach to science and technology. Safeguarding the Nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle

  13. Optical tracking using charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Stanton, Richard H.; Alexander, James W.; Dennison, Edwin W.; Glavich, Thomas A.; Hovland, Larry F.

    1987-01-01

    The extraction of precise positional information from CCD images of point-source and extended optical targets is considered, and three examples of CCD optical trackers for space-based operation are described. For ideal point sources, a centerfinding accuracy of 1/100 pixel and a measuremet jitter of less than 1/250 pixel have been obtained using thinned, backside-illuminated devices. Tracker accuracy is shown to be limited by small variation in the optical image shape. Techniques for tracking, and methods for searching the entire field for the desired targets, are also discussed.

  14. Bi-stable optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  15. Two position optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  16. Final LDRD report :

    SciTech Connect

    Clark, Blythe G.; Rajasekhara, Shreyas; Enos, David George; Dingreville, Remi Philippe Michel; Doyle, Barney Lee; Hattar, Khalid Mikhiel; Weiner, Ruth F.

    2013-09-01

    We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

  17. Poling of Microwave Electro-Optic Devices

    NASA Technical Reports Server (NTRS)

    Singer, Kenneth D.

    1997-01-01

    The desire to transmit high frequency, microwave RF signals over fiber optic cables has necessitated the need for electro-optic modulation devices. However, in order to reap these potential benefits, it is necessary to develop the devices and their associated fabrication processes, particularly those processes associated with the poling of the devices. To this end, we entered into a cooperative research agreement with Richard Kunath of NASA LeRC. A graduate student in my group, Tony Kowalczyk, worked closely with the group at NASA to develop processes for construction of a microwave frequency electro-optic modulator. Materials were commercially obtained from Amoco Chemical and in collaboration with Lockheed-Martin. The photolithography processes were developed at NASA LeRC and the electric-field poling process was carried out in our laboratory at CWRU. During the grant period, the poling process conditions were investigated for these multilayer devices. Samples were poled and the resulting nonlinear optical properties were evaluated in our laboratory. Following the grant period, Kowalczyk went to NASA under a NRC fellowship, and I continued to collaborate as a consultant. Publications listed at the end of this report came out of this work. Another manuscript is in preparation and will be submitted shortly.

  18. Advanced silicon device technologies for optical interconnects

    NASA Astrophysics Data System (ADS)

    Wosinski, Lech; Wang, Zhechao; Lou, Fei; Dai, Daoxin; Lourdudoss, Sebastian; Thylen, Lars

    2012-01-01

    Silicon photonics is an emerging technology offering novel solutions in different areas requiring highly integrated communication systems for optical networking, sensing, bio-applications and computer interconnects. Silicon photonicsbased communication has many advantages over electric wires for multiprocessor and multicore macro-chip architectures including high bandwidth data transmission, high speed and low power consumption. Following the INTEL's concept to "siliconize" photonics, silicon device technologies should be able to solve the fabrication problems for six main building blocks for realization of optical interconnects: light generation, guiding of light including wavelength selectivity, light modulation for signal encoding, detection, low cost assembly including optical connecting of the devices to the real world and finally the electronic control systems.

  19. Integrated nanophotonic devices for optical interconnections

    NASA Astrophysics Data System (ADS)

    Huang, Yidong; Feng, Xue; Cui, Kaiyu; Li, Yongzhuo; Wang, Yu

    2016-03-01

    Nanostructure is an effective solution for realizing optoelectronic devices with compact size and high performances simultaneously. This paper reports our research progress on integrated nanophotonic devices for optical interconnections. We proposed a parent-sub micro ring structure for optical add-drop multiplexer (OADM) with compact footprint, large free spectral range, and uniform channel spacing. All eight channels can be multiplexed and de-multiplexed with 2.6 dB drop loss, 0.36 nm bandwidth (>40 GHz), -20 dB channel crosstalk, and high thermal tuning efficiency of 0.15 nm/mW. A novel principle of optical switch was proposed and demonstrated based on the coupling of the defect modes in photonic crystal waveguide. Switching functionality with bandwidth up to 24 nm and extinction ratio in excess of 15 dB over the entire bandwidth was achieved, while the footprint was only 8 μm×17.6 μm. We proposed an optical orbital angular momentum (OAM) coding and decoding method to increase the data-carrying capacity of wireless optical interconnect. An integrated OAM emitter, where the topological charge can be continuously varied from -4 to 4 was realized. Also we studied ultrafast modulated nLED as the integrated light source for optical interconnections using a nanobeam cavity with stagger holes.

  20. LDRD Annual Report FY2006

    SciTech Connect

    Sketchley, J A; Kotta, P; De Yoreo, J; Jackson, K; van Bibber, K

    2007-03-20

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest

  1. Optical forces near micro-fabricated devices

    NASA Astrophysics Data System (ADS)

    Mejia Prada, Camilo Andres

    In this dissertation, I study optical forces near micro-fabricated devices for multi- particle manipulation. I consider particles of different sizes and compositions. In particular, I focus my study on both dielectric and gold particles as well as Giant Unilamellar Vesicles. First, I consider optical forces near a PhC and establish the feasibility of a technique which we term Light-Assisted Templated Self-assembly (LATS). In contrast to previous work on Fabry-Perot enhancement of trapping forces above a flat substrate, I exploit the guided resonance modes of a PhC to provide resonant enhancement of optical forces. Then, I explore optical forces near a Dual Beam Optical Trap (DBOT). I present a method to extract the bending modulus of the membrane from the area strain data. This method incorporates three-dimensional ray-tracing to calculate the applied stress in the DBOT within the ray optics approximation. I compare the optical force calculated using the ray optics approximation and Maxwell Stress Tensor method to ensure the approximation's accuracy. Next, we apply this method to 3 populations of GUVs to extract the bending modulus of membranes comprised of saturated and monounsaturated lipids in both gel and liquid phases.

  2. Optical Alignment Device For Laser Communication

    NASA Technical Reports Server (NTRS)

    Casey, William L.

    1988-01-01

    Optical alignment device under development enables continuous tracking and coalignment of two beams of light. Intended primarily for laser-communication station, in which transmitted beam must be aligned with received beam to ensure transmitted beam falls on receiver at other station. Expected to consume less power and be smaller and less complicated than alignment shutter and drive previously used. Prism and filter separate two overlapping collimated light beams of different wavelength or polarization. Coordinates of two beams tracked on charge-coupled device to determine degree of directional misalignment between two beams.

  3. SRNL LDRD ANNUAL REPORT 2008

    SciTech Connect

    French, T

    2008-12-29

    The Laboratory Director is pleased to have the opportunity to present the 2008 Laboratory Directed Research and Development (LDRD) annual report. This is my first opportunity to do so, and only the second such report that has been issued. As will be obvious, SRNL has built upon the excellent start that was made with the LDRD program last year, and researchers have broken new ground in some important areas. In reviewing the output of this program this year, it is clear that the researchers implemented their ideas with creativity, skill and enthusiasm. It is gratifying to see this level of participation, because the LDRD program remains a key part of meeting SRNL's and DOE's strategic goals, and helps lay a solid scientific foundation for SRNL as the premier applied science laboratory. I also believe that the LDRD program's results this year have demonstrated SRNL's value as the EM Corporate Laboratory, having advanced knowledge in a spectrum of areas, including reduction of the technical risks of cleanup, separations science, packaging and transportation of nuclear materials, and many others. The research in support of Energy Security and National and Homeland Security has been no less notable. SRNL' s researchers have shown again that the nascent LDRD program is a sound investment for DOE that will pay off handsomely for the nation as time goes on.

  4. Tiger LDRD final report

    SciTech Connect

    Steich, D J; Brugger, S T; Kallman, J S; White, D A

    2000-02-01

    This final report describes our efforts on the Three-Dimensional Massively Parallel CEM Technologies LDRD project (97-ERD-009). Significant need exists for more advanced time domain computational electromagnetics modeling. Bookkeeping details and modifying inflexible software constitute a vast majority of the effort required to address such needs. The required effort escalates rapidly as problem complexity increases. For example, hybrid meshes requiring hybrid numerics on massively parallel platforms (MPPs). This project attempts to alleviate the above limitations by investigating flexible abstractions for these numerical algorithms on MPPs using object-oriented methods, providing a programming environment insulating physics from bookkeeping. The three major design iterations during the project, known as TIGER-I to TIGER-III, are discussed. Each version of TIGER is briefly discussed along with lessons learned during the development and implementation. An Application Programming Interface (API) of the object-oriented interface for Tiger-III is included in three appendices. The three appendices contain the Utilities, Entity-Attribute, and Mesh libraries developed during the project. The API libraries represent a snapshot of our latest attempt at insulated the physics from the bookkeeping.

  5. Method of forming a sharp edge on an optical device

    NASA Technical Reports Server (NTRS)

    Fleetwood, C. M.; Rice, S. H.

    1980-01-01

    A sharp edge is formed on an optical device by placing the optical device in a holding mechanism; grinding one surface so that it and a surface of the holding mechanism are co-planar; and polishing both the surface of the optical device and the surface of the holding mechanism with felt until an edge on the surface of the optical device adjacent to the surface of the holding mechanism obtains a desired sharpness.

  6. Nanostructured Materials Integrated in Microfabricated Optical Devices

    SciTech Connect

    SASAKI, DARRYL Y.; LAST, JULIE A.; BONDURANT, BRUCE; WAGGONER, TINA A.; BRINKER, C. JEFFREY; KEMME, SHANALYN A.; WENDT, JOEL R.; CARTER, TONY; SAMORA, SALLY; WARREN, MIAL E.; SINCLAIR, MICHAEL B.; YANG, YI

    2002-12-01

    This project combined nanocomposite materials with microfabricated optical device structures for the development of microsensor arrays. For the nanocomposite materials we have designed, developed, and characterized self-assembling, organic/inorganic hybrid optical sensor materials that offer highly selective, sensitive, and reversible sensing capability with unique hierarchical nanoarchitecture. Lipid bilayers and micellar polydiacetylene provided selective optical response towards metal ions (Pb(II), Hg(II)), a lectin protein (Concanavalin A), temperature, and organic solvent vapor. These materials formed as composites in silica sol-gels to impart physical protection of the self-assembled structures, provide a means for thin film surface coatings, and allow facile transport of analytes. The microoptical devices were designed and prepared with two- and four-level diffraction gratings coupled with conformal gold coatings on fused silica. The structure created a number of light reflections that illuminated multiple spots along the silica surface. These points of illumination would act as the excitation light for the fluorescence response of the sensor materials. Finally, we demonstrate an integrated device using the two-level diffraction grating coupled with the polydiacetylene/silica material.

  7. Nanocoaxes for Optical and Electronic Devices

    PubMed Central

    Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-01-01

    The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400

  8. Remote optical stethoscope and optomyography sensing device

    NASA Astrophysics Data System (ADS)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  9. Precision optical device of freeform defects inspection

    NASA Astrophysics Data System (ADS)

    Meguellati, S.

    2015-09-01

    This method of optical scanning presented in this paper is used for precision measurement deformation in shape or absolute forms in comparison with a reference component form, of optical or mechanical components, on reduced surfaces area that are of the order of some mm2 and more. The principle of the method is to project the image of the source grating to palpate optically surface to be inspected, after reflection; the image of the source grating is printed by the object topography and is then projected onto the plane of reference grating for generate moiré fringe for defects detection. The optical device used allows a significant dimensional surface magnification of up to 1000 times the area inspected for micro-surfaces, which allows easy processing and reaches an exceptional nanometric imprecision of measurements. According to the measurement principle, the sensitivity for displacement measurement using moiré technique depends on the frequency grating, for increase the detection resolution. This measurement technique can be used advantageously to measure the deformations generated by the production process or constraints on functional parts and the influence of these variations on the function. The optical device and optical principle, on which it is based, can be used for automated inspection of industrially produced goods. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard; which saves time, money and accuracy. The technique has found various applications in diverse fields, from biomedical to industrial and scientific applications.

  10. Multipass optical device and process for gas and analyte determination

    DOEpatents

    Bernacki, Bruce E.

    2011-01-25

    A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.

  11. Plasma etching for advanced polymer optical devices

    NASA Astrophysics Data System (ADS)

    Bitting, Donald S.

    Plasma etching is a common microfabrication technique which can be applied to polymers as well as glasses, metals, and semiconductors. The fabrication of low loss and reliable polymer optical devices commonly makes use of advanced microfabrication processing techniques similar in nature to those utilized in standard semiconductor fabrication technology. Among these techniques, plasma/reactive ion etching is commonly used in the formation of waveguiding core structures. Plasma etching is a powerful processing technique with many potential applications in the emerging field of polymer optical device fabrication. One such promising application explored in this study is in the area of thin film-substrate adhesion enhancement. Two approaches involving plasma processing were evaluated to improve substrate-thin film adhesion in the production of polymer waveguide optical devices. Plasma treatment of polymer substrates such as polycarbonate has been studied to promote the adhesion of fluoropolymer thin film coatings for waveguide device fabrication. The effects of blanket oxygen plasma etchback on substrate, microstructural substrate feature formation, and the long term performance and reliability of these methods were investigated. Use of a blanket oxygen plasma to alter the polycarbonate surface prior to fluoropolymer casting was found to have positive but limited capability to improve the adhesive strength between these polymers. Experiments show a strong correlation between surface roughness and adhesion strength. The formation of small scale surface features using microlithography and plasma etching on the polycarbonate surface proved to provide outstanding adhesion strength when compared to any other known treatment methods. Long term environmental performance testing of these surface treatment methods provided validating data. Test results showed these process approaches to be effective solutions to the problem of adhesion between hydrocarbon based polymer

  12. Optical links in handheld multimedia devices

    NASA Astrophysics Data System (ADS)

    van Geffen, S.; Duis, J.; Miller, R.

    2008-04-01

    Ever emerging applications in handheld multimedia devices such as mobile phones, laptop computers, portable video games and digital cameras requiring increased screen resolutions are driving higher aggregate bitrates between host processor and display(s) enabling services such as mobile video conferencing, video on demand and TV broadcasting. Larger displays and smaller phones require complex mechanical 3D hinge configurations striving to combine maximum functionality with compact building volumes. Conventional galvanic interconnections such as Micro-Coax and FPC carrying parallel digital data between host processor and display module may produce Electromagnetic Interference (EMI) and bandwidth limitations caused by small cable size and tight cable bends. To reduce the number of signals through a hinge, the mobile phone industry, organized in the MIPI (Mobile Industry Processor Interface) alliance, is currently defining an electrical interface transmitting serialized digital data at speeds >1Gbps. This interface allows for electrical or optical interconnects. Above 1Gbps optical links may offer a cost effective alternative because of their flexibility, increased bandwidth and immunity to EMI. This paper describes the development of optical links for handheld communication devices. A cable assembly based on a special Plastic Optical Fiber (POF) selected for its mechanical durability is terminated with a small form factor molded lens assembly which interfaces between an 850nm VCSEL transmitter and a receiving device on the printed circuit board of the display module. A statistical approach based on a Lean Design For Six Sigma (LDFSS) roadmap for new product development tries to find an optimum link definition which will be robust and low cost meeting the power consumption requirements appropriate for battery operated systems.

  13. Final LDRD report :

    SciTech Connect

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuelsthose chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  14. All optical logic operations using semiconductor optical amplifier based devices

    NASA Astrophysics Data System (ADS)

    Wang, Qiang

    High-speed optical processing technologies are essential for the construction of all-optical networks in the information era. In this Ph. D. thesis dissertation, essential mechanisms related to the semiconductor optical amplifier (SOA) based device such as the gain and phase dynamics when a short pulse in propagating inside SOA, and, all-optical Boolean function, XOR, AND and OR have been studied. In order to realize the all-optical logic using SOA, the nonlinear gain and phase dynamics in SOA need to be studied first. The experimental results of 10--90% gain recovery curve have been presented. The recovery time is related to the carrier lifetime of the SOA and it varies with gain compression and bias current. For pulse width of a few picosecond, intraband effects need to be considered. In the SOA, phase change is also induced when a short pulse is propagating inside SOA. Unlike the conventional way of estimating the phase shift using alpha factor, the maximum phase shift is obtained first, then the effective alpha factor is calculated. The experimental results of all optical Boolean function XOR and OR at 80 Gb/s are presented using SOA-MZI-DI and SOA-DI respectively. These are the highest operating speed that has been reported. The all optical AND operation at 40 Gb/s using SOA-MZI have also been reported here. The numerical simulation shows that the performance of these all-optical Boolean operations is limited by the carrier lifetime of the SOA. The Boolean functions are the first step towards all optical circuits. The designs of a parity checker and a pseudo-random binary sequence (PRBS) generator are demonstrated. The error analysis using quality factor and eye-diagram is also presented.

  15. Integrated optic polymer waveguide devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Paul, Dilip K.

    1994-11-01

    Organic polymeric materials and devices have attracted considerable attention in recent years. Non-linear optical polymers have show promise of very high electro-optical coefficients and useful device characteristics with compatible device processing on semiconductor wafers leading to development of compact, high reliability OEICs. In this paper, the state-of-the-art technology and performance of polymeric integrated optical waveguide devices will be received and feasibility of using these devices as sensor elements (e.g., to measure temperature, pressure, displacement, vibration, chemical analysis, etc.) and also as components in optical sensor subsystems (e.g., optical gyro chip) explored.

  16. Precision molding techniques for optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Kalveram, Stefan; Neyer, Andreas

    1997-09-01

    Single-mode optical waveguide devices with integrated fiber- alignment grooves have been fabricated by injection molding of structured substrates and by subsequent filling of the waveguide channels with higher refractive index polymer. The master forms of the microstructures have been micro-machined channels with higher refractive index polymers. The master forms of the microstructures have been micro-machined in silicon. A special injection molding tool has been developed to yield plastic substrate chips with high surface planarity and replicated microstructures with details in the submicron range. Hot embossing is a further technology applied for the fabrication of large area waveguide devices with integrated mirrors, mainly intended for optical backplane applications. The hot embossing tool is driven on an injection molding machine which is a more cost effective method than the acquisition of conventional hot embossing equipment. In this paper, the injection molding as well as the hot embossing tool will be described together with the process and the results in the field of passive components for optical telecommunications and datacommunications.

  17. Final report on LDRD Project: Quantum confinement and light emission in silicon nanostructures

    SciTech Connect

    Guilinger, T.R.; Kelly, M.J.; Follstaedt, D.M.

    1995-02-01

    Electrochemically formed porous silicon (PS) was reported in 1991 to exhibit visible photoluminescence. This discovery could lead to the use of integrated silicon-based optoelectronic devices. This LDRD addressed two general goals for optical emission from Si: (1) investigate the mechanisms responsible for light emission, and (2) tailor the microstructure and composition of the Si to obtain photoemission suitable for working devices. PS formation, composition, morphology, and microstructure have been under investigation at Sandia for the past ten years for applications in silicon-on-insulator microelectronics, micromachining, and chemical sensors. The authors used this expertise to form luminescent PS at a variety of wavelengths and have used analytical techniques such as in situ Raman and X-ray reflectivity to investigate the luminescence mechanism and quantify the properties of the porous silicon layer. Further, their experience with ion implantation in Si lead to an investigation into alternate methods of producing Si nanostructures that visibly luminesce.

  18. Virtual input device with diffractive optical element

    NASA Astrophysics Data System (ADS)

    Wu, Ching Chin; Chu, Chang Sheng

    2005-02-01

    As a portable device, such as PDA and cell phone, a small size build in virtual input device is more convenient for complex input demand. A few years ago, a creative idea called 'virtual keyboard' is announced, but up to now there's still no mass production method for this idea. In this paper we'll show the whole procedure of making a virtual keyboard. First of all is the HOE (Holographic Optical Element) design of keyboard image which yields a fan angle about 30 degrees, and then use the electron forming method to copy this pattern in high precision. And finally we can product this element by inject molding. With an adaptive lens design we can get a well correct keyboard image in distortion and a wilder fan angle about 70 degrees. With a batter alignment of HOE pattern lithography, we"re sure to get higher diffraction efficiency.

  19. Delivering optical power to subcutaneous implanted devices.

    PubMed

    Ayazian, Sahar; Hassibi, Arjang

    2011-01-01

    In this paper, a new, easy-to-implement, and MRI-compatible approach for delivering power to implantable devices is presented. The idea is to harvest the energy of light within the therapeutic window wavelengths, where the optical absorption is small, by using subcutaneous photovoltaic (PV) cells. Depending on the application, this energy can then be used to directly drive the embedded electronics of an implanted device or recharge its battery. To show the feasibility of this system, a CMOS chip based on this concept has been implemented and tested. The experimental results demonstrate that μW's of power in ambient light conditions can be harvested using mm(2)-size PV cells. This amount of power is sufficient to address the needs of many low-power applications.

  20. Development of a Hybrid Integrated Optics Device

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Hernández, M. V.; Guel, S.; Ramírez, G.; Elizalde, L. E.; Ledezma, R.

    2008-04-01

    In this work we use the photo-chromatic reversibility properties of a polymeric film to control a guided optical signal. The component studied is an hybrid structure: it is constituted by a waveguide made by means of the ionic interchange technique, using (Na+/K+) on glass substrate and a polymeric thin film deposited on the same glass substrate surface. The polymeric film belongs to the spiropirans family, known since their reversible display changes in its optical properties when radiated by a wavelength within its absorption band [l]. It is this property of reversibility the one that is operated with the purpose of altering the propagation of the signal guided by the structure. This demonstrator device will allows us to exploit, characterize and analyze the reach of this type of structures.

  1. LDRD FY 2014 Program Plan

    SciTech Connect

    Anita Gianotto; Dena Tomchak

    2013-08-01

    As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

  2. Synchrotron Radiation Sources and Optical Devices

    NASA Astrophysics Data System (ADS)

    Cocco, D.; Zangrando, M.

    This chapter will briefly describe the photon transport system, from the sources to the experimental stations, including an overview of the characteristics of the synchrotron radiation (SR). The target of this chapter is to give, to an occasional user of the SR source, a general overview on the possible different available sources and the different possible optical systems, with particular emphasis to the soft X-ray region, without entering too much into details. If one wish to have a deep knowledge on the subjects treated here, there are four books that can answer almost all the possible questions on SR sources and optical devices, and they are reported in the references [W.B. Peatman, Gratings, Mirrors, and Slits (Gordon and Breach Science Publishers, New York, 1997); D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, Cambridge, 1999); H. Wiedemann, Synchrotron Radiation (Springer, Heidelberg, 2002); A. Erko, M. Idir, T. Krist, A.G. Michette, Modern Developments in X-ray and Neutron Optics, Springer Series in Optical Science, vol. 137 (Springer, Heidelberg, 2008)].

  3. Detectors, devices and electronics for optics

    NASA Astrophysics Data System (ADS)

    Fajer, V.

    2007-06-01

    Objectives: The present course is devoted to engineers, physicists, and techniques which require basic tools for applying in experiments, measurements and research with optical instruments. Content: It is composed of the following topics: photodetectors, semiconductor devices, photomultiplier tubes, Faraday modulators, lock in amplifiers and automatic polarimeters. It begins with the definitions, classification and general characteristics of the photodetectors and its selection criteria for specific applications. There is included a section relative to different types of photodiodes and its differential characteristics, the photomultipliers are described showing its validity and application range. The different characteristics of Faraday cells which are widely employed as optical modulators are analyzed. Lock in amplifiers are shown and its applications in experimental arrangements. Content: It is composed of the following topics: photodetectors, semiconductor devices, photomultiplier tubes, Faraday modulators, lock in amplifiers and automatic polarimeters. It begins with the definitions, classification and general characteristics of the photodetectors and its selection criteria for specific applications. There is included a section relative to different types of photodiodes and its differential characteristics, the photomultipliers are described showing its validity and application range. The different characteristics of Faraday cells which are widely employed as optical modulators are analyzed. Lock in amplifiers are shown and its applications in experimental arrangements. Conclusion: this course could be given as a postgraduate course for Master in Science or Ph. D depending on the number and content of selected topics. It has been applied as an obligatory subject of the Optical Master in Science curriculum in the Superior Technical Institute (José Antonio Echeverría) of Havana, Cuba.

  4. Optical imaging device of retinal function

    NASA Astrophysics Data System (ADS)

    Kardon, Randy H.; Kwon, Young; Truitt, Paul; Nemeth, Sheila C.; T'so, Dan; Soliz, Peter

    2002-06-01

    An optical imaging device of retina function (OID-RF) has been constructed to record changes in reflected 700-nm light from the fundus caused by retinal activation in response to a visual 535-nm stimulus. The resulting images reveal areas of the retina activated by visual stimulation. This device is a modified fundus camera designed to provide a patterned, moving visual stimulus over a 45-degree field of view to the subject in the green wavelength portion of the visual spectrum while simultaneously imaging the fundus in another, longer wavelength range. Data was collected from 3 normal subjects and recorded for 13 seconds at 4 Hz; 3 seconds were recorded during pre-stimulus baseline, 5 seconds during the stimulus, and 5 seconds post-stimulus. This procedure was repeated several times and, after image registration, the images were averaged to improve signal to noise. The change in reflected intensity from the retina due to the stimulus was then calculated by comparison to the pre-stimulus state. Reflected intensity from areas of stimulated retina began to increase steadily within 1 second after stimulus onset and decayed after stimulus offset. These results indicated that a functional optical signal can be recorded from the human eye.

  5. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication.

    PubMed

    Dey, D; Goswami, T

    2011-01-01

    The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.

  6. Power selective optical filter devices and optical systems using same

    DOEpatents

    Koplow, Jeffrey P

    2014-10-07

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  7. Variable Shadow Screens for Imaging Optical Devices

    NASA Technical Reports Server (NTRS)

    Lu, Ed; Chretien, Jean L.

    2004-01-01

    Variable shadow screens have been proposed for reducing the apparent brightnesses of very bright light sources relative to other sources within the fields of view of diverse imaging optical devices, including video and film cameras and optical devices for imaging directly into the human eye. In other words, variable shadow screens would increase the effective dynamic ranges of such devices. Traditionally, imaging sensors are protected against excessive brightness by use of dark filters and/or reduction of iris diameters. These traditional means do not increase dynamic range; they reduce the ability to view or image dimmer features of an image because they reduce the brightness of all parts of an image by the same factor. On the other hand, a variable shadow screen would darken only the excessively bright parts of an image. For example, dim objects in a field of view that included the setting Sun or bright headlights could be seen more readily in a picture taken through a variable shadow screen than in a picture of the same scene taken through a dark filter or a narrowed iris. The figure depicts one of many potential variations of the basic concept of the variable shadow screen. The shadow screen would be a normally transparent liquid-crystal matrix placed in front of a focal-plane array of photodetectors in a charge-coupled-device video camera. The shadow screen would be placed far enough from the focal plane so as not to disrupt the focal-plane image to an unacceptable degree, yet close enough so that the out-of-focus shadows cast by the screen would still be effective in darkening the brightest parts of the image. The image detected by the photodetector array itself would be used as feedback to drive the variable shadow screen: The video output of the camera would be processed by suitable analog and/or digital electronic circuitry to generate a negative partial version of the image to be impressed on the shadow screen. The parts of the shadow screen in front of

  8. Optical fiber end-facet polymer suspended-mirror devices

    NASA Astrophysics Data System (ADS)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  9. Optical fiber grating tuning device and application

    NASA Astrophysics Data System (ADS)

    Luo, Fei; Yeh, T.

    2008-12-01

    A new design for tuning optical fiber grating is proposed. The fiber grating is placed in the grooves between a pair of slides, in which one end of the fiber is bonded on the bottom slide, and the other end of the fiber is bonded on the top slide, the grating section of the fiber is confined in grooves, so that the fiber grating is remaining straight without buckling during axial compressive force applied to the fiber. An actuator is used for driving slide to apply force on fiber to axially compress or stretch the fiber grating. The wavelength of the fiber grating is tuned according to applied stress on the fiber. The applications of the device include tunable fiber laser, tunable fiber filter etc.

  10. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  11. Portable Handheld Optical Window Inspection Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis; Dokos, Adam; Burns, Bradley

    2010-01-01

    The Portable Handheld Optical Window Inspection Device (PHOWID) is a measurement system for imaging small defects (scratches, pits, micrometeor impacts, and the like) in the field. Designed primarily for window inspection, PHOWID attaches to a smooth surface with suction cups, and raster scans a small area with an optical pen in order to provide a three-dimensional image of the defect. PHOWID consists of a graphical user interface, motor control subsystem, scanning head, and interface electronics, as well as an integrated camera and user display that allows a user to locate minute defects before scanning. Noise levels are on the order of 60 in. (1.5 m). PHOWID allows field measurement of defects that are usually done in the lab. It is small, light, and attaches directly to the test article in any orientation up to vertical. An operator can scan a defect and get useful engineering data in a matter of minutes. There is no need to make a mold impression for later lab analysis.

  12. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  13. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  14. Binary Arithmetic Using Optical Symbolic Substitution and Cascadable Surface-Emitting Laser Logic Devices,

    DTIC Science & Technology

    LOGIC DEVICES, *OPTICAL CIRCUITS, *OPTICAL SWITCHING, HETEROJUNCTIONS, PHOTOTRANSISTORS, ELECTROOPTICS, LASER CAVITIES, OPTICAL PROCESSING, PARALLEL PROCESSING, BISTABLE DEVICES, GATES(CIRCUITS), VOLTAGE, BINARY ARITHMETIC .

  15. Method And Apparatus For Coupling Optical Elements To Optoelectronic Devices For Manufacturing Optical Transceiver Modules

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; Giunta, Rachel Knudsen; Mitchell, Robert T.; McCormick, Frederick B.; Peterson, David W.; Rising, Merideth A.; Reber, Cathleen A.; Reysen, Bill H.

    2005-06-14

    A process is provided for aligning and connecting at least one optical fiber to at least one optoelectronic device so as to couple light between at least one optical fiber and at least one optoelectronic device. One embodiment of this process comprises the following steps: (1) holding at least one optical element close to at least one optoelectronic device, at least one optical element having at least a first end; (2) aligning at least one optical element with at least one optoelectronic device; (3) depositing a first non-opaque material on a first end of at least one optoelectronic device; and (4) bringing the first end of at least one optical element proximate to the first end of at least one optoelectronic device in such a manner that the first non-opaque material contacts the first end of at least one optoelectronic device and the first end of at least one optical element. The optical element may be an optical fiber, and the optoelectronic device may be a vertical cavity surface emitting laser. The first non-opaque material may be a UV optical adhesive that provides an optical path and mechanical stability. In another embodiment of the alignment process, the first end of at least one optical element is brought proximate to the first end of at least one optoelectronic device in such a manner that an interstitial space exists between the first end of at least one optoelectronic device and the first end of at least one optical element.

  16. Advanced polychromator systems for remote chemical sensing (LDRD project 52575).

    SciTech Connect

    Sinclair, Michael B.; Pfeifer, Kent Bryant; Allen, James Joe

    2005-01-01

    The objective of this LDRD project was to develop a programmable diffraction grating fabricated in SUMMiT V{trademark}. Two types of grating elements (vertical and rotational) were designed and demonstrated. The vertical grating element utilized compound leveraged bending and the rotational grating element used vertical comb drive actuation. This work resulted in two technical advances and one patent application. Also a new optical configuration of the Polychromator was demonstrated. The new optical configuration improved the optical efficiency of the system without degrading any other aspect of the system. The new configuration also relaxes some constraint on the programmable diffraction grating.

  17. Embedded metal-wire nanograting for a multifunctional optical device

    SciTech Connect

    Liu Wen; Zeng Yun; Chen Long; Wang Dingli; Xiao Qingming

    2008-09-20

    In this paper, an embedded metal-wire nanograting was fabricated and used to construct a multifunctional optical device. The basic function of the nanograting is as a broadband polarizing beam splitter. On the top of the nanograting surface, a homogeneity cladding layer was deposited, and metal wires were deposited in the grating trench. This multifunctional optical device based on the artificial material is designed with a very simple structure, but with the functions of a variable optical attenuator, an optical switch, and a variable optical power splitter. The experimental result as a variable optical power splitter is presented.

  18. A Summary of the results obtained in the LDRD project "Interaction of a magnetized plasma with structured surfaces-from devices to spacecraft"

    SciTech Connect

    Cohen, R. H.; Porter, G. D.; Ryutov, D. D.

    1999-02-23

    Our work was directed towards developing a basic understanding of a new class of phenomena: effects of surface structure on the processes in a magnetized plasma near surfaces and at some distances for them. The surface structures can be of various kinds: topographic features ranging from smooth "waviness" to a coarse "roughness," non-uniformities of the secondary emission coefficient, dielectric impregnations into conducting surface, etc. The expected effects are strongest when the magnetic field forms a shallow angle with the surface. The current and future applications of this new branch of plasma physics include fusion devices, gas-discharge and plasma-processing devices, large spacecraft, and physical phenomena in the vicinity of celestial bodies without atmospheres. We have developed a methodology that allows one to study in a unified way effects of rough surfaces with arbitrary scales of topographic features, from sizes exceeding the ion gyro-radius, to sizes much below the electron gyro-radius, in the most interesting case of a grazing magnetic field. The results can be presented in a dimensionless form, so that they would be equally applicable to the micrometer-scale roughness of the divertor plates of fusion devices, and to 10-km-scale structures of a Lunar surface. We have identified the following new effects: 1) the plasma is absorbed by only a small fraction of the total surface, near the "mountain tops" of the bumps; 2) regions inaccessible for one or both plasma species ("shadows") are formed behind the bumps; the size of these inaccessible domains is, generally speaking, different for the electrons and ions; 3) this latter circumstance leads to formation of fine potential structure both near the surface and in the bulk plasma, leading to enhanced plasma transport. We have investigated the processes that may lead to plasma penetration into the shadows and concluded that most probable candidates are (depending on the specifics of plasma parameters) the

  19. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts; Michael R. , Nielson; Gregory N.

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  20. Noncontact surface thermometry for microsystems: LDRD final report.

    SciTech Connect

    Abel, Mark (Georgia Institute of Technology, Atlanta, GA); Beecham, Thomas (Georgia Institute of Technology, Atlanta, GA); Graham, Samuel (Georgia Institute of Technology, Atlanta, GA); Kearney, Sean Patrick; Serrano, Justin Raymond; Phinney, Leslie Mary

    2006-10-01

    We describe a Laboratory Directed Research and Development (LDRD) effort to develop and apply laser-based thermometry diagnostics for obtaining spatially resolved temperature maps on working microelectromechanical systems (MEMS). The goal of the effort was to cultivate diagnostic approaches that could adequately resolve the extremely fine MEMS device features, required no modifications to MEMS device design, and which did not perturb the delicate operation of these extremely small devices. Two optical diagnostics were used in this study: microscale Raman spectroscopy and microscale thermoreflectance. Both methods use a low-energy, nonperturbing probe laser beam, whose arbitrary wavelength can be selected for a diffraction-limited focus that meets the need for micron-scale spatial resolution. Raman is exploited most frequently, as this technique provides a simple and unambiguous measure of the absolute device temperature for most any MEMS semiconductor or insulator material under steady state operation. Temperatures are obtained from the spectral position and width of readily isolated peaks in the measured Raman spectra with a maximum uncertainty near {+-}10 K and a spatial resolution of about 1 micron. Application of the Raman technique is demonstrated for V-shaped and flexure-style polycrystalline silicon electrothermal actuators, and for a GaN high-electron-mobility transistor. The potential of the Raman technique for simultaneous measurement of temperature and in-plane stress in silicon MEMS is also demonstrated and future Raman-variant diagnostics for ultra spatio-temporal resolution probing are discussed. Microscale thermoreflectance has been developed as a complement for the primary Raman diagnostic. Thermoreflectance exploits the small-but-measurable temperature dependence of surface optical reflectivity for diagnostic purposes. The temperature-dependent reflectance behavior of bulk silicon, SUMMiT-V polycrystalline silicon films and metal surfaces is

  1. Optical limiting device and method of preparation thereof

    DOEpatents

    Wang, Hsing-Lin; Xu, Su; McBranch, Duncan W.

    2003-01-01

    Optical limiting device and method of preparation thereof. The optical limiting device includes a transparent substrate and at least one homogeneous layer of an RSA material in polyvinylbutyral attached to the substrate. The device may be produced by preparing a solution of an RSA material, preferably a metallophthalocyanine complex, and a solution of polyvinylbutyral, and then mixing the two solutions together to remove air bubbles. The resulting solution is layered onto the substrate and the solvent is evaporated. The method can be used to produce a dual tandem optical limiting device.

  2. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  3. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  4. Final report on LDRD project: Low-cost Pd-catalyzed metallization technology for rapid prototyping of electronic substrates and devices

    SciTech Connect

    Chen, K.S.; Morgan, W.P.; Zich, J.L.

