System and method for reproducibly mounting an optical element
Eisenbies, Stephen; Haney, Steven
2005-05-31
The present invention provides a two-piece apparatus for holding and aligning the MEMS deformable mirror. The two-piece apparatus comprises a holding plate for fixedly holding an adaptive optics element in an overall optical system and a base spatially fixed with respect to the optical system and adapted for mounting and containing the holding plate. The invention further relates to a means for configuring the holding plate through adjustments to each of a number of off-set pads touching each of three orthogonal plane surfaces on the base, wherein through the adjustments the orientation of the holding plate, and the adaptive optics element attached thereto, can be aligned with respect to the optical system with six degrees of freedom when aligning the plane surface of the optical element. The mounting system thus described also enables an operator to repeatedly remove and restore the adaptive element in the optical system without the need to realign the system once that element has been aligned.
An easy packaging hybrid optical element in grating based WDM application
NASA Astrophysics Data System (ADS)
Lan, Hsiao-Chin; Cheng, Chao-Chia; Wang, Chih-Ming; Chang, Jenq-Yang
2005-08-01
We developed a new optical element which integrates an off-axis diffractive grating and an on-axis refractive lens surface in a prism. With this optical element, the alignment tolerance can be improved by manufacturing technology of the grating based WDM device and is practicable for mass production. An 100-GHz 16-channel DWDM device which includes this optical element has been designed. Ray tracing and beam propagation method (BPM) simulations showed good performance on the insertion loss of 2.91+/-0.53dB and the adjacent cross talk of 58.02dB. The tolerance discussion for this DWDM device shows that this optical element could be practically achieved by either injection molding or the hot embossing method.
Multichannel optical sensing device
Selkowitz, S.E.
1985-08-16
A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Multichannel optical sensing device
Selkowitz, Stephen E.
1990-01-01
A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
All-semiconductor metamaterial-based optical circuit board at the microscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn
2015-07-07
The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less
[Calculation of optic system of superfine medical endoscopes based on gradient elements].
Díakonov, S Iu; Korolev, A V
1994-01-01
The application of gradient optic elements to rigid endoscopes decreases their diameter to 1.5-2.0 mm. The given mathematical dependences determine aperture and field characteristics, focus and focal segments, resolution of the optic systems based on gradient optics. Parameters of the gradient optic systems for superfine medical endoscopes are characterized and their practical application is shown.
Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit
NASA Astrophysics Data System (ADS)
Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.
2017-05-01
Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.
Optical fiber-based biosensors.
Monk, David J; Walt, David R
2004-08-01
This review outlines optical fiber-based biosensor research from January 2001 through September 2003 and was written to complement the previous review in this journal by Marazuela and Moreno-Bondi. Optical fiber-based biosensors combine the use of a biological recognition element with an optical fiber or optical fiber bundle. They are classified by the nature of the biological recognition element used for sensing: enzyme, antibody/antigen (immunoassay), nucleic acid, whole cell, and biomimetic, and may be used for a variety of analytes ranging from metals and chemicals to physiological materials.
[Design and analysis of a novel light visible spectrum imaging spectrograph optical system].
Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu
2015-02-01
A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.
Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng
2012-09-01
One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.
Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard; Gong, Li; Rieck, Juergen; Zheng, Alan
2012-11-01
Micro-optics is an indispensable key enabling technology (KET) for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the last decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks (supercomputer, ROADM), bringing high-speed internet to our homes (FTTH). Even our modern smart phones contain a variety of micro-optical elements. For example, LED flashlight shaping elements, the secondary camera, and ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by semiconductor industry. Thousands of components are fabricated in parallel on a wafer. We report on the state of the art in wafer-based manufacturing, testing, packaging and present examples and applications for micro-optical components and systems.
George, D; Lutkenhaus, J; Lowell, D; Moazzezi, M; Adewole, M; Philipose, U; Zhang, H; Poole, Z L; Chen, K P; Lin, Y
2014-09-22
In this paper, we are able to fabricate 3D photonic crystals or quasi-crystals through single beam and single optical element based holographic lithography. The reflective optical elements are used to generate multiple side beams with s-polarization and one central beam with circular polarization which in turn are used for interference based holographic lithography without the need of any other bulk optics. These optical elements have been used to fabricate 3D photonic crystals with 4, 5 or 6-fold symmetry. A good agreement has been observed between fabricated holographic structures and simulated interference patterns.
Mikš, Antonín; Novák, Pavel
2018-05-10
In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.
Holographic rugate structures for x-ray optics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannson, T.; Savant, G.
1990-03-19
Physical Optics Corporation (POC) has proposed and investigated a novel approach to x-ray optics during this DOE-sponsored three-year program, based on our well-established technologies in volume holography and holographic materials. With these technologies, a majority of conventional XUV optical elements, such as uniform and nonuniform gratings/multilayers, lenses, slanted (non-Snellian) mirrors, Fresnel zone-plates, concentrators/collimators, beam splitters, Fabry-Perot etalons, and binary optical elements, can be fabricated using a unified, low cost process. Furthermore, volume holography offer nonconventional optical elements, such as x-ray holographic optical elements (HOEs) with any desirable wavefront formation characteristics and multiple gratings multiplexed in the same volume to performmore » different operations for different wavelengths, that are difficult or even impossible to produce with the existing technologies.« less
Huempfner-Hierl, Heike; Bohne, Alexander; Wollny, Gert; Sterker, Ina; Hierl, Thomas
2015-10-01
Clinical studies report on vision impairment after blunt frontal head trauma. A possible cause is damage to the optic nerve bundle within the optic canal due to microfractures of the anterior skull base leading to indirect traumatic optic neuropathy. A finite element study simulating impact forces on the paramedian forehead in different grades was initiated. The set-up consisted of a high-resolution skull model with about 740 000 elements, a blunt impactor and was solved in a transient time-dependent simulation. Individual bone material parameters were calculated for each volume element to increase realism. Results showed stress propagation from the frontal impact towards the optic foramen and the chiasm even at low-force fist-like impacts. Higher impacts produced stress patterns corresponding to typical fracture patterns of the anterior skull base including the optic canal. Transient simulation discerned two stress peaks equalling oscillation. It can be concluded that even comparatively low stresses and oscillation in the optic foramen may cause micro damage undiscerned by CT or MRI explaining consecutive vision loss. Higher impacts lead to typical comminuted fractures, which may affect the integrity of the optic canal. Finite element simulation can be effectively used in studying head trauma and its clinical consequences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A fast low-power optical memory based on coupled micro-ring lasers
NASA Astrophysics Data System (ADS)
Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.
2004-11-01
The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.
Wafer-scale micro-optics fabrication
NASA Astrophysics Data System (ADS)
Voelkel, Reinhard
2012-07-01
Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.
A Practical Guide to Experimental Geometrical Optics
NASA Astrophysics Data System (ADS)
Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.
2017-12-01
Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.
Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe
2015-11-01
We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.
Silicon-based all-optical memory elements for 1.54 μm photonics
NASA Astrophysics Data System (ADS)
Forcales, M.; Gregorkiewicz, T.; Zavada, J. M.
2003-01-01
We present experimental evidence of an optical memory effect in crystalline silicon doped with Er 3+ ions. It is observed at low temperature using two-color experiments in the visible and the mid-infrared (with a free-electron laser). Based on the physical mechanism governing the effect, possibilities for improvement of thermal stability and increase of archival time are discussed. An all-optical all-silicon memory element for use in photonic circuits is proposed.
Metal-polymer nanocomposites for stretchable optics and plasmonics
NASA Astrophysics Data System (ADS)
Potenza, Marco A. C.; Minnai, Chloé; Milani, Paolo
2016-12-01
Stretchable and conformable optical devices open very exciting perspectives for the fabrication of systems incorporating diffracting and optical power in a single element and of tunable plasmonic filters and absorbers. The use of nanocomposites obtained by inserting metallic nanoparticles produced in the gas phase into polymeric matrices allows to effectively fabricate cheap and simple stretchable optical elements able to withstand thousands of deformations and stretching cycles without any degradation of their optical properties. The nanocomposite-based reflective optical devices show excellent performances and stability compared to similar devices fabricated with standard techniques. The nanocomposite-based devices can be therefore applied to arbitrary curved non-optical grade surfaces in order to achieve optical power and to minimize aberrations like astigmatism. Examples discussed here include stretchable reflecting gratings, plasmonic filters tunable by mechanical stretching and light absorbers.
Photonic Multitasking Interleaved Si Nanoantenna Phased Array.
Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L
2016-12-14
Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.
Optical design of MOEMS-based micro-mechatronic modules for applications in spectroscopy
NASA Astrophysics Data System (ADS)
Tortschanoff, A.; Kremer, M.; Sandner, T.; Kenda, A.
2014-05-01
One of the important challenges for widespread application of MOEMS devices is to provide a modular interface for easy handling and accurate driving of the MOEMS elements, in order to enable seamless integration in larger spectroscopic system solutions. In this contribution we present in much detail the optical design of MOEMS driver modules comprising optical position sensing together with driver electronics, which can actively control different electrostatically driven MOEMS. Furthermore we will present concepts for compact spectroscopic devices, based on different MOEMS scanner modules with lD and 2D optical elements.
Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.
Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei
2017-07-14
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.
Seasonal control skylight glazing panel with passive solar energy switching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.V.
1983-10-25
A substantially transparent one-piece glazing panel is provided for generally horizontal mounting in a skylight. The panel is comprised of an repeated pattern of two alternating and contiguous linear optical elements; a first optical element being an upstanding generally right-triangular linear prism, and the second optical element being an upward-facing plano-cylindrical lens in which the planar surface is reflectively opaque and is generally in the same plane as the base of the triangular prism.
NASA Technical Reports Server (NTRS)
Horowitz, Stephen; Chen, Tai-An; Chandrasekaran, Venkataraman; Tedjojuwono, Ken; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark
2004-01-01
This paper presents a geometric Moir optical-based floating-element shear stress sensor for wind tunnel turbulence measurements. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Measured results indicate a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.
Feasibility of Optical Instruments Based on Multiaperture Optics.
1984-10-16
system may be configured. The optical elements may be nonimaging concentrators (light horns), the field of view (FOV) of which may be controlled by a...RD-RI58 868 FEASIBILITY OF OPTICAL INSTRUMENTS BASED ON i/I MULTIAPERTURE OPTICS (U) FLORIDA UNIV GAINESVILLE DEPT OF NUCLEAR ENGINEERING SCIENCES J D...d Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ’ 0 Feasibility of Optical Instruments Based on Final Report * CD Multiaperature Optics 615/83 to 9/30
Shih, Hsi-Fu; Chiu, Yi; Cheng, Stone; Lee, Yuan-Chin; Lu, Chun-Shin; Chen, Yung-Chih; Chiou, Jin-Chern
2012-08-20
This paper presents the prism-type holographic optical element (PT-HOE) design for a small-form-factor (SFF) optical pickup head (OPH). The surface of the PT-HOE was simulated by three steps of optimization and generated by binary optics. Its grating pattern was fabricated on the inclined plane of a microprism by using the standard photolithography and specific dicing procedures. The optical characteristics of the device were verified. Based on the virtual image method, the SFF-OPH with the device was assembled and realized.
Design issues for directional coupler- and MMI-based optical microring resonator filters on InP
NASA Astrophysics Data System (ADS)
Themistos, Christos; Kalli, Kyriacos; Komodromos, Michalis; Rajarajan, Muttukrishnan; Rahman, B. M. A.; Grattan, Kenneth T. V.
2004-08-01
The characterization and optimization of optical microring resonator-based optical filters on deeply etched GaInAsP-Inp waveguides, using the finite element-based beam propagation approach is presented here. Design issues for directional coupler- and multimode interference coupler-based devices, such as field evolution, optical power, phase, fabrication tolerance and wavelength dependence have been investigated.
Sensored fiber reinforced polymer grate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Michael P.; Mack, Thomas Kimball
Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based onmore » a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.« less
NASA Astrophysics Data System (ADS)
Liu, Tao; Kubis, Tillmann; Jie Wang, Qi; Klimeck, Gerhard
2012-03-01
The nonequilibrium Green's function approach is applied to the design of three-well indirect pumping terahertz (THz) quantum cascade lasers (QCLs) based on a resonant phonon depopulation scheme. The effects of the anticrossing of the injector states and the dipole matrix element of the laser levels on the optical gain of THz QCLs are studied. The results show that a design that results in a more pronounced anticrossing of the injector states will achieve a higher optical gain in the indirect pumping scheme compared to the traditional resonant-tunneling injection scheme. This offers in general a more efficient coherent resonant-tunneling transport of electrons in the indirect pumping scheme. It is also shown that, for operating temperatures below 200 K and low lasing frequencies, larger dipole matrix elements, i.e., vertical optical transitions, offer a higher optical gain. In contrast, in the case of high lasing frequencies, smaller dipole matrix elements, i.e., diagonal optical transitions are better for achieving a higher optical gain.
Study on light scattering characterization for polishing surface of optical elements
NASA Astrophysics Data System (ADS)
Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo
2017-02-01
Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.
An amplitude and phase hybrid modulation Fresnel diffractive optical element
NASA Astrophysics Data System (ADS)
Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi
2018-04-01
An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.
See-through 3D technology for augmented reality
NASA Astrophysics Data System (ADS)
Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young
2017-06-01
Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.
Paraxial diffractive elements for space-variant linear transforms
NASA Astrophysics Data System (ADS)
Teiwes, Stephan; Schwarzer, Heiko; Gu, Ben-Yuan
1998-06-01
Optical linear transform architectures bear good potential for future developments of very powerful hybrid vision systems and neural network classifiers. The optical modules of such systems could be used as pre-processors to solve complex linear operations at very high speed in order to simplify an electronic data post-processing. However, the applicability of linear optical architectures is strongly connected with the fundamental question of how to implement a specific linear transform by optical means and physical imitations. The large majority of publications on this topic focusses on the optical implementation of space-invariant transforms by the well-known 4f-setup. Only few papers deal with approaches to implement selected space-variant transforms. In this paper, we propose a simple algebraic method to design diffractive elements for an optical architecture in order to realize arbitrary space-variant transforms. The design procedure is based on a digital model of scalar, paraxial wave theory and leads to optimal element transmission functions within the model. Its computational and physical limitations are discussed in terms of complexity measures. Finally, the design procedure is demonstrated by some examples. Firstly, diffractive elements for the realization of different rotation operations are computed and, secondly, a Hough transform element is presented. The correct optical functions of the elements are proved in computer simulation experiments.
Development of liquid crystal based adaptive optical elements for space applications
NASA Astrophysics Data System (ADS)
Geday, M. A.; Quintana, X.; Otón, E.; Cerrolaza, B.; Lopez, D.; Garcia de Quiro, F.; Manolis, I.; Short, A.
2017-11-01
In this paper we present the results obtained within the context of the ESA-funded project Programmable Optoelectronic Adaptive Element (AO/1-5476/07/NL/EM). The objective of this project is the development of adaptive (reconfigurable) optical elements for use in space applications and the execution of preliminary qualification tests in the relevant environment. The different designs and materials that have been considered and manufactured for a 2D beam steerer based on passive matrix liquid crystal programmable blaze grating will described and discussed.
NASA Astrophysics Data System (ADS)
Maimistov, Andrei I.
1995-10-01
An analysis is made of the fundamental concepts of conservative logic. It is shown that the existing optical soliton switches can be converted into logic gates which act as conservative logic elements. A logic device of this type, based on a nonlinear fibre-optic directional coupler, is considered. Polarised solitons are used in this coupler. This use of solitons leads in a natural way to the desirability of developing conservative triple-valued logic.
Optical components of adaptive systems for improving laser beam quality
NASA Astrophysics Data System (ADS)
Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.
2008-10-01
The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Lang, Günter; Schröder, Henning
2011-01-01
The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.
Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces
NASA Astrophysics Data System (ADS)
Almeida, Euclides; Shalem, Guy; Prior, Yehiam
2016-01-01
Metasurfaces, and in particular those containing plasmonic-based metallic elements, constitute an attractive set of materials with a potential for replacing standard bulky optical elements. In recent years, increasing attention has been focused on their nonlinear optical properties, particularly in the context of second and third harmonic generation and beam steering by phase gratings. Here, we harness the full phase control enabled by subwavelength plasmonic elements to demonstrate a unique metasurface phase matching that is required for efficient nonlinear processes. We discuss the difference between scattering by a grating and by subwavelength phase-gradient elements. We show that for such interfaces an anomalous phase-matching condition prevails, which is the nonlinear analogue of the generalized Snell's law. The subwavelength phase control of optical nonlinearities paves the way for the design of ultrathin, flat nonlinear optical elements. We demonstrate nonlinear metasurface lenses, which act both as generators and as manipulators of the frequency-converted signal.
Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
Liu, Ruopeng; Cheng, Qiang; Chin, Jessie Y; Mock, Jack J; Cui, Tie Jun; Smith, David R
2009-11-09
Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.
Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light
Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei
2017-01-01
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, S.; Agyeman-Budu, D. N.; Woll, A. R.
Confocal X-ray fluorescence imaging (CXFI) and confocal X-ray absorption spectroscopy (CXAS) respectively enable the study of three dimensionally resolved localization and speciation of elements. Applied to a thick sample, essentially any volume element of interest within the X-ray fluorescence escape depth can be examined without the need for physical thin sectioning. To date, X-ray confocal detection generally has employed a polycapillary optic in front of the detector to collect fluorescence from the probe volume formed at the intersection of its focus with the incident microfocus beam. This work demonstrates the capability of a novel Collimating Channel Array (CCA) optic inmore » providing an improved and essentially energy independent depth resolution approaching 2 μm. By presenting a comparison of elemental maps of archaeological bone collected without confocal detection, and with polycapillary- and CCA-based confocal detection, this study highlights the strengths and limitations of each mode. Unlike the polycapillary, the CCA shows similar spatial resolution in maps for both low (Ca) and high (Pb and Sr) energy X-ray fluorescence, thus illustrating the energy independent nature of the CCA optic resolution. While superior spatial resolution is demonstrated for all of these elements, the most significant improvement is observed for Ca, demonstrating the advantage of employing the CCA optic in examining light elements. In addition to CXFI, this configuration also enables the collection of Pb L3 CXAS data from micro-volumes with dimensions comparable to bone microstructures of interest. Our CXAS result, which represents the first CCA-based biological CXAS, demonstrates the ability of CCA optics to collect site specific spectroscopic information. The demonstrated combination of site-specific elemental localization and speciation data will be useful in diverse fields.« less
Lan, Hsiao-Chin; Hsiao, Hsu-Liang; Chang, Chia-Chi; Hsu, Chih-Hung; Wang, Chih-Ming; Wu, Mount-Learn
2009-11-09
A monolithically integrated micro-optical element consisting of a diffractive optical element (DOE) and a silicon-based 45 degrees micro-reflector is experimentally demonstrated to facilitate the optical alignment of non-coplanar fiber-to-fiber coupling. The slanted 45 degrees reflector with a depth of 216 microm is fabricated on a (100) silicon wafer by anisotropic wet etching. The DOE with a diameter of 174.2 microm and a focal length of 150 microm is formed by means of dry etching. Such a compact device is suitable for the optical micro-system to deflect the incident light by 90 degrees and to focus it on the image plane simultaneously. The measured light pattern with a spot size of 15 microm has a good agreement with the simulated result of the elliptic-symmetry DOE with an off-axis design for eliminating the strongly astigmatic aberration. The coupling efficiency is enhanced over 10-folds of the case without a DOE on the 45 degrees micro-reflector. This device would facilitate the optical alignment of non-coplanar light coupling and further miniaturize the volume of microsystem.
Mobile glasses-free 3D using compact waveguide hologram
NASA Astrophysics Data System (ADS)
Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.
2013-02-01
The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.
Modules and methods for all photonic computing
Schultz, David R.; Ma, Chao Hung
2001-01-01
A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.
Optically interconnected phased arrays
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Kunath, Richard R.
1988-01-01
Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2014-05-13
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John [Champaign, IL; Nuzzo, Ralph [Champaign, IL; Meitl, Matthew [Durham, NC; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL; Motala, Michael [Champaign, IL; Ahn, Jong-Hyun [Suwon, KR; Park, Sang-II [Savoy, IL; Yu,; Chang-Jae, [Urbana, IL; Ko, Heung-Cho [Gwangju, KR; Stoykovich,; Mark, [Dover, NH; Yoon, Jongseung [Urbana, IL
2011-07-05
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2015-08-25
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical systems fabricated by printing-based assembly
Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung
2017-03-21
Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.
Optical computing, optical memory, and SBIRs at Foster-Miller
NASA Astrophysics Data System (ADS)
Domash, Lawrence H.
1994-03-01
A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.
Top-quality security optical elements: from holography towards 500.000 dpi
NASA Astrophysics Data System (ADS)
Kotačka, Libor; Těthal, Tomas; Kolařík, Vladimir
2005-09-01
Invented in late 1940s, holography has played a very important role in many technical applications. While the 60s and 70s belonged to, say, a classical period of the holography and diffractive optics (optical elements, lenses, beam splitters), the last two decades have shown an enormous expansion of various mainly synthetically designed and created holographic elements. Ever since its invention, holograms have also attracted our attention, because of their true three-dimension perception of a depicted object and related optical features. These phenomena caused, the holograms have become very well and easily publicly recognized, but still very difficult to falsify. Holography based optically variable microstructures and related advanced anti-counterfeit measures are thus ones of the leading features in security elements used for the protection against falsification of valuables, documents (banknotes, visa, passports, ID cards, tax stamps, etc.), serving for the protection of interests and many others. Our talk deals with the survey of currently exploited technologies to produce several protective optical elements. A special attention will be paid to the synthetically developed special optical elements by means of the unique technology - the electron beam lithography, what is one of the world's most advanced technologies used for the protection against falsification. The computer-synthesized security elements are recorded with an incredible resolution of up to 500.000 dpi and are specially developed for the security of the most important state valuables and documents. Finally, we shall discuss some technological possibilities for its future development.
Călin, Bogdan-Ştefăniţă; Preda, Liliana; Jipa, Florin; Zamfirescu, Marian
2018-02-20
We have designed, fabricated, and tested an amplitude diffractive optical element for generation of two-dimensional (2D) Airy beams. The design is based on a detour-phase computer-generated hologram. Using laser ablation of metallic films, we obtained a 2 mm×2 mm diffractive optical element with a pixel of 5 μm×5 μm and demonstrated a fast, cheap, and reliable fabrication process. This device can modulate 2D Airy beams or it can be used as a UV lithography mask to fabricate a series of phase holograms for higher energy efficiency. Tests according to the premise and an analysis of the transverse profile and propagation are presented.
Nanometric summation architecture based on optical near-field interaction between quantum dots.
Naruse, Makoto; Miyazaki, Tetsuya; Kubota, Fumito; Kawazoe, Tadashi; Kobayashi, Kiyoshi; Sangu, Suguru; Ohtsu, Motoichi
2005-01-15
A nanoscale data summation architecture is proposed and experimentally demonstrated based on the optical near-field interaction between quantum dots. Based on local electromagnetic interactions between a few nanometric elements via optical near fields, we can combine multiple excitations at a certain quantum dot, which allows construction of a summation architecture. Summation plays a key role for content-addressable memory, which is one of the most important functions in optical networks.
Analysis of the influence of manufacturing and alignment related errors on an optical tweezer system
NASA Astrophysics Data System (ADS)
Kampmann, R.; Sinzinger, S.
2014-12-01
In this work we present the design process as well as experimental results of an optical system for trapping particles in air. For positioning applications of micro-sized objects onto a glass wafer we developed a highly efficient optical tweezer. The focus of this paper is the iterative design process where we combine classical optics design software with a ray optics based force simulation tool. Thus we can find the best compromise which matches the optical systems restrictions with stable trapping conditions. Furthermore we analyze the influence of manufacturing related tolerances and errors in the alignment process of the optical elements on the optical forces. We present the design procedure for the necessary optical elements as well as experimental results for the aligned system.
Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.
1985-01-01
Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.
Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José
2015-09-01
In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.
Discovery deep space optical communications (DSOC) transceiver
NASA Astrophysics Data System (ADS)
Roberts, W. Thomas
2017-02-01
NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.
Porous Silicon Gradient Refractive Index Micro-Optics.
Krueger, Neil A; Holsteen, Aaron L; Kang, Seung-Kyun; Ocier, Christian R; Zhou, Weijun; Mensing, Glennys; Rogers, John A; Brongersma, Mark L; Braun, Paul V
2016-12-14
The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.
Apparatus, system, and method for laser-induced breakdown spectroscopy
Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R
2014-11-18
In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.
Focusing light through random photonic layers by four-element division algorithm
NASA Astrophysics Data System (ADS)
Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin
2018-02-01
The propagation of waves in turbid media is a fundamental problem of optics with vast applications. Optical phase optimization approaches for focusing light through turbid media using phase control algorithm have been widely studied in recent years due to the rapid development of spatial light modulator. The existing approaches include element-based algorithms - stepwise sequential algorithm, continuous sequential algorithm and whole element optimization approaches - partitioning algorithm, transmission matrix approach and genetic algorithm. The advantage of element-based approaches is that the phase contribution of each element is very clear; however, because the intensity contribution of each element to the focal point is small especially for the case of large number of elements, the determination of the optimal phase for a single element would be difficult. In other words, the signal to noise ratio of the measurement is weak, leading to possibly local maximal during the optimization. As for whole element optimization approaches, all elements are employed for the optimization. Of course, signal to noise ratio during the optimization is improved. However, because more random processings are introduced into the processing, optimizations take more time to converge than the single element based approaches. Based on the advantages of both single element based approaches and whole element optimization approaches, we propose FEDA approach. Comparisons with the existing approaches show that FEDA only takes one third of measurement time to reach the optimization, which means that FEDA is promising in practical application such as for deep tissue imaging.
Method and system for processing optical elements using magnetorheological finishing
Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A
2012-09-18
A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.
NASA Astrophysics Data System (ADS)
Sharangovich, Sergey N.; Semkin, Artem O.
2017-12-01
In this work a theoretical model of the holographic formation of the polarization diffractive optical elements for the transformation of Gaussian light beams into Bessel-like ones in polymer-dispersed liquid crystals (PDLC) is developed. The model is based on solving the equations of photo-induced Fredericks transition processes for polarization diffractive elements formation by orthogonally polarized light beams with inhomogeneous amplitude and phase profiles. The results of numerical simulation of the material's dielectric tensor changing due to the structure's formation process are presented for various recording beams' polarization states. Based on the results of numerical simulation, the ability to form the diffractive optical elements for light beams transformation by the polarization holography methods is shown.
System and method for authentication of goods
Kaish, Norman; Fraser, Jay; Durst, David I.
1999-01-01
An authentication system comprising a medium having a plurality of elements, the elements being distinctive, detectable and disposed in an irregular pattern or having an intrinsic irregularity. Each element is characterized by a determinable attribute distinct from a two-dimensional coordinate representation of simple optical absorption or simple optical reflection intensity. An attribute and position of the plurality of elements, with respect to a positional reference is detected. A processor generates an encrypted message including at least a portion of the attribute and position of the plurality of elements. The encrypted message is recorded in physical association with the medium. The elements are preferably dichroic fibers, and the attribute is preferably a polarization or dichroic axis, which may vary over the length of a fiber. An authentication of the medium based on the encrypted message may be authenticated with a statistical tolerance, based on a vector mapping of the elements of the medium, without requiring a complete image of the medium and elements to be recorded.
Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo
2015-07-01
Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.
Extraction film for optical waveguide and method of producing same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarsa, Eric J.; Durkee, John W.
2017-05-16
An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.
Study of 3D printing method for GRIN micro-optics devices
NASA Astrophysics Data System (ADS)
Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.
2016-03-01
Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohodnicki, Jr., Paul R; Schultz, Andrew M
2015-04-28
The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide hasmore » an empirical formula A.sub.xB.sub.yO.sub.3-.delta., where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8« less
Adaptive optical system for writing large holographic optical elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyutchev, M.V.; Kalyashov, E.V.; Pavlov, A.P.
1994-11-01
This paper formulates the requirements imposed on systems for correcting the phase-difference distribution of recording waves over the field of a large-diameter photographic plate ({le}1.5 m) when writing holographic optical elements (HOEs). A technique is proposed for writing large HOEs, based on the use of an adaptive phase-correction optical system of the first type, controlled by the self-diffraction signal from a latent image. The technique is implemented by writing HOEs on photographic plates with an effective diameter of 0.7 m on As{sub 2}S{sub 3} layers. 13 refs., 4 figs.
MEMS-tunable dielectric metasurface lens.
Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraji-Dana, MohammadSadegh; Faraon, Andrei
2018-02-23
Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 μm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro
2014-05-01
Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.
Polyhedral integrated and free space optical interconnection
Erteza, I.A.
1998-01-06
An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment. 7 figs.
Polyhedral integrated and free space optical interconnection
Erteza, Ireena A.
1998-01-01
An optical communication system uses holographic optical elements to provide guided wave and non-guided communication, resulting in high bandwidth, high connectivity optical communications. Holograms within holographic optical elements route optical signals between elements and between nodes connected to elements. Angular and wavelength multiplexing allow the elements to provide high connectivity. The combination of guided and non-guided communication allows compact polyhedral system geometries. Guided wave communications provided by multiplexed substrate-mode holographic optical elements eases system alignment.
Micro-optical elements produced using an photo-embossing technique in photopolymers
NASA Astrophysics Data System (ADS)
O'Neill, Feidhlim T.; Rowsome, Ita C.; Carr, Alun J.; Daniels, Stephen M.; Gleeson, Michael R.; Kelly, John V.; Close, Ciara; Lawrence, Justin R.; Sheridan, John T.
2005-09-01
Micro-optical devices are very important in current high-tech consumer items. The development of future products depends on both the evolution of fabrication techniques and on the development of new low cost mass production methods. Polymers offer ease of fabrication and low cost and are therefore excellent materials for the development of micro-optical devices. Polymer optical devices include passive optical elements, such as microlens arrays and waveguides, as well as active devices such as polymer based lasers. One of the most important areas of micro-optics is that of microlens design, manufacture and testing. The wide diversity of fabrication methods used for the production of these elements indicates their importance. One of these fabrication techniques is photo-embossing. The use of the photo-embossing technique and a photopolymer holographic recording material will be examined in this paper. A discussion of current attempts to model the fabrication process and a review of the experimental method will be given.
Development of microchannel plate x-ray optics
NASA Technical Reports Server (NTRS)
Kaaret, Philip
1995-01-01
The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with size on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. We have succeeded in producing silicon lenses with a geometry suitable for a 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics. Most recently, we have done several experiments to find the fundamental limits that the anisotropic etch process placed on the etched surface roughness.
Ando, S; Sekine, S; Mita, M; Katsuo, S
1989-12-15
An architecture and the algorithms for matrix multiplication using optical flip-flops (OFFs) in optical processors are proposed based on residue arithmetic. The proposed system is capable of processing all elements of matrices in parallel utilizing the information retrieving ability of optical Fourier processors. The employment of OFFs enables bidirectional data flow leading to a simpler architecture and the burden of residue-to-decimal (or residue-to-binary) conversion to operation time can be largely reduced by processing all elements in parallel. The calculated characteristics of operation time suggest a promising use of the system in a real time 2-D linear transform.
Method of lightening radiation darkened optical elements
Reich, Frederich R.; Schwankoff, Albert R.
1980-01-01
A method of lightening a radiation-darkened optical element in wich visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals.
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun
2014-08-01
In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.
Inspection of wood density by spectrophotometry and a diffractive optical element based sensor
NASA Astrophysics Data System (ADS)
Palviainen, Jari; Silvennoinen, Raimo
2001-03-01
Correlation among gravimetric, spectrophotometric and radiographic data from dried wood samples of Scots pine (Pinus sylvestris L) was observed. A diffractive optical element (DOE) based sensor was applied to investigate density variations as well as optical anisotropy inside year rings of the wood samples. The correlation between bulk density of wood and spectrophotometric data (reflectance and transmittance) was investigated for the wavelength range 200-850 nm and the highest correlation was found at wavelengths from 800 to 850 nm. The correlation at this wavelength was smaller than the correlation between bulk density and radiography data. The DOE sensor was found to be capable of sensing anisotropy of the wood samples inside the year ring.
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
Global optimization method based on ray tracing to achieve optimum figure error compensation
NASA Astrophysics Data System (ADS)
Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin
2017-02-01
Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.
Diffraction-based optical sensor detection system for capture-restricted environments
NASA Astrophysics Data System (ADS)
Khandekar, Rahul M.; Nikulin, Vladimir V.
2008-04-01
The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.