    1998-02-01

    A low-cost, thermally-activated, palladium-catalyzed metallization process was developed for rapid prototyping of polymeric electronic substrates and devices. The process was successfully applied in producing adhesiveless copper/polyimide laminates with high peel strengths and thick copper coating; copper/polyimide laminates are widely used in fabricating interconnects such as printed wiring boards (PWBs) and flexible circuits. Also successfully metallized using this low-cost metallization process were: (1) scaled-down models of radar-and-communication antenna and waveguide; (2) scaled-down model of pulsed-power-accelerator electrode; (3) three-dimensional micro-porous, open-cell vitreous carbon foams. Moreover, additive patterned metallization was successfully achieved by selectively printing or plotting the catalyst ink only on areas where metallization is desired, and by uniform thermal activation. Additive patterned metallization eliminates the time-consuming, costly and environmentally-unfriendly etching process that is routinely carried out in conventional subtractive patterned metallization. A metallization process via ultraviolet (UV) irradiation activation was also demonstrated. In this process palladium-catalyst solution is first uniformly coated onto the substrate. A masking pattern is used to cover the areas where metallization is not wanted. UV irradiation is applied uniformly to activate the palladium catalyst and to cure the polymer carrier in areas that are not covered by the mask. Metal is then deposited by electroless plating only or by a combination of electroless and electrolytic plating. This UV-activation technique is particularly useful in additive fine-line patterned metallization. Lastly, computer models for electrolytic and electroless plating processes were developed to provide guidance in plating-process design.

  5. A real-time optical data processing device

    NASA Technical Reports Server (NTRS)

    Jacobson, A.; Grinberg, J.; Bleha, W.; Miller, L.; Fraas, L.; Myer, G.; Boswell, D.

    1976-01-01

    A novel liquid-crystal electro-optical device useful as a real-time input device in coherent optical data processing is described. The device is a special adaptation of an ac photoactivated liquid-crystal light valve, and utilizes a hybrid field effect (45 deg twisted nematic effect in OFF state and pure optical birefringence of the liquid crystal in ON state). A thin-film sandwich exerts photoelectric control over the optical birefringence of a thin liquid-crystal layer. Liquid-crystal layer thickness is successfully reduced without image degradation. The device offers high resolution (better than 100 lines/mm), contrast (better than 100/1), high speed (10 msec ON, 15 msec OFF), high input sensitivity, low power input, low fabrication cost, and can be operated at below 10 V rms. Preliminary measurements on device performance in level slicing, filtering, contrast reversal, and edge enhancement are under way.

  6. Electro-optic device with gap-coupled electrode

    SciTech Connect

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  7. Practical training: from ideas to optical devices

    NASA Astrophysics Data System (ADS)

    Tolstoba, Nadezhda; Voznesenskaya, Anna; Orekhova, Maria

    2016-09-01

    The Student Research Laboratory for Optical Engineering in the ITMO University is the space for self-education and skills improving in the field of optics, optical engineering, photonics, light engineering for all the people: for students, graduates and experts. It is the space for realization of project for the motivated groups of people.

  8. Final Report: CNC Micromachines LDRD No.10793

    SciTech Connect

    JOKIEL JR., BERNHARD; BENAVIDES, GILBERT L.; BIEG, LOTHAR F.; ALLEN, JAMES J.

    2003-04-01

    The three-year LDRD ''CNC Micromachines'' was successfully completed at the end of FY02. The project had four major breakthroughs in spatial motion control in MEMS: (1) A unified method for designing scalable planar and spatial on-chip motion control systems was developed. The method relies on the use of parallel kinematic mechanisms (PKMs) that when properly designed provide different types of motion on-chip without the need for post-fabrication assembly, (2) A new type of actuator was developed--the linear stepping track drive (LSTD) that provides open loop linear position control that is scalable in displacement, output force and step size. Several versions of this actuator were designed, fabricated and successfully tested. (3) Different versions of XYZ translation only and PTT motion stages were designed, successfully fabricated and successfully tested demonstrating absolutely that on-chip spatial motion control systems are not only possible, but are a reality. (4) Control algorithms, software and infrastructure based on MATLAB were created and successfully implemented to drive the XYZ and PTT motion platforms in a controlled manner. The control software is capable of reading an M/G code machine tool language file, decode the instructions and correctly calculate and apply position and velocity trajectories to the motion devices linear drive inputs to position the device platform along the trajectory as specified by the input file. A full and detailed account of design methodology, theory and experimental results (failures and successes) is provided.

  9. 77 FR 65713 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... the United States after importation of certain optoelectronic devices for fiber optic communications... importation of certain optoelectronic devices for fiber optic communications, components thereof, and products...

  10. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  11. Optical distance measurement device and method thereof

    DOEpatents

    Bowers, Mark W.

    2003-05-27

    A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

  12. Quantum reading of unitary optical devices

    SciTech Connect

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-12-04

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported.

  13. Optical Distance Measurement Device And Method Thereof

    DOEpatents

    Bowers, Mark W.

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  14. Device having two optical ports for switching applications

    DOEpatents

    Rosen, Ayre; Stabile, Paul J.

    1991-09-24

    A two-sided light-activatable semiconductor switch device having an optical port on each side thereof. The semiconductor device may be a p-i-n diode or of bulk intrinsic material. A two ported p-i-n diode, reverse-biased to "off" by a 1.3 kV dc power supply, conducted 192 A when activated by two 1 kW laser diode arrays, one for each optical port.

  15. Characterization of ultrafast devices using novel optical techniques

    NASA Astrophysics Data System (ADS)

    Ali, Md Ershad

    Optical techniques have been extensively used to examine the high frequency performance of a number of devices including High Electron Mobility Transistors (HEMTs), Heterojunction Bipolar Phototransistors (HPTs) and Low Temperature GaAs (LT-GaAs) Photoconductive Switches. To characterize devices, frequency and time domain techniques, namely optical heterodyning and electro-optic sampling, having measurement bandwidths in excess of 200 GHz, were employed. Optical mixing in three-terminal devices has been extended for the first time to submillimeter wave frequencies. Using a new generation of 50-nm gate pseudomorphic InP-based HEMTs, optically mixed signals were detected to 552 GHz with a signal-to-noise ratio of approximately 5 dB. To the best of our knowledge, this is the highest frequency optical mixing obtained in three- terminal devices to date. A novel harmonic three-wave detection scheme was used for the detection of the optically generated signals. The technique involved downconversion of the signal in the device by the second harmonic of a gate-injected millimeter wave local oscillator. Measurements were also conducted up to 212 GHz using direct optical mixing and up to 382 GHz using a fundamental three-wave detection scheme. New interesting features in the bias dependence of the optically mixed signals have been reported. An exciting novel development from this work is the successful integration of near-field optics with optical heterodyning. The technique, called near-field optical heterodyning (NFOH), allows for extremely localized injection of high-frequency stimulus to any arbitrary point of an ultrafast device or circuit. Scanning the point of injection across the sample provides details of the high frequency operation of the device with high spatial resolution. For the implementation of the technique, fiber-optic probes with 100 nm apertures were fabricated. A feedback controlled positioning system was built for accurate placement and scanning of the

  16. Optical Element, Device, Method, and Applications

    DTIC Science & Technology

    2011-04-14

    optical element is a phase-only element; and h) repeating steps ( c -f). 28. The method of claim 26, further comprising: c1) in step (c), setting...jl(l;, 11) to 0, wherein the optical element is an amplitude-only element; and h) repeating steps ( c -f). * * * * *

  17. Indoor Mobile Optical Wireless Antennas for Portable Devices

    NASA Astrophysics Data System (ADS)

    Challa, Syam Sundar

    A high demand for increasing need for bandwidth and data rates has paved way for optical fiber and optical wireless communications into last mile solutions for optical communications. This dissertation focuses on providing a solution to obtain Optical Wireless (OW) for indoor mobile portable devices. A new optical antenna model is proposed for such portable devices. Optical sweeping in 3D using Acousto Optics Cell Arrays (AOCAs) is proposed. This Opto-electronic method provides better coverage area for Line Of Sight optical link establishment and reconnection. The proposed method also has superior and precise beam divergence manipulation capabilities. Its geometry, coverage area and mobility are analyzed. Indoor dimensions of Height (5m), Width (20m), and Length (20m) are considered. The optical antenna can sweep through the hemispherical shape in the direction of optical beam focal plane using AOCAs. The link budget analysis is done using commercially available component ratings and the optical power for the entire coverage area of the optical antenna is found to be higher than the receiver's minimum sensitivity. The limitations on the nodes such as size and power consumption are studied and the model is designed to run efficiently on power ratings of the portable device battery. The proposed optical antenna can be fabricated in the form of a cube of size 2x2x2 mm. The optical power usage at any given time ranges from 50 mW to 0.5W. The bit error rates from SNR calculations are found to be around 10-10 at data rates of up to 4 Gbps. The Line of Sight (LOS) connection time and reestablishment time ranges from 4 to 7 mus depending on the AOCA process time. VCSEL transceiver optical characteristics are simulated to verify the validity of the model.

  18. Optical system designs based on bi-directional sensor devices

    NASA Astrophysics Data System (ADS)

    Grossmann, Constanze; Gawronski, Ute; Perske, Franziska; Notni, Gunther; Tünnermann, Andreas

    2012-10-01

    Small and compact optical system designs are needed in nearly all application scenarios of optical projection and imaging systems, e.g. automotive, metrology, medical or multimedia. Most active optical systems are based on separated imaging (e.g. camera unit) and image generating units (e.g. projection unit). This fact limits the geometrical miniaturization of the system. We present compact optical system designs using the new technology of bi-directional sensor devices. These devices combine light emitting and light detecting elements on one single chip. The application of such innovative opto-electronic devices - so-called bi-directional OLED microdisplays (BiMiDs) - offer a huge potential for miniaturization with a simultaneous increase of performance due to a new integration step. For these new bi-directional sensor devices new optical design concepts for simultaneous and sequential emission and detection are necessary. Because the simultaneous emission and detection can disturb the functionality of the optical system. New concepts has to be applied. A first concept is an exemplary 3-D metrology system applying fringe projection. A second concept is a pico-projection system with an integrated camera function. For both concepts the system configurations and the optical design are discussed. Due to the application of the bi-directional sensor device ultra-compact systems are presented.

  19. Magneto-optical non-reciprocal devices in silicon photonics.

    PubMed

    Shoji, Yuya; Mizumoto, Tetsuya

    2014-02-01

    Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm.

  20. Magneto-optical non-reciprocal devices in silicon photonics

    PubMed Central

    Shoji, Yuya; Mizumoto, Tetsuya

    2014-01-01

    Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm. PMID:27877640

  1. FY2014 LBNL LDRD Annual Report

    SciTech Connect

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nation by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.

  2. Broadband illusion optical devices based on conformal mappings

    NASA Astrophysics Data System (ADS)

    Xiong, Zhan; Xu, Lin; Xu, Ya-Dong; Chen, Huan-Yang

    2017-10-01

    In this paper, we propose a simple method of illusion optics based on conformal mappings. By carefully developing designs with specific conformal mappings, one can make an object look like another with a significantly different shape. In addition, the illusion optical devices can work in a broadband of frequencies.

  3. Optical bistable device with one sinusoidal amplitude grating

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Orriols, G.

    1994-07-01

    A novel type of optical bistable device (OBD) based the Abble theory is proposed, in which the modulation is realized by moving one sinusoidal amplitude grating. When the parameters of this system are chosen properly this system can be a one-channel or two-channel optical bistable device. The mathematical models which describe the optically bistability are obtained. Numerical simulations on the optical bistabilities and the stability analysis on this system for two cases are given. The two-channel OBD may work as a 1 × 2 optical switch or a stable filter for wavelength division multiplexing, and may be applied in code-division multiple access networks and optical recovery circuit.

  4. 2013 SRNL LDRD Annual Report

    SciTech Connect

    McWhorter, S.

    2014-03-07

    This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation in National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.

  5. LDRD Report: Scheduling Irregular Algorithms

    SciTech Connect

    Boman, Erik G.

    2014-10-01

    This LDRD project was a campus exec fellowship to fund (in part) Donald Nguyen’s PhD research at UT-Austin. His work has focused on parallel programming models, and scheduling irregular algorithms on shared-memory systems using the Galois framework. Galois provides a simple but powerful way for users and applications to automatically obtain good parallel performance using certain supported data containers. The naïve user can write serial code, while advanced users can optimize performance by advanced features, such as specifying the scheduling policy. Galois was used to parallelize two sparse matrix reordering schemes: RCM and Sloan. Such reordering is important in high-performance computing to obtain better data locality and thus reduce run times.

  6. Dynamic Optical Grating Device and Associated Method for Modulating Light

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

  7. Magneto-optical switching devices based on Si resonators

    NASA Astrophysics Data System (ADS)

    Noda, Kazuki; Okada, Kazuya; Amemiya, Yoshiteru; Yokoyama, Shin

    2016-04-01

    The magneto-optical switching devices based on Si ring and Si photonic crystal resonators have been fabricated using a Bi3Fe5O12 (BIG) film deposited by the metal organic decomposition (MOD) method. The quality of the obtained BIG film was evaluated by X-ray diffraction and the magneto-optical Kerr effect and relatively good results were obtained. The light modulations of both devices were ≦20% at a wavelength of ˜1.5 µm. The operation mechanisms of both devices are explained by the Cotton-Mouton effect where the magnetic field direction is perpendicular to the light propagation direction.

  8. Rays inserting method (RIM) to design dielectric optical devices

    NASA Astrophysics Data System (ADS)

    Taskhiri, Mohammad Mahdi; Khalaj Amirhosseini, Mohammad

    2017-01-01

    In this article, a novel approach, called Rays Inserted Method (RIM), is introduced to design dielectric optical devices. In this approach, some rays are inserted between two ends of desired device and then the refractive index of the points along the route of rays are obtained. The validity of the introduced approach is verified by designing three types of optical devices, i.e. power splitter, bend, and flat lens. The results are confirmed with numerical simulations by the means of FDTD scheme at the frequency of 100 GHz.

  9. Optical device with low electrical and thermal resistance bragg reflectors

    DOEpatents

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  10. Optical device with low electrical and thermal resistance Bragg reflectors

    DOEpatents

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  11. A quantum optical firewall based on simple quantum devices

    NASA Astrophysics Data System (ADS)

    Amellal, H.; Meslouhi, A.; Hassouni, Y.; El Baz, M.

    2015-07-01

    In order to enhance the transmission security in quantum communications via coherent states, we propose a quantum optical firewall device to protect a quantum cryptosystem against eavesdropping through optical attack strategies. Similar to the classical model of the firewall, the proposed device gives legitimate users the possibility of filtering, controlling (input/output states) and making a decision (access or deny) concerning the traveling states. To prove the security and efficiency of the suggested optical firewall, we analyze its performances against the family of intercept and resend attacks, especially against one of the most prominent attack schemes known as "Faked State Attack."

  12. Variable optical attenuator made by using new electrochromic devices

    NASA Astrophysics Data System (ADS)

    Vergaz, Ricardo; Barrios, David; Sanchez-Pena, Jose M.; Vazquez, Carmen; Pozo-Gonzalo, Cristina; Mecerreyes, David; Pomposo, Jose

    2005-07-01

    Electrochromic (EC) materials are used mainly for domotic applications, such as transparency controlled windows or rear-view mirrors in cars. The device construction is a sandwich of electrochemical compounds, which change their optical properties when applying voltage. Although the changes that are used in the applications take place in the visible, there are also changes in the near infrared region. In the last years, some works have proposed their use in fiber optic applications, mainly as optical modulators or VOAs (Variable Optical Attenuator). EC devices have usually slow responses (several seconds) and low transmittance range, specially the organic ones. The slow response is the major drawback for their use as modulators. But in NIR transmittance ranges, there are promising results in materials like ruthenium or PEDOT (poly(3,4-ethylenedioxythiophene)). In this work, we will study the possible use in VOAs of new EC devices developed with the minimum number of layers, by their response in telecommunications wavelengths. These devices are manufactured in such a way that the integration in fiber optic devices is an easy task. The minimum number of layers and the easy construction are improvements over the existing possibilities. PEDOT is the EC material on these devices, and different manufacturing ways are compared in order to detect the best possible candidate to use.

  13. Fiber-based devices for DWDM optical communication systems

    NASA Astrophysics Data System (ADS)

    Gu, Claire; Xu, Yuan; Liu, Yisi; Pan, Jing-Jong; Zhou, Fengqing; Dong, Liang; He, Henry

    2005-01-01

    Photonic devices with low insertion loss are important in dense wavelength division multiplexing (DWDM) systems. Currently most of these devices, such as variable optical attenuators (VOA), switches, filters, and dispersion compensators, etc., involve bulk (or micro-optic) components that require conversions between fibers and free-space optical elements leading to high insertion loss. Recently, we have proposed, analyzed, and demonstrated several fiber based devices for DWDM optical communication systems. Here we present an in-line fiber VOA, a 2x2 switchable wavelength add/drop filter, and high performance dispersion compensators. The VOA is built with a side-polished fiber covered with a liquid crystal overlay. By varying the orientation of the liquid crystal molecules using an applied electric field, the loss of the device can be controlled. The 2x2 wavelength switch is designed by recording electrically switchable holographic gratings in a layer of holographic polymer dispersed liquid crystal (H-PDLC) sandwiched between two side-polished fibers. The dispersion compensators are based on high precision fiber Bragg gratings (FBG). A unique method for writing FBGs with arbitrary phase and amplitude distributions is demonstrated. All of these devices are analyzed theoretically and demonstrated experimentally. Both theoretical and experimental results will be presented and discussed. These devices are suitable for DWDM optical information transmission and network management.

  14. Phase-change devices for simultaneous optical-electrical applications.

    PubMed

    Au, Yat-Yin; Bhaskaran, Harish; Wright, C David

    2017-08-29

    We present a viable pathway to the design and characterization of phase-change devices operating in a mixed-mode optical-electrical, or optoelectronic, manner. Such devices have potential applications ranging from novel displays to optically-gated switches to reconfigurable metamaterials-based devices. With this in mind, a purpose-built optoelectronics probe station capable of simultaneous optical-electrical excitation and simultaneous optical-electrical response measurement has been designed and constructed. Two prototype phase-change devices that might exploit simultaneous optical and electrical effects and/or require simultaneous optical and electrical characterisation, namely a mixed-mode cross-bar type structure and a microheater-based structure, have been designed, fabricated and characterized. The microheater-based approach was shown to be capable of successful thermally-induced cycling, between amorphous and crystalline states, of large-area phase-change devices, making it attractive for practicable pixel fabrication in phase-change display applications.

  15. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  16. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  17. Optical sensing: recognition elements and devices

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter G.

    2012-09-01

    The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.

  18. Optical-Microwave Interactions in Semiconductor Devices.

    DTIC Science & Technology

    1980-02-01

    frequency response, Liquid phase epitaxial crystal growth, Optical waveguide, Photoconductivity, Traps. 1ABSTRACT (Contirniv an, reverse side If neceaa..3...of the sensitivity for a photoconductor has been 2 given by DiDomenico and Svelto. The change in photocurrent due to optical illumination is qq AT AI...at dc ( 0 tr where 0A is the number of photons /sec (uniform illumination is assumed). The sensitivity can be written as AI oAh = o S° ~ L~ (2) 0oA

  19. Fabrication of micro-optical devices

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Marley, J.; Gal, George; Purdy, Don

    1993-01-01

    We have fabricated a variety of micro-optic components including Fresnel and non-Frensel lenses, off-axis and dispersive lenses with binary stepped contours, and analog contours. Process details for all lens designs fabricated are given including multistep photolithography for binary fabrication and grayscale mask photolithography for analog fabrication. Reactive ion etching and ion beam milling are described for the binary fabrication process, while ion beam milling was used for the analog fabrication process. Examples of micro-optic components fabricated in both Si and CdTe substrates are given.

  20. Femtosecond Optics: Advanced Devices and Ultrafast Phenomena

    DTIC Science & Technology

    2007-05-31

    periodically poled lithium niobate (PPLN), which already represents a significant advance . Gain is given by G=0.25(1+ exp(gl)), where for 7 t2 PPLN, g...H. Sotobayashi, J.T. Gopinath, and E.P. Ippen, ൟ cm long Bi20 3-based EDFA for picosecond pulse amplification with 80 nm gain bandwidth," IEEE...will be minimized by keeping the data in the optical domain. Such all- optical networks require advanced photonic technologies for a variety of

  1. Optically controlled multiple switching operations of DNA biopolymer devices

    SciTech Connect

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  2. Near-field Optical Measurements of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Farahi, R. H.; Wetsel, G. C., Jr.; Cunningham, A. J.

    1998-03-01

    We are applying a Reflection-mode Apertureless Near-field Scanning Optical Microscope (RANSOM) to study defect detection in semiconductor devices and materials. Optical data from approach curves show a characteristic near-field optical signal. Evaluation of lateral definition is accomplished by correlation with known features of 100 nm or less. The RANSOM regulates on the force between the tip and sample; probe tips are made of etched tungsten wires which vibrate in the pecking mode. Since the metallic tip is conductive, we have a multi-purpose scanned probe capable of simultaneously gathering current, force (topographical), and optical data. With the RANSOM, leakage currents through a SiO2 layer can be detected along with topographical and optical information. Such capability could be applied to the current leakage problem across field-oxide edges. Knowledge of the leakage current across the field oxide and the thickness gradient of its edge is very important in process development of CMOS devices.

  3. Active Optical Devices and Applications. Volume 228

    DTIC Science & Technology

    1980-04-01

    and to predict the -resultant system performance. Acknowledgements The authors wish to thank Paul Noren for the optical model and John Pepi and Joe...just how strange the Universe is. Acknowledgements I would like to thank Dr. Samuel H. Morgan, Jr. for his invaluable assistance in the preparation of

  4. Fiber-Optics -- A Sensing Device.

    DTIC Science & Technology

    1986-08-01

    perturbations in sound, displacement, temperature, pressure, magnetic fields, electric fields, rotation rate, strain, liquid level, and flow. The light...ReflectionllquId crystal ) hi Temperature Phololumutescence (phospher, semiconductor) intensy Spectrum Block body radiation M Polarization Birefringence...29]. The tranduction element consists of a thermochromic solution of a Cobalt salt that varies its optical absorption spectrum with temperature. A

  5. Exploring Novel Crystals and Designs for Acousto-Optic Devices

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Jonathan B.

    Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency

  6. Progress towards interaction-free all-optical devices

    NASA Astrophysics Data System (ADS)

    Strekalov, Dmitry V.; Kowligy, Abijith S.; Huang, Yu-Ping; Kumar, Prem

    2014-06-01

    We present an all-optical control device in which coupling a weak control optical field into a high-Q lithium niobate whispering-gallery-mode microcavity decouples it from a signal field due to nonlinear optical interactions. This results in switching and modulation of the signal with low-power control pulses. In the quantum limit, the underlying nonlinear-optical process corresponds to the quantum Zeno blockade. Its "interaction-free" nature effectively alleviates loss and decoherence for the signal waves. This work therefore presents experimental progress towards acquiring large phase shifts with few photons or even at the single-photon level.

  7. Photonic materials, structures and devices for Reststrahlen optics.

    PubMed

    Feng, K; Streyer, W; Zhong, Y; Hoffman, A J; Wasserman, D

    2015-11-30

    We present a review of existing and potential next-generation far-infrared (20-60 μm) optical materials and devices. The far-infrared is currently one of the few remaining frontiers on the optical spectrum, a space underdeveloped and lacking in many of the optical and optoelectronic materials and devices taken for granted in other, more technologically mature wavelength ranges. The challenges associated with developing optical materials, structures, and devices at these wavelengths are in part a result of the strong phonon absorption in the Reststrahlen bands of III-V semiconductors that collectively span the far-infrared. More than just an underexplored spectral band, the far-IR may also be of potential importance for a range of sensing applications in astrochemistry, biology, and industrial and geological processes. Additionally, with a suitable far-IR optical infrastructure, it is conceivable that even more applications could emerge. In this review, we will present recent progress on far-infrared materials and phenomena such as phononic surface modes, engineered composite materials, and optoelectronic devices that have the potential to serve as the next generation of components in a far-infrared optical tool-kit.

  8. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  9. Design, fabrication and analysis of integrated optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Sikorski, Yuri

    Throughout the present dissertation, the main effort has been to develop the set of design rules for optical integrated circuits (OIC). At the present time, when planar optical integrated circuits seem to be the leading technology, and industry is heading towards much higher levels of integration, such design rules become necessary. It is known that analysis of light propagation in rectangular waveguides can not be carried out exactly. Various approximations become necessary, and their validity is discussed in this text. Various methods are used in the text for calculating the same problems, and results are compared. A few new concepts have been suggested to avoid approximations used elsewhere. The second part of this dissertation is directed to the development of a new technique for the fabrication of optical integrated circuits inside optical glass. This technique is based on the use of ultrafast laser pulses to alter the properties of glasses. Using this method we demonstrated the possibility of changing the refractive index of various passive and active optical glasses as well as ablating the material on the surface in a controlled fashion. A number of optical waveguide devices (e.g. waveguides, directional couplers, diffraction gratings, fiber Bragg gratings, V-grooves in dual-clad optical fibers, optical waveguide amplifiers) were fabricated and tested. Testing included measurements of loss/throughput, near-field mode profiles, efficiency and thermal stability. All of the experimental setup and test results are reported in the dissertation. We also demonstrated the possibility of using this technique to fabricate future bio-optical devices that will incorporate an OIC and a microfluidic circuit on a single substrate. Our results are expected to serve as a guide for the design and fabrication of a new generation of integrated optical and bio-optical devices.

  10. Performance capabilities of fiber optic components and photonic devices

    NASA Astrophysics Data System (ADS)

    Jha, Asu R.

    2001-09-01

    This paper reveals performance capabilities of critical fiber optic components and photonic devices, which have potential applications in industrial, commercial and military systems and equipment. These devices are widely used in battlefield, space surveillance, medical diagnosis, crime fighting, and detection of terrorist activities. Performance capabilities of fiber optic components for possible applications in WDM and DWDM systems are summarized. Photonic devices and sensor for forward battlefield applications are identified with emphasis on performance and reliability. Performance parameters of Erbium-doped fiber amplifiers, Erbium doped waveguide amplifiers, and optical hybrid amplifiers comprising of EDFAs and Raman amplifiers are discussed withe emphasis on bandwidth, gain-flatness, data handling capability, channel capacity and cost-effectiveness.

  11. Plasma channel optical-pumping device and method

    SciTech Connect

    Judd, O.P.

    1981-07-17

    A device and method are described for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an elctrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature black-body radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device.

  12. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  13. Pilot Project for Spaceborne Massive Optical Storage Devices

    NASA Technical Reports Server (NTRS)

    Chen, Y. J.

    1996-01-01

    A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.

  14. Optical Measuring Device For Interior Dimensions Of Automobiles

    NASA Astrophysics Data System (ADS)

    Sugiyama, Satoshi; Takahashi, Nobuaki

    1980-10-01

    The developed measuring device is a noncontacting system utilizing a He-Ne laser, which permits rapid measurement of interior dimensions of automobiles, based on the principle of optical triangulation. Laser beam is projected from the head of the device to a point to be measured as a spot and this spot is automatically searched by means of a mirror, a lens and a two-element photodetector to measure the length along the projection axis. The head of the device including optical parts is rotated by a motor and the rotating angle is measured by a rotary encoder. Thus, the measured length and rotating angle are calculated into rectangular coordinate values with a microcomputer, and the coordinate values can be represented on a panel and also punched out on a teletypewriter. The values thus obtained with this device have been successfully utilized for a computer aided design system for automobiles.

  15. Nanophotonic Devices in Silicon for Nonlinear Optics

    DTIC Science & Technology

    2010-10-15

    Leuthold, W. Freude , J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon Organic Hybrid Technology...2010. [24] L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li,R. Bonk, R. Palmer, T. Schellinger, C. Koos,W. Freude , J. Leuthold, A. Barklund, R...T. Michinobu, F. Diederich, W. Freude , and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides

  16. Use and efficacy of DOVIDs and other optical security devices

    NASA Astrophysics Data System (ADS)

    Lancaster, Ian M.

    2006-02-01

    Diffractive optically variable image devices (DOVIDs) have become the primary overt authentication or security feature on protected documents and products, apart from the substrate itself and the printed design - which are the oldest but still effective authentication features. But their efficacy is being compromised by false expectations and counterfeits. It is therefore necessary to establish a clear statement of the role of DOVIDs and their function in the inspection and protection of suspect items, which will also apply to other optical security devices (OSDs).

  17. Implantable optical-electrode device for stimulation of spinal motoneurons

    NASA Astrophysics Data System (ADS)

    Matveev, M. V.; Erofeev, A. I.; Zakharova, O. A.; Pyatyshev, E. N.; Kazakin, A. N.; Vlasova, O. L.

    2016-08-01

    Recent years, optogenetic method of scientific research has proved its effectiveness in the nerve cell stimulation tasks. In our article we demonstrate an implanted device for the spinal optogenetic motoneurons activation. This work is carried out in the Laboratory of Molecular Neurodegeneration of the Peter the Great St. Petersburg Polytechnic University, together with Nano and Microsystem Technology Laboratory. The work of the developed device is based on the principle of combining fiber optic light stimulation of genetically modified cells with the microelectrode multichannel recording of neurons biopotentials. The paper presents a part of the electrode implant manufacturing technique, combined with the optical waveguide of ThorLabs (USA).

  18. New materials technology for latching electro-optic devices

    NASA Astrophysics Data System (ADS)

    Hood, Patrick J.; Mastrangelo, John C.; Chen, Shaw H.

    1999-04-01

    This paper presents the current status of a new class of liquid crystal material being developed for latching electrooptic applications. This new material has the unique property of being electrooptic and fully latching. That is, in one state, the material has the properties of a conventional liquid crystal, capable of being aligned with either an electric or magnetic field; in its other state, it is an optical quality solid that maintains the molecular alignment set while in the fluid state. Experiments have shown that current materials can be switched on the order of milliseconds, as is the case with conventional nematic liquid crystals. In the solid state, the electric field can be removed with no change to the previously set optical properties because the molecular alignment is frozen in place, which should last for an extended period of time. In addition, the material exhibits broad temperature stability in the solid state, enabling devices to be developed that operate from cryogenic temperatures to 80 degrees C without the use of a temperature controller. This new material is ideally suited for applications where the size and mechanical robustness of an electrooptic device is desired, along with the latching capability of optomechanical devices. This materials technology alone will currently not meet high-speed switch requirements. However, this technology can be integrated with other state-of-the-art high-speed materials to provide a high-speed latching device. Devices currently under investigation using this materials include optical switches, optical attenuators and tunable filters.

  19. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    SciTech Connect

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  20. Fabrication and Characterization of Nano-Optic Devices

    DTIC Science & Technology

    2001-04-01

    FINAL 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS FABRICATION AND CHARACTERIZATION OF NANO -OPTIC DEVICES 6. AUTHOR(S) PROFESSOR SCHERER 7. PERFORMING...has to be pumped to overcome lasing threshold. This compares to thousands of modes which have to be pumped in conventional semiconductor lasers in...lasers, advances in high speed lasers and detectors, low power micro -optical interconnects, and high efficiency LEDs for illumination and display

  1. Optically-gated Non-latched High Gain Power Device

    DTIC Science & Technology

    2008-11-21

    generation device, CAD drawings of the photomasks have been finalized and reticules have been fabricated. Process-flow designs have been completed. Growth...fundamental effects of optical parameter modulation have been studied for the GaAs OTPT. First, we show the dynamic time- evolution of 20 electric...Electric Electric .field (V/cm) Fig. 11: Time- evolution of electric field inside OTPT during turn-on process - optical intensity increases in

  2. Visual fatigue induced by optical misalignment in binocular devices: application to night vision binocular devices

    NASA Astrophysics Data System (ADS)

    Gavrilescu, Maria; Battista, Josephine; Ibbotson, Michael R.; Gibbs, Peter

    2015-05-01

    The additional and perhaps unnatural eye-movements required to fuse misaligned binocular images can lead to visual fatigue and decreased task performance. The eyes have some tolerance to optical misalignment. However, a survey of the scientific literature reveals a wide range of recommended tolerances but offers little supporting experimental evidence. Most experimental studies are based on small numbers of participants exposed to brief periods of optical misalignment. Therefore, these published tolerance limits might have limited relevance for long-duration exposure to misaligned binocular devices. Prolonged use of binocular devices may cause visual fatigue irrespective of binocular alignment especially for complex tasks such as night vision flying. This study attempts to identify measures most sensitive to misalignment in order to establish relevant tolerance limits for in-service binocular night vision devices. Firstly, we developed a rugged and deployable test bench that can measure binocular alignment with a reproducibility error of less than 1 arcmin. The bench was used to identify and investigate major factors affecting the stability of the optical misalignment over time. Our results indicated that the optical misalignment of a given device changed over time as a function of the in-service usage and thermal history of the device. Secondly, participants were exposed to experimentally controlled levels of optical misalignment typical of those measured on in-service binocular night vision devices. The visual fatigue of each participant was assessed via a set of oculomotor parameters. The oculomotor parameters showing high sensitivity to optical misalignment were compared for subjects exposed to extended periods of misalignment in a baseline reading task and a task using an actual night vision device.

  3. Impact of optical antennas on active optoelectronic devices.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2014-10-07

    Remarkable progress has been made in the fabrication and characterization of optical antennas that are integrated with optoelectronic devices. Herein, we describe the fundamental reasons for and experimental evidence of the dramatic improvements that can be achieved by enhancing the light-matter interaction via an optical antenna in both photon-emitting and -detecting devices. In addition, integration of optical antennas with optoelectronic devices can lead to the realization of highly compact multifunctional platforms for future integrated photonics, such as low-cost lab-on-chip systems. In this review paper, we further focus on the effect of optical antennas on the detectivity of infrared photodetectors. One particular finding is that the antenna can have a dual effect on the specific detectivity, while it can elevate light absorption efficiency of sub-wavelength detectors, it can potentially increase the noise of the detectors due to the enhanced spontaneous emission rate. In particular, we predict that the detectivity of interband photon detectors can be negatively affected by the presence of optical antennas across a wide wavelength region covering visible to long wavelength infrared bands. In contrast, the detectivity of intersubband detectors could be generally improved with a properly designed optical antenna.

  4. Visualizing invisibility: metamaterials-based optical devices in natural environments.

    PubMed

    Danner, Aaron J

    2010-02-15

    Photorealistic ray tracing methods have been developed that allow us to see how devices such as imperfect invisible spheres and invisibility cloaks would appear if actually constructed and placed in outdoor environments. The methods developed allow photorealistic depiction of devices with gradient indices of refraction and birefringence or trirefringence in non-Cartesian coordinate systems (and hence accurately handle ray splitting/beam walkoff). The resulting images, which can be rendered in real time to produce animations as will be shown, allow subjective assessment of the performance of optical instruments such as invisibility devices in environments in which they are intended to ultimately be used.

  5. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, B.L.

    1995-07-04

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance. 5 figs.

  6. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance.

  7. Optical device with conical input and output prism faces

    DOEpatents

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  8. Compensated vibrating optical fiber pressure measuring device

    DOEpatents

    Fasching, George E.; Goff, David R.

    1987-01-01

    A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

  9. FY 2014 LDRD Annual Report Project Summaries

    SciTech Connect

    Tomchak, Dena

    2015-02-01

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  10. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  11. Enhanced photocoagulation with catheter-based diffusing optical device

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Kim, Jeehyun; Oh, Jungwhan

    2012-11-01

    A novel balloon catheter-based diffusing optical device was designed and evaluated to assist in treating excessive menstrual bleeding. A synthetic fused-silica fiber was micro-machined precisely to create scattering segments on a 25 mm long fiber tip for uniform light distribution. A visible wavelength (λ=532 nm) was used to specifically target the endometrium due to the high vascularity of the uterine wall. Optical simulation presented 30% wider distribution of photons along with approximately 40% higher irradiance induced by addition of a glass cap to the diffuser tip. Incorporation of the optical diffuser with a polyurethane balloon catheter considerably enhanced coagulation depth and area (i.e., 3.5 mm and 18.9 cm2 at 1 min irradiation) in tissue in vitro. The prototype device demonstrated the coagulation necrosis of 2.8±1.2 mm (n=18) and no thermal damage to myometrium in in vivo caprine models. A prototype 5 cm long balloon catheter-assisted optical diffuser was also evaluated with a cadaveric human uterus to confirm the coagulative response of the uterine tissue as well as to identify the further design improvement and clinical applicability. The proposed catheter-based diffusing optical device can be a feasible therapeutic tool to photocoagulate endometrial cell layers in an efficient and safe manner.

  12. Lithographically defined tapered waveguides for transformation optics device applications

    NASA Astrophysics Data System (ADS)

    Adams, Todd; Ermer, Kurt; Piazza, Alex; Schaefer, Dave; Smolyaninova, Vera; Smolyaninov, Igor

    2013-03-01

    Recent progress in metamaterials and transformation optics (TO) give rise to such fascinating devices as perfect lenses, invisibility cloaks, etc., which are typically achieved with metamaterials. Realization of these devices using electromagnetic metamaterials would require sophisticated nanofabrication techniques. Recently we have demonstrated that the same effect may be achieved by much simpler means. By tapering a waveguide, one can literally ``bend'' optical space and achieve the same result. Our approach leads to much simpler designs, which require conventional lithographic techniques and readily available dielectric materials. Here we report fabrication of low cost TO devices, such as analogues of metamaterial lenses and invisibility cloaks. Their broadband properties will be demonstrated and performance for light of different polarization will be discussed. This work is supported by NSF grants DMR-0348939 and DMR-110476.