(HEL MRI) 3D Meta Optics for High Energy Lasers
2016-09-13
based metal-oxide nano- hair structures for optical vortex generation," Opt. Express 23, 19056-19065 (2015) 15. Li, Yuan, Zeyu Zhang, Wenzhe Li, Jerome...Indumathi Raghu Srimathi, Aaron J. Pung, Yuan Li, Raymond C. Rumpf, and Eric G. Johnson, "Fabrication of metal-oxide nano- hairs for effective index...Grating Based Optical Nano- Hairs Using ALD Nano- Patterning Subwavelength gratings (SWGs) based artificial dielectric elements are used to obtain the
Space photovoltaic modules based on reflective optics
NASA Technical Reports Server (NTRS)
Andreev, V. M.; Larionov, V. R.; Rumyantsev, V. D.; Shvarts, M. Z.
1995-01-01
The conceptual design and experimental results for two types of space application concentrator photovoltaic modules, employing reflective optical elements, are presented. The first type is based on the use of compound parabolic concentrators, the second type is based on the use of line-focus parabolic troughs. Lightweight concentrators are formed with nickel foil coated silver with a diamond-like carbon layer protection. Secondary optical elements, including lenses and cones, are introduced for a better matching of concentrators and solar cells. Both types of modules are characterized by concentration ratios in the range 20x to 30x, depending on the chosen range of misorientation angles. The estimated specific parameters of these modules operating with single junction AlGaAs/GaAs solar cells are 240 W/sq m and 3 kg/sq m.
NASA Astrophysics Data System (ADS)
Pigarev, Aleksey V.; Bazarov, Timur O.; Fedorov, Vladimir V.; Ryabushkin, Oleg A.
2018-02-01
Most modern systems of the optical image registration are based on the matrices of photosensitive semiconductor heterostructures. However, measurement of radiation intensities up to several MW/cm2 -level using such detectors is a great challenge because semiconductor elements have low optical damage threshold. Reflecting or absorbing filters that can be used for attenuation of radiation intensity, as a rule, distort beam profile. Furthermore, semiconductor based devices have relatively narrow measurement wavelength bandwidth. We introduce a novel matrix method of optical image registration. This approach doesn't require any attenuation when measuring high radiation intensities. A sensitive element is the matrix made of thin transparent piezoelectric crystals that absorb just a small part of incident optical power. Each crystal element has its own set of intrinsic (acoustic) vibration modes. These modes can be exited due to the inverse piezoelectric effect when the external electric field is applied to the crystal sample providing that the field frequency corresponds to one of the vibration mode frequencies. Such piezoelectric resonances (PR) can be observed by measuring the radiofrequency response spectrum of the crystal placed between the capacitor plates. PR frequencies strongly depend on the crystal temperature. Temperature calibration of PR frequencies is conducted in the uniform heating conditions. In the case a crystal matrix is exposed to the laser radiation the incident power can be obtained separately for each crystal element by measuring its PR frequency kinetics providing that the optical absorption coefficient is known. The operating wavelength range of such sensor is restricted by the transmission bandwidth of the applied crystals. A plane matrix constituting of LiNbO3 crystals was assembled in order to demonstrate the possibility of application of the proposed approach. The crystal elements were placed between two electrodes forming a capacitor which was interconnected to the lock-in detection system. The radiofrequency response to the applied voltage from the generator was measured simultaneously for all elements.
System for diffusing light from an optical fiber or light guide
Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [
2008-06-10
A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.
Two-dimensional optical architectures for the receive mode of phased-array antennas.
Pastur, L; Tonda-Goldstein, S; Dolfi, D; Huignard, J P; Merlet, T; Maas, O; Chazelas, J
1999-05-10
We propose and experimentally demonstrate two optical architectures that process the receive mode of a p x p element phased-array antenna. The architectures are based on free-space propagation and switching of the channelized optical carriers of microwave signals. With the first architecture a direct transposition of the received signals in the optical domain is assumed. The second architecture is based on the optical generation and distribution of a microwave local oscillator matched in frequency and direction. Preliminary experimental results at microwave frequencies of approximately 3 GHz are presented.
Scanned Image Projection System Employing Intermediate Image Plane
NASA Technical Reports Server (NTRS)
DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)
2014-01-01
In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.
Design of a fiber-optic interrogator module for telecommunication satellites
NASA Astrophysics Data System (ADS)
Putzer, Philipp; Koch, Alexander W.; Plattner, Markus; Hurni, Andreas; Manhart, Markus
2017-11-01
In this paper we present the results of the radiation tests performed on the optical components of the fiber-optic interrogator module as a part of the Hybrid Sensor Bus (HSB) system. The HSB-system is developed in the frame of an ESAARTES program and will be verified as flight demonstrator onboard the German Heinrich Hertz satellite in 2016. The HSB system is based on a modular concept which includes sensor interrogation modules based on I2C electrical and fiber Bragg grating (FBG) fiber-optical sensor elements. Onboard fiber-optic sensing allows the implementation of novel control and monitoring methods. For read-out of multiple FBG sensors, a design based on a tunable laser diode as well as a design based on a spectrometer is considered. The expected and tested total ionizing dose (TID) applicable to the HSB system is in the range between 100 krad and 300 krad inside the satellite in the geostationary orbit over a life time of 15 years. We present radiation test results carried out on critical optical components to be used in the fiber-optic interrogation module. These components are a modulated grating Y-branch (MGY) tunable laser diode acting as light source for the tuning laser approach, the line detector of a spectrometer, photodetectors and the FBG sensors acting as sensor elements. A detailed literature inquiry of radiation effects on optical fibers and FBG sensors, is also included in the paper. The fiber-optic interrogator module implemented in the HSB system is based on the most suitable technology, which sustains the harsh environment in the geostationary orbit.
NASA Astrophysics Data System (ADS)
Busurin, V. I.; Brazhnikova, T. Yu; Korobkov, V. V.; Prokhorov, N. I.
1995-10-01
An analysis is made of a general basic configuration and of the transfer function of a fibre-optic transducer based on controlled coupling in a multilayer two-channel coaxial optical fibre. The influence of the structure parameters and of external factors on the errors of a sensitive element in such a transducer is considered. The results are given of an investigation of the characteristics of a number of transducers constructed in accordance with the basic configuration.
Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions
NASA Technical Reports Server (NTRS)
Moore, Gregory; Broduer, Steve (Technical Monitor)
2001-01-01
Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.
2004-05-12
Structural Engineering, La Jolla, CA 92093 14. ABSTRACT Tunable optical filters based on a Fabry - Perot element are a critical component in many...wavelength based fiber optic sensor systems. This report compares the performance of two fiber-pigtailed tunable optical filters, the fiber Fabry - Perot (FFP...both filters suggests that they can operate at frequencies up to 20 kHz and possibly as high as 100 kHz. 15. SUBJECT TERMS Tunable Fabry - Perot filters
Optical fiber sensors for life support applications
NASA Technical Reports Server (NTRS)
Lieberman, R. A.; Schmidlin, E. M.; Ferrell, D. J.; Syracuse, S. J.
1992-01-01
Preliminary experimental results on systems designed to demonstrate sensor operation in regenerative food production and crew air supply applications are presented. The systems use conventional fibers and sources in conjunction with custom wavelength division multiplexers in their optical signal processing sections and nonstandard porous optical fibers in the optical sensing elements. It is considered to be possible to create practical sensors for life-support system applications, and particularly, in regenerative food production environments, based on based on reversible sensors for oxygen, carbon monoxide, and humidity.
Application of holographic elements in displays and planar illuminators
NASA Astrophysics Data System (ADS)
Putilin, Andrew; Gustomiasov, Igor
2007-05-01
Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.
Development of microchannel plate x-ray optics
NASA Technical Reports Server (NTRS)
Kaaret, Philip; Chen, Andrew
1994-01-01
The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses to 30 A in the final lenses. A further factor of three improvement in surface quality is required for the production of efficient x-ray optics. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
2004-10-01
The human eye is a good model for the engineering of optical correlators. Three prominent intelligent functionalities in human vision could in the near future become realized by a new diffractive-optical hardware design of optical imaging sensors: (1) Illuminant-adaptive RGB-based color Vision, (2) Monocular 3D Vision based on RGB data processing, (3) Patchwise fourier-optical Object-Classification and Identification. The hardware design of the human eye has specific diffractive-optical elements (DOE's) in aperture and in image space and seems to execute the three jobs at -- or not far behind -- the loci of the images of objects.
Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping
2004-09-01
Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.
Interferometric architectures based All-Optical logic design methods and their implementations
NASA Astrophysics Data System (ADS)
Singh, Karamdeep; Kaur, Gurmeet
2015-06-01
All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.
Microsystem enabled photovoltaic modules and systems
Nielson, Gregory N; Sweatt, William C; Okandan, Murat
2015-05-12
A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.
Optical Manipulation along Optical Axis with Polarization Sensitive Meta-lens.
Markovich, Hen; Shishkin, Ivan; Hendler, Netta; Ginzburg, Pavel
2018-06-27
The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, where a precise control over mechanical path and stability is required. While conventional optical tweezers are based on bulky diffractive optical elements, developing compact integrable within a fluid cell trapping devices is highly demanded. Here, plasmonic polarization sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges to trap objects in lateral direction outside the depth of focus, bi-focal Fresnel meta-lens demonstrates the capability to manipulate a bead along 4 micrometers line. Additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled accurate mapping of optical potential via a particle tracking algorithm. Auxiliary micro- and nano- structures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including, transport, trapping and sorting, which are highly demanded in lab-on-a-chip applications and many others.
New generation all-silica based optical elements for high power laser systems
NASA Astrophysics Data System (ADS)
Tolenis, T.; GrinevičiÅ«tÄ--, L.; Melninkaitis, A.; Selskis, A.; Buzelis, R.; MažulÄ--, L.; Drazdys, R.
2017-08-01
Laser resistance of optical elements is one of the major topics in photonics. Various routes have been taken to improve optical coatings, including, but not limited by, materials engineering and optimisation of electric field distribution in multilayers. During the decades of research, it was found, that high band-gap materials, such as silica, are highly resistant to laser light. Unfortunately, only the production of anti-reflection coatings of all-silica materials are presented to this day. A novel route will be presented in materials engineering, capable to manufacture high reflection optical elements using only SiO2 material and GLancing Angle Deposition (GLAD) method. The technique involves the deposition of columnar structure and tailoring the refractive index of silica material throughout the coating thickness. A numerous analysis indicate the superior properties of GLAD coatings when compared with standard methods for Bragg mirrors production. Several groups of optical components are presented including anti-reflection coatings and Bragg mirrors. Structural and optical characterisation of the method have been performed and compared with standard methods. All researches indicate the possibility of new generation coatings for high power laser systems.
Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays.
Itoh, Yuta; Klinker, Gudrun
2015-04-01
A critical requirement for AR applications with Optical See-Through Head-Mounted Displays (OST-HMD) is to project 3D information correctly into the current viewpoint of the user - more particularly, according to the user's eye position. Recently-proposed interaction-free calibration methods [16], [17] automatically estimate this projection by tracking the user's eye position, thereby freeing users from tedious manual calibrations. However, the method is still prone to contain systematic calibration errors. Such errors stem from eye-/HMD-related factors and are not represented in the conventional eye-HMD model used for HMD calibration. This paper investigates one of these factors - the fact that optical elements of OST-HMDs distort incoming world-light rays before they reach the eye, just as corrective glasses do. Any OST-HMD requires an optical element to display a virtual screen. Each such optical element has different distortions. Since users see a distorted world through the element, ignoring this distortion degenerates the projection quality. We propose a light-field correction method, based on a machine learning technique, which compensates the world-scene distortion caused by OST-HMD optics. We demonstrate that our method reduces the systematic error and significantly increases the calibration accuracy of the interaction-free calibration.
Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong
2015-02-10
An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.
2009-08-31
Firstly we investigated the bend loss mechanism in a waveguide made using SU8 - a negative photosensitive polymer . Simulations were performed using...present demonstration, the polymer used was SU8 (Microchem Corp.), a negative photoresist. Patterning of the microdisks were achieved using both soft...Proposed All-optical flip flop which uses a passive microring resonator integrated with active elements. Also shown is the crossesction of the SU8
Joerg, Alexandre; Vignaux, Mael; Lumeau, Julien
2016-08-01
A new alternative and versatile method for the production of diffractive optical elements (DOEs) with up to four phase levels in AMTIR-1 (Ge33As12Se55) layers is demonstrated. The developed method proposes the use of the photosensitive properties of the layers and a specific in situ optical monitoring coupled with a reverse engineering algorithm to control the trigger points of the writing of the different diffractive patterns. Examples of various volume DOEs are presented.
Lee, S Y; Lee, K J
2001-04-01
To develop a personal optically stimulated luminescence (OSL) dosimetry system for mixed radiation fields using alpha-Al2O3:C, a discriminating badge filter system was designed by taking advantage of its optically stimulable properties and energy dependencies. This was done by designing a multi-element badge system for powder layered alpha-Al2O3:C material and an optical reader system based on high-intensity blue light-emitting diode (LED). The design of the multielement OSL dosimeter badge system developed allows the measurement of a personal dose equivalent value Hp(d) in mixed radiation fields of beta and gamma. Dosimetric properties of the personal OSL dosimeter badge system investigated here were the dose response, energy response and multi-readability. Based on the computational simulations and experiments of the proposed dosimeter design, it was demonstrated that a multi-element dosimeter system with an OSL technology based on alpha-Al2O3:C is suitable to obtain personal dose equivalent information in mixed radiation fields.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms
NASA Astrophysics Data System (ADS)
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-01
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.
Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei
2015-08-10
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.
Ultrafast optomechanical pulse picking
NASA Astrophysics Data System (ADS)
Lilienfein, Nikolai; Holzberger, Simon; Pupeza, Ioachim
2017-01-01
State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range. To this end, an isolated section of a beam path is moved in a system comprising mirrors rotating at a high angular velocity and stationary imaging mirrors, without affecting the propagation of the beam thereafter. We discuss three variants of the concept and exemplify practical parameters for its application in regenerative amplifiers and stack-and-dump enhancement cavities. We find that optomechanical pulse picking has the potential to achieve switching rates of up to a few tens of kilohertz while supporting pulse energies of up to several joules.
Optical eye simulator for laser dazzle events.
Coelho, João M P; Freitas, José; Williamson, Craig A
2016-03-20
An optical simulator of the human eye and its application to laser dazzle events are presented. The simulator combines optical design software (ZEMAX) with a scientific programming language (MATLAB) and allows the user to implement and analyze a dazzle scenario using practical, real-world parameters. Contrary to conventional analytical glare analysis, this work uses ray tracing and the scattering model and parameters for each optical element of the eye. The theoretical background of each such element is presented in relation to the model. The overall simulator's calibration, validation, and performance analysis are achieved by comparison with a simpler model based uponCIE disability glare data. Results demonstrate that this kind of advanced optical eye simulation can be used to represent laser dazzle and has the potential to extend the range of applicability of analytical models.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2012-03-12
A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.
3D two-photon lithographic microfabrication system
Kim, Daekeun [Cambridge, MA; So, Peter T. C. [Boston, MA
2011-03-08
An imaging system is provided that includes a optical pulse generator for providing an optical pulse having a spectral bandwidth and includes monochromatic waves having different wavelengths. A dispersive element receives a second optical pulse associated with the optical pulse and disperses the second optical pulse at different angles on the surface of the dispersive element depending on wavelength. One or more focal elements receives the dispersed second optical pulse produced on the dispersive element. The one or more focal element recombine the dispersed second optical pulse at a focal plane on a specimen where the width of the optical pulse is restored at the focal plane.
NASA Astrophysics Data System (ADS)
Shinya, A.; Ishihara, T.; Inoue, K.; Nozaki, K.; Kita, S.; Notomi, M.
2018-02-01
We propose an optical parallel adder based on a binary decision diagram that can calculate simply by propagating light through electrically controlled optical pass gates. The CARRY and CARRY operations are multiplexed in one circuit by a wavelength division multiplexing scheme to reduce the number of optical elements, and only a single gate constitutes the critical path for one digit calculation. The processing time reaches picoseconds per digit when we use a 100-μm-long optical path gates, which is ten times faster than a CMOS circuit.
Integrated Miniature Arrays of Optical Biomolecule Detectors
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh
2009-01-01
Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.
Adaptive Optical System for Retina Imaging Approaches Clinic Applications
NASA Astrophysics Data System (ADS)
Ling, N.; Zhang, Y.; Rao, X.; Wang, C.; Hu, Y.; Jiang, W.; Jiang, C.
We presented "A small adaptive optical system on table for human retinal imaging" at the 3rd Workshop on Adaptive Optics for Industry and Medicine. In this system, a 19 element small deformable mirror was used as wavefront correction element. High resolution images of photo receptors and capillaries of human retina were obtained. In recent two years, at the base of this system a new adaptive optical system for human retina imaging has been developed. The wavefront correction element is a newly developed 37 element deformable mirror. Some modifications have been adopted for easy operation. Experiments for different imaging wavelengths and axial positions were conducted. Mosaic pictures of photoreceptors and capillaries were obtained. 100 normal and abnormal eyes of different ages have been inspected.The first report in the world concerning the most detailed capillary distribution images cover ±3° by ± 3° field around the fovea has been demonstrated. Some preliminary very early diagnosis experiment has been tried in laboratory. This system is being planned to move to the hospital for clinic experiments.
Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; Giunta, Rachel Knudsen; Mitchell, Robert T.; McCormick, Frederick B.; Peterson, David W.; Rising, Merideth A.; Reber, Cathleen A.; Reysen, Bill H.
2005-06-14
A process is provided for aligning and connecting at least one optical fiber to at least one optoelectronic device so as to couple light between at least one optical fiber and at least one optoelectronic device. One embodiment of this process comprises the following steps: (1) holding at least one optical element close to at least one optoelectronic device, at least one optical element having at least a first end; (2) aligning at least one optical element with at least one optoelectronic device; (3) depositing a first non-opaque material on a first end of at least one optoelectronic device; and (4) bringing the first end of at least one optical element proximate to the first end of at least one optoelectronic device in such a manner that the first non-opaque material contacts the first end of at least one optoelectronic device and the first end of at least one optical element. The optical element may be an optical fiber, and the optoelectronic device may be a vertical cavity surface emitting laser. The first non-opaque material may be a UV optical adhesive that provides an optical path and mechanical stability. In another embodiment of the alignment process, the first end of at least one optical element is brought proximate to the first end of at least one optoelectronic device in such a manner that an interstitial space exists between the first end of at least one optoelectronic device and the first end of at least one optical element.
Fazal, Irfan; Yilmaz, Omer; Nuccio, Scott; Zhang, Bo; Willner, Alan E; Langrock, Carsten; Fejer, Martin M
2007-08-20
10 Gb/s non-return-to-zero (NRZ) on-off keyed (OOK) optical data packets are synchronized and time-multiplexed using a 26-ns tunable all-optical delay line. The delay element is based on wavelength conversion in periodically poled lithium niobate (PPLN) waveguides, inter-channel chromatic dispersion in dispersion compensating fiber (DCF) and intra-channel dispersion compensation with a chirped fiber Bragg grating (FBG). Delay reconfiguration time is measured to be less than 300 ps.
Holographic Optical Elements as Scanning Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.
2003-01-01
We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.
Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.
LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J
2014-06-02
We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.
Multi-element fiber technology for space-division multiplexing applications.
Jain, S; Rancaño, V J F; May-Smith, T C; Petropoulos, P; Sahu, J K; Richardson, D J
2014-02-24
A novel technological approach to space division multiplexing (SDM) based on the use of multiple individual fibers embedded in a common polymer coating material is presented, which is referred to as Multi-Element Fiber (MEF). The approach ensures ultralow crosstalk between spatial channels and allows for cost-effective ways of realizing multi-spatial channel amplification and signal multiplexing/demultiplexing. Both the fabrication and characterization of a passive 3-element MEF for data transmission, and an active 5-element erbium/ytterbium doped MEF for cladding-pumped optical amplification that uses one of the elements as an integrated pump delivery fiber is reported. Finally, both components were combined to emulate an optical fiber network comprising SDM transmission lines and amplifiers, and illustrate the compatibility of the approach with existing installed single-mode WDM fiber systems.
Micro-optics for microfluidic analytical applications.
Yang, Hui; Gijs, Martin A M
2018-02-19
This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.
Optical flip-flops in a polarization-encoded optical shadow-casting scheme.
Rizvi, R A; Zubairy, M S
1994-06-10
We propose a novel scheme that optically implements various types of binary sequential logic elements. This is based on a polarization-encoded optical shadow-casting system. The proposed system architecture is capable of implementing synchronous as well as asynchronous sequential circuits owing to the inherent structural flexibility of optical shadow casting. By employing the proposed system, we present the design and implementation schemes of a J-K flip-flop and clocked R-S and D latches. The main feature of these flip-flops is that the propagation of the signal from the input plane to the output (i.e., processing) and from the output plane to the source plane (i.e., feedback) is all optical. Consequently the efficiency of these elements in terms of speed is increased. The only electronic part in the system is the detection of the outputs and the switching of the source plane.
Babinet-Inverted Optical Yagi-Uda Antenna for Unidirectional Radiation to Free Space
NASA Astrophysics Data System (ADS)
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q.-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won
2014-06-01
Plasmonic nanoantennas are key elements in nanophotonics capable of directing radiation or enhancing the transition rate of a quantum emitter. Slot-type magnetic-dipole nanoantennas, which are complementary structures of typical electric-dipole-type antennas, have received little attention, leaving their antenna properties largely unexplored. Here we present a novel magnetic-dipole-fed multi-slot optical Yagi-Uda antenna. By engineering the relative phase of the interacting surface plasmon polaritons between the slot elements, we demonstrate that the optical antenna exhibits highly unidirectional radiation to free space. The unique features of the slot-based magnetic nanoantenna provide a new possibility of achieving integrated features such as energy transfer from one waveguide to another by working as a future optical via.
Sealed fiber-optic bundle feedthrough
Tanner, Carol E.
2002-01-01
A sealed fiber-optic bundle feedthrough by which a multitude of fiber-optic elements may be passed through an opening or port in a wall or structure separating two environments at different pressures or temperatures while maintaining the desired pressure or temperature in each environment. The feedthrough comprises a rigid sleeve of suitable material, a bundle of individual optical fibers, and a resin-based sealing material that bonds the individual optical fibers to each other and to the rigid sleeve.
NASA Technical Reports Server (NTRS)
Johnston, John D.; Parrish, Keith; Howard, Joseph M.; Mosier, Gary E.; McGinnis, Mark; Bluth, Marcel; Kim, Kevin; Ha, Hong Q.
2004-01-01
This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal- optical, often referred to as "STOP", analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. The paper begins an overview of multi-disciplinary engineering analysis, or integrated modeling, which is a critical element of the JWST mission. The STOP analysis process is then described. This process consists of the following steps: thermal analysis, structural analysis, and optical analysis. Temperatures predicted using geometric and thermal math models are mapped to the structural finite element model in order to predict thermally-induced deformations. Motions and deformations at optical surfaces are input to optical models and optical performance is predicted using either an optical ray trace or WFE estimation techniques based on prior ray traces or first order optics. Following the discussion of the analysis process, results based on models representing the design at the time of the System Requirements Review. In addition to baseline performance predictions, sensitivity studies are performed to assess modeling uncertainties. Of particular interest is the sensitivity of optical performance to uncertainties in temperature predictions and variations in metal properties. The paper concludes with a discussion of modeling uncertainty as it pertains to STOP analysis.
Resonant optical device with a microheater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; DeRose, Christopher
2017-04-04
A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.
Adams, Bernhard W.; Kim, Kwang -Je
2016-08-09
Here, x-ray free-electron-laser oscillators with nuclear-resonant cavity stabilization (NRS-XFELO) hold the promise for providing x-rays with unprecedented coherence properties that will enable interesting quantum-optical and metrological applications. Among these are atom optics with x-ray-based optical elements providing high momentum transfer, or a frequency standard far surpassing the best state-of the-art atomic clocks.
Methods of both destructive and non-destructive metrology of GRIN optical elements
NASA Astrophysics Data System (ADS)
Lindberg, G. P.; Deegan, J.; Benson, R.; Berger, A. J.; Linden, J. J.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.
2015-05-01
Gradient index (GRIN) optics have been an up-and-coming tool in the world of optics. By combining an index gradient with a surface curvature the number of optical components for a lens system can often be greatly reduced. Their use in the realm of infra-red is only becoming realized as new efforts are being developed to create materials that are suitable and mutually compatible for these optical components. The materials being pursued are the chalcogenide based glasses. Small changes in elemental concentrations in these glasses can have significant effects on physical and optical properties. The commonality between these glasses and their widely different optical properties make them prime candidates for GRIN applications. Traditional methods of metrology are complicated by the combination of the GRIN and the curvature of the element. We will present preliminary data on both destructive and non-destructive means of measuring the GRIN profile. Non-destructive methods may require inference of index through material properties, by careful measurement of the individual materials going into the GRIN optic, followed by, mapping measurements of the GRIN surface. Methods to be pursued are micro Raman mapping and CT scanning. By knowing the properties of the layers and accurately mapping the interfaces between the layers we should be able to back out the index profile of the GRIN optic and then confirm the profile by destructive means.
Chanda, Debashis; Abolghasemi, Ladan E; Haque, Moez; Ng, Mi Li; Herman, Peter R
2008-09-29
We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Gamma-Zeta stopband under liquid emersion.
Transfer matrix calculation for ion optical elements using real fields
NASA Astrophysics Data System (ADS)
Mishra, P. M.; Blaum, K.; George, S.; Grieser, M.; Wolf, A.
2018-03-01
With the increasing importance of ion storage rings and traps in low energy physics experiments, an efficient transport of ion species from the ion source area to the experimental setup becomes essential. Some available, powerful software packages rely on transfer matrix calculations in order to compute the ion trajectory through the ion-optical beamline systems of high complexity. With analytical approaches, so far the transfer matrices are documented only for a few ideal ion optical elements. Here we describe an approach (using beam tracking calculations) to determine the transfer matrix for any individual electrostatic or magnetostatic ion optical element. We verify the procedure by considering the well-known cases and then apply it to derive the transfer matrix of a 90-degree electrostatic quadrupole deflector including its realistic geometry and fringe fields. A transfer line consisting of a quadrupole deflector and a quadrupole doublet is considered, where the results from the standard first order transfer matrix based ion optical simulation program implementing the derived transfer matrix is compared with the real field beam tracking simulations.
Method of holding optical elements without deformation during their fabrication
Hed, P.P.
1997-04-29
An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element is disclosed. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool. 16 figs.
Method of holding optical elements without deformation during their fabrication
Hed, P. Paul
1997-01-01
An improved method for securing and removing an optical element to and from a blocking tool without causing deformation of the optical element. A lens tissue is placed on the top surface of the blocking tool. Dots of UV cement are applied to the lens tissue without any of the dots contacting each other. An optical element is placed on top of the blocking tool with the lens tissue sandwiched therebetween. The UV cement is then cured. After subsequent fabrication steps, the bonded blocking tool, lens tissue, and optical element are placed in a debonding solution to soften the UV cement. The optical element is then removed from the blocking tool.
Tyan, R C; Sun, P C; Scherer, A; Fainman, Y
1996-05-15
We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.
Photonic variable delay devices based on optical birefringence
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2005-01-01
Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics
NASA Astrophysics Data System (ADS)
Romero, Lenny A.; Millán, María. S.; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej
2015-01-01
The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed.
Design and experiment of spectrometer based on scanning micro-grating integrating with angle sensor
NASA Astrophysics Data System (ADS)
Biao, Luo; Wen, Zhi-yu
2014-01-01
A compact, low cost, high speed, non-destructive testing NIR (near infrared) spectrometer optical system based on MOEMS grating device is developed. The MOEMS grating works as the prismatic element and wavelength scanning element in our optical system. The MOEMS grating enables the design of compact grating spectrometers capable of acquiring full spectra using a single detector element. This MOEMS grating is driven by electromagnetic force and integrated with angle sensor which used to monitored deflection angle while the grating working. Comparing with the traditional spectral system, there is a new structure with a single detector and worked at high frequency. With the characteristics of MOEMS grating, the structure of the spectrometer system is proposed. After calculating the parameters of the optical path, ZEMAX optical software is used to simulate the system. According the ZEMAX output file of the 3D model, the prototype is designed by SolidWorks rapidly, fabricated. Designed for a wavelength range between 800 nm and 1500 nm, the spectrometer optical system features a spectral resolution of 16 nm with the volume of 97 mm × 81.7 mm × 81 mm. For the purpose of reduce modulated effect of sinusoidal rotation, spectral intensity of the different wavelength should be compensated by software method in the further. The system satisfies the demand of NIR micro-spectrometer with a single detector.
Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration
NASA Astrophysics Data System (ADS)
Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty
2018-03-01
An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.
Nanoassembled dynamic optical waveguides and sensors based on zeolite L nanocontainers
NASA Astrophysics Data System (ADS)
Barroso, Álvaro; Dieckmann, Katrin; Alpmann, Christina; Buscher, Tim; Studer, Armido; Denz, Cornelia
2015-03-01
Although optical functional devices as waveguides and sensors are of utmost importance for metrology on the nano scale, the micro-and nano-assembly by optical means of functional materials to create such optical elements has yet not been considered. In the last years, an elegant strategy based on holographic optical tweezers (HOT) has been developed to design and fabricate permanent and dynamic three-dimensional micro- and nanostructures based on functional nanocontainers as building blocks. Nanocontainers that exhibit stable and ordered voids to hierarchically organize guest materials are especially attractive. Zeolite L are a type of porous micro-sized crystals which features a high number of strictly one-dimensional, parallel aligned nanochannels. They are highly interesting as building blocks of functional nano-and microsystems due to their potential as nanocontainers to accommodate various different guest molecules and to assemble them in specific configurations. For instance, based on zeolite L crystals, microscopic polarization sensors and chains of several microcrystals for hierarchical supramolecular organization have been realized. Here, we demonstrate the ability of nanocontainers in general, and zeolite L crystals in particular to represent the basic constituent of optical functional microsystems. We show that the capability of HOT to manipulate multitude of non-spherical microparticles in three dimensions can be exploited for the investigation of zeolite L nanocontainers as dynamic optical waveguides. Moreover, we implement as additional elements dye-loaded zeolite L to sense the guiding features of these novel waveguides with high spatial precision and microspheres to enhance the light coupling into the zeolite L waveguides. With this elaborated approach of using nanocontainers as tailored building blocks for functional optical systems a new era of bricking optical components in a lego-like style becomes feasible.
Strain gauge using Si-based optical microring resonator.
Lei, Longhai; Tang, Jun; Zhang, Tianen; Guo, Hao; Li, Yanna; Xie, Chengfeng; Shang, Chenglong; Bi, Yu; Zhang, Wendong; Xue, Chenyang; Liu, Jun
2014-12-20
This paper presents a strain gauge using the mechanical-optical coupling method. The Si-based optical microring resonator was employed as the sensing element, which was embedded on the microcantilevers. The experimental results show that applying external strain triggers a clear redshift of the output resonant spectrum of the structure. The sensitivity of 93.72 pm/MPa was achieved, which also was verified using theoretical simulations. This paper provides what we believe is a new method to develop micro-opto-electromechanical system (MOEMS) sensors.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Petrucco, Louis Jacob (Inventor); Daum, Wolfgang (Inventor)
2005-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
2003-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Fiber optic sensors for gas turbine control
NASA Technical Reports Server (NTRS)
Shu, Emily Yixie (Inventor); Brown, Dale Marius (Inventor); Petrucco, Louis Jacob (Inventor); Lovett, Jeffery Allan (Inventor); Daum, Wolfgang (Inventor); Dunki-Jacobs, Robert John (Inventor)
1999-01-01
An apparatus for detecting flashback occurrences in a premixed combustor system having at least one fuel nozzle includes at least one photodetector and at least one fiber optic element coupled between the at least one photodetector and a test region of the combustor system wherein a respective flame of the fuel nozzle is not present under normal operating conditions. A signal processor monitors a signal of the photodetector. The fiber optic element can include at least one optical fiber positioned within a protective tube. The fiber optic element can include two fiber optic elements coupled to the test region. The optical fiber and the protective tube can have lengths sufficient to situate the photodetector outside of an engine compartment. A plurality of fuel nozzles and a plurality of fiber optic elements can be used with the fiber optic elements being coupled to respective fuel nozzles and either to the photodetector or, wherein a plurality of photodetectors are used, to respective ones of the plurality of photodetectors. The signal processor can include a digital signal processor.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-11-09
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.
Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique
Khan, Md. Rajibur Rahaman; Kang, Shin-Won
2016-01-01
In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865
A hybrid silicon membrane spatial light modulator for optical information processing
NASA Technical Reports Server (NTRS)
Pape, D. R.; Hornbeck, L. J.
1984-01-01
A new two dimensional, fast, analog, electrically addressable, silicon based membrane spatial light modulator (SLM) was developed for optical information processing applications. Coherent light reflected from the mirror elements is phase modulated producing an optical Fourier transform of an analog signal input to the device. The DMD architecture and operating parameters related to this application are presented. A model is developed that describes the optical Fourier transform properties of the DMD.
NASA Astrophysics Data System (ADS)
Volosovitch, Anatoly E.; Konopaltseva, Lyudmila I.
1995-11-01
Well-known methods of optical diagnostics, database for their storage, as well as expert system (ES) for their development are analyzed. A computer informational system is developed, which is based on a hybrid ES built on modern DBMS. As an example, the structural and constructive circuits of the hybrid integrated-optical devices based on laser diodes, diffusion waveguides, geodetic lenses, package-free linear photodiode arrays, etc. are presented. The features of methods and test results as well as the advanced directions of works related to the hybrid integrated-optical devices in the field of metrology are discussed.
Serum protein measurement using a tapered fluorescent fibre-optic evanescent wave-based biosensor
NASA Astrophysics Data System (ADS)
Preejith, P. V.; Lim, C. S.; Chia, T. F.
2006-12-01
A novel method to measure the total serum protein concentration is described in this paper. The method is based on the principles of fibre-optic evanescent wave spectroscopy. The biosensor applies a fluorescent dye-immobilized porous glass coating on a multi-mode optical fibre. The evanescent wave's intensity at the fibre-optic core-cladding interface is used to monitor the protein-induced changes in the sensor element. The sensor offers a rapid, single-step method for quantifying protein concentrations without destroying the sample. This unique sensing method presents a sensitive and accurate platform for the quantification of protein.
Thermal stress prediction in mirror and multilayer coatings.
Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel
2015-03-01
Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.
NASA Astrophysics Data System (ADS)
Su, Ping; Song, Yuming; Ma, Jianshe
2018-01-01
The DMD (Digital Micro-mirror Device) has the advantages of high refresh rate and high diffraction efficiency, and these make it become an ideal loader of multiple modes illumination. DOEs (Diffractive Optical Element) have the advantages of high degree of freedom, light weight, easy to copy, low cost etc., and can be used to reduce the weight, complexity, cost of optical system. A novel automotive headlamp system using DMD as the light distribution element and a DOE as the light field modulation device is proposed in this paper. The pure phase DOE is obtained by the GS algorithm using Rayleigh-Sommerfeld diffraction integral model. Based on the standard automotive headlamp light intensity distribution in the target plane, the amplitude distribution of DMD is obtained by numerical simulation, and the grayscale diagram loaded on the DMD can be obtained accordingly. Finally, according to simulation result, the light intensity distribution in the target plane is proportional to the national standard, hence verifies the validity of the novel system. The novel illumination system proposed in this paper provides a reliable hardware platform for the intelligent headlamps.
Finite element model for MOI applications using A-V formulation
NASA Astrophysics Data System (ADS)
Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.
2001-04-01
Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.
Passive thermo-optic feedback for robust athermal photonic systems
Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.
2015-06-23
Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.
NASA Astrophysics Data System (ADS)
Ambadiyil, Sajan; Prasannan, G.; Sathyan, Jithesh; Ajith Kumar, P. T.
2005-01-01
Holographic Optical Elements (HOEs) are gaining much importance and finding newer and better applications in areas of optical fiber communication and optical information processing systems. In contrast to conventional HOEs, optical communication and information systems require smaller and efficient elements of desired characteristics and transfer functions. Such Micro Holographic Optical Elements (MHOEs) can either be an HOE, recorded with two narrow beams of laser light or a segment cut from a larger HOE (SHOEs), and recorded in the conventional manner. In this study, micro holographic couplers, having specific focusing and diffraction characteristics were recorded in different holographic recording media such as silver halide and dichromated gelatin. Wavelength response of the elements was tested at 633 nm and 442 nm. Variation in diffraction efficiency/coupling factor, and insertion loss of the elements were studied. The paper reports in detail about the above results and related design considerations.
Optically intraconnected computer employing dynamically reconfigurable holographic optical element
NASA Technical Reports Server (NTRS)
Bergman, Larry A. (Inventor)
1992-01-01
An optically intraconnected computer and a reconfigurable holographic optical element employed therein. The basic computer comprises a memory for holding a sequence of instructions to be executed; logic for accessing the instructions in sequence; logic for determining for each the instruction the function to be performed and the effective address thereof; a plurality of individual elements on a common support substrate optimized to perform certain logical sequences employed in executing the instructions; and, element selection logic connected to the logic determining the function to be performed for each the instruction for determining the class of each function and for causing the instruction to be executed by those the elements which perform those associated the logical sequences affecting the instruction execution in an optimum manner. In the optically intraconnected version, the element selection logic is adapted for transmitting and switching signals to the elements optically.
NASA Technical Reports Server (NTRS)
Meyer, Jay L. (Inventor); Messick, Glenn C. (Inventor); Nardell, Carl A. (Inventor); Hendlin, Martin J. (Inventor)
2011-01-01
A spherical mounting assembly for mounting an optical element allows for rotational motion of an optical surface of the optical element only. In that regard, an optical surface of the optical element does not translate in any of the three perpendicular translational axes. More importantly, the assembly provides adjustment that may be independently controlled for each of the three mutually perpendicular rotational axes.
High-speed optical phase-shifting apparatus
Zortman, William A.
2016-11-08
An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.
Telescope with a wide field of view internal optical scanner
NASA Technical Reports Server (NTRS)
Zheng, Yunhui (Inventor); Degnan, III, John James (Inventor)
2012-01-01
A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.
Sampson, David D.; Kennedy, Brendan F.
2017-01-01
High-resolution tactile imaging, superior to the sense of touch, has potential for future biomedical applications such as robotic surgery. In this paper, we propose a tactile imaging method, termed computational optical palpation, based on measuring the change in thickness of a thin, compliant layer with optical coherence tomography and calculating tactile stress using finite-element analysis. We demonstrate our method on test targets and on freshly excised human breast fibroadenoma, demonstrating a resolution of up to 15–25 µm and a field of view of up to 7 mm. Our method is open source and readily adaptable to other imaging modalities, such as ultrasonography and confocal microscopy. PMID:28250098
Method and apparatus of wide-angle optical beamsteering from a nanoantenna phased array
Davids, Paul; DeRose, Christopher; Rakich, Peter Thomas
2015-08-11
An optical beam-steering apparatus is provided. The apparatus includes one or more optical waveguides and at least one row of metallic nanoantenna elements overlying and electromagnetically coupled to a respective waveguide. In each such row, individual nanoantenna elements are spaced apart along an optical propagation axis of the waveguide so that there is an optical propagation phase delay between successive pairs of nanoantenna elements along the row. The apparatus also includes a respective single electric heating element in thermal contact with each of the waveguides. Each heating element is arranged to heat, substantially uniformly, at least that portion of its waveguide that directly underlies the corresponding row of nanoantenna elements.
NASA Astrophysics Data System (ADS)
Tsarev, Andrei V.
2007-08-01
A new type of optical waveguides in silicon-on-insulator nanostructures is proposed and studied. Their optical properties are simulated by the beam propagation method and discussed. A new design in the form of heterogeneous waveguide structures is based on the production of additionally heavily doped p+-regions on the sides of a multimode stripe waveguide (the silicon core cross section is ~200 nm × 16 μm). Such doping provides the 'single-mode' behaviour of the heterogeneous waveguide due to the decrease in the optical losses for the fundamental mode and increase in losses for higher-order modes. Single-mode heterogeneous waveguides can be used as base waveguides in photonic and integrated optical elements.
Micro-optics technology and sensor systems applications
NASA Technical Reports Server (NTRS)
Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.
1993-01-01
The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.
McLeod, Stephen D.
2006-01-01
Purpose To design and develop an accommodating intraocular lens (IOL) for endocapsular fixation with extended accommodative range that can be adapted to current standard extracapsular phacoemulsification technique. Methods Ray tracing analysis and lens design; finite element modeling of biomechanical properties; cadaver eye implantation; initial clinical evaluation. Results Ray tracing analysis indicated that a dual-optic design with a high plus-power front optic coupled to an optically compensatory minus posterior optic produced greater change in conjugation power of the eye compared to that produced by axial movement of a single-optic IOL, and that magnification effects were unlikely to account for improved near vision. Finite element modeling indicated that the two optics can be linked by spring-loaded haptics that allow anterior and posterior axial displacement of the front optic in response to changes in ciliary body tone and capsular tension. A dual-optic single-piece foldable silicone lens was constructed based on these principles. Subsequent initial clinical evaluation in 24 human eyes after phacoemulsification for cataract indicated mean 3.22 diopters of accommodation (range, 1 to 5 D) based on defocus curve measurement. Accommodative amplitude evaluation at 1- and 6-month follow-up in all eyes indicated that the accommodative range was maintained and that the lens was well tolerated. Conclusions A dual-optic design increases the accommodative effect of axial optic displacement, with minimal magnification effect. Initial clinical trials suggest that IOLs designed on this principle might provide true pseudophakic accommodation following cataract extraction and lens implantation. PMID:17471355
Bi-stable optical element actuator device
Holdener, Fred R.; Boyd, Robert D.
2002-01-01
The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.
Adaptive optics images restoration based on frame selection and multi-framd blind deconvolution
NASA Astrophysics Data System (ADS)
Tian, Y.; Rao, C. H.; Wei, K.
2008-10-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulent due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frame blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are picked out by frame selection technique is deconvolved. There is no priori knowledge except the positive constraint. The method has been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system in Yunnan Observatory. The results showed that the method can effectively improve the images partially corrected by adaptive optics.
Optical fiber voltage sensors for broad temperature ranges
NASA Technical Reports Server (NTRS)
Rose, A. H.; Day, G. W.
1992-01-01
We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.
Sirepo: a web-based interface for physical optics simulations - its deployment and use at NSLS-II
NASA Astrophysics Data System (ADS)
Rakitin, Maksim S.; Chubar, Oleg; Moeller, Paul; Nagler, Robert; Bruhwiler, David L.
2017-08-01
"Sirepo" is an open source cloud-based software framework which provides a convenient and user-friendly web-interface for scientific codes such as Synchrotron Radiation Workshop (SRW) running on a local machine or a remote server side. SRW is a physical optics code allowing to simulate the synchrotron radiation from various insertion devices (undulators and wigglers) and bending magnets. Another feature of SRW is a support of high-accuracy simulation of fully- and partially-coherent radiation propagation through X-ray optical beamlines, facilitated by so-called "Virtual Beamline" module. In the present work, we will discuss the most important features of Sirepo/SRW interface with emphasis on their use for commissioning of beamlines and simulation of experiments at National Synchrotron Light Source II. In particular, "Flux through Finite Aperture" and "Intensity" reports, visualizing results of the corresponding SRW calculations, are being routinely used for commissioning of undulators and X-ray optical elements. Material properties of crystals, compound refractive lenses, and some other optical elements can be dynamically obtained for the desired photon energy from the databases publicly available at Argonne National Lab and at Lawrence Berkeley Lab. In collaboration with the Center for Functional Nanomaterials (CFN) of BNL, a library of samples for coherent scattering experiments has been implemented in SRW and the corresponding Sample optical element was added to Sirepo. Electron microscope images of artificially created nanoscale samples can be uploaded to Sirepo to simulate scattering patterns created by synchrotron radiation in different experimental schemes that can be realized at beamlines.
A finite element beam propagation method for simulation of liquid crystal devices.
Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal
2009-06-22
An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.
Microcomputer-based Peltier thermostat for precision optical radiation measurements
NASA Astrophysics Data System (ADS)
Zhu, Xiaosong; Krochmann, Eike; Chen, Jiashu
1992-03-01
We have developed a microcomputer-based thermostat for a light measuring head in precision optical radiation measurements. This thermostat consists of a single-chip microcomputer, a digital-to-analog converter, a liquid crystal display, a power operational amplifier, and a Peltier element (thermoelectric cooler). The Peltier element keeps the temperature of the photometer head at 20±0.1 °C in the ambient temperature range from -20 to 60 °C. A control algorithm which combines the ``Bang-Bang'' mode and proportional-plus-integral-plus-derivative mode is used to achieve fast and smooth thermostatic performance. This thermostat is effective, inexpensive, and easy to adjust. Several applications of the Peltier thermostat are mentioned.
Yoo, Seunghwan; Song, Ho Young; Lee, Junghoon; Jang, Cheol-Yong; Jeong, Hakgeun
2012-11-20
In this article, we introduce a simple fabrication method for SiO(2)-based thin diffractive optical elements (DOEs) that uses the conventional processes widely used in the semiconductor industry. Photolithography and an inductively coupled plasma etching technique are easy and cost-effective methods for fabricating subnanometer-scale and thin DOEs with a refractive index of 1.45, based on SiO(2). After fabricating DOEs, we confirmed the shape of the output light emitted from the laser diode light source and applied to a light-emitting diode (LED) module. The results represent a new approach to mass-produce DOEs and realize a high-brightness LED module.
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.
Duncan, Paul G.
2002-01-01
Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.
Thermal, Structural, and Optical Analysis of a Balloon-Based Imaging System
NASA Astrophysics Data System (ADS)
Borden, Michael; Lewis, Derek; Ochoa, Hared; Jones-Wilson, Laura; Susca, Sara; Porter, Michael; Massey, Richard; Clark, Paul; Netterfield, Barth
2017-03-01
The Subarcsecond Telescope And BaLloon Experiment, STABLE, is the fine stage of a guidance system for a high-altitude ballooning platform designed to demonstrate subarcsecond pointing stability over one minute using relatively dim guide stars in the visible spectrum. The STABLE system uses an attitude rate sensor and the motion of the guide star on a detector to control a Fast Steering Mirror to stabilize the image. The characteristics of the thermal-optical-mechanical elements in the system directly affect the quality of the point-spread function of the guide star on the detector, so a series of thermal, structural, and optical models were built to simulate system performance and ultimately inform the final pointing stability predictions. This paper describes the modeling techniques employed in each of these subsystems. The results from those models are discussed in detail, highlighting the development of the worst-case cold and hot cases, the optical metrics generated from the finite element model, and the expected STABLE residual wavefront error and decenter. Finally, the paper concludes with the predicted sensitivities in the STABLE system, which show that thermal deadbanding, structural pre-loading, and self-deflection under different loading conditions, and the speed of individual optical elements were particularly important to the resulting STABLE optical performance.
Holographic Gratings for Optical Processing
NASA Technical Reports Server (NTRS)
Kukhtarev, Nickolai
2002-01-01
Investigation of astronomical objects and tracking of man-made space objects lead to generation of huge amount of information for optical processing. Traditional big-size optical elements (such as optical telescopes) have a tendency for increasing aperture size in order to improve sensitivity. This tendency leads to increasing of weight and costs of optical systems and stimulate search for the new, more adequate technologies. One approach to meet these demands is based on developing of holographic optical elements using new polymeric materials. We have investigated possibility to use new material PQ-PMMA (phenantrenequinone-doped PMMA (Polymethyl Methacrylate)) for fabrication of highly selective optical filters and fast spatial-temporal light modulators. This material was originally developed in Russia and later was tested in CalTech as a candidate material for optical storage. Our theoretical investigation predicts the possibility of realization of fast spatial and temporal light modulation, using volume reflection-type spectral filter. We have developed also model of holographic-grating recording in PQ-PMMA material, based on diffusional amplification. This mechanism of recording allow to receive high diffraction efficiency during recording of reflection-type volume holographic grating (holographic mirror). We also investigated recording of dynamic gratings in the photorefractive crystals LiNbO3 (LN) for space-based spectroscopy and for adaptive correction of aberrations in the telescope's mirrors. We have shown, that specific 'photogalvanic' mechanism of holographic grating recording in LN allow to realize recording of blazed gratings for volume and surface gratings. Possible applications of dynamic gratings in LN for amplification of images, transmitted through an imaging fiber guide was also demonstrated.
Tool Releases Optical Elements From Spring Brackets
NASA Technical Reports Server (NTRS)
Gum, J. S.
1984-01-01
Threaded hooks retract bracket arms holding element. Tool uses three hooks with threaded shanks mounted in ring-shaped holder to pull on tabs to release optical element. One person can easily insert or remove optical element (such as prism or lens) from spring holder or bracket with minimal risk of damage.
Finite-element modelling of multilayer X-ray optics.
Cheng, Xianchao; Zhang, Lin
2017-05-01
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
Finite-element modelling of multilayer X-ray optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xianchao; Zhang, Lin
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical sizemore » 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6), which causes low solution accuracy; and the number of elements is still very large (10 6). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlov, S V; Trofimov, N S; Chekhlova, T K
2014-07-31
A possibility of designing optical waveguide devices based on sol – gel SiO{sub 2} – TiO{sub 2} films using the temperature dependence of the effective refractive index is shown. The dependences of the device characteristics on the parameters of the film and opticalsystem elements are analysed. The operation of a temperature recorder and a temperature limiter with a resolution of 0.6 K mm{sup -1} is demonstrated. The film and output-prism parameters are optimised. (fibreoptic and nonlinear-optic devices)
Free-space wavelength-multiplexed optical scanner.
Yaqoob, Z; Rizvi, A A; Riza, N A
2001-12-10
A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.
NASA Astrophysics Data System (ADS)
Deng, Xuegong; Chen, Ray T.
2001-05-01
We report a generic method to construct 3D wavelength routers by adapting a novel design for multi-optical wavelength interconnects (MOWI's). Optical wavelength- selective (WS) interconnections are realized by resorting to layered diffractive phase elements. Besides, we simultaneously carry out several other integrated operations on the incident beams according to their wavelengths. We demonstrate an 4 X 4 inline 3D WS optical crossconnect and a 1D 1 X 8 WS perfect shuffler. The devices are well feasible for mass production by using current standard microelectronics technologies. It is plausible that the proposed WS MOWI scenario will find critical applications in module-to-module and board-to-board optical interconnect systems, as well as in other devices for short-link multi- wavelength networks that would benefit from function integration.
Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.
2002-01-01
As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.
A developmental perspective on high power laser facility technology for ICF
NASA Astrophysics Data System (ADS)
Zhu, Jianqiang; Sun, Mingying; Liu, Chong; Guo, Yajing; Yang, Lin; Yang, Pengqian; Zhang, Yanli; Wang, Bingyan; Liu, Cheng; Li, Yangshuai; Ren, Zhiyuan; Liu, Dean; Liu, Zhigang; Jiao, Zhaoyang; Ren, Lei; Zhang, Guowen; Fan, Quantang; Feng, Tao; Lin, Zunqi
2018-02-01
The latest progress on high power laser facilities in NLHPLP was reported. Based on a high power laser prototype, damage behavior of 3ω optics was experimentally tested, and the key influencing factors contributed to laser-induced damage in optics were deeply analyzed. The latest experimental results of advanced precision measurement for optical quality applied in the high power laser facility were introduced. At last, based on the accumulated works of 3ω elements damage behavior status in our laboratory, beam expanding scheme was presented to increase the total maximum output 3ω energy properly and decrease the laser induced damage risking of ω optics simultaneously.
An optical microsystem based on vertical silicon-air Bragg mirror for liquid substances monitoring
NASA Astrophysics Data System (ADS)
De Stefano, Luca; Rendina, Ivo; Rea, Ilaria; Rotiroti, Lucia; De Tommasi, Edoardo; Barillaro, Giuseppe
2007-05-01
In this work, an integrated optical microsystems for the continuous detection of flammable liquids has been fabricated and characterized. The proposed system is composed of a the transducer element, which is a vertical silicon/air Bragg mirror fabricated by silicon electrochemical micromachining, sealed with a cover glass anodically bonded on its top. The device has been optically characterized in presence of liquid substances of environmental interest, such as ethanol and isopropanol. The preliminary experimental results are in good agreement with the theoretical calculations and show the possibility to use the device as an optical sensor based on the change of its reflectivity spectrum.
[Optical-fiber Fourier transform spectrometer].
Liu, Yong; Li, Bao-sheng; Liu, Yan; Zhai, Yu-feng; Wang, An
2006-10-01
A novel Fourier transform spectrum analyzer based on a single mode fiber Mach-Zehnder interferometer is reported. An optical fiber Fourier transform spectrometer, with bulk optics components replaced by fiber optical components and with the moving mirror replaced by a piezoelectric element fiber stretcher was constructed. The output spectrum of a LD below threshold was measured. Experiment result agrees with that by using grating spectrum analyzer, showing the feasibility of the optic fiber Fourier transform spectrometer for practical spectrum measurement. Spectrum resolution -7 cm(-1) was obtained in our experiment. The resolution can be further improved by increasing the maximum optical path difference.
Comparison of primary optics in amonix CPV arrays
NASA Astrophysics Data System (ADS)
Nayak, Aditya; Kinsey, Geoffrey S.; Liu, Mingguo; Bagienski, William; Garboushian, Vahan
2012-10-01
The Amonix CPV system utilizes an acrylic Fresnel lens Primary Optical Element (POE) and a reflective Secondary Optical Element (SOE). Improvements in the optical design have contributed to more than 10% increase in rated power last year. In order to further optimize the optical power path, Amonix is looking at various trade-offs in optics, including, concentration, optical materials, reliability, and cost. A comparison of optical materials used for manufacturing the primary optical element and optical design trade off's used to maximize power output will be presented. Optimization of the power path has led to the demonstration of a module lens-area efficiency of 35% in outdoor testing at Amonix.
Smart and precise alignment of optical systems
NASA Astrophysics Data System (ADS)
Langehanenberg, Patrik; Heinisch, Josef; Stickler, Daniel
2013-09-01
For the assembly of any kind of optical systems the precise centration of every single element is of particular importance. Classically the precise alignment of optical components is based on the precise centering of all components to an external axis (usually a high-precision rotary spindle axis). Main drawback of this timeconsuming process is that it is significantly sensitive to misalignments of the reference (e.g. the housing) axis. In order to facilitate process in this contribution we present a novel alignment strategy for the TRIOPTICS OptiCentric® instrument family that directly aligns two elements with respect to each other by measuring the first element's axis and using this axis as alignment reference without the detour of considering an external reference. According to the optical design any axis in the system can be chosen as target axis. In case of the alignment to a barrel this axis is measured by using a distance sensor (e.g., the classically used dial indicator). Instead of fine alignment the obtained data is used for the calculation of its orientation within the setup. Alternatively, the axis of an optical element (single lens or group of lenses) whose orientation is measured with the standard OptiCentric MultiLens concept can be used as a reference. In the instrument's software the decentering of the adjusting element to the calculated axis is displayed in realtime and indicated by a target mark that can be used for the manual alignment. In addition, the obtained information can also be applied for active and fully automated alignment of lens assemblies with the help of motorized actuators.
[Application of spectral optical coherent tomography (SOCT) in ophthalmology].
Bieganowski, Lech; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kałuzny, Jakub J
2004-01-01
The article describes spectral optical coherent tomography (SOCT) constructed by Medical Physics Group, Faculty of Physics, Astronomy and Informatics at Nicholas Copernicus University in Toruń (Poland). It presents the physical bases for the functioning of the constructed device and includes pictures of optical sections of various elements of the eyeball: an optic disc and the region of central fovea, a cornea and angle structures (trabecular meshwork). The article also discusses potential application of SOCT in ophthalmic diagnosis of anterior and posterior segments of the eye.
NASA Astrophysics Data System (ADS)
Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian
2015-02-01
In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.
Mechery, Shelly John [Mississippi State, MS; Singh, Jagdish P [Starkville, MS
2007-07-03
A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.
Hermetic Glass-To-Metal Seal For Instrumentation Window
NASA Technical Reports Server (NTRS)
Hill, Arthur J.
1992-01-01
Proposed mounting scheme for optical element of instrumentation window in pressure vessel ensures truly hermetic seal while minimizing transmission of stress to optical element. Brazed metal seal superior to conventional gaskets of elastomer, carbon, asbestos, or other material compressed between optical element and wall of vessel. Concentric brazed joints in proposed seal bond metal ring to wall of vessel and to optical element. U-shaped cross section allows ring to flex under pressure.
Coupling characteristics of the spun optical fiber with triple stress elements
NASA Astrophysics Data System (ADS)
Ji, Minning; Shang, Fengtao; Chen, Dandan
2018-06-01
An empirical formula related to the stress field distribution in the optical fiber with triple stress elements is proposed and proved. The possible intercoupling between the fundamental modes and the higher order modes is demonstrated. The transmission property of the spun optical fiber with triple stress elements is analyzed. The experimental data from a sample of the spun optical fiber with triple stress elements confirm the theoretical results very well.
Optoelectronics of inverted type-I CdS/CdSe core/crown quantum ring
NASA Astrophysics Data System (ADS)
Bose, Sumanta; Fan, Weijun; Zhang, Dao Hua
2017-10-01
Inverted type-I heterostructure core/crown quantum rings (QRs) are quantum-efficient luminophores, whose spectral characteristics are highly tunable. Here, we study the optoelectronic properties of type-I core/crown CdS/CdSe QRs in the zincblende phase—over contrasting lateral size and crown width. For this, we inspect their strain profiles, transition energies, transition matrix elements, spatial charge densities, electronic bandstructures, band-mixing probabilities, optical gain spectra, maximum optical gains, and differential optical gains. Our framework uses an effective-mass envelope function theory based on the 8-band k ṡ p method employing the valence force field model for calculating the atomic strain distributions. The gain calculations are based on the density-matrix equation and take into consideration the excitonic effects with intraband scattering. Variations in the QR lateral size and relative widths of core and crown (ergo the composition) affect their energy levels, band-mixing probabilities, optical transition matrix elements, emission wavelengths/intensities, etc. The optical gain of QRs is also strongly dimension and composition dependent with further dependency on the injection carrier density causing the band-filling effect. They also affect the maximum and differential gain at varying dimensions and compositions.
Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging
NASA Technical Reports Server (NTRS)
Olczak, Eugene G (Inventor)
2011-01-01
An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.
Two position optical element actuator device
Holdener, Fred R.; Boyd, Robert D.
2002-01-01
The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.
Signal digitizing system and method based on amplitude-to-time optical mapping
Chou, Jason; Bennett, Corey V; Hernandez, Vince
2015-01-13
A signal digitizing system and method based on analog-to-time optical mapping, optically maps amplitude information of an analog signal of interest first into wavelength information using an amplitude tunable filter (ATF) to impress spectral changes induced by the amplitude of the analog signal onto a carrier signal, i.e. a train of optical pulses, and next from wavelength information to temporal information using a dispersive element so that temporal information representing the amplitude information is encoded in the time domain in the carrier signal. Optical-to-electrical conversion of the optical pulses into voltage waveforms and subsequently digitizing the voltage waveforms into a digital image enables the temporal information to be resolved and quantized in the time domain. The digital image may them be digital signal processed to digitally reconstruct the analog signal based on the temporal information with high fidelity.
HUMAN EYE OPTICS: Determination of positions of optical elements of the human eye
NASA Astrophysics Data System (ADS)
Galetskii, S. O.; Cherezova, T. Yu
2009-02-01
An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm.
Sighting optics including an optical element having a first focal length and a second focal length
Crandall, David Lynn [Idaho Falls, ID
2011-08-01
One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.
Crandall, David Lynn
2011-08-16
Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.
Wavefront measurement of plastic lenses for mobile-phone applications
NASA Astrophysics Data System (ADS)
Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen
2016-08-01
In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.
NASA Astrophysics Data System (ADS)
Song, Da
2008-02-01
One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.
Optical hiding with visual cryptography
NASA Astrophysics Data System (ADS)
Shi, Yishi; Yang, Xiubo
2017-11-01
We propose an optical hiding method based on visual cryptography. In the hiding process, we convert the secret information into a set of fabricated phase-keys, which are completely independent of each other, intensity-detected-proof and image-covered, leading to the high security. During the extraction process, the covered phase-keys are illuminated with laser beams and then incoherently superimposed to extract the hidden information directly by human vision, without complicated optical implementations and any additional computation, resulting in the convenience of extraction. Also, the phase-keys are manufactured as the diffractive optical elements that are robust to the attacks, such as the blocking and the phase-noise. Optical experiments verify that the high security, the easy extraction and the strong robustness are all obtainable in the visual-cryptography-based optical hiding.
Durable fiber optic sensor for gas temperature measurement in the hot section of turbine engines
NASA Astrophysics Data System (ADS)
Tregay, George W.; Calabrese, Paul R.; Finney, Mark J.; Stukey, K. B.
1994-10-01
An optical sensor system extends gas temperature measurement capability in turbine engines beyond the present generation of thermocouple technology. The sensing element which consists of a thermally emissive insert embedded inside a sapphire lightguide is capable of operating above the melting point of nickel-based super alloys. The emissive insert generates an optical signal as a function of temperature. Continued development has led to an optically averaged system by combining the optical signals from four individual sensing elements at a single detector assembly. The size of the signal processor module has been reduced to overall dimensions of 2 X 4 X 0.7 inches. The durability of the optical probe design has been evaluated in an electric-utility operated gas turbine under the sponsorship of the Electric Power Research Institute. The temperature probe was installed between the first stage rotor and second stage nozzle on a General Electric MS7001B turbine. The combined length of the ceramic support tube and sensing element reached 1.5 inches into the hot gas stream. A total of over 2000 hours has been accumulated at probe operation temperatures near 1600 degree(s)F. An optically averaged sensor system was designed to replace the existing four thermocouple probes on the upper half of a GE F404 aircraft turbine engine. The system was ground tested for 250 hours as part of GE Aircraft Engines IR&D Optical Engine Program. Subsequently, two flight sensor systems were shipped for use on the FOCSI (Fiber Optic Control System Integration) Program. The optical harnesses, each with four optical probes, measure the exhaust gas temperature in a GE F404 engine.
NASA Astrophysics Data System (ADS)
Fischer, R.; Müller, R.
1989-08-01
It is shown that nonlinear optical devices are the most promising elements for an optical digital supercomputer. The basic characteristics of various developed nonlinear elements are presented, including bistable Fabry-Perot etalons, interference filters, self-electrooptic effect devices, quantum-well devices utilizing transitions between the lowest electron states in the conduction band of GaAs, etc.
Preliminary result of the solar multi-conjugate adaptive optics for 1m new vacuum solar telescope
NASA Astrophysics Data System (ADS)
Zhang, Lanqiang; Kong, Lin; Bao, Hua; Zhu, Lei; Rao, Xuejun; Rao, Changhui
2016-07-01
Solar observation with high resolution in large field of view (FoV) is required for some solar active regions with the typical sizes of 1' to 3'. Conventional adaptive optics (AO) could not satisfy this demand because of the atmospheric anisoplanatism. Through compensating the turbulence in different heights, multi-conjugate adaptive optics (MCAO) has been proved to obtain a larger corrected FoV. A MCAO experimental system including a conventional 151-element AO system and a 37-element MCAO part is being developed. The MCAO part contains a 37-element deformable mirror conjugated into the 2km to 5km height and a multi-direction Shack-Hartmann wavefront sensor (MD-SHWFS) with 7×7 subaperture array and 60 arcsec FoV, the frame rate of the MD-SHWFS is up to 840Hz. Three-dimensional (3-D) wavefront sensing utilizing atmospheric tomography had been validated by solar observation. Based on these results, a ground layer adaptive optics (GLAO) experimental system including a 151-element deformable mirror and the MD-SHWFS has been built at the 1m New Vacuum Solar Telescope (NVST). In this paper, the MCAO experimental system will be introduced. The preliminary experimental results of three-dimensional wavefront sensing and GLAO on the NVST of Full-shine Lake Solar Observatory are presented.
Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction
NASA Astrophysics Data System (ADS)
Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.
2010-02-01
Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.
Processing and error compensation of diffractive optical element
NASA Astrophysics Data System (ADS)
Zhang, Yunlong; Wang, Zhibin; Zhang, Feng; Qin, Hui; Li, Junqi; Mai, Yuying
2014-09-01
Diffractive optical element (DOE) shows high diffraction efficiency and good dispersion performance, which makes the optical system becoming light-weight and more miniature. In this paper, the design, processing, testing, compensation of DOE are discussed, especially the analyzing of compensation technology which based on the analyzing the DOE measurement date from Taylor Hobson PGI 1250. In this method, the relationship between shadowing effect with diamond tool and processing accuracy are analyzed. According to verification processing on the Taylor Hobson NANOFORM 250 lathe, the results indicate that the PV reaches 0.539 micron, the surface roughness reaches 4nm, the step position error is smaller than λ /10 and the step height error is less than 0.23 micron after compensation processing one time.
Complex approach to the investigation of short fiber-optic comunication lines
NASA Astrophysics Data System (ADS)
Sukhoivanov, I. A.; Kontar', A. A.; Kublik, A. V.; Makarevich, V. S.
The paper proposes a method of complex measurements based on the consideration of the parameters of all the elements used in a specific multimode fiber-optic communication line. It is shown that the error in measuring losses in waveguides up to 20 m long can reach a value of 60 percent.