  13. Nanopatterning by laser interference lithography: applications to optical devices.

    PubMed

    Seo, Jung-Hun; Park, Jung Ho; Kim, Seong-Il; Park, Bang Ju; Ma, Zhenqiang; Choi, Jinnil; Ju, Byeong-Kwon

    2014-02-01

    A systematic review, covering fabrication of nanoscale patterns by laser interference lithography (LIL) and their applications for optical devices is provided. LIL is a patterning method. It is a simple, quick process over a large area without using a mask. LIL is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with LIL are the platform for further fabrication of nanostructures and growth of functional materials used as the building blocks for devices. Demonstration of optical and photonic devices by LIL is reviewed such as directed nanophotonics and surface plasmon resonance (SPR) or large area membrane reflectors and anti-reflectors. Perspective on future directions for LIL and emerging applications in other fields are presented.

  14. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  15. Tunable Optical True-Time Delay Devices Would Exploit EIT

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  16. Gratings in nonlinear optical polymers for integrated optical device applications

    NASA Astrophysics Data System (ADS)

    Kardinahl, Thiemo; Franke, Hilmar

    1993-12-01

    The polymer poly(methyl methacrylate) (PMMA) doped with the active photoinitiator dimethoxyphenalacetophenon (DMPA) is a well known material to form permanent gratings by uv-holographie. An additional doping with the photochromic material E-(alpha) (2,5- dimethyl-3-furyl)ethylidene(adamantylidene)succinic anhydride (Aberchrome 670) leads to a one step fabrication of a nonlinear optical grating. After the permanent grating is fixed, the refractive index of the grating can be tuned by a homogenous illumination. The diffraction efficiency of the grating can be tuned because the fulgide Aberchrome 670 undergoes a reversible transition from its bleached to its colored form by homogeneous uv illumination and back again by irradiating the film with a wavelength near the absorption maximum (here (lambda) equals 514.5 nm).

  17. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE.

    PubMed

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-06-05

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter.

  18. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE

    PubMed Central

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-01-01

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter. PMID:22199458

  19. Multiple optical probing of high frequency semiconductor devices

    NASA Astrophysics Data System (ADS)

    Fetterman, Harold

    1989-11-01

    The purchase was made of a complete Nd:YAG pumped picosecond dye laser and related optical components. Matching support was provided for an autocorrelator, power meters, lock-in detectors and Optical Table to form a complete measurement system. The idea was to fabricate a picosecond system which would measure devices and systems out to at least 200 GHz. It would be used to validate Network analyzer measurements in the region of overlap and to develop a degree of confidence in the entire technique of S parameter measurement using picosecond pulses. The highest frequency GaAs and GaAs alloy devices were investigated. New types of devices, MMIC amplifiers and finally the operational constraints of optical interconnections were studied. The system proved to be so useful that all of these tests were preformed and were extended to the generation of millimeter radiation and the demonstration of spectroscopic use. Current measurements are on ballistic field effect devices and resonant tunneling structures which were fabricated by local industries and universities directly as a result of this unique measurement capability.

  20. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin

    1998-01-01

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.

  1. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, D.K.; Bechinger, C.S.; Tracy, C.E.

    1998-01-13

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.

  2. Germanium electroabsorption devices on silicon for optical interconnects

    NASA Astrophysics Data System (ADS)

    Kuo, Yu-Hsuan; Miller, David A. B.; Harris, James S.

    2006-02-01

    Monolithic integration of both electronic and optic components into a silicon-based platform will provide high-speed optical interconnects and solve the power-bandwidth limitations. However, the lack of strong optical effects in silicon has limited the progress in the transmitter-end applications. Recently our research had demonstrated strong quantum-confined Stark effect (QCSE) in germanium quantum-well modulators on silicon. This first strong physical mechanism for group-IV photonics has a comparable behavior to III-V material systems. With proper quantum well structure design, we also demonstrated QCSE in C-band for long distance communications with CMOS-operational temperatures. The device fabrication is also compatible with standard silicon chip processes. Since the QCSE, a type of electroabsorption effect, requires much shorter optical length, it is suitable for device miniaturizations and possible for use in both lateral and vertical modulator configurations. Moreover, silicon-germanium electroabsorption modulators are inherently photodetectors, this advantage will enable efficient transmitter/receiver applications for optical interconnects.

  3. Fiber-Optic Photoelastic Device Senses Pressure Of Hot Gas

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.; Wesson, L. N.

    1995-01-01

    Fiber-optic/photoelastic device measures gas pressures up to 600 psi at operating temperatures as high as 1,100 degrees C. Pressure on fused-silica sensing element gives rise to birefringence via photoelastic effect. Polarization of light changed by birefringence; change in polarization measured and used to infer pressure causing it. Device prototype of gas-pressure sensor for aircraft engine. Mounted in engine at or near desired measurement point, where it responds to both time-varying and steady components of pressure.

  4. Computational analysis of endometrial photocoagulation with diffusing optical device.

    PubMed

    Kwon, Jinhee; Lee, Chang-Yong; Oh, Junghwan; Kang, Hyun Wook

    2013-01-01

    A balloon-catheter optical diffuser for endometrial treatment was evaluated with computational thermal analysis. Various catheter materials and dimensions were implemented to identify the optimal design for the device. Spatial and temporal development of temperature during 30-sec irradiation of 532-nm light demonstrated thermal insulation effects of polyurethane on temperature increase up to 384 K, facilitating the irreversible denaturation. The current model revealed the degree of thermal coagulation 13% thicker than experimental results possibly due to lack of tissue dynamics and light intensity distribution. In combination with photon distribution, the analytical simulation can be a feasible tool to optimize the new optical diffuser for efficient and safe endometrial treatment.

  5. Optical elements for optimal brightness of single emitter devices

    NASA Astrophysics Data System (ADS)

    Homburg, O.; Jarczynski, M.; Mitra, T.

    2011-03-01

    Semiconductor lasers play an important role in many applications. Depending on the wavelength of the emitted laser light in the blue (e.g. 405-445 nm), red (~ 650 nm), near infrared (780 - 1070 nm) and e.g. the eye-safe wavelength region around 1500 nm a manifold of applications exist. Due to their increasing power and brightness single emitter devices are becoming increasingly widely used for the assembly and packaging of high power diode lasers. In the near infrared typical emitter widths are 50, 90 (100) and 200 μm with power levels available > 15 W. Also larger stripes are available - up to 1000 μm - with power levels > 25W. For highest power laser devices not only the power of the emitter is important - but of equal importance is the subsequent optics to collect all the emitted power while maintaining the brightness of the source. High NA acylindrical micro-lenses very well account for the strong asymmetric emitter characteristics of the fast and slow axis and thus, result in best collimation and coupling efficiencies in contrast to spherical lenses. LIMO's cost-effective micro-optics wafer technology is most suited for such acylindrical optics. It allows the manufacture of different materials to cover wavelengths ranges from the UV to the NIR, e.g. 380 - 2000 nm. Since both sides of a wafer can be structured with crossed cylindrical lenses one single monolithic optical element simultaneously shapes the fast and slow axis of the emitted light. Additionally, mechanical reference planes can be integrated in such monolithic optics for precise and simple integration. Application examples for collimation and fiber coupling optics in the near infrared as well as focussing/pump optics in the blue wavelength range are shown.

  6. Applications of electro-optic gratings in integrated optical signal processing devices

    NASA Technical Reports Server (NTRS)

    Verber, C. M.

    1981-01-01

    A variety of applications of electro-optically induced Bragg gratings in integrated optical signal processing and computation devices are shown. The gratings are easy to fabricate, operate efficiently on relatively low voltages and have design principles which are well known and reliable. The component allows a rapid and efficient interaction with an optical wave in a planar electro-optic waveguide. The operation of such gratings and their use as intensity modulators, spatial light modulators, and components in correlators and in a variety of computational units is described.

  7. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  8. Evaluation of embolic deflection device using optical particle tracking.

    PubMed

    Ionita, Ciprian N; Bednarek, Daniel R; Rudin, Stephen

    2013-03-29

    Trans-aortic valve replacement is a new endovascular procedure which has started to be used routinely in cardiac interventional suites. During such procedures a stent-like device containing new aortic valves is placed over the damaged ones, possibly causing calcifications to be dislodged and released in arteries leading to stroke. To prevent such events, new devices are being developed to provide distal protection to the brain supplying arteries. Currently there is a need to evaluate such device efficacy in a repeatable manner. We are proposing and investigating such a method based on particle optical tracking. We simulated such protective devices using two porous screens (150 and 200 μm pore size) which were placed in an arterial bifurcation phantom connected to a clinically relevant flow loop. A mask was acquired and gold embolic particles (100-300μm) were injected at a steady rate using a motorized injector. Optical images with 2 ms exposure were acquired at 30 fps. Images were subtracted, thresholded and filtered using a 5×5 median filter. ROI's were drawn over the main and bifurcating arteries and a particle counting algorithm was used to estimate particle flow rates in each artery for each run. The unprotected and the two protected cases were evaluated. Before filter placement, the particle flow rate was 60 and 40 %, respectively, of the main artery. After the filter placement, the particle flow rate in the protected branch was 4% and 8% of the particle flow rate in the main artery. We present a method to assess the efficacy of such devices using an optical particle tracking and counting technique.

  9. Development of highly integrated magetically and electrostatically actuated micropumps : LDRD 64709 final report.

    SciTech Connect

    Sosnowchik, Brian D.; Galambos, Paul C.; Hendrix, Jason R.; Zwolinski, Andrew

    2003-12-01

    The pump and actuator systems designed and built in the SUMMiT{trademark} process, Sandia's surface micromachining polysilicon MEMS (Micro-Electro-Mechanical Systems) fabrication technology, on the previous campus executive program LDRD (SAND2002-0704P) with FSU/FAMU (Florida State University/Florida Agricultural and Mechanical University) were characterized in this LDRD. These results demonstrated that the device would pump liquid against the flow resistance of a microfabricated channel, but the devices were determined to be underpowered for reliable pumping. As a result a new set of SUMMiT{trademark} pumps with actuators that generate greater torque will be designed and submitted for fabrication. In this document we will report details of dry actuator/pump assembly testing, wet actuator/pump testing, channel resistance characterization, and new pump/actuator design recommendations.

  10. Optical DNA mapping in nanofluidic devices: principles and applications.

    PubMed

    Müller, Vilhelm; Westerlund, Fredrik

    2017-02-14

    Optical DNA mapping has over the last decade emerged as a very powerful tool for obtaining long range sequence information from single DNA molecules. In optical DNA mapping, intact large single DNA molecules are labeled, stretched out, and imaged using a fluorescence microscope. This means that sequence information ranging over hundreds of kilobasepairs (kbp) can be obtained in one single image. Nanochannels offer homogeneous and efficient stretching of DNA that is crucial to maximize the information that can be obtained from optical DNA maps. In this review, we highlight progress in the field of optical DNA mapping in nanochannels. We discuss the different protocols for sequence specific labeling and divide them into two main categories, enzymatic labeling and affinity-based labeling. Examples are highlighted where optical DNA mapping is used to gain information on length scales that would be inaccessible with traditional techniques. Enzymatic labeling has been commercialized and is mainly used in human genetics and assembly of complex genomes, while the affinity-based methods have primarily been applied in bacteriology, for example for rapid analysis of plasmids encoding antibiotic resistance. Next, we highlight how the design of nanofluidic channels can been altered in order to obtain the desired information and discuss how recent advances in the field make it possible to retrieve information beyond DNA sequence. In the outlook section, we discuss future directions of optical DNA mapping, such as fully integrated devices and portable microscopes.

  11. Polymer optical waveguide devices for mode-division-multiplexing applications

    NASA Astrophysics Data System (ADS)

    Chiang, Kin Seng

    2017-05-01

    Mode-division multiplexing (MDM), which allows different guided modes of a few-mode fiber to carry different signals, is a new technology being actively pursued worldwide to increase the signal-carrying capacity of a fiber. For the development of the MDM technology, many mode-controlling devices are needed, such as mode converters, mode (de)multiplexers, mode filters, and mode-selective switches. Among the various technologies available for the implementation of such devices, the polymer waveguide technology offers many distinct advantages. This paper presents a review of polymer waveguide devices for MDM applications, which include grating-based mode converters, 3D mode (de)multiplexers, graphene-based mode filters, and thermo-optic mode-selective switches.

  12. In plane optical sensor based on organic electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc; Rensing, Peter; van Heck, Gert; Sharpe, Ruben; Allard, Bart; Wieringa, Fokko; Kruijt, Peter; Meulendijks, Nicole; Jansen, Henk; Schoo, Herman

    2008-08-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils with OLED and OPD arrays form an in-plane optical sensor platform (IPOS). This platform can be extended with a wireless data and signal processing unit yielding a sensor node. The focus of our research is to engage the node in a healthcare application, in which a bandage is able to monitor the vital signs of a person, a so-called Smart Bandage. One of the principles that is described here is based on measuring the absorption modulation of blood volume induced by the pulse (photoplethysmography). The information from such a bandage could be used to monitor wound healing by measuring the perfusion in the skin. The OLED and OPD devices are manufactured on separate foils and glass substrates by means of printing and coating technologies. Furthermore, the modular approach allows for the application of the optical sensing unit in a variety of other fields including chemical sensing. This, ultimately enables the measurement of a large variety of physiological parameters using the same bandage and the same basic sensor architecture. Here we discuss the build-up of our device in general terms. Specific characteristics of the used OLEDs and OPDs are shown and finally we demonstrate the functionality by simultaneously recorded photoplethysmograms of our device and a clinical pulseoximeter.

  13. A simple approach for an optically transparent nanochannel device prototype.

    PubMed

    Liang, Fupeng; Ju, An; Qiao, Yi; Guo, Jing; Feng, Haiqing; Li, Junji; Lu, Na; Tu, Jing; Lu, Zuhong

    2016-03-21

    Compared with microfluidic devices, the fabrication of structure-controllable and designable nanochannel devices has been considered to have high costs and complex procedures, which require expensive equipment and high-quality raw materials. Exploring fast, simple and inexpensive approaches in nanochannel fabrication will be greatly helpful to speed up laboratory studies of nanofluidics. Here we developed a simple and inexpensive approach to fabricate a nanochannel device with a glass/epoxy resin/glass structure. The grooves were engraved using a UV laser on an aluminum sacrificial layer on the substrate glass, and epoxy resin was coated on the substrate and stuffed fully into the grooves. Another glass plate with holes for fluidic inlets and outlets was bonded on the top of the resin layer. The nanochannels were formed by etching thin sacrificial layers electrochemically. Meanwhile, the microstructures of the fluidic outlets and inlets could be fabricated simultaneously to the nanochannel formation. The total processing time for the simple nanochannel device took less than 10 hours. Optically transparent nanochannels with a depth of up to 20 nm were achieved. Nanofluidic behaviors in the nanochannels were observed under both optical and fluorescence microscopes.

  14. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices.

    PubMed

    Vespini, V; Coppola, S; Todino, M; Paturzo, M; Bianco, V; Grilli, S; Ferraro, P

    2016-01-21

    We report a novel method for direct printing of viscous polymers based on a pyro-electrohydrodynamic repulsion system capable of overcoming limitations on the material type, geometry and thickness of the receiving substrate. In fact, the results demonstrate that high viscosity polymers can be easily manipulated for optical functionalizing of lab-on-a-chip devices through demonstration of direct printing of polymer microlenses onto microfluidic chips and optical fibre terminations. The present system has great potential for applications from biomolecules to nano-electronics. Moreover, in order to prove the effectiveness of the system, the optical performance of such microlenses has been characterized by testing their imaging capabilities when the fibroblast cells were allowed to flow inside the microfluidic channel, showing one of their possible applications on-board a LoC platform.

  15. Overview of Stellarator Divertor Studies: Final Report of LDRD Project 01-ERD-069

    SciTech Connect

    Fenstermacher, M E; Rognlien, T D; Koniges, A; Unmansky, M; Hill, D N

    2003-01-21

    A summary is given of the work carried out under the LDRD project 01-ERD-069 entitled Stellarator Divertor Studies. This project has contributed to the development of a three-dimensional edge-plasma modeling and divertor diagnostic design capabilities at LLNL. Results are demonstrated by sample calculations and diagnostic possibilities for the edge plasma of the proposed U.S. National Compact Stellarator Experiment device. Details of the work are contained in accompanying LLNL reports that have been accepted for publication.

  16. Thermo-optic silica PLC devices for applications in high speed optical signal processing

    NASA Astrophysics Data System (ADS)

    Blanchetiere, Chantal; Callender, Claire L.; Jacob, Sarkis; Ledderhof, Christopher J.; Dumais, Patrick; Celo, Dritan; Chen, Lawrence R.; Samadi, Payman

    2011-08-01

    The optimization of a 2×2 silica-on-silicon Mach-Zehnder interferometer (MZI) thermo-optic switch is presented. The device consists of 2 multimode interference (MMI) couplers as splitter and combiner with metal heater strips for phase control. The switching characteristics of the devices have been examined in detail as a function of several parameters. The electrical power consumption of the switch has been reduced by a factor of 2 by etching trenches alongside the waveguide heaters located on the arms of the MZI, and the polarization dependent loss has been controlled and reduced through adjustment of top cladding properties. The effect on the response time of the switch of these design changes has been investigated. Detailed characterization of the devices will be presented, and trade-offs in optimization discussed. Incorporation of these device elements into increasingly complex components for new applications in optical signal processing will be demonstrated.

  17. III-V Modulation and Switching Devices for Optical System Applications

    DTIC Science & Technology

    1991-10-14

    include optical communication , optical memory, optical scanning, etc. However, the optical computer still remains a dream. Earlier spectacular...applications. Even in optical communication , the full potential of optics remains unrealized because of lack of more tailorable devices such as wavelength selective detectors.

  18. Injection-locked composite lasers for mm-wave modulation : LDRD 117819 final report.

    SciTech Connect

    Wendt, Joel Robert; Vawter, Gregory Allen; Raring, James; Tauke-Pedretti, Anna; Alford, Charles Fred; Skogen, Erik J.; Chow, Weng Wah; Cajas, Florante G.; Overberg, Mark E.; Torres, David L.; Peake, Gregory Merwin

    2010-09-01

    This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring mutual injection locking of composite-cavity lasers for enhanced modulation responses. The program focused on developing a fundamental understanding of the frequency enhancement previously demonstrated for optically injection locked lasers. This was then applied to the development of a theoretical description of strongly coupled laser microsystems. This understanding was validated experimentally with a novel 'photonic lab bench on a chip'.

  19. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use

  20. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  1. Microdiagnostic Lab on a Chip - LDRD Final Report

    SciTech Connect

    DE BOER, MAARTEN P.; SMITH, NORMAN F.; SINCLAIR, MICHAEL B.; BAKER, MICHAEL S.; BITSIE, FERNANDO

    2002-03-01

    Polycrystalline silicon (polysilicon) surface micromachining is a new technology for building micrometer ({micro}m) scale mechanical devices on silicon wafers using techniques and process tools borrowed from the manufacture of integrated circuits. Sandia National Laboratories has invested a significant effort in demonstrating the viability of polysilicon surface micromachining and has developed the Sandia Ultraplanar Micromachining Technology (SUMMiT V{trademark} ) process, which consists of five structural levels of polysilicon. A major advantage of polysilicon surface micromachining over other micromachining methods is that thousands to millions of thin film mechanical devices can be built on multiple wafers in a single fabrication lot and will operate without post-processing assembly. However, if thin film mechanical or surface properties do not lie within certain tightly set bounds, micromachined devices will fail and yield will be low. This results in high fabrication costs to attain a certain number of working devices. An important factor in determining the yield of devices in this parallel-processing method is the uniformity of these properties across a wafer and from wafer to wafer. No metrology tool exists that can routinely and accurately quantify such properties. Such a tool would enable micromachining process engineers to understand trends and thereby improve yield of micromachined devices. In this LDRD project, we demonstrated the feasibility of and made significant progress towards automatically mapping mechanical and surface properties of thin films across a wafer. The MEMS parametrics measurement team has implemented a subset of this platform, and approximately 30 wafer lots have been characterized. While more remains to be done to achieve routine characterization of all these properties, we have demonstrated the essential technologies. These include: (1) well-understood test structures fabricated side-by-side with MEMS devices, (2) well

  2. Nanomaterials for LightManagement in Electro-Optical Devices

    SciTech Connect

    Truong, Vo-Van; Singh, Jai; Tanemura, Sakae; Hu, Michael Z.

    2012-01-01

    In the past decade, nanostructured materials and nanoparticles have emerged as the necessary ingredients for electrooptical applications and enhancement of device performance, in particular by making use of the light management aspects of the nanomaterials. The application areas that are being transformed profoundly include smart coating devices (e.g., electrochromic, photochromic, and thermochromic devices), solar energy, and sensing. Despite the large volume of work in the past on smart coating devices, and in particular on electrochromic devices and thermochromic fenestrations, for optical transmission or reflection control, applications remain limited because of slow response time and nonuniformity in the case of large surfaces. Recent works in the field indicate that nanostructured electrochromic coatings would be an integral part of the solution to the above problem. One aspect that can thus be focused on would be the fabrication and characterization of the nanostructured smart coating materials and their compatibility with other layers in the overall smart coating device. In the area of solar photovoltaics, nanomaterials have been used in designing light-trapping schemes for inorganic as well as organic solar cells. One particular category of solar cells that has attracted much interest is the plasmonic solar cells in which metallic nanoparticles are incorporated, helping in enhancing their energy conversion efficiency. Nanostructured solar cells would eventually develop into a 'game changing' technology for making solar cells that are affordable and highly efficient, providing a sizeable alternative energy source for our ever-increasing energy needs. Sensors based on the optical properties of constituting nanostructures and nanoparticles also form a most interesting class of bio- and electrochemical sensing devices. The possibility of synthetizing nanoparticles and structures of specifically desired sizes and shapes has indeed opened a whole new range of

  3. Optically Bistable Thin-Film Interference Devices And Holographic Techniques For Experiments In Digital Optics

    NASA Astrophysics Data System (ADS)

    Walker, A. C.; Taghizadeh, M. R.; Mathew, J. G. H.; Campbell, R. J.; Smith, S. D.; Dempsey, J.; Lebreton, Guy; Redmond, I.

    1988-01-01

    High efficiency optical logic devices and interconnect elements are required for digital optical experiments. Nonlinear interference filters, capable of acting as optical gates, have been demonstrated to switch with ~2 mW input power and ~50 us recovery time. Switch contrast of 20:1 has been achieved with multicavity designs. Switch energies for micrometre-dimension transversely isolated pixels of <25 pJ are predicted. Holographic input and interconnect components with >90% diffraction efficiencies have been fabricated in dichromated gelatin and assessed.

  4. Universal bioprocessor LDRD final report.

    SciTech Connect

    Luongo, Kenneth N., 1960-; Reichmuth, David S.; Cummings, Eric B.; Krafcik, Karen L.; Davalos, Rafael V.; Sabounchi, Poorya; Simmons, Blake Alexander; Syed, Yusef; Ponce, Pierre; Salmi, Allen J.; VandeVreugde, James E.

    2006-11-01

    Microsystems pose unparalleled opportunity in the realm of real-time sample analysis for multiple applications, including Homeland Security monitoring devices, environmental monitoring, and biomedical diagnostics. The need for a universal means of processing, separating, and delivering a sample within these devices is a critical need if these systems are to receive widespread implementation in the industry and government sectors. Efficient particle separation and enrichment techniques are critical for a range of analytical functions including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microdevices and their enhancement through dynamic surface coatings. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor{reg_sign}. We demonstrate that the polymer devices achieve the same performance metrics as glass devices. Additionally, we show that the nonionic block copolymer surfactant Pluronic F127 has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the magnitude of the applied electric field necessary to achieve particle trapping. The presence of these dynamic surface coatings, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate

  5. LDRD Highlights at the National Laboratories

    SciTech Connect

    Alayat, R. A.

    2016-10-10

    To meet the nation’s critical challenges, the Department of Energy (DOE) national laboratories have always pushed the boundaries of science, technology, and engineering. The Atomic Energy Act of 1954 provided the basis for these laboratories to engage in the cutting edge of science and technology and respond to technological surprises, while retaining the best scientific and technological minds. To help re-energize this commitment, in 1991 the U.S. Congress authorized the national laboratories to devote a relatively small percentage of their budget to creative and innovative work that serves to maintain their vitality in disciplines relevant to DOE missions. Since then, this effort has been formally called the Laboratory Directed Research and Development (LDRD) Program. LDRD has been an essential mechanism to enable the laboratories to address DOE’s current and future missions with leading-edge research proposed independently by laboratory technical staff, evaluated through expert peer-review committees, and funded by the individual laboratories consistent with the authorizing legislation and the DOE LDRD Order 413.2C.

  6. Scalable variable-index elasto-optic metamaterials for macroscopic optical components and devices

    PubMed Central

    Shin, Dongheok; Kim, Junhyun; Kim, Changwook; Bae, Kyuyoung; Baek, Seunghwa; Kang, Gumin; Urzhumov, Yaroslav; Smith, David R.; Kim, Kyoungsik

    2017-01-01

    Optical metamaterials with an artificial subwavelength structure offer new approaches to implement advanced optical devices. However, some of the biggest challenges associated with the development of metamaterials in the visible spectrum are the high costs and slow production speeds of the nanofabrication processes. Here, we demonstrate a macroscale (>35 mm) transformation-optics wave bender (293 mm2) and Luneburg lens (855 mm2) in the broadband white-light visible wavelength range using the concept of elasto-optic metamaterials that combines optics and solid mechanics. Our metamaterials consist of mesoscopically homogeneous chunks of bulk aerogels with superior, broadband optical transparency across the visible spectrum and an adjustable, stress-tuneable refractive index ranging from 1.43 down to nearly the free space index (∼1.074). The experimental results show that broadband light can be controlled and redirected in a volume of >105λ × 105λ × 103λ, which enables natural light to be processed directly by metamaterial-based optical devices without any additional coupling components. PMID:28699634

  7. Scalable variable-index elasto-optic metamaterials for macroscopic optical components and devices.

    PubMed

    Shin, Dongheok; Kim, Junhyun; Kim, Changwook; Bae, Kyuyoung; Baek, Seunghwa; Kang, Gumin; Urzhumov, Yaroslav; Smith, David R; Kim, Kyoungsik

    2017-07-12

    Optical metamaterials with an artificial subwavelength structure offer new approaches to implement advanced optical devices. However, some of the biggest challenges associated with the development of metamaterials in the visible spectrum are the high costs and slow production speeds of the nanofabrication processes. Here, we demonstrate a macroscale (>35 mm) transformation-optics wave bender (293 mm(2)) and Luneburg lens (855 mm(2)) in the broadband white-light visible wavelength range using the concept of elasto-optic metamaterials that combines optics and solid mechanics. Our metamaterials consist of mesoscopically homogeneous chunks of bulk aerogels with superior, broadband optical transparency across the visible spectrum and an adjustable, stress-tuneable refractive index ranging from 1.43 down to nearly the free space index (∼1.074). The experimental results show that broadband light can be controlled and redirected in a volume of >10(5)λ × 10(5)λ × 10(3)λ, which enables natural light to be processed directly by metamaterial-based optical devices without any additional coupling components.

  8. Scalable variable-index elasto-optic metamaterials for macroscopic optical components and devices

    NASA Astrophysics Data System (ADS)

    Shin, Dongheok; Kim, Junhyun; Kim, Changwook; Bae, Kyuyoung; Baek, Seunghwa; Kang, Gumin; Urzhumov, Yaroslav; Smith, David R.; Kim, Kyoungsik

    2017-07-01

    Optical metamaterials with an artificial subwavelength structure offer new approaches to implement advanced optical devices. However, some of the biggest challenges associated with the development of metamaterials in the visible spectrum are the high costs and slow production speeds of the nanofabrication processes. Here, we demonstrate a macroscale (>35 mm) transformation-optics wave bender (293 mm2) and Luneburg lens (855 mm2) in the broadband white-light visible wavelength range using the concept of elasto-optic metamaterials that combines optics and solid mechanics. Our metamaterials consist of mesoscopically homogeneous chunks of bulk aerogels with superior, broadband optical transparency across the visible spectrum and an adjustable, stress-tuneable refractive index ranging from 1.43 down to nearly the free space index (~1.074). The experimental results show that broadband light can be controlled and redirected in a volume of >105λ × 105λ × 103λ, which enables natural light to be processed directly by metamaterial-based optical devices without any additional coupling components.

  9. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  10. Optical and electrical properties of bi-layers organic devices

    NASA Astrophysics Data System (ADS)

    Trad, Hager; Rouis, Ahlem; Davenas, Jöel; Majdoub, Mustapha

    2014-10-01

    The influence of interfacial charges on the device characteristics of bi-layers structure LEDs with poly[5-methoxy-2-octyloxy-1,4-phenylenevinylene] (MO-PPV) as active polymer layer is investigated. The concept to improve device performance is presented using: a diacetate cellulose (DAC) and a new synthetized 5-{2-(2-chloroethoxy)ethoxy}-2-{(E)-(2-pyridyl)azo}phenol (PDEG) components. The DAC and mixed (DAC+PDEG) layers were inserted between indium tin oxide (ITO) and MO-PPV polymer. The optical properties (UV-Vis) of MO-PPV, PDEG and mixed (DAC+PDEG) in solutions were studied and compared to those on thin films. Detailed current-voltage measurements of the bi-layers devices showed improvements of the threshold voltage (Vth) of the ITO/(DAC+PDEG)/MO-PPV/Al device attributed to the enhancement of carriers injection and transport resulted from the modified electrode structures. Conduction mechanisms of structure LEDs were matched with space-charge-limited current (SCLC) one. The impedance spectra for all devices can be discussed in terms of an equivalent circuit model designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The ITO/(DAC+PDEG)/MO-PPV/Al device showed the lowest impedance attributed to the removal of contaminants and to changes in the work function of ITO. The frequency-dependent electrical properties of the ITO/(DAC+PDEG)/MO-PPV/Al structure is analyzed by impedance spectroscopy as function of bias. We have extracted numerical values of the equivalent circuit model parameters by fitting experimental data. Their evolution with bias voltages has shown that the SCLC mechanism is characterized by an exponential trap distribution.

  11. Fracture Probability of MEMS Optical Devices for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon

    1999-01-01

    A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.

  12. Electro-optical switching and memory display device

    NASA Astrophysics Data System (ADS)

    Skotheim, T. A.; Ogrady, W. E.; Linkous, C. A.

    1983-12-01

    An electro-optical display device is described having a housing including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  13. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.

    1986-01-01

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  14. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.

    1983-12-29

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  15. Diffractive optical variable image devices generated by maskless interferometric lithography for optical security

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre; Rebordão, José M.

    2011-05-01

    In optical security (protection against forgery and counterfeit of products and documents) the problem is not exact reproduction but the production of something sufficiently similar to the original. Currently, Diffractive Optically Variable Image Devices (DOVID), that create dynamic chromatic effects which may be easily recognized but are difficult to reproduce, are often used to protect important products and documents. Well known examples of DOVID for security are 3D or 2D/3D holograms in identity documents and credit cards. Others are composed of shapes with different types of microstructures yielding by diffraction to chromatic dynamic effects. A maskless interferometric lithography technique to generate DOVIDs for optical security is presented and compared to traditional techniques. The approach can be considered as a self-masking focused holography on planes tilted with respect to the reference optical axes of the system, and is based on the Scheimpflug and Hinge rules. No physical masks are needed to ensure optimum exposure of the photosensitive film. The system built to demonstrate the technique relies on the digital mirrors device MOEMS technology from Texas Instruments' Digital Light Processing. The technique is linear on the number of specified colors and does not depend either on the area of the device or the number of pixels, factors that drive the complexity of dot-matrix based systems. The results confirmed the technique innovation and capabilities in the creation of diffractive optical elements for security against counterfeiting and forgery.

  16. Multimodal optical device for early childhood caries: a clinical prototype

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Ridge, Jeremy S.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    There is currently a need for a safe and effective way to detect and diagnose early childhood caries. We have developed a multimodal optical clinical prototype for testing in vivo. The device can be used to quickly image and screen for any signs of demineralized enamel by obtaining high-resolution and highcontrast surface images using a 405-nm laser as the illumination source, as well as obtaining autofluorescence and bacterial fluorescence images. Then, when a suspicious region is located, the device can perform dual laser fluorescence spectroscopy using 405-nm and 532-nm laser excitation which is used to compute an autofluorescence ratio. This ratio can be used to quantitatively diagnose enamel health. The device is tested on four in vivo test subjects as well as 17 extracted teeth with clinically diagnosed carious lesions. The device was able to provide detailed images which served to screen for suspected early caries. The autofluorescence ratios obtained from the extracted teeth were able to discriminate between healthy and unhealthy enamel. Therefore, the clinical prototype demonstrates feasibility in screening for and in quantitatively diagnosing healthy from demineralized enamel.

  17. Simple technique for integrating compact silicon devices within optical fibers.

    PubMed

    Micco, A; Ricciardi, A; Quero, G; Crescitelli, A; Bock, W J; Cusano, A

    2014-02-15

    In this work, we present a simple fabrication process enabling the integration of a subwavelength amorphous silicon layer inside optical fibers by means of the arc discharge technique. To assess our method, we have fabricated a compact in-line Fabry-Perot interferometer consisting of a thin (<1  μm) a-Si:H layer completely embedded within a standard single-mode optical fiber. The device exhibits low loss (1.3 dB) and high interference fringe visibility (~80%) both in reflection and transmission, due to the high refractive index contrast between silica and a-Si:H. A high linear temperature sensitivity up to 106  pm/°C is demonstrated in the range 120°C-400°C. The proposed interferometer is attractive for point monitoring applications as well as for ultrahigh-temperature sensing in harsh environments.

  18. Optical Devices for Cold Atoms and Bose-Einstein Condensates

    SciTech Connect

    Gaaloul, Naceur; Jaouadi, Amine; Telmini, Mourad; Pruvost, Laurence; Charron, Eric

    2007-09-19

    The manipulation of cold atoms with optical fields is a very promising technique for a variety of applications ranging from laser cooling and trapping to coherent atom transport and matter wave interferometry. Optical fields have also been proposed as interesting tools for quantum information processing with cold atoms. In this paper, we present a theoretical study of the dynamics of a cold {sup 87}Rb atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is either deflected or split between the two branches of this guide. We explore the possibilities of optimization of this device and present preliminary results obtained in the case of zero-temperature dilute Bose-Einstein condensates.

  19. Semiconductor optoelectronic devices for free-space optical communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    The properties of individual injection lasers are reviewed, and devices of greater complexity are described. These either include or are relevant to monolithic integration configurations of the lasers with their electronic driving circuitry, power combining methods of semiconductor lasers, and electronic methods of steering the radiation patterns of semiconductor lasers and laser arrays. The potential of AlGaAs laser technology for free-space optical communications systems is demonstrated. These solid-state components, which can generate and modulate light, combine the power of a number of sources and perform at least part of the beam pointing functions. Methods are proposed for overcoming the main drawback of semiconductor lasers, that is, their inability to emit the needed amount of optical power in a single-mode operation.

  20. Digital Fluoroscopy with AN Optically Coupled Charge-Coupled Device

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    1992-01-01

    This research was aimed at investigating the potential of developing an optically coupled charge-coupled device (CCD) imaging system for some digital fluoroscopic applications. The viability of this concept for fluoroscopic imaging was studied with respect to image intensifier-television (II -TV) techniques. The anticipated advantages of the optically coupled CCD, compared with II-TV, include higher contrast sensitivity, larger dynamic range, moderate spatial resolution and clinically acceptable dose. Following an investigation of some theoretical and practical issues concerning the optical coupling efficiency between the intensifying screen and the CCD imager, mathematical methods were developed to relate the signal, signal-to -noise ratio, and x-ray quantum efficiency of the optically coupled CCD imaging chain. The spatial resolution of the system was also analyzed. Using an ultra-sensitive CCD, as well as improved scintillating and optical coupling techniques, we built a laboratory system for experiments. We conducted measurements of the modulation transfer function (MTF), contrast sensitivity, contrast-detail detectability and detector contrast. The results suggest that the lesion detectability of our sub-optimal system was comparable to that of a screen-film technique under the same radiation dose, and was significantly better than II-TV fluoroscopy. Potential clinical applications of our system include mammography, pre-operational localization, pediatric chest radiography, and single tracer autoradiography. Images of selected phantoms, pathological specimens and small animals were acquired to demonstrate the radiologic quality attainable for such procedures. We conclude that developing an x-ray quantum limited, pseudo-real time, digital fluoroscopic imaging system (for some applications) without an II appears to be theoretically and technically feasible. The successful development of optically coupled CCD fluoroscopy has the potential for improving the

  1. Geometrization of Maxwell's equations in the construction of optical devices

    NASA Astrophysics Data System (ADS)

    Kulyabov, D. S.; Korolkova, A. V.; Sevastianov, L. A.; Gevorkyan, M. N.; Demidova, A. V.