Ruffato, Gianluca; Rossi, Roberto; Massari, Michele; Mafakheri, Erfan; Capaldo, Pietro; Romanato, Filippo
2017-12-21
In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PO-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.
NASA Astrophysics Data System (ADS)
Mochalov, Leonid; Kudryashov, Mikhail; Logunov, Aleksandr; Zelentsov, Sergey; Nezhdanov, Aleksey; Mashin, Alexandr; Gogova, Daniela; Chidichimo, Giuseppe; De Filpo, Giovanni
2017-11-01
A new plasma-enhanced chemical vapor deposition-based (PECVD) approach for synthesizing of As-S films, with As content in the range 60-40 at.%, is demonstrated. The process has been carried out in a low-temperature Ar-plasma, employing for the first time volatile As and S as precursors. Utilization of inorganic elemental precursors, in contrast to the typically used in CVD metal-organic compounds or volatile hydrides/halides of Va- and VIa-group-elements, gives the possibility to reach the highest quality and purity of the As-S ≿halcogenide films. Quantum-chemical calculations have been performed to gain insight into the PECVD As-S chalcogenide films structure and the mechanism of its formation in the plasma discharge. An additional vibrational band near 650 cm-1 corresponding to cycled 2-dimensional units is observed by Raman spectroscopy. The process developed is cost-efficient one due to the very precise control and the long-term stability of the plasma parameters and it possesses a high potential for large-area applications such as fabrication of miniature integrated optical elements and 2D/3D printing of optical devices.
Recent developments in high speed lens design at the NPRL
NASA Astrophysics Data System (ADS)
McDowell, M. W.; Klee, H. W.
An account is given of recent South African developments in large aperture lens design for high speed photography that are based on the novel zero-power corrector concept. Complex multiple-element lens configurations based on such conventional optical layouts as the Petzval and double-Gauss can by the means presented be replaced with greatly simplified lens configurations employing as few as four basic elements. A tabulation is made of third-order monochromatic and first-order chromatic aberrations of the basic four-element zero-power corrector design.
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1980-01-01
A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.
Light emitting diode package element with internal meniscus for bubble free lens placement
Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen
2010-09-28
A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.
NASA Astrophysics Data System (ADS)
Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.
2016-08-01
X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD Mobile® XRF units were shown to be suitable for rapid screening of samples likely to be encountered in field based studies.
Influence of the set-up on the recording of diffractive optical elements into photopolymers
NASA Astrophysics Data System (ADS)
Gallego, S.; Fernández, R.; Márquez, A.; Neipp, C.; Beléndez, A.; Pascual, I.
2014-05-01
Photopolymers are often used as a base of holographic memories displays. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been demonstrated. To fabricate diffractive optical elements we use a hybrid setup that is composed by three different parts: LCD, optical system and the recording material. The DOE pattern is introduced by a liquid crystal display (LCD) working in the amplitude only mode to work as a master to project optically the DOE onto the recording material. The main advantage of this display is that permit us modify the DOE automatically, we use the electronics of the video projector to send the voltage to the pixels of the LCD. The LCD is used in the amplitude-mostly modulation regime by proper orientation of the external polarizers (P); then the pattern is imaged onto the material with an increased spatial frequency (a demagnifying factor of 2) by the optical system. The use of the LCD allows us to change DOE recorded in the photopolymer without moving any mechanical part of the set-up. A diaphragm is placed in the focal plane of the relay lens so as to eliminate the diffraction orders produced by the pixelation of the LCD. It can be expected that the final pattern imaged onto the recording material will be low filtered due to the finite aperture of the imaging system and especially due to the filtering process produced by the diaphragm. In this work we analyze the effect of the visibility achieved with the LCD and the high frequency cut-off due to the diaphragm in the final DOE recorded into the photopolymer. To simulate the recording we have used the fitted values parameters obtained for PVA/AA based photopolymers and the 3 dimensional models presented in previous works.
Optical fiber sensors embedded in flexible polymer foils
NASA Astrophysics Data System (ADS)
van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter
2010-04-01
In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.
Achieving a high mode count in the exact electromagnetic simulation of diffractive optical elements.
Junker, André; Brenner, Karl-Heinz
2018-03-01
The application of rigorous optical simulation algorithms, both in the modal as well as in the time domain, is known to be limited to the nano-optical scale due to severe computing time and memory constraints. This is true even for today's high-performance computers. To address this problem, we develop the fast rigorous iterative method (FRIM), an algorithm based on an iterative approach, which, under certain conditions, allows solving also large-size problems approximation free. We achieve this in the case of a modal representation by avoiding the computationally complex eigenmode decomposition. Thereby, the numerical cost is reduced from O(N 3 ) to O(N log N), enabling a simulation of structures like certain diffractive optical elements with a significantly higher mode count than presently possible. Apart from speed, another major advantage of the iterative FRIM over standard modal methods is the possibility to trade runtime against accuracy.
Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials
NASA Technical Reports Server (NTRS)
Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.
2004-01-01
An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reininger, Ruben; Liu, Zunping; Doumy, Gilles
2015-06-09
The radiation from an undulator reflected from one or more optical elements (usually termed `pink-beam') is used in photon-hungry experiments. The optical elements serve as a high-energy cutoff and for focusing purposes. One of the issues with this configuration is maintaining the focal spot dimension as the energy of the undulator is varied, since this changes the heat load absorbed by the first optical element. Finite-element analyses of the power absorbed by a side water-cooled mirror exposed to the radiation emitted by an undulator at the Advanced Photon Source (APS) and at the APS after the proposed upgrade (APSU) revealsmore » that the mirror deformation is very close to a convex cylinder creating a virtual source closer to the mirror than the undulator source. Here a simple optical system is described based on a Kirkpatrick–Baez pair which keeps the focus size to less than 2 µm (in the APSU case) with a working distance of 350 mm despite the heat-load-induced change in source distance. Detailed ray tracings at several photon energies for both the APS and APSU show that slightly decreasing the angle of incidence on the mirrors corrects the change in the `virtual' position of the source. The system delivers more than 70% of the first undulator harmonic with very low higher-orders contamination for energies between 5 and 10 keV.« less
Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points
NASA Technical Reports Server (NTRS)
Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2011-01-01
An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.
NASA Astrophysics Data System (ADS)
Savant, Gajendra D.; Jannson, Joanna L.
1991-07-01
The increased emphasis on speed of operation, wavelength selectivity, compactness, and ruggedization has focused a great deal of attention on the solutions offered by all-optic devices and by hybrid electro-optic systems. In fact, many photonic devices are being considered for use as partial replacements for electronic systems. Optical components, which include modulators, switches, 3-D memory storage devices, wavelength division multiplexers, holographic optical elements, and others, are examples of such devices. The success or failure of these modern optical devices depends, to a great extent, on the performance and survivability of the optical materials used. This is particularly true for volume holographic filters, organic memory media, second- and third-order nonlinear material-based processors and neural networks. Due to the critical importance of these materials and their lack of availability, Physical Optics Corporation (POC) undertook a global advanced optical materials program which has enabled it to introduce several optical devices, based on the new and improved materials which will be described in this article.
GeoCARB design maturity and geostationary heritage
NASA Astrophysics Data System (ADS)
Sawyer, Kevin; Clark, Charles; Katz, Noah; Kumar, Jack; Nast, Ted; Palmer, Alice
2013-09-01
Our companion paper `Progress in development of Tropospheric Infrared Mapping Spectrometers (TIMS): geostationary greenhouse gas (GHG) application' describes geoCARB performance and science. Here we describe a geoCARB instrument design study leading to near PDR maturity. It is based on heritage geostationary (AIA and HMI on SDO, SBIRS GEO-1 and upcoming GLM on GOES-R as examples) and other (IRIS and NIRcam) flight instrumentation. Heritage work includes experience and well developed specifications for near a-thermal carbon fiber honeycomb composite optical benches and optical element mounting design forms that utilize a "family" of mounts for nearly any type of optical element. The geoCARB approach utilizes composite optical benches and bipod flexures to kinematically mount optics. Tooling for alignment and staking of all elements is integral to the design and is "removed before flight" for mass minimization. GeoCARB requires a cryogenic region for focal planes and spectrometers but front end optics and main structure are designed to run much warmer. A star tracker is used for geoCARB posteriori geolocation including pseudo-diurnal thermal distortion characterization. It is kinematically mounted by low conductance thermal isolators directly on to the low expansion high stiffness composite bench that defines the master optical surfaces including the scanning mirrors. The thermal load from the camera heads is routed away from the bench heat pipes. Use of kinematic mounting is advantageous for low thermal conduction designs. Honeycomb composites enable the design's low thermal mechanical distortions.
Recycling microcavity optical biosensors.
Hunt, Heather K; Armani, Andrea M
2011-04-01
Optical biosensors have tremendous potential for commercial applications in medical diagnostics, environmental monitoring, and food safety evaluation. In these applications, sensor reuse is desirable to reduce costs. To achieve this, harsh, wet chemistry treatments are required to remove surface chemistry from the sensor, typically resulting in reduced sensor performance and increased noise due to recognition moiety and optical transducer degradation. In the present work, we suggest an alternative, dry-chemistry method, based on O2 plasma treatment. This approach is compatible with typical fabrication of substrate-based optical transducers. This treatment completely removes the recognition moiety, allowing the transducer surface to be refreshed with new recognition elements and thus enabling the sensor to be recycled.
Low temperature and UV curable sol-gel coatings for long lasting optical fiber biosensors
NASA Astrophysics Data System (ADS)
Otaduy, D.; Villar, A.; Gomez-Herrero, E.; Goitandia, A. M.; Gorritxategi, E.; Quintana, I.
2010-04-01
The use of optical fibers as sensing element is increasing in clinical, pharmaceutical and industrial applications. Excellent light delivery, long interaction length, low cost and ability not only to excite the target molecules but also to capture the emitted light from the targets are the hallmarks of optical fiber as biosensors. In biosensors based on fiber optics the interaction with the analyte can occur within an element of the optical fiber. One of the techniques for this kind of biosensors is to remove the fiber optic cladding and substitute it for biological coatings that will interact with the parameter to sensorize. The deposition of these layers can be made by sol-gel technology. The sol-gel technology is being increasingly used mainly due to the high versatility to tailor their optical features. Incorporation of suitable chemical and biochemical sensing agents have allowed determining pH, gases, and biochemical species, among others. Nonetheless, the relatively high processing temperatures and short lifetime values mean severe drawbacks for a successful exploitation of sol-gel based coated optical fibres. With regard to the latter, herein we present the design, preparation and characterization of novel sol-gel coated optical fibres. Low temperature and UV curable coating formulations were optimized to achieve a good adhesion and optical performance. The UV photopolymerizable formulation was comprised by glycidoxypropyltrimethoxysilane (GLYMO), Tetraethylorthosilicate (TEOS) and an initiator. While the thermoset coating was prepared by using 3-aminopropyltrimethoxysilane, GLYMO, and TEOS as main reagents. Both curable sol-gel coated fibres were analysed by FTIR, SEM and optical characterization. Furthermore, in the present work a new technique for silica cladding removal has been developed by ultra-short pulses laser processing, getting good dimensional accuracy and surface integrity.
Chalcogenide glass sensors for bio-molecule detection
NASA Astrophysics Data System (ADS)
Lucas, Pierre; Coleman, Garrett J.; Cantoni, Christopher; Jiang, Shibin; Luo, Tao; Bureau, Bruno; Boussard-Pledel, Catherine; Troles, Johann; Yang, Zhiyong
2017-02-01
Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials engineering enable the design of opto-electrophoretic sensors that permit simultaneous capture and detection of hazardous bio-molecules such as bacteria, virus and proteins using a conducting glass that serves as both an electrode and an optical elements. Upon adequate spectral analysis such as Principal Component Analysis (PCA) or Partial Least Square (PLS) regression these devices enable highly selective identification of hazardous microorganism such as different strains of bacteria and food pathogens.
Kramer, D.P.
1994-08-09
Hermetic fiber optic-to-metal components and method for making hermetic fiber optic-to-metal components by assembling and fixturing elements comprising a metal shell, a glass preform, and a metal-coated fiber optic into desired relative positions and then sealing said fixtured elements preferably using a continuous heating process is disclosed. The resultant hermetic fiber optic-to-metal components exhibit high hermeticity and durability despite the large differences in thermal coefficients of expansion among the various elements. 3 figs.
Tolerancing aspheres based on manufacturing knowledge
NASA Astrophysics Data System (ADS)
Wickenhagen, S.; Kokot, S.; Fuchs, U.
2017-10-01
A standard way of tolerancing optical elements or systems is to perform a Monte Carlo based analysis within a common optical design software package. Although, different weightings and distributions are assumed they are all counting on statistics, which usually means several hundreds or thousands of systems for reliable results. Thus, employing these methods for small batch sizes is unreliable, especially when aspheric surfaces are involved. The huge database of asphericon was used to investigate the correlation between the given tolerance values and measured data sets. The resulting probability distributions of these measured data were analyzed aiming for a robust optical tolerancing process.
Tolerancing aspheres based on manufacturing statistics
NASA Astrophysics Data System (ADS)
Wickenhagen, S.; Möhl, A.; Fuchs, U.
2017-11-01
A standard way of tolerancing optical elements or systems is to perform a Monte Carlo based analysis within a common optical design software package. Although, different weightings and distributions are assumed they are all counting on statistics, which usually means several hundreds or thousands of systems for reliable results. Thus, employing these methods for small batch sizes is unreliable, especially when aspheric surfaces are involved. The huge database of asphericon was used to investigate the correlation between the given tolerance values and measured data sets. The resulting probability distributions of these measured data were analyzed aiming for a robust optical tolerancing process.
Morton, Keith J.; Loutherback, Kevin; Inglis, David W.; Tsui, Ophelia K.; Sturm, James C.; Chou, Stephen Y.; Austin, Robert H.
2008-01-01
We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing beads and cells. The core element is based on the concept of deterministic lateral displacement where particles choose different paths through the asymmetric array based on their size: Particles larger than a critical size are displaced laterally at each row by a post and move along the asymmetric axis at an angle to the flow, while smaller particles move along streamline paths. We create compound elements with complex particle handling modes by tiling this core element using multiple transformation operations; we show that particle trajectories can be bent at an interface between two elements and that particles can be focused into hydrodynamic jets by using a single inlet port. Although particles propagate through these elements in a way that strongly resembles light rays propagating through optical elements, there are unique differences in the paths of our particles as compared with photons. The unusual aspects of these modular, microfluidic metamaterials form a rich design toolkit for mixing, separating, and analyzing cells and functional beads on-chip. PMID:18495920
Temperature control system for optical elements in astronomical instrumentation
NASA Astrophysics Data System (ADS)
Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano
2014-07-01
Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.
Non-blocking four-port optical router based on thermooptic silicon microrings
NASA Astrophysics Data System (ADS)
Dang, Pei-pei; Li, Cui-ting; Zheng, Wen-xue; Zheng, Chuan-tao; Wang, Yi-ding
2016-07-01
By using silicon-on-insulator (SOI) platform, 12 channel waveguides, and four parallel-coupling one-microring resonator routing elements, a non-blocking four-port optical router is proposed. Structure design and optimization are performed on the routing elements at 1 550 nm. At drop state with a power consumption of 0 mW, the insertion loss of the drop port is less than 1.12 dB, and the crosstalk between the two output ports is less than -28 dB; at through state with a power consumption of 22 mW, the insertion loss of the through port is less than 0.45 dB, and the crosstalk between the two output ports is below -21 dB. Routing topology and function are demonstrated for the four-port optical router. The router can work at nine non-blocking routing states using the thermo-optic (TO) effect of silicon for tuning the resonance of each switching element. Detailed characterizations are presented, including output spectrum, insertion loss, and crosstalk. According to the analysis on all the data links of the router, the insertion loss is within the range of 0.13—3.36 dB, and the crosstalk is less than -19.46 dB. The router can meet the need of large-scale optical network-on-chip (ONoC).
Modified sensing element of a fibre-optic current sensor based on a low-eigenellipticity spun fibre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przhiyalkovsky, Ya V; Morshnev, S K; Starostin, N I
2014-10-31
We have proposed and investigated a modified sensing element of a spun fibre current sensor for the case when the beat length of the built-in linear birefringence of the fibre is equal to or less than the spin pitch of its helical structure. The proposed configuration makes it possible to restore the interferometer contrast reduced because of the decrease in the ellipticity of the wavelength-averaged polarisation state of radiation propagating in such spun fibre. The modified sensing element contains two polarisation state converters: one, located at the spun fibre input, produces polarisation with ellipticity equal to the eigenellipticity of themore » fibre, and the other ensures conversion of the elliptical polarisation to an orthogonal one through mirror reflection at the fibre output. We have also demonstrated that the magneto-optical sensitivity decreases slightly for the analysed spectrum-averaged parameters of the polarisation state of radiation in the spun fibre. Experimental data lend support to the theoretical predictions. (fibre-optic sensors)« less
NASA Astrophysics Data System (ADS)
Bao, Yi; Valipour, Mahdi; Meng, Weina; Khayat, Kamal H.; Chen, Genda
2017-08-01
This study develops a delamination detection system for smart ultra-high-performance concrete (UHPC) overlays using a fully distributed fiber optic sensor. Three 450 mm (length) × 200 mm (width) × 25 mm (thickness) UHPC overlays were cast over an existing 200 mm thick concrete substrate. The initiation and propagation of delamination due to early-age shrinkage of the UHPC overlay were detected as sudden increases and their extension in spatial distribution of shrinkage-induced strains measured from the sensor based on pulse pre-pump Brillouin optical time domain analysis. The distributed sensor is demonstrated effective in detecting delamination openings from microns to hundreds of microns. A three-dimensional finite element model with experimental material properties is proposed to understand the complete delamination process measured from the distributed sensor. The model is validated using the distributed sensor data. The finite element model with cohesive elements for the overlay-substrate interface can predict the complete delamination process.
Performance of highly connected photonic switching lossless metro-access optical networks
NASA Astrophysics Data System (ADS)
Martins, Indayara Bertoldi; Martins, Yara; Barbosa, Felipe Rudge
2018-03-01
The present work analyzes the performance of photonic switching networks, optical packet switching (OPS) and optical burst switching (OBS), in mesh topology of different sizes and configurations. The "lossless" photonic switching node is based on a semiconductor optical amplifier, demonstrated and validated with experimental results on optical power gain, noise figure, and spectral range. The network performance was evaluated through computer simulations based on parameters such as average number of hops, optical packet loss fraction, and optical transport delay (Am). The combination of these elements leads to a consistent account of performance, in terms of network traffic and packet delivery for OPS and OBS metropolitan networks. Results show that a combination of highly connected mesh topologies having an ingress e-buffer present high efficiency and throughput, with very low packet loss and low latency, ensuring fast data delivery to the final receiver.
The optical very large array and its moon-based version
NASA Technical Reports Server (NTRS)
Labeyrie, Antoine
1992-01-01
An Optical Very Large Array (OVLA) is currently in early prototyping stages for ground-based sites, such as Mauna Kea and perhaps the VLT site in Chile. Its concept is also suited for a moon-based interferometer. With a ring of bi-dimensionally mobile telescopes, there is maximal flexibility in the aperture pattern, and no need for delay lines. A circular configuration of many free-flying telescopes, TRIO, is also considered for space interferometers. Finally, the principle of gaseous mirrors may become applicable for moon-based optical arrays. Fifteen years after the first coherent linkage of two optical telescopes, the design of an ambitious imaging array, the OVLA, is now well advanced. Two 1.5 m telescopes have been built and now provide astronomical results. Elements of the OVLA are under construction. Although primarily conceived for ground-based sites, the OVLA structure appears to meet the essential requirements for operation on the Moon.
NASA Technical Reports Server (NTRS)
Adams, Michael J. (Editor)
1987-01-01
The present conference on novel optoelectronics discusses topics in the state-of-the-art in this field in the Netherlands, quantum wells, integrated optics, nonlinear optical devices and fiber-optic-based devices, ultrafast optics, and nonlinear optics and optical bistability. Attention is given to the production of fiber-optics for telecommunications by means of PCVD, lifetime broadening in quantum wells, nonlinear multiple quantum well waveguide devices, tunable single-wavelength lasers, an Si integrated waveguiding polarimeter, and an electrooptic light modulator using long-range surface plasmons. Also discussed are backward-wave couplers and reflectors, a wavelength-selective all-fiber switching matrix, the impact of ultrafast optics in high-speed electronics, the physics of low energy optical switching, and all-optical logical elements for optical processing.
Optical apparatus for forming correlation spectrometers and optical processors
Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.
1999-01-01
Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.
Optical apparatus for forming correlation spectrometers and optical processors
Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.
1999-05-18
Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.
Polyanskiy, Mikhail N.
2015-01-01
We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.
A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography
NASA Astrophysics Data System (ADS)
Pierno, L.; Dispenza, M.; Secchi, A.; Fiorello, A.; Foglietti, V.
2008-06-01
We have designed and fabricated a lithium niobate tunable Bragg filter patterned by electron beam lithography and etched by reactive ion etching. Devices with 1 mm, 2 mm and 4 mm length and 360 and 1080 nm Bragg period, with 5 pm V-1 tuning efficiency, have been characterized. Some applications were identified. Optical simulation based on finite element model (FEM) software showing the optical filtering curve and the coupling factor dependence on the manufacturing parameter is reported. The tuning of the filter window position is electro-optically controlled.
Optical coupling elements for coherent optical multiport receivers
NASA Astrophysics Data System (ADS)
Langenhorst, Ralf
1992-05-01
Three by three (3 by 3) and four by four (4 by 4) port coupling elements and receivers for heterodyne multiport systems are realized. Commercial (3 by 3) fiber coupling elements were used to achieve a usual (3 by 3) port receiver and a (3 by 3) port receiver in pushpull switching, whose concept was theoretically and experimentally analyzed. It is established that intensity oscillations of laser sources are suppressed by pushpull switching. The influence of thermal noise of opto-electronic input levels is shown to be weaker than in usual (3 by 3) port and (4 by 4) port receivers. Thermal noise effect in pushpull switching is similar to this one in heterodyne receivers. An integrated optical coupling element in LiNbO3 was made with bridge circuit from four waveguide coupling elements and two phase converters, which are electro-optically tunable so that a continuous regulation of intermediate frequency phase can be compensated by temperature variations of the element. To obtain fiber-to-fiber losses lower than a dB, a compact crystal optical coupling element was developed with reference to polarization properties of optical waves. This element supplied the eight necessary intermediate frequency output signals. A direct experimental comparison of bandwidth efficiency of multiport and heterodyne receivers shows a factor two in optical area and a factor three in electrical frequency area.
TWC and AWG based optical switching structure for OVPN in WDM-PON
NASA Astrophysics Data System (ADS)
Bai, Hui-feng; Chen, Yu-xin; Wang, Qin
2015-03-01
With the rapid development of optical elements with large capacity and high speed, the network architecture is of great importance in determing the performance of wavelength division multiplexing passive optical network (WDM-PON). This paper proposes a switching structure based on the tunable wavelength converter (TWC) and the arrayed-waveguide grating (AWG) for WDM-PON, in order to provide the function of opitcal virtual private network (OVPN). Using the tunable wavelength converter technology, this switch structure is designed and works between the optical line terminal (OLT) and optical network units (ONUs) in the WDM-PON system. Moreover, the wavelength assignment of upstream/downstream can be realized and direct communication between ONUs is also allowed by privite wavelength channel. Simulation results show that the proposed TWC and AWG based switching structure is able to achieve OVPN function and to gain better performances in terms of bite error rate (BER) and time delay.
Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.
Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M
2017-06-01
Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.
Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.
2006-04-04
An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.
The dome-shaped Fresnel-Köhler concentrator
NASA Astrophysics Data System (ADS)
Zamora, P.; Benitez, P.; Li, Y.; Miñano, J. C.; Mendes-Lopes, J.; Araki, K.
2012-10-01
Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg = 1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP*=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.
Hollow cathode lamp based Faraday anomalous dispersion optical filter.
Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong
2016-07-15
The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.
Hollow cathode lamp based Faraday anomalous dispersion optical filter
NASA Astrophysics Data System (ADS)
Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong
2016-07-01
The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 - (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.
Scanning properties of a resonant fiber-optic piezoelectric scanner
NASA Astrophysics Data System (ADS)
Li, Zhi; Yang, Zhe; Fu, Ling
2011-12-01
We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ˜2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers.
Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.
Tadayon, Mohammad Amin; Ashkenazi, Shai
2013-09-01
The sensitivity and reliability of piezoelectric ultrasound transducers severely degrade in applications requiring high frequency and small element size. Alternative technologies such as capacitive micromachined ultrasound transducers (CMUT) and optical sensing and generation of ultrasound have been proposed and studied for several decades. In this paper, we present a new type of device based on optical micromachined ultrasound transducer (OMUT) technology. OMUTs rely on microfabrication techniques to construct micrometerscale air cavities capped by an elastic membrane. A modified photoresist bonding process has been developed to facilitate the fabrication of these devices. We will describe the design, fabrication, and testing of prototype OMUT devices which implement a receive-only function. Future design modifications are proposed for incorporating complete transmit¿receive functionality in a single element.
Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik
2015-08-01
This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.
Laser identification system based on acousto-optical barcode scanner principles
NASA Astrophysics Data System (ADS)
Khansuvarov, Ruslan A.; Korol, Georgy I.; Preslenev, Leonid N.; Bestugin, Aleksandr R.; Paraskun, Arthur S.
2016-09-01
The main purpose of the bar code in the modern world is the unique identification of the product, service, or any of their features, so personal and stationary barcode scanners so widely used. One of the important parameters of bar code scanners is their reliability, accuracy of the barcode recognition, response time and performance. Nowadays, the most popular personal barcode scanners contain a mechanical part, which extremely impairs the reliability indices. Group of SUAI engineers has proposed bar code scanner based on laser beam acoustic deflection effect in crystals [RU patent No 156009 issued 4/16/2015] Through the use of an acousto-optic deflector element in barcode scanner described by a group of engineers SUAI, it can be implemented in the manual form factor, and the stationary form factor of a barcode scanner. Being a wave electronic device, an acousto-optic element in the composition of the acousto-optic barcode scanner allows you to clearly establish a mathematical link between the encoded function of the bar code with the accepted input photodetector intensities function that allows you to speak about the great probability of a bar code clear definition. This paper provides a description of the issued patent, the description of the principles of operation based on the mathematical analysis, a description of the layout of the implemented scanner.
Injection-seeded optical parametric oscillator and system
Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.
2007-10-09
Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.
Absolute angular encoder based on optical diffraction
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang
2015-08-01
A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.
Stratified Diffractive Optic Approach for Creating High Efficiency Gratings
NASA Technical Reports Server (NTRS)
Chambers, Diana M.; Nordin, Gregory P.
1998-01-01
Gratings with high efficiency in a single diffracted order can be realized with both volume holographic and diffractive optical elements. However, each method has limitations that restrict the applications in which they can be used. For example, high efficiency volume holographic gratings require an appropriate combination of thickness and permittivity modulation throughout the bulk of the material. Possible combinations of those two characteristics are limited by properties of currently available materials, thus restricting the range of applications for volume holographic gratings. Efficiency of a diffractive optic grating is dependent on its approximation of an ideal analog profile using discrete features. The size of constituent features and, consequently, the number that can be used within a required grating period restricts the applications in which diffractive optic gratings can be used. These limitations imply that there are applications which cannot be addressed by either technology. In this paper we propose to address a number of applications in this category with a new method of creating high efficiency gratings which we call stratified diffractive optic gratings. In this approach diffractive optic techniques are used to create an optical structure that emulates volume grating behavior. To illustrate the stratified diffractive optic grating concept we consider a specific application, a scanner for a space-based coherent wind lidar, with requirements that would be difficult to meet by either volume holographic or diffractive optic methods. The lidar instrument design specifies a transmissive scanner element with the input beam normally incident and the exiting beam deflected at a fixed angle from the optical axis. The element will be rotated about the optical axis to produce a conical scan pattern. The wavelength of the incident beam is 2.06 microns and the required deflection angle is 30 degrees, implying a grating period of approximately 4 microns. Creating a high efficiency volume grating with these parameters would require a grating thickness that cannot be attained with current photosensitive materials. For a diffractive optic grating, the number of binary steps necessary to produce high efficiency combined with the grating period requires feature sizes and alignment tolerances that are also unattainable with current techniques. Rotation of the grating and integration into a space-based lidar system impose the additional requirements that it be insensitive to polarization orientation, that its mass be minimized and that it be able to withstand launch and space environments.
SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, Richard
2013-04-09
Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough intomore » National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.« less
Optical properties of graphene superlattices.
Le, H Anh; Ho, S Ta; Nguyen, D Chien; Do, V Nam
2014-10-08
In this work, the optical responses of graphene superlattices, i.e. graphene subjected to a periodic scalar potential, are theoretically reported. The optical properties were studied by investigating the optical conductivity, which was calculated using the Kubo formalism. It was found that the optical conductivity becomes dependent on the photon polarization and is suppressed in the photon energy range of (0, Ub), where Ub is the potential barrier height. In the higher photon energy range, i.e. Ω > Ub, the optical conductivity is, however, almost identical to that of pristine graphene. Such behaviors of the optical conductivity are explained microscopically through the analysis of the elements of optical matrices and effectively through a simple model, which is based on the Pauli blocking mechanism.
NASA Astrophysics Data System (ADS)
Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun
2018-03-01
The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.
Holographic optical elements: Fabrication and testing
NASA Technical Reports Server (NTRS)
Zech, R. G.; Shareck, M.; Ralston, L. M.
1974-01-01
The basic properties and use of holographic optical elements were investigated to design and construct wide-angle, Fourier-transform holographic optical systems for use in a Bragg-effect optical memory. The performance characteristics are described along with the construction of the holographic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jura, M.; Xu, S.; Klein, B.
Using ultraviolet spectra obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope, we extend our previous ground-based optical determinations of the composition of the extrasolar asteroids accreted onto two white dwarfs, GD 40 and G241-6. Combining optical and ultraviolet spectra of these stars with He-dominated atmospheres, 13 and 12 polluting elements are confidently detected in GD 40 and G241-6, respectively. For the material accreted onto GD 40, the volatile elements C and S are deficient by more than a factor of 10 and N by at least a factor of 5 compared to their mass fractions in primitivemore » CI chondrites and approach what is inferred for bulk Earth. A similar pattern is found for G241-6 except that S is undepleted. We have also newly detected or placed meaningful upper limits for the amount of Cl, Al, P, Ni, and Cu in the accreted matter. Extending results from optical studies, the mass fractions of refractory elements in the accreted parent bodies are similar to what is measured for bulk Earth and chondrites. Thermal processing, perhaps interior to a snow line, appears to be of central importance in determining the elemental compositions of these particular extrasolar asteroids.« less
Invisibility Cloaking Based on Geometrical Optics for Visible Light
NASA Astrophysics Data System (ADS)
Ichikawa, H.; Oura, M.; Taoda, T.
2013-06-01
Optical cloaking has been one of unattainable dreams and just a subject in fiction until recently. Several different approaches to cloaking have been proposed and demonstrated: stealth technology, active camouflage and transformation optics. The last one would be the most formal approach modifying electromagnetic field around an object to be cloaked with metamaterials. While cloaking based on transformation optics, though valid only at single frequency, is experimentally demonstrated in microwave region, its operation in visible spectrum is still distant from realisation mainly owing to difficulty in fabricating metamaterial structure whose elements are much smaller than wavelength of light. Here we show that achromatic optical cloaking in visible spectrum is possible with the mere principle based on geometrical optics. In combining a pair of polarising beam splitters and right-angled prisms, rays of light to be obstructed by an object can make a detour to an observer, while unobstructed rays go straight through two polarising beam splitters. What is observed eventually through the device is simply background image as if nothing exists in between.
Monolithic fiber optic sensor assembly
Sanders, Scott
2015-02-10
A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1998-01-01
An apparatus is disclosed for reading and/or writing information or to from an optical recording medium having a plurality of information storage layers. The apparatus includes a dynamic holographic optical element configured to focus light on the optical recording medium. a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element focusses light on a first one of the plurality of information storage layers when driven by the first drive signal on a second one of the plurality of information storage layers when driven by the second drive signal. An optical switch is also disclosed for connecting at least one light source in a source array to at least one light receiver in a receiver array. The switch includes a dynamic holographic optical element configured to receive light from the source array and to transmit light to the receiver array, a control circuit arranged to supply a drive signal to the holographic optical element, and a storage device in communication with the control circuit and storing at least a first drive signal and a second drive signal. The holographic optical element connects a first light source in the source array to a first light receiver in the receiver array when driven by the first drive signal and the holographic optical element connects the first light source with the first light receiver and a second light receiver when driven by the second drive signal.
Transpiration purged optical probe
VanOsdol, John; Woodruff, Steven
2004-01-06
An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.
Measuring In-Plane Displacements with Variable Sensitivity Using Diffractive Optic Interferometry
NASA Technical Reports Server (NTRS)
Shepherd, Robert L.; Gilbert, John A.; Cole, Helen J.; Ashley, Paul R.
1998-01-01
This paper introduces a method called diffractive optic interferometry (DOI) which allows in-plane displacement components to be measured with variable sensitivity. DOI relies on binary optical elements fabricated as phase-type Dammann gratings which produce multiple diffraction orders of nearly equal intensity. Sensitivity is varied by combining the different wavefronts produced by a conjugate pair of these binary optical elements; a transmission element is used to produce several illumination beams while a reflective element, replicated on the surface of a specimen, provides the reference for the undeformed state. The steps taken to design and fabricate these binary optical elements are described. The specimen grating is characterized, and tested on a disk subjected to diametrical compression. Overall, the results are excellent, with experimental data agreeing to within a few percent of the theoretical predictions.
Stabilizing an optoelectronic microwave oscillator with photonic filters
NASA Technical Reports Server (NTRS)
Strekalov, D.; Aveline, D.; Yu, N.; Thompson, R.; Matsko, A. B.; Maleki, L.
2003-01-01
This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on insertion of a source of optical group delay into an OEO loop. The performance of an OEO stabilized with either a high- optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability.
Determination of linear optics functions from turn-by-turn data
NASA Astrophysics Data System (ADS)
Alexahin, Y.; Gianfelice-Wendt, E.
2011-10-01
A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.
Adaptive Optics Image Restoration Based on Frame Selection and Multi-frame Blind Deconvolution
NASA Astrophysics Data System (ADS)
Tian, Yu; Rao, Chang-hui; Wei, Kai
Restricted by the observational condition and the hardware, adaptive optics can only make a partial correction of the optical images blurred by atmospheric turbulence. A postprocessing method based on frame selection and multi-frame blind deconvolution is proposed for the restoration of high-resolution adaptive optics images. By frame selection we mean we first make a selection of the degraded (blurred) images for participation in the iterative blind deconvolution calculation, with no need of any a priori knowledge, and with only a positivity constraint. This method has been applied to the restoration of some stellar images observed by the 61-element adaptive optics system installed on the Yunnan Observatory 1.2m telescope. The experimental results indicate that this method can effectively compensate for the residual errors of the adaptive optics system on the image, and the restored image can reach the diffraction-limited quality.
Leinders, S M; Westerveld, W J; Pozo, J; van Neer, P L M J; Snyder, B; O'Brien, P; Urbach, H P; de Jong, N; Verweij, M D
2015-09-22
With the increasing use of ultrasonography, especially in medical imaging, novel fabrication techniques together with novel sensor designs are needed to meet the requirements for future applications like three-dimensional intercardiac and intravascular imaging. These applications require arrays of many small elements to selectively record the sound waves coming from a certain direction. Here we present proof of concept of an optical micro-machined ultrasound sensor (OMUS) fabricated with a semi-industrial CMOS fabrication line. The sensor is based on integrated photonics, which allows for elements with small spatial footprint. We demonstrate that the first prototype is already capable of detecting pressures of 0.4 Pa, which matches the performance of the state of the art piezo-electric transducers while having a 65 times smaller spatial footprint. The sensor is compatible with MRI due to the lack of electronical wiring. Another important benefit of the use of integrated photonics is the easy interrogation of an array of elements. Hence, in future designs only two optical fibers are needed to interrogate an entire array, which minimizes the amount of connections of smart catheters. The demonstrated OMUS has potential applications in medical ultrasound imaging, non destructive testing as well as in flow sensing.
An Experimental Optical Three-axis Tactile Sensor Featured with Hemispherical Surface
NASA Astrophysics Data System (ADS)
Ohka, Masahiro; Kobayashi, Hiroaki; Takata, Jumpei; Mitsuya, Yasunaga
We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force to mount on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera. The sensing element of the silicone rubber comprises one columnar feeler and eight conical feelers. The contact areas of the conical feelers, which maintain contact with the acrylic dome, detect the three-axis force applied to the tip of the sensing element. Normal and shearing forces are then calculated from integration and centroid displacement of the grayscale value derived from the conical feeler's contacts. To evaluate the present tactile sensor, we conducted a series of experiments using an x-z stage, a rotational stage, and a force gauge. Although we discovered that the relationship between the integrated grayscale value and normal force depends on the sensor's latitude on the hemispherical surface, it is easy to modify the sensitivity based on the latitude to make the centroid displacement of the grayscale value proportional to the shearing force. When we examined the repeatability of the present tactile sensor with 1,000 load/unload cycles, the error was 2%.
NASA Astrophysics Data System (ADS)
Liu, Xin-Chang
2017-02-01
Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.
Three-axis lever actuator with flexure hinges for an optical disk system
NASA Astrophysics Data System (ADS)
Han, Chang-Soo; Kim, Soo-Hyun
2002-10-01
A three-axis lever actuator with a flexure hinge has been designed and fabricated. This actuator is driven by electromagnetic force based on a coil-magnet system and can be used as a high precision actuator and, especially as a pickup head actuator in optical disks. High precision and low sensitivity to external vibration are the major advantages of this lever actuator. An analysis model was found and compared to the finite element method. Dynamic characteristics of the three-axis lever actuator were measured. The results are in very close agreement to those predicted by the model and finite element analysis.
OPTICAL PROCESSING OF INFORMATION: Multistage optoelectronic two-dimensional image switches
NASA Astrophysics Data System (ADS)
Fedorov, V. B.
1994-06-01
The implementation principles and the feasibility of construction of high-throughput multistage optoelectronic switches, capable of transmitting data in the form of two-dimensional images along interconnected pairs of optical channels, are considered. Different ways of realising compact switches are proposed. They are based on the use of polarisation-sensitive elements, arrays of modulators of the plane of polarisation of light, arrays of objectives, and free-space optics. Optical systems of such switches can theoretically ensure that the resolution and optical losses in two-dimensional image transmission are limited only by diffraction. Estimates are obtained of the main maximum-performance parameters of the proposed optoelectronic image switches.
A System for Compressive Spectral and Polarization Imaging at Short Wave Infrared (SWIR) Wavelengths
2017-10-18
2016). H. Rueda, H. Arguello and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging”, Journal...3) a set of optical filters which allow to discriminate spectrally the coded and sheared...system that includes objective lens, spatial light modulator, dispersive element, optical filters
Quasi-monolithic tunable optical resonator
NASA Technical Reports Server (NTRS)
Arbore, Mark (Inventor); Tapos, Francisc (Inventor)
2003-01-01
An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.
Adaptive beam shaping by controlled thermal lensing in optical elements
NASA Astrophysics Data System (ADS)
Arain, Muzammil A.; Quetschke, Volker; Gleason, Joseph; Williams, Luke F.; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J.; Mueller, Guido; Tanner, D. B.; Reitze, David. H.
2007-04-01
We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO2 laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.
Adaptive beam shaping by controlled thermal lensing in optical elements.
Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H
2007-04-20
We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.
Sutherland, J. C.
2016-07-20
Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J. C.
Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less
Electro-optically tunable microwave source based on composite-cavity microchip laser.
Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin
2012-12-17
A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.
Pointing and figure control system for a space-based far-IR segmented telescope
NASA Technical Reports Server (NTRS)
Lau, Kenneth
1993-01-01
A pointing and figure control system for two space-based far-IR telescopes, the 10-20 m Large Deployable Reflector and the 3.6 m Submillimeter Intermediate Mission, is described. The figure maintenance control system is designed to counter the optical elements translational and rotational changes induced by long-term thermal drifts that the support structure may experience. The pointing system applies optical truss to telescope pointing; a laser metrology system is used to transfer pointing informaton from an external fine guidance sensor to the telescope optical boresight, defined by the primary mirror, secondary mirror, and focal plane assembly.
S-F graphic representation analysis of photoelectric facula focometer poroo-plate glass
NASA Astrophysics Data System (ADS)
Tong, Yilin; Han, Xuecai
2016-10-01
Optical system focal length is usually based on the magnification method with focal length measurement poroo-plate glass is used as base element measuring focal length of focometer. On the basis of using analysis of magnification method to measure the accuracy of optical lens focal length, an expression between the ruling span of poroo-plate glass and the focal length of measured optical system was deduced, an efficient method to work out S-F graph with AUTOCAD was developed, the selecting principle of focometer parameter was analyzed, and Applied examples for designing poroo-plate glass in S-F figure was obtained.
NASA Technical Reports Server (NTRS)
Montgomery, Robert M. (Inventor)
2006-01-01
An optical profile determining apparatus includes an optical detector and an optical source. The optical source generates a transmit beam including a plurality of wavelengths, and generates a reference beam including the plurality of wavelengths. Optical elements direct the transmit beam to a target, direct a resulting reflected transmit beam back from the target to the optical detector, and combine the reference beam with the reflected transmit beam so that a profile of the target is based upon fringe contrast produced by the plurality of wavelengths in the reference beam and the plurality of wavelengths in the reflected transmit beam.
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-01-01
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits. PMID:27491391
NASA Astrophysics Data System (ADS)
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-08-01
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature ‘prototype’ PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.
Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien
2016-08-05
In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.
NASA Astrophysics Data System (ADS)
Saleh, K.; Bouchier, A.; Merrer, P. H.; Llopis, O.; Cibiel, G.
2011-03-01
In the microwave domain and among many other advantages, optics represents an elegant solution to increase the quality Q factor in a system. Different types of optical resonators lead to Q factors above 109, and these resonators can be used as an alternative to optical delay lines to set up the frequency in optoelectronic oscillators (OEO). However, microwave-optics is also a complex field, and if the use of optical resonators in high spectral purity frequency generation systems like OEO has been already demonstrated, many aspects of these OEOs are still incompletely understood, especially the contribution to the oscillator phase noise of the different optical and microwave elements used in the oscillator system. In order to improve the phase noise of a fiber ring resonator based OEO, this oscillator has been theoretically studied in term of white frequency noise. In this paper, we present a theoretical study that has lead us to optimize a fiber ring resonator and the experimental phase noise results obtained for an OEO based on an optimized optical resonator. The OEO thermal stability is also investigated in this paper.
NASA Technical Reports Server (NTRS)
Matthys, Donald R.
1994-01-01
There are two basic areas of interest for diffractive optics. In the first, the property of wavefront division is exploited for achieving optical fanout, analogous to the more familiar electrical fanout of electronic circuitry. The basic problem here is that when using a simple uniform diffraction grating the energy input is divided unevenly among the output beams. The other area of interest is the use of diffractive elements to replace or supplement standard refractive elements such as lenses. Again, local grating variations can be used to control the amount of bending imparted to optical rays, and the efficiency of the diffractive element will depend on how closely the element can be matched to the design requirements. In general, production restrictions limit how closely the element approaches the design, and for the common case of photolithographic production, a series of binary masks is required to achieve high efficiency. The actual design process is much more involved than in the case of elements for optical fanout, as the desired phase of the optical wavefront over some reference plane must be specified and the phase alteration to be introduced at each point by the diffraction element must be known. This generally requires the utilization of a standard optical design program. Two approaches are possible. In the first approach, the diffractive element is treated as a special type of lens and the ordinary optical design equations are used. Optical design programs tend to follow a second approach, namely, using the equations of optical interference derived from holographic theory and then allowing the introduction of phase front corrections in the form of polynomial equations. By using either of these two methods, diffractive elements can be used not only to compensate for distortions such as chromatic or spherical aberration, but also to perform the work of a variety of other optical elements such as null correctors, beam shapers, etc. The main focus of the project described in this report is how the design information from the lens design program is incorporated into the photolithographic process. It is shown that the MANN program, a photolithographic mask generator, fills the need for a link between lens design programs and mask generation controllers.The generated masks can be used to expose a resist-coated substrate which is etched and then must be re-coated, re-exposed, and re-etched for making copies, just as in the electronics industry.
Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation.
Aieta, Francesco; Kats, Mikhail A; Genevet, Patrice; Capasso, Federico
2015-03-20
The replacement of bulk refractive optical elements with diffractive planar components enables the miniaturization of optical systems. However, diffractive optics suffers from large chromatic aberrations due to the dispersion of the phase accumulated by light during propagation. We show that this limitation can be overcome with an engineered wavelength-dependent phase shift imparted by a metasurface, and we demonstrate a design that deflects three wavelengths by the same angle. A planar lens without chromatic aberrations at three wavelengths is also presented. Our designs are based on low-loss dielectric resonators, which introduce a dense spectrum of optical modes to enable dispersive phase compensation. The suppression of chromatic aberrations in metasurface-based planar photonics will find applications in lightweight collimators for displays, as well as chromatically corrected imaging systems. Copyright © 2015, American Association for the Advancement of Science.
Polishing techniques for MEGARA pupil elements optics
NASA Astrophysics Data System (ADS)
Izazaga, R.; Carrasco, E.; Aguirre, D.; Salas, A.; Gil de Paz, A.; Gallego, J.; Iglesias, J.; Arroyo, J. M.; Hernández, M.; López, N.; López, V.; Quechol, J. T.; Salazar, M. F.; Carballo, C.; Cruz, E.; Arriaga, J.; De la Luz, J. A.; Huepa, A.; Jaimes, G. L.; Reyes, J.
2016-07-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral-field and multi-object optical spectrograph for the 10.4m Gran Telescopio Canarias.. It will offer RFWHM 6,000, 12,000 and 18,700 for the low- , mid- and high-resolution, respectively in the wavelength range 3650-9700Å. .The dispersive elements are volume phase holographic (VPH) gratings, sandwiched between two flat Fused Silica windows of high optical precision in large apertures. The design, based in VPHs in combination with Ohara PBM2Y prisms allows to keep the collimator and camera angle fixed. Seventy three optical elements are being built in Mexico at INAOE and CIO. For the low resolution modes, the VPHs windows specifications in irregularity is 1 fringe in 210mm x 170mm and 0.5 fringe in 190mm x 160mm. for a window thickness of 25 mm. For the medium and high resolution modes the irregularity specification is 2 fringes in 220mm x 180mm and 1 fringe in 205mm x 160mm, for a window thickness of 20mm. In this work we present a description of the polishing techniques developed at INAOE optical workshop to fabricate the 36 Fused Silica windows and 24 PBM2Y prisms that allows us to achieve such demanding specifications. We include the processes of mounting, cutting, blocking, polishing and testing.
Fabrication of micro-optical components using femtosecond oscillator pulses
NASA Astrophysics Data System (ADS)
Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak
2017-06-01
With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.
Temperature induced distortions in space telescope mirrors
NASA Technical Reports Server (NTRS)
Nied, H. F.; Rudmann, A. A.
1993-01-01
In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.
Method and apparatus for staking optical elements
Woods, Robert O.
1988-01-01
A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.
Method and apparatus for staking optical elements
Woods, Robert O.
1988-10-04
A method and apparatus for staking two optical elements together in order to retain their alignment is disclosed. The apparatus includes a removable adaptor made up of first and second adaptor bodies each having a lateral slot in their front and side faces. The adaptor also includes a system for releasably attaching each adaptor body to a respective optical element such that when the two optical elements are positioned relative to one another the adaptor bodies are adjacent and the lateral slots therein are aligned to form key slots. The adaptor includes keys which are adapted to fit into the key slots. A curable filler material is employed to retain the keys in the key slots and thereby join the first and second adaptor bodies to form the adaptor. Also disclosed is a method for staking together two optical elements employing the adaptor of the present invention.
Method and apparatus for making an optical element having a dielectric film
NASA Technical Reports Server (NTRS)
Augason, Gordon C. (Inventor)
1987-01-01
A film-application device (FAD) comprising a pair of exterior, tapered, O-ring bearing plate members and a central plate member for simplifying the process of thermally bonding a thin dielectric film to a substrate comprising an optical element are discussed. In use, the film is sandwiched between the O rings and stretched across the optical element by squeezing the exterior plates together before bonding to the element. The film may be used for protecting the optical element or to reduce surface reflection of radiation. The FAD may also be used without the center plate to stretch a dielectric film prior to its attachment to or insertion in a holder to make pellicles or beam-splitters.
High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications
Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.
2010-01-01
This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368
NASA Astrophysics Data System (ADS)
Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun
2018-03-01
Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.
NASA Astrophysics Data System (ADS)
Mikaelian, Andrei L.
Attention is given to data storage, devices, architectures, and implementations of optical memory and neural networks; holographic optical elements and computer-generated holograms; holographic display and materials; systems, pattern recognition, interferometry, and applications in optical information processing; and special measurements and devices. Topics discussed include optical immersion as a new way to increase information recording density, systems for data reading from optical disks on the basis of diffractive lenses, a new real-time optical associative memory system, an optical pattern recognition system based on a WTA model of neural networks, phase diffraction grating for the integral transforms of coherent light fields, holographic recording with operated sensitivity and stability in chalcogenide glass layers, a compact optical logic processor, a hybrid optical system for computing invariant moments of images, optical fiber holographic inteferometry, and image transmission through random media in single pass via optical phase conjugation.
An ultrawide-bandwidth single-sideband modulator for terahertz frequencies
NASA Astrophysics Data System (ADS)
Meijer, A. S.; Berden, G.; Arslanov, D. D.; Ozerov, M.; Jongma, R. T.; van der Zande, W. J.
2016-11-01
Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s-1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.
High-performance axicon lenses based on high-contrast, multilayer gratings
NASA Astrophysics Data System (ADS)
Doshay, Sage; Sell, David; Yang, Jianji; Yang, Rui; Fan, Jonathan A.
2018-01-01
Axicon lenses are versatile optical elements that can convert Gaussian beams to Bessel-like beams. In this letter, we demonstrate that axicons operating with high efficiencies and at large angles can be produced using high-contrast, multilayer gratings made from silicon. Efficient beam deflection of incident monochromatic light is enabled by higher-order optical modes in the silicon structure. Compared to diffractive devices made from low-contrast materials such as silicon dioxide, our multilayer devices have a relatively low spatial profile, reducing shadowing effects and enabling high efficiencies at large deflection angles. In addition, the feature sizes of these structures are relatively large, making the fabrication of near-infrared devices accessible with conventional optical lithography. Experimental lenses with deflection angles as large as 40° display field profiles that agree well with theory. Our concept can be used to design optical elements that produce higher-order Bessel-like beams, and the combination of high-contrast materials with multilayer architectures will more generally enable new classes of diffractive photonic structures.
Holographic Optical Elements as Scanning Lidar Telescopes
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.
2005-01-01
We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.
Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.
Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel
2015-09-21
A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.
Multiple intensity distributions from a single optical element
NASA Astrophysics Data System (ADS)
Berens, Michael; Bruneton, Adrien; Bäuerle, Axel; Traub, Martin; Wester, Rolf; Stollenwerk, Jochen; Loosen, Peter
2013-09-01
We report on an extension of the previously published two-step freeform optics tailoring algorithm using a Monge-Kantorovich mass transportation framework. The algorithm's ability to design multiple freeform surfaces allows for the inclusion of multiple distinct light paths and hence the implementation of multiple lighting functions in a single optical element. We demonstrate the procedure in the context of automotive lighting, in which a fog lamp and a daytime running lamp are integrated in a single optical element illuminated by two distinct groups of LEDs.
GAUSSIAN BEAM LASER RESONATOR PROGRAM
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.
NASA Astrophysics Data System (ADS)
Odhner, Jefferson E.
2016-07-01
Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.
NASA Astrophysics Data System (ADS)
Schröder, H.; Neitz, M.; Schneider-Ramelow, M.
2018-02-01
Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.
Sparse aperiodic arrays for optical beam forming and LIDAR.
Komljenovic, Tin; Helkey, Roger; Coldren, Larry; Bowers, John E
2017-02-06
We analyze optical phased arrays with aperiodic pitch and element-to-element spacing greater than one wavelength at channel counts exceeding hundreds of elements. We optimize the spacing between waveguides for highest side-mode suppression providing grating lobe free steering in full visible space while preserving the narrow beamwidth. Optimum waveguide placement strategies are derived and design guidelines for sparse (> 1.5 λ and > 3 λ average element spacing) optical phased arrays are given. Scaling to larger array areas by means of tiling is considered.
Front lighted optical tooling method and apparatus
Stone, W.J.
1983-06-30
An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.
Design of a space-based infrared imaging interferometer
NASA Astrophysics Data System (ADS)
Hart, Michael; Hope, Douglas; Romeo, Robert
2017-07-01
Present space-based optical imaging sensors are expensive. Launch costs are dictated by weight and size, and system design must take into account the low fault tolerance of a system that cannot be readily accessed once deployed. We describe the design and first prototype of the space-based infrared imaging interferometer (SIRII) that aims to mitigate several aspects of the cost challenge. SIRII is a six-element Fizeau interferometer intended to operate in the short-wave and midwave IR spectral regions over a 6×6 mrad field of view. The volume is smaller by a factor of three than a filled-aperture telescope with equivalent resolving power. The structure and primary optics are fabricated from light-weight space-qualified carbon fiber reinforced polymer; they are easy to replicate and inexpensive. The design is intended to permit one-time alignment during assembly, with no need for further adjustment once on orbit. A three-element prototype of the SIRII imager has been constructed with a unit telescope primary mirror diameter of 165 mm and edge-to-edge baseline of 540 mm. The optics, structure, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. The initial motivation for the development of SIRII was the long-term collection of technical intelligence from geosynchronous orbit, but the scalable nature of the design will likely make it suitable for a range of IR imaging scenarios.
Okamoto, Ryo; O’Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki
2011-01-01
Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low-noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at the single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [Knill E, Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM “recipe” for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing. PMID:21646543
Diffractive Optical Elements for Spectral Imaging
NASA Technical Reports Server (NTRS)
Wilson, D.; Maker, P.; Muller, R.; Mourolis, P.; Descour, M.; Volin, C.; Dereniak, E.
2000-01-01
Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometer.
Diffractive Optical Elements for Spectral Imaging
NASA Technical Reports Server (NTRS)
Wilson, D.; Maker, P.; Muller, R.; Maker, P.; Mouroulis, P.; Descour, M.; Volin, C.; Dereniak, E.
2000-01-01
Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometers.
Zhou, Jun; Huang, Yunyun; Chen, Chaoyan; Xiao, Aoxiang; Guo, Tuan; Guan, Bai-Ou
2018-05-11
Interfacing bio-recognition elements to optical materials is a longstanding challenge to manufacture sensitive biosensors and inexpensive diagnostic devices. In this work, a graphene oxide (GO) interface has been constructed between silica microfiber and bio-recognition elements to develop an improved γ-aminobutyric acid (GABA) sensing approach. The GO interface, which was located at the site with the strongest evanescent field on the microfiber surface, improved the detection sensitivity by providing a larger platform for more bio-recognition element immobilization, and amplifying surface refractive index change caused by combination between bio-recognition elements and target molecules. Owing to the interface improvement, the microfiber has a three times improved sensitivity of 1.03 nm/log M for GABA detection, and hence a lowest limit of detection of 2.91 × 10-18 M, which is 7 orders of magnitude higher than that without the GO interface. Moreover, the micrometer-sized footprint and non-radioactive nature enable easy implantation in human brains for in vivo applications.
Heating of large format filters in sub-mm and fir space optics
NASA Astrophysics Data System (ADS)
Baccichet, N.; Savini, G.
2017-11-01
Most FIR and sub-mm space borne observatories use polymer-based quasi-optical elements like filters and lenses, due to their high transparency and low absorption in such wavelength ranges. Nevertheless, data from those missions have proven that thermal imbalances in the instrument (not caused by filters) can complicate the data analysis. Consequently, for future, higher precision instrumentation, further investigation is required on any thermal imbalances embedded in such polymer-based filters. Particularly, in this paper the heating of polymers when operating at cryogenic temperature in space will be studied. Such phenomenon is an important aspect of their functioning since the transient emission of unwanted thermal radiation may affect the scientific measurements. To assess this effect, a computer model was developed for polypropylene based filters and PTFE-based coatings. Specifically, a theoretical model of their thermal properties was created and used into a multi-physics simulation that accounts for conductive and radiative heating effects of large optical elements, the geometry of which was suggested by the large format array instruments designed for future space missions. It was found that in the simulated conditions, the filters temperature was characterized by a time-dependent behaviour, modulated by a small scale fluctuation. Moreover, it was noticed that thermalization was reached only when a low power input was present.
Hollow cathode lamp based Faraday anomalous dispersion optical filter
Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong
2016-01-01
The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the 88Sr (5s2)1S0 − (5s5p)1P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112
NASA Astrophysics Data System (ADS)
Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hansen, Sven; Manecke, Christel; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther
2017-06-01
The main function of any augmented reality system is to seamlessly merge the real world perception of a viewer with computer generated images and information. Besides real-time head-tracking and room-scanning capabilities the combiner optics, which optically merge the natural with the artificial visual information, represent a key component for those systems. Various types of combiner optics are known to the industry, all with their specific advantages and disadvantages. Beside the well-established solutions based on refractive optics or surface gratings, volume Holographic Optical Elements (vHOEs) are a very attractive alternative in this field. The unique characteristics of these diffractive grating structures - being lightweight, thin, flat and invisible in Off Bragg conditions - make them perfectly suitable for their use in integrated and compact combiners. For any consumer application it is paramount to build unobtrusive and lightweight augmented reality displays, for which those volume holographic combiners are ideally suited. Due to processing challenges of (historic) holographic recording materials mass production of vHOE holographic combiners was not possible. Therefore vHOE based combiners found use in military applications only by now. The new Bayfol® HX instant developing holographic photopolymer film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Bayfol® HX provides full color capability and adjustable diffraction efficiency as well as an unprecedented optical clarity when compared to classical holographic recording materials like silver halide emulsions (AgHX) or dichromated gelatin (DCG). Bayfol® HX film is available in industrial scale and quality. Its properties can be tailored for various diffractive performances and integration methods. Bayfol® HX film is easy to process without any need for chemical or thermal development steps, offering simplified contact-copy mass production schemes.
Meeting the challenges of developing LED-based projection displays
NASA Astrophysics Data System (ADS)
Geißler, Enrico
2006-04-01
The main challenge in developing a LED-based projection system is to meet the brightness requirements of the market. Therefore a balanced combination of optical, electrical and thermal parameters must be reached to achieve these performance and cost targets. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. LEDs have a luminous flux density which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a matched set of LEDs can be used. This work resulted in two projection engines, one for a compact pocket projector and the other for a rear projection television, both of which are currently in commercialization.
High frequency ultrasound imaging using Fabry-Perot optical etalon
NASA Astrophysics Data System (ADS)
Ashkenazi, S.; Witte, R.; O'Donnell, M.
2005-04-01
Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon, offer unique advantages for intravascular and neurological imaging devices.
NASA Technical Reports Server (NTRS)
Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan
2017-01-01
The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.
Khan, Md Rajibur Rahaman; Kang, Shin-Won
2016-07-09
In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.
Generation of three-dimensional optical cusp beams with ultrathin metasurfaces.
Liu, Weiwei; Zhang, Yuchao; Gao, Jie; Yang, Xiaodong
2018-06-22
Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.
Weak scratch detection and defect classification methods for a large-aperture optical element
NASA Astrophysics Data System (ADS)
Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng
2017-03-01
Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.
High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System
Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram
2014-01-01
We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second. PMID:24891848
High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System.
Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram
2014-01-01
We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second.
JWST Integrated Science Instrument Module Alignment Optimization Tool
NASA Technical Reports Server (NTRS)
Bos, Brent
2013-01-01
During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. In order to understand how to manipulate the ISIM's degrees of freedom properly and to prepare for the ISIM flight model testing, a series of optical-mechanical analyses have been completed to develop and identify the best approaches for bringing a non-compliant ISIM element into compliance. In order for JWST to meet its observatory-level optical requirements and ambitious science goals, the ISIM element has to meet approximately 150 separate optical requirements. Successfully achieving many of those optical requirements depends on the proper alignment of the ISIM element with respect to the OTE. To verify that the ISIM element will meet its optical requirements, a series of cryogenic vacuum tests will be conducted with an OTE Simulator (OSIM). An optical Ray Trace and Geometry Model tool was developed to help solve the multi-dimensional alignment problem. The tool allows the user to determine how best to adjust the alignment of the JWST ISIM with respect to the ideal telescope interfaces so that the approximately 150 ISIM optical performance requirements can be satisfied. This capability has not existed previously.
Integrated thermal disturbance analysis of optical system of astronomical telescope
NASA Astrophysics Data System (ADS)
Yang, Dehua; Jiang, Zibo; Li, Xinnan
2008-07-01
During operation, astronomical telescope will undergo thermal disturbance, especially more serious in solar telescope, which may cause degradation of image quality. As drives careful thermal load investigation and measure applied to assess its effect on final image quality during design phase. Integrated modeling analysis is boosting the process to find comprehensive optimum design scheme by software simulation. In this paper, we focus on the Finite Element Analysis (FEA) software-ANSYS-for thermal disturbance analysis and the optical design software-ZEMAX-for optical system design. The integrated model based on ANSYS and ZEMAX is briefed in the first from an overview of point. Afterwards, we discuss the establishment of thermal model. Complete power series polynomial with spatial coordinates is introduced to present temperature field analytically. We also borrow linear interpolation technique derived from shape function in finite element theory to interface the thermal model and structural model and further to apply the temperatures onto structural model nodes. Thereby, the thermal loads are transferred with as high fidelity as possible. Data interface and communication between the two softwares are discussed mainly on mirror surfaces and hence on the optical figure representation and transformation. We compare and comment the two different methods, Zernike polynomials and power series expansion, for representing and transforming deformed optical surface to ZEMAX. Additionally, these methods applied to surface with non-circular aperture are discussed. At the end, an optical telescope with parabolic primary mirror of 900 mm in diameter is analyzed to illustrate the above discussion. Finite Element Model with most interested parts of the telescope is generated in ANSYS with necessary structural simplification and equivalence. Thermal analysis is performed and the resulted positions and figures of the optics are to be retrieved and transferred to ZEMAX, and thus final image quality is evaluated with thermal disturbance.
FINAL REPORT "Extreme non-linear optics of plasmas" Pierre Michel (16-LW-022)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, Pierre
2017-11-03
Large laser facilities such as the National Ignition Facility (NIF) are typically limited in performance and physical scale (and thus cost) by optics damage. In this LDRD, we investigated a radically new way to manipulate light at extreme powers and energies, where “traditional” (crystal-based) optical elements are replaced by a medium that is already “broken” and thus does not suffer from optics damage: a plasma. Our method consisted in applying multiple lasers into plasmas to imprint refractive micro-structures with optical properties designed to be similar to those of crystals or dielectric structures used in optics. In particular, we focused ourmore » efforts on two elements used to manipulate the polarization of lasers (i.e. the orientation of the light’s electric field vector): i) a polarizer, which only lets a given polarization direction pass and blocks the others, and ii) a “Pockels cell”, which can “rotate” the polarization direction or convert it from linear to elliptical or circular. These two elements are essential building blocks in almost all laser systems – for example, they can be combined to design optical gates. Here, we introduced the new concepts of a “plasma polarizer” and a “plasma Pockels cell”. Both concepts were demonstrated in proof-of-principle laboratory experiments in this LDRD. We also demonstrated that such laser-plasma systems could be used to provide full control of the refractive index of plasmas as well as their dispersion (variation of the index vs. the light wavelength), which constituted the basis for a final experiment aimed at demonstrating the feasibility of “slow light” in plasmas, i.e. the capability to slow down a light pulse almost to a full stop.« less
NASA Astrophysics Data System (ADS)
Visconti, Anthony Joseph
The fabrication of gradient-index (GRIN) optical elements is quite challenging, which has traditionally restricted their use in many imaging systems; consequently, commercial-level GRIN components usually exist in one particular market or niche application space. One such fabrication technique, ion exchange, is a well-known process used in the chemical strengthening of glass, the fabrication of waveguide devices, and the production of small diameter GRIN optical relay systems. However, the manufacturing of large diameter ion-exchanged GRIN elements has historically been limited by long diffusion times. For example, the diffusion time for a 20 mm diameter radial GRIN lens in commercially available ion exchange glass for small diameter relays, is on the order of a year. The diffusion time can be dramatically reduced by addressing three key ion exchange process parameters; the composition of the glass, the diffusion temperature, and the composition of the salt bath. Experimental work throughout this thesis aims to (1) scale up the ion exchange diffusion process to 20 mm diameters for a fast-diffusing titania silicate glass family in both (2) sodium ion for lithium ion (Na+ for Li+) and lithium ion for sodium ion (Li+ for Na+) exchange directions, while (3) utilizing manufacturing friendly salt bath compositions. In addition, optical design studies have demonstrated that an important benefit of gradient-index elements in imaging systems is the added degree of freedom introduced with a gradient's optical power. However, these studies have not investigated the potential usefulness of GRIN materials in dual-band visible to short-wave infrared (vis-SWIR) imaging systems. The unique chromatic properties of the titania silicate ion exchange glass become a significant degree of freedom in the design process for these color-limited, broadband imaging applications. A single GRIN element can replace a cemented doublet or even a cemented triplet, without loss in overall system performance. In this work, a polychromatic vis-SWIR gradient-index design model is constructed based on the homogeneous material properties of the titania silicate ion exchange glass. This model is verified by measuring the dispersion of fabricated GRIN profiles across the vis-SWIR spectrum. Finally, the polychromatic GRIN design model is implemented into commercial design software and several design studies are presented which validate the beneficial chromatic properties of the titania silicate GRIN material. In addition, system-level tolerancing with gradient-index elements is a largely unexplored area. This work introduces new methods and techniques for incorporating GRIN manufacturing errors directly into the design and tolerancing analysis of a multi-element optical system. These methods allow for the optical engineer to utilize manufacturable GRIN profiles throughout the design process and to better predict the final performance of an as-built system. Based on these techniques, a true design-for-manufacture high-performance eyepiece, utilizing a spherical gradient-index element, is designed, toleranced, and commissioned for build.