    2017-04-01

    The paper considers the technics of construction of optical devices based on the method of geometrization of Maxwell's equations. The method is based on representation of material equations in the form of an effective space-time geometry. Thus we get a problem similar to that of some bimetric theory of gravity. That allows to use a well-developed apparatus of differential geometry. On this basis, we can examine the propagation of the electromagnetic field on the given parameters of the medium. It is also possible to find the parameters of the medium by a given law of propagation of electromagnetic fields.

  2. Electrochromic material and electro-optical device using same

    DOEpatents

    Cogan, S.F.; Rauh, R.D.

    1992-01-14

    An oxidatively coloring electrochromic layer of composition M[sub y]CrO[sub 2+x] (0.33[le]y[le]2.0 and x[le]2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M[sub y]CrO[sub 2+x] provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li[sup +] ion conductors. 12 figs.

  3. Engineering aperiodic nanostructured surfaces for scattering-based optical devices

    NASA Astrophysics Data System (ADS)

    Lee, Yuk Kwan Sylvanus

    Novel optical devices such as biosensors, color displays and authentication devices can be obtained from the distinctive light scattering properties of resonant nanoparticles and nanostructured arrays. These arrays can be optimized through the choice of material, particle morphology and array geometry. In this thesis, by engineering the multi-frequency colorimetric responses of deterministic aperiodic nanostructured surfaces (DANS) with various spectral Fourier properties, I designed, fabricated and characterized scattering-based devices for optical biosensing and structural coloration applications. In particular, using analytical and numerical optimization, colorimetric biosensors are designed and fabricated with conventional electron beam lithography, and characterized using dark-field scattering imaging as well as image autocorrelation analysis of scattered intensity in the visible spectral range. These sensors, which consist of aperiodic surfaces ranging from quasi-periodic to pseudo-random structures with flat Fourier spectra, sustain highly complex structural resonances that enable a novel optical sensing approach beyond the traditional Bragg scattering. To this end, I have experimentally demonstrated that DANS with engineered structural colors are capable of detecting nanoscale protein monolayers with significantly enhanced sensitivity over periodic structures. In addition, different aperiodic arrays of gold (Au) nanoparticles are integrated with polydimethylsiloxane (PDMS) microfluidic structures by soft-lithographic micro-imprint techniques. Distinctive scattering spectral shifts and spatial modifications of structural color patterns in response to refractive index variations were simultaneously measured. The successful integration of DANS with microfluidics technology has introduced a novel opto-fluidic sensing platform for label-free and multiplexed lab-on-a-chip applications. Moreover, by studying the isotropic scattering properties of homogenized

  4. Explosion of integrated optic devices used in new generation systems

    NASA Astrophysics Data System (ADS)

    Roeske, Frank

    1988-11-01

    Integrated optics, indeed shows great promise for improving the quality and quantity of data needed in nuclear test diagnostics systems and other military systems. The systems described will give the testing program better than an order of magnitude increase in temporal response and dynamic range over the presently used counterparts, while also making it possible to increase the number of data channels by greater than an order of magnitude. Should these expectations reach fruition we should see a true explosion in the use of these devices in the near future.

  5. Electrochromic material and electro-optical device using same

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1992-01-01

    An oxidatively coloring electrochromic layer of composition M.sub.y CrO.sub.2+x (0.33.ltoreq.y.ltoreq.2.0 and x.ltoreq.2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M.sub.y CrO.sub.2+x provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li.sup.+ ion conductors.

  6. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    NASA Astrophysics Data System (ADS)

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  7. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-01-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215

  8. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-14

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  9. Novel microfluidic devices for Raman spectroscopy and optical trapping

    NASA Astrophysics Data System (ADS)

    Ottevaere, Heidi; Liu, Qing; de Coster, Diane; Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo

    2016-09-01

    Traditionally, Raman spectroscopy is done in a specialized lab, with considerable requirements in terms of equipment, time and manual sampling of substances of interest. We present the modeling, the design and the fabrication process of a microfluidic device incorporation Raman spectroscopy, from which one enables confocal Raman measurements on-chip. The latter is fabricated using ultra precision diamond tooling and is tested in a proof-of-concept setup, by for example measuring Raman spectra of urea solutions with various concentrations. If one wants to analyze single cells instead of a sample solution, precautions need to be taken. Since Raman scattering is a weak process, the molecular fingerprint of flowing particles would be hard to measure. One method is to stably position the cell under test in the detection area during acquisition of the Raman scattering such that the acquisition time can be increased. Positioning of cells can be done through optical trapping and leads to an enhanced signal-to-noise ratio and thus a more reliable cell identification. Like Raman spectroscopy, optical trapping can also be miniaturized. We present the modeling, design process and fabrication of a mass-manufacturable polymer microfluidic device for dual fiber optical trapping using two counterpropagating singlemode beams. We use a novel fabrication process that consists of a premilling step and ultraprecision diamond tooling for the manufacturing of the molds and double-sided hot embossing for replication, resulting in a robust microfluidic chip for optical trapping. In a proof-of-concept demonstration, we characterize the trapping capabilities of the hot embossed chip.

  10. Final LDRD report : infrared detection and power generation using self-assembled quantum dots.

    SciTech Connect

    Cederberg, Jeffrey George; Ellis, Robert; Shaner, Eric Arthur

    2008-02-01

    Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

  11. Optical and electronic processes in organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Myers, Jason David

    Organic photovoltaic devices (OPVs) have become a promising research field. OPVs have intrinsic advantages over conventional inorganic technologies: they can be produced from inexpensive source materials using high-throughput techniques on a variety of substrates, including glass and flexible plastics. However, organic semiconductors have radically different operation characteristics which present challenges to achieving high performance OPVs. To increase the efficiency of OPVs, knowledge of fundamental operation principles is crucial. Here, the photocurrent behavior of OPVs with different heterojunction architectures was studied using synchronous photocurrent detection. It was revealed that photocurrent is always negative in planar and planar-mixed heterojunction devices as it is dominated by photocarrier diffusion. In mixed layer devices, however, the drift current dominates except at biases where the internal electric field is negligible. At these biases, the diffusion current dominates, exhibiting behavior that is correlated to the optical interference patterns within the device active layer. Further, in an effort to increase OPV performance without redesigning the active layer, soft-lithographically stamped microlens arrays (MLAs) were developed and applied to a variety of devices. MLAs refract and reflect incident light, giving light a longer path length through the active layer compared to a device without a MLA; this increases absorption and photocurrent. The experimentally measured efficiency enhancements range from 10 to 60%, with the bulk of this value coming from increased photocurrent. Additionally, because the enhancement is dependent on the substrate/air interface and not the active layer, MLAs are applicable to all organic material systems. Finally, novel architectures for bifunctional organic optoelectronic devices (BFDs), which can function as either an OPV or an organic light emitting device (OLED), were investigated. Because OPVs and OLEDs have

  12. Final report on LDRD project 52722 : radiation hardened optoelectronic components for space-based applications.

    SciTech Connect

    Hargett, Terry W.; Serkland, Darwin Keith; Blansett, Ethan L.; Geib, Kent Martin; Sullivan, Charles Thomas; Hawkins, Samuel D.; Wrobel, Theodore Frank; Keeler, Gordon Arthur; Klem, John Frederick; Medrano, Melissa R.; Peake, Gregory Merwin; Karpen, Gary D.; Montano, Victoria A.

    2003-12-01

    This report describes the research accomplishments achieved under the LDRD Project 'Radiation Hardened Optoelectronic Components for Space-Based Applications.' The aim of this LDRD has been to investigate the radiation hardness of vertical-cavity surface-emitting lasers (VCSELs) and photodiodes by looking at both the effects of total dose and of single-event upsets on the electrical and optical characteristics of VCSELs and photodiodes. These investigations were intended to provide guidance for the eventual integration of radiation hardened VCSELs and photodiodes with rad-hard driver and receiver electronics from an external vendor for space applications. During this one-year project, we have fabricated GaAs-based VCSELs and photodiodes, investigated ionization-induced transient effects due to high-energy protons, and measured the degradation of performance from both high-energy protons and neutrons.

  13. Final report on LDRD project :leaky-mode VCSELs for photonic logic circuits.

    SciTech Connect

    Hargett, Terry W.; Hadley, G. Ronald; Serkland, Darwin Keith; Blansett, Ethan L.; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas; Ongstand, Andrea; Medrano, Melissa R.; Peake, Gregory Merwin; Montano, Victoria A.

    2005-11-01

    This report describes the research accomplishments achieved under the LDRD Project ''Leaky-mode VCSELs for photonic logic circuits''. Leaky-mode vertical-cavity surface-emitting lasers (VCSELs) offer new possibilities for integration of microcavity lasers to create optical microsystems. A leaky-mode VCSEL output-couples light laterally, in the plane of the semiconductor wafer, which allows the light to interact with adjacent lasers, modulators, and detectors on the same wafer. The fabrication of leaky-mode VCSELs based on effective index modification was proposed and demonstrated at Sandia in 1999 but was not adequately developed for use in applications. The aim of this LDRD has been to advance the design and fabrication of leaky-mode VCSELs to the point where initial applications can be attempted. In the first and second years of this LDRD we concentrated on overcoming previous difficulties in the epitaxial growth and fabrication of these advanced VCSELs. In the third year, we focused on applications of leaky-mode VCSELs, such as all-optical processing circuits based on gain quenching.

  14. Optical Coherence Tomography (OCT) Device Independent Intraretinal Layer Segmentation

    PubMed Central

    Ehnes, Alexander; Wenner, Yaroslava; Friedburg, Christoph; Preising, Markus N.; Bowl, Wadim; Sekundo, Walter; zu Bexten, Erdmuthe Meyer; Stieger, Knut; Lorenz, Birgit

    2014-01-01

    Purpose To develop and test an algorithm to segment intraretinal layers irrespectively of the actual Optical Coherence Tomography (OCT) device used. Methods The developed algorithm is based on the graph theory optimization. The algorithm's performance was evaluated against that of three expert graders for unsigned boundary position difference and thickness measurement of a retinal layer group in 50 and 41 B-scans, respectively. Reproducibility of the algorithm was tested in 30 C-scans of 10 healthy subjects each with the Spectralis and the Stratus OCT. Comparability between different devices was evaluated in 84 C-scans (volume or radial scans) obtained from 21 healthy subjects, two scans per subject with the Spectralis OCT, and one scan per subject each with the Stratus OCT and the RTVue-100 OCT. Each C-scan was segmented and the mean thickness for each retinal layer in sections of the early treatment of diabetic retinopathy study (ETDRS) grid was measured. Results The algorithm was able to segment up to 11 intraretinal layers. Measurements with the algorithm were within the 95% confidence interval of a single grader and the difference was smaller than the interindividual difference between the expert graders themselves. The cross-device examination of ETDRS-grid related layer thicknesses highly agreed between the three OCT devices. The algorithm correctly segmented a C-scan of a patient with X-linked retinitis pigmentosa. Conclusions The segmentation software provides device-independent, reliable, and reproducible analysis of intraretinal layers, similar to what is obtained from expert graders. Translational Relevance Potential application of the software includes routine clinical practice and multicenter clinical trials. PMID:24820053

  15. Towards next generation time-domain diffuse optics devices

    NASA Astrophysics Data System (ADS)

    Dalla Mora, Alberto; Contini, Davide; Arridge, Simon R.; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-03-01

    Diffuse Optics is growing in terms of applications ranging from e.g. oximetry, to mammography, molecular imaging, quality assessment of food and pharmaceuticals, wood optics, physics of random media. Time-domain (TD) approaches, although appealing in terms of quantitation and depth sensibility, are presently limited to large fiber-based systems, with limited number of source-detector pairs. We present a miniaturized TD source-detector probe embedding integrated laser sources and single-photon detectors. Some electronics are still external (e.g. power supply, pulse generators, timing electronics), yet full integration on-board using already proven technologies is feasible. The novel devices were successfully validated on heterogeneous phantoms showing performances comparable to large state-of-the-art TD rack-based systems. With an investigation based on simulations we provide numerical evidence that the possibility to stack many TD compact source-detector pairs in a dense, null source-detector distance arrangement could yield on the brain cortex about 1 decade higher contrast as compared to a continuous wave (CW) approach. Further, a 3-fold increase in the maximum depth (down to 6 cm) is estimated, opening accessibility to new organs such as the lung or the heart. Finally, these new technologies show the way towards compact and wearable TD probes with orders of magnitude reduction in size and cost, for a widespread use of TD devices in real life.

  16. Screening far red probes for use on optical biochip devices

    NASA Astrophysics Data System (ADS)

    Njoh, Kerenza L.; Patterson, Laurence H.; Pors, Klaus; Zloh, Mire; Ameer-Beg, Simon; Summers, Huw; Matthews, Daniel; Errington, Rachel J.; Smith, Paul J.

    2006-02-01

    In situ spectral analysis can be used to understand the targeting and interaction of agents in cellular compartments. A range of novel red excitable fluorescent probes, related to the anthraquinone family of anti-cancer agents, were designed for their DNA affinic properties and their ability to enter and penetrate living cells. We report on the spectral features of these probes, both in solution and bound within intact cells, to identify unique fluorescent signatures that exploit their use in bioassays on optical biochip devices. The probes demonstrated red shifted emission spectra and increased 2 photon lifetime, with minimal fluorescent enhancement, upon binding to DNA. Spectral confocal laser scanning microscopy revealed complex emission profiles representing the bound (nuclear) and unbound (cytoplasmic) fractions of the DNA probes within live interphase, mitotic and apoptotic cells. Analysis of the emission peaks encoded the spectra to provide cell compartment recognition and profiles for cells in different cell states. Sampling the entire emission spectra of these probes for cell locating, even in the presence of unbound molecules, provides good signal-to-noise in biochip devices. Furthermore, by sampling the fluorescence output at specific spectral windows we can obtain high spatial information without imaging. The technological challenge is to integrate these fluorophores and appropriate detection capacity onto an optical biochip platform with microfluidic systems for cell handling.

  17. Self-organized optical device driven by motor proteins

    PubMed Central

    Aoyama, Susumu; Shimoike, Masahiko; Hiratsuka, Yuichi

    2013-01-01

    Protein molecules produce diverse functions according to their combination and arrangement as is evident in a living cell. Therefore, they have a great potential for application in future devices. However, it is currently very difficult to construct systems in which a large number of different protein molecules work cooperatively. As an approach to this challenge, we arranged protein molecules in artificial microstructures and assembled an optical device inspired by a molecular system of a fish melanophore. We prepared arrays of cell-like microchambers, each of which contained a scaffold of microtubule seeds at the center. By polymerizing tubulin from the fixed microtubule seeds, we obtained radially arranged microtubules in the chambers. We subsequently prepared pigment granules associated with dynein motors and attached them to the radial microtubule arrays, which made a melanophore-like system. When ATP was added to the system, the color patterns of the chamber successfully changed, due to active transportation of pigments. Furthermore, as an application of the system, image formation on the array of the optical units was performed. This study demonstrates that a properly designed microstructure facilitates arrangement and self-organization of molecules and enables assembly of functional molecular systems. PMID:24065817

  18. Printed polymer photonic devices for optical interconnect systems

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  19. Final report for LDRD project learning efficient hypermedia navigation

    SciTech Connect

    Chen, Pang; Laguna, G.

    1997-08-01

    This report documents the work performed under the Laboratory-Directed Research and Development (LDRD) grant {open_quotes}Learning Efficient Hypermedia Navigation.{close_quotes} The bulk of the work is contained in the software developed for the WWW and a copy of the software demonstrating its use has been submitted to the LDRD office.

  20. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    NASA Astrophysics Data System (ADS)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping; Li, Mo

    2015-09-01

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  1. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    SciTech Connect

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping E-mail: moli@umn.edu; Li, Mo E-mail: moli@umn.edu

    2015-09-07

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  2. Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.

  3. Optical Microanalysis In Microelectronic Device And Packaging Manufacture

    NASA Astrophysics Data System (ADS)

    Popek, K. M.; Ramsey, J. N...

    1983-11-01

    Electron probe microanalysis (and scanning electron microscopy with energy dispersive x-ray analysis) has been used for small area analysis for many years, but it gives only elemental information, in general. Cathodoluminescence and photoluminescence have been available as small area analytical techniques for several years, giving molecular information. Two "new" small area molecular analysis techniques have become available in the last few years, viz Raman (to be discussed in this symposium by C.L. Needham) and infra-red, which we will discuss. Examples will be given of the application of these various optical microanalytical techniques to device and packaging manufacture. The electron probe microanalyzer has been used for many years for analysis of small areas of microelectronic devices and packaging (e.g. Prof. Dave Wittry's initial analysis of Purple Plague was 1959). This type of analysis has been extended widely with the developments of scanning electron microscopes and energy dispersive x-ray analysis detectors and circuitry. Such analysis is elemental, in general, and has been very useful in the study of microstructure, thin films, contamination, corrosion products, etc. in all stages of device development, manufacture, test and application. However, often even quantitative elemental information lacks definition, and molecular information (how the elements are bonded together) is required. (In the analysis method described, some limited molecular information is available in low atomic number elements by measuring x-ray line shifts.)

  4. REVIEW ARTICLE Fibre optic devices produced by arc discharges

    NASA Astrophysics Data System (ADS)

    Rego, G.

    2010-11-01

    We present an overview of the applications of the electric arc technique related to optical fibre technology. The use of arc discharges ranges from the well-known fibre splicing, going through the fabrication of basic devices such as fibre tapers and microspheres, to tailoring the spectra of UV-induced gratings such as in the apodization of fibre Bragg gratings and also in the fabrication of phase-shifted and sampled fibre Bragg gratings. However, in the past decade a topic more intensively investigated was probably long-period fibre gratings. Therefore, some devices based on arc-induced gratings, namely, phase-shifted and step-changed gratings and bandpass filters are discussed. We also present an electrically insulated thermocouple assembled in situ using arc discharges. This sensor is very useful in the determination of the temperature attained by the fibre during an arc discharge, this property being fundamental for the discussion of the mechanisms of formation and for the understanding of the thermal properties of arc-induced devices.

  5. Optically controlled microwave devices and circuits: Emerging applications in space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Simons, Rainee N.

    1987-01-01

    Optical control of microwave devices and circuits by an optical fiber has the potential to simplify signal distribution networks in high frequency communications systems. The optical response of two terminal and three terminal (GaAs MESFET, HEMT, PBT) microwave devices are compared and several schemes for controlling such devices by modulated optical signals examined. Monolithic integration of optical and microwave functions on a single semiconductor substrate is considered to provide low power, low loss, and reliable digital and analog optical links for signal distribution.

  6. Point of care optical device for sepsis diagnosis

    NASA Astrophysics Data System (ADS)

    Baldini, F.; Bolzoni, L.; Giannetti, A.; Porro, G.; Senesi, F.; Trono, C.

    2009-10-01

    The discrimination of viral and bacterial sepsis is an important issue in intensive care patients. For this purpose, the simultaneous measurements of different analytes are necessary. Among the possible candidates, C-reactive protein (CRP) and procalcitonin (PCT) are probably the most important ones. A novel optical platform was designed and realised for the implementation of fluorescence-based immunoassays. The core of the optical platform is a plastic biochip, constituted by 13 microchannels (50 μm high, 600 μm width, 10 mm long) through which the sample flows. The sensing layer, where the immunochemical reaction takes place, is located on the upper part of each microchannel. The chip is interrogated with a novel optoelectronic platform, based on fluorescence anisotropy. A line-shaped beam from a 635-nm laser-diode excites perpendicularly the sensing layer and great many of the emitted remains entrapped inside the chip. The particular shape of the top of the chip allows to guide the emitted fluorescence along the same direction of the microchannel. The fluorescence which comes out on the lateral side from the chip is collected by a single plastic optical fibre and sent to an amplified photodiode. The device was characterised by the implementation of the sandwich assay for CRP and PCT spiked in serum. Limit of quantifications of 4.5 and of 6 μg L-1 in serum solution were achieved for CRP and PCT, respectively.

  7. Optical Enhancement in Optoelectronic Devices Using Refractive Index Grading Layers.

    PubMed

    Lee, Illhwan; Park, Jae Yong; Gim, Seungo; Kim, Kisoo; Cho, Sang-Hwan; Choi, Chung Sock; Song, Seung-Yong; Lee, Jong-Lam

    2016-02-10

    We enhanced the optical transmittance of a multilayer barrier film by inserting a refractive index grading layer (RIGL). The result indicates that the Fresnel reflection, induced by the difference of refractive indices between Si(x)N(y) and SiO2, is reduced by the RIGL. To eliminate the Fresnel reflection while maintaining high transmittance, the optimized design of grading structures with the RIGL was conducted using an optical simulator. With the RIGL, we achieved averaged transmittance in the visible wavelength region by 89.6%. It is found that the optimized grading structure inserting the multilayer barrier film has a higher optical transmittance (89.6%) in the visible region than that of a no grading sample (82.6%). Furthermore, luminance is enhanced by 14.5% (from 10,190 to 11,670 cd m(-2) at 30 mA cm(-2)) when the grading structure is applied to organic light-emitting diodes. Finally, the results offer new opportunities in development of multilayer barrier films, which assist industrialization of very cost-effective flexible organic electronic devices.

  8. Optical design of automotive headlight system incorporating digital micromirror device.

    PubMed

    Hung, Chuan-Cheng; Fang, Yi-Chin; Huang, Ming-Shyan; Hsueh, Bo-Ren; Wang, Shuan-Fu; Wu, Bo-Wen; Lai, Wei-Chi; Chen, Yi-Liang

    2010-08-01

    In recent years, the popular adaptive front-lighting automobile headlight system has become a main emphasis of research that manufacturers will continue to focus great efforts on in the future. In this research we propose a new integral optical design for an automotive headlight system with an advanced light-emitting diode and digital micromirror device (DMD). Traditionally, automobile headlights have all been designed as a low beam light module, whereas the high beam light module still requires using accessory lamps. In anticipation of this new concept of integral optical design, we have researched and designed a single optical system with high and low beam capabilities. To switch on and off the beams, a DMD is typically used. Because DMDs have the capability of redirecting incident light into a specific angle, they also determine the shape of the high or low light beam in order to match the standard of headlight illumination. With collocation of the multicurvature reflection lens design, a DMD can control the light energy distribution and thereby reinforce the resolution of the light beam.

  9. Open optical microcavities for CQED experiments and devices

    NASA Astrophysics Data System (ADS)

    Smith, Jason; Trichet, Aurelien; Dolan, Philip; Coles, David; Flatten, Lucas; Johnson, Sam; Patel, Robin; Schwarz, Stefan; Li, Feng; Krizhanovskii, Dimitrii; Tartakovskii, Alexander; Skolnick, Maurice; Vallance, Claire; Hunger, David

    Open microcavities have emerged in recent years as flexible tools for quantum optics and engineered light matter coupling. Fabry Perot resonators with concave mirrors on the micrometre scale, highly resonant optical modes can be generated with volumes of order 1-10λ3, along with facile tunability and efficient external coupling. Here we will describe our latest advances in open cavity fabrication using focused ion beam milled templates on which high reflectivity mirrors can be deposited providing measured finesses up to 50,000 with surfaces that deviate by less than 2 nm rms from the design. This degree of control provides opportunities for engineering optical modes to suit a wide variety of applications. We will describe the fabrication of cavities with radius of curvature from 2 μm to 1 mm, and the realisation of coupled cavities with controlled mode overlap. We will further describe some of the applications of these open cavity devices to particle sensing, exciton-polariton physics with quantum wells and 2D materials, tunable lasers, and spin-photon interfaces using diamond colour centres.

  10. Stretchable optical device with electrically tunable absorbance and fluorescence

    NASA Astrophysics Data System (ADS)

    Hanley, Cormac A.; Gun'ko, Yurii K.; Frediani, Gabriele; Carpi, Federico

    2014-01-01

    We report the first proof-of-principle demonstration of a quantum dot (QD) doped dielectric elastomer actuator as a new stretchable optical device with electrically tunable optical absorbance and fluorescence. A polyacrylate dielectric elastomer film with carbon grease electrodes was loaded with organic-phase CdSe/CdS luminescent QDs. This study moved from the working hypothesis that electrical actuation of the QD doped elastomer varies the distances among each QD and its neighbours in the structure, modifying the volume and/or surface density of QDs, and thus leading to variable interactions among them, therefore changing the optical spectral properties of the QDs in the elastomer matrix. Experiments revealed that applied voltages increased the UV-vis absorbance, and decreased the photoluminescence (fluorescence) intensity and lifetimes. The former effect proved the working hypothesis, while the latter was not expected. The drop in photoluminescence intensity was found to be caused by the high fringe electric field generated by the actuator. The paper presents characterizations and discusses results, highlighting potentials and challenges of such systems.

  11. Time-domain diffuse optics: towards next generation devices

    NASA Astrophysics Data System (ADS)

    Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-07-01

    Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.

  12. LDRD 149045 final report distinguishing documents.

    SciTech Connect

    Mitchell, Scott A.

    2010-09-01

    This LDRD 149045 final report describes work that Sandians Scott A. Mitchell, Randall Laviolette, Shawn Martin, Warren Davis, Cindy Philips and Danny Dunlavy performed in 2010. Prof. Afra Zomorodian provided insight. This was a small late-start LDRD. Several other ongoing efforts were leveraged, including the Networks Grand Challenge LDRD, and the Computational Topology CSRF project, and the some of the leveraged work is described here. We proposed a sentence mining technique that exploited both the distribution and the order of parts-of-speech (POS) in sentences in English language documents. The ultimate goal was to be able to discover 'call-to-action' framing documents hidden within a corpus of mostly expository documents, even if the documents were all on the same topic and used the same vocabulary. Using POS was novel. We also took a novel approach to analyzing POS. We used the hypothesis that English follows a dynamical system and the POS are trajectories from one state to another. We analyzed the sequences of POS using support vector machines and the cycles of POS using computational homology. We discovered that the POS were a very weak signal and did not support our hypothesis well. Our original goal appeared to be unobtainable with our original approach. We turned our attention to study an aspect of a more traditional approach to distinguishing documents. Latent Dirichlet Allocation (LDA) turns documents into bags-of-words then into mixture-model points. A distance function is used to cluster groups of points to discover relatedness between documents. We performed a geometric and algebraic analysis of the most popular distance functions and made some significant and surprising discoveries, described in a separate technical report.

  13. All-optical compact surface plasmonic two-mode interference device for optical logic gate operation.

    PubMed

    Gogoi, Nilima; Sahu, Partha Pratim

    2015-02-10

    In this paper, we have proposed an ultra-compact surface plasmonic two-mode interference (SPTMI) coupler having a silicon core, silver upper and lower cladding, and GaAsInP left and right cladding for basic logic gate operations. By modulating the refractive index of the GaAsInP cladding with incidence of optical pulse energy, we have shown coupling characteristics depending on additional phase change ΔΦ(E) between the excited surface plasmon polariton modes propagating through the silicon core. By using applied optical pulse dependent coupling behavior of the proposed SPTMI device, the operations of NOT, AND, and OR logic gates are shown. It is also seen that the coupling length of the proposed device is 32.3 times more compact than that of a multimode interference-directional coupler.

  14. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  15. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  16. 78 FR 16296 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... optic communications, components thereof, and products containing the same by reason of infringement of...

  17. PbTe quantum dots multilayer for optical switching device

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Kellermann, G.; Moya, L.; Moreira, R. S.; Craievich, A. F.; Jimenez, E.; César, C. L.; Barbosa, L. C.

    2007-09-01

    In this work we report the fabrication of PbTe quantum dots multilayers embedded in SiO II by alternatively use of Laser Ablation and Plasma Enhanced Chemical Vapor Deposition techniques. The quantum dots were grown by pulsed laser deposition (PLD) of a PbTe target using the second harmonic of a Q-Switched Quantel Nd:YAG laser in high purity argon atmosphere. The glass matrix was fabricated by PECVD using tetramethoxysilane (TMOS) as precursor. The RF power was supplied by a RF-150 TOKYO HI-Power operating at 13.56 MHz and coupled to the RF electrodes through a matching box. The deposition rates as well as the best growth parameters for both the nanoparticles and the glass matrix were obtained from a previous work. The morphological properties of the nanostructured material were studied by means of igh Resolution Transmission Electron Microscopy(HRTEM), grazing-incidence small-angle X-ray scattering (GISAXS) and X-ray reflectometry . Unlike HRTEM, which extracts information of a submicron region of the sample and only a few thousand particles are observed, GISAXS signal is obtained through an average over orders of magnitude larger number of particles (perhaps 10 12 particles) distributed over an area of tens of square millimeters. This fact means that GISAXS sampling is much more representative of the sample as whole. Finally, multilayers were grown inside a Fabry-Perot cavity. The complete system operates as an optical switching device for the infrared region. The device was characterized by Scanning Electron Microscopy and optical absorption.

  18. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    SciTech Connect

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  19. A new repeatable, optical writing and electrical erasing device based on photochromism and electrochromism of viologen

    NASA Astrophysics Data System (ADS)

    Gao, Li-ping; Wei, Jian; Wang, Yue-chuan; Ding, Guo-jing; Yang, Yu-lin

    2012-08-01

    New optical writing and electrical erasing devices have been successfully fabricated that exploit the photochromism and electrochromism of viologen. In a preliminary study, both the structures of viologen and device were investigated in detail by UV-vis spectra in order to confirm their effects on the optical writing and electrical erasing performances of corresponding devices. For sandwiched, single and complementary devices based on benzyl viologen (BV 2+), only optical writing can be performed, not electrical erasing operations, which indicated these devices cannot realize optical information rewriting. For single and complementary devices based on styrene-functional viologen (V BV 2+) and acrylic-functional viologen (ACV 2+), optical writing and electrical erasing operations can be reversibly performed and optical information rewriting realized. It is clear that single devices based on V BV2+ and ACV2+ possess better performance accompanied with contrast without significant degradation and bleaching times and without significant deterioration over 10 repeated writing/erasing cycles. Furthermore, we put forward possible mechanisms for sandwiched, single and complementary devices based on V BV2+ and ACV2+ for the optical writing and electrical erasing operations. This study provides a new strategy to design optical writing and electrical erasing devices to realize optical information rewriting.

  20. Detection of radio-frequency modulated optical signals by two and three terminal microwave devices

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Simons, R. N.; Wojtczuk, S.

    1987-01-01

    An interdigitated photoconductor (two terminal device) on GaAlAs/GaAs heterostructure was fabricated and tested by an electro-optical sampling technique. Further, the photoresponse of GaAlAs/GaAs HEMT (three terminal device) was obtained by illuminating the device with an optical signal modulated up to 8 GHz. Gain-bandwidth product, response time, and noise properties of photoconductor and HEMT devices were obtained. Monolithic integration of these photodetectors with GaAs microwave devices for optically controlled phased array antenna applications is discussed.

  1. Detection of radio-frequency modulated optical signals by two and three terminal microwave devices

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Simons, R. N.; Wojtczuk, S.

    1987-01-01

    An interdigitated photoconductor (two terminal device) on GaAlAs/GaAs heterostructure was fabricated and tested by an electro-optical sampling technique. Further, the photoresponse of GaAlAs/GaAs HEMT (three terminal device) was obtained by illuminating the device with an optical signal modulated up to 8 GHz. Gain-bandwidth product, response time, and noise properties of photoconductor and HEMT devices were obtained. Monolithic integration of these photodetectors with GaAs microwave devices for optically controlled phased array antenna applications is discussed.

  2. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  3. Analysis on optical bistability parameters in photonic switching devices

    NASA Astrophysics Data System (ADS)

    Sarafraz, Hossein; Sayeh, Mohammad R.

    2016-06-01

    An investigation has been done on the parameters of a hysteretic bistable optical Schmitt trigger device. From a design point of view, it is important to know the regions where this bistability occurs and is fully functional with respect to its subsystem parameters. Otherwise experimentally reaching such behavior will be very time-consuming and frustrating, especially with multiple devices employed in a single photonic circuit. A photonic Schmitt trigger consisting of two feedbacked inverting amplifiers, each characterized by -m (slope), A (y-intercept), and B (constant base) parameters is considered. This system is investigated dynamically with a varying input to find its stable and unstable states both mathematically and with simulation. In addition to a complete mathematical analysis of the system, we also describe how m, A, and B can be properly chosen in order to satisfy certain system conditions that result in bistability. More restrictions are also imposed to these absolute conditions by the system conditions as will be discussed. Finally, all results are verified in a more realistic photonic simulation.

  4. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  5. 2014 SRNL LDRD Annual Report, Rev. 0

    SciTech Connect

    Mcwhorter, S.

    2015-03-15

    Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element in maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.

  6. Photolithography of Integrated Optic Devices in Porous Glasses

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar Alfredo

    Collaborative studies in our laboratories, and those of Corning Inc., have established that highly resolved patterns of refractive index gradients ranging from 0.01 to 0.001 can be produced by photolysis of organotin compounds physisorbed onto Corning's code 7930 porous Vycor glass (PVG) followed by thermal consolidation of the glass at 1200^circC. Photolysis binds the metal compound to the glass and thermal activation removes the unreacted adsorbate and converts the photoproduct to a transparent metal oxide. Deposition of the metal oxide changes the density of the glass and in turn, its refractive index. Although applications of gradient refractive index patterns within glass matrices in the field of integrated optics have been recognized for many years, full utilization of this technology requires a fundamental understanding of the chemistry involved during the photochemical and thermal reactions leading to metal oxide formation on the surface of PVG. The research described in this thesis focuses on the study of the photochemistry of organotin compounds of the general formula R(4-n)SnXn where R = alkyl and aryl and X = halides and pseudohalides. Photochemical studies in solution are compared to those on PVG. The experiments take advantage of the transparency of PVG to characterize the photochemical reactions of the adsorbed compounds using conventional spectroscopic techniques. The goal of these studies is to develop a methodology capable of fabricating a wide range of integrated optical devices in a glass matrix. Examples of different optical components that have been produced by these photodeposition techniques are presented.

  7. Digital micro-mirror devices in digital optical microscopy

    NASA Astrophysics Data System (ADS)

    Adeyemi, Adekunle Adesanya

    In this thesis, studies on the applications of digital micro-mirror devices (DMD) to enhancement of digital optical microscope images are presented. This involves adaptation of the fast switching capability and high optical efficiency of DMD to control the spatial illumination of the specimen. The first study focuses on a method of using DMD to enhance the dynamic range of a digital optical microscope. Our adaptive feedback illumination control method generates a high dynamic range image through an algorithm that combines the DMD-to-camera pixel geometrical mapping and a feedback operation. The feedback process automatically generates an illumination pattern in an iterative fashion that spatially modulates the DMD array elements on a pixel-by-pixel level. Via experiment, we demonstrate a transmitted-light microscope system that uses precise DMD control of a DMD-based projector to enhance the dynamic range ideally by a factor of 573. Results are presented showing approximately 5 times the camera dynamic range, enabling visualization over a wide range of specimen characteristics. The second study presents a technique for programming the source of the spherical reference illumination in a digital in-line holographic microscope using DMD. The programmable point source is achieved by individually addressing the elements of a DMD to spatially control the illumination of the object located at some distance from the source of the spherical reference field. Translation of the ON-state DMD mirror element changes the spatial location of the point source and consequently generates a sequence of translated holograms of the object. The experimental results obtained through numerical reconstruction of translated holograms of Latex microspheres shows the possibility of expanding the field of view by about 263% and also extracting depth information between features in an object volume. The common challenges associated with the use of DMD in coherent and broadband illumination

  8. Optoelectronic device simulation: Optical modeling for semiconductor optical amplifiers and solid state lighting

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue (Michael)

    2006-07-01

    Recent advances in optoelectronic devices require sophisticated optical simulation and modeling. These tiny semiconductor device structures, such as semiconductor lasers and light emitting diodes (LED), not only need detailed electrical computation, such as band structure, carrier transportation, and electron-hole recombination under different external voltages, but also require comprehensive optical modeling, such as photon generation and propagation. Optical modeling also includes waveguide structure calculations, guided mode and leakage mode identification, as well far-field pattern prediction using optical ray tracing. In modeling semiconductor lasers, light emission and propagation can be treated using the single mode of wave optics, the so-called photon propagation equation coupled with carrier transport equations. These differential equations can be numerically solved using the Finite Difference Method (FDM). In the LED modeling, the main tools are based on optical ray tracing, and photons are treated as light emissions with random directions and polarizations. Optical waveguide theory is used to qualitatively analyze photon emissions inside a LED chip, and helps to design the LED device structure. One important area of semiconductor laser modeling is the optical simulation of the wavelength converter based on semiconductor optical amplifiers (SOA). This wavelength converter is a critical device in optical communication, and it can copy information from one wavelength to anther through cross-gain modulation. Some numerical methods have been developed to model the wavelength conversion. In these methods, solutions are found by solving differential equations in the time domain using FDM. In all previous models, the waveguide internal loss is assumed uniform across the cavity of the SOA, or the gain coefficient is based on the polynomial approximation method, i.e., the gain coefficient is assumed proportional to the difference between the carrier and

  9. Design of 3D isotropic metamaterial device using smart transformation optics.

    PubMed

    Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik

    2015-08-24

    We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.