Binary-mask generation for diffractive optical elements using microcomputers.
O'Shea, D C; Beletic, J W; Poutous, M
1993-05-10
A new technique for generation of binary masks for the fabrication of diffractive optical elements is investigated. This technique, which uses commercially available desktop-publishing hardware and software in conjunction with a standard photoreduction camera, is much faster and less expensive thanhe conventional methods. The short turnaround time and low cost should give researchers a much greater degree of flexibility in the field of binary optics and enable wider application of diffractive-optics technology. Techniques for generating optical elements by using standard software packages that produce PostScript output are described. An evaluation of the dimensional fidelity of the mask reproduction from design to its realization in photoresist is presented.
Beam-splitter switches based on zenithal bistable liquid-crystal gratings.
Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E
2014-10-01
The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.
Distributed fiber optic moisture intrusion sensing system
Weiss, Jonathan D.
2003-06-24
Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.
Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces
NASA Astrophysics Data System (ADS)
Vinnakota, Raj; Genov, Dentcho
We present numerical modeling of an active electronically controlled highly confined charge-density waves, i.e. surface plasmon polaritons (SPPs) at the metallurgic interfaces of degenerate semiconductor materials. An electro-optic switching element for fully-functional plasmonic circuits based on p-n junction semiconductor Surface Plasmon Polariton (SPP) waveguide is shown. Two figures of merits are introduced and parametric study has been performed identifying the device optimal operation range. The Indium Gallium Arsenide (In0.53Ga0.47As) is identified as the best semiconductor material for the device providing high optical confinement, reduced system size and fast operation. The electro-optic SPP switching element is shown to operate at signal modulation up to -24dB and switching rates surpassing 100GHz, thus potentially providing a new pathway toward bridging the gap between electronic and photonic devices. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.
NASA Astrophysics Data System (ADS)
He, J.; Flowers, C. A.; Yao, Y.; Atwater, H. A.; Rockett, A. A.; Nuzzo, R. G.
2018-06-01
Photovoltaic devices used in conjunction with functional optical elements for light concentration and spectrum splitting are known to be a viable approach for highly efficient photovoltaics. Conventional designs employ discrete optical elements, each with the task of either performing optical concentration or separating the solar spectrum. In the present work, we examine the performance of a compact photovoltaic architecture in which a single lens plays a dual role as both a concentrator and a spectrum splitter, the latter made possible by exploiting its intrinsic dispersion. A four-terminal two-junction InGaP/GaAs device is prepared to validate the concept and illustrates pathways for improvements. A spectral separation in the visible range is demonstrated at the focal point of a plano-convex lens with a geometric concentration ratio of 1104X with respect to the InGaP subcell.
Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS)
NASA Technical Reports Server (NTRS)
Guerra, David V.; Schwemmer, Geary K.; Wooten, Albert D., Jr.; Chaudhuri, Sandipan S.; Wilkerson, Thomas D.
1995-01-01
A ground-based atmospheric lidar system that utilizes a Holographic Optical Telescope and Scanner has been developed and successfully operated to obtain atmospheric backscatter profiles. The Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing is built around a volume phase reflection Holographic Optical Element. This single optical element both directs and collimates the outgoing laser beam as well as collects, focuses, and filters the atmospheric laser backscatter, while offering significant weight savings over existing telescope mirror technology. Conical scanning is accomplished as the HOE rotates on a turntable sweeping the 1.2 mrad field of view around a 42deg cone. During this technology demonstration, atmospheric aerosol and cloud return signals have been received in both stationary and scanning modes. The success of this program has led to the further development of this technology for integration into airborne and eventually satellite earth observing scanning lidar telescopes.
NASA Astrophysics Data System (ADS)
Nardello, Marco; Zuccon, Sara; Corso, Alain Jodi; Zuppella, Paola; Gerlin, Francesca; Tessarolo, Enrico; Pelizzo, Maria Guglielmina
2015-04-01
The European Space Agency mission Solar Orbiter (SOLO) is dedicated to the study of the solar atmosphere and heliosphere. As a part of the payload, the instrument METIS (Multi Element Telescope for Imaging and Spectroscopy) will provide images of the corona, both in the visible range and at the hydrogen Lyman-α emission line (121.6 nm). The realization of optical coatings, based on Al and MgF2, able to reflect/transmit such spectral components is, therefore, necessary. Since optical characteristics of materials in the vacuum ultraviolet range are not well studied and vary greatly with the realization process, we implemented a study of their properties in different deposition conditions. This is aimed to the realization of a custom designed filter able to transmit the 121.6 nm wavelength while reflecting visible light, and thus separating visible from ultraviolet light paths in the METIS instrument.
Arbitrary spin-to-orbital angular momentum conversion of light.
Devlin, Robert C; Ambrosio, Antonio; Rubin, Noah A; Mueller, J P Balthasar; Capasso, Federico
2017-11-17
Optical elements that convert the spin angular momentum (SAM) of light into vortex beams have found applications in classical and quantum optics. These elements-SAM-to-orbital angular momentum (OAM) converters-are based on the geometric phase and only permit the conversion of left- and right-circular polarizations (spin states) into states with opposite OAM. We present a method for converting arbitrary SAM states into total angular momentum states characterized by a superposition of independent OAM. We designed a metasurface that converts left- and right-circular polarizations into states with independent values of OAM and designed another device that performs this operation for elliptically polarized states. These results illustrate a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication. Copyright © 2017, American Association for the Advancement of Science.
Plantet, C; Meimon, S; Conan, J-M; Fusco, T
2015-11-02
Exoplanet direct imaging with large ground based telescopes requires eXtreme Adaptive Optics that couples high-order adaptive optics and coronagraphy. A key element of such systems is the high-order wavefront sensor. We study here several high-order wavefront sensing approaches, and more precisely compare their sensitivity to noise. Three techniques are considered: the classical Shack-Hartmann sensor, the pyramid sensor and the recently proposed LIFTed Shack-Hartmann sensor. They are compared in a unified framework based on precise diffractive models and on the Fisher information matrix, which conveys the information present in the data whatever the estimation method. The diagonal elements of the inverse of the Fisher information matrix, which we use as a figure of merit, are similar to noise propagation coefficients. With these diagonal elements, so called "Fisher coefficients", we show that the LIFTed Shack-Hartmann and pyramid sensors outperform the classical Shack-Hartmann sensor. In photon noise regime, the LIFTed Shack-Hartmann and modulated pyramid sensors obtain a similar overall noise propagation. The LIFTed Shack-Hartmann sensor however provides attractive noise properties on high orders.
Quantum Private Comparison Protocol with Linear Optics
NASA Astrophysics Data System (ADS)
Luo, Qing-bin; Yang, Guo-wu; She, Kun; Li, Xiaoyu
2016-12-01
In this paper, we propose an innovative quantum private comparison(QPC) protocol based on partial Bell-state measurement from the view of linear optics, which enabling two parties to compare the equality of their private information with the help of a semi-honest third party. Partial Bell-state measurement has been realized by using only linear optical elements in experimental measurement-device-independent quantum key distribution(MDI-QKD) schemes, which makes us believe that our protocol can be realized in the near future. The security analysis shows that the participants will not leak their private information.
Optical elements formed by compressed gases: Analysis and potential applications
NASA Technical Reports Server (NTRS)
Howes, W. L.
1986-01-01
Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.
Twu, Ruey-Ching; Wang, Jhao-Sheng
2016-04-01
An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements.
On-chip RF-to-optical transducer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Simonsen, Anders; Tsaturyan, Yeghishe; Seis, Yannick; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S.
2016-04-01
Recent advances in the fabrication of nano- and micromechanical elements enable the realization of high-quality mechanical resonators with masses so small that the forces from optical photons can have a significant impact on their motion. This facilitates a strong interaction between mechanical motion and light, or phonons and photons. This interaction is the corner stone of the field of optomechanics and allows, for example, for ultrasensitive detection and manipulation of mechanical motion using laser light. Remarkably, today these techniques can be extended into the quantum regime, in which fundamental fluctuations of light and mechanics govern the system's behavior. Micromechanical elements can also interact strongly with other physical systems, which is the central aspect of many micro-electro-mechanical based sensors. Micromechanical elements can therefore act as a bridge between these diverse systems, plus technologies that utilize them, and the mature toolbox of optical techniques that routinely operates at the quantum limit. In a previous work [1], we demonstrated such a bridge by realizing simultaneous coupling between an electronic LC circuit and a quantum-noise limited optical interferometer. The coupling was mediated by a mechanical oscillator forming a mechanically compliant capacitor biased with a DC voltage. The latter enhances the electromechanical interaction all the way to the strong coupling regime. That scheme allowed optical detection of electronic signals with effective noise temperatures far below the actual temperature of the mechanical element. On-chip integration of the electrical, mechanical and optical elements is necessary for an implementation of the transduction scheme that is viable for commercial applications. Reliable assembly of a strongly coupled electromechanical device, and inclusion of an optical cavity for enhanced optical readout, are key features of the new platform. Both can be achieved with standard cleanroom fabrication techniques. We will furthermore present ongoing work to couple our transducer to an RF or microwave antenna, for low-noise detection of electromagnetic signals, including sensitive measurements of magnetic fields in an MRI detector. Suppression of thermomechanical noise is a key feature of electro-optomechanical transducers, and, more generally, hybrid systems involving mechanical degrees of freedom. We have shown that engineering of the phononic density of states allows improved isolation of the relevant mechanical modes from their thermal bath [2], enabling coherence times sufficient to realize quantum-coherent optomechanical coupling. This proves the potential of the employed platform for complex transducers all the way into the quantum regime. References: [1] Bagci et al, Nature 507, 81-85, (06 March 2014) [2] Tsaturyan, et al., Optics Express, Vol. 22, Issue 6, pp. 6810-6821 (2014)
Development of integrated optical tracking sensor by planar optics
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sasagawa, Tomohiro; Nishimae, Junichi; Sato, Yukio
1999-03-01
A compact and light weight optical tracking sensor for a large capacity flexible disk drive is demonstrated. The size of the optical element is no larger than 5.4 mm in length X 3.6 mm in width X 1.2 mm in height and the weight is only 18 mg. The application of the planar optical technique makes it possible to integrate all passive optical elements onto one transparent substrate. These features are useful for high- speed access, easy optical alignment, mass production, and miniaturization. The design and optical characteristics of the optical tracking sensor are described.
Double peacock eye optical element for extended focal depth imaging with ophthalmic applications.
Romero, Lenny A; Millán, María S; Jaroszewicz, Zbigniew; Kolodziejczyk, Andrzej
2012-04-01
The aged human eye is commonly affected by presbyopia, and therefore, it gradually loses its capability to form images of objects placed at different distances. Extended depth of focus (EDOF) imaging elements can overcome this inability, despite the introduction of a certain amount of aberration. This paper evaluates the EDOF imaging performance of the so-called peacock eye phase diffractive element, which focuses an incident plane wave into a segment of the optical axis and explores the element's potential use for ophthalmic presbyopia compensation optics. Two designs of the element are analyzed: the single peacock eye, which produces one focal segment along the axis, and the double peacock eye, which is a spatially multiplexed element that produces two focal segments with partial overlapping along the axis. The performances of the peacock eye elements are compared with those of multifocal lenses through numerical simulations as well as optical experiments in the image space. The results demonstrate that the peacock eye elements form sharper images along the focal segment than the multifocal lenses and, therefore, are more suitable for presbyopia compensation. The extreme points of the depth of field in the object space, which represent the remote and the near object points, have been experimentally obtained for both the single and the double peacock eye optical elements. The double peacock eye element has better imaging quality for relatively short and intermediate distances than the single peacock eye, whereas the latter seems better for far distance vision.
Miniature hybrid optical imaging lens
Sitter, Jr., David N.; Simpson, Marc L.
1997-01-01
A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.
Miniature hybrid optical imaging lens
Sitter, D.N. Jr.; Simpson, M.L.
1997-10-21
A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.
2002-09-30
Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful
Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2002-01-01
The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
NASA Astrophysics Data System (ADS)
Polydorides, Nick; Lionheart, William R. B.
2002-12-01
The objective of the Electrical Impedance and Diffuse Optical Reconstruction Software project is to develop freely available software that can be used to reconstruct electrical or optical material properties from boundary measurements. Nonlinear and ill posed problems such as electrical impedance and optical tomography are typically approached using a finite element model for the forward calculations and a regularized nonlinear solver for obtaining a unique and stable inverse solution. Most of the commercially available finite element programs are unsuitable for solving these problems because of their conventional inefficient way of calculating the Jacobian, and their lack of accurate electrode modelling. A complete package for the two-dimensional EIT problem was officially released by Vauhkonen et al at the second half of 2000. However most industrial and medical electrical imaging problems are fundamentally three-dimensional. To assist the development we have developed and released a free toolkit of Matlab routines which can be employed to solve the forward and inverse EIT problems in three dimensions based on the complete electrode model along with some basic visualization utilities, in the hope that it will stimulate further development. We also include a derivation of the formula for the Jacobian (or sensitivity) matrix based on the complete electrode model.
A Metalens with a Near-Unity Numerical Aperture.
Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A; Kuznetsov, Arseniy I
2018-03-14
The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.
A Metalens with a Near-Unity Numerical Aperture
NASA Astrophysics Data System (ADS)
Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M.; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A.; Kuznetsov, Arseniy I.
2018-03-01
The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high NA lenses in an ultra-flat fashion. However, so far, these have been limited to numerical apertures on the same order of traditional optical components, with experimentally reported values of NA <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction limited flat lens with a near-unity numerical aperture (NA>0.99) and sub-wavelength thickness (~{\\lambda}/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in sub-diffractive diamond nanocrystals. This work, based on diffractive elements able to efficiently bend light at angles as large as 82{\\deg}, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated to the standard, phase mapping approach.
Reflective optical imaging system
Shafer, David R.
2000-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.
Reflective optical imaging method and circuit
Shafer, David R.
2001-01-01
An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, Sumanth; Stallard, Brian R.
1998-01-01
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, S.; Stallard, B.R.
1998-03-10
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.
Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems
NASA Astrophysics Data System (ADS)
Hurtado, A.; Schires, K.; Henning, I. D.; Adams, M. J.
2012-03-01
We report an approach based upon vertical cavity surface emitting lasers (VCSELs) to reproduce optically different behaviors exhibited by biological neurons but on a much faster timescale. The technique proposed is based on the polarization switching and nonlinear dynamics induced in a single VCSEL under polarized optical injection. The particular attributes of VCSELs and the simple experimental configuration used in this work offer prospects of fast, reconfigurable processing elements with excellent fan-out and scaling potentials for use in future computational paradigms and artificial neural networks.
NASA Astrophysics Data System (ADS)
Buske, Ivo; Riede, Wolfgang
2006-09-01
We compare active optical elements based on different technologies to accomplish the requirements of a 2-dim. fine tracking control system. A cascaded optically and electrically addressable spatial light modulator (OASLM) based on liquid crystals (LC) is used for refractive beam steering. Spatial light modulators provide a controllable phase wedge to generate a beam deflection. Additionally, a tip/tilt mirror approach operating with piezo-electric actuators is investigated. A digital PID controller is implemented for closed-loop control. Beam tracking with a root-mean-squared accuracy of Δα=30 nrad has been laboratory-confirmed.
Microsystem enabled photovoltaic modules and systems
Nielson, Gregory N.; Sweatt, William C.; Okandan, Murat
2017-09-12
A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.
High resolution optical shaft encoder for motor speed control based on an optical disk pick-up
NASA Astrophysics Data System (ADS)
Yeh, Wei-Hung; Bletscher, Warren; Mansuripur, M.
1998-08-01
Using a three-beam optical pick-up from a compact disk player and a flexible, shaft-mounted diffraction grating, we obtain information about the rotation speed and angular position of the motor's spindle. This information may be used for feedback to the motor for smooth operation. Due to the small size of the focused spot and the built-in auto-focus mechanism of the optical head, the proposed encoder can achieve submicrometer resolution. With high resolution, reliable operation, and low-cost elements, the proposed method is suitable for rotary and linear motion control where accurate positioning of an object is required.
Light storage in a cold atomic ensemble with a high optical depth
NASA Astrophysics Data System (ADS)
Park, Kwang-Kyoon; Chough, Young-Tak; Kim, Yoon-Ho
2017-06-01
A quantum memory with a high storage efficiency and a long coherence time is an essential element in quantum information applications. Here, we report our recent development of an optical quantum memory with a rubidium-87 cold atom ensemble. By increasing the optical depth of the medium, we have achieved a storage efficiency of 65% and a coherence time of 51 μs for a weak laser pulse. The result of a numerical analysis based on the Maxwell-Bloch equations agrees well with the experimental results. Our result paves the way toward an efficient optical quantum memory and may find applications in photonic quantum information processing.
Bragg-Berry mirrors: reflective broadband q-plates.
Rafayelyan, Mushegh; Brasselet, Etienne
2016-09-01
We report on the experimental realization of flat mirrors enabling the broadband generation of optical vortices upon reflection. The effect is based on the geometric Berry phase associated with the circular Bragg reflection phenomenon from chiral uniaxial media. We show the reflective optical vortex generation from both diffractive and nondiffractive paraxial light beams using spatially patterned chiral liquid crystal films. The intrinsic spectrally broadband character of spin-orbit generation of optical phase singularities is demonstrated over the full visible domain. Our results do not rely on any birefringent retardation requirement and, consequently, foster the development of a novel generation of robust optical elements for spin-orbit photonic technologies.
Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.
1990-01-01
The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.
Investigations of calcium spectral lines in laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Ching, Sim Yit; Tariq, Usman; Haider, Zuhaib; Tufail, Kashif; Sabri, Salwanie; Imran, Muhammad; Ali, Jalil
2017-03-01
Laser-induced breakdown spectroscopy (LIBS) is a direct and versatile analytical technique that performs the elemental composition analysis based on optical emission produced by laser induced-plasma, with a little or no sample preparation. The performance of the LIBS technique relies on the choice of experimental conditions which must be thoroughly explored and optimized for each application. The main parameters affecting the LIBS performance are the laser energy, laser wavelength, pulse duration, gate delay, geometrical set-up of the focusing and collecting optics. In LIBS quantitative analysis, the gate delay and laser energy are very important parameters that have pronounced impact on the accuracy of the elemental composition information of the materials. The determination of calcium elements in the pelletized samples was investigated and served for the purpose of optimizing the gate delay and laser energy by studying and analyzing the results from emission intensities collected and signal to background ratio (S/B) for the specified wavelengths.
Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light
NASA Astrophysics Data System (ADS)
Cai, Jianjun; Shen, Xueju; Lei, Ming
2017-11-01
We propose a novel optical asymmetric image encryption method based on amplitude reconstruction of elliptically polarized light, which is free from silhouette problem. The original image is analytically separated into two phase-only masks firstly, and then the two masks are encoded into amplitudes of the orthogonal polarization components of an elliptically polarized light. Finally, the elliptically polarized light propagates through a linear polarizer, and the output intensity distribution is recorded by a CCD camera to obtain the ciphertext. The whole encryption procedure could be implemented by using commonly used optical elements, and it combines diffusion process and confusion process. As a result, the proposed method achieves high robustness against iterative-algorithm-based attacks. Simulation results are presented to prove the validity of the proposed cryptography.
NASA Astrophysics Data System (ADS)
Fischer, Robert E.; Smith, Warren J.; Harvey, James
1986-01-01
Papers dealing with current materials for gradient-index optics, an intelligent data-base system for optical designers; tilted mirror systems; a null-lens design approach for centrally obscured components; the use of the vector aberration theory to optimize an unobscured optical system; multizone bifocal contact lens design; and the concentric meniscus element are presented. Topics discussed include optical manufacturing in the Far East; the optical performance of molded-glass lenses for optical memory applications; through-wafer optical interconnects for multiwafer wafer-scale integrated architecture; optical thin-flim monitoring using optical fibers; aerooptical testing; optical inspection; and a system analysis program for a 32K microcomputer. Consideration is given to various theories, algorithms, and applications of diffraction, a vector formulation of a ray-equivalent method for Gaussian beam propagation; Fourier optical analysis of aberrations in focused laser beams; holography and moire interferometry; and phase-conjugate optical correctors for diffraction-limited applications.
Measurement of 3D refractive index distribution by optical diffraction tomography
NASA Astrophysics Data System (ADS)
Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan
2018-01-01
Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.
NASA Astrophysics Data System (ADS)
Do, Dukho; Kang, Dongkyun; Ikuta, Mitsuhiro; Tearney, Guillermo J.
2016-03-01
Spectrally encoded endoscopy (SEE) is a miniature endoscopic technology that can acquire images of internal organs through a hair-thin probe. While most previously described SEE probes have been side viewing, forward-view (FV)-SEE is advantageous in certain clinical applications as it provides more natural navigation of the probe and has the potential to provide a wider field of view. Prior implementations of FV-SEE used multiple optical elements that increase fabrication complexity and may diminish the robustness of the device. In this paper, we present a new design that uses a monolithic optical element to realize FV-SEE imaging. The optical element is specially designed spacer, fabricated from a 500-μm-glass rod that has a mirror surface on one side and a grating stamped on its distal end. The mirror surface is used to change the incident angle on the grating to diffract the shortest wavelength of the spectrum so that it is parallel to the optical axis. Rotating the SEE optics creates a circular FV-SEE image. Custom-designed software processes FV-SEE images into circular images, which are displayed in real-time. In order to demonstrate this new design, we have constructed the FV-SEE optical element using a 1379 lines/mm diffraction grating. When illuminated with a source with a spectral bandwidth of 420-820 nm, the FV-SEE optical element provides 678 resolvable points per line. The imaging performance of the FV-SEE device was tested by imaging a USAF resolution target. SEE images showed that this new approach generates high quality images in the forward field with a field of view of 58°. Results from this preliminary study demonstrate that we can realize FV-SEE imaging with simple, monolithic, miniature optical element. The characteristics of this FV-SEE configuration will facilitate the development of robust miniature endoscopes for a variety of medical imaging applications.
Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Kassiba, A.; Bouclé, J.; Makowska-Janusik, M.; Errien, N.
2007-08-01
Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK.
Lapchuk, A; Pashkevich, G A; Prygun, O V; Yurlov, V; Borodin, Y; Kryuchyn, A; Korchovyi, A A; Shylo, S
2015-10-01
The quasi-spiral 2D diffractive optical element (DOE) based on M-sequence of length N=15 is designed and manufactured. The speckle suppression efficiency by the DOE rotation is measured. The speckle suppression coefficients of 10.5, 6, and 4 are obtained for green, violet, and red laser beams, respectively. The results of numerical simulation and experimental data show that the quasi-spiral binary DOE structure can be as effective in speckle reduction as a periodic 2D DOE structure. The numerical simulation and experimental results show that the speckle suppression efficiency of the 2D DOE structure decreases approximately twice at the boundaries of the visible range. It is shown that a replacement of this structure with the bilateral 1D DOE allows obtaining the maximum speckle suppression efficiency in the entire visible range of light.
Ring-laser gyroscope system using dispersive element(s)
NASA Technical Reports Server (NTRS)
Smith, David D. (Inventor)
2010-01-01
A ring-laser gyroscope system includes a ring-laser gyroscope (RLG) and at least one dispersive element optically coupled to the RLG's ring-shaped optical path. Each dispersive element has a resonant frequency that is approximately equal to the RLG's lasing frequency. A group index of refraction defined collectively by the dispersive element(s) has (i) a real portion that is greater than zero and less than one, and (ii) an imaginary portion that is less than zero.
Fabrication of amplitude-phase type diffractive optical elements in aluminium films
NASA Astrophysics Data System (ADS)
Fomchenkov, S. A.; Butt, M. A.
2017-11-01
In the course of studies have been conducted a method of forming the phase diffractive optical elements (DOEs) by direct laser writing in thin films of aluminum. The quality of the aluminum films were investigated depending on the parameters of magnetron sputtering process. Moreover, the parameters of the laser writing process in thin films of aluminum were optimized. The structure of phase diffractive optical elements was obtained by the proposed method.
NASA Astrophysics Data System (ADS)
Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.
2017-09-01
The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.
Lens-mount stability trade-off: a survey exemplified for DUV wafer inspection objectives
NASA Astrophysics Data System (ADS)
Bouazzam, Achmed; Erbe, Torsten; Fahr, Stephan; Werschnik, Jan
2015-09-01
The position stability of optical elements is an essential part of the tolerance budget of an optical system because its compensation would require an alignment step after the lens has left the factory. In order to achieve a given built performance the stability error contribution needs to be known and accounted for. Given a high-end lens touching the edge of technology not knowing, under- or overestimating this contribution becomes a serious cost and risk factor. If overestimated the remaining parts of the budget need to be tighter. If underestimated the total project might fail. For many mounting principles the stability benchmark is based on previous systems or information gathered by elaborated testing of complete optical systems. This renders the development of a new system into a risky endeavour, because these experiences are not sufficiently precise and tend to be not transferable when scaling of the optical elements is intended. This contribution discusses the influences of different optical mounting concepts on the position stability using the example of high numerical aperture (HNA) inspection lenses working in the deep ultraviolet (DUV) spectrum. A method to investigate the positional stability is presented for selected mounting examples typical for inspection lenses.
Recent progress in liquid crystal projection displays
NASA Astrophysics Data System (ADS)
Hamada, Hiroshi
1997-05-01
An LC-projector usually contains 3 monochrome TFT-LCDs with a 3-channel dichroic system or a single TFT-LCD with a micro color filter. The liquid crystal operation mode adopted in a TFT-LCD is TN. The optical throughput of an LC-projector is reduced by a pair of polarizers, an aperture ratio of a TFT- LCD and a color filter in a single-LCD projector. In order to eliminate absorption loss by a color filter, a single LCD projection system which consists of a monochrome LCD with a microlens array and a color splitting system using tilted dichroic mirrors or another optical element such as a holographic optical element or a blazed grating has been developed. And LC rear projection TVs have started to challenge CRT-based rear projection TVs. In addition to this system, new technologies to improve optical throughput have been developed to the practical stage such as an active- matrix-addressed PDLC and a reflective type LCD on a Si-LSI chip. Merits and technical issues of newly developed systems and conventional systems including a-Si TFT-LCDs and p-Si TFT-LCDs are discussed mainly in terms of optical throughput.
Low-stress soldering technique used to assemble an optical system for aerospace missions
NASA Astrophysics Data System (ADS)
Ribes-Pleguezuelo, P.; Koechlin, C.; Burkhardt, T.; Hornaff, M.; Kamm, A.; Gramens, S.; Beckert, E.; Fiault, G.; Eberhardt, R.; Tünnermann, A.
2017-09-01
A high-precision opto-mechanical breadboard for a lens mount has been assembled by means of a laserbased soldering process called Solderjet Bumping; which thanks to its localized and minimized input of thermal energy, is well suited for the joining of optical components made of fragile and brittle materials such as glasses. An optical element made of a silica lens and a titanium barrel has been studied to replicate the lens mounts of the afocal beam expander used in the LIDAR instrument (ATLID) of the ESA EarthCare Mission, whose aim is to monitor molecular and particle-based back-scattering in order to analyze atmosphere composition. Finally, a beam expander optical element breadboard with a silica lens and a titanium barrel was assembled using the Solderjet Bumping technology with Sn96.5Ag3Cu0.5 SAC305 alloy resulting in a low residual stress (<1 MPa) on the joining areas, a low light-depolarization (<0.2 %) and low distortion (wave-front error measurement < 5 nm rms) on the assemblies. The devices also successfully passed humidity, thermal-vacuum, vibration, and shock tests with conditions similar to the ones expected for the ESA EarthCare mission and without altering their optical performances.
Optical Waveguides Written in Silicon with Femtosecond Laser
NASA Astrophysics Data System (ADS)
Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer
Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.
Influence of rare earth elements (Nd, Sm, Gd) on the physicochemical properties of ges crystal
NASA Astrophysics Data System (ADS)
Madatov, R. S.; Alekperov, A. S.; Magerramova, Dzh. A.
2015-11-01
Layered semiconductors (including GeS), which are widely used in modern electronics, are of great interest for researchers. New GeS-based devices have been developed for holographic recording, optical processing, and storage of information. In the last few years, American scientists have developed a unique GeS-based device that makes it possible to accumulate an immense amount of solar energy. The introduction of rare earth elements (REEs) facilitates the healing of metal and chalcogenide vacancies, removes polytypism, and enhances interlayer interaction.
A high-accuracy optical linear algebra processor for finite element applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
Optical gain in type–II InGaAs/GaAsSb quantum well nano-heterostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nirmal, H. K.; Yadav, Nisha; Lal, Pyare
2015-08-28
In this paper, we have simulated optical gain in type-II InGaAs/GaAsSb quantum well based nano-scale heterostructure. In order to simulate the optical gain, the heterostructure has been modeled with the help of six band k.p method. The 6 × 6 diagonalized k.p Hamiltonian has been solved to evaluate the valence sub-bands (i.e. light and heavy hole energies); and then optical matrix elements and optical gain within TE (Transverse Electric) mode has been calculated. The results obtained suggest that peak optical gain in the heterostructure can be achieved at the lasing wavelength ~ 1.95 µm (SWIR region) and at corresponding energy ~more » 0.635 eV.« less
Optical processing for landmark identification
NASA Technical Reports Server (NTRS)
Casasent, D.; Luu, T. K.
1981-01-01
A study of optical pattern recognition techniques, available components and airborne optical systems for use in landmark identification was conducted. A data base of imagery exhibiting multisensor, seasonal, snow and fog cover, exposure, and other differences was assembled. These were successfully processed in a scaling optical correlator using weighted matched spatial filter synthesis. Distinctive data classes were defined and a description of the data (with considerable input information and content information) emerged from this study. It has considerable merit with regard to the preprocessing needed and the image difference categories advanced. A optical pattern recognition airborne applications was developed, assembled and demontrated. It employed a laser diode light source and holographic optical elements in a new lensless matched spatial filter architecture with greatly reduced size and weight, as well as component positioning toleranced.
Diffractive micro-optical element with nonpoint response
NASA Astrophysics Data System (ADS)
Soifer, Victor A.; Golub, Michael A.
1993-01-01
Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.
Multivariate optical element platform for compressed detection of fluorescence markers
NASA Astrophysics Data System (ADS)
Priore, Ryan J.; Swanstrom, Joseph A.
2014-05-01
The success of a commercial fluorescent diagnostic assay is dependent on the selection of a fluorescent biomarker; due to the broad nature of fluorescence biomarker emission profiles, only a small number of fluorescence biomarkers may be discriminated from each other as a function of excitation source. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broad band, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs have historically been matched 1:1 to a discrete analyte or class prediction; however, MOE filter sets are capable of sensing projections of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This optical regression can offer real-time measurements with relatively high signal-to-noise ratios that realize the advantages of multiplexed detection and pattern recognition in a simple optical instrument. The specificity advantage of MOE-based sensors allows fluorescent biomarkers that were once incapable of discrimination from one another via optical band pass filters to be employed in a common assay panel. A simplified MOE-based sensor may ultimately reduce the requirement for highly trained operators as well as move certain life science applications like disease prognostication from the laboratory to the point of care. This presentation will summarize the design and fabrication of compressed detection MOE filter sets for detecting multiple fluorescent biomarkers simultaneously with strong spectroscopic interference as well as comparing the detection performance of the MOE sensor with traditional optical band pass filter methodologies.
Brixner, B.B.; Klein, M.M.; Winkler, M.A.
1980-05-21
The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.
Brixner, Berlyn B.; Klein, Morris M.; Winkler, Max A.
1982-01-01
The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.
A Micromachined Geometric Moire Interferometric Floating-Element Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Horowitz, S.; Chen, T.; Chandrasekaran, V.; Tedjojuwono, K.; Nishida, T.; Cattafesta, L.; Sheplak, M.
2004-01-01
This paper presents the development of a floating-element shear stress sensor that permits the direct measurement of skin friction based on geometric Moir interferometry. The sensor was fabricated using an aligned wafer-bond/thin-back process producing optical gratings on the backside of a floating element and on the top surface of the support wafer. Experimental characterization indicates a static sensitivity of 0.26 microns/Pa, a resonant frequency of 1.7 kHz, and a noise floor of 6.2 mPa/(square root)Hz.
Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy
Waechter, Helen; Litman, Jessica; Cheung, Adrienne H.; Barnes, Jack A.; Loock, Hans-Peter
2010-01-01
Waveguide-based cavity ring-down spectroscopy (CRD) can be used for quantitative measurements of chemical concentrations in small amounts of liquid, in gases or in films. The change in ring-down time can be correlated to analyte concentration when using fiber optic sensing elements that change their attenuation in dependence of either sample absorption or refractive index. Two types of fiber cavities, i.e., fiber loops and fiber strands containing reflective elements, are distinguished. Both types of cavities were coupled to a variety of chemical sensor elements, which are discussed and compared. PMID:22294895
Coherent white light amplification
Jovanovic, Igor; Barty, Christopher P.
2004-05-25
A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.
NASA Astrophysics Data System (ADS)
Shimanskii, R. V.; Poleshchuk, A. G.; Korolkov, V. P.; Cherkashin, V. V.
2017-03-01
A method is developed to ensure precise alignment of the origin of a polar coordinate system in which the laser beam position is defined in writing diffractive optical elements with the optical workpiece rotation axis. This method is used to improve the accuracy of a circular laser writing system in writing large-scale diffractive optical elements in a polar coordinate system. Results of studying new algorithms of detection and correction of positioning errors of the circular laser writing system in the course of writing are reported.
Fast Erase Method and Apparatus For Digital Media
NASA Technical Reports Server (NTRS)
Oakely, Ernest C. (Inventor)
2006-01-01
A non-contact fast erase method for erasing information stored on a magnetic or optical media. The magnetic media element includes a magnetic surface affixed to a toroidal conductor and stores information in a magnetic polarization pattern. The fast erase method includes applying an alternating current to a planar inductive element positioned near the toroidal conductor, inducing an alternating current in the toroidal conductor, and heating the magnetic surface to a temperature that exceeds the Curie-point so that information stored on the magnetic media element is permanently erased. The optical disc element stores information in a plurality of locations being defined by pits and lands in a toroidal conductive layer. The fast erase method includes similarly inducing a plurality of currents in the optical media element conductive layer and melting a predetermined portion of the conductive layer so that the information stored on the optical medium is destroyed.
Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements
NASA Astrophysics Data System (ADS)
Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey
2017-12-01
Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.
Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers
NASA Technical Reports Server (NTRS)
Adams, James H.; Christl, Mark J.; Young, Roy M.
2011-01-01
The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.
Prototype Focal-Plane-Array Optoelectronic Image Processor
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey
1995-01-01
Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.
Optical analog-to-digital converter
Vawter, G Allen [Corrales, NM; Raring, James [Goleta, CA; Skogen, Erik J [Albuquerque, NM
2009-07-21
An optical analog-to-digital converter (ADC) is disclosed which converts an input optical analog signal to an output optical digital signal at a sampling rate defined by a sampling optical signal. Each bit of the digital representation is separately determined using an optical waveguide interferometer and an optical thresholding element. The interferometer uses the optical analog signal and the sampling optical signal to generate a sinusoidally-varying output signal using cross-phase-modulation (XPM) or a photocurrent generated from the optical analog signal. The sinusoidally-varying output signal is then digitized by the thresholding element, which includes a saturable absorber or at least one semiconductor optical amplifier, to form the optical digital signal which can be output either in parallel or serially.
Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.
Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N
2016-06-01
The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920 ps) together with a compact footprint (4.15 mm2) and optical loss <27 dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.
Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holleis, S.; Hoinkes, T.; Wuttke, C.
2014-04-21
We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on themore » well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.« less
1987-08-01
take place in both contractor and government facilities. The on-orbit evaluation could utilize modified launch facilities depending on the launch...technological issues : o Telescope Optics: Verify that the distortions associated vith large optical elements satisfy detection and tracking requirements; verify...Validation program vould be car- ried out at contractor facilities that 1’ave not been identified and at six government facilities (Arnold Engineering
Diffraction analysis of sidelobe characteristics of optical elements with ripple error
NASA Astrophysics Data System (ADS)
Zhao, Lei; Luo, Yupeng; Bai, Jian; Zhou, Xiangdong; Du, Juan; Liu, Qun; Luo, Yujie
2018-03-01
The ripple errors of the lens lead to optical damage in high energy laser system. The analysis of sidelobe on the focal plane, caused by ripple error, provides a reference to evaluate the error and the imaging quality. In this paper, we analyze the diffraction characteristics of sidelobe of optical elements with ripple errors. First, we analyze the characteristics of ripple error and build relationship between ripple error and sidelobe. The sidelobe results from the diffraction of ripple errors. The ripple error tends to be periodic due to fabrication method on the optical surface. The simulated experiments are carried out based on angular spectrum method by characterizing ripple error as rotationally symmetric periodic structures. The influence of two major parameter of ripple including spatial frequency and peak-to-valley value to sidelobe is discussed. The results indicate that spatial frequency and peak-to-valley value both impact sidelobe at the image plane. The peak-tovalley value is the major factor to affect the energy proportion of the sidelobe. The spatial frequency is the major factor to affect the distribution of the sidelobe at the image plane.
Polarized excitons and optical activity in single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Chang, Yao-Wen; Jin, Bih-Yaw
2018-05-01
The polarized excitons and optical activity of single-wall carbon nanotubes (SWNTs) are studied theoretically by π -electron Hamiltonian and helical-rotational symmetry. By taking advantage of the symmetrization, the single-particle energy and properties of a SWNT are characterized with the corresponding helical band structure. The dipole-moment matrix elements, magnetic-moment matrix elements, and the selection rules can also be derived. Based on different selection rules, the optical transitions can be assigned as the parallel-polarized, left-handed circularly-polarized, and right-handed circularly-polarized transitions, where the combination of the last two gives the cross-polarized transition. The absorption and circular dichroism (CD) spectra are simulated by exciton calculation. The calculated results are well comparable with the reported measurements. Built on the foundation, magnetic-field effects on the polarized excitons and optical activity of SWNTs are studied. Dark-bright exciton splitting and interband Faraday effect in the CD spectrum of SWNTs under an axial magnetic field are predicted. The Faraday rotation dispersion can be analyzed according to the selection rules of circular polarizations and the helical band structure.
Systems analysis on laser beamed power
NASA Technical Reports Server (NTRS)
Zeiders, Glenn W., Jr.
1993-01-01
The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.
Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.
Forder, James A
2014-08-01
This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Integrated optical gyroscopes offering low cost, small size and vibration immunity
NASA Astrophysics Data System (ADS)
Monovoukas, Christos; Swiecki, Andrew; Maseeh, Fariborz
2000-03-01
IntelliSense has developed an integrated optic gyro technology that provides the sensitivity of fiber optic gyros while utilizing batch microfabrication techniques to achieve the low cost of mechanical MEMS gyros. The base technology consists of an optical resonating waveguide chip, sensor electronics and an optical bench. The sensing element is based on an integrated optic waveguide chip in which counter-propagating optical fields are used to sense rotation in the plane of the waveguide through the Sagnac effect. It is powered by a semiconductor laser light source, which is coupled into a waveguide and split into two waveguide arms. Both signals are probed through the out coupled light at each waveguide arm, and rate information is derived from the difference in phase between these two signals. Measuring angular rotation is important for proper operation of a variety of systems such as: missile guidance systems, satellites, energy exploration, camera stabilization, robotics positioning, platform stabilization and space craft guidance to mention a few. This technology overcomes the limitations that previous commercially available gyros for this purpose have had including limitations in size, sensitivity, durability, and premium price.
Microoptical System And Fabrication Method Therefor
Sweatt, William C.; Christenson, Todd R.
2005-03-15
Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.
Microoptical system and fabrication method therefor
Sweatt, William C.; Christenson, Todd R.
2003-07-08
Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.
A novel lightweight Fizeau infrared interferometric imaging system
NASA Astrophysics Data System (ADS)
Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert
2016-05-01
Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.
Simple online recognition of optical data strings based on conservative optical logic
NASA Astrophysics Data System (ADS)
Caulfield, H. John; Shamir, Joseph; Zavalin, Andrey I.; Silberman, Enrique; Qian, Lei; Vikram, Chandra S.
2006-06-01
Optical packet switching relies on the ability of a system to recognize header information on an optical signal. Unless the headers are very short with large Hamming distances, optical correlation fails and optical logic becomes attractive because it can handle long headers with Hamming distances as low as 1. Unfortunately, the only optical logic gates fast enough to keep up with current communication speeds involve semiconductor optical amplifiers and do not lend themselves to the incorporation of large numbers of elements for header recognition and would consume a lot of power as well. The ideal system would operate at any bandwidth with no power consumption. We describe how to design and build such a system by using passive optical logic. This too leads to practical problems that we discuss. We show theoretically various ways to use optical interferometric logic for reliable recognition of long data streams such as headers in optical communication. In addition, we demonstrate one particularly simple experimental approach using interferometric coinc gates.
Advanced Wavefront Sensor Concepts.
1981-01-01
internal optics (a) Characteristics (see Figure 47) - Intensification with a 256 element linear self scanned diode array - Optical input; lenticular ...34 diameter - Lenticular array input to fiber optics which spread out to tubes - Photon counting for low noise fac- tor (b) Pe r fo rmance - Bialkali...problem in making the lenslet arrays in the pupil divider rectangular. The last optical elements are the lenticular lens arrays. In this group, the first
Cantarella, Giuseppe; Klitis, Charalambos; Sorel, Marc; Strain, Michael J
2017-08-21
Wavelength selective filters represent one of the key elements for photonic integrated circuits (PIC) and many of their applications in linear and non-linear optics. In devices optimised for single polarisation operation, cross-polarisation scattering can significantly limit the achievable filter rejection. An on-chip filter consisting of elements to filter both TE and TM polarisations is demonstrated, based on a cascaded ring resonator geometry, which exhibits a high total optical rejection of over 60 dB. Monolithic integration of a cascaded ring filter with a four-wave mixing micro-ring device is also experimentally demonstrated with a FWM efficiency of -22dB and pump filter extinction of 62dB.
A new fabrication technique for complex refractive micro-optical systems
NASA Astrophysics Data System (ADS)
Tormen, Massimo; Carpentiero, Alessandro; Ferrari, Enrico; Cabrini, Stefano; Cojoc, Dan; Di Fabrizio, Enzo
2006-01-01
We present a new method that allows to fabricate structures with tightly controlled three-dimensional profiles in the 10 nm to 100 μm scale range. This consists of a sequence of lithographic steps such as Electron Beam (EB) or Focused Ion Beam (FIB) lithography, alternated with isotropic wet etching processes performed on a quartz substrate. Morphological characterization by SEM and AFM shows that 3D structures with very accurate shape control and nanometer scale surface roughness can be realized. Quartz templates have been employed as complex system of micromirrors after metal coating of the patterned surface or used as stamps in nanoimprint, hot embossing or casting processes to shape complex plastic elements. Compared to other 3D micro and nanostructuring methods, in which a hard material is directly "sculptured" by energetic beams, our technique requires a much less intensive use of expensive lithographic equipments, for comparable volumes of structured material, resulting in dramatic increase of throughput. Refractive micro-optical elements have been fabricated and characterized in transmission and reflection modes with white and monochromatic light. The elements produce a distribution of sharp focal spots and lines in the three dimensional space, opening the route for applications of image reconstruction based on refractive optics.
NASA Astrophysics Data System (ADS)
Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin
2017-05-01
The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.
Mansuori, M; Zareei, G H; Hashemi, H
2015-10-01
We present a numerical method for generation of optical pulse width modulation (PWM) based on tunable reflective interface by using a microfluidic droplet. We demonstrate a single layer, planar, optofluidic PWM switch that is driven by excited alternating microbubbles. The main parameters of generation of this PWM such as frequency and speed of switching can be controlled by the mass flow rates of input fluids, and the shape of plug or droplet. Advantages of this design are the reconfigurability in design and the easy control of the switching parameters. The validation of the proposed design is carried out by employing the finite element method (FEM) for the mechanical simulation and the finite-difference time-domain (FDTD) for the optical simulation.
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhou, Jun; Zhang, Haopeng; Jiang, Tao; Lou, Cibo
2015-03-01
We proposed an efficient spaser based on gold-silver core-shell nanorods (NRs) encapsulated by an outer silica shell doped with a gain medium. The optical characteristics of the spaser were numerically simulated based on the finite element method (FEM). The results showed that the localized surface plasmon resonance (LSPR) amplification characteristics of the spaser strongly depend on the thickness of silver shell, the aspect ratio of the inner gold NRs, and the polarization direction of the incident light. And, the maximum absolute value of optical cross-section of the spaser can reach 21,824 μm2, which is about 1115, 523, and 18 times higher than that of spasers based on the gold NRs, the silver NRs, and the silver-gold core-shell NRs, respectively. The ultra-strong surface plasmon amplification characteristics of the spaser have potential applications in optical information storage, high sensitivity biochemical sensing, and medical engineering.
Reflective optical imaging system with balanced distortion
Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.
1999-01-01
An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Method and apparatus for removing unwanted reflections from an interferometer
NASA Technical Reports Server (NTRS)
Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)
1994-01-01
A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.
Toward high throughput optical metamaterial assemblies.
Fontana, Jake; Ratna, Banahalli R
2015-11-01
Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.
Reflective optical imaging systems with balanced distortion
Hudyma, Russell M.
2001-01-01
Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.
Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2014-12-01
We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.
Spectral diffraction efficiency characterization of broadband diffractive optical elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Junoh; Cruz-Cabrera, Alvaro Augusto; Tanbakuchi, Anthony
Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the workingmore » bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.« less
Directly observable optical properties of sprites in Central Europe
NASA Astrophysics Data System (ADS)
Bór, József
2013-04-01
Luminous optical emissions accompanying streamer-based natural electric breakdown processes initiating in the mesosphere are called sprites. 489 sprite events have been observed with a TV frame rate video system in Central Europe from Sopron (47.68N, 16.58E, 230 m MSL), Hungary between 2007 and 2009. On the basis of these observations, characteristic morphological properties of sprites, i.e. basic forms (e.g. column, carrot, angel, etc.) as well as common morphological features (e.g. tendrils, glows, puffs, beads, etc.), have been identified. Probable time sequences of streamer propagation directions were associated with each of the basic sprite forms. It is speculated that different sequences of streamer propagation directions can result in very similar final sprite shapes. The number and type variety of sprite elements appearing in an event as well as the total optical duration of an event was analyzed statistically. Jellyfish and dancing sprite events were considered as special subsets of sprite clusters. It was found that more than 90% of the recorded sprite elements appeared in clusters rather than alone and more than half of the clusters contained more than one basic sprite forms. The analysis showed that jellyfish sprites and clusters of column sprites featuring glows and tendrils do not tend to have optical lifetimes longer than 80 ms. Such very long optical lifetimes have not been observed in sprite clusters containing more than 25 elements of any type, either. In contrast to clusters containing sprite entities of only one form, sprite events showing more sprite forms seem to have extended optical durations more likely. The need for further investigation and for finding theoretical concepts to link these observations to electric conditions ambient for sprite formation is emphasized.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2008-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin, nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth (Inventor); Hughes, Eli (Inventor)
2007-01-01
A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Thin nearly wireless adaptive optical device
NASA Technical Reports Server (NTRS)
Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)
2009-01-01
A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.
Design, fabrication, and testing of duralumin zoom mirror with variable thickness
NASA Astrophysics Data System (ADS)
Hui, Zhao; Xie, Xiaopeng; Xu, Liang; Ding, Jiaoteng; Shen, Le; Liu, Meiying; Gong, Jie
2016-10-01
Zoom mirror is a kind of active optical component that can change its curvature radius dynamically. Normally, zoom mirror is used to correct the defocus and spherical aberration caused by thermal lens effect to improve the beam quality of high power solid-state laser since that component was invented. Recently, the probable application of zoom mirror in realizing non-moving element optical zoom imaging in visible band has been paid much attention. With the help of optical leveraging effect, the slightly changed local optical power caused by curvature variation of zoom mirror could be amplified to generate a great alteration of system focal length without moving elements involved in, but in this application the shorter working wavelength and higher surface figure accuracy requirement make the design and fabrication of such a zoom mirror more difficult. Therefore, the key to realize non-moving element optical zoom imaging in visible band lies in zoom mirror which could provide a large enough saggitus variation while still maintaining a high enough surface figure. Although the annular force based actuation could deform a super-thin mirror having a constant thickness to generate curvature variation, it is quite difficult to maintain a high enough surface figure accuracy and this phenomenon becomes even worse when the diameter and the radius-thickness ratio become bigger. In this manuscript, by combing the pressurization based actuation with a variable thickness mirror design, the purpose of obtaining large saggitus variation and maintaining quite good surface figure accuracy at the same time could be achieved. A prototype zoom mirror with diameter of 120mm and central thickness of 8mm is designed, fabricated and tested. Experimental results demonstrate that the zoom mirror having an initial surface figure accuracy superior to 1/50λ could provide at least 21um saggitus variation and after finishing the curvature variation its surface figure accuracy could still be superior to 1/20λ, which proves that the effectiveness of the theoretical design.
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2017-05-01
This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.
Knowledge-based environment for optical system design
NASA Astrophysics Data System (ADS)
Johnson, R. Barry
1991-01-01
Optical systems are extensively utilized by industry government and military organizations. The conceptual design engineering design fabrication and testing of these systems presently requires significant time typically on the order of 3-5 years. The Knowledge-Based Environment for Optical System Design (KB-OSD) Program has as its principal objectives the development of a methodology and tool(s) that will make a notable reduction in the development time of optical system projects reduce technical risk and overall cost. KB-OSD can be considered as a computer-based optical design associate for system engineers and design engineers. By utilizing artificial intelligence technology coupled with extensive design/evaluation computer application programs and knowledge bases the KB-OSD will provide the user with assistance and guidance to accomplish such activities as (i) develop system level and hardware level requirements from mission requirements (ii) formulate conceptual designs (iii) construct a statement of work for an RFP (iv) develop engineering level designs (v) evaluate an existing design and (vi) explore the sensitivity of a system to changing scenarios. The KB-OSD comprises a variety of computer platforms including a Stardent Titan supercomputer numerous design programs (lens design coating design thermal materials structural atmospherics etc. ) data bases and heuristic knowledge bases. An important element of the KB-OSD Program is the inclusion of the knowledge of individual experts in various areas of optics and optical system engineering. This knowledge is obtained by KB-OSD knowledge engineers performing
Shi, Yuechun; Chen, Xi; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min
2014-08-01
Efficient narrowband light absorption by a metal-insulator-metal (MIM) structure can lead to high-speed light-to-heat conversion at a micro- or nanoscale. Such a MIM structure can serve as a heater for achieving all-optical light control based on the thermo-optical (TO) effect. Here we experimentally fabricated and characterized a novel all-optical switch based on a silicon microdisk integrated with a MIM light absorber. Direct integration of the absorber on top of the microdisk reduces the thermal capacity of the whole device, leading to high-speed TO switching of the microdisk resonance. The measurement result exhibits a rise time of 2.0 μs and a fall time of 2.6 μs with switching power as low as 0.5 mW; the product of switching power and response time is only about 1.3 mW·μs. Since no auxiliary elements are required for the heater, the switch is structurally compact, and its fabrication is rather easy. The device potentially can be deployed for new kinds of all-optical applications.
Echeverría, Jesús C; Calleja, Ignacio; Moriones, Paula; Garrido, Julián J
2017-01-01
We investigated the response of three fiber optic sensing elements prepared at pH 10 from phenyltriethoxysilane (PhTEOS) and tetraethylsilane (TEOS) mixtures with 30, 40, and 50% PhTEOS in the silicon precursor mixture. The sensing elements are referred to as Ph30, Ph40 and Ph50, respectively. The films were synthesized by the sol-gel method and affixed to the end of optical fibers by the dip-coating technique. Fourier transform infrared spectroscopy, N 2 adsorption-desorption at 77 K and X-ray diffraction analysis were used to characterize the xerogels. At a given pressure of n -hexane, the response of each sensing element decreased with temperature, indicating an exothermic process that confirmed the role of adsorption in the overall performance of the sensing elements. The isosteric adsorption enthalpies were obtained from the calibration curves at different temperatures. The magnitude of the isosteric enthalpy of n -hexane increased with the relative response and reached a plateau that stabilized at approximately -31 kJ mol -1 for Ph40 and Ph50 and at approximately -37 kJ mol -1 for Ph30. This indicates that the adsorbate-adsorbent interaction was dominant at lower relative pressure and condensation of the adsorbate on the mesopores was dominant at higher relative pressure.
Calleja, Ignacio; Moriones, Paula; Garrido, Julián J
2017-01-01
We investigated the response of three fiber optic sensing elements prepared at pH 10 from phenyltriethoxysilane (PhTEOS) and tetraethylsilane (TEOS) mixtures with 30, 40, and 50% PhTEOS in the silicon precursor mixture. The sensing elements are referred to as Ph30, Ph40 and Ph50, respectively. The films were synthesized by the sol–gel method and affixed to the end of optical fibers by the dip-coating technique. Fourier transform infrared spectroscopy, N2 adsorption–desorption at 77 K and X-ray diffraction analysis were used to characterize the xerogels. At a given pressure of n-hexane, the response of each sensing element decreased with temperature, indicating an exothermic process that confirmed the role of adsorption in the overall performance of the sensing elements. The isosteric adsorption enthalpies were obtained from the calibration curves at different temperatures. The magnitude of the isosteric enthalpy of n-hexane increased with the relative response and reached a plateau that stabilized at approximately −31 kJ mol−1 for Ph40 and Ph50 and at approximately −37 kJ mol−1 for Ph30. This indicates that the adsorbate–adsorbent interaction was dominant at lower relative pressure and condensation of the adsorbate on the mesopores was dominant at higher relative pressure. PMID:28326238
Dolfi, D; Joffre, P; Antoine, J; Huignard, J P; Philippet, D; Granger, P
1996-09-10
The experimental demonstration and the far-field pattern characterization of an optically controlled phased-array antenna are described. It operates between 2.5 and 3.5 GHz and is made of 16 radiating elements. The optical control uses a two-dimensional architecture based on free-space propagation and on polarization switching by N spatial light modulators of p × p pixels. It provides 2(N-1) time-delay values and an analog control of the 0 to 2π phase for each of the p × p signals feeding the antenna (N = 5, p = 4).
Automatic quadrature control and measuring system. [using optical coupling circuitry
NASA Technical Reports Server (NTRS)
Hamlet, J. F. (Inventor)
1974-01-01
A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic
2008-04-01
We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally
Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra
NASA Astrophysics Data System (ADS)
Kuo, Chih-Wei
2014-02-01
Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.
NASA Astrophysics Data System (ADS)
Pitris, St.; Vagionas, Ch.; Kanellos, G. T.; Kisacik, R.; Tekin, T.; Broeke, R.; Pleros, N.
2016-03-01
At the dawning of the exaflop era, High Performance Computers are foreseen to exploit integrated all-optical elements, to overcome the speed limitations imposed by electronic counterparts. Drawing from the well-known Memory Wall limitation, imposing a performance gap between processor and memory speeds, research has focused on developing ultra-fast latching devices and all-optical memory elements capable of delivering buffering and switching functionalities at unprecedented bit-rates. Following the master-slave configuration of electronic Flip-Flops, coupled SOA-MZI based switches have been theoretically investigated to exceed 40 Gb/s operation, provided a short coupling waveguide. However, this flip-flop architecture has been only hybridly integrated with silica-on-silicon integration technology exhibiting a total footprint of 45x12 mm2 and intra-Flip-Flop coupling waveguide of 2.5cm, limited at 5 Gb/s operation. Monolithic integration offers the possibility to fabricate multiple active and passive photonic components on a single chip at a close proximity towards, bearing promises for fast all-optical memories. Here, we present for the first time a monolithically integrated all-optical SR Flip-Flop with coupled master-slave SOA-MZI switches. The photonic chip is integrated on a 6x2 mm2 die as a part of a multi-project wafer run using library based components of a generic InP platform, fiber-pigtailed and fully packaged on a temperature controlled ceramic submount module with electrical contacts. The intra Flip-Flop coupling waveguide is 5 mm long, reducing the total footprint by two orders of magnitude. Successful flip flop functionality is evaluated at 10 Gb/s with clear open eye diagram, achieving error free operation with a power penalty of 4dB.
Fiber optic, Fabry-Perot high temperature sensor
NASA Technical Reports Server (NTRS)
James, K.; Quick, B.
1984-01-01
A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.
NASA Astrophysics Data System (ADS)
Genberg, Victor L.; Michels, Gregory J.
2017-08-01
The ultimate design goal of an optical system subjected to dynamic loads is to minimize system level wavefront error (WFE). In random response analysis, system WFE is difficult to predict from finite element results due to the loss of phase information. In the past, the use of ystem WFE was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for determining system level WFE using a linear optics model is presented. An error estimate is included in the analysis output based on fitting errors of mode shapes. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
Plasmonic graded nano-disks as nano-optical conveyor belt.
Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui
2014-08-11
We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.
Calculating with light using a chip-scale all-optical abacus.
Feldmann, J; Stegmaier, M; Gruhler, N; Ríos, C; Bhaskaran, H; Wright, C D; Pernice, W H P
2017-11-02
Machines that simultaneously process and store multistate data at one and the same location can provide a new class of fast, powerful and efficient general-purpose computers. We demonstrate the central element of an all-optical calculator, a photonic abacus, which provides multistate compute-and-store operation by integrating functional phase-change materials with nanophotonic chips. With picosecond optical pulses we perform the fundamental arithmetic operations of addition, subtraction, multiplication, and division, including a carryover into multiple cells. This basic processing unit is embedded into a scalable phase-change photonic network and addressed optically through a two-pulse random access scheme. Our framework provides first steps towards light-based non-von Neumann arithmetic.
NASA Astrophysics Data System (ADS)
Botewad, S. N.; Pahurkar, V. G.; Muley, G. G.
2016-05-01
The fabrication and study of a cladding modified fiber optic intrinsic urea biosensor based on evanescent wave absorbance has been presented. The sensor was prepared using cladding modification technique by removing a small portion of cladding of an optical fiber and modifying with an active cladding of porous polyaniline-boric acid (PBA) matrix to immobilize enzyme-urease through cross-linking via glutaraldehyde. The nature of as-synthesized and deposited PBA film on fiber optic sensing element was studied by ultraviolet-visible (UV-vis) spectroscopy and X-ray diffraction (XRD) analysis. The performance of the developed sensor was studied for different urea concentrations in solutions prepared in phosphate buffer.
Optical resonators and neural networks
NASA Astrophysics Data System (ADS)
Anderson, Dana Z.
1986-08-01
It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.
Cartesian oval representation of freeform optics in illumination systems.
Michaelis, D; Schreiber, P; Bräuer, A
2011-03-15
The geometrical method for constructing optical surfaces for illumination purpose developed by Oliker and co-workers [Trends in Nonlinear Analysis (Springer, 2003)] is generalized in order to obtain freeform designs in arbitrary optical systems. The freeform is created by a set of primitive surface elements, which are generalized Cartesian ovals adapted to the given optical system. Those primitives are determined by Hamiltonian theory of ray optics. The potential of this approach is demonstrated by some examples, e.g., freeform lenses with collimating front elements.
Diffractive optics fabricated by direct write methods with an electron beam
NASA Technical Reports Server (NTRS)
Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.
1993-01-01
State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.
Micromachined edge illuminated optically transparent automotive light guide panels
NASA Astrophysics Data System (ADS)
Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas
2012-03-01
Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.
Optical propagation analysis in photobioreactor measurements on cyanobacteria
NASA Astrophysics Data System (ADS)
Fanjul-Vélez, F.; Arce-Diego, J. L.
2017-12-01
Biotechnology applications are nowadays increasing in many areas, from agriculture to biochemistry, or even biomedicine. Knowledge on biological processes is becoming essential in order to be able to adequately estimate and control the production of these elements. Cyanobacteria present the capability of producing oxygen and biomass, from CO2 and light irradiation. Therefore, they could be fundamental for human subsistence in adverse environments, as basic needs of breathing and food would be guaranteed. Cyanobacteria cultivation, as other microorganisms, is carried out in photo-bioreactors. The adequate design of photobioreactors greatly influences elements production throughput. This design includes optical illumination and optical measurement of cyanobacteria growth. In this work an analysis of optical measurement of cyanobacteria growth in a photobioreactor is made. As cyanobacteria are inhomogeneous elements, the influence of light scattering is significant. Several types of cyanobacteria are considered, as long as several spatial profiles and irradiances of the incident light. Depending on cyanobacteria optical properties, optical distribution of transmitted light can be estimated. These results allow an appropriate consideration, in the optical design, of the relationship between detected light and cyanobacteria growth. As a consequence, the most adequate conditions of elements production from cyanobacteria could be estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.
With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in themore » photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an encrypting/scrambling algorithm based on a study of candidate encryption algorithms. Demonstration circuits show how these logic elements can be used to form NAND, NOR, and XOR functions. This paper also presents functional analysis of a serial, low gate count demonstration algorithm suitable for scrambling/encryption using S-SEED devices.« less
NASA Astrophysics Data System (ADS)
Voigt, Kristen; Hertzberg, Jared; Dutta, Sudeep; Budoyo, Rangga; Ballard, Cody; Lobb, Chris; Wellstood, Frederick
As part of an experiment to optically trap 87Rb atoms near a superconducting device, we have coupled an optical fiber to a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK in a dilution refrigerator. The lumped-element resonator has a resonance frequency of 6.15 GHz, a quality factor of 8 x 105 at high powers, and is mounted inside a superconducting aluminum 3D cavity. The 60-µm-diameter optical fiber passes through small openings in the cavity and close to the lumped-element resonator. The 3D cavity is mounted on an x-z Attocube-translation stage that allows the lumped-element resonator and optical fiber to be moved relative to each other. When the resonator is brought near to the fiber, we observe a shift in resonance frequency, of up to 8 MHz, due to the presence of the fiber dielectric. When optical power is sent through the fiber, Rayleigh scattering in the fiber causes a position-dependent weak illumination of the thin-film resonator affecting its resonance frequency and Q. We model the optical response of the resonator by taking into account optical production, recombination, and diffusion of quasiparticles as well as the non-uniform position-dependent illumination of the resonator.
NASA Astrophysics Data System (ADS)
Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.
2017-10-01
We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.
Performance assessment of geotechnical structural elements using distributed fiber optic sensing
NASA Astrophysics Data System (ADS)
Monsberger, Christoph; Woschitz, Helmut; Lienhart, Werner; Račanský, Václav; Hayden, Martin
2017-04-01
Geotechnical structural elements are used to underpin heavy structures or to stabilize slopes and embankments. The bearing capacity of these components is usually verified by geotechnical load tests. It is state of the art to measure the resulting deformations with electronic sensors at the surface and therefore, the load distribution along the objects cannot be determined. This paper reports about distributed strain measurements with an optical backscatter reflectometer along geotechnical elements. In addition to the installation of the optical fiber in harsh field conditions, results of investigations of the fiber optic system in the laboratory and the most significant results of the field trials are presented.
Thermal-optical analysis (TOA) is typically used to measure the OC/EC (organic carbon/elemental carbon) and EC/TC (elemental carbon/total carbon) ratios in source and atmospheric aerosols. The present study utilizes a dual-optical carbon aerosol analyzer to examine the effects of...
Optical metasurfaces for high angle steering at visible wavelengths
Lin, Dianmin; Melli, Mauro; Poliakov, Evgeni; ...
2017-05-23
Metasurfaces have facilitated the replacement of conventional optical elements with ultrathin and planar photonic structures. Previous designs of metasurfaces were limited to small deflection angles and small ranges of the angle of incidence. Here, we have created two types of Si-based metasurfaces to steer visible light to a large deflection angle. These structures exhibit high diffraction efficiencies over a broad range of angles of incidence. We have demonstrated metasurfaces working both in transmission and reflection modes based on conventional thin film silicon processes that are suitable for the large-scale fabrication of high-performance devices.
Menapace, Joseph A; Ehrmann, Paul E; Bayramian, Andrew J; Bullington, Amber; Di Nicola, Jean-Michel G; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I; Smith, Cal
2016-07-01
Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.
Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; ...
2016-03-15
Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less
Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis
NASA Astrophysics Data System (ADS)
Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.
2010-04-01
A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.
NASA Astrophysics Data System (ADS)
Dixit, Dhairya J.