  10. Effects of optical illumination on superconducting quantum devices

    NASA Astrophysics Data System (ADS)

    Budoyo, Rangga Perdana

    I report measurements of two different types of superconducting devices illuminated by 780 nm light, one of the wavelengths needed in a proposed atom-superconductor hybrid quantum system. I illuminated a thin-film Al lumped-element resonator and observed the resonator quality factor and resonance frequency as a function of illumination intensity, microwave power, and temperature. The resonator was mounted in a 3d aluminum cavity. The variation in optically-induced loss due to microwave power was similar to the behavior expected for loss from a distribution of two-level systems. Although this behavior may suggest the presence of optically activated two-level systems, I found that the loss is better explained by the presence of nonequilibrium quasiparticles generated by the illumination and excited by the microwave drive. I described a model of the system where optical absorption creates an effective source of phonons and solved the coupled quasiparticle-phonon rate equations. I found good agreement between the simulation and the measured resonator quality factor and frequency shift as a function of temperature, microwave power, and optical illumination. I fabricated a transmon qubit and studied the qubit transition frequency and relaxation time as a function of illumination intensity and temperature. The qubit was mounted in a 3d aluminum cavity and coupled to the cavity forming a Jaynes-Cummings system. Qubit relaxation showed non-exponential behavior that I fit to a quasiparticle fluctuation model with two characteristic times. The transition frequency and both characteristic times decreased with increasing illumination intensity. For comparison, I described a nonequilibrium quasiparticle model for the expected frequency shift and relaxation time due to quasiparticle tunneling through the Josephson junction. While the quasiparticle simulation predicted the general qualitative behavior of the frequency shift and relaxation time, there were some significant

  11. Fabrication and performance of contamination free individual single-walled carbon nanotube optical devices.

    PubMed

    Zhou, Yuxiu; Cheng, Rong; Liu, Jianqiang; Li, Tie

    2014-06-01

    Contamination free individual single-walled carbon nanotube (SWCNT) optical devices are fabricated using a hybrid method in the purpose of increase sensitivity as well as further understanding the sensing mechanism. The devices were tested in vacuum to avoid contamination. Three typical devices are discussed comparatively. Under infrared lamp illumination, photovoltaic and photoconductive properties are revealed in device A and B respectively, while device C shows no detectable signal. The photoresponse of device B reaches 108% at 78 K, much larger than that of horizontally aligned or network carbon nanotube devices, indicating priority of the individual nanotube device structure. Interestingly, the temperature characteristics of device A and B are just the opposite. The individual SWCNT devices hold promise in high performance and low cost optical sensors as well as nano-scale solar cells.

  12. Selective Processing Techniques for Electronics and Opto-Electronic Applications: Quantum-Well Devices and Integrated Optic Circuits

    DTIC Science & Technology

    1993-02-10

    new technology is to have sufficient control of processing to *- describable by an appropriate elecromagnetic model . build useful devices. For example...3. W aveguide Modulators .................................. 7 B. Integrated Optical Device and Circuit Modeling ... ................... .. 10 C...following categories: A. Integrated Optical Devices and Technology B. Integrated Optical Device and Circuit Modeling C. Cryogenic Etching for Low

  13. Athermalization of resonant optical devices via thermo-mechanical feedback

    SciTech Connect

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  14. An Initial Study of Reading and Comprehension Rates for Students Who Received Optical Devices.

    ERIC Educational Resources Information Center

    Corn, Anne L.; Wall, Robert S.; Jose, Randall T.; Bell, Jennifer K.; Wilcox, Karen; Perez, Ana

    2002-01-01

    Initial reading speeds across grades show points at which children with low vision are at risk of developing low literacy skills. Outcome group measures showed that 185 children (grades preK-12) who received optical devices increased their silent reading speeds and comprehension rates. Findings indicate optical devices assist in deciphering text.…

  15. Photoelectric Hybrid Optical Bistable Device Using Fibre Bragg Gratings with Two Feed Signals

    NASA Astrophysics Data System (ADS)

    Ye, Hong-An; Zhang, Xin-Ming; Zhu, Yong

    2004-05-01

    A photoelectric hybrid optical bistable device (OBD) is investigated by using fibre Bragg gratings as a light-intensity modulator. A new operation with two feed signals is proposed, and with this method the output characteristic of the OBD is remarkably improved. The potential application of such a device in optic stabilizer for fibre laser is also briefly discussed.

  16. Determining electro-optic coefficients for lithium tantalate using an electro-optic scanning device

    SciTech Connect

    Casson, J. L.; Gahagan, K. T.; Robinson, J. M.; Scrymgeour, D. A.; Jain, R.

    2001-01-01

    We demonstrate a ferroelectric optical device based on single crystal LiTaO{sub 3} that can scan a laser beam from the visible to the infrared. It utilizes the electro-optic effect in the ferroelectric that has potentially high intrinsic response times of GHz. There are many applications to such scanning devices in the infrared such as optical switching, spectrometry, microscopy, and sensing. Lithium tantalate has two ferroelectric polarization states that are antiparallel (180{sup o}) to each other. The domain states can be reversed by applying an electric field of {approx}21 kV/mm at room temperature. By reversing the domain structure in the crystal, we can create domains in the crystal of almost any desired shape. By creating prism-shaped domain, we can create a ferroelectric deflector or scanner by applying either static or sweeping voltages across the crystal. This scanner is capable of scanning wavelengths from 0.4-5 {micro}m. The scanning performance varied from a total deflection angle of 13.38{sup o} at 1558 nm to 16.18{sup o} at 632.8 nm. Since the amount of deflection of the incoming light is determined by the applied voltage, the electro-optic coefficient and other fixed quantities, by measuring the deflection angle as a function of wavelength, the dispersion of the electro-optic coefficient in lithium tantalate can be determined. In these experiments, the scanner was characterized from the visible (632.8 nm) to midinfrared (1558 nm). Both extraordinary and the ordinary polarizations of light were used, in order to determine the electro-optic coefficients, r{sup 33} and r{sup 31}. Except for the values at 632.8 nm, these values of the electro-optic coefficients have not been previously reported. For lithium tantalate, r{sup 33} at 632.8 nm is reported in the literature as 30.2 pm/V. We found that this decreases to 27.1 pm/V at 1558 nm. For the extraordinary polarization, r{sup 13} varied from 7.55 pm/V (632.8 nm) to 6.84 pm/V (1558 nm).

  17. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  18. Constructive functional principles and control objectives executed with the device for optical signal splitting and chirping

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This paper describes functional principles of a device for optical signal splitting and chirping. The offered device is to fulfill functions of such optical signal distortions compensation within FOCL RoF as linear attenuation (LA) and chromatic dispersion (CD); and it should also split optical signals for its feeding to radio emitting components, compounding aerial array (AA), and control radio emitting antenna lobe. In the meantime the device for optical signal splitting and chirping can inject losses into transferred signal, though they should be within tolerant values for conventional FOCL components.

  19. A versatile instrumentation system for MEMS-based device optical characterization

    NASA Astrophysics Data System (ADS)

    Rafiei, Ramin; Basedow, Robert W.; Silva, K. K. M. B. Dilusha; Gurusamy, Jega T.; Silva Castillo, Jorge R.; Tripathi, Dhirendra K.; Dell, John M.; Faraone, Lorenzo

    2013-12-01

    Future improvements in spectral imaging systems can be attained through the integration of MEMS-based optical transmission devices matched with pixelated arrays. Such integrated module designs will require a detailed knowledge of the MEMS device optical properties at high spatial resolution and over a wide range of operating conditions. A substantially automated low-cost optical characterization system has been developed, which enables the optical transmission of the MEMS device be measured with high spatial and spectral precision. This Optical Metrology System (OMS) can focus light on the device under test (DUT) to a spot diameter of less than 30 μm, and characterize devices at near infrared for wavelengths within the spectral band from 1.4 μm to 2.6 μm. A future upgrade to the OMS will enable measurements to be carried out across a wide range of DUT temperatures and with a spectral range from visible to long wave infrared wavelengths.

  20. Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report.

    SciTech Connect

    Shaner, Eric Arthur; Lee, Mark; Averitt, R. D. (Los Alamos National Laboratory); Highstrete, Clark; Taylor, A. J.; Padilla, W. J. (Los Alamos National Laboratory); Reno, John Louis; Wanke, Michael Clement; Allen, S. James (University of California Santa Barbara)

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  1. LDRD Final Report: Global Optimization for Engineering Science Problems

    SciTech Connect

    HART,WILLIAM E.

    1999-12-01

    For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.

  2. Computational Biology: A Strategic Initiative LDRD

    SciTech Connect

    Barksy, D; Colvin, M

    2002-02-07

    The goal of this Strategic Initiative LDRD project was to establish at LLNL a new core capability in computational biology, combining laboratory strengths in high performance computing, molecular biology, and computational chemistry and physics. As described in this report, this project has been very successful in achieving this goal. This success is demonstrated by the large number of referred publications, invited talks, and follow-on research grants that have resulted from this project. Additionally, this project has helped build connections to internal and external collaborators and funding agencies that will be critical to the long-term vitality of LLNL programs in computational biology. Most importantly, this project has helped establish on-going research groups in the Biology and Biotechnology Research Program, the Physics and Applied Technology Directorate, and the Computation Directorate. These groups include three laboratory staff members originally hired as post-doctoral researchers for this strategic initiative.

  3. Small space object imaging : LDRD final report.

    SciTech Connect

    Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick

    2009-10-01

    We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.

  4. Neurons to algorithms LDRD final report.

    SciTech Connect

    Rothganger, Fredrick H.; Aimone, James Bradley; Warrender, Christina E.; Trumbo, Derek

    2013-09-01

    Over the last three years the Neurons to Algorithms (N2A) LDRD project teams has built infrastructure to discover computational structures in the brain. This consists of a modeling language, a tool that enables model development and simulation in that language, and initial connections with the Neuroinformatics community, a group working toward similar goals. The approach of N2A is to express large complex systems like the brain as populations of a discrete part types that have specific structural relationships with each other, along with internal and structural dynamics. Such an evolving mathematical system may be able to capture the essence of neural processing, and ultimately of thought itself. This final report is a cover for the actual products of the project: the N2A Language Specification, the N2A Application, and a journal paper summarizing our methods.

  5. Optical Scatter Imaging with a digital micromirror device.

    PubMed

    Zheng, Jing-Yi; Pasternack, Robert M; Boustany, Nada N

    2009-10-26

    We had developed Optical Scatter Imaging (OSI) as a method which combines light scattering spectroscopy with microscopic imaging to probe local particle size in situ. Using a variable diameter iris as a Fourier spatial filter, the technique consisted of collecting images that encoded the intensity ratio of wide-to-narrow angle scatter at each pixel in the full field of view. In this paper, we replace the variable diameter Fourier filter with a digital micromirror device (DMD) to extend our assessment of morphology to the characterization of particle shape and orientation. We describe our setup in detail and demonstrate how to eliminate aberrations associated with the placement of the DMD in a conjugate Fourier plane of our microscopic imaging system. Using bacteria and polystyrene spheres, we show how this system can be used to assess particle aspect ratio even when imaged at low resolution. We also show the feasibility of detecting alterations in organelle aspect ratio in situ within living cells. This improved OSI system could be further developed to automate morphological quantification and sorting of non-spherical particles in situ.

  6. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  7. FY02 Engineering Technology Reports Volume 2: LDRD

    SciTech Connect

    Minichino, Camille

    2003-03-01

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2002, and exemplifies Engineering's 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''To make programs succeed today and to ensure the vitality of the Laboratory tomorrow.'' Engineering's investment in new technologies is carried out through two programs, the ''Tech Base'' program (Volume I) and the LDRD program (Volume II). This report summarizes the LDRD portion of Engineering's Technology Program. LDRD is the vehicle for researching and developing those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2002, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology for national security applications.

  8. Electrical and Optical Characterization of Nanowire based Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Ayvazian, Talin

    This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand and optimize the electrical and optical properties of two types of nanoscale devices; in first type lithographically patterned nanowire electrodeposition (LPNE) method has been utilized to fabricate nanowire field effect transistors (NWFET) and second type involved the development of light emitting semiconductor nanowire arrays (NWLED). Field effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrode- position (LPNE) process on SiO2 /Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C x 4 h either with or without exposure to CdCl 2 in methanol a grain growth promoter. The influence of CdCl2 treatment was to increase the mean grain diameter as determined by X-ray diffraction pattern and to convert the crystal structure from cubic to wurtzite. Transfer characteristics showed an increase of the field effect mobility (mu eff) by an order of magnitude and increase of the Ion/I off ratio by a factor of 3-4. Light emitting devices (NW-LED) based on lithographically patterned pc-CdSe nanowire arrays have been investigated. Electroluminescence (EL) spectra of CdSe nanowires under various biases exhibited broad emission spectra centered at 750 nm close to the band gap of CdSe (1.7eV). To enhance the intensity of the emitted light and the external quantum efficiency (EQE), the distance between the contacts were reduced from 5 mum to less than 1 mum which increased the efficiency by an order of magnitude. Also, increasing the annealing temperature of nanowires from 300 °C x4 h to 450 This research project is focused on a new strategy for the creation of nanowire based semiconductor devices. The main goal is to understand

  9. Organic Polymeric Electro-Optic Materials: Synthesis, Processing and Device Applications

    DTIC Science & Technology

    1993-04-01

    A number of polymeric second and third order nonlinear optical materials were designed and synthesized. The materials were characterized for their...performed.... Electro-Optic Effects, Guided Wave Devices, Organic Polymers, Nonlinear Optical Materials , Langmuir-Blodgett Films, Second Harmonic Generation

  10. Micro-Laser-Based Devices Allowing Optical Wavelength-Packing Densities

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Jones, Darryl K.; Fork, Richard L.

    1998-01-01

    We examine theoretically and experimentally the space-time domain properties of high-speed electro-optically switched microlaser devices susceptible of construction at optical wavelength-packing densities. We address adjustable phase and group delays with wide dynamic range, coherent logic, temporal storage and reconfiguration of pulse arrays and applications to optical phased arrays.

  11. Integration of nanoporous zeolite with optical fiber devices for chemical sensing

    NASA Astrophysics Data System (ADS)

    Lan, Xinwei

    Label-free optical fiber chemical sensors have provoked significant research interest in recent years due to their unique advantages of small size, low cost, potential for distributed sensing, capability of in situ and remote operation, and tolerance to harsh environments. However, existing optical fiber chemical sensors lack the desired sensitivity and specificity for many applications such as chemical and biological analysis, industrial process control, environmental monitoring, and national security. The dissertation summarizes our research efforts and results in functional integration of nanoporous zeolites with optical fiber devices for development of label-free optical fiber chemical sensors with high sensitivity and selectivity. Fundamental research has been conducted in nano-materials, micro-devices and the material-device integrations. The material research has been focused on synthesis and characterization of nanoporous zeolites for optical chemical sensing. The research in devices has led to the successful design, fabrication and demonstration of a number of fiber sensor platforms including the turn-around-point long period fiber gratings (TAP-LPFG), the singlemode-multimode- singlemode (SMS) fiber interferometers, the long period fiber grating (LPFG) assisted Michelson interferometers, and nanostructured fiber optic surface enhanced Raman scattering (SERS) probes. Optical fiber chemical sensors have been successfully fabricated by growing zeolite thin films on the fiber devices, and evaluated for their sensitivity, detection limit and selectivity/specificity. The encouraging results reveal that integration of nanoporous zeolite with optical fiber devices presents a promising solution for development of high performance optical chemical sensors.

  12. Use of electro-optical devices for optical path-length (OPL) compensation

    NASA Astrophysics Data System (ADS)

    Restaino, Sergio R.; Gates, Elinor L.; Carreras, Richard A.; Dymale, Raymond C.; Loos, Gary C.

    1994-06-01

    We present the results of some laboratory experiments of the use of electro-optical (EO) devices to control the optical path length (OPL) of an interferometric array. One of the most important problems in interferometric beam combination is the control of the path length; this is coupled with the need for partial wavefront compensation in order to increase the sensitivity of the interferometer. Traditional approaches to such problems are often very expensive and sometimes impractical. For this reason we started an effort, both theoretically and experimentally, in order to investigate if less costly and more effective techniques can be applied. In our experiments we used single-cell LCDs in order to eliminate piston terms in a two- aperture interferometer. We used phase diversity techniques for extracting the phase information. Although the experimental results are still partial we believe that there is enough evidence that such devices can be used for the OPL control and partial wavefront compensation. Further testing is needed in order to assess the real capabilities of commercially available LCDs and the need, if any, of customization.

  13. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    PubMed Central

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged. PMID:27873888

  14. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  15. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  16. Optical polarizing neutron devices designed for pulsed neutron sources

    SciTech Connect

    Takeda, M.; Kurahashi, K.; Endoh, Y.; Itoh, S.

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  17. Optical device for continuous monitoring of DDT residues

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Sheikh, Sohail H.

    1997-05-01

    A two step filtration based fluorometric device for continuous measurement of DDT residues is developed. The device which exploits the native fluorescence of DDT can be easily adopted to a commercial spectrofluorometer. The device was tested for its use in measuring DDT contamination in soil, potato peel and orange juice extracts and provides a detection limit approximately 1 (mu) M.

  18. Laser chemical etching of waveguides and quasi-optical devices

    NASA Astrophysics Data System (ADS)

    Drouet D'Aubigny, Christian Yann Pierre

    2003-11-01

    The terahertz (THz) frequency domain, located at the frontier of radio and light, is the last unexplored region of the electromagnetic spectrum. As technology becomes available, THz systems are finding applications to fields ranging all the way from astronomical and atmospheric remote sensing to space telecommunications, medical imaging, and security. In Astronomy the THz and far infrared (IR) portion of the electromagnetic spectrum (λ = 300 to 10 μm) may hold the answers to countless questions regarding the origin and evolution of the Universe, galaxy, star and planet formation. Over the past decade, advances in telescope and detector technology have for the first time made this regime available to astronomers. Near THz frequencies, metallic hollow waveguide structures become so small, (typically much less than a millimeter), that conventional machining becomes extremely difficult, and in many cases, nearly impossible. Laser induced, micro-chemical etching is a promising new technology that can be used to fabricate three dimensional structures many millimeters across with micrometer accuracy. Laser micromachining of silicon possesses a significant edge over more conventional techniques. It does not require the use of masks and is not confined to crystal planes. A non-contact process, it eliminates tool wear and vibration problems associated with classical milling machines. At the University of Arizona we have constructed the first such laser micromachining system optimized for the fabrication of THz and far IR waveguide and quasi-optical components. The system can machine structures up to 50 mm in diameter, down to a few microns accuracy in a few minutes and with a remarkable surface finish. A variety of THz devices have been fabricated using this technique, their design, fabrication, assembly and theoretical performance is described in the chapters that follow.

  19. Limitations of Segmented Wavefront Control Devices in Emulating Optical Turbulence

    DTIC Science & Technology

    2008-03-01

    for Adaptive Optics in Vision Science”. IEEE Journal of Selected Topics in Quantum Electronics, 10(3):629–635, May/Jun 2004. 11. Fernandez , Enrique J...and Pablo Artal. “Membrane Deformable Mirror for Adap- tive Optics: Performance Limits in Visual Optics”. Optics Express, 11(9):1056– 1069, May 2003

  20. Recent progress on practical PLC devices for optical access systems and dense WDM systems

    NASA Astrophysics Data System (ADS)

    Takato, Norio

    1997-12-01

    Silica-based planar lightwave circuit (PLC) devices are starting to be introduced into commercial optical communication systems. PLC devices such as optical splitters, wavelength-insensitive coupler (WINC) arrays, and hybrid- integrated wavelength-division-multiplexing (WDM) transceivers are used to construct cost effective optical access systems. In trunk lines, on the other hand, arrayed-waveguide gratings (AWG) are employed for dense WDM systems to increase the transmission capacity. This paper reviews the current status and recent progress on these practical PLC devices.

  1. Analysis of spectral response of optical switching devices based on chalcogenide bistable fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Scholtz, Lubomír.; Müllerová, Jarmila

    2015-01-01

    Fiber Bragg gratings (FBGs) are novel and promising devices for all-optical switching, ADD/DROP multiplexers, AND gates, switches, all-optical memory elements. Optical switching based on optical Kerr effects induced with high pump laser light incident on the FBGs cause the change of spectral characteristics of grating depending on the incident power. In this paper numerical studies of the nonlinear FBGs are presented. Optical switching based on the optical bistability in nonlinear chalcogenide FBGs is investigated. The spectral response of nonlinear FBGs is discussed from theoretical viewpoint. The simulations are based on the nonlinear coupled mode theory.

  2. Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators.

    PubMed

    Fegadolli, William S; Almeida, Vilson R; Oliveira, José Edimar Barbosa

    2011-06-20

    A novel tunable and reconfigurable thermo-optical device is theoretically proposed and analyzed in this paper. The device is designed to be entirely compatible with CMOS process and to work as a thermo-optical filter or modulator. Numerical results, made by means of analytical and Finite-Difference Time-Domain (FDTD) methods, show that a compact device enables a broad bandwidth operation, of up to 830 GHz, which allows the device to work under a large temperature variation, of up to 96 K.

  3. Night vision device technology development

    SciTech Connect

    Funsten, H.; Nordholt, J.; Suszcynsky, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop microchannel plate (MCP) technologies for enhancement of night vision device (NVD) capabilities. First, segmented microchannel plates with independent gain control to minimize loss of low level light images in the presence of a bright light source (e.g., battlefield lasers, flares, and headlights) need to be developed. This enables, for example, enhanced vision capabilities during night operations in, for example, a city environment and continuous capability of aviators to see the horizon, nearground obstructions, and ground targets. Furthermore, curved microchannel plate technology to increase the field of view of NVDs while minimizing optical aberrations needs to be developed and applied. This development would significantly enhance peripheral vision capabilities of aviators and result in easier adaptation of the human eye to NVDs.

  4. Optical Device, System, and Method of Generating High Angular Momentum Beams

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Matsko, Andrey B. (Inventor); Strekalov, Dmitry V. (Inventor); Grudinin, Ivan S. (Inventor); Maleki, Lute (Inventor)

    2009-01-01

    An optical device, optical system, and method of generating optical beams having high angular momenta are provided. The optical device includes a whispering gallery mode resonator defining a resonator radius and an elongated wavegWde having a length defined between a first end and a second end of the waveguide. The waveguide defines a waveguide radius which increases at least along a portion of the length of the waveguide in a direction from the first end to the second end. The waveguide radius at the first end of the waveguide is smaller than the resonator radius and the resonator is integrally formed with the first end of the waveguide.

  5. Femtosecond all-optical devices for ultrafast communication and signal processing

    NASA Astrophysics Data System (ADS)

    Wada, Osamu

    2004-11-01

    Future bandwidth demand in optical communication and signal processing systems will soon exceed 100 Gb s-1 as is commonly forecasted from a throughput experience curve for communication systems. However, such systems cannot be realized without introducing ultrafast, all-optical devices, since existing optoelectronic and electronic devices and integrated circuits would not be able to function at a bit rate exceeding 100 Gb s-1, because of the speed limit intrinsic to conventional semiconductor materials and devices. All-optical devices based on completely new principles, not being restricted by properties of existing materials and device principles, must be developed for the realization of ultrafast communication and signal processing systems. This paper reviews requirements of ultrafast all-optical devices and recent progress in ultrafast light sources and all-optical switches based on either novel device principles or ultrafast phenomena in novel materials such as quantum-confined nanostructures. Recent developments described here include mode-locked lasers and a variety of all-optical switches based on different phenomena including Mach-Zehnder interferometer structures, spin relaxation, intersubband transition, and ultrafast absorption recovery in organic thin films and semiconductor quantum dots. Some of the recent developments have already shown capability of basic functions such as ultrafast pulse generation and signal processing at the bit rate of 500 Gb s-1 to 1 Tb s-1. Technical challenges expected for the future are discussed in view of their applications in real systems.

  6. Advanced Organic Electro-Optic Materials for Integrated Device Applications

    DTIC Science & Technology

    2001-06-01

    Electro - optic chromophores (FTC and CLD) were synthesized in bulk (kilogram) quantities and were distributed to the participants of this program...to stabilize electro - optic activity for operation at elevated temperatures and photon flux levels. Over 100 variants of these chromophores were...1.5-2.0 improvement over FTC and CLD chromophores in terms of electro - optic activity at telecommunication wavelengths. They also have proven more

  7. A novel optic bistable device with very low threshold intensity using photorefractive films

    NASA Astrophysics Data System (ADS)

    Wang, Sean X.; Sun, Yuankun; Trivedi, Sudhir B.; Li, Guifang

    1994-08-01

    Brimrose Corporation of America reports the successful completion of the SBIR Phase I research in low-threshold intensity optical bistable devices using photorefractive nonlinearity. A thin photorefractive film optical bistable device was proposed in the Phase I proposal. The feasibility of this device was theoretically investigated. The theoretical feasibility study formulates the materials requirements in such a kind of configuration for Phase II research. In addition, we have proposed and investigated another configuration of optical bistable devices that do not require advanced photorefractive materials, namely, the self-pumped phase conjugator. We have successfully demonstrated a low-threshold optical bistable operation in a KNSBN:CU crystal. To the best of our knowledge, the threshold of 650 mW/sq. cm is the lowest of its kind to be achieved so far.

  8. Implantable optogenetic device with CMOS IC technology for simultaneous optical measurement and stimulation

    NASA Astrophysics Data System (ADS)

    Haruta, Makito; Kamiyama, Naoya; Nakajima, Shun; Motoyama, Mayumi; Kawahara, Mamiko; Ohta, Yasumi; Yamasaki, Atsushi; Takehara, Hiroaki; Noda, Toshihiko; Sasagawa, Kiyotaka; Ishikawa, Yasuyuki; Tokuda, Takashi; Hashimoto, Hitoshi; Ohta, Jun

    2017-05-01

    In this study, we have developed an implantable optogenetic device that can measure and stimulate neurons by an optical method based on CMOS IC technology. The device consist of a blue LED array for optically patterned stimulation, a CMOS image sensor for acquiring brain surface image, and eight green LEDs surrounding the CMOS image sensor for illumination. The blue LED array is placed on the CMOS image sensor. We implanted the device in the brain of a genetically modified mouse and successfully demonstrated the stimulation of neurons optically and simultaneously acquire intrinsic optical images of the brain surface using the image sensor. The integrated device can be used for simultaneously measuring and controlling neuronal activities in a living animal, which is important for the artificial control of brain functions.

  9. Ultra-High Speed Optical Communication and Switching via Novel Quantum Devices.

    DTIC Science & Technology

    1995-09-01

    A joint theoretical experimental research program was undertaken to initiate the development of novel quantum devices for greatly improved optical ... communication and switching in both local network and long haul applications. Specifically, Northwest University theoretically investigated and

  10. Precision guided parachute LDRD final report

    SciTech Connect

    Gilkey, J.C.

    1996-07-01

    This report summarizes the results of the Precision Guided Parachute LDRD, a two year program at Sandia National Laboratories which developed a Global Positioning System (GPS) guided parachute capable of autonomous flight and landings. A detailed computer model of a gliding parachute was developed for software only simulations. A hardware in-the-loop simulator was developed and used for flight package system integration and design validation. Initial parachute drop tests were conducted at Sandia`s Coyote Canyon Cable Facility, followed by a series of airdrops using Ross Aircraft`s Twin Otter at the Burris Ranch Drop Zone. Final flights demonstrated in-flight wind estimation and the capability to fly a commanded heading. In the past, the cost and logistical complexity of an initial navigation system ruled out actively guiding a parachute. The advent of the low-cost, light-weight Global Positioning System (GPS) has eliminated this barrier. By using GPS position and velocity measurements, a guided parachute can autonomously steer itself to a targeted point on the ground through the use of control drums attached to the control lanyards of the parachute. By actively correcting for drop point errors and wind drift, the guidance accuracy of this system should be on the order of GPS position errors. This would be a significant improvement over unguided airdrops which may have errors of a mile or more.

  11. Advanced nuclear measurements LDRD -- Sensitivity analysis

    SciTech Connect

    Dreicer, J.S.

    1999-02-01

    This component of the Advanced Nuclear Measurements LDRD-PD has focused on the analysis and methodologies to quantify and characterize existing inventories of weapons and commercial fissile materials, as well as to, anticipate future forms and quantities to fissile materials. Historically, domestic safeguards had been applied to either pure uniform homogeneous material or to well characterized materials. The future is different simplistically, measurement challenges will be associated with the materials recovered from dismantled nuclear weapons in the US and Russia subject to disposition, the residues and wastes left over from the weapons production process, and from the existing and growing inventory of materials in commercial/civilian programs. Nuclear measurement issues for the fissile materials coming from these sources are associated with homogeneity, purity, and matrix effects. Specifically, these difficult-to-measure fissile materials are heterogeneous, impure, and embedded in highly shielding non-uniform matrices. Currently, each of these effects creates problems for radiation-based assay and it is impossible to measure material that has a combination of all these effects. Nuclear materials control and measurement is a dynamic problem requiring a predictive capability. This component has been tasked with helping select which future problems are the most important to target, during the last year accomplishments include: characterization of weapons waste fissile materials, identification of measurement problem areas, defining instrument requirements, and characterization of commercial fissile materials. A discussion of accomplishments in each of these areas is presented.

  12. Method and device for remotely monitoring an area using a low peak power optical pump

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

    2014-07-22

    A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

  13. Ferroelectric Tungsten Bronze Bulk Crystals and Epitaxial Thin Films for Electro-Optic Device Applications

    DTIC Science & Technology

    1983-05-01

    23 FERROELECTRIC TUNGSTEN BRONZE BULK CRYSTALS AND EPITAXIAL THIN FILMS FOR ELECTRO-OPTIC DEVICE APPLICATIONS 10 CO O Semi-Annual Technical... THIN FILMS FOR ELECTRO-OPTIC DEVICE APPLICATIONS s TV^C or REPORT * pcmoo COVCHCO Semi-Annual Tec1! Rpt #1 for period 09/30/82-03/31/83...months, considerable progress has been made in several areas, including single crystal and thin film growth and characteriza- tion. The new

  14. Optical properties of inorganic electroluminescent devices with nanostripe electrodes

    NASA Astrophysics Data System (ADS)

    Nonaka, Toshihiro; Yamamoto, Shin-ichi

    2016-03-01

    In this paper, we report on the luminescence (emission) characteristics of a laminated dispersion-type inorganic electroluminescent (EL) device with a nanostripe electrode made of thin Al film, instead of a conventional indium-tin oxide (ITO) transparent electrode, on the emission side of the device. The transmittance of the Al nanostripe electrode, with 60-nm line-and-space widths, was 45%. We compared an inorganic EL device positioned between two thin films of Al and the inorganic EL device with the Al nanostripe electrode using electric field simulations and actual experiments. We were able to apply the same electric field intensity to the phosphor layer in the conventional structure and to the new structure. Therefore, with an Al nanostripe electrode on one side of the EL device, it is possible to fabricate an ITO-free display.

  15. Implantation of a newly developed direct optic nerve electrode device for artificial vision in rabbits.

    PubMed

    Sakaguchi, Hirokazu; Kamei, Motohiro; Nishida, Kentaro; Terasawa, Yasuo; Fujikado, Takashi; Ozawa, Motoki; Nishida, Kohji

    2012-09-01

    The purpose of this study was to investigate the surgical procedures involved in the implantation of a newly developed direct optic nerve electrode device for inducing artificial vision. The electrode device comprised seven wire stimulation electrodes and a return electrode (diameter 50 μm), one manipulation rod (diameter 100 μm), and a cylindrical silicone board (diameter 2.0 mm). The stimulation electrodes and the manipulation rod protruded through the board to allow implantation of the electrode tips into the optic disc of the rabbit eye. The surgical procedures required to insert the device into the vitreous cavity and implant the device into the optic disc were evaluated. When the electrodes were stimulated, electrically evoked potentials (EEPs) were recorded at the visual cortex. The electrode device was inserted into the vitreous cavity with no damage using a trocar through a scleral incision. The device was easily manipulated using vitreoretinal forceps in the vitreous cavity, and the electrode tips were implanted into the optic disc in a single insertion after vitrectomy. When electrical stimulation was applied, EEPs were recorded from all electrode pairs. The newly developed electrode device was inserted into the eye and implanted into the optic nerve disc smoothly and safely, suggesting that these surgical procedures are useful for our artificial vision system.

  16. Design of optical cloaks and illusion devices along a circumferential direction in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Chen, Tungyang; Yu, Shang-Ru

    2010-11-01

    We propose a cloaking and illusion device of circumferential topology based on the concept of transformation optics. The device is capable to cloak an object and/or simultaneously generate illusion images along a circumferential direction in curvilinear orthogonal coordinates. This feature allows us to construct multiple illusions in different ways, irrespective of the profile and direction of incident wave. Particularly when the device is served as a building brick of a larger device, one can generate a circumferential array of illusions in a periodic or any preferred pattern. We demonstrate the effectiveness of the proposed illusion devices by carrying out full wave simulations based on finite element calculations.

  17. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    PubMed

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.

  18. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    PubMed Central

    He, Li; Li, Huan; Li, Mo

    2016-01-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072

  19. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.

    PubMed

    O'Toole, Martina; Diamond, Dermot

    2008-04-07

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  20. Controllable optical transparency using an acoustic standing-wave device

    NASA Astrophysics Data System (ADS)

    Moradi, Kamran; El-Zahab, Bilal

    2015-09-01

    In this paper, a suspended-particle device with controllable light transmittance was developed based on acoustic stimuli. Using a glass compartment and carbon particle suspension in an organic solvent, the device responded to acoustic stimulation by alignment of particles. The alignment of light-absorbing carbon particles afforded an increase in light transmittance as high as 84.5% and was controllable based on the control of the frequency and amplitude of the acoustic waves. The device also demonstrated alignment memory rendering it energy-efficient.

  1. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices

    PubMed Central

    O'Toole, Martina; Diamond, Dermot

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements. PMID:27879829

  2. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    PubMed

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  3. Long-Term Optical Device Use by Young Adults with Low Vision

    ERIC Educational Resources Information Center

    Bachofer, Cynthia Susan

    2013-01-01

    The purpose of this study was to investigate the long-term use of optical devices by individuals who participated in a school-based comprehensive low vision program focusing on use of devices, both near and distance. Thirty-seven participants (five non-users), ages 18-28, completed phone interviews giving information on their personal…

  4. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    SciTech Connect

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  5. Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Zhang, Chonglei; Min, Changjun; Yuan, X.-C.

    2016-12-01

    We propose a technique to generate of perfect optical vortex (POV) via Fourier transformation of Bessel-Gauss (BG) beams through encoding of the amplitude of the optical field with binary amplitude digital micro-mirrors device (DMD). Furthermore, we confirm the correct phase patterns of the POV with the method of Mach-Zehnder interferometer. Our approach to generate the POV has the advantages that rapidly switch among the different modes, wide spectral regions and high energy tolerance. Since the POV possess propagation properties that not shape-invariant, we therefore suppose that our proposed approach will find potential applications in optical microscopy, optical fabrication, and optical communication.

  6. Fibers and fiber devices for next generation optical networks

    NASA Astrophysics Data System (ADS)

    Yam, Scott S. H.

    Conventional optical networks consist of point-to-point fiber links that span long geographical distance, where the performance reliability of time-continuous circuit traffic is critical. As optical networks reach out to users in the last mile, considerations such as bursty traffic pattern and cost have to be taken into account. These considerations impose new challenges on the fiber physical layer. This dissertation outlines the performance requirements of current and next generation optical networks and discusses the above fiber issues they impose. These challenges can be roughly divided into the categories of optical amplifier transient response, high-speed data transmission over multimode fibers, and optical interconnects. Optical amplifier continues to serve its essential role in future optical networks by boosting signal strength to overcome passive component losses. However, being an analog component, the impact of their transient response on end-to-end system performance, and ways to mitigate any negative effects need to be investigated. This is the focus of the section on optical amplifier transient response. In an effort to maximize cost efficiency, installed communication infrastructure in office and residential buildings should be fully utilized, hence motivating the study on high-speed data transmission over multimode fibers. The latest technologies and results are discussed in this section. The last section addresses the interface that ensure seamless connection of traffic as data moves from one type of data network to another, each with its own specific performance requirement. Electrical interconnects have traditionally been the technology of choice, but their speed (and eventual throughput) might not scale with the increasing data rate and the deployment of wavelength division multiplexing. The advantages and results of optical interconnects are presented.

  7. High-dynamic-range hybrid analog-digital control broadband optical spectral processor using micromirror and acousto-optic devices.