The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, lower cost per transistors, and higher transistor density. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require cutting-edge metrology tools for characterization. Directed self-assembly (DSA) patterning process can be used to fabricate nanoscale line-space patterns and contact holes via thermodynamically driven micro-phase separation of block copolymer (BCP) films with boundary constraints from guiding templates. Its main advantages are high pattern resolution (~10 nm), high throughput, no requirement of a high-resolution mask, and compatibility with standard fab-equipment and processes. Although research into DSA patterning has demonstrated a high potential as a nanoscale patterning process, there are critical challenges that must be overcome before transferring DSA into high volume manufacturing, including achievement of low defect density and high process stability. For this, advances in critical dimension (CD) and overlay measurement as well as rapid defect characterization are required. Both scatterometry and critical dimension-scanning electron microscopy (CD-SEM) are routinely used for inline dimensional metrology. CD-SEM inspection is limited, as it does not easily provide detailed line-shape information, whereas scatterometry has the capability of measuring important feature dimensions including: line-width, line-shape, sidewall-angle, and thickness of the patterned samples quickly and non-destructively. The present work describes the application of Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry to optically characterize DSA patterned line- space grating and contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) at various integration steps of BCP DSA based patterning process. This work focuses on understanding the efficacy of MMSE base scatterometry for characterizing complex DSA structures. For example, the use of symmetry-antisymmetry properties associated with Mueller matrix (MM) elements to understand the topography of the periodic nanostructures and measure defectivity. Simulations (the forward problem approach of scatterometry) are used to investigate MM elements' sensitivity to changes in DSA structure such as one vs. two contact hole patterns and predict sensitivity to dimensional changes. A regression-based approach is used to extract feature shape parameters of the DSA structures by fitting simulated optical spectra to experimental optical spectra. Detection of the DSA defects is a key to reducing defect density for eventual manufacturability and production use of DSA process. Simulations of optical models of structures containing defects are used to evaluate the sensitivity of MM elements to DSA defects. This study describes the application of MMSE to determine the DSA pattern defectivity via spectral comparisons based on optical anisotropy and depolarization. The use of depolarization and optical anisotropy for characterization of experimental MMSE data is a very recent development in scatterometry. In addition, reconstructed scatterometry models are used to calculate line edge roughness in 28 nm pitch Si fins fabricated using DSA patterning process.
Comparative Mirror Cleaning Study: 'A Study on Removing Particulate Contamination'
NASA Technical Reports Server (NTRS)
Houston, Karrie
2007-01-01
The cleanliness of optical surfaces is recognized as an industry-wide concern for the performance of optical devices such as mirrors and telescopes, microscopes and lenses, lasers and interferometers, and prisms and optical filters. However, no standard has been established for optical cleaning and there is no standard definition of a 'clean' optical element. This study evaluates the effectiveness of commonly used optical cleaning techniques based on wafer configuration, contamination levels, and the number and size of removed particles. It is concluded that cleaning method and exposure time play a significant factor in obtaining a high removal percentage. The detergent bath and solvent rinse method displayed an increase in effective removal percentage as the contamination exposure increased. Likewise, CO2 snow cleaning showed a relatively consistent cleaning effectiveness. The results can help ensure mission success to flight projects developed for the NASA Origins Program. Advantages and disadvantages of each of the optical cleaning methods are described.
NASA Astrophysics Data System (ADS)
Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi
2017-11-01
In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.
Metasurface Freeform Nanophotonics.
Zhan, Alan; Colburn, Shane; Dodson, Christopher M; Majumdar, Arka
2017-05-10
Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their size. Unfortunately, these high curvatures and complex forms are often difficult to manufacture with current technologies, especially at the micron scale. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a silicon nitride based metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 micron along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm corresponding to a change in optical power of ~1600 diopters with 100 micron of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for further miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.
Microscopic theory of optical absorption in graphene enhanced by lattices of plasmonic nanoparticles
NASA Astrophysics Data System (ADS)
Mueller, Niclas S.; Reich, Stephanie
2018-06-01
We present a microscopic description of plasmon-enhanced optical absorption in graphene, which is based on perturbation theory. We consider the interaction of graphene with a lattice of plasmonic nanoparticles, as was previously realized experimentally. By using tight-binding wave functions for the electronic states of graphene and the dipole approximation for the plasmon, we obtain analytic expressions for the coupling matrix element and enhanced optical absorption. The plasmonic nanostructure induces nonvertical optical transitions in the band structure of graphene with selection rules for the momentum transfer that depend on the periodicity of the plasmonic lattice. The plasmon-mediated optical absorption leads to an anisotropic carrier population around the K point in phase space, which depends on the polarization pattern of the plasmonic near field in the graphene plane. Using Fourier optics, we draw a connection to a macroscopic approach, which is independent from graphene-specific parameters. Each Fourier component of the plasmonic near field corresponds to the momentum transfer of an optical transition. Both approaches lead to the same expression for the integrated optical absorption enhancement, which is relevant for the photocurrent enhancement in graphene-based optoelectronic devices.
Laser window with annular grooves for thermal isolation
Warner, B.E.; Horton, J.A.; Alger, T.W.
1983-07-13
A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.
Transverse-structure electrostatic charged particle beam lens
Moran, M.J.
1998-10-13
Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.
Transverse-structure electrostatic charged particle beam lens
Moran, Michael J.
1998-01-01
Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.
NASA Astrophysics Data System (ADS)
Li, Ming; Yin, Hongxi; Xing, Fangyuan; Wang, Jingchao; Wang, Honghuan
2016-02-01
With the features of network virtualization and resource programming, Software Defined Optical Network (SDON) is considered as the future development trend of optical network, provisioning a more flexible, efficient and open network function, supporting intraconnection and interconnection of data centers. Meanwhile cloud platform can provide powerful computing, storage and management capabilities. In this paper, with the coordination of SDON and cloud platform, a multi-domain SDON architecture based on cloud control plane has been proposed, which is composed of data centers with database (DB), path computation element (PCE), SDON controller and orchestrator. In addition, the structure of the multidomain SDON orchestrator and OpenFlow-enabled optical node are proposed to realize the combination of centralized and distributed effective management and control platform. Finally, the functional verification and demonstration are performed through our optical experiment network.
Pressure distribution under flexible polishing tools. I - Conventional aspheric optics
NASA Astrophysics Data System (ADS)
Mehta, Pravin K.; Hufnagel, Robert E.
1990-10-01
The paper presents a mathematical model, based on Kirchoff's thin flat plate theory, developed to determine polishing pressure distribution for a flexible polishing tool. A two-layered tool in which bending and compressive stiffnesses are equal is developed, which is formulated as a plate on a linearly elastic foundation. An equivalent eigenvalue problem and solution for a free-free plate are created from the plate formulation. For aspheric, anamorphic optical surfaces, the tool misfit is derived; it is defined as the result of movement from the initial perfect fit on the optic to any other position. The Polisher Design (POD) software for circular tools on aspheric optics is introduced. NASTRAN-based finite element analysis results are compared with the POD software, showing high correlation. By employing existing free-free eigenvalues and eigenfunctions, the work may be extended to rectangular polishing tools as well.
The selection criteria elements of X-ray optics system
NASA Astrophysics Data System (ADS)
Plotnikova, I. V.; Chicherina, N. V.; Bays, S. S.; Bildanov, R. G.; Stary, O.
2018-01-01
At the design of new modifications of x-ray tomography there are difficulties in the right choice of elements of X-ray optical system. Now this problem is solved by practical consideration, selection of values of the corresponding parameters - tension on an x-ray tube taking into account the thickness and type of the studied material. For reduction of time and labor input of design it is necessary to create the criteria of the choice, to determine key parameters and characteristics of elements. In the article two main elements of X-ray optical system - an x-ray tube and the detector of x-ray radiation - are considered. Criteria of the choice of elements, their key characteristics, the main dependences of parameters, quality indicators and also recommendations according to the choice of elements of x-ray systems are received.
1993-04-29
Kearney, "El uso de las pelfculas delgadas en la optica de rayos - x ," Proc. Symposium on the Physics of Superlattices, May 1991, in press. 6. J.M...Bolling Air Force Base ELEMENT NO. NO. NO ACCESSION NO Washin ton, D.C. 20332- //( ~ ~ C 11. TITLE (Incluft Security Claw ffation) [ TLaboratory for X ...three years under contract AFOSR-90-O 140, "Laboratory for X -Ray O.ptics. Duig thspro we concenrae our effrt in two areas: 1) grwth of epitaxial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konov, V I
The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)
NASA Astrophysics Data System (ADS)
Tian, Yu; Rao, Changhui; Wei, Kai
2008-07-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.
Holographic rugate structures for x-ray optics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannson, T.; Savant, Gajendra.; Qiao, Yong.
1988-07-01
XUV Bragg Holographic Optical Elements (HOEs), based on a single-step volume holographic recording, have been proposed by Physical Optic Corporation (POC), as an entirely new approach to x-ray optics. Their theory, as well as the first experimental proof-of-concept, have been demonstrated in Phase 1 of the DOE program. During the first year (exactly, 8-month duration) of the on-going Phase 2, the high-efficiency XUV Lippmann holographic mirrors have been fabricated and their optical, physical, and material properties have been investigated over the entire XUV region (1--100nm). The XUV Bragg HOEs, based on dichromated gelatin (DCG) and on DCG/polymer grafts, have beenmore » recorded in the visible region (using an Innova Argo laser) and reconstructed using twelve XUV wavelengths. In addition, these phase high-resolution holographic materials have been shown to be suitable to direct x-ray laser holographic recording (using Princeton's x-ray laser). The volume x-ray holographic recording will be realized within the second year of the program effort.« less
NASA Technical Reports Server (NTRS)
Moore, Jason P. (Inventor)
2009-01-01
A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.
Diffractive optical elements for transformation of modes in lasers
Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.
2015-09-01
Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
Diffractive optical elements for transformation of modes in lasers
Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.
2016-06-21
Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
Miniature mechanical transfer optical coupler
Abel, Philip [Overland Park, KS; Watterson, Carl [Kansas City, MO
2011-02-15
A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.
Methods and apparatus for vertical coupling from dielectric waveguides
Yaacobi, Ami; Cordova, Brad Gilbert
2014-06-17
A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.
Reshaping a multimode laser beam into a constructed Gaussian beam for generating a thin light sheet.
Saghafi, Saiedeh; Haghi-Danaloo, Nikoo; Becker, Klaus; Sabdyusheva, Inna; Foroughipour, Massih; Hahn, Christian; Pende, Marko; Wanis, Martina; Bergmann, Michael; Stift, Judith; Hegedus, Balazs; Dome, Balazs; Dodt, Hans-Ulrich
2018-06-01
Based on the modal analysis method, we developed a model that describes the output beam of a diode-pumped solid state (DPSS) laser emitting a multimode beam. Measuring the output beam profile in the near field and at the constructed far field the individual modes, their respective contributions, and their optical parameters are determined. Using this information, the beam is optically reshaped into a quasi-Gaussian beam by the interference and superposition of the various modes. This process is controlled by a mode modulator unit that includes different meso-aspheric elements and a soft-aperture. The converted beam is guided into a second optical unit comprising achromatic-aspheric elements to produce a thin light sheet for ultramicroscopy. We found that this light sheet is markedly thinner and exhibits less side shoulders compared with a light sheet directly generated from the output of a DPSS multimode laser. © 2018 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Susetyo, P.; Fauzia, V.; Sugihartono, I.
2017-04-01
ZnO nanorods is a low cost II-VI semiconductor compound with huge potential to be applied in optoelectronic devices i.e. light emitting diodes, solar cells, gas sensor, spintronic devices and lasers. In order to improve the electrical and optical properties, group II, III and IV elements were widely investigated as dopand elements on ZnO. In this work, magnesium (Mg) was doped into ZnO nanorods. Samples were prepared firstly by deposition of undoped ZnO seed layer on indium thin oxide coated glass substrates by ultrasonic spray pyrolysis method and then followed by the growth of ZnO nanorods doped by three different Mg concentrations by hydrothermal method. Based on the morphological, microstructural and optical characterizations results, it is concluded that the increase of magnesium concentration tends to reduce the diameter of ZnO nanorods, increases the bandgap energy and decreases the UV absorption the luminescence in UV and visible range.
NASA Astrophysics Data System (ADS)
Chen, Linghua; Jiang, Yingjie; Xing, Li; Yao, Jun
2017-10-01
We have proposed a full dielectric (silicon) nanocube array polarizer based on a silicon dioxide substrate. Each polarization unit column includes a plurality of equal spaced polarization units. By optimizing the length, the width, the height of the polarization units and the center distance of adjacent polarization unit (x direction and y direction), an extinction ratio (ER) of higher than 25dB was obtained theoretically when the incident light wavelength is 1550nm. while for applications of most polarization optical elements, ER above 10dB is enough. With this condition, the polarizer we designed can work in a wide wavelength range from 1509.31nm to 1611.51nm. Compared with the previous polarizer, we have introduced a polarizer which is a full dielectric device, which solves the problems of low efficiency caused by Ohmic loss and weak coupling. Furthermore, compared with the existing optical polarizers, our polarizer has the advantages of thin thickness, small size, light weight, and low processing difficulty, which is in line with the future development trend of optical elements.
Spatially oriented plasmonic ‘nanograter’ structures
Liu, Zhe; Cui, Ajuan; Gong, Zhijie; Li, Hongqiang; Xia, Xiaoxiang; Shen, Tiehan H.; Li, Junjie; Yang, Haifang; Li, Wuxia; Gu, Changzhi
2016-01-01
One of the key motivations in producing 3D structures has always been the realization of metamaterials with effective constituent properties that can be tuned in all propagation directions at various frequencies. Here, we report the investigation of spatially oriented “Nanograter” structures with orientation-dependent responses over a wide spectrum by focused-ion-beam based patterning and folding of thin film nanostructures. Au nano units of different shapes, standing along specifically designated orientations, were fabricated. Experimental measurements and simulation results show that such structures offer an additional degree of freedom for adjusting optical properties with the angle of inclination, in additional to the size of the structures. The response frequency can be varied in a wide range (8 μm–14 μm) by the spatial orientation (0°–180°) of the structures, transforming the response from magnetic into electric coupling. This may open up prospects for the fabrication of 3D nanostructures as optical interconnects, focusing elements and logic elements, moving toward the realization of 3D optical circuits. PMID:27357610
Adaptive Detector Arrays for Optical Communications Receivers
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Srinivasan, M.
2000-01-01
The structure of an optimal adaptive array receiver for ground-based optical communications is described and its performance investigated. Kolmogorov phase screen simulations are used to model the sample functions of the focal-plane signal distribution due to turbulence and to generate realistic spatial distributions of the received optical field. This novel array detector concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting function of the optimal receiver by a hard decision on the selection of the signal detector elements also is described and evaluated. Approximations and bounds to the error probability are derived and compared with the exact calculations and receiver simulation results. It is shown that, for photon-counting receivers observing Poisson-distributed signals, performance improvements of approximately 5 dB can be obtained over conventional single-detector photon-counting receivers, when operating in high background environments.
NASA Astrophysics Data System (ADS)
Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.
2017-02-01
Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.
Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy
NASA Astrophysics Data System (ADS)
Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann
2002-12-01
In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.
NASA Astrophysics Data System (ADS)
Krappig, Reik; Schmitt, Robert
2017-02-01
Present alignment methods already have an accuracy of some microns, allowing in general the fairly precise assembly of multi element optical systems. Nevertheless, they suffer decisive drawbacks, such as the necessity of an iterative process, stepping through all optical surfaces of the system when using autocollimation telescopes. In contrast to these limitations, the wavefront based alignment offers an elegant approach to potentially reach sub-µm accuracy in the alignment within a highly efficient process, that simultaneously acquires and evaluates the best optical solution possible. However, the practical use of these capabilities in corresponding alignment devices needs to take real sensor behavior into account. This publication will especially elaborate on the influence of the sensor properties in relation to the alignment process. The first dominant requirement is a highly stable measurement, since tiny perturbations in the optical system will have an also tiny influence on the wavefront. Secondly, the lateral sampling of the measured wavefront is supposed to be as high as possible, in order to be able to extract higher order Zernike coefficients reliable. The resulting necessity of using the largest sensor area possible conflicts with the requirement to allow a certain lateral displacement of the measured spot, indicating a perturbation. A movement of the sensor with suitable stages in turn leads to additional uncertainties connected to the actuators. Further factors include the SNR-ratio of the sensor as well as multiple measurements, in order to improve data repeatability. This publication will present a procedure of dealing with these relevant influence factors. Depending on the optical system and its properties the optimal adjustment of these parameters is derived.
NASA Astrophysics Data System (ADS)
Delbeck, Sven; Küpper, Lukas; Heise, Herbert M.
2018-02-01
Spectroscopic analysis of different biofluids and bodyfluid-like media has been realized by using tapered flat silver halide fiber elements as infrared biosensors. Optical stability and biocompatibility testing of the sensor elements have been performed with in-vitro samples under representative physiological conditions. After improving the reproducibility of manufacturing the sensor elements, the incoupling of radiation and the general handling including their chemical composition characterization, the fiber sensors were further optimized for the experiments. Stability tests in physiological solutions as well as porcine blood have shown that best results for biospectroscopic applications are available for the mid-IR fingerprint region, with the most stable behaviour as analyzed by the single-beam spectra. Despite several contrary reports, the silver halide material tested is toxic to cell lines chosen from the DIN standard specification for biocompatibility testing. Spectral changes as well as the results based on the DIN standard showed that pretreatment of the fibers is unavoidable to prevent direct contact of cells or human tissue and the silver halide material. Further applications of tapered flat silver halide fibers for the quantification of analytes in bodyfluids have also been tested by ensheathing the fiber-optic sensor element with a dialysis membrane. With the successfully produced prototype, results of diffusion rates and performance of a membrane-ensheathed fiber probe have been obtained. An invitro monitoring fiber sensor was developed aiming at the implantation of a microdialysis system for the analytical quantification of biomolecules such as glucose, lactate and others.
Polarization-Insensitive Tunable Optical Filters based on Liquid Crystal Polarization Gratings
NASA Astrophysics Data System (ADS)
Nicolescu, Elena
Tunable optical filters are widely used for a variety of applications including spectroscopy, optical communication networks, remote sensing, and biomedical imaging and diagnostics. All of these application areas can greatly benefit from improvements in the key characteristics of the tunable optical filters embedded in them. Some of these key parameters include peak transmittance, bandwidth, tuning range, and transition width. In recent years research efforts have also focused on miniaturizing tunable optical filters into physically small packages for compact portable spectroscopy and hyperspectral imaging applications such as real-time medical diagnostics and defense applications. However, it is important that miniaturization not have a detrimental effect on filter performance. The overarching theme of this dissertation is to explore novel configurations of Polarization Gratings (PGs) as simple, low-cost, polarization-insensitive alternatives to conventional optical filtering technologies for applications including hyperspectral imaging and telecommunications. We approach this goal from several directions with a combination of theory and experimental demonstration leading to, in our opinion, a significant contribution to the field. We present three classes of tunable optical filters, the first of which is an angle-filtering scheme where the stop-band wavelengths are redirected off axis and the passband is transmitted on-axis. This is achieved using a stacked configuration of polarization gratings of various thicknesses. To improve this class of filter, we also introduce a novel optical element, the Bilayer Polarization Grating, exhibiting unique optical properties and demonstrating complex anchoring conditions with high quality. The second class of optical filter is analogous to a Lyot filter, utilizing stacks of static or tunable waveplates sandwiched with polarizing elements. However, we introduce a new configuration using PGs and static waveplates to replace the polarizers in the system, thereby greatly increasing the filter throughput. We then turn our attention to a Fourier filtering technique. This is a fundamentally different filtering approach involving a single PG where the filtering functionality involves selecting a spectral band with a movable aperture or slit and a diffractive element (PG in our case). Finally, we study the integration of a PG in a multi-channel wavelength blocker system focusing on the practical and fundamental limitations of using a PG as a variable optical attenuator/wavelength blocker in a commercial optical telecommunications network.
[Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].
Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang
2015-03-01
In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.
Ring resonator based narrow-linewidth semiconductor lasers
NASA Technical Reports Server (NTRS)
Ksendzov, Alexander (Inventor)
2005-01-01
The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.
High reflectivity mirrors and method for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heikman, Sten; Jacob-Mitos, Matthew; Li, Ting
2016-06-07
A composite high reflectivity mirror (CHRM) with at least one relatively smooth interior surface interface. The CHRM includes a composite portion, for example dielectric and metal layers, on a base element. At least one of the internal surfaces is polished to achieve a smooth interface. The polish can be performed on the surface of the base element, on various layers of the composite portion, or both. The resulting smooth interface(s) reflect more of the incident light in an intended direction. The CHRMs may be integrated into light emitting diode (LED) devices to increase optical output efficiency
NASA Astrophysics Data System (ADS)
Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh
2017-05-01
We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system
On the Fringe Field of Wide Angle LC Optical Phased Array
NASA Technical Reports Server (NTRS)
Wang, Xighua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.
2004-01-01
For free space laser communication, light weighted large deployable optics is a critical component for the transmitter. However, such an optical element will introduce large aberrations due to the fact that the surface figure of the large optics is susceptable to deformation in the space environment. We propose to use a high-resolution liquid crystal spatial light modulator to correct for wavefront aberrations introduced by the primary optical element, and to achieve very fine beam steering and shaping at the same time. A 2-D optical phased array (OPA) antenna based on a Liquid Crystal on Silicon (LCOS) spatial light modulator is described. This device offers a combination of low cost, high resolution, high accuracy, high diffraction efficiency at video speed. To quantitatively understand the influence factor of the different design parameters, a computer simulation of the device is given by the 2-D director simulation and the Finite Difference Time domain (FDTD) simulation. For the 1-D OPA, we define the maximum steering angle to have a grating period of 8 pixel/reset scheme; as for larger steering angles than this criterion, the diffraction efficiency drops dramatically. In this case, the diffraction efficiency of 0.86 and the Strehl ratio of 0.9 are obtained in the simulation. The performance of the device in achieving high resolution wavefront correction and beam steering is also characterized experimentally.
Kobelja, Kristina; Nemet, Ivan; Župan, Ivan; Čulin, Jelena; Rončević, Sanda
2016-12-01
Determination of metal content in biominerals provides essential information with respect to relations between biomineralization processes and environmental status. Mussels are species that have a great potential as bio-marker species and therefore, they are in the focus of numerous biomineralization and ecological studies. In this study, elemental profile of mussel shell of Noah's Ark (Arca noe, Linnaeus, 1758), which inhabit eastern Adriatic Sea was obtained by determination of seventeen elements content using inductively coupled plasma optical emission spectrometry (ICP-OES). Shell samples were collected from marine protected area and from marine shipping route in eastern Adriatic Sea. The accuracy of applied analytical procedure based on microwave decomposition of shell samples was tested by use of reference materials of limestone and by matrix-matched standards. By aid of chemometric methods, the elemental profile along with variability of elements content of shell was obtained. The impact of different environment on elements content was established by use of multivariate statistical PCA method. Discernment between two groups of samples was manifested. Among results of main, minor and trace elements content, the last one which denoted to Cd, Co, Cu, Pb, and Mn was expressed as principal distinctive feature of shell samples collected from different sampling sites. Elemental profiling of mussel shell Noah's Ark provides novel insight in species status as well as in environmental status on the observed locations. Copyright © 2016 Elsevier GmbH. All rights reserved.
Modeling of the laser device for the stress therapy
NASA Astrophysics Data System (ADS)
Matveev, Nikolai V.; Shcheglov, Sergey A.; Romanova, Galina E.; Koneva, Ð.¢atiana A.
2017-05-01
Recently there is a great interest to the drug-free methods of treatment of various diseases. For example, audiovisual therapy is used for the stress therapy. The main destination of the method is the health care and well-being. Visual content in the given case is formed when laser radiation is passing through the optical mediums and elements. The therapy effect is achieved owing to the color varying and complicated structure of the picture which is produced by the refraction, dispersion effects, diffraction and interference. As the laser source we use three laser sources with wavelengths of 445 nm, 520 nm and 640 nm and the optical power up to 1 W. The beam is guided to the optical element which is responsible for the final image of the dome surface. The dynamic image can be achieved by the rotating of the optical element when the laser beam is static or by scanning the surface of the element. Previous research has shown that the complexity of the image connected to the therapy effect. The image was chosen experimentally in practice. The evaluation was performed using the fractal dimension calculation for the produced image. In this work we model the optical image on the surface formed by the laser sources together with the optical elements. Modeling is performed in two stages. On the first stage we perform the simple modeling taking into account simple geometrical effects and specify the optical models of the sources.
VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E
2014-02-01
The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model for a wider range of electrical load impedances under test.
NASA Astrophysics Data System (ADS)
Kakarenko, K.; Ducin, I.; Jaroszewicz, Z.; Kołodziejczyk, A.; Petelczyc, K.; Stompor, A.; Sypek, M.
2015-04-01
Light Sword Lens (LSL), i.e., an optical element with extended depth of focus (EDOF) characterized by angular modulation of the optical power in its conventional form is characterized by a linear relationship between the optical power and the angular coordinate of the corresponding angular lens sector. This dependence may be manipulated in function of the required design needs. In the present communicate this additional degree of freedom of design is used for elimination of the LSL shape discontinuity.
CAE "FOCUS" for modelling and simulating electron optics systems: development and application
NASA Astrophysics Data System (ADS)
Trubitsyn, Andrey; Grachev, Evgeny; Gurov, Victor; Bochkov, Ilya; Bochkov, Victor
2017-02-01
Electron optics is a theoretical base of scientific instrument engineering. Mathematical simulation of occurring processes is a base for contemporary design of complicated devices of the electron optics. Problems of the numerical mathematical simulation are effectively solved by CAE system means. CAE "FOCUS" developed by the authors includes fast and accurate methods: boundary element method (BEM) for the electric field calculation, Runge-Kutta- Fieghlberg method for the charged particle trajectory computation controlling an accuracy of calculations, original methods for search of terms for the angular and time-of-flight focusing. CAE "FOCUS" is organized as a collection of modules each of which solves an independent (sub) task. A range of physical and analytical devices, in particular a microfocus X-ray tube of high power, has been developed using this soft.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Li, Shuguang; Liu, Qiang; Feng, Xinxing; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun
2018-07-01
A groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance (SPR) is proposed and analyzed by the finite element method (FEM). Numerical results show that the average sensitivity is 15,933 nm/refractive index unit (RIU) with the refractive index of analyte ranging from 1.40 to 1.43 and the maximum sensitivity is 28,600 nm/RIU and the resolution of the sensor is 3.50 × 10-8 RIU. The groove micro-structure optical fiber refractive index sensor do some changes on the D-shaped fiber sensor, compared with conventional D-shaped fiber sensor, it has a higher sensitivity and it is easier to produce than the traditional SPR sensor.
NASA Astrophysics Data System (ADS)
Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.
2017-04-01
Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.
Laser-based firing systems for prompt initiation of secondary explosives
NASA Technical Reports Server (NTRS)
Meeks, Kent D.; Setchell, Robert E.
1993-01-01
Motivated by issues of weapon safety and security, laser based firing systems for promptly initiating secondary explosives have been under active development at Sandia National Laboratories for more than four years. Such a firing system consists of miniaturized, Q-switched, solid-state laser, optical detonators, optical safety switches, and elements for splitting, coupling, and transmitting the laser output. Potential system applications pose significant challenges in terms of server mechanical and thermal environments and packaging constraints, while requiring clear demonstration of safety enhancements. The Direct Optical Initiation (DOI) Program at Sandia is addressing these challenges through progress development phases during which the design, fabrication, and testing of prototype hardware is aimed at more difficult application requirements. A brief history of the development program, and a summary of current and planned activities, will be presented.
Cloaks and antiobject-independent illusion optics based on illusion media
NASA Astrophysics Data System (ADS)
Li, Zhou; Zang, XiaoFei; Cai, Bin; Shi, Cheng; Zhu, YiMing
2013-11-01
Based on the transformation optics, we propose a new strategy of illusion media consisting of homogeneous and anisotropic materials. By utilizing the illusion media, invisible cloak is theoretically realized, in which objects covered with the illusion media could not be detected. The cloak here allows neither the propagation of light around the concealed region nor compensates the scattering field of object outside the media. What the cloak does is to shift the region into another place where outside the trace of light, so that objects in that region can disappear. Another application of the illusion media is to create the antiobject-independent illusion optics which means that two objects appear to be like some other objects of our choice. Finite element simulations for two-dimensional cases have been performed to prove these ideas.
Active Optics: stress polishing of toric mirrors for the VLT SPHERE adaptive optics system.
Hugot, Emmanuel; Ferrari, Marc; El Hadi, Kacem; Vola, Pascal; Gimenez, Jean Luc; Lemaitre, Gérard R; Rabou, Patrick; Dohlen, Kjetil; Puget, Pascal; Beuzit, Jean Luc; Hubin, Norbert
2009-05-20
The manufacturing of toric mirrors for the Very Large Telescope-Spectro-Polarimetric High-Contrast Exoplanet Research instrument (SPHERE) is based on Active Optics and stress polishing. This figuring technique allows minimizing mid and high spatial frequency errors on an aspherical surface by using spherical polishing with full size tools. In order to reach the tight precision required, the manufacturing error budget is described to optimize each parameter. Analytical calculations based on elasticity theory and finite element analysis lead to the mechanical design of the Zerodur blank to be warped during the stress polishing phase. Results on the larger (366 mm diameter) toric mirror are evaluated by interferometry. We obtain, as expected, a toric surface within specification at low, middle, and high spatial frequencies ranges.
NASA Astrophysics Data System (ADS)
Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario
2000-03-01
A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.
NASA Astrophysics Data System (ADS)
Pidenko, Sergey A.; Burmistrova, Natalia A.; Pidenko, Pavel S.; Shuvalov, Andrey A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.
2016-10-01
Photonic crystal fibers (PCF) are one of the most promising materials for creation of constructive elements for bio-, drug and contaminant sensing based on unique optical properties of the PCF as effective nanosized optical signal collectors. In order to provide efficient and controllable binding of biomolecules, the internal surface of glass hollow core photonic crystal fibers (HC-PCF) has been chemically modified with silanol groups and functionalized with (3-aminopropyl) triethoxysilane (APTES). The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of silanol groups on the HC-PCF inner surface. The relationship between amount of silanol groups on the HC-PCF inner surface and efficiency of following APTES functionalization has been evaluated. Covalent binding of horseradish peroxidase (chosen as a model protein) on functionalized PCF inner surface has been performed successively, thus verifying the possibility of creating a biosensitive element.
NASA Astrophysics Data System (ADS)
Quaranta, Giorgio; Basset, Guillaume; Benes, Zdenek; Martin, Olivier J. F.; Gallinet, Benjamin
2018-01-01
Resonant waveguide gratings (RWGs) are thin-film structures, where coupled modes interfere with the diffracted incoming wave and produce strong angular and spectral filtering. The combination of two finite-length and impedance matched RWGs allows the creation of a passive beam steering element, which is compatible with up-scalable fabrication processes. Here, we propose a design method to create large patterns of such elements able to filter, steer, and focus the light from one point source to another. The method is based on ellipsoidal mirrors to choose a system of confocal prolate spheroids where the two focal points are the source point and observation point, respectively. It allows finding the proper orientation and position of each RWG element of the pattern, such that the phase is constructively preserved at the observation point. The design techniques presented here could be implemented in a variety of systems, where large-scale patterns are needed, such as optical security, multifocal or monochromatic lenses, biosensors, and see-through optical combiners for near-eye displays.
NASA Astrophysics Data System (ADS)
Avetissov, Igor; Sadovskiy, Andrei; Belov, Stanislav; Kong Khan, Chan; Mozhevitina, Elena; Sukhanova, Ekaterina; Zharikov, Eugeniy
2014-09-01
T-x diagram of LiNO3-NaNO3 quasi-binary system has been improved using an original technique based on Raman measurements of condense phase. (LiNO3)x(NaNO3)1-x solid solution single crystal has been grown at different regimes of axial vibrational control (AVC) technique. Significant difference in segregation coefficient behavior between AVC-CZ and conventional CZ grown crystals has appeared: with AVC intensity increase the segregation coefficient (SC) raises for light molecular weight elements, SC reduces for medium molecular weight elements, and SC remains practically unchangeable for heavy molecular weight elements. Effect of vibrational intensity on vibron and optical characteristics, microhardness of AVC-CZ (LiNO3)x(NaNO3)1-x solid solution single crystals has been studied. For the AVC-CZ crystals has been observed increases in microhardness as well as in optical transmission up to 10 rel% compare to conventional CZ grown crystals.
Planar optics with patterned chiral liquid crystals
NASA Astrophysics Data System (ADS)
Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori
2016-06-01
Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0-2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei
2016-03-28
A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less