    PubMed

    Riza, Nabeel A; Reza, Syed Azer

    2008-06-01

    For the first time, to the best of our knowledge, the design and demonstration of a programmable spectral filtering processor is presented that simultaneously engages the power of an analog-mode optical device such as an acousto-optic tunable filter and a digital-mode optical device such as the digital micromirror device. The demonstrated processor allows a high 50 dB attenuation dynamic range across the chosen 1530-1565 nm (~C band). The hybrid analog-digital spectral control mechanism enables the processor to operate with greater versatility when compared to analog- or digital-only processor designs. Such a processor can be useful both as a test instrument in biomedical applications and as an equalizer in fiber communication networks.

  8. Development and applications of diffractive optical security devices for banknotes and high value documents

    NASA Astrophysics Data System (ADS)

    Drinkwater, John K.; Holmes, Brian W.; Jones, Keith A.

    2000-04-01

    Embossed holograms and othe rdiffractive optically variable devices are increasingly familiar security items on plastic cards, banknotes, securyt documetns and on branded gods and media to protect against counterfeit, protect copyright and to evidence tamper. This paper outlines some of the diffractive optical seuryt and printed security develoepd for this rapidly growing field and provides examles of some current security applications.

  9. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  10. Introduction: feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices.

    PubMed

    Hwang, Jeeseong; Ramella-Roman, Jessica C; Nordstrom, Robert

    2012-06-01

    The editors introduce the Biomedical Optics Express feature issue on "Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices." This topic was the focus of a technical workshop that was held on November 7-8, 2011, in Washington, D.C. The feature issue includes 13 contributions from workshop attendees.

  11. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  12. Oriented niobate ferroelectric thin films for electrical and optical devices

    DOEpatents

    Wessels, Bruce W.; Nystrom, Michael J.

    2001-01-01

    Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

  13. Passive device based on plastic optical fibers to determine the indices of refraction of liquids.

    PubMed

    Zubia, J; Garitaonaindía, G; Arrúe, J

    2000-02-20

    We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.

  14. Lithographically-Scribed Planar Holographic Optical CDMA Devices and Systems

    DTIC Science & Technology

    2007-02-15

    the model reasonably predicts the width and flatness. From the pertbrmance depicted in Figure 14 (a first prototype device), we can conclude that HBR...LightSmyth written software that simulates, via numerical diffractive scattering calculations, the actual behavior expected from fabricated devices. The HBR...between the channels). Second, there are ripples on the passband. The out-of-band crosstalk has been identified by modeling to result from a spatial

  15. Research Studies on Advanced Optical Module/Head Designs for Optical Disk Recording Devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.; Seery, Bernard D.

    1993-01-01

    The Annual Report of the Optical Data Storage Center of the University of Arizona is presented. Summary reports on continuing projects are presented. Research areas include: magneto-optic media, optical heads, and signal processing.

  16. Study of 3D printing method for GRIN micro-optics devices

    NASA Astrophysics Data System (ADS)

    Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.

    2016-03-01

    Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.

  17. Research studies on advanced optical module/head designs for optical devices

    NASA Technical Reports Server (NTRS)

    Burke, James J.

    1991-01-01

    A summary is presented of research in optical data storage materials and of research at the center. The first section contains summary reports under the general headings of: (1) Magnetooptic media: modeling, design, fabrication, characterization, and testing; (2) Optical heads: holographic optical elements; and (3) Optical heads: integrated optics. The second section consist of a proposal entitled, Signal Processing Techniques for Optical Data Storage. And section three presents various publications prepared by the center.

  18. Photonic materials and devices for optical information processing and computing applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.

    1991-02-01

    The research program is focused on a critical evaluation of advanced photonic materials and device concepts for the implementation of optical information processing and computing systems. The effort ranges from a detailed investigation of the fundamental physical and technological limitations that impact the potential computational gain (e.g., increases in throughput, decreases in decision time subsequent to processing, or minimization of the energy expended during computation) of optical information processing and computing systems, through the invention and characterization of key enabling devices such as two dimensional spatial light modulators and volume holographic optical elements, to the development of advanced techniques for materials growth, deposition, and processing that have a critical impact on potential device performance. This multifaceted evaluation of novel materials, device, and system concepts has been directly responsible for the invention and characterization of a number of photonic devices and materials processing techniques that exhibit both high performance and capacity for practical manufacturing. The primary program thrusts can be organized into three principal categories: (1) fundamental and technological limitations of optical information processing and computing; (2) electrically and optically addressed spatial light modulators; and (3) volume holographic optical elements.

  19. Micropatterned photoalignment for wavefront controlled switchable optical devices

    NASA Astrophysics Data System (ADS)

    Glazar, Nikolaus

    Photoalignment is a well-established technique for surface alignment of the liquid crystal director. Previously, chrome masks were necessary for patterned photoalignment but were difficult to use, costly, and inflexible. To extend the capabilities of photoalignment we built an automated maskless multi-domain photoalignment device based on a DMD (digital multimirror device) projection system. The device is capable of creating arbitrary photoalignment patterns with micron-sized features. Pancharatnam-Berry phase (PB-phase) is a geometric phase that arises from cyclic change of polarization state. By varying the azimuthal anchoring angle in a hybrid-aligned liquid crystal cell we can control the spatial variation of the PB-phase shift. Using our automated photoalignment device to align the liquid crystal arbitrary wave front manipulations are possible. The PB-phase shift effect is maximized when the cell is tuned to have a half-wave retardation and disappears at full-wave retardation, so the cell can be switched on and off by applying a voltage. Two wavefront controlled devices developed using this technique will be discussed: A switchable liquid crystal phase shift mask for creating sub-diffraction sized photolithographic features, and a transparent diffractive display that utilizes a switchable liquid crystal diffraction grating.

  20. Compact and high-efficiency device for Raman scattering measurement using optical fibers.

    PubMed

    Mitsui, Tadashi

    2014-11-01

    We describe the design and development of a high-efficiency optical measurement device for operation within the small bore of a high-power magnet at low temperature. For the high-efficiency measurement of light emitted from this small region, we designed a compact confocal optics with lens focusing and tilting systems, and used a piezodriven translation stage that allows micron-scale focus control of the sample position. We designed a measurement device that uses 10 m-long optical fibers in order to avoid the influence of mechanical vibration and magnetic field leakage of high-power magnets, and we also describe a technique for minimizing the fluorescence signal of optical fibers. The operation of the device was confirmed by Raman scattering measurements of monolayer graphene on quartz glass with a high signal-to-noise ratio.

  1. Numerical investigation of a multi-functional optical device based on graphene-silica metamaterial

    NASA Astrophysics Data System (ADS)

    Liu, Huaiqing; Ren, Guobin; Gao, Yixiao; Zhu, Bofeng; Li, Haisu; Wu, Beilei; Jian, Shuisheng

    2016-06-01

    We propose a permittivity-tunable metamaterial channel, which is composed of alternative layers of graphene and silica. Optical waves can pass through the metamaterial channel only if its permittivity is tuned to zero. Taking advantage of the permittivity tunable property of the metamaterial, a multi-functional optical device, which can act as a wavelength demultiplexer, switch, and optical splitter without changing the geometric parameters has been proposed and numerically investigated by using the Finite Element Method. Owing to the permittivity tunable property of graphene, the working wavelength of the multi-functional device can be flexibly controlled by tuning the gate voltage applied on the metamaterial. This tunable ultracompact multi-functional optical device may find potential applications in highly integrated photonic circuits.

  2. Optical interconnection for a polymeric PLC device using simple positional alignment.

    PubMed

    Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung

    2011-04-25

    This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.

  3. Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol

    PubMed Central

    Fang, Chaolong; Dai, Bo; Hong, Ruijin; Tao, Chunxian; Wang, Qi; Wang, Xu; Zhang, Dawei; Zhuang, Songlin

    2015-01-01

    An optofluidic device with tunable optical limiting property is proposed and demonstrated. The optofluidic device is designed for adjusting the concentration of graphene oxide (GO) in the ethanol solution and fabricated by photolithography technique. By controlling the flow rate ratio of the injection, the concentration of GO can be precisely adjusted so that the optical nonlinearity can be changed. The nonlinear optical properties and dynamic excitation relaxation of the GO/ethanol solution are investigated by using Z-scan and pump-probe measurements in the femtosecond regime within the 1.5 μm telecom band. The GO/ethanol solution presents ultrafast recovery time. Besides, the optical limiting property is in proportion to the concentration of the solution. Thus, the threshold power and the saturated power of the optical limiting property can be simply and efficiently manipulated by controlling the flow rate ratio of the injection. Furthermore, the amplitude regeneration is demonstrated by employing the proposed optofluidic device. The signal quality of intensity-impaired femtosecond pulse is significantly improved. The optofluidic device is compact and has long interaction length of optical field and nonlinear material. Heat can be dissipated in the solution and nonlinear material is isolated from other optical components, efficiently avoiding thermal damage and mechanical damage. PMID:26477662

  4. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  5. Deep ultraviolet laser micromachining of novel fibre optic devices

    NASA Astrophysics Data System (ADS)

    Li, J.; Dou, J.; Herman, P. R.; Fricke-Begemann, T.; Ihlemann, J.; Marowsky, G.

    2007-04-01

    A deep ultraviolet F2 laser, with output at 157-nm wavelength, has been adopted for micro-shaping the end facets of single and multi-mode silica optical fibres. The high energy 7.9-eV photons drive strong interactions in the wide-bandgap silica fibres to enable the fabrication of surface-relief microstructures with high spatial resolution and smooth surface morphology. Diffraction gratings, focusing lenses, and Mach-Zehnder interferometric structures have been micromachined onto the cleaved-fibre facets and optically characterized. F2-laser micromachining is shown to be a rapid and facile means for direct-writing of novel infibre photonic components.

  6. FY04 LDRD Final Report Stroke Sensor Development Using Microdot Sensor Arrays

    SciTech Connect

    Carter, J C; Wilson, T S; Alvis, R M; Paulson, C N; Setlur, U S; McBride, M T; Brown, S B; Bearinger, J P; Colston, B W

    2005-11-15

    major thrust area for the Medical Technology Program (M-division). Through MTP, LLNL has a sizable investment and recognizable expertise in stroke treatment research. The proposed microdot array sensor for stroke will complement this existing program in which mechanical devices are being designed for removing the thrombus. The following list of stroke projects and their relative status shows that MTP has a proven track record of taking ideas to industry: The goal of this LDRD funded project was to develop and demonstrate a minimally invasive optical fiber-based sensor for rapid and in-vivo measurements of multiple stroke biomarkers (e.g. pH and enzyme). The development of this sensor also required the development of a new fabrication technology for attaching indicator chemistries to optical fibers. A benefit of this work is to provide clinicians with a tool to assess vascular integrity of the region beyond the thrombus to determine whether or not it is safe to proceed with the removal of the clot. Such an assessment could extend the use of thrombolytic drug treatment to acute stroke victims outside the current rigid temporal limitation of 3 hours. Furthermore, this sensor would also provide a tool for use with emerging treatments involving the use of mechanical devices for removing the thrombus. The sensor effectively assesses the risk for reperfusion injury.

  7. Electro-optical device for monitoring wire size

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Kelly, W. L., IV

    1973-01-01

    Device recognizes variations in wire size and is being used during computer memory-plane fabrication. Decrease in wire diameter, due to stretching, permits removal of wire from memory-plant mold. Monitoring provides means of detecting imperfect wire and permits fabrication of computer memory plane to be stopped prior to its insertion into mold.

  8. Thermo-optic coefficient of polyisobutylene ultrathin films measured with integrated photonic devices.

    PubMed

    Choi, Hong Seok; Neiroukh, Dania; Hunt, Heather K; Armani, Andrea M

    2012-01-10

    The optical properties of polymeric materials, such as transmission loss and the thermo-optic coefficient, determine their utility in numerous applications, ranging from nanotechnology to the automotive and aerospace industries. However, because of the wide variation in the physical properties of polymers, many are unsuited for characterization using conventional techniques; consequently, their optical properties are unknown. One such polymer is polyisobutylene, which is viscous at room temperature and therefore is not compatible with conventional transmission loss and the thermo-optic coefficient characterization techniques because they rely on contact measurements. To overcome this, we have developed an integrated, microscale optical sensor that relies on an evanescent wave to study the material's optical behavior. Using this device, we successfully determined the refractive index, the transmission loss, and the thermo-optic coefficient of ultrathin films of polyisobutylene. The films are deposited on the sensor's silica surface using either spin coating or surface-initiated cationic polymerization, demonstrating the flexibility of this approach.

  9. Infrared Optical Properties of β-Spodumene Solid Solution Glass-Ceramic for Fiber-Optic Devices

    NASA Astrophysics Data System (ADS)

    Sakamoto, Akihiko; Yamamoto, Shigeru

    2006-09-01

    The IR optical properties of an opaque β-spodumene solid solution (s.s.) glass-ceramic for fiber-optic devices were studied in relation to its refractive indices in both crystalline and glass phases. We investigated the refractive indices of both phases on the basis of IR transmittance change due to the structural relaxation of the glass phase. The refractive indices of this β-spodumene s.s. glass-ceramic at a wavelength of 1550 nm in the crystalline and glass phases were first determined to be 1.530 and 1.495, respectively. It was found from the refractive index data that the optical scattering intensity of this glass-ceramic approximately follows the Rayleigh-Gans model. We also demonstrated that the inner diameter of an opaque glass-ceramic capillary used in optical fiber connectors can be optically measured with a sub-micrometer accuracy using an IR laser.

  10. Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices

    PubMed Central

    Agrawal, Anant; Baxi, Jigesh; Calhoun, William; Chen, Chieh-Li; Ishikawa, Hiroshi; Schuman, Joel S.; Wollstein, Gadi; Hammer, Daniel X.

    2016-01-01

    Purpose Optical coherence tomography (OCT) can monitor for glaucoma by measuring dimensions of the optic nerve head (ONH) cup and disc. Multiple clinical studies have shown that different OCT devices yield different estimates of retinal dimensions. We developed phantoms mimicking ONH morphology as a new way to compare ONH measurements from different clinical OCT devices. Methods Three phantoms were fabricated to model the ONH: One normal and two with glaucomatous anatomies. Phantoms were scanned with Stratus, RTVue, and Cirrus clinical devices, and with a laboratory OCT system as a reference. We analyzed device-reported ONH measurements of cup-to-disc ratio (CDR) and cup volume and compared them with offline measurements done manually and with a custom software algorithm, respectively. Results The mean absolute difference between clinical devices with device-reported measurements versus offline measurements was 0.082 vs. 0.013 for CDR and 0.044 mm3 vs. 0.019 mm3 for cup volume. Statistically significant differences between devices were present for 16 of 18 comparisons of device-reported measurements from the phantoms. Offline Cirrus measurements tended to be significantly different from those from Stratus and RTVue. Conclusions The interdevice differences in CDR and cup volume are primarily caused by the devices' proprietary ONH analysis algorithms. The three devices yield more similar ONH measurements when a consistent offline analysis technique is applied. Scan pattern on the ONH also may be a factor in the measurement differences. This phantom-based study has provided unique insights into characteristics of OCT measurements of the ONH. PMID:27409500

  11. Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices.

    PubMed

    Agrawal, Anant; Baxi, Jigesh; Calhoun, William; Chen, Chieh-Li; Ishikawa, Hiroshi; Schuman, Joel S; Wollstein, Gadi; Hammer, Daniel X

    2016-07-01

    Optical coherence tomography (OCT) can monitor for glaucoma by measuring dimensions of the optic nerve head (ONH) cup and disc. Multiple clinical studies have shown that different OCT devices yield different estimates of retinal dimensions. We developed phantoms mimicking ONH morphology as a new way to compare ONH measurements from different clinical OCT devices. Three phantoms were fabricated to model the ONH: One normal and two with glaucomatous anatomies. Phantoms were scanned with Stratus, RTVue, and Cirrus clinical devices, and with a laboratory OCT system as a reference. We analyzed device-reported ONH measurements of cup-to-disc ratio (CDR) and cup volume and compared them with offline measurements done manually and with a custom software algorithm, respectively. The mean absolute difference between clinical devices with device-reported measurements versus offline measurements was 0.082 vs. 0.013 for CDR and 0.044 mm3 vs. 0.019 mm3 for cup volume. Statistically significant differences between devices were present for 16 of 18 comparisons of device-reported measurements from the phantoms. Offline Cirrus measurements tended to be significantly different from those from Stratus and RTVue. The interdevice differences in CDR and cup volume are primarily caused by the devices' proprietary ONH analysis algorithms. The three devices yield more similar ONH measurements when a consistent offline analysis technique is applied. Scan pattern on the ONH also may be a factor in the measurement differences. This phantom-based study has provided unique insights into characteristics of OCT measurements of the ONH.

  12. Optical 1's and 2's complement devices using lithium-niobate-based waveguide

    NASA Astrophysics Data System (ADS)

    Pal, Amrindra; Kumar, Santosh; Sharma, Sandeep

    2016-12-01

    Optical 1's and 2's complement devices are proposed with the help of lithium-niobate-based Mach-Zehnder interferometers. It has a powerful capability of switching an optical signal from one port to the other port with the help of an electrical control signal. The paper includes the optical conversion scheme using sets of optical switches. 2's complement is common in computer systems and is used in binary subtraction and logical manipulation. The operation of the circuits is studied theoretically and analyzed through numerical simulations. The truth table of these complement methods is verified with the beam propagation method and MATLAB® simulation results.

  13. Tactical Deployment and Management of Autonomous Agents, LDRD Final Report

    SciTech Connect

    Fink, Glenn A.

    2007-11-16

    This is the final report for FY07 for this ongoing LDRD. The project involves deriving a behavioral framework, algorithms, and science underlying a complex-adaptive network of cooperating sensors that secures the computational infrastructure of a multi-enterprise cooperative organization.

  14. Idaho National Laboratory LDRD Annual Report FY 2012

    SciTech Connect

    Dena Tomchak

    2013-03-01

    This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

  15. Integrated optical model for organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Mladenovski, Saso; Hofmann, Simone; Reineke, Sebastian; Penninck, Lieven; Verschueren, Thomas; Neyts, Kristiaan

    2011-04-01

    One of the most important parameters of organic light-emitting devices (OLEDs) in their application for illumination or displays is their efficiency. In order to maximize the efficiency, one needs to understand all loss mechanisms and effects present in these devices and properly model them. For that purpose, we introduce an integrated model for light emission from OLEDs. The model takes into account the exciton decay time change and light outcoupling. Furthermore, it shows how to calculate the external quantum efficiency, the spectral radiance and the luminous current efficacy of OLEDs. The overall theory is experimentally verified through a range of measurements done on a set of green OLED samples with an Ir-based phosphorescent emitter. From the analysis of simulations and experiments one can estimate the charge balance in the OLED stack and the radiative efficiency of the emitter.

  16. Fabrication Techniques for Micro-Optical Device Arrays

    DTIC Science & Technology

    2002-03-01

    lasers, the first to be commercialized and most common semiconductor laser in use today, can be found in bar code scanners, laser pointers, advanced...stick to gripper tools rather than simply dropping when released. In addition, this method is too time consuming in order to fabricate a dense array...I performed numerical modeling of the VCSEL device with the structure layout specified in the previous section using MATLAB . The model

  17. Stereotaxic Device for Optical Imaging of Mice Hind Feet

    PubMed Central

    Cole, Richard; Hoffman, Timothy; Smith, Jason; Herron, Bruce

    2013-01-01

    Imaging of in vivo model systems, especially mouse models, has revolutionized our understanding of normal and pathological developments. However, mice present several challenges for imaging. They are living and therefore breathing organisms with a fast heart rate (>500 beat/min), which necessitates the need for restraints and positioning controls that do not compromise their normal physiology. We present here a device that immobilizes the rear legs of a mouse while retaining the ability to position both the hind feet and legs for reproducible imaging deep below the skin's surface. The device is highly adjustable to accommodate mice, 5 weeks of age and older. The function of this device is demonstrated by imaging the vasculature ∼250 μm beneath the skin in the hind leg. Whereas the overall dimensions are for a motorized stage (Märzhäuser Wetzlar GmbH, Wetzlar, Germany), minor modifications would allow it to be customized for use with most commercially available stages that accept an insert. PMID:23997660

  18. Enhanced Nonlinear Optical Devices Using Artificial Slow-Light Structures

    DTIC Science & Technology

    2010-08-19

    nature is our study of the limitations on the performance of slow light waveguides, both in the linear and nonlinear regimes. This work is based upon...interaction, and others (e.g. resonant-enhanced Mach-Zehnder interferometers, or REMZI) do not. We have also performed studies in the linear regime...optical filter configurations, primarily in terms of their linear response. One of the limitations of this approach is that designs cannot always be

  19. Stand-alone scattering optical device using holographic photopolymer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Jongchan; Lee, KyeoReh; Park, YongKeun

    2016-03-01

    When a light propagates through highly disordered medium, its optical parameters such as amplitude, phase and polarization states are completely scrambled because of multiple scattering events. Since the multiple scattering is a fundamental optical process that contains extremely high degrees of freedom, optical information of a transmitted light is totally mingled. Until recently, the presence of multiple scattering in an inhomogeneous medium is considered as a major obstacle when manipulating a light transmitting through the medium. However, a recent development of wavefront shaping techniques enable us to control the propagation of light through turbid media; a light transmitting through a turbid medium can be effectively controlled by modulating the spatial profile of the incident light using spatial light modulator. In this work, stand-alone scattering optical device is proposed; a holographic photopolymer film, which is much economic compared to the other digital spatial light modulators, is used to record and reconstruct permanent wavefront to generate optical field behind a scattering medium. By employing our method, arbitrary optical field can be generated since the scattering medium completely mixes all the optical parameters which allow us to access all the optical information only by modulating spatial phase profile of the impinging wavefront. The method is experimentally demonstrated in both the far-field and near-field regime where it shows promising fidelity and stability. The proposed stand-alone scattering optical device will opens up new avenues for exploiting the randomness inherent in disordered medium.

  20. Integration of waveguides for optical detection in microfabricated analytical devices

    NASA Astrophysics Data System (ADS)

    Kutter, Joerg P.; Mogensen, Klaus B.; Friis, Peter; Jorgensen, Anders M.; Petersen, Nickolaj J.; Telleman, Pieter; Huebner, Joerg

    2000-08-01

    Buried optical channel waveguides integrated with a fluidic channel network on a planar microdevice are presented. The waveguides were fabricated using silica-on-silicon technology with the goal to replace bulk optical elements and facilitate various optical detection techniques for miniaturized total analysis systems or lab-on-a-chip systems. Waveguide structures with core layers doped with germanium were employed for fluorescence measurements, while waveguides with nitrogen- only doped core layers were used for absorbance measurements. By the elimination of germanium oxygen deficiency centers transmission of light down to 210nm was possible, allowing absorance measurements in the mid and far UV region (210 to 280nm), which is the region where a large number of different molecules absorb light. Robust, alignment-free microdevices, which can easily be hooked up to a number of light sources and detectors were used for fluorescence measurements of two dyes, fluorescein and Bodipy, and absorbance measurements of a stres-reducing drug, propranolol. The lowest detected concentrations were 250pM for fluorescein, 100nM for Bodipy and 12(mu) M for propranolol.

  1. Integrated acoustooptic device modules for optical information processing

    NASA Astrophysics Data System (ADS)

    Tsai, Chen S.

    1988-07-01

    The objectives of this program year are focused on design, fabrication, and testing of wideband guided wave AO Bragg diffraction from surface acoustic waves in Gallium arsenide optical waveguides and conception/realization of multichannel integrated acousto-optics and electrooptics Bragg modulator modules in TIPE microlenses-based lithium niobates and GaAs channel-planar composite waveguides with applications to signal processing and computing. Wideband GaAs waveguide AO Bragg cells that operate in the acoustic frequency range from 300 to 1200 MHz have been realized. This represents realization of GHz GaAs waveguide AO Bragg cells shows that monolithically integrated optic signal processors such as radiofrequency spectrum analyzers may be fabricated in a common GaAs chip. Multichannel single-mode electrooptic cutoff modulator arrays and Bragg diffraction modulator arrays have been successfully realized in GaAs. One of the vital and remaining components toward monolithic (total) integration in GaAs is the waveguide microlens and linear lens array. Fabrication of negative index-change planar waveguide microlenses in both LiNbO3 and GaAs using ion milling. The waveguide lenses that have been fabricated and tested include single lenses and lens arrays of analog Fresnel, chirp grating, and hybrid analog Fresnel chirp grating types. We have obtained near diffraction-limited spot sizes and good efficiencies in such preliminary components.

  2. Measurement of bidirectional optical properties of complex shading devices

    SciTech Connect

    Klems, J.H.; Warner, J.L.

    1995-01-01

    A new method of predicting the solar heat gain through complex fenestration systems involving nonspecular layers such as shades or blinds has been examined in a project jointly sponsored by ASHRAE and DOE. In this method, a scanning radiometer is used to measure the bidirectional radiative transmittance and reflectance of each layer of a fenestration system. The properties of systems containing these layers are then built up computationally from the measured layer properties using a transmission/multiple-reflection calculation. The calculation produces the total directional-hemispherical transmittance of the fenestration system and the layer-by-layer absorptances. These properties are in turn combined with layer-specific measurements of the inward-flowing fractions of absorbed solar energy to produce the overall solar heat gain coefficient. This paper describes the method of measuring the spatially averaged bidirectional optical properties using an automated, large-sample gonioradiometer/photometer, termed a ``Scanning Radiometer.`` Property measurements are presented for one of the most optically complex systems in common use, a venetian blind. These measurements will form the basis for optical system calculations used to test the method of determining performance.

  3. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    NASA Astrophysics Data System (ADS)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  4. A new electro-optic waveguide architecture and the unprecedented devices it enables

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Rommel, Scott D.; Farca, George; Anderson, Michael H.

    2008-04-01

    A new electro-optic waveguide platform, which provides unprecedented electro-optical phase delays (> 1mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), is presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing historic limitations of liquid crystals. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: a 1-D non-mechanical, analog beamsteerer with an 80° field of regard, a chip-scale widely tunable laser, a chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay (up to 10 ns), and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, laser illumination, phased array radar, optical communications, etc. Performance attributes of several example devices are presented.

  5. Novel fiber optic tip designs and devices for laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas Clifton

    Fiber optic delivery of laser energy has been used for years in various types of surgical procedures in the human body. Optical energy provides several benefits over electrical or mechanical surgery, including the ability to selectively target specific tissue types while preserving others. Specialty fiber optic tips have also been introduced to further customize delivery of laser energy to the tissue. Recent evolution in lasers and miniaturization has opened up opportunities for many novel surgical techniques. Currently, ophthalmic surgeons use relatively invasive mechanical tools to dissect retinal deposits which occur in proliferative diabetic retinopathy. By using the tight focusing properties of microspheres combined with the short optical penetration depth of the Erbium:YAG laser and mid-IR fiber delivery, a precise laser scalpel can be constructed as an alternative, less invasive and more precise approach to this surgery. Chains of microspheres may allow for a self limiting ablation depth of approximately 10 microm based on the defocusing of paraxial rays. The microsphere laser scalpel may also be integrated with other surgical instruments to reduce the total number of handpieces for the surgeon. In current clinical laser lithotripsy procedures, poor input coupling of the Holmium:YAG laser energy frequently damages and requires discarding of the optical fiber. However, recent stone ablation studies with the Thulium fiber laser have provided comparable results to the Ho:YAG laser. The improved spatial beam profile of the Thulium fiber laser can also be efficiently coupled into a fiber approximately one third the diameter and reduces the risk of damaging the fiber input. For this reason, the trunk optical fiber minus the distal fiber tip can be preserved between procedures. The distal fiber tip, which degrades during stone ablation, could be made detachable and disposable. A novel, low-profile, twist-locking, detachable distal fiber tip interface was designed

  6. Silicon nanophotonic integrated devices enabling multiplexed on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Dai, Daoxin; Wang, Jian; Chen, Sitao

    2015-05-01

    Advanced multiplexing technologies including wavelength-division-multiplexing (WDM), polarization-division multiplexing (PDM), and mode-division multiplexing (MDM) have been utilized as a cost-effective solution to enhance the capacity of an optical-interconnect link. The on-chip (de)multiplexers, including WDM filters, PDM devices, and MDM devices, are the most important key components in a multi-channel multiplexed optical interconnect system. Hybrid (de)multiplexer to enable various multiplexing technologies simultaneously are becoming more and more important to achieve many channels. In this paper we give a review for our recent work on silicon photonic integrated devices for realizing multi-channel multiplexed on-chip optical interconnects.

  7. Optical logic and signal processing using a semiconductor laser diode-based optical bistability device

    NASA Astrophysics Data System (ADS)

    Zhang, Yuancheng; Song, Qian; He, Shaowei

    1995-02-01

    Using an optical fibre-coupled semiconductor laser diode OBD with output feedback pumping operation in 5 modes (differential gain, bistability, zero-bias, inverted differential gain, and inverted bistability) has been realized respectively, and 5 elementary optical logic functions (AND, OR, NOT, NAND, and NOR) and some optical signal processing such as limiting, reshaping, and triggering have been implemented.

  8. Silicon photonic integrated devices for datacenter optical networks

    NASA Astrophysics Data System (ADS)

    Fiorentino, Marco; Chen, Chin-Hui; Kurczveil, Géza; Liang, Di; Peng, Zhen; Beausoleil, Raymond

    2014-03-01

    The evolution of computing infrastructure and workloads has put an enormous pressure on datacenter networks. It is expected that bandwidth will scale without increases in the network power envelope and total cost of ownership. Networks based on silicon photonic devices promise to help alleviate these problems, but a viable development path for these technologies is not yet fully outlined. In this paper, we report our progress on developing components and strategies for datacenter silicon photonics networks. We will focus on recent progress on compact, low-threshold hybrid Si lasers and the CWDM transceivers based on these lasers as well as DWDM microring resonator-based transceivers.

  9. High-speed optical processing using digital micromirror device

    NASA Astrophysics Data System (ADS)

    Chao, Tien-Hsin; Lu, Thomas; Walker, Brian; Reyes, George

    2014-04-01

    We have designed optical processing architecture and algorithms utilizing the DMD as the input and filter Spatial Light Modulators (SLM). Detailed system analysis will be depicted. Experimental demonstration, for the first time, showing that a complex-valued spatial filtered can be successfully written on the DMDSLM using a Computer Generated Hologram (CGH) [1] encoding technique will also be provided. The high-resolution, high-bandwidth provided by the DMD and its potential low cost due to mass production will enable its vast defense and civil application.

  10. Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC

    NASA Astrophysics Data System (ADS)

    Ogilvie, I. R. G.; Sieben, V. J.; Floquet, C. F. A.; Zmijan, R.; Mowlem, M. C.; Morgan, H.

    2010-06-01

    A rapid and low-cost technique is presented for the fabrication of optical quality microfluidic devices in poly(methyl methacrylate) (PMMA) or cyclic olefin copolymer (COC). When polymer microfluidic devices are manufactured by rapid prototyping techniques, such as micromilling, the surface roughness is typically in the region of hundreds of nanometres reducing the overall optical efficiency of many microfluidic-based systems. Here we demonstrate a novel solvent vapour treatment that is used to irreversibly bond microfluidic chips while simultaneously reducing the channel surface roughness, yielding optical grade (less than 15 nm surface roughness) channel walls. We characterize this vapour bonding method and optimize the process parameters to avoid channel collapse, while achieving reflow of polymer and uniformity of bonding. The reflow of polymer is the key to enabling a fabrication process that takes less than a day and produces optical quality surfaces with low-cost rapid prototyping tools.

  11. Design of illumination and projection optics for projectors with single digital micromirror devices.

    PubMed

    Chang, C M; Shieh, H P

    2000-07-01

    We present a new optical system design for a projector with a single digital micromirror device (Texas Instruments Digital Micromirror Device) that improves on previous designs in terms of optical efficiency, uniformity, and contrast while yielding a low-profile and compact system. A rod integrator is incorporated with a compact relay system to maximize light efficiency and to increase illumination uniformity. The uniformity achieved by the optimized optical system was calculated to be 94%. In addition, this unique light-separator design has dual output channels to increase the image contrast by steering the off-state light away from the projection lens. This projector design provides very efficient light utilization, and we discuss how the geometrical optical efficiency of the system can be boosted to approach the theoretical maximum.

  12. Holographic optical traps for atom-based topological Kondo devices

    NASA Astrophysics Data System (ADS)

    Buccheri, F.; Bruce, G. D.; Trombettoni, A.; Cassettari, D.; Babujian, H.; Korepin, V. E.; Sodano, P.

    2016-07-01

    The topological Kondo (TK) model has been proposed in solid-state quantum devices as a way to realize non-Fermi liquid behaviors in a controllable setting. Another motivation behind the TK model proposal is the demand to demonstrate the quantum dynamical properties of Majorana fermions, which are at the heart of their potential use in topological quantum computation. Here we consider a junction of crossed Tonks-Girardeau gases arranged in a star-geometry (forming a Y-junction), and we perform a theoretical analysis of this system showing that it provides a physical realization of the TK model in the realm of cold atom systems. Using computer-generated holography, we experimentally implement a Y-junction suitable for atom trapping, with controllable and independent parameters. The junction and the transverse size of the atom waveguides are of the order of 5 μm, leading to favorable estimates for the Kondo temperature and for the coupling across the junction. Since our results show that all the required theoretical and experimental ingredients are available, this provides the demonstration of an ultracold atom device that may in principle exhibit the TK effect.

  13. Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices.

    PubMed

    Wang, Yu; Feng, Xue; Zhang, Dengke; Zhao, Peng; Li, Xiangdong; Cui, Kaiyu; Liu, Fang; Huang, Yidong

    2015-07-20

    An integrated device, which consists of a variable amplitude splitter and an orbital angular momentum (OAM) emitter, is proposed for the superposition of optical vortex beams. With fixed wavelength and power of incident beam, the OAM of the radiated optical superimposed vortex beam can be dynamically tuned. To verify the operating principle, the proposed device has been fabricated on the SOI substrate and experimentally measured. The experimental results confirm the tunability of superimposed vortex beams. Moreover, the ability of independently varying the OAM flux and the geometric distribution of intensity is illustrated and discussed with numerical simulation. We believe that this work would be promising in various applications.

  14. Combined Raman spectroscopy and optical coherence tomography device for tissue characterization

    PubMed Central

    Patil, Chetan A.; Bosschaart, Nienke; Keller, Matthew D.; van Leeuwen, Ton G.; Mahadevan-Jansen, Anita

    2009-01-01

    We report a dual-modal device capable of sequential acquisition of Raman spectroscopy (RS) and optical coherence tomography (OCT) along a common optical axis. The device enhances application of both RS and OCT by precisely guiding RS acquisition with OCT images while also compensating for the lack of molecular specificity in OCT with the biochemical specificity of RS. We characterize the system performance and demonstrate the capability to identify structurally ambiguous features within an OCT image with RS in a scattering phantom, guide acquisition of RS from a localized malignancy in ex vivo breast tissue, and perform in vivo tissue analysis of a scab. PMID:18483537

  15. Accurate analysis of planar optical waveguide devices using higher-order FDTD scheme.

    PubMed

    Kong, Fanmin; Li, Kang; Liu, Xin

    2006-11-27

    A higher-order finite-difference time-domain (HO-FDTD) numerical method is proposed for the time-domain analysis of planar optical waveguide devices. The anisotropic perfectly matched layer (APML) absorbing boundary condition for the HO-FDTD scheme is implemented and the numerical dispersion of this scheme is studied. The numerical simulations for the parallel-slab directional coupler are presented and the computing results using this scheme are in highly accordance with analytical solutions. Compared with conventional FDTD method, this scheme can save considerable computational resource without sacrificing solution accuracy and especially could be applied in the accurate analysis of optical devices.

  16. Generating optical superimposed vortex beam with tunable orbital angular momentum using integrated devices

    PubMed Central

    Wang, Yu; Feng, Xue; Zhang, Dengke; Zhao, Peng; Li, Xiangdong; Cui, Kaiyu; Liu, Fang; Huang, Yidong

    2015-01-01

    An integrated device, which consists of a variable amplitude splitter and an orbital angular momentum (OAM) emitter, is proposed for the superposition of optical vortex beams. With fixed wavelength and power of incident beam, the OAM of the radiated optical superimposed vortex beam can be dynamically tuned. To verify the operating principle, the proposed device has been fabricated on the SOI substrate and experimentally measured. The experimental results confirm the tunability of superimposed vortex beams. Moreover, the ability of independently varying the OAM flux and the geometric distribution of intensity is illustrated and discussed with numerical simulation. We believe that this work would be promising in various applications. PMID:26190669

  17. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications.

    PubMed

    Pires, Nuno Miguel Matos; Dong, Tao; Hanke, Ulrik; Hoivik, Nils

    2014-08-21

    The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  18. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    PubMed Central

    Pires, Nuno Miguel Matos; Dong, Tao; Hanke, Ulrik; Hoivik, Nils

    2014-01-01

    The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance. PMID:25196161

  19. Optical homogenizing effects in nanoparticle-embedded liquid-crystal devices

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunsuke; Shiraishi, Yukihide; Furue, Hirokazu; Chang, Kai-Han; Chien, Liang-Chy

    2017-02-01

    Herein, we report the enhancement of electro-optical performances of nanoparticle embedded liquid-crystal devices in the laser speckle pattern reduction, enhancement of viewing angle, and that of color gamut by doping the nano-particles(NPs) of PγCyclodixtrin-ZrO2 (Shiraishi lab) and Aerosil R-812(EVONIK) into the liquid crystal devices. This report will be done through updating of previous work [1-4] in particular giving physical modeling and simulations.

  20. Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices

    SciTech Connect

    Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

    1993-10-01

    Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

  1. Information measurement system based on the device for evaluation of optical surface quality

    NASA Astrophysics Data System (ADS)

    Izotov, Pavel Y.

    2016-03-01

    The work describes steps taken in order to create the information-measurement system based on the device for evaluation of surface cleanliness and smoothness of optical substrates. The approach used leads to the improvement the stability and accuracy of measurements. Structural changes applied to both the software and hardware of the device which allowed retrieval of better quality images during the course of measurements are designated. Problems emerged during the implementation of the system and their solutions are described.

  2. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    PubMed

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes.

  3. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths

    PubMed Central

    Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.

    2015-01-01

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054

  4. A novel fiber optical device for ultraviolet disinfection of water.

    PubMed

    Lu, Gang; Li, Chaolin; Zheng, Yinggang; Zhang, Qian; Peng, Juan; Fu, Ming

    2008-07-24

    Since there are several problems in traditional UV disinfection techniques, a highly efficient, reliable and economical method, using quartz optical fibers to deliver UV light is proposed. The principle of the experimental setup is that ultraviolet rays are gathered by a reflector and converge on a light point, the diameter of approximately 5mm. In this way UV light can be transferred into water to kill the bacteria in the water. This paper presents preliminary results on water disinfection using this new UV disinfection setup. Its suitability for application could be shown in experiments with E. coli (ATCC8099) as test microorganisms. We have optimized the distribution of the optical fibers in the water in bench-scale study. This result can provide guidance for pilot-scale and field-scale study of this new technique. The results show that the new technique had a good performance under different conditions as follows: (a) turbidity level=10.2 NTU, (b) ferric ion concentration=0.3 mg/L, and (c) humic acid concentration=5 mg/L. The new technique provides a promising approach to disinfection treatment of drinking water.

  5. Multiscale modeling and computation of optically manipulated nano devices

    SciTech Connect

    Bao, Gang; Liu, Di; Luo, Songting

    2016-07-01

    We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, and use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.

  6. Photonics and application of dipyrrinates in the optical devices

    NASA Astrophysics Data System (ADS)

    Aksenova, Iu; Bashkirtsev, D.; Prokopenko, A.; Kuznetsova, R.; Dudina, N.; Berezin, M.

    2016-08-01

    In this paper spectral-luminescent, lasing, photochemical, and sensory characteristics of a number of Zn(II) and B(III) coordination complexes with dipyrrinates with different structures are presented. We have discussed relations of the structure of investigated compounds and formed solvates with their optical characteristics. The results showed that alkyl substituted dipyrrinates derivatives have excellent luminescent characteristics and demonstrated effective lasing upon excitation of Nd:YAG-laser. They can be used as active media for liquid tunable lasers. Zinc and boron fluoride complexes of dipyrrinates with heavy atoms in structure don't have fluorescence but have long-lived emission due to increased nonradiative intersystem processes in the excited state by the mechanism of a heavy atom. For solid samples based on halogenated complexes was found dependency of the long-lived emission intensity of the oxygen concentration in gas flow. The presence of line segment indicates the possibility of the use of these complexes as a basis for creation of optical sensors for oxygen. Moreover, results of a study of halogen-substituted aza-complexes under irradiation are presented. Such complexes are promising for the creating media for generation of singlet oxygen (1O2), which is important for photodynamic therapy in medicine and photocatalytic reactions in the industry.

  7. Comparative measurements of the level of turbulence atmosphere by optical and acoustic devices

    NASA Astrophysics Data System (ADS)

    Lukin, V. P.; Botugina, N. N.; Gladkih, V. A.; Emaleev, O. N.; Konyaev, P. A.; Odintsov, S. L.; Torgaev, A. V.

    2014-11-01

    The complex measurements of level of atmospheric turbulence are conducted by the differential measurement device of turbulence (DMT), wave-front sensor (WFS), and also by ultrasonic weather-stations. Daytime measurements of structure parameters of refractive index of atmospheric turbulence carried out on horizontal optical paths on the Base Experimental Complex (BEC) of V.E. Zuev Institute of Atmospheric Optics SB RAS (IOA). A comparative analysis over of the got results is brought.

  8. Fabrication and Optical Recombination in III-Nitride Microstructures and Devices

    DTIC Science & Technology

    2003-10-01

    Fabrication and optical investigations of III-nitride microstructures Our group has pioneered the fabrication of micro - and nano -size photonic... pumped individual III-nitride micro -size LEDs and micro -LED arrays and observed enhanced quantum efficiencies. The micro -size LEDs were fabricated...quality III-nitride QWs, heterostructures, microstructures, and micro -devices and to study their optical and optoeletronic properties. By optimizing

  9. Optical fiber loops and helices: tools for integrated photonic device characterization and microfluidic trapping

    NASA Astrophysics Data System (ADS)

    Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang

    2016-09-01

    Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.

  10. Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition.

    PubMed

    Ryckman, Judson D; Hallman, Kent A; Marvel, Robert E; Haglund, Richard F; Weiss, Sharon M

    2013-05-06

    Vanadium dioxide (VO(2)) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO(2) onto silicon photonic devices and demonstrate all-optical switching and reconfiguration of ultra-compact broadband Si-VO(2) absorption modulators (L < 1 μm) and ring-resonators (R ~ λ(0)). Optically inducing the SMT in a small, ~0.275 μm(2), active area of polycrystalline VO(2) enables Si-VO(2) structures to achieve record values of absorption modulation, ~4 dB μm(-1), and intracavity phase modulation, ~π/5 rad μm(-1). This in turn yields large, tunable changes to resonant wavelength, |Δλ(SMT)| ~ 3 nm, approximately 60 times larger than Si-only control devices, and enables reconfigurable filtering and optical modulation in excess of 7 dB from modest Q-factor (~10(3)), high-bandwidth ring resonators (>100 GHz). All-optical integrated Si-VO(2) devices thus constitute platforms for reconfigurable photonics, bringing new opportunities to realize dynamic on-chip networks and ultrafast optical shutters and modulators.

  11. Optical joint correlation using the deformable mirror device

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome

    1989-01-01

    An experimental investigation of the Deformable Mirror Device (DMD) developed by Texas Instruments at Dallas for use in object identification was completed. The DMD was tested as a joint correlator. The DMD was used as a spatial light modulator on which the squared modulus of the Fourier transform of test object pairs was written. The squared modulus was phase encoded on the DMD after it had been thresholded and rewritten as a binary phase function. The thresholding was found to produce a sharp peak in the autocorrelation when the test objects were matched and no significant peak in the case of distinct objects. It was concluded that the use of the DMD as a joint correlator looks promising and further studies should be carried out.

  12. Electra-optical device including a nitrogen containing electrolyte

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Gruzalski, Greg R.; Luck, Christopher F.

    1995-01-01

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

  13. Electra-optical device including a nitrogen containing electrolyte

    DOEpatents

    Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

    1995-10-03

    Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between {minus}15 C and 150 C.

  14. Micro-resonator devices and optical broadband access application

    NASA Astrophysics Data System (ADS)

    Willner, Alan E.; Zhang, Lin; Yang, Jeng-Yuan

    2011-01-01

    Integrated photonic micro-resonators have attracted a great deal of attention in recent years, and various types of devices are demonstrated for communication and signal processing applications. In this paper, we present some of our recent work on silicon-based microring modulators, demodulators and chromatic dispersion compensators. Signal generation in on-off-keying and differential phase-shift-keying data formats is shown, while microring filters are used to carry out the demodulation of the phase-modulated signals. We also describe how to use only two ring resonators, by combining an under-coupled one with an over-coupled one, to form an on-chip single-channel dispersion compensator.

  15. Standard source for certification of optical-electronic devices

    NASA Astrophysics Data System (ADS)

    Fastova, Natalia I.; Maraev, Anton A.; Ishanin, Gennady G.

    2016-04-01

    To reduce the error at the certification of optoelectronic devices, sources and detectors of the standard sources and its diaphragm must be thermally stabilized in order to create a uniform background. We developed an uncooled model blackbody TCID-100 with working temperature up to 100°C with a thermally stabilized transmitter and the diaphragm set. The developed model is a cylinder made of red copper with a conical cavity. Cone length was chosen empirically to provide uniform heating over the entire length of the blackbody cavity. With the developed model, we conducted cavity temperature measurement transmitter, which enabled to evaluate the advantages and drawbacks of the blackbody design. In this article we examined models of blackbodies, the most popular types of cavities and the calculation of the thermal emissivity for them. We have designed blackbody and measured the cavity temperature change over the time.

  16. Topics in Optical Materials and Device Research - II. Volume I.

    DTIC Science & Technology

    1982-01-01

    O & K1 v~~ o I T (, d T o -) a ( ,28L) 00t f jv C’i 6 a. a a.( yo V-1 r I 41rc (cra𔃻A eI- TI Il(v \\J) T21f TV */ o ,)vL Tc& 2~ IP LO/ Y.& ( Cr ...Region" Electron Lett. 14, pp 345-347 (1978). 4. K. Aoyama and J. Minowa "Low-Loss Optical Demultiplexer for WDM Systems in the O .8-pm Wavelength...rsnlzoeplt 41 TRASPAENTPHASE~r SHIFTING ZONES 00r Fig. 2 Phase reversal Fresnel zone plate d zn is the refractive index. 42 Fig. 3 Blazed Fresnel

  17. Advanced Silicon Microring Resonator Devices for Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Masilamani, Ashok Prabhu

    Chip level optical interconnects has gained momentum with recent demonstrations of silicon-on-insulator (SOI) based photonic modules such as lasers, modulators, wavelength division multiplexing (WDM) filters, etc. A fundamental building block that has enabled many of these silicon photonic modules is the compact, high Q factor microring resonator cavity. However, most of these demonstrations have WDM processing components based on simple add-drop filters that cannot realize the dense WDM systems required for the chip level interconnects. Dense WDM filters have stringent spectral shape requirements such as flat-top filter passband, steep band transition etc. Optical filters that can meet these specifications involve precise placement of the poles and zeros of the filter transfer function. Realization of such filters requires the use of multiple coupled microring resonators arranged in complex coupling topologies. In this thesis we have proposed and demonstrated new multiple coupled resonator topologies based on compact microring resonators in SOI material system. First we explored novel microring architectures which resulted in the proposal of two new coupled microring architectures, namely, the general 2D microring array topology and the general cascaded microring network topology. We also developed the synthesis procedures for these two microring architectures. The second part of this thesis focussed on the demonstration of the proposed architectures in the SOI material system. To accomplish this, a fabrication process for SOI was developed at the UofA Nanofab facility. Using this process, ultra-compact single microring filters with microring radii as small as 1mum were demonstrated. Higher order filter demonstration with multiple microrings necessitated post-fabrication microring resonance tuning. We developed additional fabrication steps to install micro heaters on top of the microrings to thermally tune its resonance. Subsequently, a thermally tuned fourth

  18. Eat-by-light fiber-optic and micro-optic devices for food quality and safety assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Grimaldi, M. F.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-06-01

    A selection is presented of fiber-optic and micro-optic devices that have been designed and tested for guaranteeing the quality and safety of typical foods, such as extra virgin olive oil, beer, and milk. Scattered colorimetry is used to authenticate various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids, which are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma that is capable of distinguishing different ageing levels of extra virgin olive oil is also presented. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer for the rapid monitoring of the carcinogenic M1 aflatoxin in milk, is experimented.

  19. Eat-by-light: fiber-optic and micro-optic devices for food safety and quality assessment

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Cucci, C.; Mencaglia, A. A.; Cimato, A.; Attilio, C.; Thienpont, H.; Ottevaere, H.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Dall'Asta, C.; Faccini, A.; Galaverna, G.; Dossena, A.

    2007-07-01

    A selection of fiber-optic and micro-optic devices is presented designed and tested for monitoring the quality and safety of typical foods, namely the extra virgin olive oil, the beer, and the milk. Scattered colorimetry is used for the authentication of various types of extra virgin olive oil and beer, while a fiber-optic-based device for UV-VIS-NIR absorption spectroscopy is exploited in order to obtain the hyperspectral optical signature of olive oil. This is done not only for authentication purposes, but also so as to correlate the spectral data with the content of fatty acids that are important nutritional factors. A micro-optic sensor for the detection of olive oil aroma is presented. It is capable of distinguishing different ageing levels of extra virgin olive oil. It shows effective potential for acting as a smart cap of bottled olive oil in order to achieve a non-destructive olfactory perception of oil ageing. Lastly, a compact portable fluorometer is experimented for the rapid monitoring of the carcinogenic M1 aflatoxin in milk.

  20. Polarization and intensity correlations in stochastic electromagnetic beams upon interaction with devices of polarization optics

    NASA Astrophysics Data System (ADS)

    Jacks, H. C.; Korotkova, O.

    2011-05-01

    Based on the recently formulated unified theory of coherence and polarization of light, we explore the behavior of the intensity-intensity correlations and the auxiliary quantity called the degree of cross-polarization in stochastic electromagnetic beams upon their passage through the devices of polarization optics. In particular, the effects of deterministic devices (such as polarizers, absorbers, compensators, and rotators) as well as of random devices (such as spatial light modulators) on passing beams are investigated. Our results may find applications in polarimetric communications, imaging and sensing.

  1. Electrode with transparent series resistance for uniform switching of optical modulation devices

    DOEpatents

    Tench, D. Morgan; Cunningham, Michael A.; Kobrin, Paul H.

    2008-01-08

    Switching uniformity of an optical modulation device for controlling the propagation of electromagnetic radiation is improved by use of an electrode comprising an electrically resistive layer that is transparent to the radiation. The resistive layer is preferably an innerlayer of a wide-bandgap oxide sandwiched between layers of indium tin oxide or another transparent conductor, and may be of uniform thickness, or may be graded so as to provide further improvement in the switching uniformity. The electrode may be used with electrochromic and reversible electrochemical mirror (REM) smart window devices, as well as display devices based on various technologies.

  2. External-cavity diode lasers with different devices and collimating optics.

    PubMed

    Kane, D M; Willis, A P

    1995-07-20

    Comparative operating characteristics of external-cavity diode lasers (ECDL's) with either a channel substrate planar device or a multi-quantum-well (MQW) device are presented. These include the output beam profile, which is significantly altered depending on the collimating lens used (either multielement or graded index), power versus injection-current characteristics, and the optical frequency and the rf spectra. The coherence lengths of the different laser diode-collimating-lens combinations in the ECDL are measured, and a new method for calculating the coupling coefficient and the coupled values of the internal quantum efficiency and the internal lumped loss is demonstrated for the MQW device.

  3. Practical coupling device based on a two-core optical fiber.

    PubMed

    Vallée, R; Drolet, D

    1994-08-20

    A practical coupling device that relies on a dual-core fiber in a loop configuration is presented. Its coupling properties are analyzed in terms of the optical path difference between the cores, which is controlled by the rotation of the fiber about its axis and by a small twist applied to it along the loop. The device actually acts as an anisotropic coupler, and the coupled power can be perfectly controlled from 0-100% by proper adjustment of the loop. A simple implementation of the device was used in the fabrication of a compact single-fiber Michelson interferometer.

  4. Designing Devices for Wave-Vector Manipulation Using a Transformation-Optics Approach

    NASA Astrophysics Data System (ADS)

    Giloan, Mircea

    2017-07-01

    A transformation-optics approach is used to derive a general method for designing electromagnetic devices able to manipulate the wave vectors in the specific manner required by the functionality of the device. While the wave paths inside the device remain of secondary importance, the wave vectors are gradually changed in the desired way by choosing the appropriate coordinate transformation. The proposed method is applied to designing both converging and diverging flat lenses. Computer simulations reveal the focusing ability of a converging flat lens designed using the proposed technique.

  5. Optical fibre sensing at the interface between tissue and medical device

    NASA Astrophysics Data System (ADS)

    Correia, R.; Sinha, R.; Norris, A.; Korposh, S.; Talbot, S.; Hernandez, F. U.; Hayes-Gill, B. R.; Morgan, S. P.

    2017-04-01

    Contact between a medical device and tissue accounts for approximately a third of damage to soft tissue in hospitals. The use of sensors at the interface between the device and tissue can be used to maintain the optimum pressure and reduce such injuries. A sensorised endotracheal tube has been developed and is proposed as a method of reducing soft tissue damage and improving design of future devices. Optical fibre sensing is used to monitor both cuff contact pressure (via a fibre Bragg grating) and tissue perfusion (via reflectance photoplethysmography). The monitoring system developed has been used in an animal study and demonstrates reliable measurement of contact pressure and perfusion.

  6. Correction of magnetooptic device phase errors in optical correlators through filter design modifications

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Reid, Max B.; Hine, Butler P.

    1991-01-01

    We address the problem of optical phase errors in an optical correlator introduced by the input and filter plane spatial light modulators. Specifically, we study a laboratory correlator with magnetooptic spatial light modulator (MOSLM) devices. We measure and characterize the phase errors, analyze their effects on the correlation process, and discuss a means of correction through a design modification of the binary phase-only optical filter function. The phase correction technique is found to produce correlation results close to those of an error-free correlator.

  7. Optical matrix for clock distribution and synchronous operation in two-dimensional array devices

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Shu, C.

    1996-06-01

    A scheme to generate an optical matrix from a mode-locked Nd:YAG laser has been theoretically explored and experimentally demonstrated. The matrix consists of highly synchronized and sequentially delayed optical pulses suitable for use with two-dimensional array optoelectronic devices and clock distribution system. The output pulses have the same state of polarization and no timing jitter is produced among the elements. Encoded outputs have been generated from the matrix using a set of photomasks. This technique can be applied to high-speed optical parallel processing.

  8. Correction of magnetooptic device phase errors in optical correlators through filter design modifications

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Reid, Max B.; Hine, Butler P.

    1991-01-01

    We address the problem of optical phase errors in an optical correlator introduced by the input and filter plane spatial light modulators. Specifically, we study a laboratory correlator with magnetooptic spatial light modulator (MOSLM) devices. We measure and characterize the phase errors, analyze their effects on the correlation process, and discuss a means of correction through a design modification of the binary phase-only optical filter function. The phase correction technique is found to produce correlation results close to those of an error-free correlator.

  9. Directly laser-written integrated photonics devices including diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Choi, Jiyeon; Ramme, Mark; Richardson, Martin

    2016-08-01

    Femtosecond laser-written integrated devices involving Fresnel Zone Plates (FZPs) and waveguide arrays are demonstrated as built-in optical couplers. These structures were fabricated in borosilicate glass using a direct laser writing technique. The optical properties of these integrated photonic structures were investigated using CW lasers and high-resolution CCDs. For a single FZP coupled to a single waveguide, the overall coupling efficiency was 9%. A multiplexed optical coupler composed of three FZP layers was demonstrated to couple three waveguides simultaneously in a waveguide array. Structures of this type can be used as platforms for multichannel waveguide coupling elements or as microfluidic sensors that require higher light collecting efficiency.

  10. General insight into the complementary medium-based camouflage devices from Fourier optics.

    PubMed

    Wu, Kedi; Wang, Guo Ping

    2010-07-01

    We present a general insight into complementary medium-based camouflage devices from Fourier optics. The cloaks are simply spatial filters with different transfer functions and play the role of passively remedying or actively modulating the propagation optical field to make an object invisible or changeable. We further analytically show and numerically demonstrate two filters for realizing another invisibility method: optically camouflaging an object at one place to appear at another place with parallel displacement or orientation changeable displacement, respectively. Our analysis is from a completely different point of view and should clarify understanding of the mechanism of invisibility phenomena.

  11. Analysis of Electro-Optic Materials Properties on Guided Wave Devices

    DTIC Science & Technology

    1992-12-16

    AD-A262 787 APPLIED RESEARCH, INC, ANALYSIS OF ELECTRO - OPTIC MATERIALS PROPERTIES ON GUIDED WAVE DEVICES FINAL REPORT DTI 6700 ODYSSEY DR HUNTSVILLE...ALABAMA 35814-1220 s IMAR1893 APPROVED FOR PUKIC RE’.EASE DISTRIBUTION UNLIMlITED Applied Research Inc. ARI/92iR-048Z ANALYSIS OF ELECTRO - OPTIC MATERIALS...uNiT ATTN: Dr. 2aul Ashley-AMSMI-RD-~WS--CM ELEMENT NO 4 NO IAr SSiON No t1I TI TLE iciup SeawIfy 0Mft*G’I Analysis of Electro - optic Materials

  12. Fiber-coupled nanophotonic devices for nonlinear optics and cavity QED

    NASA Astrophysics Data System (ADS)

    Barclay, Paul Edward

    2007-10-01

    The sub-wavelength optical confinement and low optical loss of nanophotonic devices dramatically enhances the interaction between light and matter within these structures. When nanophotonic devices are combined with an efficient optical coupling channel, nonlinear optical behavior can be observed at low power levels in weakly-nonlinear materials. In a similar vein, when resonant atomic systems interact with nanophotonic devices, atom-photon coupling effects can be observed at a single quanta level. Crucially, the chip based nature of nanophotonics provides a scalable platform from which to study these effects. This thesis addresses the use of nanophotonic devices in nonlinear and quantum optics, including device design, optical coupling, fabrication and testing, modeling, and integration with more complex systems. We present a fiber taper coupling technique that allows efficient power transfer from an optical fiber into a photonic crystal waveguide. Greater than 97% power transfer into a silicon photonic crystal waveguide is demonstrated. This optical channel is then connected to a high-Q (> 40,000), ultra-small mode volume (V < (lambda/n)3) photonic crystal cavity, into which we couple > 44% of the photons input to a fiber. This permits the observation of optical bistability in silicon for sub-mW input powers at telecommunication wavelengths. To port this technology to cavity QED experiments at near-visible wavelengths, we also study silicon nitride microdisk cavities at wavelengths near 852 nm, and observe resonances with Q > 3 million and V < 15 (lambda/n)3). This Q/V ratio is sufficiently high to reach the strong coupling regime with cesium atoms. We then permanently align and mount a fiber taper within the near-field an array of microdisks, and integrate this device with an atom chip, creating an "atom-cavity chip" which can magnetically trap laser cooled atoms above the microcavity. Calculations of the microcavity single atom sensitivity as a function of Q

  13. A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials.

    PubMed

    Shin, Dongheok; Urzhumov, Yaroslav; Lim, Donghwan; Kim, Kyoungsik; Smith, David R

    2014-02-13

    Synergistic integration of electromagnetic (EM) and mechanical properties of metamaterials, a concept known as smart metamaterials, promises new applications across the spectrum, from flexible waveguides to shape-conforming cloaks. These applications became possible thanks to smart transformation optics (STO), a design methodology that utilizes coordinate transformations to control both EM wave propagation and mechanical deformation of the device. Here, we demonstrate several STO devices based on extremely auxetic (Poisson ratio -1) elasto-electromagnetic metamaterials, both of which exhibit enormous flexibility and sustain efficient operation upon a wide range of deformations. Spatial maps of microwave electric fields across these devices confirm our ability to deform carpet cloaks, bent waveguides, and potentially other quasi-conformal TO-based devices operating at 7 ~ 8 GHz. These devices are each fabricated from a single sheet of initially uniform (double-periodic) square-lattice metamaterial, which acquires the necessary distribution of effective permittivity entirely from the mechanical deformation of its boundary. By integrating transformation optics and continuum mechanics theory, we provide analytical derivations for the design of STO devices. Additionally, we clarify an important point relating to two-dimensional STO devices: the difference between plane stress and plane strain assumptions, which lead to elastic metamaterials with Poisson ratio -1 and -∞, respectively.

  14. A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials

    PubMed Central

    Shin, Dongheok; Urzhumov, Yaroslav; Lim, Donghwan; Kim, Kyoungsik; Smith, David R.

    2014-01-01

    Synergistic integration of electromagnetic (EM) and mechanical properties of metamaterials, a concept known as smart metamaterials, promises new applications across the spectrum, from flexible waveguides to shape-conforming cloaks. These applications became possible thanks to smart transformation optics (STO), a design methodology that utilizes coordinate transformations to control both EM wave propagation and mechanical deformation of the device. Here, we demonstrate several STO devices based on extremely auxetic (Poisson ratio −1) elasto-electromagnetic metamaterials, both of which exhibit enormous flexibility and sustain efficient operation upon a wide range of deformations. Spatial maps of microwave electric fields across these devices confirm our ability to deform carpet cloaks, bent waveguides, and potentially other quasi-conformal TO-based devices operating at 7 ~ 8 GHz. These devices are each fabricated from a single sheet of initially uniform (double-periodic) square-lattice metamaterial, which acquires the necessary distribution of effective permittivity entirely from the mechanical deformation of its boundary. By integrating transformation optics and continuum mechanics theory, we provide analytical derivations for the design of STO devices. Additionally, we clarify an important point relating to two-dimensional STO devices: the difference between plane stress and plane strain assumptions, which lead to elastic metamaterials with Poisson ratio −1 and −∞, respectively. PMID:24522287

  15. [Utilization of optical devices and equipments by students with visual impairment].

    PubMed

    Montilha, Rita de Cássia Ietto; Temporini, Edméa Rita; Nobre, Maria Inês Rubo de Souza; Gasparetto, Maria Elisabete Rodrigues Freire; Kara-José, Newton

    2006-01-01

    To verify perceptions and conduct of students with visual impairment regarding devices and equipment utilized in schooling process. A transversal descriptive study on a population of 12-year-old or older students in schooling process, affected by congenital or acquired visual impairment, inserted in the government teaching system of Campinas during the year 2000. An interview quiz, created based on an exploratory study was applied. A group of 26 students, 46% of them with low vision and 53.8% affected by blindness was obtained. Most of the students were from fundamental teaching courses (65.4%), studying in schools with classrooms provided with devices (73.1%). Among the resources used in reading and writing activities, 94.1% of the students reported they used the Braille system and 81.8% reported that the reading subject was dictated by a colleague. Most of the students with low vision wore glasses (91.7%), and 33.3% utilized a magnifying glass as optical devices. Among the non-optical devices, the most common were the environmental ones, getting closer to the blackboard (75.0%) and to the window (66.7%) for better lighting. It became evident that students with low vision eye-sight made use of devices meant for bearers of blindness, such as applying the Braille system. A reduced number of low vision students making use of optical and non-optical devices applicable to their problems were observed, indicating a probable unawareness of their visual potential and the appropriate devices to improve efficiency.

  16. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    SciTech Connect

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  17. RF/Microwave properties and applications of directly assembled nanotubes and nanowires: LDRD project 102662 final report.

    SciTech Connect

    Mayer, Theresa (The Pennyslvania State University, University Park, PA 16802); Vallett, Aaron (The Pennyslvania State University, University Park, PA 16802); Lee, Mark; Shaner, Eric Arthur; Jones, Frank E.; Talin, Albert Alec; Highstrete, Clark

    2006-11-01

    LDRD Project 102662 provided support to pursue experiments aimed at measuring the basic electrodynamic response and possible applications of carbon nanotubes and silicon nanowires at radiofrequency to microwave frequencies, approximately 0.01 to 50 GHz. Under this project, a method was developed to integrate these nanomaterials onto high-frequency compatible co-planar waveguides. The complex reflection and transmission coefficients of the nanomaterials was studied as a function of frequency. From these data, the high-frequency loss characteristics of the nanomaterials were deduced. These data are useful to predict frequency dependence and power dissipation characteristics in new rf/microwave devices incorporating new nanomaterials.

  18. Novel optical interconnect devices applying mask-transfer self-written method

    NASA Astrophysics Data System (ADS)

    Ishizawa, Nobuhiko; Matsuzawa, Yusuke; Tokiwa, Yu; Nakama, Kenichi; Mikami, Osamu

    2012-01-01

    The introduction of optical interconnect technology is expected to solve problems of conventional electric wiring. One of the promising technologies realizing optical interconnect is the self-written waveguide (SWW) technology with lightcurable resin. We have developed a new technology of the "Mask-Transfer Self-Written (MTSW)" method. This new method enables fabrication of arrayed M x N optical channels at one shot of UV-light. Using this technology, several new optical interconnect devices and connection technologies have been proposed and investigated. In this paper, first, we introduce MTSW method briefly. Next, we show plug-in alignment approach using optical waveguide plugs (OWP) and a micro-hole array (MHA) which are made of the light-curable resin. Easy and high efficiency plug-in alignment between fibers and an optoelectronic-printed wiring board (OE-PWB), between a fiber and a VCSEL, so on will be feasible. Then, we propose a new three-dimensional (3D) branch waveguide. By controlling the irradiating angle through the photomask aperture, it will be possible to fabricate 2-branch and 4-branch waveguides with a certain branch angle. The 3D branch waveguide will be very promising in the future optical interconnects and coupler devices of the multicore optical fiber.

  19. Optical meta-films of alumina nanowire arrays for solar evaporation and optoelectronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungsik; Bae, Kyuyoung; Kang, Gumin; Baek, Seunghwa

    2017-05-01

    Nanowires with metallic or dielectric materials have received considerable interest in many research fields for optical and optoelectronic devices. Metal nanowires have been extensively studied due to the high optical and electrical properties and dielectric nanowires are also investigated owing to the multiple scattering of light. In this research, we report optical meta-films of alumina nanowire arrays with nanometer scale diameters by fabrication method of self-aggregate process. The aluminum oxide nanowires are transparent from ultraviolet to near infrared wavelength regions and array structures have strong diffusive light scattering. We integrate those optical properties from the material and structure, and produce efficient an optical haze meta-film which has high transparency and transmission haze at the same time. The film enhances efficiencies of optical devices by applying on complete products, such as organic solar cells and LEDs, because of an expanded optical path length and light trapping in active layers maintaining high transparency. On the other hands, the meta-film also produces solar steam by sputtering metal on the aluminum oxide nanowire arrays. The nanowire array film with metal coating exhibits ultrabroadband light absorption from ultraviolet to mid-infrared range which is caused by nanofocusing of plasmons. The meta-film efficiently produces water steam under the solar light by metal-coated alumina arrays which have high light-to-heat conversion efficiency. The design, fabrication, and evaluation of our light management platforms and their applications of the meta-films will be introduced.

  20. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.

    PubMed

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6  mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100  ps, ∼0.5  nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  1. Research progress in the key device and technology for fiber optic sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Sun, Qizhen; Lu, Ping; Xia, Li; Sima, Chaotan

    2016-03-01

    The recent research progress in the key device and technology of the fiber optic sensor network (FOSN) is introduced in this paper. An architecture of the sensor optical passive network (SPON), by employing hybrid wavelength division multiplexing/time division multiplexing (WDM/TDM) techniques similar to the fiber communication passive optical network (PON), is proposed. The network topology scheme of a hybrid TDM/WDM/FDM (frequency division multiplexing) three-dimension fiber optic sensing system for achieving ultra-large capacity, long distance, and high resolution sensing performance is performed and analyzed. As the most important device of the FOSN, several kinds of light source are developed, including the wideband multi-wavelength fiber laser operating at C band, switchable and tunable 2 μm multi-wavelength fiber lasers, ultra-fast mode-locked fiber laser, as well as the optical wideband chaos source, which have very good application prospects in the FOSN. Meanwhile, intelligent management techniques for the FOSN including wideband spectrum demodulation of the sensing signals and real-time fault monitoring of fiber links are presented. Moreover, several typical applications of the FOSN are also discussed, such as the fiber optic gas sensing network, fiber optic acoustic sensing network, and strain/dynamic strain sensing network.

  2. Imaging photorefractive optical vibration measurement method and device

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.; Hale, Thomas C.

    2000-01-01

    A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.

  3. An Optical Pen Tracking System as Alternative Pointing Device

    NASA Astrophysics Data System (ADS)

    Seeliger, Ingmar; Schwanecke, Ulrich; Barth, Peter

    A webcam together with a pen can replace a mouse as pointing device for many common user interaction tasks. We have implemented an image-processing component integrated in a tool that acts as mouse alternative. The image-processing component tracks the head of a pen based on shape and colour information retrieved in a quick, integrated initial pen-calibration phase using Hough transform triggered by a motion detection cycle. The tracked 2D position of the pen-head seen by the webcam is used to smoothly position the mouse cursor. Combined with auto-clicking we can replace mouse-based user interaction. The system tolerates changing lighting conditions, does not need time-consuming camera calibration and works with off-the-shelf webcams. First user experiences show that this technology can partially replace mouse interaction for Repetitive Strain Injury (RSI) patients as well as completely replace mouse interaction within dedicated environments such as presentation booths or simple games.

  4. The optical wing aligning device of the Langley Field tunnel

    NASA Technical Reports Server (NTRS)

    Norton, F H; Bacon, D L

    1921-01-01

    Described here is a convenient and accurate method of aligning the wing chord with the airflow. The device was developed to permit rapid and accurate alignment of airfoils and models with the airstream passing through the tunnel. It consists of three main parts: a projector, a reflector, and a target. The arrangement, which is shown in a figure, has proven satisfactory in operation. It is far better than the old method of sighting across a long batten, as the operator of a balance may see the target and correctly judge the accuracy of his alignment. Whereas the old method required two operators and several minutes time to align to within 1/10 degree, this method enables one operator to align a wing to within 1/100 of a degree in a few seconds. This method also has the advantage of being able to measure the angle of the wing while the tunnel is running. Thus, the true angle of incidence is shown.

  5. A compensated vibrating optical fiber pressure measuring device

    SciTech Connect

    Fasching, G E; Goff, D R

    1985-12-30

    A microbending optical fiber is attached under tension to a diaphragm to sense a differential pressure applied across the diaphragm which causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into an electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

  6. MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices.

    PubMed

    Emboras, Alexandros; Najar, Adel; Nambiar, Siddharth; Grosse, Philippe; Augendre, Emmanuel; Leroux, Charles; de Salvo, Barbara; de Lamaestre, Roch Espiau

    2012-06-18

    We study the electro optical properties of a Metal-Nitride-Oxide-Silicon (MNOS) stack for a use in CMOS compatible plasmonic active devices. We show that the insertion of an ultrathin stoichiometric Si(3)N(4) layer in a MOS stack lead to an increase in the electrical reliability of a copper gate MNOS capacitance from 50 to 95% thanks to a diffusion barrier effect, while preserving the low optical losses brought by the use of copper as the plasmon supporting metal. An experimental investigation is undertaken at a wafer scale using some CMOS standard processes of the LETI foundry. Optical transmission measurments conducted in a MNOS channel waveguide configuration coupled to standard silicon photonics circuitry confirms the very low optical losses (0.39 dB.μm(-1)), in good agreement with predictions using ellipsometric optical constants of Cu.

  7. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    DOEpatents

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  8. LDRD final report on new homogeneous catalysts for direct olefin epoxidation (LDRD 52591).

    SciTech Connect

    Goldberg, Karen; Smythe, Nicole A.; Moore, Joshua T.; Stewart, Constantine A.; Kemp, Richard Alan; Miller, James Edward; Kornienko, Alexander (New Mexico Institute of Mining and Technology); Denney, Melanie C. (University of Washington); Cetto, Kara L.

    2006-02-01

    This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

  9. A guiding light: spectroscopy on digital microfluidic devices using in-plane optical fibre waveguides.

    PubMed

    Choi, Kihwan; Mudrik, Jared M; Wheeler, Aaron R

    2015-09-01

    We present a novel method for in-plane digital microfluidic spectroscopy. In this technique, a custom manifold (.stl file available online as ESM) aligns optical fibres with a digital microfluidic device, allowing optical measurements to be made in the plane of the device. Because of the greater width vs thickness of a droplet on-device, the in-plane alignment of this technique allows it to outperform the sensitivity of vertical absorbance measurements on digital microfluidic (DMF) devices by ∼14×. The new system also has greater calibration sensitivity for thymol blue measurements than the popular NanoDrop system by ∼2.5×. The improvements in absorbance sensitivity result from increased path length, as well as from additional effects likely caused by liquid lensing, in which the presence of a water droplet between optical fibres increases fibre-to-fibre transmission of light by ∼2× through refraction and internal reflection. For interrogation of dilute samples, stretching of droplets using digital microfluidic electrodes and adjustment of fibre-to-fibre gap width allows absorbance path length to be changed on-demand. We anticipate this new digital microfluidic optical fibre absorbance and fluorescence measurement system will be useful for a wide variety of analytical applications involving microvolume samples with digital microfluidics.

  10. Poly (N-isopropylacrylamide) Microgel-Based Optical Devices for Sensing and Biosensing

    PubMed Central

    Islam, Molla R.; Ahiabu, Andrews; Li, Xue; Serpe, Michael J.

    2014-01-01

    Responsive polymer-based materials have found numerous applications due to their ease of synthesis and the variety of stimuli that they can be made responsive to. In this review, we highlight the group's efforts utilizing thermoresponsive poly (N-isopropylacrylamide) (pNIPAm) microgel-based optical devices for various sensing and biosensing applications. PMID:24854361

  11. Approaches to optical neuromodulation from rodents to non-human primates by integrated optoelectronic devices.

    PubMed

    Wang, Jing; Ozden, Ilker; Diagne, Mohamed; Wagner, Fabien; Borton, David; Brush, Benjamin; Agha, Naubahar; Burwell, Rebecca; Sheinberg, David; Diester, Ilka; Deisseroth, Karl; Nurmikko, Arto

    2011-01-01

    Methods on rendering neurons in the central nervous system to be light responsive has led to a boom in using optical neuromodulation as a new approach for controlling brain states and understanding neural circuits. In addition to the developing versatility to "optogenetically" labeling of neural cells and their subtypes by microbiological methods, parallel efforts are under way to design and implement optoelectronic devices to achieve simultaneous optical neuromodulation and electrophysiological recording with high spatial and temporal resolution. Such new device-based technologies need to be developed for full exploitation of the promise of optogenetics. In this paper we present single- and multi-element optoelectronic devices developed in our laboratories. The single-unit element, namely the coaxial optrode, was utilized to characterize the neural responses in optogenetically modified rodent and primate models. Furthermore, the multi-element device, integrating the optrode with a 6×6 microelectrode array, was used to characterize the spatiotemporal spread of neural activity in response to single-site optical stimulation in freely moving rats. We suggest that the particular approaches we employed can lead to the emergence of methods where spatio-temporal optical modulation is integrated with real-time read out from neural populations.

  12. 78 FR 77166 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products Containing the Same; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  13. Micro-device combining electrophysiology and optical imaging for functional brain monitoring in freely moving animals

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Wang, Qihong; Zhang, Lingke; Li, Miao; Thakor, Nitish V.

    2017-02-01

    Monitoring brain activities in awake and freely moving status is very important in physiological and pathological studies of brain functions. In this study, we developed a new standalone micro-device combining electrophysiology and optical imaging for monitoring the cerebral blood flow and neural activities with more feasibility for freely moving animals.

  14. Low-temperature PECVD optical waveguide and device development in Australia

    NASA Astrophysics Data System (ADS)

    Love, John D.; Ladouceur, Francois J.; Durandet, Antoine; Boswell, Rod W.; Charles, Christine

    1996-09-01

    Existing optical fiber and fiber-device fabrication techniques have been complemented recently by the development of plasma enhanced chemical vapor deposition (PECVD) processes for the fabrication of buried channel waveguides and associated devices. These processes rely on new forms of plasma reactors and diagnostic systems, which allow in-situ control of optical parameters such as refractive index, and are also being complemented by the direct writing of waveguides into photosensitive PECVD materials. Both the plasma and direct-write processes allow the fabrication of optical devices which are not readily feasible in fiber technology. The low-temperature PECVD process reported here offers the potential to integrate photonic devices with semiconductor sources and detectors to realize a compact, hybrid photonic-optoelectronic chip, complete with fiber pig-tailing. Because of their compactness and potential low cost, these types of photonic chips are attractive components for future high-capacity optical telecommunications and other networks now being planned as part of the information superhighway.

  15. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    PubMed

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.

  16. Note: Optical trigger device with sub-picosecond timing jitter and stability

    NASA Astrophysics Data System (ADS)

    Kodet, Jan; Prochazka, Ivan

    2012-03-01

    We are presenting the design, construction, and overall performance of the optical trigger device. This device generates an electrical signal synchronously to the detected ultra-short optical pulse. The device was designed for application in satellite laser ranging and laser time transfer experiments, time correlated photon counting and similar experiments, where picosecond timing resolution and detection delay stability are required. It consists of the ultrafast optical detector, signal discriminator, output pulse forming circuit, and output driver circuits. It was constructed as a single compact device to optimize their matching and maintain stability. The detector consists of an avalanche photodiode--both silicon and germanium types may be used to cover the wavelength range of 350-1550 nm. The analogue signal of this photodiode is sensed by the ultrafast comparator with 8 GHz bandwidth. The ps clock distribution circuit is used to generate the fast rise/fall time output pulses of pre-set length. The trigger device timing performance is excellent: the random component of the timing jitter is typically 880 fs, the temperature dependence of the detection delay was measured to be 370 fs/K. The systematic error contribution depends on the laser used and its stability. The sub-ps values have been obtained for various laser sources.

  17. Note: Optical trigger device with sub-picosecond timing jitter and stability.

    PubMed

    Kodet, Jan; Prochazka, Ivan

    2012-03-01

    We are presenting the design, construction, and overall performance of the optical trigger device. This device generates an electrical signal synchronously to the detected ultra-short optical pulse. The device was designed for application in satellite laser ranging and laser time transfer experiments, time correlated photon counting and similar experiments, where picosecond timing resolution and detection delay stability are required. It consists of the ultrafast optical detector, signal discriminator, output pulse forming circuit, and output driver circuits. It was constructed as a single compact device to optimize their matching and maintain stability. The detector consists of an avalanche photodiode--both silicon and germanium types may be used to cover the wavelength range of 350-1550 nm. The analogue signal of this photodiode is sensed by the ultrafast comparator with 8 GHz bandwidth. The ps clock distribution circuit is used to generate the fast rise/fall time output pulses of pre-set length. The trigger device timing performance is excellent: the random component of the timing jitter is typically 880 fs, the temperature dependence of the detection delay was measured to be 370 fs/K. The systematic error contribution depends on the laser used and its stability. The sub-ps values have been obtained for various laser sources.

  18. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  19. An overview of micro-optical components and system technology: bulk, planar, and thin-film for laser initiated devices

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    There are a number of attractive micro optical elements or combinations of elements that are currently used or could be employed in optically initiated ordnance systems. When taking a broad-spectrum examination of optically initiated devices, the required key parameters become obviously straightforward for micro optics. Plainly stated, micro optics need to be simple, inexpensive, reliable, robust and compatible within their operational environment. This presentation focuses on the variety of optical elements and components available in the market place today that could be used to realize micro-optical beam shaping and delivery systems for optically initiated devices. A number of micro optical elements will be presented with specific bulk, planar optical and thin film optical devices, such as diffractive optics, micro prisms, axicons, waveguides, micro lenses, beam splitters and gratings. Further descriptions will be presented on the subject of coupling light from a laser beam into a multimode optical fiber. The use of micro optics for collimation of the laser source and conditioning of the laser beam to achieve the highest efficiency and matching the optical fiber NA will be explained. An emphasis on making these optical assemblies compact and rugged will be highlighted.

  20. Final report on LDRD project "proliferation-resistant fuel cycles"

    SciTech Connect

    Brown, N W; Hassberger, J A

    1999-02-25

    This report provides a summary of LDRD work completed during 1997 and 1998 to develop the ideas and concepts that lead to the Secure, Transportable, Autonomous Reactor (STAR) program proposals to the DOE Nuclear Energy Research Initiative (NERI). The STAR program consists of a team of three national laboratories (LLNL, ANL, and LANL), three universities, (UC Berkeley, TAMU, and MIT) and the Westinghouse Research Center. Based on the LLNL work and their own efforts on related work this team prepared and integrated a package of twelve proposals that will carry the LDRD work outlined here into the next phase of development. We are proposing to develop a new nuclear system that meets stringent requirements for a high degree of safety and proliferation resistance, and also deals directly with the related nuclear waste and spent fuel management issues.

  1. A photo-driven dual-frequency addressable optical device of banana-shaped molecules

    NASA Astrophysics Data System (ADS)

    Krishna Prasad, S.; Lakshmi Madhuri, P.; Hiremath, Uma S.; Yelamaggad, C. V.

    2014-03-01

    We propose a photonic switch employing a blend of host banana-shaped liquid crystalline molecules and guest photoisomerizable calamitic molecules. The material exhibits a change in the sign of the dielectric anisotropy switching from positive to negative, at a certain crossover frequency of the probing field. The consequent change in electric torque can be used to alter the orientation of the molecules between surface-determined and field-driven optical states resulting in a large change in the optical transmission characteristics. Here, we demonstrate the realization of this feature by an unpolarized UV beam, the first of its kind for banana-shaped molecules. The underlying principle of photoisomerization eliminates the need for a second driving frequency. The device also acts as a reversible conductance switch with an order of magnitude increase of conductivity brought about by light. Possible usage of this for optically driven display devices and image storage applications is suggested.

  2. A photo-driven dual-frequency addressable optical device of banana-shaped molecules

    SciTech Connect

    Krishna Prasad, S. Lakshmi Madhuri, P.; Hiremath, Uma S.; Yelamaggad, C. V.

    2014-03-17

    We propose a photonic switch employing a blend of host banana-shaped liquid crystalline molecules and guest photoisomerizable calamitic molecules. The material exhibits a change in the sign of the dielectric anisotropy switching from positive to negative, at a certain crossover frequency of the probing field. The consequent change in electric torque can be used to alter the orientation of the molecules between surface-determined and field-driven optical states resulting in a large change in the optical transmission characteristics. Here, we demonstrate the realization of this feature by an unpolarized UV beam, the first of its kind for banana-shaped molecules. The underlying principle of photoisomerization eliminates the need for a second driving frequency. The device also acts as a reversible conductance switch with an order of magnitude increase of conductivity brought about by light. Possible usage of this for optically driven display devices and image storage applications is suggested.

  3. Optical devices combining an organic semiconductor crystal with a two-dimensional inorganic diffraction grating

    SciTech Connect

    Kitazawa, Takenori; Yamao, Takeshi Hotta, Shu

    2016-02-01

    We have fabricated optical devices using an organic semiconductor crystal as an emission layer in combination with a two-dimensional (2D) inorganic diffraction grating used as an optical cavity. We formed the inorganic diffraction grating by wet etching of aluminum-doped zinc oxide (AZO) under a 2D cyclic olefin copolymer (COC) diffraction grating used as a mask. The COC diffraction grating was fabricated by nanoimprint lithography. The AZO diffraction grating was composed of convex prominences arranged in a triangular lattice. The organic crystal placed on the AZO diffraction grating indicated narrowed peaks in its emission spectrum under ultraviolet light excitation. These are detected parallel to the crystal plane. The peaks were shifted by rotating the optical devices around the normal to the crystal plane, which reflected the rotational symmetries of the triangular lattice through 60°.

  4. Optical diode action from axially asymmetric nonlinearity in an all-carbon solid-state device.

    PubMed

    Anand, Benoy; Podila, Ramakrishna; Lingam, Kiran; Krishnan, S R; Siva Sankara Sai, S; Philip, Reji; Rao, Apparao M

    2013-01-01

    Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.

  5. Functional optical devices using vertical grooved DFB and DBR structures

    NASA Astrophysics Data System (ADS)

    Arai, Shigehisa; Kim, Hyo-Chang; Wiedmann, Jeorg

    2002-07-01

    Recent progress in dry etching technology of GaInAsP/InP compounds enabled realizations of fine vertical groove structures with a high aspect ratio. Since this technology enables the formation of etched mirrors in a wafer batch process, it leads to a low-cost production of not only simple Fabry-Perot lasers but also high performance and functional lasers for optical communications by integrating functional elements such as gratings for wavelength selection and high-reflectivity/low-reflectivity facets, while improvements in the size controllability with precision are still required. In order to keep an initial mask width condition during reactive-ion-etching (RIE) with methane/hydrogen mixture gas, we developed a sequential etching process of the RIE followed by oxygen ashing for relatively short period (for the etching depth of around 240 nm) and repeated the process for required etching depth. The tilt angle of the etched facet was controlled to be less than 1 degree from the normal to the wafer, and the aspect ratio of a narrow groove (140 nm) as high as 17 was obtained. By using this technique we could realize high-reflectivity distributed Bragg reflector (DBR) consisting of semiconductor/polymer pillars and DBR lasers with low threshold current (less than 10 mA for the stripe width of 5 micronmeter) and high differential quantum efficiency of 50 % from the front facet, while the emission spectrum showed a multi-mode operation due to poor wavelength selectivity. A preliminary aging test was carried out at room temperature CW condition, and no degradation was observed after 5,000 hours. With aiming at high performance single-wavelength lasers, we realized a novel distributed feedback (DFB) laser consisting of the first-order corrugations on the sidewalls of the stripe mesa, named ?gVertical Grating (VG),?h as well as a distributed reflector (DR) laser consisting of the VG-DFB structure and above mentioned DBR on the rear side. A stable single-mode operation with

  6. Backup Alignment Devices on Shuttle: Heads-Up Display or Crew Optical Alignment Sight

    NASA Technical Reports Server (NTRS)

    Chavez, Melissa A.

    2011-01-01

    NASA s Space Shuttle was built to withstand multiple failures while still keeping the crew and vehicle safe. Although the design of the Space Shuttle had a great deal of redundancy built into each system, there were often additional ways to keep systems in the best configuration if a failure were to occur. One such method was to use select pieces of hardware in a way for which they were not primarily intended. The primary function of the Heads-Up Display (HUD) was to provide the crew with a display of flight critical information during the entry phase. The primary function of the Crew Optical Alignment Sight (COAS) was to provide the crew an optical alignment capability for rendezvous and docking phases. An alignment device was required to keep the Inertial Measurement Units (IMUs) well aligned for a safe Entry; nominally this alignment device would be the two on-board Star Trackers. However, in the event of a Star Tracker failure, the HUD or COAS could also be used as a backup alignment device, but only if the device had been calibrated beforehand. Once the HUD or COAS was calibrated and verified then it was considered an adequate backup to the Star Trackers for entry IMU alignment. There were procedures in place and the astronauts were trained on how to accurately calibrate the HUD or COAS and how to use them as an alignment device. The calibration procedure for the HUD and COAS had been performed on many Shuttle missions. Many of the first calibrations performed were for data gathering purposes to determine which device was more accurate as a backup alignment device, HUD or COAS. Once this was determined, the following missions would frequently calibrate the HUD in order to be one step closer to having the device ready in case it was needed as a backup alignment device.

  7. The Electric and Optical Properties of Doped Small Molecular Organic Light-Emitting Devices

    SciTech Connect

    Cheon, Kwang-Ohk

    2003-01-01

    Organic light-emitting devices (OLEDs) constitute a new and exciting emissive display technology. In general, the basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting-anode and metallic cathode. When an appropriate bias is applied to the device, holes are injected from the anode and electrons from the cathode; some of the recombination events between the holes and electrons result in electroluminescence (EL). Until now, most of the efforts in developing OLEDs have focused on display applications, hence on devices within the visible range. However some organic devices have been developed for ultraviolet or infrared emission. Various aspects of the device physics of doped small molecular OLEDs were described and discussed. The doping layer thickness and concentration were varied systematically to study their effects on device performances, energy transfer, and turn-off dynamics. Low-energy-gap DCM2 guest molecules, in either α-NPD or DPVBi host layers, are optically efficient fluorophores but also generate deep carrier trap-sites. Since their traps reduce the carrier mobility, the current density decreases with increased doping concentration. At the same time, due to efficient energy transfer, the quantum efficiency of the devices is improved by light doping or thin doping thickness, in comparison with the undoped neat devices. However, heavy doping induces concentration quenching effects. Thus, the doping concentration and doping thickness may be optimized for best performance.

  8. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices

    NASA Astrophysics Data System (ADS)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.

  9. A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films

    NASA Astrophysics Data System (ADS)

    Takase, Yuki; Tien Thanh, Pham; Fujimura, Ryushi; Kajikawa, Kotaro

    2014-04-01

    An all-optical bistable (AOB) resonator device composed of a 430-nm-thick liquid crystal (LC) layer embedded in two thin gold films (MLM) is reported in this paper. This device allows the use of the incident illumination at normal incidence, whereas the previous AOB devices based on twisted nematic (TN)-LC function only for illumination at oblique incidence. The fastest switching time was measured to be 1.8 ms, which is significantly faster than that of TN-LC. Because the MLM device operates free from electronic circuits, it is promising for two-dimensional optical data processing, random access optical memories, and spatial light modulators.

  10. Graphene-Boron Nitride Heterostructure Based Optoelectronic Devices for On-Chip Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Yuanda

    Graphene has emerged as an appealing material for a variety of optoelectronic applications due to its unique electrical and optical characteristics. In this thesis, I will present recent advances in integrating graphene and graphene-boron nitride (BN) heterostructures with confined optical architectures, e.g. planar photonic crystal (PPC) nanocavities and silicon channel waveguides, to make this otherwise weakly absorbing material optically opaque. Based on these integrations, I will further demonstrate the resulting chip-integrated optoelectronic devices for optical interconnects. After transferring a layer of graphene onto PPC nanocavities, spectral selectivity at the resonance frequency and orders-of-magnitude enhancement of optical coupling with graphene have been observed in infrared spectrum. By applying electrostatic potential to graphene, electro-optic modulation of the cavity reflection is possible with contrast in excess of 10 dB. And furthermore, a novel and complex modulator device structure based on the cavity-coupled and BN-encapsulated dual-layer graphene capacitor is demonstrated to operate at a speed of 1.2 GHz. On the other hand, an enhanced broad-spectrum light-graphene interaction coupled with silicon channel waveguides is also demonstrated with ?0.1 dB/?m transmission attenuation due to graphene absorption. A waveguide-integrated graphene photodetector is fabricated and shown 0.1 A/W photoresponsivity and 20 GHz operation speed. An improved version of a similar photodetector using graphene-BN heterostructure exhibits 0.36 A/W photoresponsivity and 42 GHz response speed. The integration of graphene and graphene-BN heterostructures with nanophotonic architectures promises a new generation of compact, energy-efficient, high-speed optoelectronic device concepts for on-chip optical communications that are not yet feasible or very difficult to realize using traditional bulk semiconductors.

  11. Integration of micro/nano-scale optical waveguide arrays and devices for optical printed circuit board (O-PCB) and VLSI photonic application

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.; Song, S. H.; Kim, H. S.

    2005-08-01

    We report on the design, fabrication and integration of micro/nano-scale optical waveguide arrays and devices for optical printed circuit board (O-PCB) and VLSI photonic applications. The O-PCBs perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards or chips in a manner similar to the electrical printed circuit boards (E-PCBs). The photonic devices include microlasers, microlenses, micro-reflectors, couplers, arrayed waveguide grating structures, multimode interference (MMI) devices and photodetectors. For VLSI micro/nano-photonics we used photonic crystals and plasmonic metal waveguide structures. We also describe device characterization using near filed scanning microscopy. We examine the scientific and technological issues concerning the miniaturization, interconnection, and integration of photonic devices, circuits and systems in micron or submicron scale. In miniaturization, the issues include size effect, proximity effect, energy confinement effect, microcavitiy effect, single photon effect, optical interference effect, high field effect, nonlinear effect, noise effect, quantum optical effect, and chaotic noise effect. In interconnection, the issues include homogeneous interconnection (between identical devices) and heterogeneous interconnection (non-identical devices). In integration, the issues of interfacing same kind of devices, two different kinds of devices, and several or many different kinds of devices are addressed. The discussion includes the nano-scale electron beam system and techniques to characterize nano-scale structures.

  12. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.

    1995-01-01

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.

  13. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.

    1995-09-26

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.

  14. Probe-pin device for optical neurotransmitter sensing in the brain

    NASA Astrophysics Data System (ADS)

    Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn

    2015-04-01

    Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.

  15. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires

  16. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Zhou, Qin; Jin, Chenhao; Li, Jinghua; Zhou, Weiwei; Liu, Jie; Wang, Enge; Zettl, Alex; Wang, Feng

    2013-12-01

    Single-walled carbon nanotubes are uniquely identified by a pair of chirality indices (n,m), which dictate the physical structures and electronic properties of each species. Carbon nanotube research is currently facing two outstanding challenges: achieving chirality-controlled growth and understanding chirality-dependent device physics. Addressing these challenges requires, respectively, high-throughput determination of the nanotube chirality distribution on growth substrates and in situ characterization of the nanotube electronic structure in operating devices. Direct optical imaging and spectroscopy techniques are well suited for both goals, but their implementation at the single nanotube level has remained a challenge due to the small nanotube signal and unavoidable environment background. Here, we report high-throughput real-time optical imaging and broadband in situ spectroscopy of individual carbon nanotubes on various substrates and in field-effect transistor devices using polarization-based microscopy combined with supercontinuum laser illumination. Our technique enables the complete chirality profiling of hundreds of individual carbon nanotubes, both semiconducting and metallic, on a growth substrate. In devices, we observe that high-order nanotube optical resonances are dramatically broadened by electrostatic doping, an unexpected behaviour that points to strong interband electron-electron scattering processes that could dominate ultrafast dynamics of excited states in carbon nanotubes.

  17. Computational Electromagnetic Modeling of Optical Responses in Plasmonically Enhanced Nanoscale Devices Fabricated with Nanomasking Technique

    NASA Astrophysics Data System (ADS)

    Novak, Eric; Debu, Desalegn; Saylor, Cameron; Herzog, Joseph

    2015-03-01

    This work computationally explores plasmonic nanoscale devices fabricated with a recently developed nanomasking technique that is based on the self-aligned process. Computational electromagnetic modeling has determined enhancement factors and the plasmonic and optical properties of these structures. The nanomasking technique is a new process that is employed to overcome the resolution limits of traditional electron beam lithography and can also be used to increase resolution in photolithography fabrication as well. This technique can consistently produce accurate features with nanostructures and gaps smaller than 10 nm. These smaller dimensions can allow for increased and more localized plasmonically enhanced electric fields. These unique metal devices encompass tunable, enhanced plasmonic and optical properties that can be useful in a wide range of applications. Finite element methods are used to approximate the electromagnetic responses, giving the ability to alter the designs and dimensions in order to optimize the enhancement. Ultimately, we will fabricate devices and characterize the plasmonic properties with optical techniques, including dark-field spectroscopy, to confirm the properties with the goal of generating more efficient devices.

  18. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing

    NASA Astrophysics Data System (ADS)

    den Boef, Arie J.

    2016-06-01

    This paper presents three optical wafer metrology sensors that are used in lithography for robustly measuring the shape and position of wafers and device patterns on these wafers. The first two sensors are a level sensor and an alignment sensor that measure, respectively, a wafer height map and a wafer position before a new pattern is printed on the wafer. The third sensor is an optical scatterometer that measures critical dimension-variations and overlay after the resist has been exposed and developed. These sensors have different optical concepts but they share the same challenge that sub-nm precision is required at high throughput on a large variety of processed wafers and in the presence of unknown wafer processing variations. It is the purpose of this paper to explain these challenges in more detail and give an overview of the various solutions that have been introduced over the years to come to process-robust optical wafer metrology.

  19. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  20. End-faced waveguide mediated optical propulsion of microspheres and single cells in a microfluidic device.

    PubMed

    Lilge, Lothar; Shah, Duoaud; Charron, Luc

    2013-07-07

    Single cell transport in microfluidic devices is a topic of interest as their utility is becoming appreciated by cell and molecular biologist. Cell transport should minimize mechanical stress due to friction or pressure gradients. Optical forces have the advantage of applying their forces across the cell volume and not only at the cell membrane and are thus preferable. Optical pushing by scattering force is a suitable candidate so highly dependent on the photon irradiance field inside the propagation capillary which in turn is determined by the waveguide properties delivering the radiation pressure. Here we present a numerical approach to predict the optical scattering force, speed and trajectory of cells as a function of waveguide and propagation capillary geometry. Experimental verification of the simulation approach is demonstrated using polystyrene microspheres and leukemia cells. Effects of optical fibre to waveguide alignment, capillary wall angle and temperature on the dynamic viscosity on speed and position of the microspheres and cells inside the propagation capillary are demonstrated.

  1. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    SciTech Connect

    Kim, Jin-Mok Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  2. Digital television routing systems: An introduction to integrated optical waveguide techniques and devices

    NASA Astrophysics Data System (ADS)

    Willson, J. P.

    1985-08-01

    The development of a digital standard for the coding of component video signals has raised the problem of the appropriate technology to be used for the routing and distribution of such signals within a television studio center. Optical fibers offer a numberr of advantages over coaxial cable, such as high bandwidth, low loss, and small size. However, a major problem with optical transmission is that of routing the optical signals. One possible solution is to use integrated optical switches. The application of such devices for fabricating a large (100 x 100) array suitable for an all-digital BBC Television Centre is considered. The conclusion is that there remains a great deal of development to be done before such an array is feasible.

  3. Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells

    NASA Astrophysics Data System (ADS)

    Hands, Philip J. W.; Tatarkova, Svetlana A.; Kirby, Andrew K.; Love, Gordon D.

    2006-05-01

    We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 μm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 μm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation.

  4. Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I.

    PubMed

    Mohammed, Mazher-Iqbal; Desmulliez, Marc P Y

    2013-01-01

    Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care.

  5. Spin-photonic devices based on optical integration of Pancharatnam-Berry phase elements

    NASA Astrophysics Data System (ADS)

    Zhou, Junxiao; Liu, Yachao; Ke, Yougang; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    Development of spin-photonic devices requires the integration of abundant functions and the miniaturization of the elements. Pancharatnam-Berry phase elements have fulfilled these requirements and can be attained by using dielectric metasurfaces with subwavelength nanostructures. Here, we review some of our works on Pancharatnam- Berry phase elements and make an introduction of some integrated spin-photonic devices. We propose to integrate Pancharatnam-Berry phase lens into dynamical phase lens, which can be conveniently used to modulate spin states of photons. By integrating a Pancharatnam-Berry phase lens into a conventional plano-concave lens, we can obtain spin-filtering of photons. Moreover, we demonstrate that the generation of complex wavefronts characterized with different spin states can be implemented by the Pancharatnam-Berry phase lens. Further, based on the spin-dependent property of Pancharatnam-Berry phase element, we realize the three-dimensional photonic spin Hall effect with lateral and longitudinal spin-dependent splitting simultaneously. We foresee that this optical integration concept of designing Pancharatnam-Berry phase elements, which circumvents the limitations of bulky optical components in conventional integrated optics, will significantly impact multipurpose optical elements, particularly spin-based photonics devices.

  6. Understanding local forces in electrophoretic ink systems: utilizing optical tweezers to explore electrophoretic display devices

    NASA Astrophysics Data System (ADS)

    Wei, David L.; Dickinson, Mark R.; Smith, N.; Gleeson, Helen F.

    2016-09-01

    Optical tweezers can be used as a valuable tool to characterize electrophoretic display (EPD) systems. EPDs are ubiquitous with e-readers and are becoming a commonplace technology where reflective, low-power displays are required; yet the physics of some features crucial to their operation remains poorly defined. We utilize optical tweezers as a tool to understand the motion of charged ink particles within the devices and show that the response of optically trapped electrophoretic particles can be used to characterize electric fields within these devices. This technique for mapping the force can be compared to simulations of the electric field in our devices, thus demonstrating that the electric field itself is the sole governor of the particle motion in an individual-particle regime. By studying the individual-particle response to the electric field, we can then begin to characterize particle motion in `real' systems with many particles. Combining optical tweezing with particle tracking techniques, we can investigate deviations in many particle systems from the single-particle case.

  7. Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I

    PubMed Central

    Mohammed, Mazher-Iqbal; Desmulliez, Marc P. Y.

    2013-01-01

    Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care. PMID:24396546

  8. Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells.

    PubMed

    Hands, Philip J W; Tatarkova, Svetlana A; Kirby, Andrew K; Love, Gordon D

    2006-05-15

    We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 mum and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 mum. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation.

  9. Multichannel Integrated Acoustooptic Device Modules for Signal Processing, Computing and Optical Interconnect.

    NASA Astrophysics Data System (ADS)

    Le, Phat Duc

    A variety of lithium niobate (LiNbO_3 )-based multichannel integrated optic (IO) device modules for applications in signal processing, computing, and optical interconnect have been realized. The key to the realization of these device modules is the titanium -indiffusion proton-exchange (TIPE) technique developed recently at our laboratory for fabrication of microlenses and microlens arrays. First, two ten-channel IO device modules have been constructed and tested. These two high -packing density devices modules represent the highest degree of integration and the largest number of components that have been accomplished thus far. The architecture common to both modules consists of a composite waveguide 1.0 x 2.0 cm^2 in size in which a channel -waveguide array, a planar waveguide, a linear microlens array, an electrooptic Bragg modulator array or an acoustooptic and electrooptic Bragg modulator array, and a large-aperture lens are integrated. These device modules have been used to perform matrix-matrix multiplications and digital correlations with encouraging results. In performing these computations, a convenient scheme that utilizes a linear ion-milled planar microlens array, devised specifically for these multichannel device modules, has been employed for simultaneous and efficient excitation of the entire channel-waveguide array. Secondly, a new type of strictly nonblocking IO switching network has been conceived and realized in LiNbO_3 . In this new optical switching network module two arrays of channel waveguides, a pair of large-aperture TIPE lenses, and a set of surface-acoustic-wave (SAW) transducers are configured such that the acoustooptic Bragg diffraction serves as a means to activate the connection between any input and any output channels. The working principle of this guided-wave acoustooptic switching network has been verified by using a 4 x 4 switching network module with encouraging performance such as a typical crosstalk level of -16 dB.

  10. Device applications and structural and optical properties of Indigo - A biodegradable, low-cost organic semiconductor

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Pisane, Kelly L.; Sierros, Konstantinos; Seehra, Mohindar S.; Korakakis, Dimitris

    2015-03-01

    Currently, memory devices based on organic materials are attracting great attention due to their simplicity in device structure, mechanical flexibility, potential for scalability, low-cost potential, low-power operation, and large capacity for data storage. In a recent paper from our group, Indigo-based nonvolatile organic write-once-read-many-times (WORM) memory device, consisting of a 100nm layer of indigo sandwiched between an indium tin oxide (ITO) cathode and an Al anode, has been reported. This device is found to be at its low resistance state (ON state) and can be switched to high resistance state (OFF state) by applying a positive bias with ON/OFF current ratio of the device being up to 1.02 × e6. A summary of these results along with the structural and optical properties of indigo powder will be reported. Analysis of x-ray diffraction shows a monoclinic structure with lattice parameters a(b)[c] = 0.924(0.577)[0.1222]nm and β =117° . Optical absorption shows a band edge at 1.70 eV with peak of absorption occurring at 1.90 eV. These results will be interpreted in terms of the HOMO-LUMO bands of Indigo.

  11. Optical properties of thin semiconductor device structures with reflective back-surface layers

    SciTech Connect

    Clevenger, M.B.; Murray, C.S.; Ringel, S.A.; Sachs, R.N.; Qin, L.; Charache, G.W.; Depoy, D.M.

    1998-11-01

    Ultrathin semiconductor device structures incorporating reflective internal or back surface layers have been investigated recently as a means of improving photon recuperation, eliminating losses associated with free carrier absorption in conductive substrates and increasing the above bandgap optical thickness of thermophotovoltaic device structures. However, optical losses in the form of resonance absorptions in these ultrathin devices have been observed. This behavior in cells incorporating epitaxially grown FeAl layers and in devices that lack a substrate but have a back-surface reflector (BSR) at the rear of the active layers has been studied experimentally and modeled effectively. For thermophotovoltaic devices, these resonances represent a significant loss mechanism since the wavelengths at which they occur are defined by the active TPV cell thickness of {approximately} 2--5 microns and are in a spectral range of significant energy content for thermal radiators. This study demonstrates that ultrathin semiconductor structures that are clad by such highly reflective layers or by films with largely different indices of refraction display resonance absorptions that can only be overcome through the implementation of some external spectral control strategy. Effective broadband, below-bandgap spectral control using a back-surface reflector is only achievable using a large separation between the TPV active layers and the back-surface reflector.

  12. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  13. An in-fiber integrated optofluidic device based on an optical fiber with an inner core.

    PubMed

    Yang, Xinghua; Yuan, Tingting; Teng, Pingping; Kong, Depeng; Liu, Chunlan; Li, Entao; Zhao, Enming; Tong, Chengguo; Yuan, Libo

    2014-06-21

    A new kind of optofluidic in-fiber integrated device based on a specially designed hollow optical fiber with an inner core is designed. The inlets and outlets are built by etching the surface of the optical fiber without damaging the inner core. A reaction region between the end of the fiber and a solid point obtained after melting is constructed. By injecting samples into the fiber, the liquids can form steady microflows and react in the region. Simultaneously, the emission from the chemiluminescence reaction can be detected from the remote end of the optical fiber through evanescent field coupling. The concentration of ascorbic acid (AA or vitamin C, Vc) is determined by the emission intensity of the reaction of Vc, H2O2, luminol, and K3Fe(CN)6 in the optical fiber. A linear sensing range of 0.1-3.0 mmol L(-1) for Vc is obtained. The emission intensity can be determined within 2 s at a total flow rate of 150 μL min(-1). Significantly, this work presents information for the in-fiber integrated optofluidic devices without spatial optical coupling.

  14. Microprocessor-controlled optical stimulating device to improve the gait of patients with Parkinson's disease.

    PubMed

    Ferrarin, M; Brambilla, M; Garavello, L; Di Candia, A; Pedotti, A; Rabuffetti, M

    2004-05-01

    Different types of visual cue for subjects with Parkinson's disease (PD) produced an improvement in gait and helped some of them prevent or overcome freezing episodes. The paper describes a portable gait-enabling device (optical stimulating glasses (OSGs) that provides, in the peripheral field of view, different types of continuous optic flow (backward or forward) and intermittent stimuli synchronised with external events. The OSGs are a programmable, stand-alone, augmented reality system that can be interfaced with a PC for program set-up. It consists of a pair of non-corrective glasses, equipped with two matrixes of 70 micro light emitting diodes, one on each side, controlled by a microprocessor. Two foot-switches are used to synchronise optical stimulation with specific gait events. A pilot study was carried out on three PD patients and three controls, with different types of optic flow during walking along a fixed path. The continuous optic flow in the forward direction produced an increase in gait velocity in the PD patients (up to + 11% in average), whereas the controls had small variations. The stimulation synchronised with the swing phase, associated with an attentional strategy, produced a remarkable increase in stride length for all subjects. After prolonged testing, the device has shown good applicability and technical functionality, it is easily wearable and transportable, and it does not interfere with gait.

  15. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    DOEpatents

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  16. LDRD final report: photonic analog-to-digital converter (ADC) technology

    SciTech Connect

    Bowers, M; Deri, B; Haigh, R; Lowry, M; Sargis, P; Stafford, R; Tong, T

    1999-02-18

    We report on an LDRD seed program of novel technology development (started by an FY98 Engineering Tech-base project) that will enable extremely high-fidelity analog-to-digital converters for a variety of national security missions. High speed (l0+ GS/s ), high precision (l0+ bits) ADC technology requires extremely short aperture times ({approx}1ps ) with very low jitter requirements (sub 10fs ). These fundamental requirements, along with other technological barriers, are difficult to realize with electronics: However, we outline here, a way to achieve these timing apertures using a novel multi-wavelength optoelectronic short-pulse optical source. Our approach uses an optoelectronic feedback scheme with high optical Q to produce an optical pulse train with ultra-low jitter ( sub 5fs) and high amplitude stability (<10{sup 10}). This approach requires low power and can be integrated into an optoelectronic integrated circuit to minimize the size. Under this seed program we have demonstrated that the optical feedback mechanism can be used to generate a high Q resonator. This has reduced the technical risk for further development, making it an attractive candidate for outside funding.

  17. Characteristics of heat flow in optical fiber devices that use integrated thin-film heaters.

    PubMed

    Rogers, J A; Kuo, P; Ahuja, A; Eggleton, B J; Jackman, R J

    2000-10-01

    We describe the analysis of heat flow in a type of tunable optical fiber grating that uses thin-film resistive heaters microfabricated on the surface of the fiber. The high rate of heat loss from these microstructures and the relatively low thermal diffusivity of the glass yield unusual thermal properties. Approximate one-dimensional analytical calculations capture important aspects of the thermal characteristics of these systems. Comparison with experimental results that we obtained from devices with established designs validates certain features of the computations. This modeling also establishes the suitability of integrated thin-film heaters for several new types of tunable fiber grating devices.

  18. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  19. Simple spark erosion device based on optical disk or hard disk drive actuators.

    PubMed

    Kamer, O

    2011-12-01

    We present the design of a compact electric discharge device incorporating hard disk or optical disk drive actuators. It is simple enough to be assembled in the absence of a mechanical workshop. The electronic circuit allows the adjustment of current, voltage, and discharge power. The system has been tested with organic dielectric liquids and deionized water and spark conditions; dynamic properties and machining characteristics were investigated. This device can be used to shape materials or to produce powdered samples with low material loss and minimal liquid consumption.

  20. Integrated device with diffractive polarization components for a magneto-optical disk head

    NASA Technical Reports Server (NTRS)

    Haggans, Charles W.; Fujita, Teruo; Kostuk, Raymond K.

    1992-01-01

    The optical components in the detection train of a conventional magneto-optical (MO) disk head include a half-wave plate and a polarization beamsplitter. These polarization components are bulky and require specialized mounting hardware. In order to realize a more compact head, we propose that these elements be replaced by an integrated device composed of cascaded volume and surface-relief gratings. Herein, the proposed system is described in detail for the individual elements, theoretical and prototype element performance are compared, and the operational tolerances of these elements are discussed.